WO2020170378A1 - Liquid chromatograph - Google Patents

Liquid chromatograph Download PDF

Info

Publication number
WO2020170378A1
WO2020170378A1 PCT/JP2019/006464 JP2019006464W WO2020170378A1 WO 2020170378 A1 WO2020170378 A1 WO 2020170378A1 JP 2019006464 W JP2019006464 W JP 2019006464W WO 2020170378 A1 WO2020170378 A1 WO 2020170378A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sample
pressure
analysis
separation column
Prior art date
Application number
PCT/JP2019/006464
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 大橋
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72143364&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020170378(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021501218A priority Critical patent/JP7056797B2/en
Priority to PCT/JP2019/006464 priority patent/WO2020170378A1/en
Publication of WO2020170378A1 publication Critical patent/WO2020170378A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • the present invention relates to a liquid chromatograph.
  • Liquid chromatographs detect the separated sample components by flowing the mobile phase in the analysis channel provided with the separation column, injecting the sample from the upstream side of the separation column and separating the sample into each component by the separation column. It is detected by a container (see Patent Document 1).
  • a separation column for separating a sample into components deteriorates with the lapse of use time, and the separation performance deteriorates. Therefore, it is necessary to replace the separation column when the usage time or the usage count reaches a certain level.
  • the deterioration condition is judged by the cumulative usage time or the cumulative usage time of the separation column, or the deterioration condition is judged from the shape and the degree of separation of the component peaks obtained by the actual analysis using the separation column. It was common to judge. However, if the deterioration condition of the separation column is judged by the cumulative usage time or the cumulative usage time, the separation column that has not deteriorated to the extent that it cannot be actually used is replaced, or the deterioration-promoted separation column is used. There is a problem that unnecessary analysis is carried out. Further, when the deterioration of the separation column is noticed after the actual analysis, there is a problem that the analysis time, the sample and the mobile phase are wasted.
  • an object of the present invention is to make it easy to judge the degree of deterioration of the separation column.
  • the liquid chromatograph according to the present invention, a liquid feed pump that feeds a mobile phase, a mobile phase from the liquid feed pump flows, a separation column for separating a sample into components and a sample separated in the separation column.
  • An analysis flow path having a detector for detecting a component, a sample injection part for injecting a sample into the analysis flow path upstream of the separation column, and a pressure for detecting the liquid transfer pressure by the liquid transfer pump.
  • a sensor, and a liquid feeding pressure recording unit configured to record the liquid feeding pressure detected by the pressure sensor at a predetermined timing during a series of operations related to analysis for each analysis time of a sample.
  • the degree of deterioration of the separation column can be known by observing the feed pressure at a predetermined timing during a series of operations related to the analysis for each analysis time.
  • a solution sending pressure recording unit configured to record the solution sending pressure detected by the pressure sensor at a predetermined timing during a series of operations related to the analysis is provided. Therefore, the deterioration degree of the separation column can be easily determined by referring to the record.
  • the liquid chromatograph of this embodiment mainly includes a liquid feed pump 2, a pressure sensor 4, an autosampler 6 (sample injection part), a separation column 8, a detector 10 and a management device 12.
  • the liquid feed pump 2 and the pressure sensor 4 are provided on the mobile phase supply channel 14, and the separation column 8 and the detector are provided on the analysis channel 16.
  • the auto sampler 2 mainly includes a sampling needle 18, a switching valve 20, and a syringe pump 22.
  • One end of the sample loop 26 is fluidly connected to the proximal end of the needle 18.
  • the sample loop 26 is a channel for holding the sample sucked from the tip of the needle 18, and the other end opposite to the needle 18 is fluidly connected to one port (1) of the switching valve 20. It is connected.
  • the needle 18 is moved in the vertical direction and in the horizontal plane by a moving mechanism (not shown).
  • the switching valve 20 is for switching the flow path configuration, and a 6-port valve is used in this embodiment.
  • a syringe pump 22 In addition to the sample loop 26, a syringe pump 22, an injection port 24, a drain channel 28, a mobile phase supply channel 14 and an analysis channel 16 are connected to each port of the switching valve 20.
  • the mobile phase supply channel 14 is a channel for supplying the mobile phase by the liquid feed pump 2.
  • the liquid feed pressure by the liquid feed pump 2 is detected by the pressure sensor 4.
  • the switching valve 20 moves between the first state in which the mobile phase supply channel 14 and the analysis channel 16 are directly connected (the state in FIG. 1 in which the ports (5)-(6) are in communication).
  • the second state between ports (1)-(6), (2)-(3), (4) for interposing sample loop 26 and needle 18 between phase supply channel 14 and analysis channel 16 )-(5) are connected to each other).
  • the syringe pump 22 is provided so as to be in fluid communication with the needle 18 via the sample loop 26 when the switching valve 20 is in the first state (state in FIG. 1).
  • the switching valve 20 is in the first state until the management device 12 sends an analysis start command to the autosampler 6. At this time, the mobile phase supply channel 14 and the analysis channel 16 are in fluid communication with each other without the sample loop 26 interposed therebetween, and the mobile phase from the liquid feed pump 2 flows through the analysis channel 16.
  • the autosampler 6 When the analysis start command is transmitted from the management device 12 to the autosampler 6, the autosampler 6 inserts the tip of the needle 18 into a sample container (not shown) containing the next sample to be analyzed, and the syringe pump 22 Is suction-driven to hold the sample in the sample loop 26. After holding the sample in the sample loop 26, the switching valve 20 is switched from the first state to the second state with the tip of the needle 18 fluidly connected to the injection port 24, and the sample held in the sample loop 26 is removed. It is introduced into the analysis channel 16 together with the mobile phase from the liquid feed pump 2. The sample introduced into the analysis channel 16 is guided to the separation column 8 and separated into each component, and each sample component is detected by the detector 10.
  • the management device 12 manages the operations of the liquid sending pump 2 and the autosampler 6 so that the series of operations relating to the analysis of the sample are executed.
  • the management device 12 can be realized by a general-purpose personal computer or a dedicated computer.
  • the management device 12 includes a liquid feed pressure recording unit 30, a liquid feed pressure display unit 32, an error detection unit 34, and an error recording unit 36.
  • the liquid feeding pressure recording unit 30, the liquid feeding pressure display unit 32, the error detecting unit 34, and the error recording unit 36 are functions obtained by the central processing unit (CPU) mounted in the management device 12 executing a program. ..
  • the liquid feeding pressure recording unit 30 records the liquid feeding pressure detected by the pressure sensor 4 in a predetermined storage area in the management device 12 at a predetermined timing during a series of analysis-related operations for each analysis of the sample. Is configured.
  • the timing of recording the liquid feeding pressure is the timing immediately before the sample is injected into the analysis flow path 16, that is, the auto sampler 6 receives the analysis start command from the management device 12 and sets the switching valve 20 from the first state to the second state.
  • the timing immediately before the switching valve 20 is switched from the first state to the second state in order to inject the sample into the analysis flow channel 16 is the timing at which the liquid delivery pressure is most stable during a series of operations related to analysis.
  • the liquid feeding pressure display unit 32 can visually grasp the liquid feeding pressure of each analysis time recorded by the liquid feeding pressure recording unit 30 in time series, that is, the change of the liquid feeding pressure each time the analysis time is followed.
