WO2020170475A1 - Communication system for rail-guided carts - Google Patents

Communication system for rail-guided carts Download PDF

Info

Publication number
WO2020170475A1
WO2020170475A1 PCT/JP2019/031743 JP2019031743W WO2020170475A1 WO 2020170475 A1 WO2020170475 A1 WO 2020170475A1 JP 2019031743 W JP2019031743 W JP 2019031743W WO 2020170475 A1 WO2020170475 A1 WO 2020170475A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
communication system
emitting element
optical fiber
light emitting
Prior art date
Application number
PCT/JP2019/031743
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 正和
春山 真一郎
Original Assignee
村田機械株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社, 学校法人慶應義塾 filed Critical 村田機械株式会社
Publication of WO2020170475A1 publication Critical patent/WO2020170475A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B3/00Elevated railway systems with suspended vehicles
    • B61B3/02Elevated railway systems with suspended vehicles with self-propelled vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • One aspect of the present invention relates to a communication system for a track guided vehicle.
  • a mobile monitoring device described in Patent Document 1 As a technology related to a communication system for a track guided vehicle, for example, a mobile monitoring device described in Patent Document 1 is known.
  • the mobile monitoring device described in Patent Document 1 includes a mobile monitoring device main body that travels on a traveling track, and a host computer that communicates information between the mobile monitoring device main body.
  • the control command transmitted from the host computer to the mobile monitoring device body is converted into an optical signal and propagated through the leaky optical axis fiber.
  • the optical signal leaked from the leaky optical axis fiber is received by the mobile monitoring device body.
  • a leaky optical axis fiber may be used for communication from the controller to the vehicle.
  • a leaky optical axis fiber using silica glass for the core for example, FIBRANCE (registered trademark) manufactured by Corning Incorporated, USA
  • silica glass for the core for example, FIBRANCE (registered trademark) manufactured by Corning Incorporated, USA
  • FIBRANCE registered trademark
  • One aspect of the present invention is to provide a communication system for a track guided vehicle that is easily optically connected.
  • a communication system for a track guided vehicle is used for a track guided vehicle including a track, one or a plurality of carts traveling on the track, and a controller for communicating information between the track and the vehicle.
  • a system comprising a first communication system for communicating first information from a controller to a trolley, the first communication system being connected to the controller, a first light emitting element for outputting the first information as light, and a track And a core to which a phosphor or a rare earth element is added, and the light from the first light-emitting element is input to emit light in the core and to leak the emitted light to the outside, and a trolley.
  • a first light receiving element that is mounted and receives the light leaked from the optical fiber.
  • the first information can be communicated from the controller to the truck without using the leaky optical axis fiber having a small core diameter.
  • An optical fiber having a core to which a phosphor or a rare earth is added is generally a plastic optical fiber, and has a larger core diameter, for example, than a leaky optical axis fiber using silica glass for the core, and has an optical connection. At that time, it is easy to adjust. Therefore, according to one aspect of the present invention, it is possible to realize a communication system for a track guided vehicle that is easily optically connected.
  • the communication system for a track guided vehicle may include a second communication system that communicates second information from the vehicle to the controller. According to this configuration, it is possible to communicate the second information from the cart to the controller using the second communication system.
  • the second communication system includes a second light emitting element that is mounted on the vehicle and outputs the second information as light
  • the optical fiber includes the first communication system and the first communication system.
  • An optical fiber that constitutes both of the second communication systems, and the light of the second light-emitting element is input from the middle of the optical fiber to emit light in the core, and the emitted light is transmitted to perform the second communication.
  • the system may include a second light receiving element that is connected to the controller and receives the light transmitted by the optical fiber. According to this configuration, bidirectional communication (communication from the controller to the truck and communication from the truck to the controller) is possible with one optical fiber.
  • the second communication system is mounted on the vehicle, and second conversion is performed to convert the second information into a second signal output as light from the second light emitting element.
  • a second inverse conversion unit that converts the second signal received by the second light receiving element as light into second information, the second conversion unit using the intensity modulation by the multicarrier modulation to generate the second information.
  • Two pieces of information may be converted into the second signal.
  • the second information can be divided, and the divided second information can be overlapped (multiplexed) and simultaneously transmitted. High-speed communication can be performed in the second communication system.
  • the light of the first light emitting element and the light of the second light emitting element may have different frequency ranges with respect to their subcarrier signals. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
  • the light of the first light emitting element and the light of the second light emitting element may be temporally shifted from each other and input to the optical fiber. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
  • the light of the first light emitting element and the light of the second light emitting element may have different wavelength bands from each other. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
  • the first communication system includes a first conversion unit that converts the first information into a first signal output as light from the first light emitting element, and a vehicle. And a first inverse conversion unit that converts the first signal, which is mounted and received by the first light receiving element as light, into first information, wherein the first conversion unit uses intensity modulation by multicarrier modulation You may convert 1 information into a 1st signal.
  • the first information can be divided, and the divided first information can be overlapped (multiplexed) and transmitted at the same time. High-speed communication can be performed in the first communication system.
  • the light of the first light emitting element may include at least one of infrared light, visible light, and ultraviolet light.
  • the light of the second light emitting element may include at least one of infrared light, visible light, and ultraviolet light.
  • FIG. 1 is a schematic diagram showing a configuration of a communication system for a guided vehicle according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the track guided vehicle communication system of FIG.
  • FIG. 3 is a diagram illustrating light leakage in the optical fiber of FIG.
  • FIG. 4 is a diagram for explaining light transmission by inputting light from the middle in the optical fiber of FIG.
  • FIG. 5 is a diagram showing absorption wavelengths and emission wavelengths of the phosphors added to the core of the optical fiber of FIG.
  • FIG. 6 is a diagram showing the transmission performance of the optical fiber of FIG.
  • FIG. 7 is a schematic diagram showing a configuration of a communication system for a guided vehicle according to a modified example.
  • FIG. 8 is a diagram for explaining the OFDM method.
  • FIG. 9 is a diagram for explaining the OFDM method.
  • FIG. 10 is a diagram for explaining the OFDM method.
  • a communication system 100 for a guided vehicle is a communication system used for the guided vehicle 1.
  • the track guided vehicle communication system 100 constitutes an overhead traveling carrier system in a factory or a warehouse, for example.
  • the tracked bogie 1 includes a track 2, a bogie 3 traveling on the track 2, a controller 4 for communicating information between the bogie 3, and a bogie control unit 7 mounted on the bogie 3.
  • the track guided vehicle communication system 100 includes a first communication system 50 and a second communication system 60.
  • the first communication system 50 is a communication system that performs downlink communication for communicating the first information from the controller 4 to the carriage 3.
  • the first communication system 50 includes a first conversion unit 51, a first light emitting element 52, a first light receiving element 54, and a first inverse conversion unit 55.
  • the second communication system 60 is a communication system that performs upstream communication for communicating the second information from the cart 3 to the controller 4.
  • the second communication system 60 includes a second converter 61, a second light emitting element 62, a second light receiving element 64, and a second inverse converter 65.
  • the first communication system 50 includes an optical fiber 53 as a signal transmission line, and the optical fiber 53 also functions as a signal transmission line of the second communication system 60. That is, the optical fiber 53 is also used in the first communication system 50 and the second communication system 60, and the common optical fiber 53 is included in each of the first communication system 50 and the second communication system 60.
  • the track 2 has a downward U-shape in cross section and forms a traveling path of the trolley 3, and its internal space is shielded from the illumination installed on the ceiling W. It is a dark area.
  • the track 2 is suspended and fixed to the ceiling W by a fastening member such as a bolt B.
  • the track 2 has a first rail 2A on which the truck 3 travels and a second rail 2B on which the optical fibers 53 of the first communication system 50 and the second communication system 60 are arranged.
  • the first rail 2A has a rectangular tubular shape whose axial direction is the extending direction.
  • the first rail 2A goes inward so that the upper wall 21 facing the ceiling W, the side walls 22 and 23 extending downward from both widthwise ends of the upper wall 21, and the lower ends of the side walls 22 and 23 approach each other. It has traveling rails 24 and 25 extending horizontally. An opening is provided between the traveling rail 24 and the traveling rail 25.
  • the traveling unit 31 of the carriage 3 is arranged in the first rail 2A.
  • the traveling wheels 34 of the carriage 3 are mounted on the traveling rails 24 and 25. Thereby, the traveling unit 31 is configured to be able to travel in the first rail 2A.
  • the first rail 2A is made of a metal material such as aluminum.
  • the second rail 2B is arranged below the first rail 2A.
  • the second rail 2B is fixed to each of the lower portions of the traveling rails 24 and 25 of the first rail 2A by, for example, bolts.
  • the cross section of the second rail 2B has a U-shape that opens toward the inside.
  • the second rail 2B is made of, for example, a metal material such as aluminum.
  • a holder 26 that holds the optical fiber 53 is provided inside one of the pair of second rails 2B.
  • a plurality of holders 26 are arranged along the track 2 at predetermined intervals.
  • the holder 26 is fixed inside the second rail 2B.
  • the cross section of the holder 26 has a U-shape that imitates the second rail 2B.
  • the holder 26 holds the optical fiber 53 so as to extend along the second rail 2B. As a result, the optical fiber 53 is arranged along the track 2 while being covered by the second rail 2B.
  • the trolley 3 has a traveling unit 31 arranged in the first rail 2A, a main body 32 on which luggage is loaded, and a connecting portion 33 connecting the traveling unit 31 and the main body 32.
  • bogie 3 runs by being contactlessly supplied with electric power from the high frequency current line (not shown) arrange
  • the traveling unit 31 is provided with a plurality of traveling wheels 34.
  • the traveling wheels 34 are rotated by, for example, a motor (not shown) in the traveling unit 31.
  • the traveling wheels 34 are placed on the traveling rails 24 and 25 of the first rail 2A.
  • the connecting portion 33 is provided so as to pass through an opening provided between the traveling rail 24 and the traveling rail 25 and pass between the pair of second rails 2B. As a result, the carriage 3 travels along the track 2 while being suspended from the track 2.
  • the trolley 3 is provided with a communication unit 35 for communicating with the controller 4.
  • the communication unit 35 projects from the connecting unit 33 so as to enter the holder 26.
  • the first light receiving element 54 is arranged so as to face the optical fiber 53.
  • the second light emitting element 62 is arranged so as to face the optical fiber 53.
  • the carriage 3 travels along the track 2 with the optical fiber 53 and the first light receiving element 54 and the second light emitting element 62 facing each other.
  • the configuration of the carriage 3 is not limited to the example shown in FIG. 2, and various configurations can be adopted according to the specifications and the like.
  • the controller 4 communicates information (signal) with the carriage 3.
  • the controller 4 can be realized as a microcomputer system including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, for example.
  • the controller 4 is connected to a host controller (not shown).
  • the controller 4 includes a first controller 4a connected to the first converter 51 and a second controller 4b connected to the second inverse converter 65.
  • the first control unit 4 a has a signal source 41 that generates the first information transmitted to the carriage 3.
  • the second controller 4b transmits the second information transmitted from the trolley 3 to the host controller.
  • the first information may include, for example, a signal for controlling traveling of the carriage 3 and transfer of luggage.
  • the second information may include, for example, information indicating the state of the carriage 3 and image data captured by a camera or the like mounted on the carriage 3.
  • the trolley control unit 7 is mounted on the trolley 3 and is connected to the first inverse conversion unit 55 and the second conversion unit 61.
  • the trolley control unit 7 controls the trolley 3 based on the first information transmitted from the first control unit 4a.
  • the trolley control unit 7 generates the second information transmitted from the trolley 3 to the controller 4, and transmits the second information to the second conversion unit 61.
  • the carriage control unit 7 can be realized as a microcomputer system including a CPU, a RAM, a ROM, and the like.
  • the first conversion unit 51 is connected between the first control unit 4a and the first light emitting element 52.
  • the first conversion unit 51 converts the first information generated by the signal source 41 of the first control unit 4a into a first signal that is an electrical signal.
  • the converted first signal is transmitted to the first light emitting element 52.
  • a conversion method from the first information to the first signal for example, a known conversion method such as baseband modulation which is a kind of intensity modulation can be used. Further, the intensity may be modulated by a multicarrier modulation wave.
  • the first light emitting element 52 is connected to the first controller 4a via the first converter 51.
  • the first light emitting element 52 converts a first signal obtained by converting the first information by the first conversion unit 51 into light (optical signal).
  • the first light emitting element 52 outputs (emits) the first information as light.
  • the first light emitting element 52 is provided at one end of the optical fiber 53 or at a position close to the one end so that the output light is introduced into the optical fiber 53.
  • the first light emitting element 52 for example, a laser diode (LD: Laser Diode) or an LED (Light Emitting Diode) can be used.
  • the first light emitting element 52 may have high-speed response characteristics and sharp directivity.
  • the laser diode may be the first light emitting element 52.
  • the light output from the first light emitting element 52 includes at least one of infrared light, visible light, and ultraviolet light.
  • the light output from the first light emitting element 52 may be red light of about 658 nm from the viewpoint of suppressing the product cost as much as possible, and infrared light from the viewpoint of ensuring safety to human eyes. May be
  • the output of the first light emitting element 52 can be, for example, about several mW to several tens of mW.
  • the optical fiber 53 is arranged (stretched) along the track 2 as described above.
  • the optical fiber 53 as a signal transmission line of the first communication system 50 emits light in the core to which the phosphor or the rare earth is attached by receiving the light of the first light emitting element 52, and emits the emitted light. It is leaked to the outside (details will be described later).
  • the optical fiber 53 leaks the light in the section where it is arranged.
  • the optical fiber 53 has flexibility.
  • the first light receiving element 54 is mounted on the carriage 3. More specifically, the first light receiving element 54 is provided in the communication section 35 of the carriage 3 so as to face the optical fiber 53 (see FIG. 2 ).
  • the distance between the first light receiving element 54 and the optical fiber 53 can be, for example, about 5 mm to 20 mm.
  • the first light receiving element 54 receives the light leaked from the optical fiber 53 and converts it into a first signal which is an electrical signal.
  • an avalanche photodiode or the like can be used as the first light receiving element 54.
  • the first reverse conversion unit 55 is mounted on the carriage 3.
  • the first inverse conversion unit 55 is connected between the first light receiving element 54 and the carriage control unit 7.
  • the first inverse converter 55 inversely converts the first signal received by the first light receiving element 54 as light into first information.
  • the inversely converted first information is transmitted to, for example, the trolley control unit 7.
  • the optical fiber 53 has a core 53a to which a first additive containing a phosphor or a rare earth (rare earth metal) is added, and a clad 53b surrounding the core 53a.
  • the optical fiber 53 is, for example, a plastic scintillation fiber, and has a multi-layered structure (one layer or two layers) in which a core (inner side) 53a is a polystyrene resin containing a phosphor as a first additive and a clad (outer side) 53b is a methacrylic resin. It has the property of shining when exposed to radiation.
  • a phosphor or a rare earth element corresponding to the light L1 of the first light emitting element 52 is used as the first additive.
  • the first additive is a phosphor or a rare earth element that can be excited by the light L1 of the first light emitting element 52 to emit light.
  • the phosphor include organic fluorescent materials (the same applies to the following phosphors), and examples of rare earths include erbium, ytterbium, neodymium, thulium, and holcium (the same applies to the following rare earths).
  • the light L1 of the first light emitting element 52 is input from the end face of the optical fiber 53.
  • the first additive in the core 53a is excited, and the light L2 is generated in all directions from the first additive.
  • the light L2 generated from the first additive the light L2 incident on the cladding 53b at an angle larger than the critical angle between the core 53a and the cladding 53b is leaked to the outside of the optical fiber 53. That is, the optical fiber 53 enables the transmission and leakage of the first signal included in the light L1 input from one end thereof by the wave optical approach.
  • the second communication system 60 will be specifically described.
  • the second conversion unit 61 is connected between the carriage control unit 7 and the second light emitting element 62.
  • the second conversion unit 61 converts the second information generated by the trolley control unit 7 into a second signal that is an electrical signal.
  • the converted second signal is transmitted to the second light emitting element 62.
  • a known conversion method such as baseband modulation may be used, as in the first conversion unit 51.
  • the second light emitting element 62 is mounted on the carriage 3. More specifically, the second light emitting element 62 is provided so as to face the optical fiber 53 in the communication section 35 of the carriage 3 (see FIG. 2).
  • the second light emitting element 62 is connected to the carriage control unit 7 via the second conversion unit 61.
  • the second light emitting element 62 converts a second signal obtained by converting the second information by the second converter 61 into light. As a result, the second light emitting element 62 outputs the second information as light.
  • the second light emitting element 62 for example, a laser diode or an LED can be used.
  • the second light emitting element 62 may have high-speed response characteristics and sharp directivity.
  • the laser diode may be the second light emitting element 62.
  • the wavelength band of the light output from the second light emitting element 62 is about 405 nm when a scintillation fiber is used as the optical fiber 53.
  • the output of the second light emitting element 62 can be, for example, several mW to several tens mW.
  • the light output from the second light emitting element 62 may be red light having a wavelength of about 658 nm from the viewpoint of suppressing the product cost as much as possible, and infrared light from the viewpoint of ensuring safety to human eyes. It may be.
  • the wavelength band of the light output from the second light emitting element 62 is different from the wavelength band of the light output from the first light emitting element 52. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 have different wavelength bands. The light color of the first light emitting element 52 and the light color of the second light emitting element 62 are different from each other.
  • the frequency range of the light output from the second light emitting element 62 may be different from the frequency range of the light output from the first light emitting element 52. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 may have different frequency ranges with respect to the subcarrier signal. Different frequency bands mean different center frequencies. For example, if the center frequencies are different, the frequency ranges may be shifted so that they do not completely overlap, or part of the frequency ranges may overlap.
  • the timing at which the light of the second light emitting element 62 is input to the optical fiber 53 may be deviated from the timing at which the light of the first light emitting element 52 is input to the optical fiber 53. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 may be temporally shifted from each other and input to the optical fiber 53.
  • the core 53a of the optical fiber 53 is added with a second additive containing a phosphor or a rare earth.
  • a phosphor is added to the core 53a as a second additive.
  • a phosphor or a rare earth element corresponding to the light of the second light emitting element 62 is used. That is, the second additive is a phosphor or a rare earth element that can be excited by the light of the second light emitting element 62 to emit light.
  • the second additive is an additive different from the first additive.
  • the phosphor or the rare earth as the second additive may be the same as the phosphor or the rare earth as the first additive as long as it can be excited by the light of the second light emitting element 62 to emit light.
  • the optical fiber 53 serving as a signal transmission path of the second communication system 60 emits light in the core 53a and transmits the emitted light by the light of the second light emitting element 62 being input from the middle of the optical fiber 53. Let In other words, the optical fiber 53 propagates the light generated by the light input from the middle of the transmission path.
  • the second additive is caused by the light P1. Be excited.
  • light P2 is generated in all directions from the second additive.
  • the light P2 that enters the cladding 53b at an angle equal to or less than the critical angle between the core 53a and the cladding 53b is transmitted through the optical fiber 53. That is, the optical fiber 53 enables the transmission of the second signal of the light P1 input from the middle of the transmission path of the optical fiber 53 by the wave optical approach.
  • FIG. 5 shows an example of the optical fiber 53.
  • the optical fiber 53 in this example absorbs the light P1 having a wavelength of about 360 nm to 450 nm and emits the light P2 having a wavelength of about 470 nm to 600 nm.
  • the maximum absorption wavelength of the optical fiber 53 is 405 nm, and the maximum emission wavelength is 492 nm.
  • the second light receiving element 64 is connected to the second control unit 4b via the second inverse conversion unit 65.
  • the second light receiving element 64 receives the light P2 transmitted by the optical fiber 53 and converts it into a second signal which is an electrical signal.
  • the second light receiving element 64 is provided at the other end of the optical fiber 53 or at a position close to the other end so that the light P2 output from the other end of the optical fiber 53 can be received.
  • an avalanche photodiode or the like can be used as the second light receiving element 64.
  • the second inverse conversion unit 65 is connected between the second light receiving element 64 and the controller 4.
  • the second inverse converter 65 inversely converts the second signal received by the second light receiving element 64 as the light P2 into second information.
  • the inversely converted second information is transmitted to the controller 4, for example.
  • the transmission performance of the optical fiber 53 as an example will be described with reference to FIG.
  • an experiment was performed in which the intensity of the light P2 transmitted by the optical fiber 53 was measured while changing the position where the light P1 was input to the optical fiber 53.
  • the optical fiber 53 a wavelength shift fiber having a total length of about 100 m is used.
  • a laser diode having a wavelength of 405 nm and an output of 3 mW was used as a light source.
  • the distance between the light source and the optical fiber 53 was set to 5 mm.
  • a light detection sensor was arranged at the other end of the optical fiber 53, and the intensity of the light P2 transmitted by the optical fiber 53 was measured.
  • the intensity of the light P2 decreases as the distance between the input position where the light P1 is input to the optical fiber 53 and the light detection sensor increases. Therefore, it can be confirmed that the transmitted light P2 is attenuated as the distance between the input position of the light P1 and the light detection sensor increases. However, for example, even if the distance between the input position of the light P1 and the light detection sensor is 100 m, the intensity of the light P2 is about ⁇ 55 dBm, and the intensity capable of receiving the signal transmitted from the light source is maintained. Is dripping Therefore, it is confirmed that the signal transmitted from the light source 100 m away can be received by using the optical fiber 53 as an example and receiving the light P2 generated by the light P1 input from the middle of the optical fiber 53. It was
  • the first information is generated by the signal source 41 of the first controller 4a based on a command from the host controller.
  • the generated first information is converted into a first signal by the first conversion unit 51 and transmitted to the first light emitting element 52.
  • the first light emitting element 52 outputs the light L1 according to the first signal.
  • the light L1 from the first light emitting element 52 is input from one end of the optical fiber 53 and is transmitted in the optical fiber 53.
  • the phosphor as the first additive of the core 53a is excited to emit light, and the emitted light L2 leaks to the periphery of the optical fiber 53.
  • the first light receiving element 54 receives the light L2 leaking from the optical fiber 53 and converts the light L2 into the first signal.
  • the first signal is inversely converted into the first information by the first inverse converter 55 and transmitted to the trolley controller 7.
  • the trolley control unit 7 controls traveling of the trolley 3 and transfer of luggage based on the first information.
  • the light L2 corresponding to the first information leaks out from the optical fiber 53, so that the first L is uninterrupted regardless of whether the carriage 3 is stopped or running.
  • the first information can be communicated from the control unit 4a to the carriage 3.
  • uplink communication (uplink) from the cart 3 to the controller 4
  • uplink uplink
  • the trolley control unit 7 generates the second information based on the imaging result or status of the trolley 3 camera or the like.
  • the generated second information is converted into a second signal by the second conversion unit 61 and transmitted to the second light emitting element 62.
  • the second light emitting element 62 outputs the light P1 according to the second signal.
  • the light P1 output from the second light emitting element 62 is input into the optical fiber 53 from the middle of the optical fiber 53.
  • the phosphor as the second additive is excited by the input and emits light.
  • the emitted light P2 is transmitted in the optical fiber 53 and output from the other end of the optical fiber 53.
  • the second light receiving element 64 receives the light P2 output from the optical fiber 53 and converts the light P2 into a second signal.
  • the second signal is inversely converted into the second information by the second inverse converter 65, and then transmitted to the upper controller via the second controller 4b.
  • the light P1 corresponding to the second information is input from the middle of the optical fiber 53 by the second light emitting element 62 of the carriage 3, so that the carriage 3 is running even when the carriage 3 is stopped.
  • the second information can be communicated from the trolley 3 to the second controller 4b without interruption.
  • the light L1 is output from the first light emitting element 52 connected to the controller 4, and the light L1 is input to the optical fiber 53. Since the core 53a of the optical fiber 53 is doped with the first additive (here, a phosphor), the light L1 is input to the optical fiber 53 to emit light from the core 53a. The emitted light L2 leaks to the outside of the optical fiber 53 and is received by the first light receiving element 54 mounted on the carriage 3. In this way, in the communication system 100 for a track guided vehicle, the first information can be communicated from the controller 4 to the vehicle 3 without using a general leaky optical axis fiber.
  • the first additive here, a phosphor
  • the optical fiber 53 which is a plastic scintillation fiber, has a larger core diameter, for example, than a general glass leakage optical axis fiber, and is easy to adjust during optical connection. Therefore, according to the track guided vehicle communication system 100, it is possible to realize a communication system in which optical connection is easy. In other words, optical connection can be facilitated in the tracked vehicle communication system 100 in which the controller 4 optically communicates with the vehicle 3. In addition, a special adjustment jig is not required for optical connection.
  • the communication system 100 for a track guided vehicle is provided with a second communication system 60 for communicating the second information from the vehicle 3 to the controller 4.
  • the second information can be communicated from the cart 3 to the controller 4 using the second communication system 60.
  • the optical fiber 53 constitutes both the first communication system 50 and the second communication system 60.
  • the optical fiber 53 emits light at the core 53a in response to the input of the light L1 of the first light emitting element 52, leaks the emitted light L2 to the outside, and the light P1 of the second light emitting element 62 causes the optical fiber 53 to emit the light P1.
  • the light is emitted from the core 53a by being input in the middle of, and the emitted light P2 is transmitted.
  • bidirectional communication downlink communication from the controller 4 to the carriage 3 and upstream communication from the carriage 3 to the controller 4
  • the installability can be improved. Communication of the first information and the second information between the controller 4 and the carriage 3 can be performed in real time using light. It is possible to perform high-speed communication between the carriage 3 and the controller 4 without radio wave interference.
  • the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 have different wavelength bands from each other. This can prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to realize the separation of upstream communication and downstream communication in the optical fiber 53 by wavelength division multiplexing.
  • the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 may have different frequency ranges with respect to their subcarrier signals. In this case, it is possible to prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to separate the upstream communication and the downstream communication in the optical fiber 53 by frequency division multiplexing.
  • the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 may be temporally shifted from each other and input to the optical fiber. In this case, it is possible to prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to realize the separation of upstream communication and downstream communication in the optical fiber 53 by time division multiplexing.
  • the light L1 of the first light emitting element 52 and the light P2 of the second light emitting element 62 include at least one of infrared light, visible light, and ultraviolet light.
  • the first communication system 50 further includes a first conversion unit 51 and a first inverse conversion unit 55. Thereby, it is possible to perform communication between the carriage 3 and the controller 4 using the converted first signal.
  • the second communication system 60 further includes a second conversion unit 61 and a second inverse conversion unit 65. Thereby, it is possible to perform communication between the trolley
  • the optical fiber 53 is arranged along the track 2 while being covered by the second rail 2B. Thereby, the light L2 leaking from the optical fiber 53 is suppressed from leaking to the outside of the track 2. It is possible to prevent the light L2 leaking from the optical fiber 53 from affecting an external device or the like. Further, since the external light is also prevented from being input to the optical fiber 53, it is possible to prevent the communication from being disturbed by the external light (for example, the illumination installed on the ceiling W).
  • the optical fiber 53 has flexibility. Thereby, even if the track 2 has a curve, for example, the optical fiber 53 can be easily arranged along the track 2.
  • the first information is transmitted by inputting the light L1 into the existing leaky optical axis fiber, transmitting and leaking the input light L1 through the existing leaky optical axis fiber, and receiving the leaked light L1.
  • One communication system hereinafter referred to as "existing first communication system"
  • the input light L1 has a sharp directivity, for example, if the other existing first communication system leaks the light L1, the light L1 is received and accurate communication is not performed. It can be difficult.
  • the optical fiber 53 leaks the light L2 different from the input light L1 and receives the light L2. Therefore, accurate communication can be performed in the first communication system 50.
  • the wavelengths of the light L2 and the light P2 emitted by the optical fiber 53 can be adjusted as desired. ..
  • the amounts of the first additive and the second additive added to the core 53a of the optical fiber 53 it is possible to adjust the light amounts of the light L2 and the light P2 emitted by the optical fiber 53 as desired.
  • a phosphor or a rare earth which is excited by the light L1 of the first color (for example, blue) and emits the light L2 of the second color (for example, green) is used, and is added to the core 53a
  • a phosphor or a rare earth which is excited by the light P1 of the third color (for example, orange) and emits the light P2 of the fourth color (for example, blue) may be used.
  • the first to fourth colors are different from each other, it is possible to visually confirm each of the lights L1, L2, P1, and P2.
  • Invisible light (ultraviolet light or the like) may be input to the optical fiber 53 as the light L1 and P1, and visible light may be emitted as the light L2 and the light P2 at the core 53a of the optical fiber 53.
  • visible light may be input to the optical fiber 53 as the light L1 and P1
  • visible light may be emitted as the light L2 and the light P2 at the core 53a of the optical fiber 53.
  • Invisible light (ultraviolet light or the like) may be used as at least one of the light L1 and P1 input to the optical fiber 53 and the light L2 and light P2 emitted by the core 53a of the optical fiber 53.
  • visible light may be emitted as the light L2 and the light P2 by the core 53a of the optical fiber 53 that is easy on the eyes. As a result, it is possible to suppress damage, fatigue and burden on the eyes of the user.
  • FIG. 7 is a diagram illustrating a tracked bogie communication system 200 according to a modification.
  • FIG. 7 only the points different from the communication system for a guided vehicle 100 (see FIG. 1) will be described, and redundant description will be omitted.
  • a communication system 200 for a guided vehicle is used for a guided vehicle 201.
  • the track guided vehicle 201 includes a single controller 204 having both functions of the first control unit 4a (see FIG. 1) and the second control unit 4b (see FIG. 1).
  • the optical fiber 53 is curved in a U shape, for example. Also in such a tracked vehicle communication system 200, the above-mentioned effect, that is, the effect of realizing a communication system in which optical connection is easy is achieved.
  • the second communication system 60 communicates the second information from the carriage 3 to the controller 4 by using the optical fiber 53 also as the first communication system 50, but the invention is not limited to this.
  • the second communication system 60 may use the other optical fiber 53 different from the optical fiber 53 to independently communicate the second information.
  • the second communication system 60 may communicate by a method other than optical communication.
  • the second communication system 60 may perform wired communication or wireless communication.
  • the second communication system may communicate using a leaky coaxial cable, for example.
  • the track-guided vehicle communication system 100 includes one first communication system 50 and one second communication system 60, but the track-guided vehicle communication system 100 includes a plurality of first communication systems. 50 and a plurality of second communication systems 60 may be provided.
  • the communication between the carriage 3 and the controller 4 can be performed using the plurality of first communication systems 50 or the plurality of second communication systems 60, the communication speed between the carriage 3 and the controller 4 can be reduced. It can be further improved.
  • a plurality of optical fibers 53 may be arranged in parallel as the first communication system 50 and the second communication system 60.
  • each of the optical fibers 53 can be selectively used according to the use such as transmission of control signals, transmission of management information, or transmission of captured images.
  • the band to be used can be widened by properly using the optical fiber 53 for each cart 3 to communicate.
  • the wavelengths of the light transmitted by the respective optical fibers 53 can be made different from each other.
  • the first communication system 50 may further include a filter that covers the first light receiving element 54 and passes only the light L2 leaked from the optical fiber 53. Accordingly, it is possible to block light other than the light L2 leaked from the optical fiber 53 (light P1 output from the second light emitting element 62, external light, and the like). Therefore, the communication of the first information by the first communication system 50 can be performed more reliably.
  • the second communication system 60 may further include a filter that covers the second light receiving element 64 and passes only the light P2 transmitted by the optical fiber 53. Accordingly, it is possible to block light other than the light P2 transmitted by the optical fiber 53 (light L1 output from the first light emitting element 52, external light, and the like). Therefore, the communication of the second information by the second communication system 60 can be performed more reliably.
  • the rail guided vehicle communication system 100 includes the first conversion unit 51, the first inverse conversion unit 55, the second conversion unit 61, and the second inverse conversion unit 65 .
  • the communication system 100 may not include the first conversion unit 51, the first inverse conversion unit 55, the second conversion unit 61, and the second inverse conversion unit 65. That is, in the track guided vehicle communication system 100, the optical communication may be performed without converting the first information and the second information into the first signal and the second signal, respectively.
  • a plurality of optical fibers 53 may be provided, and the plurality of optical fibers 53 may be connected in series via an amplifier.
  • the plurality of optical fibers 53 are connected in series in this way, the section where the light L2 is leaked and the distance where the light P2 is transmitted can be extended. Further, the lights L1 and P2 can be amplified by the amplifier.
  • both the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 include at least one of infrared light, visible light, and ultraviolet light.
  • Any one of P1 may include at least one of infrared light, visible light, and ultraviolet light.
  • the optical fiber 53 has flexibility
  • the optical fiber 53 does not have to have flexibility
  • the configuration in which the optical fiber 53 is arranged along the track 2 is not limited to the example shown in FIG. 2, and various arrangement configurations may be adopted.
  • the above embodiment is a communication system applied to, for example, a ceiling traveling type carrier system in a factory or a warehouse, but the carrier system to which it is applied (rail guided vehicle) is not particularly limited.
  • One embodiment of the present invention may be a communication system applied to an overhead traveling carrier system that transports FOUPs (Front Opening Unified Pods) that contain semiconductor wafers, or a ground transporting product in a factory or warehouse. It may be a communication system applied to a traveling carrier system.
  • FOUPs Front Opening Unified Pods
  • the modulation method is not particularly limited.
  • the first conversion unit 51 may convert the first information into the first signal using intensity modulation by multicarrier modulation.
  • the second conversion unit 61 may convert the second information into the second signal using intensity modulation by multicarrier modulation.
  • an OFDM (Orthogonal Frequency Division Multiplexing) method can be used as an example of multi-carrier modulation.
  • OFDM multi-carrier modulation which is an application that can be implemented in at least one of the first conversion unit 51 and the second conversion unit 61, will be described. 8 to 10 are diagrams for explaining the OFDM method.
  • the information to be transmitted (that is, the first information or the second information) is divided into some series. Then, different subcarriers are assigned to each sequence and modulated, and the information divided into each sequence is collectively transmitted.
  • the information to be transmitted is divided into four series of a first series D1, a second series D2, a third series D3, and a fourth series D4, and a first subcarrier S1 and a second subcarrier Modulation is performed using four types of subcarriers S2, third subcarrier S3, and fourth subcarrier S4.
  • Each of the first to fourth subcarriers S1, S2, S3, S4 has a different frequency, as shown in FIG.
  • the subcarriers S1, S2, S3, S4 used in the OFDM system are orthogonal to each other.
  • “orthogonal” refers to a state in which the phases of the waves of the first to fourth subcarriers S1, S2, S3, S4 are shifted by 90 degrees.
  • the waveform is as shown in FIG. 10, for example.
  • the waveform of each subcarrier S1, S2, S3, S4 is in a state in which side lobes are suppressed.
  • each subcarrier S1, S2, S3, S4 Since the subcarriers S1, S2, S3, S4 are orthogonal to each other, each subcarrier S1, S2, S3, S4 has a center frequency of one subcarrier (a point at which the power density becomes maximum) and other subcarriers. They overlap so that the null point of the subcarrier (the point where the power density becomes 0) matches. For example, at the center frequency of the second subcarrier S2, the signal strengths of the first subcarrier S1, the third subcarrier S3, and the fourth subcarrier S4 are 0. Therefore, even if a plurality of subcarriers are superposed on a limited frequency band (that is, even if a plurality of subcarriers are bundled), interference between subcarriers can be suppressed.
  • the divided first information is superimposed (multiplexed) and transmitted at the same time. Therefore, high-speed multi-channel can be achieved. Therefore, high speed communication can be performed in the first communication system 50.
  • the second information into the second signal by using the intensity modulation by the OFDM multi-carrier modulation, it is possible to superimpose (multiplex) the divided second information and transmit at the same time. Multi-channel can be achieved. Therefore, high-speed communication can be performed in the second communication system 60.
  • the modulation method in the first converter 51 and the modulation method in the second converter 61 may be the same or different from each other.