  • the display device (not shown) electrically connected to the management device 12 is configured to display. By observing the change in the liquid feeding pressure displayed on the display device, if the liquid feeding pressure tends to increase with each analysis, the user can determine that the separation column 8 is deteriorated. it can. When the user does not judge the deterioration of the separation column 8 but the management device 12 automatically judges the deterioration of the separation column 8 and judges that the separation column 8 is deteriorated, the display device indicates that. It is also possible to notify the user by, for example, displaying.
  • the error detection unit 34 is configured to monitor the liquid sending pressure during a series of operations related to analysis and detect a pressure error when the liquid sending pressure exceeds a preset threshold value.
  • This function is a function for preventing an excessive pressure from being applied to the separation column 8 when the user mistakenly sets the analysis conditions such as the mobile phase flow rate. Therefore, the threshold value used by the error detection unit 34 to detect a pressure error does not indicate the replacement time of the separation column 8, but has a meaning as the upper limit value of the liquid delivery pressure that can be used in this liquid chromatograph. It has. However, the threshold value used by the error detection unit 34 to detect the pressure error may be set separately by preliminarily estimating the replacement time of the separation column 8 from the experimental result and the like.
  • the error recording unit 36 is configured to record the analysis times in which the pressure error is detected by the error detection unit 34 in a predetermined storage area. As a result, the user can confirm the analysis times at which the pressure error is detected as well as the liquid sending pressure for each analysis time, as a criterion for determining the degree of deterioration of the separation column 8.
  • the switching valve 20 of the autosampler 6 is set to the first state (state of FIG. 1) (step 101).
  • the management device 12 transmits an analysis start command to the autosampler 6 when it is time to start the analysis of the sample according to the preset analysis schedule (step 102).
  • the autosampler 6 executes the sample injection operation of inhaling the sample to be analyzed from the sample container and injecting it into the analysis channel 16 (step 104). As a result, the sample is analyzed (step 105).
  • the liquid feeding pressure recording unit 30 reads the liquid feeding pressure when the switching valve 20 is switched from the first state to the second state (that is, immediately before) in order to inject the sample into the analysis channel 16, from the pressure sensor 4, The data is recorded in a predetermined storage area in the management device 12 (step 103).
  • the liquid feeding pressure recording unit 30 may record the liquid feeding pressure in the storage area immediately before or after the analysis start command is transmitted from the management device 12 to the auto sampler 6, or from the management device 12 to the auto sampler. It may be at the same time as the analysis start command is transmitted to 6.
  • the autosampler 6 of the embodiment described above has a configuration of a total amount injection system in which the entire amount of the sample sucked from the tip of the needle 18 is injected into the analysis flow channel 16, the present invention is not limited to this. However, a predetermined amount of the sample inhaled from the tip of the needle 18 is injected into the second sample loop, and the sample loop is inserted into the analysis channel to inject a predetermined amount of sample into the analysis channel. It may have a loop injection system configuration.
  • the liquid feeding pressure recording unit 30 monitors the liquid feeding pressure detected by the pressure sensor between the start and the end of the analysis of the sample for each analysis time, and one of the highest pressures is monitored.
  • the liquid sending pressure may be stored in the storage area. This is because the liquid transfer pressure fluctuates due to the gradient analysis, but the highest liquid transfer pressure is stored in time series so that the highest liquid transfer pressure is stored in time series. This is because it can be determined that the column is deteriorated when the column rises. :
  • the embodiment of the liquid chromatograph according to the present invention is a liquid feed pump (2) for feeding a mobile phase, and a mobile phase from the liquid feed pump (2) flows and a separation for separating a sample into components.
  • An analysis channel (16) having a column (8) and a detector (10) for detecting the sample components separated in the separation column (8); and the analysis channel (16) upstream of the separation column (8).
  • 16) a sample injection part (6) for injecting a sample into the inside, a pressure sensor (4) for detecting the liquid feeding pressure by the liquid feeding pump (2), and a series of analysis-related steps for each sample analysis time.
  • a liquid feeding pressure recording unit (30) configured to record the liquid feeding pressure detected by the pressure sensor (4) at a predetermined timing during operation.
  • the liquid feed pressure recording unit (30) records the liquid feed pressure immediately before the sample injection unit (6) injects a sample into the analysis flow channel (16). Is configured.
  • the sample injection unit (6) includes a sample loop (26) for temporarily holding a sample to be analyzed, and the sample loop (26) as the liquid feed pump (2). Between a first state in which it is not interposed between the separation column (8) and a second state in which the sample loop (26) is interposed between the liquid feed pump (2) and the separation column (8).
  • a switching valve (20) configured to switch the flow channel configuration is provided, and the liquid transfer pressure recording unit (30) is configured such that the switching valve (20) of the sample injection unit (6) is in the first state. It is configured to record the liquid delivery pressure immediately before switching to the second state.
  • the delivery pressure is most stable during a series of operations related to analysis. It is the timing of doing.
  • the degree of deterioration of the separation column (8) from the liquid feed pressure. That is, the user can recognize that the column is deteriorated when the liquid feeding pressure recorded and plotted for each analysis time tends to increase in time series.
  • the sample injection unit (6) sets the switching valve (20) from the first state to the second state after receiving an analysis start command transmitted from the management device (12).
  • the liquid transfer pressure recording unit (30) is configured to switch to a state immediately before or after the management device (12) transmits the analysis start command to the sample injection unit (6), or the management device ( 12) transmits the analysis start command to the sample injection part (6), and at the same time, records the liquid delivery pressure.
  • the liquid feed pressure recorded by the liquid feed pressure recording unit (30) for each of a plurality of analysis times is displayed in time series.
  • the liquid delivery pressure display section (32) is provided. With such a mode, the user can visually grasp the change of the liquid sending pressure each time the analysis is performed, and it becomes easier to judge the degree of deterioration of the separation column (8).
  • This second aspect can be combined with the first aspect described above.
  • the liquid sending pressure detected by the pressure sensor (4) is compared with a preset threshold value, and the liquid sending pressure is An error detection unit (34) configured to detect that a threshold value is exceeded as a pressure error, and an error recording unit (36) that records an analysis time at which the error detection unit detects the pressure error. I have it. According to such a mode, the user can confirm the analysis times in which the pressure error is detected together with the liquid feeding pressure for each analysis time, as a criterion for determining the degree of deterioration of the separation column (8).
  • the liquid feeding pressure recording unit 30 is detected by the pressure sensor at a plurality of timings during a series of analysis-related operations for each analysis time of the sample. It is configured to record the highest pressure value of the liquid feeding pressures.
  • the gradient of liquid transfer pressure varies due to the gradient analysis, the highest liquid transfer pressure rises in time series by storing the highest single liquid transfer pressure in each analysis time series. In this case, it can be determined that the column has deteriorated.