Abstract

A communication system for rail-guided carts is a communication system used for rail-guided carts comprising a rail track, one or a plurality of carts traveling on the rail track, and a controller for communicating information with the carts, the communication system being provided with a first communication system for communicating first information from the controller to the carts. The first communication system includes: a first light-emitting element connected to the controller, for outputting the first information as light; an optical fiber arranged along the rail track, having a core which a phosphor or rare earth is added to, and emitting light in the core due to that the light of the first light-emitting element is inputted, the optical fiber leaking the emitted light to the outside; and a first light-receiving element mounted on a cart, for receiving the light leaking from the optical fiber.

Description

有軌道台車用通信システムCommunication system for guided vehicles
 本発明の一側面は、有軌道台車用通信システムに関する。 One aspect of the present invention relates to a communication system for a track guided vehicle.
 有軌道台車用通信システムに関する技術として、例えば特許文献1に記載された移動式監視装置が知られている。特許文献1に記載された移動式監視装置は、走行軌道を走行する移動式監視装置本体と、移動式監視装置本体との間で情報を通信するホストコンピュータと、を備える。ホストコンピュータから移動式監視装置本体に送信される制御命令は、光信号に変換されて漏洩光軸ファイバを伝播される。漏洩光軸ファイバから漏洩した光信号は、移動式監視装置本体において受光される。 As a technology related to a communication system for a track guided vehicle, for example, a mobile monitoring device described in Patent Document 1 is known. The mobile monitoring device described in Patent Document 1 includes a mobile monitoring device main body that travels on a traveling track, and a host computer that communicates information between the mobile monitoring device main body. The control command transmitted from the host computer to the mobile monitoring device body is converted into an optical signal and propagated through the leaky optical axis fiber. The optical signal leaked from the leaky optical axis fiber is received by the mobile monitoring device body.
特開平5-281393号公報JP-A-5-281393
 ところで、有軌道台車用通信システムでは、コントローラから台車への通信に漏洩光軸ファイバが用いられる場合がある。この場合、例えば、コアに石英ガラスを用いた漏洩光軸ファイバ(例えば、米国コーニング社のFIBRANCE(登録商標))は一般的にコア径が小さいため、該ファイバを光学的に接続する際には、そのコアの位置等を調整することが難しい。よって、光学的な接続が容易ではないという問題がある。 By the way, in a communication system for a track guided vehicle, a leaky optical axis fiber may be used for communication from the controller to the vehicle. In this case, for example, a leaky optical axis fiber using silica glass for the core (for example, FIBRANCE (registered trademark) manufactured by Corning Incorporated, USA) generally has a small core diameter. , It is difficult to adjust the position of the core. Therefore, there is a problem that optical connection is not easy.
 本発明の一側面は、光学的な接続が容易な有軌道台車用通信システムを提供することを目的とする。 One aspect of the present invention is to provide a communication system for a track guided vehicle that is easily optically connected.
 本発明の一形態に係る有軌道台車用通信システムは、軌道と、軌道を走行する1又は複数の台車と、台車との間で情報を通信するコントローラと、を備える有軌道台車に用いられる通信システムであって、コントローラから台車へ第1情報を通信する第1通信系を備え、第1通信系は、コントローラに接続され、第1情報を光として出力する第1発光素子と、軌道に沿って配置され、蛍光体又は希土類が添加されたコアを有し、第1発光素子の光が入力されることによりコアで発光すると共に、発光した当該光を外部に漏洩させる光ファイバと、台車に搭載され、光ファイバから漏洩した当該光を受光する第1受光素子と、を含む。 A communication system for a track guided vehicle according to an aspect of the present invention is used for a track guided vehicle including a track, one or a plurality of carts traveling on the track, and a controller for communicating information between the track and the vehicle. A system comprising a first communication system for communicating first information from a controller to a trolley, the first communication system being connected to the controller, a first light emitting element for outputting the first information as light, and a track And a core to which a phosphor or a rare earth element is added, and the light from the first light-emitting element is input to emit light in the core and to leak the emitted light to the outside, and a trolley. A first light receiving element that is mounted and receives the light leaked from the optical fiber.
 この有軌道台車用通信システムでは、コントローラに接続された第1発光素子から光が出力され、その光が光ファイバに入力されることで、光ファイバにおいて蛍光体又は希土類が添加されたコアで発光する。発光した光は、光ファイバの外部に漏洩し、台車に搭載された第1受光素子で受光される。このように、本発明の一形態では、コア径の小さい漏洩光軸ファイバを用いずに、コントローラから台車へ第1情報を通信することができる。蛍光体又は希土類が添加されたコアを有する光ファイバは、一般的にはプラスチック光ファイバであり、コアに石英ガラスを用いた漏洩光軸ファイバに比べて、例えばコア径が大きく、光学的な接続に際して調整がし易い。したがって、本発明の一形態によれば、光学的な接続が容易な有軌道台車用通信システムを実現することできる。 In this track-guided vehicle communication system, light is output from the first light emitting element connected to the controller, and the light is input to the optical fiber, so that light is emitted from the core to which the fluorescent substance or the rare earth is added in the optical fiber. To do. The emitted light leaks to the outside of the optical fiber and is received by the first light receiving element mounted on the truck. As described above, according to the aspect of the present invention, the first information can be communicated from the controller to the truck without using the leaky optical axis fiber having a small core diameter. An optical fiber having a core to which a phosphor or a rare earth is added is generally a plastic optical fiber, and has a larger core diameter, for example, than a leaky optical axis fiber using silica glass for the core, and has an optical connection. At that time, it is easy to adjust. Therefore, according to one aspect of the present invention, it is possible to realize a communication system for a track guided vehicle that is easily optically connected.
 本発明の一形態に係る有軌道台車用通信システムは、台車からコントローラへ第2情報を通信する第2通信系を備えていてもよい。この構成によれば、第2通信系を利用して、台車からコントローラへの第2情報の通信が可能となる。 The communication system for a track guided vehicle according to an aspect of the present invention may include a second communication system that communicates second information from the vehicle to the controller. According to this configuration, it is possible to communicate the second information from the cart to the controller using the second communication system.
 本発明の一形態に係る有軌道台車用通信システムでは、第2通信系は、台車に搭載され、第2情報を光として出力する第2発光素子を含み、光ファイバは、第1通信系及び第2通信系の双方を構成する光ファイバであって、第2発光素子の光が当該光ファイバの途中から入力されることによりコアで発光する共に、発光した当該光を伝送し、第2通信系は、コントローラに接続され、光ファイバが伝送した当該光を受光する第2受光素子を含んでいてもよい。この構成によれば、1つの光ファイバで双方向通信(コントローラから台車への通信及び台車からコントローラへの通信)が可能となる。 In the communication system for a track guided vehicle according to an aspect of the present invention, the second communication system includes a second light emitting element that is mounted on the vehicle and outputs the second information as light, and the optical fiber includes the first communication system and the first communication system. An optical fiber that constitutes both of the second communication systems, and the light of the second light-emitting element is input from the middle of the optical fiber to emit light in the core, and the emitted light is transmitted to perform the second communication. The system may include a second light receiving element that is connected to the controller and receives the light transmitted by the optical fiber. According to this configuration, bidirectional communication (communication from the controller to the truck and communication from the truck to the controller) is possible with one optical fiber.
 本発明の一形態に係る有軌道台車用通信システムでは、第2通信系は、台車に搭載され、第2情報を、第2発光素子から光として出力される第2信号へ変換する第2変換部と、第2受光素子が光として受信した第2信号を、第2情報へ変換する第2逆変換部と、を更に含み、第2変換部は、マルチキャリア変調による強度変調を用いて第2情報を第2信号に変換してもよい。この構成によれば、第2情報を分割し、分割された第2情報を重ね合わせて(多重化して)同時に送信することができる。第2通信系において高速な通信を行うことが可能となる。 In the communication system for a track guided vehicle according to an aspect of the present invention, the second communication system is mounted on the vehicle, and second conversion is performed to convert the second information into a second signal output as light from the second light emitting element. And a second inverse conversion unit that converts the second signal received by the second light receiving element as light into second information, the second conversion unit using the intensity modulation by the multicarrier modulation to generate the second information. Two pieces of information may be converted into the second signal. According to this configuration, the second information can be divided, and the divided second information can be overlapped (multiplexed) and simultaneously transmitted. High-speed communication can be performed in the second communication system.
 本発明の一形態に係る有軌道台車用通信システムでは、第1発光素子の光と第2発光素子の光とは、そのサブキャリア信号に関して互いに異なる周波数域を有していてもよい。これにより、光ファイバにおいて第1発光素子の光と第2発光素子の光とが互いに悪影響を及ぼし合うのを抑制することができる。 In the communication system for a guided vehicle according to an aspect of the present invention, the light of the first light emitting element and the light of the second light emitting element may have different frequency ranges with respect to their subcarrier signals. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
 一形態に係る有軌道台車用通信システムでは、第1発光素子の光と第2発光素子の光とは、時間的に互いにずれて光ファイバに入力されてもよい。これにより、光ファイバにおいて第1発光素子の光と第2発光素子の光とが互いに悪影響を及ぼし合うのを抑制することができる。 In the communication system for a guided vehicle according to one aspect, the light of the first light emitting element and the light of the second light emitting element may be temporally shifted from each other and input to the optical fiber. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
 本発明の一形態に係る有軌道台車用通信システムでは、第1発光素子の光と第2発光素子の光とは、互いに異なる波長帯を有していてもよい。これにより、光ファイバにおいて第1発光素子の光と第2発光素子の光とが互いに悪影響を及ぼし合うのを抑制することができる。 In the communication system for a guided vehicle according to an aspect of the present invention, the light of the first light emitting element and the light of the second light emitting element may have different wavelength bands from each other. Accordingly, it is possible to prevent the light of the first light emitting element and the light of the second light emitting element from adversely affecting each other in the optical fiber.
 本発明の一形態に係る有軌道台車用通信システムでは、第1通信系は、第1情報を、第1発光素子から光として出力される第1信号に変換する第1変換部と、台車に搭載され、第1受光素子が光として受信した第1信号を、第1情報へ変換する第1逆変換部と、を更に含み、第1変換部は、マルチキャリア変調による強度変調を用いて第1情報を第1信号に変換してもよい。この構成によれば、第1情報を分割し、分割された第1情報を重ね合わせて(多重化して)同時に送信することができる。第1通信系において高速な通信を行うことが可能となる。 In the communication system for a track guided vehicle according to an aspect of the present invention, the first communication system includes a first conversion unit that converts the first information into a first signal output as light from the first light emitting element, and a vehicle. And a first inverse conversion unit that converts the first signal, which is mounted and received by the first light receiving element as light, into first information, wherein the first conversion unit uses intensity modulation by multicarrier modulation You may convert 1 information into a 1st signal. According to this configuration, the first information can be divided, and the divided first information can be overlapped (multiplexed) and transmitted at the same time. High-speed communication can be performed in the first communication system.
 本発明の一形態に係る有軌道台車用通信システムでは、第1発光素子の光は、赤外光、可視光及び紫外光の少なくとも何れかを含んでいてもよい。一形態に係る有軌道台車用通信システムでは、第2発光素子の光は、赤外光、可視光及び紫外光の少なくとも何れかを含んでいてもよい。このような光を用いることにより、電波を用いる場合に比べて、台車とコントローラとの間でより高速なデータ速度を実現できる。 In the communication system for a guided vehicle according to an aspect of the present invention, the light of the first light emitting element may include at least one of infrared light, visible light, and ultraviolet light. In the communication system for a track guided vehicle according to one aspect, the light of the second light emitting element may include at least one of infrared light, visible light, and ultraviolet light. By using such light, a higher data rate can be realized between the trolley and the controller as compared with the case of using radio waves.
 本発明の一側面によれば、光学的な接続が容易な有軌道台車用通信システムを提供することが可能となる。 According to one aspect of the present invention, it becomes possible to provide a communication system for a track guided vehicle that is easily optically connected.
図1は、一実施形態に係る有軌道台車用通信システムの構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of a communication system for a guided vehicle according to an embodiment. 図2は、図1の有軌道台車用通信システムの構成を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the configuration of the track guided vehicle communication system of FIG. 図3は、図1の光ファイバにおける光の漏洩を説明する図である。FIG. 3 is a diagram illustrating light leakage in the optical fiber of FIG. 図4は、図1の光ファイバにおいて途中からの光の入力による光の伝送を説明する図である。FIG. 4 is a diagram for explaining light transmission by inputting light from the middle in the optical fiber of FIG. 図5は、図1の光ファイバのコアに添加された蛍光体の吸収波長及び放射波長を示す図である。FIG. 5 is a diagram showing absorption wavelengths and emission wavelengths of the phosphors added to the core of the optical fiber of FIG. 図6は、図1の光ファイバの伝送性能を示す図である。FIG. 6 is a diagram showing the transmission performance of the optical fiber of FIG. 図7は、変形例に係る有軌道台車用通信システムの構成を示す概略図である。FIG. 7 is a schematic diagram showing a configuration of a communication system for a guided vehicle according to a modified example. 図8は、OFDM方式を説明するための図である。FIG. 8 is a diagram for explaining the OFDM method. 図9は、OFDM方式を説明するための図である。FIG. 9 is a diagram for explaining the OFDM method. 図10は、OFDM方式を説明するための図である。FIG. 10 is a diagram for explaining the OFDM method.
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。 Hereinafter, various embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols, without redundant description.
 図1に示されるように、有軌道台車用通信システム100は、有軌道台車1に用いられる通信システムである。有軌道台車用通信システム100は、例えば工場内又は倉庫内における天井走行式搬送車システムを構成する。有軌道台車1は、軌道2と、軌道2を走行する台車3と、台車3との間で情報を通信するコントローラ4と、台車3に搭載された台車制御部7と、を備える。 As shown in FIG. 1, a communication system 100 for a guided vehicle is a communication system used for the guided vehicle 1. The track guided vehicle communication system 100 constitutes an overhead traveling carrier system in a factory or a warehouse, for example. The tracked bogie 1 includes a track 2, a bogie 3 traveling on the track 2, a controller 4 for communicating information between the bogie 3, and a bogie control unit 7 mounted on the bogie 3.
 有軌道台車用通信システム100は、第1通信系50及び第2通信系60を備えている。第1通信系50は、コントローラ4から台車3へ第1情報を通信する下り通信を行う通信系である。第1通信系50は、第1変換部51と、第1発光素子52と、第1受光素子54と、第1逆変換部55と、を含む。第2通信系60は、台車3からコントローラ4へ第2情報を通信する上り通信を行う通信系である。第2通信系60は、第2変換部61と、第2発光素子62と、第2受光素子64と、第2逆変換部65と、を含む。 The track guided vehicle communication system 100 includes a first communication system 50 and a second communication system 60. The first communication system 50 is a communication system that performs downlink communication for communicating the first information from the controller 4 to the carriage 3. The first communication system 50 includes a first conversion unit 51, a first light emitting element 52, a first light receiving element 54, and a first inverse conversion unit 55. The second communication system 60 is a communication system that performs upstream communication for communicating the second information from the cart 3 to the controller 4. The second communication system 60 includes a second converter 61, a second light emitting element 62, a second light receiving element 64, and a second inverse converter 65.
 本実施形態において、第1通信系50は、信号伝送路として光ファイバ53を含み、この光ファイバ53は、第2通信系60の信号伝送路としても機能する。つまり、第1通信系50及び第2通信系60では、光ファイバ53が兼用されており、第1通信系50及び第2通信系60のそれぞれに共通の光ファイバ53が含まれる。 In the present embodiment, the first communication system 50 includes an optical fiber 53 as a signal transmission line, and the optical fiber 53 also functions as a signal transmission line of the second communication system 60. That is, the optical fiber 53 is also used in the first communication system 50 and the second communication system 60, and the common optical fiber 53 is included in each of the first communication system 50 and the second communication system 60.
 図2に示されるように、軌道2は、その断面が下向きU字形状であって台車3の走行経路を形成しており、その内部空間は天井Wに設置された照明に対して遮光されて暗部となっている。軌道2は、例えばボルトB等の締結部材によって天井Wに吊り下げ固定されている。軌道2は、台車3が走行する第1レール2Aと、第1通信系50及び第2通信系60の光ファイバ53が配置された第2レール2Bと、を有している。 As shown in FIG. 2, the track 2 has a downward U-shape in cross section and forms a traveling path of the trolley 3, and its internal space is shielded from the illumination installed on the ceiling W. It is a dark area. The track 2 is suspended and fixed to the ceiling W by a fastening member such as a bolt B. The track 2 has a first rail 2A on which the truck 3 travels and a second rail 2B on which the optical fibers 53 of the first communication system 50 and the second communication system 60 are arranged.
 第1レール2Aは、その延在方向を軸方向とする矩形筒状を呈している。第1レール2Aは、天井Wと対向する上壁21と、上壁21の幅方向の両端それぞれから下方向に延びる側壁22,23と、側壁22,23の下端それぞれから互いに近づくように内側へ水平に延びる走行レール24,25と、を有している。走行レール24と走行レール25との間には、開口が設けられている。第1レール2A内には、台車3の走行ユニット31が配置される。走行レール24,25上には、台車3の走行輪34が載置される。これにより、走行ユニット31は、第1レール2A内を走行可能に構成される。第1レール2Aは、例えばアルミニウム等の金属材料によって構成されている。 The first rail 2A has a rectangular tubular shape whose axial direction is the extending direction. The first rail 2A goes inward so that the upper wall 21 facing the ceiling W, the side walls 22 and 23 extending downward from both widthwise ends of the upper wall 21, and the lower ends of the side walls 22 and 23 approach each other. It has traveling rails 24 and 25 extending horizontally. An opening is provided between the traveling rail 24 and the traveling rail 25. The traveling unit 31 of the carriage 3 is arranged in the first rail 2A. The traveling wheels 34 of the carriage 3 are mounted on the traveling rails 24 and 25. Thereby, the traveling unit 31 is configured to be able to travel in the first rail 2A. The first rail 2A is made of a metal material such as aluminum.
 第2レール2Bは、第1レール2Aの下部に配置されている。第2レール2Bは、第1レール2Aの走行レール24,25の下部それぞれに、例えばボルト等によって固定されている。第2レール2Bの横断面は、内側に向けて開口するU字状を呈している。第2レール2Bは、例えばアルミニウム等の金属材料により構成されている。一対の第2レール2Bのうちの一方の内部には、光ファイバ53を保持するホルダ26が設けられている。 The second rail 2B is arranged below the first rail 2A. The second rail 2B is fixed to each of the lower portions of the traveling rails 24 and 25 of the first rail 2A by, for example, bolts. The cross section of the second rail 2B has a U-shape that opens toward the inside. The second rail 2B is made of, for example, a metal material such as aluminum. A holder 26 that holds the optical fiber 53 is provided inside one of the pair of second rails 2B.
 ホルダ26は、軌道2に沿って所定間隔で並ぶように複数配置されている。ホルダ26は、第2レール2Bの内側に固定されている。ホルダ26の横断面は、第2レール2Bに倣ったU字状を呈している。このようなホルダ26は、光ファイバ53を第2レール2Bに沿って延びるようにして保持する。これにより、光ファイバ53は、第2レール2Bによって覆われた状態で軌道2に沿って配置される。 A plurality of holders 26 are arranged along the track 2 at predetermined intervals. The holder 26 is fixed inside the second rail 2B. The cross section of the holder 26 has a U-shape that imitates the second rail 2B. The holder 26 holds the optical fiber 53 so as to extend along the second rail 2B. As a result, the optical fiber 53 is arranged along the track 2 while being covered by the second rail 2B.
 台車3は、第1レール2A内に配置された走行ユニット31と、荷物が積載される本体部32と、走行ユニット31と本体部32とを連結する連結部33と、を有している。台車3は、例えば第2レール2B内に配置された高周波電流線(不図示)から非接触で電力供給を受けることによって走行する。走行ユニット31には、複数の走行輪34が設けられている。走行輪34は、例えば走行ユニット31内のモータ(不図示)によって回転する。走行輪34は、第1レール2Aの走行レール24,25上に載せられている。連結部33は、走行レール24と走行レール25との間に設けられた開口を通り、且つ、一対の第2レール2Bの間を通るように設けられている。これにより、台車3は、軌道2に吊り下がった状態で軌道2に沿って走行する。 The trolley 3 has a traveling unit 31 arranged in the first rail 2A, a main body 32 on which luggage is loaded, and a connecting portion 33 connecting the traveling unit 31 and the main body 32. The trolley|bogie 3 runs by being contactlessly supplied with electric power from the high frequency current line (not shown) arrange|positioned in the 2nd rail 2B, for example. The traveling unit 31 is provided with a plurality of traveling wheels 34. The traveling wheels 34 are rotated by, for example, a motor (not shown) in the traveling unit 31. The traveling wheels 34 are placed on the traveling rails 24 and 25 of the first rail 2A. The connecting portion 33 is provided so as to pass through an opening provided between the traveling rail 24 and the traveling rail 25 and pass between the pair of second rails 2B. As a result, the carriage 3 travels along the track 2 while being suspended from the track 2.
 台車3には、コントローラ4と通信を行うための通信部35が設けられている。図示する例では、通信部35は、連結部33からホルダ26内に進入するように突出している。通信部35では、光ファイバ53に対向するように第1受光素子54が配置されている。通信部35では、光ファイバ53に対向するように第2発光素子62が配置されている。これにより、台車3は、光ファイバ53と第1受光素子54及び第2発光素子62とが互いに対向した状態で、軌道2に沿って走行する。なお、台車3の構成としては、図2に示される例に限定されず、仕様等に応じて種々の構成を採用できる。 The trolley 3 is provided with a communication unit 35 for communicating with the controller 4. In the illustrated example, the communication unit 35 projects from the connecting unit 33 so as to enter the holder 26. In the communication unit 35, the first light receiving element 54 is arranged so as to face the optical fiber 53. In the communication unit 35, the second light emitting element 62 is arranged so as to face the optical fiber 53. As a result, the carriage 3 travels along the track 2 with the optical fiber 53 and the first light receiving element 54 and the second light emitting element 62 facing each other. The configuration of the carriage 3 is not limited to the example shown in FIG. 2, and various configurations can be adopted according to the specifications and the like.
 図1に戻り、コントローラ4は、台車3との間で情報(信号)を通信する。コントローラ4は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)等を含むマイクロコンピュータシステムとして実現できる。コントローラ4は、上位制御装置(不図示)に接続されている。コントローラ4は、第1変換部51に接続された第1コントロール部4aと、第2逆変換部65に接続された第2コントロール部4bと、含む。 Returning to FIG. 1, the controller 4 communicates information (signal) with the carriage 3. The controller 4 can be realized as a microcomputer system including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, for example. The controller 4 is connected to a host controller (not shown). The controller 4 includes a first controller 4a connected to the first converter 51 and a second controller 4b connected to the second inverse converter 65.
 第1コントロール部4aは、台車3に対して送信される第1情報を生成する信号源41を有している。第2コントロール部4bは、台車3から送信された第2情報を上位制御装置に送信する。第1情報としては、例えば台車3を走行や荷物の移載を制御するための信号が含まれ得る。第2情報としては、例えば台車3の状態を示す情報、及び台車3に搭載されたカメラ等によって撮影された画像データ等が含まれ得る。 The first control unit 4 a has a signal source 41 that generates the first information transmitted to the carriage 3. The second controller 4b transmits the second information transmitted from the trolley 3 to the host controller. The first information may include, for example, a signal for controlling traveling of the carriage 3 and transfer of luggage. The second information may include, for example, information indicating the state of the carriage 3 and image data captured by a camera or the like mounted on the carriage 3.
 台車制御部7は、台車3に搭載されており、第1逆変換部55及び第2変換部61に接続されている。台車制御部7は、第1コントロール部4aから送信された第1情報に基づいて台車3を制御する。台車制御部7は、台車3からコントローラ4に対して送信される第2情報を生成し、第2情報を第2変換部61に送信する。台車制御部7は、コントローラ4と同様に、CPU、RAM、及びROM等を含むマイクロコンピュータシステムとして実現できる。 The trolley control unit 7 is mounted on the trolley 3 and is connected to the first inverse conversion unit 55 and the second conversion unit 61. The trolley control unit 7 controls the trolley 3 based on the first information transmitted from the first control unit 4a. The trolley control unit 7 generates the second information transmitted from the trolley 3 to the controller 4, and transmits the second information to the second conversion unit 61. Like the controller 4, the carriage control unit 7 can be realized as a microcomputer system including a CPU, a RAM, a ROM, and the like.
 次に、第1通信系50について具体的に説明する。 Next, the first communication system 50 will be specifically described.
 第1変換部51は、第1コントロール部4aと第1発光素子52との間に接続されている。第1変換部51は、第1コントロール部4aの信号源41で生成された第1情報を電気的な信号である第1信号に変換する。変換された第1信号は、第1発光素子52へ送信される。第1情報から第1信号への変換方法としては、例えば、強度変調の一種であるベースバンド変調等の公知の変換方法が用いられ得る。また、マルチキャリア変調波で強度変調してもよい。 The first conversion unit 51 is connected between the first control unit 4a and the first light emitting element 52. The first conversion unit 51 converts the first information generated by the signal source 41 of the first control unit 4a into a first signal that is an electrical signal. The converted first signal is transmitted to the first light emitting element 52. As a conversion method from the first information to the first signal, for example, a known conversion method such as baseband modulation which is a kind of intensity modulation can be used. Further, the intensity may be modulated by a multicarrier modulation wave.
 第1発光素子52は、第1変換部51を介して第1コントロール部4aに接続されている。第1発光素子52は、第1情報を第1変換部51で変換してなる第1信号を、光(光信号)に変換する。これにより、第1発光素子52は、第1情報を光として出力(出射)する。第1発光素子52は、出力した光が光ファイバ53内に導入されるように、光ファイバ53の一端部又は該一端部に近接する位置に設けられている。 The first light emitting element 52 is connected to the first controller 4a via the first converter 51. The first light emitting element 52 converts a first signal obtained by converting the first information by the first conversion unit 51 into light (optical signal). As a result, the first light emitting element 52 outputs (emits) the first information as light. The first light emitting element 52 is provided at one end of the optical fiber 53 or at a position close to the one end so that the output light is introduced into the optical fiber 53.
 第1発光素子52としては、例えばレーザダイオード(LD:Laser Diode)又はLED(Light Emitting Diode)等が用いられ得る。なお、第1発光素子52は、高速な応答特性を有し、且つ、鋭い指向性を有していてもよく、この場合、レーザダイオードが第1発光素子52であってもよい。第1発光素子52から出力される光は、赤外光、可視光及び紫外光の少なくとも何れかを含む。一例として、第1発光素子52から出力される光は、できるだけ製品コストを抑える観点では658nm程度の赤光であってもよく、また、人の目への安全性を確保する観点では赤外光であってもよい。また、第1発光素子52の出力は、例えば数mW~数十mW程度とすることができる。 As the first light emitting element 52, for example, a laser diode (LD: Laser Diode) or an LED (Light Emitting Diode) can be used. The first light emitting element 52 may have high-speed response characteristics and sharp directivity. In this case, the laser diode may be the first light emitting element 52. The light output from the first light emitting element 52 includes at least one of infrared light, visible light, and ultraviolet light. As an example, the light output from the first light emitting element 52 may be red light of about 658 nm from the viewpoint of suppressing the product cost as much as possible, and infrared light from the viewpoint of ensuring safety to human eyes. May be The output of the first light emitting element 52 can be, for example, about several mW to several tens of mW.
 光ファイバ53は、上述したように、軌道2に沿って配置(張設)されている。第1通信系50の信号伝送路としての光ファイバ53は、第1発光素子52の光が入力されることにより、蛍光体又は希土類が添付されているコアで発光すると共に、発光した当該光を外部に漏洩させる(詳しくは、後述)。光ファイバ53は、その配置された区間において当該光を漏洩させる。光ファイバ53は、可撓性を有する。 The optical fiber 53 is arranged (stretched) along the track 2 as described above. The optical fiber 53 as a signal transmission line of the first communication system 50 emits light in the core to which the phosphor or the rare earth is attached by receiving the light of the first light emitting element 52, and emits the emitted light. It is leaked to the outside (details will be described later). The optical fiber 53 leaks the light in the section where it is arranged. The optical fiber 53 has flexibility.
 第1受光素子54は、台車3に搭載されている。より具体的には、第1受光素子54は、台車3の通信部35において、光ファイバ53と対向するように設けられている(図2参照)。第1受光素子54と光ファイバ53との間の距離は、例えば5mm~20mm程度とすることができる。第1受光素子54は、光ファイバ53から漏洩した光を受光し、電気的な信号である第1信号に変換する。第1受光素子54としては、例えばアバランシェフォトダイオード等を用いることができる。 The first light receiving element 54 is mounted on the carriage 3. More specifically, the first light receiving element 54 is provided in the communication section 35 of the carriage 3 so as to face the optical fiber 53 (see FIG. 2 ). The distance between the first light receiving element 54 and the optical fiber 53 can be, for example, about 5 mm to 20 mm. The first light receiving element 54 receives the light leaked from the optical fiber 53 and converts it into a first signal which is an electrical signal. As the first light receiving element 54, for example, an avalanche photodiode or the like can be used.
 第1逆変換部55は、台車3に搭載されている。また、第1逆変換部55は、第1受光素子54と台車制御部7との間に接続されている。第1逆変換部55は、第1受光素子54が光として受信した第1信号を第1情報に逆変換する。逆変換された第1情報は、例えば台車制御部7に送信される。 The first reverse conversion unit 55 is mounted on the carriage 3. The first inverse conversion unit 55 is connected between the first light receiving element 54 and the carriage control unit 7. The first inverse converter 55 inversely converts the first signal received by the first light receiving element 54 as light into first information. The inversely converted first information is transmitted to, for example, the trolley control unit 7.
 図3に示されるように、光ファイバ53は、蛍光体又は希土類(希土類金属)を含む第1添加物が添加されたコア53aと、コア53aの周囲を囲うクラッド53bと、を有する。光ファイバ53は、例えばプラスチックシンチレーションファイバであり、コア(内側)53aが第1添加物としての蛍光体入りのポリスチレン樹脂、クラッド(外側)53bがメタクリル系樹脂の(一層もしくは二層の)多重構造で、放射線が当たると光る性質を備えている。第1添加物としては、第1発光素子52の光L1に対応する蛍光体又は希土類が用いられる。つまり、第1添加物は、第1発光素子52の光L1によって励起されて発光可能な蛍光体又は希土類である。蛍光体としては、有機蛍光材料が挙げられる(以下の蛍光体で同じ)、希土類としては、例えばエルビウム、イッテルビウム、ネオジウム、ツリウム、又はホルシウム等が挙げられる(以下の希土類で同じ)。 As shown in FIG. 3, the optical fiber 53 has a core 53a to which a first additive containing a phosphor or a rare earth (rare earth metal) is added, and a clad 53b surrounding the core 53a. The optical fiber 53 is, for example, a plastic scintillation fiber, and has a multi-layered structure (one layer or two layers) in which a core (inner side) 53a is a polystyrene resin containing a phosphor as a first additive and a clad (outer side) 53b is a methacrylic resin. It has the property of shining when exposed to radiation. As the first additive, a phosphor or a rare earth element corresponding to the light L1 of the first light emitting element 52 is used. That is, the first additive is a phosphor or a rare earth element that can be excited by the light L1 of the first light emitting element 52 to emit light. Examples of the phosphor include organic fluorescent materials (the same applies to the following phosphors), and examples of rare earths include erbium, ytterbium, neodymium, thulium, and holcium (the same applies to the following rare earths).
 光ファイバ53は、その端面から第1発光素子52の光L1が入力される。これにより、当該光L1がコア53aにて伝送されながら、コア53aの第1添加物が励起され、第1添加物から光L2が四方八方に発生する。第1添加物から発生した光L2のうち、コア53aとクラッド53bとの臨界角よりも大きい角度でクラッド53bに入射した光L2は、光ファイバ53外へ漏洩される。すなわち、光ファイバ53では、その一端部から入力された光L1が有する第1信号の伝送及び漏洩を、波動光学的アプローチにより可能にしている。 The light L1 of the first light emitting element 52 is input from the end face of the optical fiber 53. As a result, while the light L1 is transmitted through the core 53a, the first additive in the core 53a is excited, and the light L2 is generated in all directions from the first additive. Of the light L2 generated from the first additive, the light L2 incident on the cladding 53b at an angle larger than the critical angle between the core 53a and the cladding 53b is leaked to the outside of the optical fiber 53. That is, the optical fiber 53 enables the transmission and leakage of the first signal included in the light L1 input from one end thereof by the wave optical approach.
 図1に戻り、第2通信系60について具体的に説明する。 Returning to FIG. 1, the second communication system 60 will be specifically described.
 第2変換部61は、台車制御部7と第2発光素子62との間に接続されている。第2変換部61は、台車制御部7で生成された第2情報を電気的な信号である第2信号に変換する。変換された第2信号は、第2発光素子62へ送信される。第2情報から第2信号への変換方法としては、第1変換部51と同様に、例えばベースバンド変調等の公知の変換方法が用いられ得る。 The second conversion unit 61 is connected between the carriage control unit 7 and the second light emitting element 62. The second conversion unit 61 converts the second information generated by the trolley control unit 7 into a second signal that is an electrical signal. The converted second signal is transmitted to the second light emitting element 62. As the method of converting the second information into the second signal, a known conversion method such as baseband modulation may be used, as in the first conversion unit 51.
 第2発光素子62は、台車3に搭載されている。より具体的には、第2発光素子62は、台車3の通信部35において、光ファイバ53と対向するように設けられている(図2参照)。第2発光素子62は、第2変換部61を介して台車制御部7に接続されている。第2発光素子62は、第2情報を第2変換部61で変換してなる第2信号を光に変換する。これにより、第2発光素子62は、第2情報を光として出力する。 The second light emitting element 62 is mounted on the carriage 3. More specifically, the second light emitting element 62 is provided so as to face the optical fiber 53 in the communication section 35 of the carriage 3 (see FIG. 2). The second light emitting element 62 is connected to the carriage control unit 7 via the second conversion unit 61. The second light emitting element 62 converts a second signal obtained by converting the second information by the second converter 61 into light. As a result, the second light emitting element 62 outputs the second information as light.
 第2発光素子62としては、例えばレーザダイオード又はLED等が用いられ得る。なお、第2発光素子62は、高速な応答特性を有し、且つ、鋭い指向性を有していてもよく、この場合、レーザダイオードが第2発光素子62であってもよい。一例として、第2発光素子62から出力される光の波長帯は、光ファイバ53としてシンチレーションファイバを利用する場合に405nm程度である。第2発光素子62の出力は、例えば数mW~数十mW程度とすることができる。なお、第2発光素子62から出力される光は、できるだけ製品コストを抑える観点では658nm程度の赤光であってもよく、また、人の目への安全性を確保する観点では赤外光であってもよい。 As the second light emitting element 62, for example, a laser diode or an LED can be used. The second light emitting element 62 may have high-speed response characteristics and sharp directivity. In this case, the laser diode may be the second light emitting element 62. As an example, the wavelength band of the light output from the second light emitting element 62 is about 405 nm when a scintillation fiber is used as the optical fiber 53. The output of the second light emitting element 62 can be, for example, several mW to several tens mW. The light output from the second light emitting element 62 may be red light having a wavelength of about 658 nm from the viewpoint of suppressing the product cost as much as possible, and infrared light from the viewpoint of ensuring safety to human eyes. It may be.
 第2発光素子62から出力される光の波長帯は、第1発光素子52から出力される光の波長帯と異なっている。つまり、第1発光素子52の光と第2発光素子62の光とは、互いに異なる波長帯を有する。第1発光素子52の光の色と第2発光素子62の光の色とは、互いに異なっている。 The wavelength band of the light output from the second light emitting element 62 is different from the wavelength band of the light output from the first light emitting element 52. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 have different wavelength bands. The light color of the first light emitting element 52 and the light color of the second light emitting element 62 are different from each other.
 なお、第2発光素子62から出力される光の周波数域は、第1発光素子52から出力される光の周波数域とは異なっていてもよい。つまり、第1発光素子52の光と第2発光素子62の光とは、そのサブキャリア信号に関して互いに異なる周波数域を有していてもよい。周波数域が異なるとは、中心周波数が異なることを意味する。例えば、中心周波数が異なっていれば、周波数域が完全に重ならないようにずれていてもよいし、周波数域の一部が重なっていてもよい。 The frequency range of the light output from the second light emitting element 62 may be different from the frequency range of the light output from the first light emitting element 52. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 may have different frequency ranges with respect to the subcarrier signal. Different frequency bands mean different center frequencies. For example, if the center frequencies are different, the frequency ranges may be shifted so that they do not completely overlap, or part of the frequency ranges may overlap.
 また、第2発光素子62の光が光ファイバ53に入力されるタイミングは、第1発光素子52の光が光ファイバ53に入力されるタイミングとはずれていてもよい。つまり、第1発光素子52の光と第2発光素子62の光とは、時間的に互いにずれて光ファイバ53に入力されていてもよい。 Further, the timing at which the light of the second light emitting element 62 is input to the optical fiber 53 may be deviated from the timing at which the light of the first light emitting element 52 is input to the optical fiber 53. That is, the light of the first light emitting element 52 and the light of the second light emitting element 62 may be temporally shifted from each other and input to the optical fiber 53.
 光ファイバ53のコア53aには、蛍光体又は希土類を含む第2添加物が添加されている。ここでは、コア53aに蛍光体が第2添加物として添加されている。第2添加物としては、第2発光素子62の光に対応する蛍光体又は希土類が用いられる。つまり、第2添加物は、第2発光素子62の光によって励起されて発光可能な蛍光体又は希土類である。第2添加物は、第1添加物と異なる添加物である。なお、第2添加物としての蛍光体又は希土類は、第2発光素子62の光によって励起されて発光可能であれば、第1添加物としての蛍光体又は希土類と同じでもよい。 The core 53a of the optical fiber 53 is added with a second additive containing a phosphor or a rare earth. Here, a phosphor is added to the core 53a as a second additive. As the second additive, a phosphor or a rare earth element corresponding to the light of the second light emitting element 62 is used. That is, the second additive is a phosphor or a rare earth element that can be excited by the light of the second light emitting element 62 to emit light. The second additive is an additive different from the first additive. The phosphor or the rare earth as the second additive may be the same as the phosphor or the rare earth as the first additive as long as it can be excited by the light of the second light emitting element 62 to emit light.
 第2通信系60の信号伝送路としての光ファイバ53は、第2発光素子62の光が当該光ファイバ53の途中から入力されることにより、コア53aで発光する共に、発光した当該光を伝送させる。換言すると、光ファイバ53は、その伝送路の途中部からの光の入力により生じた光を伝播させる。 The optical fiber 53 serving as a signal transmission path of the second communication system 60 emits light in the core 53a and transmits the emitted light by the light of the second light emitting element 62 being input from the middle of the optical fiber 53. Let In other words, the optical fiber 53 propagates the light generated by the light input from the middle of the transmission path.