Abstract

This liquid chromatograph comprises: a liquid feeding pump (2) for feeding a mobile phase; an analysis flow path (16) that has a separation column (8), through which the mobile phase from the liquid feeding pump (2) flows, for separating the sample into each of the components thereof and a detector (10) for detecting the sample components that have been separated by the separation column (8); a sample injection unit (6) that is for injecting the sample into the analysis flow path (16) from upstream of the separation column (8); a pressure sensor (4) for detecting the liquid feeding pressure generated by the liquid feeding pump (2); and a liquid feeding pressure recording unit (30) that, for each sample analysis, records the liquid feeding pressures detected by the pressure sensor (4) at prescribed times during a sequence of analysis operations.

Description

液体クロマトグラフLiquid chromatograph
 本発明は、液体クロマトグラフに関するものである。 The present invention relates to a liquid chromatograph.
 液体クロマトグラフは、分離カラムが設けられた分析流路中で移動相を流し、分離カラムの上流から試料を注入して分離カラムにて試料を成分ごとに分離し、分離された試料成分を検出器により検出する(特許文献1参照)。試料を成分ごとに分離するための分離カラムは使用時間の経過とともに劣化し、分離性能が低下する。そのため、ある程度の使用時間や使用回数に達したときに分離カラムを交換する必要がある。 Liquid chromatographs detect the separated sample components by flowing the mobile phase in the analysis channel provided with the separation column, injecting the sample from the upstream side of the separation column and separating the sample into each component by the separation column. It is detected by a container (see Patent Document 1). A separation column for separating a sample into components deteriorates with the lapse of use time, and the separation performance deteriorates. Therefore, it is necessary to replace the separation column when the usage time or the usage count reaches a certain level.
WO2017/006410A1WO2017/006410A1
 従来では、分離カラムの累積使用時間若しくは累積使用時間によって劣化具合を判断するか、又は、分離カラムを用いて実際に分析を行ない、その分析で得られる成分ピークの形状・分離度から劣化具合を判断することが一般的であった。しかしながら、分離カラムの劣化具合を累積使用時間若しくは累積使用時間によって判断すると、実際には使用不可能な程度にまで劣化していない分離カラムを交換してしまったり、劣化の進行した分離カラムを用いた無駄な分析を実施してしまったりするという問題がある。また、実際に分析した後で分離カラムの劣化に気付いた場合には、その分析時間、試料、移動相が無駄になるという問題もある。 Conventionally, the deterioration condition is judged by the cumulative usage time or the cumulative usage time of the separation column, or the deterioration condition is judged from the shape and the degree of separation of the component peaks obtained by the actual analysis using the separation column. It was common to judge. However, if the deterioration condition of the separation column is judged by the cumulative usage time or the cumulative usage time, the separation column that has not deteriorated to the extent that it cannot be actually used is replaced, or the deterioration-promoted separation column is used. There is a problem that unnecessary analysis is carried out. Further, when the deterioration of the separation column is noticed after the actual analysis, there is a problem that the analysis time, the sample and the mobile phase are wasted.
 そこで、本発明は、分離カラムの劣化具合を判断しやすくすることを目的とするものである。 Therefore, an object of the present invention is to make it easy to judge the degree of deterioration of the separation column.
 本発明に係る液体クロマトグラフは、移動相を送液する送液ポンプと、前記送液ポンプからの移動相が流れ、試料を成分ごとに分離するための分離カラム及び前記分離カラムにおいて分離した試料成分を検出するための検出器を有する分析流路と、前記分離カラムの上流において前記分析流路中に試料を注入するための試料注入部と、前記送液ポンプによる送液圧力を検出する圧力センサと、試料の分析回ごとに、分析に関する一連の動作中の所定のタイミングで前記圧力センサにより検出される前記送液圧力を記録するように構成された送液圧力記録部と、を備えている。 The liquid chromatograph according to the present invention, a liquid feed pump that feeds a mobile phase, a mobile phase from the liquid feed pump flows, a separation column for separating a sample into components and a sample separated in the separation column. An analysis flow path having a detector for detecting a component, a sample injection part for injecting a sample into the analysis flow path upstream of the separation column, and a pressure for detecting the liquid transfer pressure by the liquid transfer pump. A sensor, and a liquid feeding pressure recording unit configured to record the liquid feeding pressure detected by the pressure sensor at a predetermined timing during a series of operations related to analysis for each analysis time of a sample. There is.
 分離カラムが劣化していくと、分離カラム内の充填剤への不純物の蓄積などによって、同じ条件下での分析流路内の圧力が徐々に高くなる。そのため、分析回ごとに、その分析に関する一連の動作中の所定のタイミングでの送液圧力を観察すれば、分離カラムの劣化度合いを知ることができる。 ▽As the separation column deteriorates, the pressure in the analysis channel gradually increases under the same conditions due to the accumulation of impurities in the packing material inside the separation column. Therefore, the degree of deterioration of the separation column can be known by observing the feed pressure at a predetermined timing during a series of operations related to the analysis for each analysis time.
 本発明によれば、試料の分析回ごとに、分析に関する一連の動作中の所定のタイミングで圧力センサにより検出される前記送液圧力を記録するように構成された送液圧力記録部を備えているので、その記録を参照することによって分離カラムの劣化具合が判断しやすくなる。 According to the present invention, each time the sample is analyzed, a solution sending pressure recording unit configured to record the solution sending pressure detected by the pressure sensor at a predetermined timing during a series of operations related to the analysis is provided. Therefore, the deterioration degree of the separation column can be easily determined by referring to the record.
液体クロマトグラフの一実施例を概略的に示す構成図である。It is a block diagram which shows schematically one Example of a liquid chromatograph. 同実施例の動作を説明するためのフローチャートである。6 is a flowchart for explaining the operation of the embodiment.
 以下、図面を参照しながら、液体クロマトグラフの一実施例について説明する。 An example of a liquid chromatograph will be described below with reference to the drawings.
 この実施例の液体クロマトグラフは、主として、送液ポンプ2、圧力センサ4、オートサンプラ6(試料注入部)、分離カラム8、検出器10及び管理装置12を備えている。送液ポンプ2及び圧力センサ4は移動相供給流路14上に設けられ、分離カラム8及び検出器は分析流路16上に設けられている。 The liquid chromatograph of this embodiment mainly includes a liquid feed pump 2, a pressure sensor 4, an autosampler 6 (sample injection part), a separation column 8, a detector 10 and a management device 12. The liquid feed pump 2 and the pressure sensor 4 are provided on the mobile phase supply channel 14, and the separation column 8 and the detector are provided on the analysis channel 16.
 オートサンプラ2は、主として、サンプリング用のニードル18、切替バルブ20及びシリンジポンプ22を備えている。ニードル18の基端にサンプルループ26の一端が流体的に接続されている。サンプルループ26は、ニードル18の先端から吸入された試料を保持しておくための流路であり、ニードル18とは反対側の他端が切替バルブ20の1つのポート(1)に流体的に接続されている。ニードル18は、図示されていない移動機構によって、鉛直方向と水平面内方向へ移動させられる。 The auto sampler 2 mainly includes a sampling needle 18, a switching valve 20, and a syringe pump 22. One end of the sample loop 26 is fluidly connected to the proximal end of the needle 18. The sample loop 26 is a channel for holding the sample sucked from the tip of the needle 18, and the other end opposite to the needle 18 is fluidly connected to one port (1) of the switching valve 20. It is connected. The needle 18 is moved in the vertical direction and in the horizontal plane by a moving mechanism (not shown).