 図4に示されるように、第2発光素子62から出力され、コア53aの外周面から入光した光P1が光ファイバ53のコア53aに入力されると、この光P1によって第2添加物が励起される。これにより、第2添加物から光P2が四方八方に発生する。第2添加物から発生した光P2のうち、コア53aとクラッド53bとの臨界角以下の角度でクラッド53bに入射した光P2は、光ファイバ53内を伝送される。すなわち、光ファイバ53では、光ファイバ53の伝送路の途中部から入力された光P1がもつ第2信号の伝送を、波動光学的アプローチにより可能にしている。 As shown in FIG. 4, when the light P1 output from the second light emitting element 62 and entering from the outer peripheral surface of the core 53a is input to the core 53a of the optical fiber 53, the second additive is caused by the light P1. Be excited. As a result, light P2 is generated in all directions from the second additive. Of the light P2 generated from the second additive, the light P2 that enters the cladding 53b at an angle equal to or less than the critical angle between the core 53a and the cladding 53b is transmitted through the optical fiber 53. That is, the optical fiber 53 enables the transmission of the second signal of the light P1 input from the middle of the transmission path of the optical fiber 53 by the wave optical approach.
 図5に光ファイバ53の例を示す。この例の光ファイバ53は、波長が約360nm~450nm程度の光P1を吸収し、波長が約470nm~600nm程度の光P2を放射する。光ファイバ53の最大吸収波長は405nm、最大放射波長は492nmである。 FIG. 5 shows an example of the optical fiber 53. The optical fiber 53 in this example absorbs the light P1 having a wavelength of about 360 nm to 450 nm and emits the light P2 having a wavelength of about 470 nm to 600 nm. The maximum absorption wavelength of the optical fiber 53 is 405 nm, and the maximum emission wavelength is 492 nm.
 第2受光素子64は、第2逆変換部65を介して第2コントロール部4bに接続されている。第2受光素子64は、光ファイバ53によって伝送された光P2を受光し、電気的な信号である第2信号に変換する。第2受光素子64は、光ファイバ53の他端部から出力された光P2を受光できるように、光ファイバ53の他端部又は該他端部に近接する位置に設けられている。第2受光素子64としては、例えばアバランシェフォトダイオード等を用いることができる。 The second light receiving element 64 is connected to the second control unit 4b via the second inverse conversion unit 65. The second light receiving element 64 receives the light P2 transmitted by the optical fiber 53 and converts it into a second signal which is an electrical signal. The second light receiving element 64 is provided at the other end of the optical fiber 53 or at a position close to the other end so that the light P2 output from the other end of the optical fiber 53 can be received. As the second light receiving element 64, for example, an avalanche photodiode or the like can be used.
 第2逆変換部65は、第2受光素子64とコントローラ4との間に接続されている。第2逆変換部65は、第2受光素子64が光P2として受信した第2信号を第2情報に逆変換する。逆変換された第2情報は、例えばコントローラ4に送信される。 The second inverse conversion unit 65 is connected between the second light receiving element 64 and the controller 4. The second inverse converter 65 inversely converts the second signal received by the second light receiving element 64 as the light P2 into second information. The inversely converted second information is transmitted to the controller 4, for example.
 図6を参照して、一例としての光ファイバ53の伝送性能について説明する。ここでは、伝送性能を評価するために、光ファイバ53に光P1が入力される位置を変化させながら光ファイバ53によって伝送された光P2の強度を測定する実験を行った。光ファイバ53としては、全長が100m程度の波長シフトファイバを使用した。光源としては、波長が405nm、出力が3mWのレーザダイオードを用いた。光源と光ファイバ53との間の距離を5mmに設定した。光ファイバ53の他端部に光検出センサを配置し、光ファイバ53によって伝送された光P2の強度を測定した。 The transmission performance of the optical fiber 53 as an example will be described with reference to FIG. Here, in order to evaluate the transmission performance, an experiment was performed in which the intensity of the light P2 transmitted by the optical fiber 53 was measured while changing the position where the light P1 was input to the optical fiber 53. As the optical fiber 53, a wavelength shift fiber having a total length of about 100 m is used. A laser diode having a wavelength of 405 nm and an output of 3 mW was used as a light source. The distance between the light source and the optical fiber 53 was set to 5 mm. A light detection sensor was arranged at the other end of the optical fiber 53, and the intensity of the light P2 transmitted by the optical fiber 53 was measured.
 図6に示されるように、光ファイバ53に光P1が入力される入力位置と光検出センサとの間の距離が遠くなるにつれて、光P2の強度が低下している。したがって、光P1の入力位置と光検出センサとの間の距離が遠くなるほど、伝送される光P2が減衰することが確認できる。しかしながら、例えば、光P1の入力位置と光検出センサとの間の距離が100mであっても、光P2の強度は約-55dBm程度であり、光源から送信された信号を受信可能な強度が保たれている。したがって、この一例としての光ファイバ53を用い、この光ファイバ53の途中から入力された光P1によって発生する光P2を受信することにより、100m離れた光源から送信された信号を受信できることが確認された。 As shown in FIG. 6, the intensity of the light P2 decreases as the distance between the input position where the light P1 is input to the optical fiber 53 and the light detection sensor increases. Therefore, it can be confirmed that the transmitted light P2 is attenuated as the distance between the input position of the light P1 and the light detection sensor increases. However, for example, even if the distance between the input position of the light P1 and the light detection sensor is 100 m, the intensity of the light P2 is about −55 dBm, and the intensity capable of receiving the signal transmitted from the light source is maintained. Is dripping Therefore, it is confirmed that the signal transmitted from the light source 100 m away can be received by using the optical fiber 53 as an example and receiving the light P2 generated by the light P1 input from the middle of the optical fiber 53. It was
 次に、コントローラ4から台車3への下り通信(ダウンリンク)の一例を説明する。 Next, an example of downlink communication (downlink) from the controller 4 to the carriage 3 will be described.
 例えば上位コントローラからの指令に基づいて、第1コントロール部4aの信号源41により第1情報を生成する。生成した第1情報は、第1変換部51で第1信号に変換されて第1発光素子52へ送信される。第1発光素子52は、第1信号に応じた光L1を出力する。第1発光素子52からの光L1は、光ファイバ53の一端部から入力され、光ファイバ53内にて伝送される。これと共に、コア53aの第1添加物としての蛍光体が励起されて発光し、発光した光L2が光ファイバ53の周囲へと漏れ出す。 For example, the first information is generated by the signal source 41 of the first controller 4a based on a command from the host controller. The generated first information is converted into a first signal by the first conversion unit 51 and transmitted to the first light emitting element 52. The first light emitting element 52 outputs the light L1 according to the first signal. The light L1 from the first light emitting element 52 is input from one end of the optical fiber 53 and is transmitted in the optical fiber 53. At the same time, the phosphor as the first additive of the core 53a is excited to emit light, and the emitted light L2 leaks to the periphery of the optical fiber 53.
 このとき、台車3においては、第1受光素子54により、光ファイバ53から漏れ出す光L2を受光し、当該光L2を第1信号に変換する。第1信号は、第1逆変換部55で第1情報に逆変換されて、台車制御部7に送信される。台車制御部7は、第1情報に基づき台車3の走行や荷物の移載を制御する。光ファイバ53が配置された区間では、第1情報に対応する光L2が光ファイバ53から漏れ出しているため、台車3が停止中であっても走行中であっても、途切れることなく第1コントロール部4aから台車3へ第1情報を通信できる。 At this time, in the carriage 3, the first light receiving element 54 receives the light L2 leaking from the optical fiber 53 and converts the light L2 into the first signal. The first signal is inversely converted into the first information by the first inverse converter 55 and transmitted to the trolley controller 7. The trolley control unit 7 controls traveling of the trolley 3 and transfer of luggage based on the first information. In the section in which the optical fiber 53 is arranged, the light L2 corresponding to the first information leaks out from the optical fiber 53, so that the first L is uninterrupted regardless of whether the carriage 3 is stopped or running. The first information can be communicated from the control unit 4a to the carriage 3.
 次に、台車3からコントローラ4への上り通信(アップリンク)の一例を説明する。 Next, an example of uplink communication (uplink) from the cart 3 to the controller 4 will be described.
 例えば台車3のカメラ等の撮像結果又はステータスに基づいて、台車制御部7により第2情報を生成する。生成した第2情報は、第2変換部61で第2信号に変換されて第2発光素子62へ送信される。第2発光素子62は、第2信号に応じた光P1を出力する。第2発光素子62で出力した光P1は、光ファイバ53の途中から光ファイバ53内に入力される。光ファイバ53では、当該入力により第2添加物としての蛍光体が励起されて発光する。発光した光P2は、光ファイバ53内にて伝送され、光ファイバ53の他端部から出力される。 For example, the trolley control unit 7 generates the second information based on the imaging result or status of the trolley 3 camera or the like. The generated second information is converted into a second signal by the second conversion unit 61 and transmitted to the second light emitting element 62. The second light emitting element 62 outputs the light P1 according to the second signal. The light P1 output from the second light emitting element 62 is input into the optical fiber 53 from the middle of the optical fiber 53. In the optical fiber 53, the phosphor as the second additive is excited by the input and emits light. The emitted light P2 is transmitted in the optical fiber 53 and output from the other end of the optical fiber 53.
 第2受光素子64は、光ファイバ53から出力された光P2を受光し、当該光P2を第2信号へ変換する。第2信号は、第2逆変換部65で第2情報に逆変換された後、第2コントロール部4bを介して上位コントローラへ送信される。光ファイバ53が配置された区間では、第2情報に対応する光P1を台車3の第2発光素子62により光ファイバ53の途中から入力することで、台車3が停止中であっても走行中であっても、途切れることなくから台車3から第2コントロール部4bへ第2情報を通信できる。 The second light receiving element 64 receives the light P2 output from the optical fiber 53 and converts the light P2 into a second signal. The second signal is inversely converted into the second information by the second inverse converter 65, and then transmitted to the upper controller via the second controller 4b. In the section where the optical fiber 53 is arranged, the light P1 corresponding to the second information is input from the middle of the optical fiber 53 by the second light emitting element 62 of the carriage 3, so that the carriage 3 is running even when the carriage 3 is stopped. However, the second information can be communicated from the trolley 3 to the second controller 4b without interruption.
 以上、有軌道台車用通信システム100では、コントローラ4に接続された第1発光素子52から光L1が出力され、光L1が光ファイバ53に入力される。光ファイバ53のコア53aには第1添加物(ここでは蛍光体)が添加されていることから、光L1の光ファイバ53への入力よりコア53aで発光する。発光した光L2は、光ファイバ53の外部に漏洩し、台車3に搭載された第1受光素子54で受光される。このように、有軌道台車用通信システム100では、一般的な漏洩光軸ファイバを用いずに、コントローラ4から台車3へ第1情報を通信することができる。プラスチックシンチレーションファイバである光ファイバ53は、一般的なガラス漏洩光軸ファイバに比べて、例えばコア径が大きく、光学的な接続に際して調整がし易い。したがって、有軌道台車用通信システム100によれば、光学的な接続が容易な通信システムを実現することできる。換言すると、コントローラ4から台車3へ光通信する有軌道台車用通信システム100において、光学的な接続を容易化できる。また、光学的な接続に際して、専用の調整治具も不要となる。 As described above, in the track guided vehicle communication system 100, the light L1 is output from the first light emitting element 52 connected to the controller 4, and the light L1 is input to the optical fiber 53. Since the core 53a of the optical fiber 53 is doped with the first additive (here, a phosphor), the light L1 is input to the optical fiber 53 to emit light from the core 53a. The emitted light L2 leaks to the outside of the optical fiber 53 and is received by the first light receiving element 54 mounted on the carriage 3. In this way, in the communication system 100 for a track guided vehicle, the first information can be communicated from the controller 4 to the vehicle 3 without using a general leaky optical axis fiber. The optical fiber 53, which is a plastic scintillation fiber, has a larger core diameter, for example, than a general glass leakage optical axis fiber, and is easy to adjust during optical connection. Therefore, according to the track guided vehicle communication system 100, it is possible to realize a communication system in which optical connection is easy. In other words, optical connection can be facilitated in the tracked vehicle communication system 100 in which the controller 4 optically communicates with the vehicle 3. In addition, a special adjustment jig is not required for optical connection.
 有軌道台車用通信システム100は、台車3からコントローラ4へ第2情報を通信する第2通信系60を備えている。この構成によれば、第2通信系60を利用して台車3からコントローラ4への第2情報の通信が可能となる。 The communication system 100 for a track guided vehicle is provided with a second communication system 60 for communicating the second information from the vehicle 3 to the controller 4. According to this configuration, the second information can be communicated from the cart 3 to the controller 4 using the second communication system 60.
 有軌道台車用通信システム100では、光ファイバ53は、第1通信系50及び第2通信系60の双方を構成する。光ファイバ53は、第1発光素子52の光L1の入力によりコア53aで発光すると共に、発光した光L2を外部に漏洩させるのに加えて、第2発光素子62の光P1が当該光ファイバ53の途中から入力されることによりコア53aで発光する共に、発光した光P2を伝送する。この構成によれば、1つの光ファイバ53で双方向通信(コントローラ4から台車3への下り通信及び台車3からコントローラ4への上り通信)が可能となる。さらに、以下の効果が達成される。設置性を向上させることができる。コントローラ4と台車3との間における第1情報及び第2情報の通信を、光を用いてリアルタイムに行うことが可能である。電波干渉がなく、台車3とコントローラ4との間で高速に通信することができる。 In the track guided vehicle communication system 100, the optical fiber 53 constitutes both the first communication system 50 and the second communication system 60. The optical fiber 53 emits light at the core 53a in response to the input of the light L1 of the first light emitting element 52, leaks the emitted light L2 to the outside, and the light P1 of the second light emitting element 62 causes the optical fiber 53 to emit the light P1. The light is emitted from the core 53a by being input in the middle of, and the emitted light P2 is transmitted. According to this configuration, bidirectional communication (downlink communication from the controller 4 to the carriage 3 and upstream communication from the carriage 3 to the controller 4) is possible with one optical fiber 53. Furthermore, the following effects are achieved. The installability can be improved. Communication of the first information and the second information between the controller 4 and the carriage 3 can be performed in real time using light. It is possible to perform high-speed communication between the carriage 3 and the controller 4 without radio wave interference.
 有軌道台車用通信システム100では、第1発光素子52の光L1と第2発光素子62の光P1とは、互いに異なる波長帯を有している。これにより、光ファイバ53において第1発光素子52の光L1と第2発光素子62の光P1とが互いに悪影響を及ぼし合うのを抑制することができる。光ファイバ53における上り通信と下り通信との分離を、波長分割多重化で実現することが可能となる。 In the track guided vehicle communication system 100, the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 have different wavelength bands from each other. This can prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to realize the separation of upstream communication and downstream communication in the optical fiber 53 by wavelength division multiplexing.
 なお、有軌道台車用通信システム100では、第1発光素子52の光L1と第2発光素子62の光P1とは、そのサブキャリア信号に関して互いに異なる周波数域を有していてもよい。この場合、光ファイバ53において第1発光素子52の光L1と第2発光素子62の光P1とが互いに悪影響を及ぼし合うのを抑制することができる。光ファイバ53における上り通信と下り通信との分離を、周波数分割多重化で実現することが可能となる。 In the track guided vehicle communication system 100, the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 may have different frequency ranges with respect to their subcarrier signals. In this case, it is possible to prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to separate the upstream communication and the downstream communication in the optical fiber 53 by frequency division multiplexing.
 或いは、有軌道台車用通信システム100では、第1発光素子52の光L1と第2発光素子62の光P1とは、時間的に互いにずれて光ファイバに入力されてもよい。この場合、光ファイバ53において第1発光素子52の光L1と第2発光素子62の光P1とが互いに悪影響を及ぼし合うのを抑制することができる。光ファイバ53における上り通信と下り通信との分離を、時分割多重化で実現することが可能となる。 Alternatively, in the communication system 100 for a track guided vehicle, the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 may be temporally shifted from each other and input to the optical fiber. In this case, it is possible to prevent the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 from adversely affecting each other in the optical fiber 53. It is possible to realize the separation of upstream communication and downstream communication in the optical fiber 53 by time division multiplexing.
 有軌道台車用通信システム100では、第1発光素子52の光L1及び第2発光素子62の光P2は、赤外光、可視光及び紫外光の少なくとも何れかを含む。このような光L1,P2を用いることにより、電波を用いる場合に比べて、台車3とコントローラ4との間でより高速なデータ速度を実現できる。 In the track guided vehicle communication system 100, the light L1 of the first light emitting element 52 and the light P2 of the second light emitting element 62 include at least one of infrared light, visible light, and ultraviolet light. By using such lights L1 and P2, a higher data rate can be realized between the trolley 3 and the controller 4 as compared with the case of using radio waves.
 有軌道台車用通信システム100では、第1通信系50は、第1変換部51及び第1逆変換部55を更に含む。これにより、変換された第1信号を用いて、台車3とコントローラ4との間の通信を行うことが可能である。また、有軌道台車用通信システム100では、第2通信系60は、第2変換部61及び第2逆変換部65を更に含む。これにより、変換された第2信号を用いて、台車3とコントローラ4との間の通信を行うことが可能である。 In the track guided vehicle communication system 100, the first communication system 50 further includes a first conversion unit 51 and a first inverse conversion unit 55. Thereby, it is possible to perform communication between the carriage 3 and the controller 4 using the converted first signal. In addition, in the communication system 100 for guided vehicles, the second communication system 60 further includes a second conversion unit 61 and a second inverse conversion unit 65. Thereby, it is possible to perform communication between the trolley|bogie 3 and the controller 4 using the converted 2nd signal.
 有軌道台車用通信システム100では、光ファイバ53は、第2レール2Bによって覆われた状態で軌道2に沿って配置されている。これにより、光ファイバ53から漏洩した光L2が軌道2の外部に漏れることが抑制される。光ファイバ53から漏洩した光L2が外部の装置等に影響を及ぼすことを抑制できる。また、外部の光が光ファイバ53に入力されることも抑制されるので、通信が外部の光(例えば天井Wに設置された照明等)によって妨げられることを抑制できる。 In the track guided vehicle communication system 100, the optical fiber 53 is arranged along the track 2 while being covered by the second rail 2B. Thereby, the light L2 leaking from the optical fiber 53 is suppressed from leaking to the outside of the track 2. It is possible to prevent the light L2 leaking from the optical fiber 53 from affecting an external device or the like. Further, since the external light is also prevented from being input to the optical fiber 53, it is possible to prevent the communication from being disturbed by the external light (for example, the illumination installed on the ceiling W).
 有軌道台車用通信システム100では、光ファイバ53は可撓性を有している。これにより、例えば軌道2がカーブを有する場合であっても、光ファイバ53を当該軌道2に沿って容易に配置することができる。 In the track guided vehicle communication system 100, the optical fiber 53 has flexibility. Thereby, even if the track 2 has a curve, for example, the optical fiber 53 can be easily arranged along the track 2.