 切替バルブ20は流路構成を切り替えるためのものであり、この実施例では6ポートバルブが用いられている。切替バルブ20の各ポートには、サンプルループ26のほか、シリンジポンプ22、注入ポート24、ドレイン流路28、移動相供給流路14及び分析流路16が接続されている。移動相供給流路14は送液ポンプ2によって移動相を供給するための流路である。送液ポンプ2による送液圧力は圧力センサ4によって検出される。 The switching valve 20 is for switching the flow path configuration, and a 6-port valve is used in this embodiment. In addition to the sample loop 26, a syringe pump 22, an injection port 24, a drain channel 28, a mobile phase supply channel 14 and an analysis channel 16 are connected to each port of the switching valve 20. The mobile phase supply channel 14 is a channel for supplying the mobile phase by the liquid feed pump 2. The liquid feed pressure by the liquid feed pump 2 is detected by the pressure sensor 4.
 切替バルブ20は、移動相供給流路14と分析流路16との間を直接的に接続した第1状態(ポート(5)-(6)間を連通させた図1の状態)と、移動相供給流路14と分析流路16との間にサンプルループ26及びニードル18を介在させるための第2状態(ポート(1)-(6)間、(2)-(3)間、(4)-(5)間を連通させた状態)のいずれかの状態に切り替えることができる。 The switching valve 20 moves between the first state in which the mobile phase supply channel 14 and the analysis channel 16 are directly connected (the state in FIG. 1 in which the ports (5)-(6) are in communication). The second state (between ports (1)-(6), (2)-(3), (4) for interposing sample loop 26 and needle 18 between phase supply channel 14 and analysis channel 16 )-(5) are connected to each other).
 シリンジポンプ22は、切替バルブ20が第1状態(図1の状態)になることによってサンプルループ26を介してニードル18と流体的に連通するように設けられている。 The syringe pump 22 is provided so as to be in fluid communication with the needle 18 via the sample loop 26 when the switching valve 20 is in the first state (state in FIG. 1).
 この実施例では、管理装置12からオートサンプラ6に対して分析開始命令が送信されるまで、切替バルブ20が第1状態となる。このとき、移動相供給流路14と分析流路16はサンプルループ26をその間に介在させずに流体的に連通しており、送液ポンプ2からの移動相が分析流路16を流れる。 In this embodiment, the switching valve 20 is in the first state until the management device 12 sends an analysis start command to the autosampler 6. At this time, the mobile phase supply channel 14 and the analysis channel 16 are in fluid communication with each other without the sample loop 26 interposed therebetween, and the mobile phase from the liquid feed pump 2 flows through the analysis channel 16.
 管理装置12からオートサンプラ6へ分析開始命令が送信されると、オートサンプラ6は、ニードル18の先端を次の分析対象試料を収容した試料容器(図示は省略)内に挿入させ、シリンジポンプ22を吸入駆動してサンプルループ26に試料を保持させる。サンプルループ26に試料を保持させた後、ニードル18の先端を注入ポート24に流体的に接続した状態で切替バルブ20を第1状態から第2状態に切り替え、サンプルループ26に保持された試料を送液ポンプ2からの移動相とともに分析流路16へ導入する。分析流路16に導入された試料は分離カラム8に導かれ、成分ごとに分離され、各試料成分が検出器10により検出される。 When the analysis start command is transmitted from the management device 12 to the autosampler 6, the autosampler 6 inserts the tip of the needle 18 into a sample container (not shown) containing the next sample to be analyzed, and the syringe pump 22 Is suction-driven to hold the sample in the sample loop 26. After holding the sample in the sample loop 26, the switching valve 20 is switched from the first state to the second state with the tip of the needle 18 fluidly connected to the injection port 24, and the sample held in the sample loop 26 is removed. It is introduced into the analysis channel 16 together with the mobile phase from the liquid feed pump 2. The sample introduced into the analysis channel 16 is guided to the separation column 8 and separated into each component, and each sample component is detected by the detector 10.
 管理装置12は、試料の分析に関する上記の一連の動作が実行されるように、送液ポンプ2及びオートサンプラ6の動作を管理する。管理装置12は、汎用のパーソナルコンピュータ又は専用のコンピュータによって実現することができる。管理装置12は、送液圧力記録部30、送液圧力表示部32、エラー検出部34及びエラー記録部36を備えている。送液圧力記録部30、送液圧力表示部32、エラー検出部34及びエラー記録部36は、管理装置12に搭載された中央演算装置(CPU)がプログラムを実行することによって得られる機能である。 The management device 12 manages the operations of the liquid sending pump 2 and the autosampler 6 so that the series of operations relating to the analysis of the sample are executed. The management device 12 can be realized by a general-purpose personal computer or a dedicated computer. The management device 12 includes a liquid feed pressure recording unit 30, a liquid feed pressure display unit 32, an error detection unit 34, and an error recording unit 36. The liquid feeding pressure recording unit 30, the liquid feeding pressure display unit 32, the error detecting unit 34, and the error recording unit 36 are functions obtained by the central processing unit (CPU) mounted in the management device 12 executing a program. ..
 送液圧力記録部30は、試料の分析回ごとに、分析に関する一連の動作中における所定のタイミングで、圧力センサ4により検出される送液圧力を管理装置12内の所定の記憶領域に記録するように構成されている。送液圧力を記録するタイミングとしては、分析流路16に試料を注入する直前のタイミング、すなわち、オートサンプラ6が管理装置12から分析開始命令を受けて切替バルブ20を第1状態から第2状態に切り替える直前のタイミングが挙げられる。分析流路16に試料を注入するために切替バルブ20が第1状態から第2状態に切り替えられる直前のタイミングは、分析に関する一連の動作中で最も送液圧力が安定しているタイミングである。このタイミングでの送液圧力を試料の分析回ごとに記録してプロットすることで、分離カラム8の劣化具合を送液圧力から判断しやすくなる。 The liquid feeding pressure recording unit 30 records the liquid feeding pressure detected by the pressure sensor 4 in a predetermined storage area in the management device 12 at a predetermined timing during a series of analysis-related operations for each analysis of the sample. Is configured. The timing of recording the liquid feeding pressure is the timing immediately before the sample is injected into the analysis flow path 16, that is, the auto sampler 6 receives the analysis start command from the management device 12 and sets the switching valve 20 from the first state to the second state. The timing just before switching to. The timing immediately before the switching valve 20 is switched from the first state to the second state in order to inject the sample into the analysis flow channel 16 is the timing at which the liquid delivery pressure is most stable during a series of operations related to analysis. By recording and plotting the liquid feeding pressure at this timing for each analysis time of the sample, it becomes easy to judge the deterioration degree of the separation column 8 from the liquid feeding pressure.
 送液圧力表示部32は、送液圧力記録部30によって記録された各分析回の送液圧力を時系列的に、すなわち、分析回を追うごとの送液圧力の変化を視覚的に把握できるように、管理装置12に電気的に接続されている表示装置(図示は省略)に表示するように構成されている。表示装置に表示された送液圧力の変化を見ることにより、分析回を追うごとの送液圧力が上昇傾向にある場合には、ユーザは分離カラム8が劣化していることを判断することができる。なお、ユーザが分離カラム8の劣化を判断する代わりに、管理装置12によって自動的に分離カラム8の劣化を判断し、分離カラム8が劣化していると判断する場合に、表示装置にその旨を表示する等、ユーザに告知を行なうこともできる。 The liquid feeding pressure display unit 32 can visually grasp the liquid feeding pressure of each analysis time recorded by the liquid feeding pressure recording unit 30 in time series, that is, the change of the liquid feeding pressure each time the analysis time is followed. As described above, the display device (not shown) electrically connected to the management device 12 is configured to display. By observing the change in the liquid feeding pressure displayed on the display device, if the liquid feeding pressure tends to increase with each analysis, the user can determine that the separation column 8 is deteriorated. it can. When the user does not judge the deterioration of the separation column 8 but the management device 12 automatically judges the deterioration of the separation column 8 and judges that the separation column 8 is deteriorated, the display device indicates that. It is also possible to notify the user by, for example, displaying.
 エラー検出部34は、分析に関する一連の動作中における送液圧力を監視し、送液圧力が予め設定されたしきい値を超えたときに圧力エラーとして検出するように構成されている。この機能は、ユーザが移動相流量などの分析条件を間違えて設定したような場合に、分離カラム8に過剰な圧力がかかることを防止するための機能である。したがって、エラー検出部34が圧力エラーの検出に用いるしきい値は、分離カラム8の交換時期を示すためのものではなく、この液体クロマトグラフにおいて使用可能な送液圧力の上限値としての意味をもつものである。しかしながら、エラー検出部34が圧力エラーの検出に用いるしきい値として、分離カラム8の交換時期を示すためのものを、実験結果などから推定して、別途予め設定するようにしてもよい。 The error detection unit 34 is configured to monitor the liquid sending pressure during a series of operations related to analysis and detect a pressure error when the liquid sending pressure exceeds a preset threshold value. This function is a function for preventing an excessive pressure from being applied to the separation column 8 when the user mistakenly sets the analysis conditions such as the mobile phase flow rate. Therefore, the threshold value used by the error detection unit 34 to detect a pressure error does not indicate the replacement time of the separation column 8, but has a meaning as the upper limit value of the liquid delivery pressure that can be used in this liquid chromatograph. It has. However, the threshold value used by the error detection unit 34 to detect the pressure error may be set separately by preliminarily estimating the replacement time of the separation column 8 from the experimental result and the like.
 しきい値を超えるような過剰な圧力が分離カラム8に掛かった場合、分離カラム8の劣化が進行することが考えられる。そのため、圧力エラーが検出されたことが事後的に確認できるようになっていることが好ましい。そこで、エラー記録部36は、エラー検出部34によって圧力エラーが検出された分析回を所定の記憶領域に記録するように構成されている。これにより、ユーザは、分離カラム8の劣化具合の判断の目安として、分析回ごとの送液圧力とともに圧力エラーが検出された分析回を確認することができる。 When the excessive pressure exceeding the threshold value is applied to the separation column 8, the separation column 8 may deteriorate. Therefore, it is preferable to be able to confirm the fact that the pressure error is detected afterwards. Therefore, the error recording unit 36 is configured to record the analysis times in which the pressure error is detected by the error detection unit 34 in a predetermined storage area. As a result, the user can confirm the analysis times at which the pressure error is detected as well as the liquid sending pressure for each analysis time, as a criterion for determining the degree of deterioration of the separation column 8.
 この実施例の動作の一例について、図1とともに図2のフローチャートを用いて説明する。 An example of the operation of this embodiment will be described using the flowchart of FIG. 2 together with FIG.
 分析を開始する前の段階では、オートサンプラ6の切替バルブ20が第1状態(図1の状態)にされる(ステップ101)。管理装置12は、予め設定された分析スケジュールにしたがい、試料の分析を開始すべきタイミングとなったときに(ステップ102)、オートサンプラ6へ分析開始命令を送信する。オートサンプラ6は、管理装置12からの分析開始命令を受けて、分析対象試料を試料容器から吸入して分析流路16へ注入する試料注入動作を実行する(ステップ104)。これにより、試料の分析が行われる(ステップ105)。 Before the analysis is started, the switching valve 20 of the autosampler 6 is set to the first state (state of FIG. 1) (step 101). The management device 12 transmits an analysis start command to the autosampler 6 when it is time to start the analysis of the sample according to the preset analysis schedule (step 102). Upon receipt of the analysis start command from the management device 12, the autosampler 6 executes the sample injection operation of inhaling the sample to be analyzed from the sample container and injecting it into the analysis channel 16 (step 104). As a result, the sample is analyzed (step 105).
 送液圧力記録部30は、分析流路16へ試料を注入するために切替バルブ20が第1状態から第2状態へ切り替えられるときの(すなわち直前の)送液圧力を圧力センサ4から読み取り、管理装置12内の所定の記憶領域に記録する(ステップ103)。送液圧力記録部30が送液圧力を記憶領域に記録するタイミングは、管理装置12からオートサンプラ6へ分析開始命令が送信される直前若しくは直後であってもよいし、管理装置12からオートサンプラ6へ分析開始命令が送信されるのと同時であってもよい。 The liquid feeding pressure recording unit 30 reads the liquid feeding pressure when the switching valve 20 is switched from the first state to the second state (that is, immediately before) in order to inject the sample into the analysis channel 16, from the pressure sensor 4, The data is recorded in a predetermined storage area in the management device 12 (step 103). The liquid feeding pressure recording unit 30 may record the liquid feeding pressure in the storage area immediately before or after the analysis start command is transmitted from the management device 12 to the auto sampler 6, or from the management device 12 to the auto sampler. It may be at the same time as the analysis start command is transmitted to 6.
 予定されている全ての試料について、上記ステップ101~105の動作を実行する(ステップ106)。 Execute the operations in steps 101 to 105 for all scheduled samples (step 106).
 以上において説明した実施例のオートサンプラ6は、ニードル18の先端から吸入した試料の全量を分析流路16へ注入する全量注入方式の構成を有するものであるが、本発明はこれに限定されるものではなく、ニードル18の先端から吸入した試料のうちの所定量を第2のサンプルループへ注入し、そのサンプルループを分析流路に介挿することによって所定量の試料を分析流路へ注入するループ注入方式の構成を有するものであってもよい。 Although the autosampler 6 of the embodiment described above has a configuration of a total amount injection system in which the entire amount of the sample sucked from the tip of the needle 18 is injected into the analysis flow channel 16, the present invention is not limited to this. However, a predetermined amount of the sample inhaled from the tip of the needle 18 is injected into the second sample loop, and the sample loop is inserted into the analysis channel to inject a predetermined amount of sample into the analysis channel. It may have a loop injection system configuration.
 また、送液圧力記録部30は、分析回ごとに試料の分析を開始してから終了するまでの間に圧力センサによって検出された送液圧力を監視しておき、その中で最も高い1つの送液圧力を記憶領域に記憶するようにしてもよい。これは、グラジエント分析を行なうことで送液圧力の変動が生じるが、分析回ごとに最も高い1つの送液圧力を時系列的に記憶しておくことで、最も高い送液圧力が時系列的に上昇するように場合に、カラムが劣化していると判断できるからである。    In addition, the liquid feeding pressure recording unit 30 monitors the liquid feeding pressure detected by the pressure sensor between the start and the end of the analysis of the sample for each analysis time, and one of the highest pressures is monitored. The liquid sending pressure may be stored in the storage area. This is because the liquid transfer pressure fluctuates due to the gradient analysis, but the highest liquid transfer pressure is stored in time series so that the highest liquid transfer pressure is stored in time series. This is because it can be determined that the column is deteriorated when the column rises. :
 本発明に係る液体クロマトグラフの実施形態は、移動相を送液する送液ポンプ(2)と、前記送液ポンプ(2)からの移動相が流れ、試料を成分ごとに分離するための分離カラム(8)及び前記分離カラム(8)において分離した試料成分を検出するための検出器(10)を有する分析流路(16)と、前記分離カラム(8)の上流において前記分析流路(16)中に試料を注入するための試料注入部(6)と、前記送液ポンプ(2)による送液圧力を検出する圧力センサ(4)と、試料の分析回ごとに、分析に関する一連の動作中の所定のタイミングで前記圧力センサ(4)により検出される前記送液圧力を記録するように構成された送液圧力記録部(30)と、を備えている。 The embodiment of the liquid chromatograph according to the present invention is a liquid feed pump (2) for feeding a mobile phase, and a mobile phase from the liquid feed pump (2) flows and a separation for separating a sample into components. An analysis channel (16) having a column (8) and a detector (10) for detecting the sample components separated in the separation column (8); and the analysis channel (16) upstream of the separation column (8). 16) a sample injection part (6) for injecting a sample into the inside, a pressure sensor (4) for detecting the liquid feeding pressure by the liquid feeding pump (2), and a series of analysis-related steps for each sample analysis time. And a liquid feeding pressure recording unit (30) configured to record the liquid feeding pressure detected by the pressure sensor (4) at a predetermined timing during operation.
 上記実施形態の第1態様では、前記送液圧力記録部(30)は、前記試料注入部(6)が前記分析流路(16)中に試料を注入する直前の前記送液圧力を記録するように構成されている。 In the first aspect of the above-described embodiment, the liquid feed pressure recording unit (30) records the liquid feed pressure immediately before the sample injection unit (6) injects a sample into the analysis flow channel (16). Is configured.
 上記第1態様の具体例では、前記試料注入部(6)は、分析対象試料を一時的に保持するサンプルループ(26)、及び、前記サンプルループ(26)を前記送液ポンプ(2)と前記分離カラム(8)との間に介在させない第1状態と前記サンプルループ(26)を前記送液ポンプ(2)と前記分離カラム(8)との間に介在させる第2状態との間で流路構成を切り替えるように構成された切替バルブ(20)を有し、前記送液圧力記録部(30)は、前記試料注入部(6)の前記切替バルブ(20)が前記第1状態から前記第2状態に切り替えられる直前の前記送液圧力を記録するように構成されている。前記分析流路(16)に試料を注入するために前記切替バルブ(20)が第1状態から第2状態に切り替えられる直前のタイミングは、分析に関する一連の動作中で最も前記送液圧力が安定しているタイミングである。このタイミングでの前記送液圧力を試料の分析回ごとに記録してプロットすることで、前記分離カラム(8)の劣化具合を送液圧力から判断しやすくなる。すなわち、分析回ごとに記録してプロットされいる送液圧力が、時系列的に上昇傾向にある場合には、カラムが劣化していることをユーザが認識することができる。 In the specific example of the first aspect, the sample injection unit (6) includes a sample loop (26) for temporarily holding a sample to be analyzed, and the sample loop (26) as the liquid feed pump (2). Between a first state in which it is not interposed between the separation column (8) and a second state in which the sample loop (26) is interposed between the liquid feed pump (2) and the separation column (8). A switching valve (20) configured to switch the flow channel configuration is provided, and the liquid transfer pressure recording unit (30) is configured such that the switching valve (20) of the sample injection unit (6) is in the first state. It is configured to record the liquid delivery pressure immediately before switching to the second state. At the timing immediately before the switching valve (20) is switched from the first state to the second state in order to inject the sample into the analysis flow path (16), the delivery pressure is most stable during a series of operations related to analysis. It is the timing of doing. By recording and plotting the liquid feed pressure at this timing for each analysis time of the sample, it becomes easy to determine the degree of deterioration of the separation column (8) from the liquid feed pressure. That is, the user can recognize that the column is deteriorated when the liquid feeding pressure recorded and plotted for each analysis time tends to increase in time series.
 上記第1態様のさらなる具体例では、前記試料注入部(6)は、管理装置(12)から送信される分析開始命令を受けてから前記切替バルブ(20)を前記第1状態から前記第2状態へ切り替えるように構成され、前記送液圧力記録部(30)は、前記管理装置(12)が前記試料注入部(6)へ前記分析開始命令を送信する直前若しくは直後、又は前記管理装置(12)が前記試料注入部(6)へ前記分析開始命令を送信するのと同時に、前記送液圧力を記録するように構成されている。 In a further specific example of the first aspect, the sample injection unit (6) sets the switching valve (20) from the first state to the second state after receiving an analysis start command transmitted from the management device (12). The liquid transfer pressure recording unit (30) is configured to switch to a state immediately before or after the management device (12) transmits the analysis start command to the sample injection unit (6), or the management device ( 12) transmits the analysis start command to the sample injection part (6), and at the same time, records the liquid delivery pressure.
 本発明に係る液体クロマトグラフの上記実施形態の第2態様では、複数の分析回のそれぞれについて前記送液圧力記録部(30)により記録された前記送液圧力を時系列的に表示するように構成された送液圧力表示部(32)を備えている。このような態様により、ユーザは分析回を追うごとの送液圧力の変化を視覚的に把握することができ、前記分離カラム(8)の劣化具合をより判断しやすくなる。この第2態様は上記第1態様と組み合わせることができる。 In the second aspect of the above-described embodiment of the liquid chromatograph according to the present invention, the liquid feed pressure recorded by the liquid feed pressure recording unit (30) for each of a plurality of analysis times is displayed in time series. The liquid delivery pressure display section (32) is provided. With such a mode, the user can visually grasp the change of the liquid sending pressure each time the analysis is performed, and it becomes easier to judge the degree of deterioration of the separation column (8). This second aspect can be combined with the first aspect described above.
 本発明に係る液体クロマトグラフの上記実施形態の第3態様では、前記圧力センサ(4)によって検出される前記送液圧力を予め設定されたしきい値と比較し、前記送液圧力が前記しきい値を超えたことを圧力エラーとして検出するように構成されたエラー検出部(34)と、前記エラー検出部が前記圧力エラーを検出した分析回を記録するエラー記録部(36)と、を備えている。このような態様により、ユーザは、前記分離カラム(8)の劣化具合の判断の目安として、分析回ごとの送液圧力とともに圧力エラーが検出された分析回を確認することができる。 In the third aspect of the above-described embodiment of the liquid chromatograph according to the present invention, the liquid sending pressure detected by the pressure sensor (4) is compared with a preset threshold value, and the liquid sending pressure is An error detection unit (34) configured to detect that a threshold value is exceeded as a pressure error, and an error recording unit (36) that records an analysis time at which the error detection unit detects the pressure error. I have it. According to such a mode, the user can confirm the analysis times in which the pressure error is detected together with the liquid feeding pressure for each analysis time, as a criterion for determining the degree of deterioration of the separation column (8).
 本発明に係る液体クロマトグラフの上記実施形態の第4態様では、送液圧力記録部30は、試料の分析回ごとに、分析に関する一連の動作中の複数のタイミングで前記圧力センサにより検出される前記送液圧力のうち最も高い圧力値を記録するように構成されている。グラジエント分析を行うことで送液圧力の変動が生じるが、分析回ごとに最も高い1つの送液圧力を時系列的に記憶しておくことで、最も高い送液圧力が時系列的に上昇するように場合に、カラムが劣化していると判断できる。 In the fourth aspect of the above-described embodiment of the liquid chromatograph according to the present invention, the liquid feeding pressure recording unit 30 is detected by the pressure sensor at a plurality of timings during a series of analysis-related operations for each analysis time of the sample. It is configured to record the highest pressure value of the liquid feeding pressures. Although the gradient of liquid transfer pressure varies due to the gradient analysis, the highest liquid transfer pressure rises in time series by storing the highest single liquid transfer pressure in each analysis time series. In this case, it can be determined that the column has deteriorated.
   2   送液ポンプ
   4   圧力センサ
   6   オートサンプラ(試料注入部)
   8   分離カラム
   10   検出器
   12   管理装置
   14   移動相供給流路
   16   分析流路
   18   ニードル
   20   切替バルブ
   22   シリンジポンプ
   24   注入ポート
   26   サンプルループ
   28   ドレイン流路
   30   送液圧力記録部
   32   送液圧力表示部
   34   エラー検出部
   36   エラー記録部
2 Liquid feed pump 4 Pressure sensor 6 Autosampler (Sample injection part)
8 Separation Column 10 Detector 12 Management Device 14 Mobile Phase Supply Flow Path 16 Analysis Flow Path 18 Needle 20 Switching Valve 22 Syringe Pump 24 Injection Port 26 Sample Loop 28 Drain Flow Path 30 Liquid Transfer Pressure Recording Part 32 Liquid Transfer Pressure Display Part 34 Error detector 36 Error recorder

Claims (7)

  1.  移動相を送液する送液ポンプと、
     前記送液ポンプからの移動相が流れ、試料を成分ごとに分離するための分離カラム及び前記分離カラムにおいて分離した試料成分を検出するための検出器を有する分析流路と、
     前記分離カラムの上流において前記分析流路中に試料を注入するための試料注入部と、
     前記送液ポンプによる送液圧力を検出する圧力センサと、
     試料の分析回ごとに、分析に関する一連の動作中の所定のタイミングで前記圧力センサにより検出される前記送液圧力を記録するように構成された送液圧力記録部と、を備えた液体クロマトグラフ。
    A liquid feed pump for feeding the mobile phase,
    A mobile phase from the liquid feeding pump flows, an analysis flow path having a separation column for separating a sample into components and a detector for detecting the sample components separated in the separation column,
    A sample injection unit for injecting a sample into the analysis channel upstream of the separation column,
    A pressure sensor for detecting the liquid feeding pressure by the liquid feeding pump,
    A liquid chromatograph including a liquid feed pressure recording unit configured to record the liquid feed pressure detected by the pressure sensor at a predetermined timing during a series of operations related to analysis for each analysis time of a sample. ..
  2.  前記送液圧力記録部は、前記試料注入部が前記分析流路中に試料を注入する直前の前記送液圧力を記録するように構成されている、請求項1に記載の液体クロマトグラフ。 The liquid chromatograph according to claim 1, wherein the liquid feed pressure recording unit is configured to record the liquid feed pressure immediately before the sample injection unit injects a sample into the analysis flow channel.
  3.  前記試料注入部は、分析対象試料を一時的に保持するサンプルループ、及び、前記サンプルループを前記送液ポンプと前記分離カラムとの間に介在させない第1状態と前記サンプルループを前記送液ポンプと前記分離カラムとの間に介在させる第2状態との間で流路構成を切り替えるように構成された切替バルブを有し、
     前記送液圧力記録部は、前記試料注入部の前記切替バルブが前記第1状態から前記第2状態に切り替えられる直前の前記送液圧力を記録するように構成されている、請求項2に記載の液体クロマトグラフ。
    The sample injection unit includes a sample loop for temporarily holding a sample to be analyzed, a first state in which the sample loop is not interposed between the liquid feed pump and the separation column, and the sample loop is the liquid feed pump. And a switching valve configured to switch the flow path configuration between a second state interposed between the separation column and the separation column,
    The liquid delivery pressure recording unit is configured to record the liquid delivery pressure immediately before the switching valve of the sample injection unit is switched from the first state to the second state. Liquid chromatograph.
  4.  前記試料注入部は、管理装置から送信される分析開始命令を受けてから前記切替バルブを前記第1状態から前記第2状態へ切り替えるように構成され、
     前記送液圧力記録部は、前記管理装置が前記試料注入部へ前記分析開始命令を送信する直前若しくは直後、又は前記管理装置が前記試料注入部へ前記分析開始命令を送信するのと同時に、前記送液圧力を記録するように構成されている、請求項3に記載の液体クロマトグラフ。
    The sample injection unit is configured to switch the switching valve from the first state to the second state after receiving an analysis start command transmitted from a management device,
    The delivery pressure recording unit may be configured such that, immediately before or after the management device transmits the analysis start command to the sample injection unit, or at the same time when the management device transmits the analysis start command to the sample injection unit, The liquid chromatograph according to claim 3, which is configured to record the liquid sending pressure.
  5.  複数の分析回のそれぞれについて前記送液圧力記録部により記録された前記送液圧力を時系列的に表示するように構成された送液圧力表示部を備えている、請求項1に記載の液体クロマトグラフ。 The liquid according to claim 1, further comprising a liquid delivery pressure display unit configured to display the liquid delivery pressure recorded by the liquid delivery pressure recording unit for each of a plurality of analysis times in time series. Chromatograph.
  6.  前記圧力センサによって検出される前記送液圧力を予め設定されたしきい値と比較し、前記送液圧力が前記しきい値を超えたことを圧力エラーとして検出するように構成されたエラー検出部と、
     前記エラー検出部が前記圧力エラーを検出した分析回を記録するエラー記録部と、を備えている、請求項1に記載の液体クロマトグラフ。
    An error detection unit configured to compare the liquid feed pressure detected by the pressure sensor with a preset threshold value and detect that the liquid feed pressure exceeds the threshold value as a pressure error. When,
    The liquid chromatograph according to claim 1, further comprising: an error recording unit that records an analysis time at which the error detection unit detects the pressure error.
  7.  前記送液圧力記録部は、試料の分析回ごとに、分析に関する一連の動作中の複数のタイミングで前記圧力センサにより検出される前記送液圧力のうち最も高い圧力値を記録するように構成されている、請求項1に記載の液体クロマトグラフ。 The liquid feeding pressure recording unit is configured to record the highest pressure value among the liquid feeding pressures detected by the pressure sensor at a plurality of timings during a series of operations related to analysis for each analysis time of a sample. The liquid chromatograph according to claim 1, wherein
PCT/JP2019/006464 2019-02-21 2019-02-21 Liquid chromatograph WO2020170378A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501218A JP7056797B2 (en) 2019-02-21 2019-02-21 Liquid chromatograph
PCT/JP2019/006464 WO2020170378A1 (en) 2019-02-21 2019-02-21 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006464 WO2020170378A1 (en) 2019-02-21 2019-02-21 Liquid chromatograph

Publications (1)

Publication Number Publication Date
WO2020170378A1 true WO2020170378A1 (en) 2020-08-27

Family

ID=72143364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006464 WO2020170378A1 (en) 2019-02-21 2019-02-21 Liquid chromatograph

Country Status (2)

Country Link
JP (1) JP7056797B2 (en)
WO (1) WO2020170378A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324027A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Automatic liquid chromatography
JPH095312A (en) * 1996-08-07 1997-01-10 Hitachi Ltd Chromatography device
JPH1010106A (en) * 1996-06-27 1998-01-16 Sekisui Chem Co Ltd Filter for liquid chromatography
JP2000073959A (en) * 1999-09-27 2000-03-07 Hitachi Ltd Pump device
WO2014031069A1 (en) * 2012-08-22 2014-02-27 Ge Healthcare Bio-Sciences Ab Versatile rotary valve
JP2014211337A (en) * 2013-04-18 2014-11-13 株式会社日立ハイテクノロジーズ Liquid chromatograph device and liquid chromatograph analytic method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324027A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Automatic liquid chromatography
JPH1010106A (en) * 1996-06-27 1998-01-16 Sekisui Chem Co Ltd Filter for liquid chromatography
JPH095312A (en) * 1996-08-07 1997-01-10 Hitachi Ltd Chromatography device
JP2000073959A (en) * 1999-09-27 2000-03-07 Hitachi Ltd Pump device
WO2014031069A1 (en) * 2012-08-22 2014-02-27 Ge Healthcare Bio-Sciences Ab Versatile rotary valve
JP2014211337A (en) * 2013-04-18 2014-11-13 株式会社日立ハイテクノロジーズ Liquid chromatograph device and liquid chromatograph analytic method

Also Published As

Publication number Publication date
JPWO2020170378A1 (en) 2021-11-04
JP7056797B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
EP2816340B1 (en) Headspace sample introduction device
US20120024048A1 (en) Liquid chromatograph
JP6992882B2 (en) Autosampler and liquid chromatograph
CN113330307B (en) Automatic sampler for chromatograph and fluid chromatographic analysis system
TWI494564B (en) A sample injection device, a sample injection method, and a liquid chromatography apparatus
WO2020170378A1 (en) Liquid chromatograph
JPH10213575A (en) Gas chromatograph device
JP6801779B2 (en) Preparative liquid chromatograph
JP2012018126A (en) Autosampler
JP4077674B2 (en) Gradient liquid feeding device and liquid feeding method for nano / micro liquid chromatograph
CN110621993B (en) Automatic sampler and fluid chromatograph
JP7120438B2 (en) Liquid chromatograph
JP2005257575A (en) Chromatograph
US20190025161A1 (en) Autosampler
JP6160526B2 (en) Gas chromatograph apparatus and gas chromatograph analysis system
JP7120435B2 (en) liquid chromatograph
JP7070724B2 (en) Liquid chromatograph and dissolution test system
JP6836225B2 (en) Liquid chromatograph and dissolution test system
US11959892B2 (en) Liquid chromatograph with improved defect elimination
US20220299488A1 (en) Preparative liquid chromatograph
JP2016205944A (en) Auto sampler
JP2014202721A (en) Liquid sample introduction device and liquid chromatograph apparatus
WO2020183638A1 (en) Liquid chromatograph analysis system
US11946913B2 (en) Operation of an injector of a sample separation device
CN113316719A (en) Liquid chromatograph

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916392

Country of ref document: EP

Kind code of ref document: A1