 なお、光L1を既存の漏洩光軸ファイバに入力し、入力した光L1を既存の漏洩光軸ファイバで伝送及び漏洩させ、漏洩させた光L1を受光することで、第1情報を通信する第1通信系(以下、「既存第1通信系」という)も考えられる。しかしこの場合、入力する光L1は鋭い指向性を有することから、例えば別の他の既存第1通信系で当該光L1が漏れていると、その光L1を受光してしまって正確な通信が困難になる可能性がある。この点、有軌道台車用通信システム100の第1通信系50では、光ファイバ53は、入力した光L1とは異なる光L2を漏洩させ、この光L2を受光する。よって、第1通信系50において正確な通信を行うことが可能となる。 The first information is transmitted by inputting the light L1 into the existing leaky optical axis fiber, transmitting and leaking the input light L1 through the existing leaky optical axis fiber, and receiving the leaked light L1. One communication system (hereinafter referred to as "existing first communication system") is also conceivable. However, in this case, since the input light L1 has a sharp directivity, for example, if the other existing first communication system leaks the light L1, the light L1 is received and accurate communication is not performed. It can be difficult. In this respect, in the first communication system 50 of the track guided vehicle communication system 100, the optical fiber 53 leaks the light L2 different from the input light L1 and receives the light L2. Therefore, accurate communication can be performed in the first communication system 50.
 光ファイバ53のコア53aに添加する第1添加物及び第2添加物の種類を適宜調整することで、光ファイバ53で発光させる光L2,光P2の波長を所望に調整することが可能となる。また、光ファイバ53のコア53aに添加する第1添加物及び第2添加物の量を適宜調整することで、光ファイバ53で発光させる光L2,光P2の光量を所望に調整することが可能となる。 By appropriately adjusting the types of the first additive and the second additive added to the core 53a of the optical fiber 53, the wavelengths of the light L2 and the light P2 emitted by the optical fiber 53 can be adjusted as desired. .. In addition, by appropriately adjusting the amounts of the first additive and the second additive added to the core 53a of the optical fiber 53, it is possible to adjust the light amounts of the light L2 and the light P2 emitted by the optical fiber 53 as desired. Becomes
 コア53aに添加する第1添加物として、第1色(例えば青色)の光L1で励起されて第2色(例えば緑色)の光L2を発光する蛍光体又は希土類を用い、コア53aに添加する第2添加物として、第3色(例えばオレンジ色)の光P1で励起されて第4色(例えば青色)の光P2を発光する蛍光体又は希土類を用いてもよい。この場合、第1~第4色はそれぞれ異なる色であることから、目視により光L1,L2,P1,P2のそれぞれを確認することができる。 As the first additive to be added to the core 53a, a phosphor or a rare earth which is excited by the light L1 of the first color (for example, blue) and emits the light L2 of the second color (for example, green) is used, and is added to the core 53a As the second additive, a phosphor or a rare earth which is excited by the light P1 of the third color (for example, orange) and emits the light P2 of the fourth color (for example, blue) may be used. In this case, since the first to fourth colors are different from each other, it is possible to visually confirm each of the lights L1, L2, P1, and P2.
 光ファイバ53に光L1,P1として不可視の光(紫外光等)を入力し、光ファイバ53のコア53aで光L2,光P2として可視光を発光させてもよい。これにより、光L2,光P2の発光の有無を目視で確認することができ、ひいては、通信中かどうかを目視で確認することができる。 Invisible light (ultraviolet light or the like) may be input to the optical fiber 53 as the light L1 and P1, and visible light may be emitted as the light L2 and the light P2 at the core 53a of the optical fiber 53. As a result, it is possible to visually confirm whether or not the light L2 and the light P2 are emitted, and it is possible to visually confirm whether or not communication is in progress.
 また、光ファイバ53に入力する光L1,P1及び光ファイバ53のコア53aで発光させる光L2,光P2の少なくとも何れかとして、不可視の光(紫外光等)を用いてもよい。この場合、目にやさしい光ファイバ53のコア53aで光L2,光P2として可視光を発光させてもよい。これにより、ユーザの目に与えるダメージ、疲労及び負担を抑制することができる。 Invisible light (ultraviolet light or the like) may be used as at least one of the light L1 and P1 input to the optical fiber 53 and the light L2 and light P2 emitted by the core 53a of the optical fiber 53. In this case, visible light may be emitted as the light L2 and the light P2 by the core 53a of the optical fiber 53 that is easy on the eyes. As a result, it is possible to suppress damage, fatigue and burden on the eyes of the user.
 図7は、変形例に係る有軌道台車用通信システム200を説明する図である。なお、以下の説明では、有軌道台車用通信システム100(図1参照)と異なる点について説明し、重複する説明は省略する。 FIG. 7 is a diagram illustrating a tracked bogie communication system 200 according to a modification. In the following description, only the points different from the communication system for a guided vehicle 100 (see FIG. 1) will be described, and redundant description will be omitted.
 図7に示されるように、変形例に係る有軌道台車用通信システム200は、有軌道台車201に用いられる。有軌道台車201は、第1コントロール部4a(図1参照)及び第2コントロール部4b(図1参照)に代えて、これらの双方の機能を有する1つのコントローラ204を備えている。この場合、光ファイバ53は、例えばU字状に湾曲される。このような有軌道台車用通信システム200においても、上記効果、すなわち、光学的な接続が容易な通信システムを実現する等の効果を奏する。 As shown in FIG. 7, a communication system 200 for a guided vehicle according to a modified example is used for a guided vehicle 201. The track guided vehicle 201 includes a single controller 204 having both functions of the first control unit 4a (see FIG. 1) and the second control unit 4b (see FIG. 1). In this case, the optical fiber 53 is curved in a U shape, for example. Also in such a tracked vehicle communication system 200, the above-mentioned effect, that is, the effect of realizing a communication system in which optical connection is easy is achieved.
 以上、本発明の一態様に係る実施形態について説明してきたが、本発明の一態様は上記実施形態に限定されず、種々の変更を行うことができる。 Although the embodiment according to one aspect of the present invention has been described above, one aspect of the present invention is not limited to the above embodiment, and various modifications can be made.
 上記実施形態では、第2通信系60は、光ファイバ53を第1通信系50と兼用して台車3からコントローラ4へ第2情報を通信したが、これに限定されない。例えば第2通信系60は、光ファイバ53とは別の他の光ファイバ53を用い、独立して第2情報を通信してもよい。第2通信系60は、光通信以外の方式で通信してもよい。第2通信系60は、有線で通信してもよいし、無線で通信してもよい。第2通信系は、例えば漏洩同軸ケーブルを用いて通信してもよい。 In the above embodiment, the second communication system 60 communicates the second information from the carriage 3 to the controller 4 by using the optical fiber 53 also as the first communication system 50, but the invention is not limited to this. For example, the second communication system 60 may use the other optical fiber 53 different from the optical fiber 53 to independently communicate the second information. The second communication system 60 may communicate by a method other than optical communication. The second communication system 60 may perform wired communication or wireless communication. The second communication system may communicate using a leaky coaxial cable, for example.
 上記実施形態では、有軌道台車用通信システム100が第1通信系50及び第2通信系60を1つずつ備える例について説明したが、有軌道台車用通信システム100は、複数の第1通信系50及び複数の第2通信系60を備えていてもよい。この場合、複数の第1通信系50又は複数の第2通信系60を用いて台車3とコントローラ4との間の通信を行うことができるので、台車3とコントローラ4との間の通信速度を更に向上させることができる。 In the above embodiment, an example in which the track-guided vehicle communication system 100 includes one first communication system 50 and one second communication system 60, but the track-guided vehicle communication system 100 includes a plurality of first communication systems. 50 and a plurality of second communication systems 60 may be provided. In this case, since the communication between the carriage 3 and the controller 4 can be performed using the plurality of first communication systems 50 or the plurality of second communication systems 60, the communication speed between the carriage 3 and the controller 4 can be reduced. It can be further improved.
 つまり、第1通信系50及び第2通信系60として複数本の光ファイバ53を平行に配置してもよい。この場合、各光ファイバ53を、制御信号の伝送用、管理情報の伝送用又は撮像画像の伝送用等の用途に応じて使い分けることができる。また、台車3の数が複数である場合、通信する台車3毎に光ファイバ53を使い分けることで、使用する帯域を広げることができる。また、各光ファイバ53によって伝送される光の波長を互いに異ならせることもできる。 That is, a plurality of optical fibers 53 may be arranged in parallel as the first communication system 50 and the second communication system 60. In this case, each of the optical fibers 53 can be selectively used according to the use such as transmission of control signals, transmission of management information, or transmission of captured images. Further, when the number of the carts 3 is plural, the band to be used can be widened by properly using the optical fiber 53 for each cart 3 to communicate. Further, the wavelengths of the light transmitted by the respective optical fibers 53 can be made different from each other.
 上記実施形態では、第1通信系50は、第1受光素子54を覆い、光ファイバ53から漏洩される光L2のみを通過させるフィルタを更に有していてもよい。これにより、光ファイバ53から漏洩される光L2以外の光(第2発光素子62から出力される光P1及び外光等)を遮蔽することができる。したがって、第1通信系50による第1情報の通信をより確実に行うことができる。同様に、第2通信系60は、第2受光素子64を覆い、光ファイバ53によって伝送される光P2のみを通過させるフィルタを更に有していてもよい。これにより、光ファイバ53によって伝送される光P2以外の光(第1発光素子52から出力される光L1及び外光等)を遮蔽することができる。したがって、第2通信系60による第2情報の通信をより確実に行うことができる。 In the above embodiment, the first communication system 50 may further include a filter that covers the first light receiving element 54 and passes only the light L2 leaked from the optical fiber 53. Accordingly, it is possible to block light other than the light L2 leaked from the optical fiber 53 (light P1 output from the second light emitting element 62, external light, and the like). Therefore, the communication of the first information by the first communication system 50 can be performed more reliably. Similarly, the second communication system 60 may further include a filter that covers the second light receiving element 64 and passes only the light P2 transmitted by the optical fiber 53. Accordingly, it is possible to block light other than the light P2 transmitted by the optical fiber 53 (light L1 output from the first light emitting element 52, external light, and the like). Therefore, the communication of the second information by the second communication system 60 can be performed more reliably.
 上記実施形態では、有軌道台車用通信システム100が第1変換部51、第1逆変換部55、第2変換部61及び第2逆変換部65を備える例について説明したが、有軌道台車用通信システム100は、第1変換部51、第1逆変換部55、第2変換部61及び第2逆変換部65を備えていなくてもよい。すなわち、有軌道台車用通信システム100では、第1情報及び第2情報を、それぞれ、第1信号及び第2信号に変換せずに光通信してもよい。 In the above embodiment, an example in which the rail guided vehicle communication system 100 includes the first conversion unit 51, the first inverse conversion unit 55, the second conversion unit 61, and the second inverse conversion unit 65 has been described. The communication system 100 may not include the first conversion unit 51, the first inverse conversion unit 55, the second conversion unit 61, and the second inverse conversion unit 65. That is, in the track guided vehicle communication system 100, the optical communication may be performed without converting the first information and the second information into the first signal and the second signal, respectively.
 上記実施形態では、光ファイバ53を複数備え、複数の光ファイバ53同士が増幅器を介して直列に接続されていてもよい。このように複数の光ファイバ53同士を直列に接続する場合、光L2が漏洩される区間及び光P2が伝送される距離を延ばすことができる。また、光L1,P2を増幅器により増幅することが可能となる。 In the above embodiment, a plurality of optical fibers 53 may be provided, and the plurality of optical fibers 53 may be connected in series via an amplifier. When the plurality of optical fibers 53 are connected in series in this way, the section where the light L2 is leaked and the distance where the light P2 is transmitted can be extended. Further, the lights L1 and P2 can be amplified by the amplifier.
 上記実施形態では、第1発光素子52の光L1及び第2発光素子62の光P1の双方が、赤外光、可視光及び紫外光の少なくとも何れかを含んでいるが、これらの光L1,P1のうち何れか一方が、赤外光、可視光及び紫外光の少なくとも何れかを含んでいればよい。上記実施形態では、台車3が1台である例について説明したが、台車3の数は複数であってもよい。 In the above embodiment, both the light L1 of the first light emitting element 52 and the light P1 of the second light emitting element 62 include at least one of infrared light, visible light, and ultraviolet light. Any one of P1 may include at least one of infrared light, visible light, and ultraviolet light. In the above embodiment, the example in which the number of the carriages 3 is one has been described, but the number of the carriages 3 may be plural.
 上記実施形態では、光ファイバ53が可撓性を有する例について説明したが、光ファイバ53は可撓性を有していなくてもよい。上記実施形態において、光ファイバ53を軌道2に沿って配置する構成は、図2に示される例に限定されず、種々の配置構成を採用してもよい。 In the above embodiment, an example in which the optical fiber 53 has flexibility has been described, but the optical fiber 53 does not have to have flexibility. In the above embodiment, the configuration in which the optical fiber 53 is arranged along the track 2 is not limited to the example shown in FIG. 2, and various arrangement configurations may be adopted.
 上記実施形態は、例えば工場内又は倉庫内における天井走行式搬送車システムに適用した通信システムであるが、適用先の搬送車システム(有軌道台車)は特に限定されない。本発明の一態様は、半導体ウェハを収容したFOUP(Front Opening Unified Pod)を搬送する天井走行式搬送車システムに適用した通信システムであってもよいし、工場又は倉庫内で物品を搬送する地上走行式搬送車システムに適用した通信システムであってもよい。 The above embodiment is a communication system applied to, for example, a ceiling traveling type carrier system in a factory or a warehouse, but the carrier system to which it is applied (rail guided vehicle) is not particularly limited. One embodiment of the present invention may be a communication system applied to an overhead traveling carrier system that transports FOUPs (Front Opening Unified Pods) that contain semiconductor wafers, or a ground transporting product in a factory or warehouse. It may be a communication system applied to a traveling carrier system.
 上記実施形態では、第1情報から第1信号への変調方式、及び、第2情報から第2信号への変調方式として、強度変調の一種であるベースバンド変調を用いる例について説明したが、当該変調方式は特に限定されない。第1変換部51(図1参照)は、マルチキャリア変調による強度変調を用いて第1情報を第1信号に変換してもよい。同様に、第2変換部61(図1参照)は、マルチキャリア変調による強度変調を用いて第2情報を第2信号に変換してもよい。マルチキャリア変調の一例として、OFDM(Orthogonal Frequency Division Multiplexing)方式が用いられ得る。以下、図8~図10を参照して、第1変換部51及び第2変換部61の少なくとも何れかに実装可能なアプリケーションである、OFDM方式のマルチキャリア変調について説明する。図8~図10は、OFDM方式を説明するための図である。 In the above embodiment, an example in which baseband modulation, which is a type of intensity modulation, is used as the modulation method from the first information to the first signal and the modulation method from the second information to the second signal has been described. The modulation method is not particularly limited. The first conversion unit 51 (see FIG. 1) may convert the first information into the first signal using intensity modulation by multicarrier modulation. Similarly, the second conversion unit 61 (see FIG. 1) may convert the second information into the second signal using intensity modulation by multicarrier modulation. As an example of multi-carrier modulation, an OFDM (Orthogonal Frequency Division Multiplexing) method can be used. Hereinafter, with reference to FIG. 8 to FIG. 10, OFDM multi-carrier modulation, which is an application that can be implemented in at least one of the first conversion unit 51 and the second conversion unit 61, will be described. 8 to 10 are diagrams for explaining the OFDM method.
 OFDM方式では、例えば図8に示されるように、送信したい情報(すなわち、第1情報又は第2情報)をいくつかの系列に分割する。そして、それぞれの系列に対して異なるサブキャリアを割り当てて変調し、各系列に分割された情報を一括に送信する。図8に示される例では、送信したい情報を第1系列D1、第2系列D2、第3系列D3、及び第4系列D4の4つの系列に分割し、第1サブキャリアS1、第2サブキャリアS2、第3サブキャリアS3、及び第4サブキャリアS4の4種類のサブキャリアを用いて変調を行う。第1~第4サブキャリアS1,S2,S3,S4のそれぞれは、図9に示されるように、互いに異なる周波数を有している。また、OFDM方式で用いられる各サブキャリアS1,S2,S3,S4は、互いに直交している。ここで、「直交」とは、第1~第4サブキャリアS1,S2,S3,S4のそれぞれの波の位相が90度ずれている状態を言う。第1~第4サブキャリアS1,S2,S3,S4の信号の強さと周波数との関係をグラフにすると、例えば図10に示されるような波形となる。各サブキャリアS1,S2,S3,S4の波形は、サイドローブが抑制された状態となっている。各サブキャリアS1,S2,S3,S4が互いに直交していることにより、各サブキャリアS1,S2,S3,S4は、一のサブキャリアの中心周波数(電力密度が最大となる点)と他のサブキャリアのヌル点(電力密度が0となる点)とが一致するように重なり合う。例えば、第2サブキャリアS2の中心周波数においては、第1サブキャリアS1、第3サブキャリアS3、及び第4サブキャリアS4の信号の強さは0となっている。このため、限られた周波数帯に複数のサブキャリアを重ね合わせても(すなわち、複数のサブキャリアを束ねても)、サブキャリア同士の干渉を抑制することができる。 In the OFDM system, for example, as shown in FIG. 8, the information to be transmitted (that is, the first information or the second information) is divided into some series. Then, different subcarriers are assigned to each sequence and modulated, and the information divided into each sequence is collectively transmitted. In the example shown in FIG. 8, the information to be transmitted is divided into four series of a first series D1, a second series D2, a third series D3, and a fourth series D4, and a first subcarrier S1 and a second subcarrier Modulation is performed using four types of subcarriers S2, third subcarrier S3, and fourth subcarrier S4. Each of the first to fourth subcarriers S1, S2, S3, S4 has a different frequency, as shown in FIG. Further, the subcarriers S1, S2, S3, S4 used in the OFDM system are orthogonal to each other. Here, "orthogonal" refers to a state in which the phases of the waves of the first to fourth subcarriers S1, S2, S3, S4 are shifted by 90 degrees. When the relationship between the signal strength of the first to fourth subcarriers S1, S2, S3 and S4 and the frequency is plotted in a graph, the waveform is as shown in FIG. 10, for example. The waveform of each subcarrier S1, S2, S3, S4 is in a state in which side lobes are suppressed. Since the subcarriers S1, S2, S3, S4 are orthogonal to each other, each subcarrier S1, S2, S3, S4 has a center frequency of one subcarrier (a point at which the power density becomes maximum) and other subcarriers. They overlap so that the null point of the subcarrier (the point where the power density becomes 0) matches. For example, at the center frequency of the second subcarrier S2, the signal strengths of the first subcarrier S1, the third subcarrier S3, and the fourth subcarrier S4 are 0. Therefore, even if a plurality of subcarriers are superposed on a limited frequency band (that is, even if a plurality of subcarriers are bundled), interference between subcarriers can be suppressed.
 このように、OFDM方式のマルチキャリア変調による強度変調を用いて第1情報から第1信号への変換を行うことにより、分割された第1情報を重ね合わせて(多重化して)同時に送信することができるため、高速マルチチャネル化を図ることができる。したがって、第1通信系50において高速な通信を行うことができる。OFDM方式のマルチキャリア変調による強度変調を用いて第2情報から第2信号へ変換を行うことにより、分割された第2情報を重ね合わせて(多重化して)同時に送信することができるため、高速マルチチャネル化を図ることができる。したがって、第2通信系60において高速な通信を行うことができる。なお、第1変換部51における変調方式と第2変換部61における変調方式とは、同一であってもよいし、互いに異なっていてもよい。 In this way, by converting the first information into the first signal by using the intensity modulation by the OFDM multi-carrier modulation, the divided first information is superimposed (multiplexed) and transmitted at the same time. Therefore, high-speed multi-channel can be achieved. Therefore, high speed communication can be performed in the first communication system 50. By converting the second information into the second signal by using the intensity modulation by the OFDM multi-carrier modulation, it is possible to superimpose (multiplex) the divided second information and transmit at the same time. Multi-channel can be achieved. Therefore, high-speed communication can be performed in the second communication system 60. The modulation method in the first converter 51 and the modulation method in the second converter 61 may be the same or different from each other.
 1,201…有軌道台車、2…軌道、3…台車、4,204…コントローラ、50…第1通信系、51…第1変換部、52…第1発光素子、53…光ファイバ、53a…コア、54…第1受光素子、55…第1逆変換部、60…第2通信系、61…第2変換部、62…第2発光素子、64…第2受光素子、65…第2逆変換部、100,200…有軌道台車用通信システム、L1,L1,P1,P2…光。 1, 201... Tracked truck, 2... Trajectory, 3... Truck, 4, 204... Controller, 50... First communication system, 51... First conversion unit, 52... First light emitting element, 53... Optical fiber, 53a... Core, 54... First light receiving element, 55... First inverse conversion section, 60... Second communication system, 61... Second conversion section, 62... Second light emitting element, 64... Second light receiving element, 65... Second reverse Conversion unit, 100, 200... Communication system for guided vehicle, L1, L1, P1, P2... Light.

Claims (10)

  1.  軌道と、前記軌道を走行する1又は複数の台車と、前記台車との間で情報を通信するコントローラと、を備える有軌道台車に用いられる通信システムであって、
     前記コントローラから前記台車へ第1情報を通信する第1通信系を備え、
     前記第1通信系は、
      前記コントローラに接続され、前記第1情報を光として出力する第1発光素子と、
      前記軌道に沿って配置され、蛍光体又は希土類が添加されたコアを有し、前記第1発光素子の光が入力されることにより前記コアで発光すると共に、発光した当該光を外部に漏洩させる光ファイバと、
      前記台車に搭載され、前記光ファイバから漏洩した当該光を受光する第1受光素子と、を含む、有軌道台車用通信システム。
    A communication system used for a track guided vehicle comprising a track, one or a plurality of carts traveling on the track, and a controller for communicating information between the track and the vehicle,
    A first communication system for communicating first information from the controller to the truck,
    The first communication system,
    A first light emitting element that is connected to the controller and outputs the first information as light;
    It has a core arranged along the orbit and to which a phosphor or a rare earth element is added, and the light of the first light emitting element is input to cause the core to emit light and to leak the emitted light to the outside. Optical fiber,
    A first light receiving element, which is mounted on the truck and receives the light leaked from the optical fiber, and a communication system for a guided vehicle.
  2.  前記台車から前記コントローラへ第2情報を通信する第2通信系を備える、請求項1に記載の有軌道台車用通信システム。 The communication system for a track guided vehicle according to claim 1, further comprising a second communication system that communicates second information from the vehicle to the controller.
  3.  前記第2通信系は、前記台車に搭載され、前記第2情報を光として出力する第2発光素子を含み、
     前記光ファイバは、前記第1通信系及び前記第2通信系の双方を構成する光ファイバであって、前記第2発光素子の光が当該光ファイバの途中から入力されることにより前記コアで発光する共に、発光した当該光を伝送し、
     前記第2通信系は、前記コントローラに接続され、前記光ファイバが伝送した当該光を受光する第2受光素子を含む、請求項2に記載の有軌道台車用通信システム。
    The second communication system includes a second light emitting element that is mounted on the truck and outputs the second information as light.
    The optical fiber is an optical fiber that constitutes both the first communication system and the second communication system, and the light of the second light emitting element is emitted from the core by being input from the middle of the optical fiber. Together with transmitting the emitted light,
    The track-and-rail truck communication system according to claim 2, wherein the second communication system includes a second light receiving element that is connected to the controller and receives the light transmitted by the optical fiber.
  4.  前記第2通信系は、
      前記台車に搭載され、前記第2情報を、前記第2発光素子から光として出力される第2信号へ変換する第2変換部と、
      前記第2受光素子が光として受信した前記第2信号を、前記第2情報へ変換する第2逆変換部と、を更に含み、
     前記第2変換部は、マルチキャリア変調による強度変調を用いて前記第2情報を前記第2信号に変換する、請求項3に記載の有軌道台車用通信システム。
    The second communication system,
    A second conversion unit which is mounted on the carriage and converts the second information into a second signal output as light from the second light emitting element;
    A second inverse conversion unit that converts the second signal received by the second light receiving element as light into the second information;
    The rail guided vehicle communication system according to claim 3, wherein the second conversion unit converts the second information into the second signal by using intensity modulation by multicarrier modulation.
  5.  前記第1発光素子の光と前記第2発光素子の光とは、そのサブキャリア信号に関して互いに異なる周波数域を有する、請求項3又は4に記載の有軌道台車用通信システム。 The communication system for a track guided vehicle according to claim 3 or 4, wherein the light of the first light emitting element and the light of the second light emitting element have different frequency ranges with respect to their subcarrier signals.
  6.  前記第1発光素子の光と前記第2発光素子の光とは、時間的に互いにずれて前記光ファイバに入力される、請求項3~5の何れか一項に記載の有軌道台車用通信システム。 The guided vehicle communication according to any one of claims 3 to 5, wherein the light of the first light emitting element and the light of the second light emitting element are input to the optical fiber while being temporally displaced from each other. system.
  7.  前記第1発光素子の光と前記第2発光素子の光とは、互いに異なる波長帯を有する、請求項3~6の何れか一項に記載の有軌道台車用通信システム。 The communication system for a track guided vehicle according to any one of claims 3 to 6, wherein the light of the first light emitting element and the light of the second light emitting element have different wavelength bands from each other.
  8.  前記第1通信系は、
      前記第1情報を、前記第1発光素子から光として出力される第1信号に変換する第1変換部と、
      前記台車に搭載され、前記第1受光素子が光として受信した前記第1信号を、前記第1情報へ変換する第1逆変換部と、を更に含み、
     前記第1変換部は、マルチキャリア変調による強度変調を用いて前記第1情報を前記第1信号に変換する、請求項1~7の何れか一項に記載の有軌道台車用通信システム。
    The first communication system,
    A first conversion unit that converts the first information into a first signal output as light from the first light emitting element;
    A first inverse conversion unit that is mounted on the trolley and that converts the first signal received by the first light receiving element as light into the first information;
    8. The guided vehicle communication system according to claim 1, wherein the first conversion unit converts the first information into the first signal by using intensity modulation by multicarrier modulation.
  9.  前記第1発光素子の光は、赤外光、可視光及び紫外光の少なくとも何れかを含む、請求項1~8の何れか一項に記載の有軌道台車用通信システム。 The communication system for a track guided vehicle according to any one of claims 1 to 8, wherein the light of the first light emitting element includes at least one of infrared light, visible light, and ultraviolet light.
  10.  前記第2発光素子の光は、赤外光、可視光及び紫外光の少なくとも何れかを含む、請求項3~7の何れか一項に記載の有軌道台車用通信システム。 The communication system for a track guided vehicle according to any one of claims 3 to 7, wherein the light of the second light emitting element includes at least one of infrared light, visible light, and ultraviolet light.
PCT/JP2019/031743 2019-02-21 2019-08-09 Communication system for rail-guided carts WO2020170475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-029519 2019-02-21
JP2019029519A JP2022065208A (en) 2019-02-21 2019-02-21 Communication system for tracked bogie

Publications (1)

Publication Number Publication Date
WO2020170475A1 true WO2020170475A1 (en) 2020-08-27

Family

ID=72144082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031743 WO2020170475A1 (en) 2019-02-21 2019-08-09 Communication system for rail-guided carts

Country Status (2)

Country Link
JP (1) JP2022065208A (en)
WO (1) WO2020170475A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356610A (en) * 1986-08-28 1988-03-11 Asahi Chem Ind Co Ltd Plastic fluorescent fiber
JPH07146410A (en) * 1993-11-22 1995-06-06 Meitec Corp Fluorescent fiber cable
JP2017017561A (en) * 2015-07-01 2017-01-19 日本電信電話株式会社 Optical communication system, communication device, and optical communication method
JP2017509895A (en) * 2014-04-04 2017-04-06 エヌティエヌーエスエヌアール・ルルマン Method for transmitting information from a movable unit along a fixed path, its transmission device, and its equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356610A (en) * 1986-08-28 1988-03-11 Asahi Chem Ind Co Ltd Plastic fluorescent fiber
JPH07146410A (en) * 1993-11-22 1995-06-06 Meitec Corp Fluorescent fiber cable
JP2017509895A (en) * 2014-04-04 2017-04-06 エヌティエヌーエスエヌアール・ルルマン Method for transmitting information from a movable unit along a fixed path, its transmission device, and its equipment
JP2017017561A (en) * 2015-07-01 2017-01-19 日本電信電話株式会社 Optical communication system, communication device, and optical communication method

Also Published As

Publication number Publication date
JP2022065208A (en) 2022-04-27

Similar Documents

Publication Publication Date Title
CN110999130B (en) Optical communication system for rail-guided trolley
KR101709351B1 (en) Method and apparatus for communicating for supporting multiple topologies in visible light communication
CN103368645B (en) Indoor wireless light high-speed two-way communication system
Cossu et al. A visible light localization aided optical wireless system
Sagotra et al. Visible light communication
Al-Khaffaf et al. A cloud VLC access point design for 5G and beyond
Khan et al. Visible light communication using wavelength division multiplexing for smart spaces
CN105790838B (en) A kind of optical fiber/visible light land and water heterogeneous network framework and communication means
CN110932779B (en) Tunnel visible light communication system
US20150155945A1 (en) Optical transmitter and optical communication device
CN112688738A (en) Underwater wireless light emitting system and method and underwater wireless light communication system
WO2020170475A1 (en) Communication system for rail-guided carts
US6956693B2 (en) Optical repeater having independently controllable amplification factors
Kouhini et al. Distributed mimo experiment using lifi over plastic optical fiber
WO2012169248A1 (en) Illuminating system
US6980745B2 (en) Optical transmission system
US7574140B2 (en) Optical transmission system including repeatered and unrepeatered segments
CN109075864A (en) Via the ROPA in the same direction for the separation optical fiber supply power for transmitting data in opposite direction
Rahman et al. Modeling and analysis of multi-channel gigabit class CWDM-VLC system
Fon et al. Cascaded optic fibre–visible light communications: Channel model and analysis
EP2987249B1 (en) Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein
JP2004282685A (en) Mobile optical communication system and mobile optical communication method
US10659160B2 (en) Slip ring
US20210028590A1 (en) Optical amplifier, optical communication system and optical amplification method
Yu et al. A simple beam expanded for indoor optical wireless communication with short transmission distance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP