WO2020168514A1 - Methods and apparatus to facilitate duo coding of data channels - Google Patents

Methods and apparatus to facilitate duo coding of data channels Download PDF

Info

Publication number
WO2020168514A1
WO2020168514A1 PCT/CN2019/075706 CN2019075706W WO2020168514A1 WO 2020168514 A1 WO2020168514 A1 WO 2020168514A1 CN 2019075706 W CN2019075706 W CN 2019075706W WO 2020168514 A1 WO2020168514 A1 WO 2020168514A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
coding scheme
transport block
feedback
decoding
Prior art date
Application number
PCT/CN2019/075706
Other languages
French (fr)
Inventor
Changlong Xu
Jian Li
Liangming WU
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/075706 priority Critical patent/WO2020168514A1/en
Publication of WO2020168514A1 publication Critical patent/WO2020168514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to duo coding of data channels.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G/NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra reliable low latency communications
  • 5G/NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a data channel may be transmitted from a base station and/or a UE to a receiver (which may be a UE and/or a base station) .
  • a first encoding scheme may be used to encode a portion of the data channel while a second encoding scheme may be used to encode a second portion of the data channel.
  • polar coding may be used to encode the control channel while low-density parity-check coding (LDPC) and polar coding may be used to encode the data channel.
  • LDPC low-density parity-check coding
  • An example apparatus receives, by a receiver, a data channel of which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme.
  • the example apparatus also decodes the data channel using the first coding scheme and the second coding scheme.
  • An example apparatus generates the data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme, and transmits the data channel.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating a call flow diagram between a receiver and a transmitter, as disclosed herein.
  • FIG. 5 is a diagram illustrating an example implementation of duo coding of data channels in which the LDPC encoded data is time division multiplexed with the polar encoded data, as disclosed herein.
  • FIG. 6 is a diagram illustrating another example implementation of duo coding of data channels in which the LDPC encoded data is time division multiplexed with the polar encoded data, as disclosed herein.
  • FIG. 7 is a diagram illustrating an example implementation of duo coding of data channels in which the LDPC encoded data is frequency division multiplexed with the polar encoded data, as disclosed herein.
  • FIG. 8 is a flowchart of a method for a receiver to perform wireless communications using duo coding of data channels.
  • FIG. 9 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
  • FIG. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • FIG. 11 is a flowchart of a method for a transmitter to perform wireless communications using duo coding of data channels.
  • FIG. 12 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
  • FIG. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • the term computer-readable medium is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals and to exclude transmission media.
  • “computer-readable medium” and “machine-readable medium” are used interchangeably.
  • “computer-readable medium” and “computer-readable memory” are used interchangeably.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G/NR may interface with core network 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may be configured to manage one or more aspects of wireless communication via duo coding of data channels.
  • the UE 104 of FIG. 1 includes a duo coding component 198 configured to receive, by a receiver, a data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme, and decode the data channel using the first coding scheme and the second coding scheme.
  • the base station 102/180 may be configured to manage one or more aspects of wireless communication via duo coding of data channels.
  • the base station 102/180 of FIG. 1 includes a duo coding component 199 configured to generate a data channel including a first portion and a second portion, in which the first portion of the data channel is encoded using a first coding scheme and the second portion of the data channel is encoded using a second coding scheme, and transmit the data channel.
  • the concepts described herein may be applicable to other similar areas, such as when the UE is the transmitter and the base station is the receiver.
  • 5G/NR the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and/or other wireless technologies, in which a control channel is encoded using a first coding scheme and a data channel is encoded using a second coding scheme.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • the concepts described herein may be applicable to additional or alternative coding schemes.
  • downlink communications the concepts described herein may be applicable to uplink communications and/or to sidelink communications.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) .
  • slot formats 0, 1 are all DL, UL, respectively.
  • Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kKz, where ⁇ is the numerology 0 to 5.
  • is the numerology 0 to 5.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 ⁇ s.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as Rx for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block.
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the present disclosure relates to transmissions at wireless device such as a UE and/or a base station.
  • the transmissions may include a combination of a control channel and a data channel for transmitting information from a transmitter to a receiver (e.g., the transmitter/receiver may be a UE or a base station) .
  • the data channel may be duo coded.
  • duo coding may be defined as encoding using two different encoding schemes. For example, a first portion of the data channel may be encoded using a polar coding scheme, while a second portion of the data channel may be encoded using LDPC.
  • a duo coding scheme for the data channel enables a higher throughput to be achieved by, allowing the receiver to use two different decoders to concurrently decode the data channel or by enabling one of the decoders to begin decoding at an earlier point in time. It should be appreciated that a data channel transmission is an example of an information block.
  • first coding scheme e.g., polar codes
  • second coding scheme e.g., LDPC
  • the higher throughput may be achieved without incurring any additional hardware cost.
  • polar codes may be used for control channels (e.g., PDCCH for downlink communications and PUCCH for uplink communications) and LDPC may be used for data channels (e.g., PDSCH for downlink communications and PUSCH for uplink communications) .
  • control channels e.g., PDCCH for downlink communications and PUCCH for uplink communications
  • LDPC may be used for data channels (e.g., PDSCH for downlink communications and PUSCH for uplink communications) .
  • the existing hardware in a device may be utilized. This provides the benefits of using LDPC for a portion of a data channel transmission while also enabling a receiver to make efficient use of a polar code decoder that may be used for receiving other channels, such as a control channel.
  • the latency budget associated with the decoding of the data channel may be reduced, as multiple decoders may be employed to perform the decoding.
  • the latency may be improved without increasing an overall cost of the receiver, e.g., by using the same decoder that is used for decoding a control channel for decoding a second portion of the data channel.
  • FIG. 4 is a diagram illustrating an example call flow diagram 400 between a UE 404 and a base station 402 implementing aspects of the duo coding scheme disclosed herein.
  • the UE 404 may correspond to the UE 104 of FIG. 1 and/or the UE 350 of FIG. 3.
  • the base station 402 may correspond to base station 102 or 180 of FIG. 1, and/or the base station 310 of FIG. 3.
  • the duo coding scheme is illustrated as being implemented in a downlink communication (e.g., the control channel is PDCCH and the data channel is PDSCH) from the base station 402 to the UE 404.
  • the duo coding of PDSCH is merely to illustrate the concept.
  • Duo coding may also be employed for uplink transmissions, e.g., of PUSCH, from the UE.
  • the base station 402 generates a control channel 412.
  • the control channel 412 may include control information associated with a data channel.
  • the control channel 412 may include location information related to different portions of the data channel, coding rate (s) associated with decoding the different portions of the data channel, and/or modulation order (s) associated with decoding the different portions of the data channel.
  • the base station 402 encodes the control channel 412, e.g., using polar coding. The base station 402 then transmits the control channel 412 to the UE 404.
  • the UE 404 receives the control channel 412.
  • the UE 404 may then decode the received control channel 412 in order to determine the information for receiving the data channel. For example, the UE 404 may use polar coding to decode the control channel 412.
  • the base station 402 generates the data channel 422.
  • the base station generates the data channel 422 by encoding a first portion of the data channel using polar coding 418 and by encoding a second portion of the data channel using LDPC 420.
  • This example of polar coding and LDPC is merely used to describe the concept, which may be applied to other coding schemes, as well.
  • the control channel and a portion of the data channel may be encoded using a coding scheme other than polar coding.
  • the second portion of the data channel may be encoded using a coding scheme other than LDPC.
  • control channel and a portion of the data channel may be encoded using a first coding scheme while a second portion of the data channel is encoded using a different coding scheme.
  • the size of the first portion of the data channel and the size of the second portion of the data channel may be the same size, such as in the example illustrated in FIGs. 5 and 6.
  • the base station 402 may determine a size of the data channel and then use polar encoding for a first half of the data channel and use LDPC for a second half of the data channel.
  • the two portions of the data channel may have different sizes, such as in the example illustrated in FIG. 6.
  • the base station 402 may determine the size of the respective portions of the data channel based on one or more qualities associated with the respective coding schemes. For example, polar coding may be preferred for block sizes that are at least 200 bits, and preferably 300 to 400 bits. In certain such examples, the base station may partition the data channel so that the first portion of the data channel is, for example, between 200 bits and 400 bits, and allocate the remainder of the data channel as the second portion of the data channel.
  • the base station 402 encodes the first portion of the data channel using polar coding.
  • the base station 402 encodes the second portion of the data channel using LDPC.
  • the base station 402 may further generate the data channel by time division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel, e.g., such as illustrated in the examples in FIGs. 5 and 6.
  • the base station 402 may further generate the data channel by frequency division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel, e.g., such as illustrated in the example in FIG. 7.
  • the base station 402 then transmits the data channel 422, including the encoded first portion and the encoded second portion, to the UE 404.
  • the two portions may be transmitted in at least one shared code block.
  • the two portions may be comprised in separate code block (s) .
  • the base station 402 may start generating the data channel 422 before the UE 404 receives the control channel 412. In some examples, the base station 402 may start generating the data channel 422 after receiving feedback from the UE 404 that the UE 404 received the control channel 412. In some examples, the base station 402 may start generating the data channel 422 after a threshold period expires after transmitting the control channel 412.
  • the UE 404 decodes, at 426, the received data channel 422. For example, the UE 404 may use the control information included in the control channel 412 for decoding the data channel 422. At 428, the UE 404 may use the control information to decode the first portion of the data channel based on polar coding. For example, based on the control information, the UE 404 may determine a location in time and frequency of the first portion of the data channel, a coding rate to use for decoding the first portion of the data channel, and/or a modulation order to use for decoding the first portion of the data channel.
  • the UE 404 may decode the second portion of the data channel based on LDPC using the control information. For example, based on the control information, the UE 404 may determine a location in time and frequency of the second portion of the data channel, a coding rate to use for decoding the second portion of the data channel, and/or a modulation order to use for decoding the second portion of the data channel.
  • the UE 404 may perform the decoding of the first portion of the data channel concurrently with the decoding of the second portion of the data channel. For example, when the first portion of the data channel is frequency division multiplexed, as in the example in FIG. 7, with the second portion of the data channel, the UE 404 may decode the first portion of the data channel based on polar coding and simultaneously decode the second portion of the data channel.
  • the UE 404 may perform the decoding of the first portion of the data channel and the decoding of the second portion of the data channel in series. For example, when the first portion of the data channel is time division multiplexed with the second portion of the data channel, as in the examples in FIGs. 5 and 6, the UE 404 may begin decoding the first portion while receiving the second portion of the data channel transmission. In the examples illustrated in FIGs. 5 and 6, the UE may begin to decode the LDPC encoded portion 612, and then later begin decoding the polar encoded portion 614.
  • the UE 404 generates feedback based on the decoding of the data channel 422. For example, the UE 404 may generate an acknowledgement (ACK) message to indicate that the decoding of the data channel 422 was successfully completed. In other examples, the UE 404 may generate a negative acknowledgement (NACK) message to indicate that the decoding of the data channel was unsuccessful (e.g., failed) .
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the data channel 422, including the first portion and the second portion may be transmitted in a single transport block.
  • each portion of the data channel shares the same hybrid automatic repeat request (HARQ) identifier.
  • the UE 404 may transmit feedback generated as shared HARQ feedback by the UE 404.
  • the shared HARQ feedback may comprise a one-bit message indicating that the decoding of the data channel 422 (for the first portion and/or the second portion) was successful (e.g., via an ACK message) or unsuccessful (e.g., via a NACK message) .
  • the two coding schemes may share the same HARQ processing ID.
  • an ACK message may indicate that both portions were successfully decoded, while a NACK message merely indicates that at least one of the portions was not successfully decoded.
  • the HARQ feedback might not distinguish between a portion that was successfully decoded and another portion that is not successfully decoded.
  • the data channel 422, including the first portion and the second portion may be transmitted using two, separate transport blocks.
  • the first portion of the data channel may be transmitted using a first transport block and the second portion of the data channel may be transmitted using a second transport block.
  • the UE 404 may generate the feedback using at least a two-bit message.
  • a first one of the two bits of the feedback may indicate whether the first portion of the data channel 422 was successfully decoded (e.g., via a first one-bit ACK/NACK message) and a second one of the two bits of the feedback may indicate whether the second portion of the data channel 422 was successfully decoded (e.g., via a second one-bit ACK/NACK message) .
  • the UE 404 then transmits the feedback 434 to the base station 402.
  • the base station 402 determines whether the data channel was successfully decoded based on the feedback 434. For example, an ACK message may indicate that the data channel was successfully decoded, while a NACK message may indicate that the data channel was not successfully decoded. At 438, the base station 402 may then retransmit the data channel based on the feedback 434.
  • the base station 402 may determine whether the feedback is for separate transport blocks. For example, the base station 402 may determine whether the first portion and the second portion of the data channel were transmitted via a same transport block (e.g. not separate transport blocks) , or whether the first portion of the data channel was transmitted via a first transport block and the second portion of the data channel was transmitted via a second transport block.
  • a same transport block e.g. not separate transport blocks
  • the base station 402 determines, based on the feedback 434, whether the data channel 422 was successfully decoded by the UE 404. For example, if the base station 402 receives an ACK message, then the base station 402 determines that the UE 404 successfully decoded both portions of the data channel 422 and does not retransmit the data channel. If the base station 402 receives a NACK message, then the base station 402 determines that the UE 404 was unsuccessful in decoding at least one portion of the data channel 422. However, in this example, because the base station 402 is unable to determine which portion of the data channel 422 was not successfully decoded, the base station retransmits 438 the data channel including the first portion and the second portion.
  • the base station 402 may determine, based on the feedback, whether zero, one or two portions of the data channel were successfully decoded by the UE 404. For example, if the base station 402 receives feedback 434 that includes two ACK messages, the base station 402 may determine that the UE 402 successfully decoded both portions of the data channel 422. Similarly, if the base station 402 receives feedback 434 that includes two NACK messages, the base station 402 may determine that the UE 402 was unsuccessful in decoding both portions of the data channel 422.
  • the base station 402 may determine that the UE 402 successfully decoded one portion of the data channel and was unsuccessful in decoding the other portion of the data channel 422. The base station 402 may also determine which portion of the data channel 422 was successfully decoded and which portion of the data channel 422 was not successfully decoded based on which bit of the feedback was the ACK message and which bit of the feedback was the NACK message. In certain such examples, the base station 402 may retransmit the transport block (s) associated with the transport block (s) that were not successfully decoded by the UE 404.
  • the base station 402 may retransmit the transport block associated with the first portion of the data channel.
  • the base station 402 may first determine whether to employ a duo coding scheme when encoding the data channel. For example, the base station 402 may determine, based on the size of the data channel, whether to partition the data channel into two portions and then encode each of the portions using different coding schemes. For example, certain coding schemes may be more efficient when encoding and decoding data that is less than or greater than a threshold quantity of bits. In certain such examples, the base station 402 may determine that the cost of using two different coding schemes when generating the data channel may not be efficient and, thus, the base station 402 may use one coding scheme for the data channel.
  • FIG. 5 is a diagram 500 illustrating an example implementation of duo coding of a data channel 510 that includes a first portion 512 that is time division multiplexed with a second portion 514.
  • the first portion 512 is encoded using LDPC and the second portion 512 is encoded using polar coding.
  • the receiver (such as the receiver processor 370 of the base station 310 of FIG. 3 or the receiver processor 368 of the UE 350 of FIG. 3) receives the data channel 510 between the frame (i) and frame (i+1) .
  • the respective sizes of the first portion 512 and the second portion 514 are the same (or nearly the same) .
  • the receiver receives a control channel 502 and decodes the control channel 502.
  • the control channel 502 may include control information indicating, for example, whether the data channel is duo coded, respective locations of the portions of the data channel, respective coding rates for the different portions, and/or respective modulation orders for the different portions.
  • the control channel 502 includes first control information 504 associated with the first portion 512 of the data channel 510 and also includes second control information 506 associated with the second portion 514 of the data channel 510.
  • the receiver decodes the first portion 512 first (e.g., based on LDPC) and then decodes the second portion 512 (e.g., based on polar coding) .
  • the receiver may decode the second portion 514 first (based on polar coding) and then decode the first portion 512 (e.g., based on LDCP) .
  • the receiver may transmit feedback 520 indicating whether the portions 512, 514 of the data channel 510 were successfully decoded.
  • the feedback 520 comprises an ACK/NACK message.
  • the feedback 520 may comprise a one-bit ACK/NACK message or a two-bit ACK/NACK message based on, for example, whether the portions 512, 514 of the data channel 510 are transmitted via a common transport block or separate transport blocks.
  • the example diagram 500 of FIG. 5 illustrates that the first portion 512 is decoded first (based on LDPC) before the second portion 514 (based on polar coding)
  • the decoding order of the two portions may be switched. For example, after the receiver receives the data channel, the receiver may first decode a portion of the data channel based on polar coding and then decode another portion of the data channel based on LDPC.
  • FIG. 6 is a diagram 600 illustrating an example implementation duo coding of a data channel 610 that includes a first portion 612 that is time division multiplexed with a second portion 614.
  • the example diagram 600 of FIG. 6 is similar to the diagram 500 of FIG. 5, except that in the illustrated example of FIG. 6, the respective sizes of the first portion 612 and the second portion 614 are different.
  • the size of the first portion 612 is relatively larger than the size of the second portion 614.
  • the size of the first portion 612 or the size of the second portion 614 may be based on threshold sizes (e.g., a threshold quantity of bits) .
  • the size of the first portion 612 is relatively larger than the second portion 614
  • the size of the second portion may be relatively larger than the size of the first portion.
  • the order of decoding of the portions of the data channel may be different. It should be appreciated that in certain examples, the sizes of the respective portions of the data channel may be adjusted based on, for example, a decoding latency budget.
  • FIG. 7 is a diagram 700 illustrating an example implementation of duo coding of a data channel 710 that includes a first portion 712 that is frequency division multiplexed with a second portion 714.
  • the first portion 712 is encoded using LDPC and the second portion 712 is encoded using polar coding.
  • the receiver (such as the receiver processor 370 of the base station 310 of FIG. 3 or the receiver processor 368 of the UE 350 of FIG. 3) receives the data channel 710 between the frame (i) and the frame (i+1) .
  • the respective sizes of the first portion 712 and the second portion 714 are the same (or nearly the same) .
  • the respective sizes of the portions 712, 714 may be different, e.g., may cover different sizes of frequency ranges and/or time ranges.
  • the receiver receives a control channel 702 and decodes the control channel 702.
  • the control channel 702 may include control information indicating, for example, whether the data channel is duo coded, respective locations of the portions of the data channel, respective coding rates for the different portions, and/or respective modulation orders for the different portions.
  • the control channel 702 includes first control information 704 associated with the first portion 712 of the data channel 710 and also includes second control information 706 associated with the second portion 714 of the data channel 710.
  • the receiver may concurrently decode the first portion 712 (e.g., based on LDPC) and the second portion 712 (e.g., based on polar coding) .
  • the receiver may simultaneously start decoding both portions 712, 714.
  • the receiver may transmit feedback 720 indicating whether the portions 712, 714 of the data channel 710 were successfully decoded.
  • the feedback 720 is an ACK/NACK message. It should be appreciated that the feedback 720 may be a one-bit ACK/NACK message or a two-bit ACK/NACK message based on, for example, whether the portions 712, 714 of the data channel 710 are transmitted via one transport block or two transport blocks.
  • FIG. 8 is a flowchart 800 of a method of wireless communication.
  • the method may be performed by a device including a receiver (e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or a base station (such as the base station 102 of FIG. 1, the gNB 180 of FIG. 1, the base station 310 of FIG. 3, the base station 402 of FIG. 4, the base station 950 of FIG. 9, and/or the apparatus 1202/1202’ of FIGs. 12 and 13, respectively) ) .
  • a receiver e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • optional aspects are illustrated with a dashed line.
  • the method provides for improved throughput of a data channel.
  • aspects may improve efficiency of a device accessing the network for data transmissions.
  • the device may receive a control channel comprising control information associated with a data channel.
  • a reception component 904 may receive the control channel comprising control information associated with the data channel.
  • the UE 404 may receive the control channel 412 including control information associated with decoding the duo coded data channel.
  • the control channel 412 may include first control information associated with decoding a first portion encoded using a first coding scheme (e.g., encoded using the polar coding scheme) and may include second control information associated with decoding a second portion encoded using a second coding scheme (e.g., encoded using the LDPC coding scheme) .
  • the device may utilize one of the coding schemes (e.g., the polar coding scheme) to decode the control information.
  • the device receives the data channel including a first portion encoded using a first coding scheme and a second portion encoded using a second coding scheme.
  • the reception component 904 of FIG. 9 may receive the data channel including the first portion encoded using the first coding scheme and the second portion encoded using the second coding scheme.
  • the first coding scheme may be the polar coding scheme and the second coding scheme may be the LDPC coding scheme.
  • the first portion may be time division multiplexed with the second portion, such as the data channels 510, 610 of FIGs. 5 and 6, respectively.
  • the first portion may be frequency division multiplex with the second portion, such as the data channel 710 of FIG. 7.
  • an information block may include data and may be transmitted on a data channel.
  • an information block may include a first portion (e.g., encoded using a first coding scheme) and a second portion (e.g., encoded using a second coding scheme) .
  • the device decodes the data channel using the first coding scheme and the second coding scheme.
  • a first coding scheme decoder component 906 may decode the first portion of the data channel and a second coding scheme decoder component 908 may decode the second portion of the data channel.
  • the device may decode the first portion of the data channel based on the polar coding scheme (at 428) and the device may decode the second portion of the data channel based on the LDPC coding scheme (at 430) .
  • the device may perform the decoding of the portions of the data channel in series. For example, when the first portion is time division multiplexed with the second portion, the device may begin decoding the first portion of the data channel before starting to decode the second portion of the data channel after performing the decoding of the first portion of the data channel.
  • the device may perform the decoding of the portions of the data channel in parallel. For example, when the first portion is frequency division multiplexed with the second portion, the device may concurrently decode the first portion of the data channel and the second portion of the data channel.
  • the device may determine whether the device was able to successfully decode both portions of the data channel. For example, referring to the apparatus 902 of FIG. 9, a feedback generating component 910 may determine whether the first coding scheme decoder component 906 successfully decoded the first portion of the data channel and the feedback generating component 910 may determine whether the second coding scheme decoder component 908 successfully decoded the second portion of the data channel.
  • the device may generate and transmit feedback indicating that the device successfully decoded the data channel. For example, referring to the example apparatus 902 of FIG. 9, a transmission component 912 may transmit a one-bit ACK message indicating that the data channel was successfully decoded or a two-bit ACK message indicating that both portions of the data channel were successfully decoded.
  • the device e.g., the feedback generating component 910 determines that the device (e.g., the first coding scheme decoder component 906 and/or the second coding scheme decoder component 908) was unable to successfully decode both portions of the data channel.
  • the feedback generating component 910 of FIG. 9 may determine whether separate transport blocks were used to transmit the different portions of the data channel.
  • a single transport block may be used to transmit the data channel (e.g., both portions of the data channel are included in the transport block)
  • two transport blocks may be used to transmit the data channel (e.g., the first portion of the data channel is included in a first transport block and the second portion of the data channel is included in a second transport block) .
  • the device may generate and transmit first feedback for the first portion of the data channel and second feedback for the second portion of the data channel.
  • the feedback generating component 910 of FIG. 9 may generate a two-bit message including a first one-bit ACK/NACK message indicating whether the first portion of the data channel was successfully decoded and a second one-bit ACK/NACK message indicating whether the second portion of the data channel was successfully decoded.
  • the transmission component 921 of FIG. 9 may then transmit the generated two-bit message.
  • the device may receive a retransmission of the unsuccessfully decoded transport block (s) .
  • the reception component 904 of FIG. 9 may receive a retransmission of both transport blocks.
  • the reception component 904 may receive a retransmission of the unsuccessfully decoded transport block.
  • the device may generate and transmit feedback for the transport block comprising the first portion and the second portion.
  • the feedback generating component 910 of FIG. 9 may generate a one-bit ACK/NACK message indicating that the transport block was unsuccessfully decoded.
  • the transmission component 912 may then transmit the feedback generated by the feedback generating component 910.
  • the device may receive a retransmission of the unsuccessfully decoded transport block.
  • the reception component 904 may receive a retransmission of the data channel 422 of FIG. 4 including the first portion and the second portion.
  • FIG. 9 is a conceptual data flow diagram 900 illustrating the data flow between different means/components in an example apparatus 902.
  • the apparatus may be a receiver and may correspond to the UE 104 or the base station 102/180 of FIG. 1 or the base station 310/the UE 350 of FIG. 3.
  • the apparatus includes a reception component 904 configured to receive communications from a transmitter 950 (e.g., which may be a UE or a base station) .
  • the reception component 904 may be configured to receive downlink communication if the apparatus is a UE.
  • the reception component 904 may be configured to receive a downlink control channel and a downlink data channel transmitted by the base station.
  • the reception component may instead be configured to receive uplink communication from a UE, e.g., including an uplink data channel and an uplink data channel.
  • the apparatus includes a first coding scheme decoder component 906 configured to decode the control channel and at least one of the portions of the data channel.
  • the first coding scheme decoder component 906 may utilize a polar coding scheme to decode the control channel and to decode the portion of the data channel that is encoded using the polar coding scheme.
  • the first coding scheme decoder component 906 uses control information included in the control channel to perform the decoding of the portion of the data channel that is encoded using the first coding scheme.
  • the apparatus includes a second coding scheme decoder component 908 configured to decode the second portion of the data channel.
  • the second coding scheme decoder component 908 may utilize an LDPC coding scheme to decode the portion of the data channel that is encoded using the LDPC coding scheme.
  • the second coding scheme decoder component 909 uses control information provided by the first coding scheme decoder component 906 to perform the decoding using the second coding scheme.
  • the apparatus includes a feedback generating component 910 configured to generate feedback based on the result of the first coding scheme decoder component 906 and the second coding scheme decoder component 908.
  • the feedback generating component 910 may generate feedback that is a one-bit message (e.g., a one-bit ACK/NACK message) .
  • an ACK message indicates that both portions of the data channel were successfully decoded while a NACK message indicates that at least one of the portions of the data channel were not successfully decoded.
  • the feedback generating component 910 may generate feedback that is a two-bit message (e.g., a two-bit ACK/NACK message) .
  • the first bit of the two-bit message may indicate whether the first portion of the data channel was successfully decoded while the second bit of the two-bit message may indicate whether the second portion of the data channel was successfully decoded.
  • the apparatus includes a transmission component 912 configured to transmit communications to the transmitter 950.
  • the transmission component 912 may transmit the feedback provided by the feedback generating component 910 to the base station 950.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 8. As such, each block in the aforementioned flowchart of FIG. 8 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 902' employing a processing system 1014.
  • the processing system 1014 may be implemented with a bus architecture, represented generally by the bus 1024.
  • the bus 1024 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1014 and the overall design constraints.
  • the bus 1024 links together various circuits including one or more processors and/or hardware components, represented by the processor 1004, the components 904, 906, 908, 910, 912, and the computer-readable medium /memory 1006.
  • the bus 1024 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1014 may be coupled to a transceiver 1010.
  • the transceiver 1010 is coupled to one or more antennas 1020.
  • the transceiver 1010 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1010 receives a signal from the one or more antennas 1020, extracts information from the received signal, and provides the extracted information to the processing system 1014, specifically the reception component 904.
  • the transceiver 1010 receives information from the processing system 1014, specifically the transmission component 912, and based on the received information, generates a signal to be applied to the one or more antennas 1020.
  • the processing system 1014 includes a processor 1004 coupled to a computer-readable medium /memory 1006.
  • the processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1006.
  • the software when executed by the processor 1004, causes the processing system 1014 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1006 may also be used for storing data that is manipulated by the processor 1004 when executing software.
  • the processing system 1014 further includes at least one of the components 904, 906, 908, 910, 912.
  • the components may be software components running in the processor 1004, resident/stored in the computer readable medium /memory 1006, one or more hardware components coupled to the processor 1004, or some combination thereof.
  • the processing system 1014 may be a component of the base station 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375. If the apparatus 1002’ is a UE, the processing system 1014 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 902/902' for wireless communication includes means for receiving a data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; means for decoding the data channel using the first coding scheme and the second coding scheme; means for receiving a control channel comprising control information associated with the data channel, where the control information is encoded using the first coding scheme; means for decoding the first portion of the data channel; means for decoding the second portion of the data channel after the decoding of the first portion of the data channel; means for concurrently decoding the first portion of the data channel and the second portion of the data channel; means for transmitting feedback regarding decoding of the data channel, the first portion of the data channel and the second portion of the data channel being associated with a same hybrid automatic repeat request (HARQ) identifier; means for receiving a retransmission of the transport block; means for transmitting feedback associated with the data channel, where the feedback comprises at least one first bit indicating first
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 and/or the processing system 1014 of the apparatus 902' configured to perform the functions recited by the aforementioned means.
  • the processing system 1014 may include the TX processor 316, the RX processor 370, and the controller/processor 375, if the apparatus is a base station, and the TX Processor 368, the RX Processor 356, and the controller/processor 359, if the apparatus is a UE.
  • the aforementioned means may be the TX Processor 316, the RX processor 370, and the controller/processor 375, or TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 11 is a flowchart 1100 of a method of wireless communication.
  • the method may be performed by a device including a transmitter (e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or a base station (such as the base station 102 of FIG. 1, the gNB 180 of FIG. 1, the base station 310 of FIG. 3, the base station 402 of FIG. 4, the base station 950 of FIG. 9, and/or the apparatus 1202/1202’ of FIGs. 12 and 13, respectively) ) .
  • a transmitter e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or
  • One or more of the illustrated operations may be omitted, transposed, or contemporaneous.
  • optional aspects are illustrated with a dashed line.
  • the method provides for improved throughput of a data channel.
  • aspects may improve efficiency of a device accessing the network for data transmissions.
  • the device generates a control channel for a data channel including a first portion and a second portion.
  • a control channel component 1206 may generate the control channel for the data channel.
  • the control channel may include control information associated with the data channel.
  • the control channel may include respective location information related to different portions of the data channel, respective coding rate (s) associated with decoding the different portions of the data channel, and/or respective modulation order (s) associated with decoding the different portions of the data channel.
  • the device encodes the control channel using a polar coding scheme.
  • the device transmits the control channel.
  • a transmission component 1216 may transmit the control channel.
  • the device generates the data channel including the first portion encoded using a first coding scheme and the second portion encoded using a second coding scheme.
  • a data channel component 1210 may generate a data channel including the first portion and the second portion.
  • a first coding scheme encoder component 1208 of FIG. 12 may encode the first portion of the data channel using the polar coding scheme and a second coding scheme encoder component 1212 may encode the second portion of the data channel using the LDPC coding scheme.
  • the size of the first portion of the data channel and the size of the second portion of the data channel are the same size, e.g., as illustrated in the examples of FIGs. 5 and 7.
  • the portions may have different sizes, as in the example of FIG. 6.
  • the data channel component 1210 may determine the sizes of the respective portions of the data channel based on one or more qualities associated with the respective coding schemes. In some examples, the data channel component 1210 further generates the data channel by time division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel. In other examples, the data channel component 1210 further generates the data channel by frequency division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel.
  • the device transmits the data channel.
  • the transmission component 1216 may transmit the data channel generated by the data channel component 1210 and encoded by the first coding scheme encoder component 1208 and/or the second coding scheme encoder component 1212.
  • the transmissions may include aspects as described in connection with any of FIGs. 4 to 7.
  • the data channel may comprise a shared transport block comprising the two portions. In another example, the data channel may comprise separate transport blocks for the two portions.
  • the device may receive feedback based on the decoding of the data channel.
  • a reception component 1204 may receive the feedback.
  • the feedback may be a one-bit message or a two-bit message, e.g., as described in connection with 434 in FIG. 4.
  • the device may determine whether the feedback indicates that the data channel was successfully decoded, e.g., as described in connection with 436 in FIG. 4.
  • a feedback handling component 1214 may determine whether the feedback is a one-bit ACK message or a two-bit ACK message (e.g., both portions of the data channel were successfully decoded) , or the feedback is a one-bit NACK message or a two-bit message where at least one of the two bits is a NACK message (e.g., at least one portion of the data channel was not successfully decoded) .
  • the device e.g., the feedback handling component 1214 determines that the feedback indicates that the data channel was successfully decoded (e.g. the feedback may be a one-bit ACK message or a two-bit ACK message) , then, at 1170, the device may determine not to retransmit any portions of the data channel.
  • the device e.g., the feedback handling component 1214 determines that the feedback indicates that the data channel was not successfully decoded (e.g., the feedback is a one-bit NACK message or the feedback is a two-bit message including at least one NACK message) .
  • the device may determine whether the feedback is for separate transport blocks. For example, the feedback handling component 1214 may determine whether the two data portions were transmitted in a single transport block or were transmitted in separate transport blocks.
  • the device e.g., the feedback handling component 1214
  • the device may retransmit the unsuccessfully decoded transport block (s) .
  • the transmission component 1216 may retransmit the transport block associated with the first portion of the data channel and/or may retransmit the transport block associated with the second portion of the data channel.
  • the device e.g., the feedback handling component 1214 determines that the feedback is not for separate transport blocks. If, at 1180, the device (e.g., the feedback handling component 1214) determines that the feedback is not for separate transport blocks, then, at 1190, the device may retransmit the data channel including the first portion and the second portion. For example, the transmission component 1216 may retransmit the data channel including the first portion and the second portion.
  • FIG. 12 is a conceptual data flow diagram 1200 illustrating the data flow between different means/components in an example apparatus 1202.
  • the apparatus may correspond to the base station 102/180 of FIG. 1 or may correspond to the UE 104 in FIG. 1 or UE 350 in FIG. 3.
  • the apparatus includes a reception component 1204 configured to receive communications from a receiver 1250 (which may be a UE or a base station) .
  • a receiver 1250 which may be a UE or a base station
  • the reception component 1204 may be configured to receive the feedback as uplink communication transmitted by a UE.
  • the apparatus 1202 is a UE
  • the reception component may be configured to receive the feedback as downlink communication transmitted by a base station.
  • the apparatus includes a control channel component 1206 configured to generate the control channel.
  • the control channel includes control information associated with the data channel.
  • the control information may indicate a first location associated with a first portion of a data channel and a second location associated with a second portion of the data channel.
  • the control information indicates a first coding rate and a first modulation order associated with a first coding scheme and the control information indicates a second coding rate and a second modulation order associated with a second coding scheme.
  • the apparatus includes a first coding scheme encoder component 1208 configured to encode information using the first coding scheme.
  • the first coding scheme encoder component 1208 may encode the control channel provided by the control channel component 1206 using the first coding scheme.
  • the first coding scheme encoder component 1208 may also encode the first portion of the data channel provided by the data channel component 1210 using the first coding scheme.
  • the first coding scheme is a polar coding scheme.
  • the apparatus includes a data channel component 1210 configured to generate the data channel.
  • the data channel includes a first portion and a second portion.
  • the respective sizes of the first portion and the second portion may depend one threshold sizes associated with different coding schemes.
  • the sizes of the first portion and the second portion are the same size.
  • the data channel component 1210 provides the first portion to the first coding scheme encoder component 1208 and provides the second portion to the second coding scheme encoder component 1212. In some examples, based on the feedback provided by the feedback handling component 1214, the data channel component 1210 only provides one of the portions to the respective coding scheme encoder component 1208, 1212.
  • the data channel component 1210 may facilitate the retransmission of the second portion of the data channel by providing the second portion to the second coding scheme encoder component 1212.
  • the apparatus includes a second coding scheme encoder component 1212 configured to encode information using the second coding scheme.
  • the second coding scheme encoder component 1212 may encode the second portion of the data channel provided by the data channel component 1210 using the second coding scheme.
  • the second coding scheme is an LDPC coding scheme.
  • the apparatus includes a feedback handling component 1214 configured to process the feedback provided by the UE 1250 to determine whether the UE 1250 successfully decoded the data channel. In some examples, based on the feedback indicating that the UE 1250 did not successfully decode the data channel, the feedback handling component 1214 may provide the feedback to the control channel component 1206 and the data channel component 1210 to facilitate retransmitting at least one portion of the data channel (e.g., the at least one portion of the data channel that was not successfully decoded by the UE 1250) .
  • the feedback handling component 1214 may provide the feedback to the control channel component 1206 and the data channel component 1210 to facilitate retransmitting at least one portion of the data channel (e.g., the at least one portion of the data channel that was not successfully decoded by the UE 1250) .
  • the apparatus includes a transmission component 1216 configured to transmit communications to the receiver 1250.
  • the transmission component 1216 may transmit to the receiver 1250 the encoded control channel provided by the first coding scheme encoder component 1208 and the duo coded data channel provided by the first coding scheme encoder component 1208 and the second coding scheme encoder component 1212.
  • the transmission component 1216 may time division multiplex the encoded first portion with the encoded second portion.
  • the transmission component 1216 may frequency division multiplex the encoded first portion with the encoded second portion.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 11. As such, each block in the aforementioned flowchart of FIG. 11 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1202' employing a processing system 1314.
  • the processing system 1314 may be implemented with a bus architecture, represented generally by the bus 1324.
  • the bus 1324 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1314 and the overall design constraints.
  • the bus 1324 links together various circuits including one or more processors and/or hardware components, represented by the processor 1304, the components 1204, 1206, 1208, 1210, 1212, 1214, 1216, and the computer-readable medium /memory 1306.
  • the bus 1324 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the processing system 1314 may be coupled to a transceiver 1310.
  • the transceiver 1310 is coupled to one or more antennas 1320.
  • the transceiver 1310 provides a means for communicating with various other apparatus over a transmission medium.
  • the transceiver 1310 receives a signal from the one or more antennas 1320, extracts information from the received signal, and provides the extracted information to the processing system 1314, specifically the reception component 1204.
  • the transceiver 1310 receives information from the processing system 1314, specifically the transmission component 1216, and based on the received information, generates a signal to be applied to the one or more antennas 1320.
  • the processing system 1314 includes a processor 1304 coupled to a computer-readable medium /memory 1306.
  • the processor 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1306.
  • the software when executed by the processor 1304, causes the processing system 1314 to perform the various functions described supra for any particular apparatus.
  • the computer-readable medium /memory 1306 may also be used for storing data that is manipulated by the processor 1304 when executing software.
  • the processing system 1314 further includes at least one of the components 1204, 1206, 1208, 1210, 1212, 1214, 1216.
  • the components may be software components running in the processor 1304, resident/stored in the computer readable medium /memory 1306, one or more hardware components coupled to the processor 1304, or some combination thereof.
  • the processing system 1314 may be a component of the base station 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the processing system 1314 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 1202/1202' for wireless communication includes means for generating a control channel for a data channel including a first portion and a second portion; means for transmitting the control channel; means for encoding the first portion using a first coding scheme; means for encoding the second portion using a second coding scheme; means for generating the data channel including the first portion encoded using the first coding scheme and the second portion encoded using the second coding scheme; means for transmitting the data channel; means for receiving feedback based on the decoding of the data channel; means for determining whether the feedback indicates that the data channel was successfully decoded; means for determining whether the feedback is for separate transport blocks; means for retransmitting unsuccessfully decoded transport block (s) when the feedback is for separate transport blocks; and means for retransmitting the data channel including the first portion and the second portion when the feedback is for a single transport block.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1202 and/or the processing system 1314 of the apparatus 1202' configured to perform the functions recited by the aforementioned means.
  • the processing system 1314 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375 or the TX Processor 368, the RX Processor 356, and the controller/processor 359, if the apparatus is a UE.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 or the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

Apparatus, methods, and computer-readable media for facilitating duo coding of data channels are disclosed herein. An example method for wireless communication at a receiver includes receiving, by the receiver, a data channel, wherein a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme. The example method also includes decoding the data channel using the first coding scheme and the second coding scheme.

Description

METHODS AND APPARATUS TO FACILITATE DUO CODING OF DATA CHANNELS BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to duo coding of data channels.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G/NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G/NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency communications (URLLC) . Some aspects of 5G/NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G/NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
The present disclosure provides improvements to communication at a UE and/or a base station by reducing latency at a receiver’s decoder. A data channel may be transmitted from a base station and/or a UE to a receiver (which may be a UE and/or a base station) . In certain examples, a first encoding scheme may be used to encode a portion of the data channel while a second encoding scheme may be used to encode a second portion of the data channel. For example, polar coding may be used to encode the control channel while low-density parity-check coding (LDPC) and polar coding may be used to encode the data channel. This enables LDPC to be used for data channel encoding while also making use of a polar code decoder that may be available after decoding a corresponding control channel. Thus, the use of the two coding schemes for the data channel enables the receiver to improve efficiency in decoding data.
In an aspect of the disclosure, a method, a computer-readable medium, and apparatus are provided. An example apparatus receives, by a receiver, a data channel of which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme. The example apparatus also decodes the data channel using the first coding scheme and the second coding scheme.
In another aspect of the disclosure, a method, a computer-readable medium, and apparatus are provided. An example apparatus generates the data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme, and transmits the data channel.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain  illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating a call flow diagram between a receiver and a transmitter, as disclosed herein.
FIG. 5 is a diagram illustrating an example implementation of duo coding of data channels in which the LDPC encoded data is time division multiplexed with the polar encoded data, as disclosed herein.
FIG. 6 is a diagram illustrating another example implementation of duo coding of data channels in which the LDPC encoded data is time division multiplexed with the polar encoded data, as disclosed herein.
FIG. 7 is a diagram illustrating an example implementation of duo coding of data channels in which the LDPC encoded data is frequency division multiplexed with the polar encoded data, as disclosed herein.
FIG. 8 is a flowchart of a method for a receiver to perform wireless communications using duo coding of data channels.
FIG. 9 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
FIG. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
FIG. 11 is a flowchart of a method for a transmitter to perform wireless communications using duo coding of data channels.
FIG. 12 is a conceptual data flow diagram illustrating the data flow between different means/components in an example apparatus.
FIG. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments,  program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer. As used herein, the term computer-readable medium is expressly defined to include any type of computer readable storage device and/or storage disk and to exclude propagating signals and to exclude transmission media. As used herein, “computer-readable medium” and “machine-readable medium” are used interchangeably. As used herein, “computer-readable medium” and “computer-readable memory” are used interchangeably.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G/NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform  one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the  signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to manage one or more aspects of wireless communication via duo coding of data channels. For example, the UE 104 of FIG. 1 includes a duo coding component 198 configured to receive, by a receiver, a data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme, and decode the data channel using the first coding scheme and the second coding scheme.
Referring still to FIG. 1, in certain aspects, the base station 102/180 may be configured to manage one or more aspects of wireless communication via duo coding of data channels. For example, the base station 102/180 of FIG. 1 includes a duo coding  component 199 configured to generate a data channel including a first portion and a second portion, in which the first portion of the data channel is encoded using a first coding scheme and the second portion of the data channel is encoded using a second coding scheme, and transmit the data channel.
Although the following description may be focused on implementations in which the UE is the receiver and the base station is the transmitter, the concepts described herein may be applicable to other similar areas, such as when the UE is the transmitter and the base station is the receiver. Furthermore, it should be appreciated that although the following description is focused on 5G/NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and/or other wireless technologies, in which a control channel is encoded using a first coding scheme and a data channel is encoded using a second coding scheme. Furthermore, it should be appreciated that while the following description is focused on LDPC and polar codes, the concepts described herein may be applicable to additional or alternative coding schemes. Furthermore, it should be appreciated that although the following description is focused on downlink communications, the concepts described herein may be applicable to uplink communications and/or to sidelink communications.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A and 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.  UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kKz, where μ is the numerology 0 to 5. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=5 has a subcarrier spacing of 480 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=0 with 1 slot per subframe. The subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 μs.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as Rx for one  particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block. The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. Although not shown, the UE may transmit sounding reference signals (SRS) . The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries  uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation  (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header  decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
The present disclosure relates to transmissions at wireless device such as a UE and/or a base station. The transmissions may include a combination of a control channel and a data channel for transmitting information from a transmitter to a receiver (e.g., the transmitter/receiver may be a UE or a base station) . As disclosed herein, the data channel may be duo coded. As used herein, duo coding may be defined as encoding using two different encoding schemes. For example, a first portion of the data channel may be encoded using a polar coding scheme, while a second portion of the data channel may be encoded using LDPC. Use of a duo coding scheme for the data channel enables a higher throughput to be achieved by, allowing the receiver to use two different decoders to concurrently decode the data channel or by enabling one of the decoders to begin decoding at an earlier point in time. It should be appreciated that a data channel transmission is an example of an information block.
Furthermore, since certain transmission mechanisms use a first coding scheme (e.g., polar codes) for encoding control channels and use a second coding scheme (e.g., LDPC) for encoding data channels, by employing the techniques disclosed herein (e.g., by encoding a first portion of the data channel using the first coding scheme (e.g., polar codes) and encoding a second portion of the data channel using the second coding scheme (e.g., LDPC) ) , the higher throughput may be achieved without incurring any additional hardware cost. For example, polar codes may be used for control channels (e.g., PDCCH for downlink communications and PUCCH for uplink communications) and LDPC may be used for data channels (e.g., PDSCH for downlink communications and PUSCH for uplink communications) . By using the duo coding schemes disclosed herein for the data channels, the existing hardware in a device may be utilized. This provides the benefits of using LDPC for a portion of a data channel transmission while also enabling a receiver to make efficient use of a polar code decoder that may be used for receiving other channels, such as a control channel.
In certain examples, by utilizing aspects of the duo coding scheme disclosed herein, the latency budget associated with the decoding of the data channel may be reduced, as multiple decoders may be employed to perform the decoding. As well, the latency may be improved without increasing an overall cost of the receiver, e.g., by using the same decoder that is used for decoding a control channel for decoding a second portion of the data channel.
FIG. 4 is a diagram illustrating an example call flow diagram 400 between a UE 404 and a base station 402 implementing aspects of the duo coding scheme disclosed herein. The UE 404 may correspond to the UE 104 of FIG. 1 and/or the UE 350 of FIG. 3. The base station 402 may correspond to base station 102 or 180 of FIG. 1, and/or the base station 310 of FIG. 3. In this example, the duo coding scheme is illustrated as being implemented in a downlink communication (e.g., the control channel is PDCCH and the data channel is PDSCH) from the base station 402 to the UE 404. The duo coding of PDSCH is merely to illustrate the concept. Duo coding may also be employed for uplink transmissions, e.g., of PUSCH, from the UE.
In the illustrated example of FIG. 4, at 410, the base station 402 generates a control channel 412. The control channel 412 may include control information associated with a data channel. For example, the control channel 412 may include location information related to different portions of the data channel, coding rate (s) associated with decoding the different portions of the data channel, and/or modulation order (s) associated with decoding the different portions of the data channel. In the illustrated example, the base station 402 encodes the control channel 412, e.g., using polar coding. The base station 402 then transmits the control channel 412 to the UE 404.
At 414, the UE 404 receives the control channel 412. The UE 404 may then decode the received control channel 412 in order to determine the information for receiving the data channel. For example, the UE 404 may use polar coding to decode the control channel 412.
At 416, the base station 402 generates the data channel 422. In the illustrated example of FIG. 4, the base station generates the data channel 422 by encoding a first portion of the data channel using polar coding 418 and by encoding a second portion of the data channel using LDPC 420. This example of polar coding and LDPC is merely used to describe the concept, which may be applied to other coding schemes, as well. For example, the control channel and a portion of the data channel may be encoded using a coding scheme other than polar coding. Likewise, the second portion of the data channel may be encoded using a coding scheme other than LDPC. Thus, the control channel and a portion of the data channel may be encoded using a first coding scheme while a second portion of the data channel is encoded using a different coding scheme. In some examples, the size of the first portion of the data channel and the size of the second portion of the data channel may be the same size, such as in the example illustrated in FIGs. 5 and 6. For example, the base station 402 may determine  a size of the data channel and then use polar encoding for a first half of the data channel and use LDPC for a second half of the data channel. In other examples, the two portions of the data channel may have different sizes, such as in the example illustrated in FIG. 6. For example, the base station 402 may determine the size of the respective portions of the data channel based on one or more qualities associated with the respective coding schemes. For example, polar coding may be preferred for block sizes that are at least 200 bits, and preferably 300 to 400 bits. In certain such examples, the base station may partition the data channel so that the first portion of the data channel is, for example, between 200 bits and 400 bits, and allocate the remainder of the data channel as the second portion of the data channel.
At 418, the base station 402 encodes the first portion of the data channel using polar coding. At 420, the base station 402 encodes the second portion of the data channel using LDPC. In some examples, the base station 402 may further generate the data channel by time division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel, e.g., such as illustrated in the examples in FIGs. 5 and 6. In other examples, the base station 402 may further generate the data channel by frequency division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel, e.g., such as illustrated in the example in FIG. 7.
The base station 402 then transmits the data channel 422, including the encoded first portion and the encoded second portion, to the UE 404. In one example, the two portions may be transmitted in at least one shared code block. In another example, the two portions may be comprised in separate code block (s) .
It should be appreciated that in some examples, the base station 402 may start generating the data channel 422 before the UE 404 receives the control channel 412. In some examples, the base station 402 may start generating the data channel 422 after receiving feedback from the UE 404 that the UE 404 received the control channel 412. In some examples, the base station 402 may start generating the data channel 422 after a threshold period expires after transmitting the control channel 412.
In the illustrated example of FIG. 4, after receiving the data channel 422 (at 424) , the UE 404 decodes, at 426, the received data channel 422. For example, the UE 404 may use the control information included in the control channel 412 for decoding the data channel 422. At 428, the UE 404 may use the control information to decode the first portion of the data channel based on polar coding. For example, based on the control  information, the UE 404 may determine a location in time and frequency of the first portion of the data channel, a coding rate to use for decoding the first portion of the data channel, and/or a modulation order to use for decoding the first portion of the data channel.
At 430, the UE 404 may decode the second portion of the data channel based on LDPC using the control information. For example, based on the control information, the UE 404 may determine a location in time and frequency of the second portion of the data channel, a coding rate to use for decoding the second portion of the data channel, and/or a modulation order to use for decoding the second portion of the data channel.
In some examples, the UE 404 may perform the decoding of the first portion of the data channel concurrently with the decoding of the second portion of the data channel. For example, when the first portion of the data channel is frequency division multiplexed, as in the example in FIG. 7, with the second portion of the data channel, the UE 404 may decode the first portion of the data channel based on polar coding and simultaneously decode the second portion of the data channel.
In other examples, the UE 404 may perform the decoding of the first portion of the data channel and the decoding of the second portion of the data channel in series. For example, when the first portion of the data channel is time division multiplexed with the second portion of the data channel, as in the examples in FIGs. 5 and 6, the UE 404 may begin decoding the first portion while receiving the second portion of the data channel transmission. In the examples illustrated in FIGs. 5 and 6, the UE may begin to decode the LDPC encoded portion 612, and then later begin decoding the polar encoded portion 614.
At 432, the UE 404 generates feedback based on the decoding of the data channel 422. For example, the UE 404 may generate an acknowledgement (ACK) message to indicate that the decoding of the data channel 422 was successfully completed. In other examples, the UE 404 may generate a negative acknowledgement (NACK) message to indicate that the decoding of the data channel was unsuccessful (e.g., failed) .
In some examples, the data channel 422, including the first portion and the second portion, may be transmitted in a single transport block. In certain such examples, each portion of the data channel shares the same hybrid automatic repeat request (HARQ) identifier. In certain examples, when the data channel 422 is transmitted in a single transport block, the UE 404 may transmit feedback generated as shared HARQ  feedback by the UE 404. For example, the shared HARQ feedback may comprise a one-bit message indicating that the decoding of the data channel 422 (for the first portion and/or the second portion) was successful (e.g., via an ACK message) or unsuccessful (e.g., via a NACK message) . The two coding schemes may share the same HARQ processing ID. Thus, an ACK message may indicate that both portions were successfully decoded, while a NACK message merely indicates that at least one of the portions was not successfully decoded. The HARQ feedback might not distinguish between a portion that was successfully decoded and another portion that is not successfully decoded.
In some examples, the data channel 422, including the first portion and the second portion, may be transmitted using two, separate transport blocks. For example, the first portion of the data channel may be transmitted using a first transport block and the second portion of the data channel may be transmitted using a second transport block. In certain such examples in which the different portions of the data channel are transmitted in different transport blocks, the UE 404 may generate the feedback using at least a two-bit message. For example, a first one of the two bits of the feedback may indicate whether the first portion of the data channel 422 was successfully decoded (e.g., via a first one-bit ACK/NACK message) and a second one of the two bits of the feedback may indicate whether the second portion of the data channel 422 was successfully decoded (e.g., via a second one-bit ACK/NACK message) .
The UE 404 then transmits the feedback 434 to the base station 402.
At 436, the base station 402 determines whether the data channel was successfully decoded based on the feedback 434. For example, an ACK message may indicate that the data channel was successfully decoded, while a NACK message may indicate that the data channel was not successfully decoded. At 438, the base station 402 may then retransmit the data channel based on the feedback 434.
In some examples, the base station 402 may determine whether the feedback is for separate transport blocks. For example, the base station 402 may determine whether the first portion and the second portion of the data channel were transmitted via a same transport block (e.g. not separate transport blocks) , or whether the first portion of the data channel was transmitted via a first transport block and the second portion of the data channel was transmitted via a second transport block.
In certain examples in which the feedback is not for separate transport blocks (e.g., the feedback 434 is a one-bit message) , the base station 402 determines, based on the  feedback 434, whether the data channel 422 was successfully decoded by the UE 404. For example, if the base station 402 receives an ACK message, then the base station 402 determines that the UE 404 successfully decoded both portions of the data channel 422 and does not retransmit the data channel. If the base station 402 receives a NACK message, then the base station 402 determines that the UE 404 was unsuccessful in decoding at least one portion of the data channel 422. However, in this example, because the base station 402 is unable to determine which portion of the data channel 422 was not successfully decoded, the base station retransmits 438 the data channel including the first portion and the second portion.
In certain examples in which the feedback is for separate transport blocks (e.g., the feedback 434 is a two-bit message) , the base station 402 may determine, based on the feedback, whether zero, one or two portions of the data channel were successfully decoded by the UE 404. For example, if the base station 402 receives feedback 434 that includes two ACK messages, the base station 402 may determine that the UE 402 successfully decoded both portions of the data channel 422. Similarly, if the base station 402 receives feedback 434 that includes two NACK messages, the base station 402 may determine that the UE 402 was unsuccessful in decoding both portions of the data channel 422. If the base station 402 receives feedback 434 that includes one ACK message and one NACK message, the base station 402 may determine that the UE 402 successfully decoded one portion of the data channel and was unsuccessful in decoding the other portion of the data channel 422. The base station 402 may also determine which portion of the data channel 422 was successfully decoded and which portion of the data channel 422 was not successfully decoded based on which bit of the feedback was the ACK message and which bit of the feedback was the NACK message. In certain such examples, the base station 402 may retransmit the transport block (s) associated with the transport block (s) that were not successfully decoded by the UE 404. For example, if the base station 402 determines that the first portion of the data channel 422 was not successfully decoded but that the second portion of the data channel 422 as successfully decoded, then the base station 402 may retransmit the transport block associated with the first portion of the data channel.
Although not shown, it should be appreciated that in certain examples, when generating the data channel 422 (at 416) , the base station 402 may first determine whether to employ a duo coding scheme when encoding the data channel. For example, the base station 402 may determine, based on the size of the data channel,  whether to partition the data channel into two portions and then encode each of the portions using different coding schemes. For example, certain coding schemes may be more efficient when encoding and decoding data that is less than or greater than a threshold quantity of bits. In certain such examples, the base station 402 may determine that the cost of using two different coding schemes when generating the data channel may not be efficient and, thus, the base station 402 may use one coding scheme for the data channel.
FIG. 5 is a diagram 500 illustrating an example implementation of duo coding of a data channel 510 that includes a first portion 512 that is time division multiplexed with a second portion 514. In the illustrated example of FIG. 5, the first portion 512 is encoded using LDPC and the second portion 512 is encoded using polar coding. In this example, the receiver (such as the receiver processor 370 of the base station 310 of FIG. 3 or the receiver processor 368 of the UE 350 of FIG. 3) receives the data channel 510 between the frame (i) and frame (i+1) . In the illustrated example of FIG. 5, the respective sizes of the first portion 512 and the second portion 514 are the same (or nearly the same) .
In the illustrated example, the receiver receives a control channel 502 and decodes the control channel 502. The control channel 502 may include control information indicating, for example, whether the data channel is duo coded, respective locations of the portions of the data channel, respective coding rates for the different portions, and/or respective modulation orders for the different portions. In the illustrated example, the control channel 502 includes first control information 504 associated with the first portion 512 of the data channel 510 and also includes second control information 506 associated with the second portion 514 of the data channel 510.
The receiver decodes the first portion 512 first (e.g., based on LDPC) and then decodes the second portion 512 (e.g., based on polar coding) . However, it should be appreciated that in other examples, the receiver may decode the second portion 514 first (based on polar coding) and then decode the first portion 512 (e.g., based on LDCP) .
An interval N1 after the data is received and/or decoding is complete (or at the end of the frame (i) ) , the receiver may transmit feedback 520 indicating whether the  portions  512, 514 of the data channel 510 were successfully decoded. In this illustrated example, the feedback 520 comprises an ACK/NACK message. It should be appreciated that the feedback 520 may comprise a one-bit ACK/NACK message or a  two-bit ACK/NACK message based on, for example, whether the  portions  512, 514 of the data channel 510 are transmitted via a common transport block or separate transport blocks.
Although the example diagram 500 of FIG. 5 illustrates that the first portion 512 is decoded first (based on LDPC) before the second portion 514 (based on polar coding) , it should be appreciated that in additional or alternative examples, the decoding order of the two portions may be switched. For example, after the receiver receives the data channel, the receiver may first decode a portion of the data channel based on polar coding and then decode another portion of the data channel based on LDPC.
FIG. 6 is a diagram 600 illustrating an example implementation duo coding of a data channel 610 that includes a first portion 612 that is time division multiplexed with a second portion 614. The example diagram 600 of FIG. 6 is similar to the diagram 500 of FIG. 5, except that in the illustrated example of FIG. 6, the respective sizes of the first portion 612 and the second portion 614 are different. For example, the size of the first portion 612 is relatively larger than the size of the second portion 614. In certain examples, the size of the first portion 612 or the size of the second portion 614 may be based on threshold sizes (e.g., a threshold quantity of bits) .
Although the example diagram 600 of FIG. 6 illustrates that the size of the first portion 612 is relatively larger than the second portion 614, it should be appreciated that in additional or alternative examples, the size of the second portion may be relatively larger than the size of the first portion. Furthermore, in additional or alternative examples, the order of decoding of the portions of the data channel may be different. It should be appreciated that in certain examples, the sizes of the respective portions of the data channel may be adjusted based on, for example, a decoding latency budget.
FIG. 7 is a diagram 700 illustrating an example implementation of duo coding of a data channel 710 that includes a first portion 712 that is frequency division multiplexed with a second portion 714. In the illustrated example of FIG. 7, the first portion 712 is encoded using LDPC and the second portion 712 is encoded using polar coding. In this example, the receiver (such as the receiver processor 370 of the base station 310 of FIG. 3 or the receiver processor 368 of the UE 350 of FIG. 3) receives the data channel 710 between the frame (i) and the frame (i+1) . In the illustrated example of FIG. 7, the respective sizes of the first portion 712 and the second portion 714 are the same (or nearly the same) . However, it should be appreciated that in other  examples, the respective sizes of the  portions  712, 714 may be different, e.g., may cover different sizes of frequency ranges and/or time ranges.
In the illustrated example, the receiver receives a control channel 702 and decodes the control channel 702. The control channel 702 may include control information indicating, for example, whether the data channel is duo coded, respective locations of the portions of the data channel, respective coding rates for the different portions, and/or respective modulation orders for the different portions. In the illustrated example, the control channel 702 includes first control information 704 associated with the first portion 712 of the data channel 710 and also includes second control information 706 associated with the second portion 714 of the data channel 710.
In the illustrated example of FIG. 7, the receiver may concurrently decode the first portion 712 (e.g., based on LDPC) and the second portion 712 (e.g., based on polar coding) . For example, when decoding frequency division multiplexed data, the receiver may simultaneously start decoding both  portions  712, 714.
An interval N1 after the decoding is complete (or at the end of the frame (i) ) , the receiver may transmit feedback 720 indicating whether the  portions  712, 714 of the data channel 710 were successfully decoded. In this illustrated example, the feedback 720 is an ACK/NACK message. It should be appreciated that the feedback 720 may be a one-bit ACK/NACK message or a two-bit ACK/NACK message based on, for example, whether the  portions  712, 714 of the data channel 710 are transmitted via one transport block or two transport blocks.
FIG. 8 is a flowchart 800 of a method of wireless communication. The method may be performed by a device including a receiver (e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or a base station (such as the base station 102 of FIG. 1, the gNB 180 of FIG. 1, the base station 310 of FIG. 3, the base station 402 of FIG. 4, the base station 950 of FIG. 9, and/or the apparatus 1202/1202’ of FIGs. 12 and 13, respectively) ) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. In FIG. 8, optional aspects are illustrated with a dashed line. The method provides for improved throughput of a data channel. Thus, aspects may improve efficiency of a device accessing the network for data transmissions.
At 810, the device may receive a control channel comprising control information associated with a data channel. For example, referring to the apparatus 902 of FIG. 2,  a reception component 904 may receive the control channel comprising control information associated with the data channel. Referring to the diagram 400 of FIG. 4, the UE 404 may receive the control channel 412 including control information associated with decoding the duo coded data channel. In some examples, the control channel 412 may include first control information associated with decoding a first portion encoded using a first coding scheme (e.g., encoded using the polar coding scheme) and may include second control information associated with decoding a second portion encoded using a second coding scheme (e.g., encoded using the LDPC coding scheme) . In some examples, the device may utilize one of the coding schemes (e.g., the polar coding scheme) to decode the control information.
At 820, the device receives the data channel including a first portion encoded using a first coding scheme and a second portion encoded using a second coding scheme. For example, the reception component 904 of FIG. 9 may receive the data channel including the first portion encoded using the first coding scheme and the second portion encoded using the second coding scheme. In some examples, the first coding scheme may be the polar coding scheme and the second coding scheme may be the LDPC coding scheme. In certain examples, the first portion may be time division multiplexed with the second portion, such as the  data channels  510, 610 of FIGs. 5 and 6, respectively. In some examples, the first portion may be frequency division multiplex with the second portion, such as the data channel 710 of FIG. 7. It should be appreciated that a data channel transmission is an example of an information block. For example, an information block may include data and may be transmitted on a data channel. Thus, in some examples, an information block may include a first portion (e.g., encoded using a first coding scheme) and a second portion (e.g., encoded using a second coding scheme) .
At 830, the device decodes the data channel using the first coding scheme and the second coding scheme. For example, referring to the apparatus 902 of FIG. 9, a first coding scheme decoder component 906 may decode the first portion of the data channel and a second coding scheme decoder component 908 may decode the second portion of the data channel. Referring to the diagram 400 of FIG. 4, the device may decode the first portion of the data channel based on the polar coding scheme (at 428) and the device may decode the second portion of the data channel based on the LDPC coding scheme (at 430) .
In certain examples, the device may perform the decoding of the portions of the data channel in series. For example, when the first portion is time division multiplexed with the second portion, the device may begin decoding the first portion of the data channel before starting to decode the second portion of the data channel after performing the decoding of the first portion of the data channel.
In certain examples, the device may perform the decoding of the portions of the data channel in parallel. For example, when the first portion is frequency division multiplexed with the second portion, the device may concurrently decode the first portion of the data channel and the second portion of the data channel.
At 840, the device may determine whether the device was able to successfully decode both portions of the data channel. For example, referring to the apparatus 902 of FIG. 9, a feedback generating component 910 may determine whether the first coding scheme decoder component 906 successfully decoded the first portion of the data channel and the feedback generating component 910 may determine whether the second coding scheme decoder component 908 successfully decoded the second portion of the data channel.
If, at 840, the device (e.g., the feedback generating component 910) determines that the device was able to successfully decode both portions of the data channel, then, at 850, the device may generate and transmit feedback indicating that the device successfully decoded the data channel. For example, referring to the example apparatus 902 of FIG. 9, a transmission component 912 may transmit a one-bit ACK message indicating that the data channel was successfully decoded or a two-bit ACK message indicating that both portions of the data channel were successfully decoded.
However, if, at 840, the device (e.g., the feedback generating component 910) determines that the device (e.g., the first coding scheme decoder component 906 and/or the second coding scheme decoder component 908) was unable to successfully decode both portions of the data channel, then, at 855, the feedback generating component 910 of FIG. 9 may determine whether separate transport blocks were used to transmit the different portions of the data channel. For example, in some examples, a single transport block may be used to transmit the data channel (e.g., both portions of the data channel are included in the transport block) , while in other example, two transport blocks may be used to transmit the data channel (e.g., the first portion of the data channel is included in a first transport block and the second portion of the data channel is included in a second transport block) .
If, at 855, the device (e.g., the feedback generating component 910) determines that separate transport blocks were used to transmit the different portions of the data channel, then, at 860, the device may generate and transmit first feedback for the first portion of the data channel and second feedback for the second portion of the data channel. For example, the feedback generating component 910 of FIG. 9 may generate a two-bit message including a first one-bit ACK/NACK message indicating whether the first portion of the data channel was successfully decoded and a second one-bit ACK/NACK message indicating whether the second portion of the data channel was successfully decoded. The transmission component 921 of FIG. 9 may then transmit the generated two-bit message.
At 870, the device may receive a retransmission of the unsuccessfully decoded transport block (s) . For example, if the two-bit message indicates that the device was unsuccessful in decoding both transport blocks, then the reception component 904 of FIG. 9 may receive a retransmission of both transport blocks. However, if the two-bit message indicates that the device was unsuccessful in decoding only one of the transport blocks, then the reception component 904 may receive a retransmission of the unsuccessfully decoded transport block.
If, at 855, the device (e.g., the feedback generating component 910) determines that a single transport block was used to transmit the different portions of the data channel, then, at 880, the device may generate and transmit feedback for the transport block comprising the first portion and the second portion. For example, the feedback generating component 910 of FIG. 9 may generate a one-bit ACK/NACK message indicating that the transport block was unsuccessfully decoded. The transmission component 912 may then transmit the feedback generated by the feedback generating component 910.
At 890, the device may receive a retransmission of the unsuccessfully decoded transport block. For example, the reception component 904 may receive a retransmission of the data channel 422 of FIG. 4 including the first portion and the second portion.
FIG. 9 is a conceptual data flow diagram 900 illustrating the data flow between different means/components in an example apparatus 902. The apparatus may be a receiver and may correspond to the UE 104 or the base station 102/180 of FIG. 1 or the base station 310/the UE 350 of FIG. 3. The apparatus includes a reception component 904 configured to receive communications from a transmitter 950 (e.g.,  which may be a UE or a base station) . The reception component 904 may be configured to receive downlink communication if the apparatus is a UE. As one example, the reception component 904 may be configured to receive a downlink control channel and a downlink data channel transmitted by the base station. If the apparatus is a base station, the reception component may instead be configured to receive uplink communication from a UE, e.g., including an uplink data channel and an uplink data channel.
The apparatus includes a first coding scheme decoder component 906 configured to decode the control channel and at least one of the portions of the data channel. For example, the first coding scheme decoder component 906 may utilize a polar coding scheme to decode the control channel and to decode the portion of the data channel that is encoded using the polar coding scheme. In certain examples, the first coding scheme decoder component 906 uses control information included in the control channel to perform the decoding of the portion of the data channel that is encoded using the first coding scheme.
The apparatus includes a second coding scheme decoder component 908 configured to decode the second portion of the data channel. For example, the second coding scheme decoder component 908 may utilize an LDPC coding scheme to decode the portion of the data channel that is encoded using the LDPC coding scheme. In certain examples, the second coding scheme decoder component 909 uses control information provided by the first coding scheme decoder component 906 to perform the decoding using the second coding scheme.
The apparatus includes a feedback generating component 910 configured to generate feedback based on the result of the first coding scheme decoder component 906 and the second coding scheme decoder component 908. In some examples, the feedback generating component 910 may generate feedback that is a one-bit message (e.g., a one-bit ACK/NACK message) . In certain such examples, an ACK message indicates that both portions of the data channel were successfully decoded while a NACK message indicates that at least one of the portions of the data channel were not successfully decoded. In some examples, the feedback generating component 910 may generate feedback that is a two-bit message (e.g., a two-bit ACK/NACK message) . In certain such examples, the first bit of the two-bit message may indicate whether the first portion of the data channel was successfully decoded while the  second bit of the two-bit message may indicate whether the second portion of the data channel was successfully decoded.
The apparatus includes a transmission component 912 configured to transmit communications to the transmitter 950. For example, the transmission component 912 may transmit the feedback provided by the feedback generating component 910 to the base station 950.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 8. As such, each block in the aforementioned flowchart of FIG. 8 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 902' employing a processing system 1014. The processing system 1014 may be implemented with a bus architecture, represented generally by the bus 1024. The bus 1024 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1014 and the overall design constraints. The bus 1024 links together various circuits including one or more processors and/or hardware components, represented by the processor 1004, the  components  904, 906, 908, 910, 912, and the computer-readable medium /memory 1006. The bus 1024 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1014 may be coupled to a transceiver 1010. The transceiver 1010 is coupled to one or more antennas 1020. The transceiver 1010 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1010 receives a signal from the one or more antennas 1020, extracts information from the received signal, and provides the extracted information to the processing system 1014, specifically the reception component 904. In addition, the transceiver 1010 receives information from the processing system 1014, specifically the transmission component 912, and based on the received information, generates a signal to be applied to the one or more antennas 1020. The processing system 1014  includes a processor 1004 coupled to a computer-readable medium /memory 1006. The processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1006. The software, when executed by the processor 1004, causes the processing system 1014 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1006 may also be used for storing data that is manipulated by the processor 1004 when executing software. The processing system 1014 further includes at least one of the  components  904, 906, 908, 910, 912. The components may be software components running in the processor 1004, resident/stored in the computer readable medium /memory 1006, one or more hardware components coupled to the processor 1004, or some combination thereof. If the apparatus 1002’ is a base station, the processing system 1014 may be a component of the base station 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375. If the apparatus 1002’ is a UE, the processing system 1014 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
In one configuration, the apparatus 902/902' for wireless communication includes means for receiving a data channel, in which a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; means for decoding the data channel using the first coding scheme and the second coding scheme; means for receiving a control channel comprising control information associated with the data channel, where the control information is encoded using the first coding scheme; means for decoding the first portion of the data channel; means for decoding the second portion of the data channel after the decoding of the first portion of the data channel; means for concurrently decoding the first portion of the data channel and the second portion of the data channel; means for transmitting feedback regarding decoding of the data channel, the first portion of the data channel and the second portion of the data channel being associated with a same hybrid automatic repeat request (HARQ) identifier; means for receiving a retransmission of the transport block; means for transmitting feedback associated with the data channel, where the feedback comprises at least one first bit indicating first feedback for the first portion of the data channel and at least one second bit indicating second feedback for the second portion of the data channel;  and means for receiving a retransmission of the other of the first transport block and the second transport block that was unsuccessfully decoded. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 and/or the processing system 1014 of the apparatus 902' configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1014 may include the TX processor 316, the RX processor 370, and the controller/processor 375, if the apparatus is a base station, and the TX Processor 368, the RX Processor 356, and the controller/processor 359, if the apparatus is a UE. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX processor 370, and the controller/processor 375, or TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 11 is a flowchart 1100 of a method of wireless communication. The method may be performed by a device including a transmitter (e.g., a UE (such as the UE 104 of FIG. 1, the UE 350 of FIG. 3, the UE 404 of FIG. 4, the UE 1250 of FIG. 12, and/or the apparatus 902/902’ of FIGs. 9 and 10, respectively) and/or a base station (such as the base station 102 of FIG. 1, the gNB 180 of FIG. 1, the base station 310 of FIG. 3, the base station 402 of FIG. 4, the base station 950 of FIG. 9, and/or the apparatus 1202/1202’ of FIGs. 12 and 13, respectively) ) . One or more of the illustrated operations may be omitted, transposed, or contemporaneous. In FIG. 11, optional aspects are illustrated with a dashed line. The method provides for improved throughput of a data channel. Thus, aspects may improve efficiency of a device accessing the network for data transmissions.
At 1110, the device generates a control channel for a data channel including a first portion and a second portion. For example, referring to the example apparatus 1202 of FIG. 12, a control channel component 1206 may generate the control channel for the data channel. The control channel may include control information associated with the data channel. For example, the control channel may include respective location information related to different portions of the data channel, respective coding rate (s) associated with decoding the different portions of the data channel, and/or respective modulation order (s) associated with decoding the different portions of the data channel. In some examples, the device encodes the control channel using a polar coding scheme.
At 1120, the device transmits the control channel. For example, referring to the apparatus 1202 of FIG. 12, a transmission component 1216 may transmit the control channel.
At 1130, the device generates the data channel including the first portion encoded using a first coding scheme and the second portion encoded using a second coding scheme. For example, referring to the apparatus 1202 of FIG. 12, a data channel component 1210 may generate a data channel including the first portion and the second portion. A first coding scheme encoder component 1208 of FIG. 12 may encode the first portion of the data channel using the polar coding scheme and a second coding scheme encoder component 1212 may encode the second portion of the data channel using the LDPC coding scheme. In some examples, the size of the first portion of the data channel and the size of the second portion of the data channel are the same size, e.g., as illustrated in the examples of FIGs. 5 and 7. In some examples, the portions may have different sizes, as in the example of FIG. 6. The data channel component 1210 may determine the sizes of the respective portions of the data channel based on one or more qualities associated with the respective coding schemes. In some examples, the data channel component 1210 further generates the data channel by time division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel. In other examples, the data channel component 1210 further generates the data channel by frequency division multiplexing the encoded first portion of the data channel with the encoded second portion of the data channel.
At 1140, the device transmits the data channel. For example, the transmission component 1216 may transmit the data channel generated by the data channel component 1210 and encoded by the first coding scheme encoder component 1208 and/or the second coding scheme encoder component 1212. The transmissions may include aspects as described in connection with any of FIGs. 4 to 7. The data channel may comprise a shared transport block comprising the two portions. In another example, the data channel may comprise separate transport blocks for the two portions.
At 1150, the device may receive feedback based on the decoding of the data channel. For example, referring to the apparatus 1202 of FIG. 12, a reception component 1204 may receive the feedback. The feedback may be a one-bit message or a two-bit message, e.g., as described in connection with 434 in FIG. 4.
At 1160, the device may determine whether the feedback indicates that the data channel was successfully decoded, e.g., as described in connection with 436 in FIG. 4. For example, referring to the apparatus 1202 of FIG. 12, a feedback handling component 1214 may determine whether the feedback is a one-bit ACK message or a two-bit ACK message (e.g., both portions of the data channel were successfully decoded) , or the feedback is a one-bit NACK message or a two-bit message where at least one of the two bits is a NACK message (e.g., at least one portion of the data channel was not successfully decoded) .
If, at 1160, the device (e.g., the feedback handling component 1214) determines that the feedback indicates that the data channel was successfully decoded (e.g. the feedback may be a one-bit ACK message or a two-bit ACK message) , then, at 1170, the device may determine not to retransmit any portions of the data channel.
However, if, at 1160, the device (e.g., the feedback handling component 1214) determines that the feedback indicates that the data channel was not successfully decoded (e.g., the feedback is a one-bit NACK message or the feedback is a two-bit message including at least one NACK message) , then, at 1180, the device may determine whether the feedback is for separate transport blocks. For example, the feedback handling component 1214 may determine whether the two data portions were transmitted in a single transport block or were transmitted in separate transport blocks.
If, at 1180, the device (e.g., the feedback handling component 1214) determines that the feedback is for separate transport blocks, then, at 1185, the device may retransmit the unsuccessfully decoded transport block (s) . For example, the transmission component 1216 may retransmit the transport block associated with the first portion of the data channel and/or may retransmit the transport block associated with the second portion of the data channel.
However, if, at 1180, the device (e.g., the feedback handling component 1214) determines that the feedback is not for separate transport blocks, then, at 1190, the device may retransmit the data channel including the first portion and the second portion. For example, the transmission component 1216 may retransmit the data channel including the first portion and the second portion.
FIG. 12 is a conceptual data flow diagram 1200 illustrating the data flow between different means/components in an example apparatus 1202. The apparatus may correspond to the base station 102/180 of FIG. 1 or may correspond to the UE 104 in  FIG. 1 or UE 350 in FIG. 3. The apparatus includes a reception component 1204 configured to receive communications from a receiver 1250 (which may be a UE or a base station) . For example, if the apparatus is a base station, the reception component 1204 may be configured to receive the feedback as uplink communication transmitted by a UE. If the apparatus 1202 is a UE, the reception component may be configured to receive the feedback as downlink communication transmitted by a base station.
The apparatus includes a control channel component 1206 configured to generate the control channel. In some examples, the control channel includes control information associated with the data channel. For example, the control information may indicate a first location associated with a first portion of a data channel and a second location associated with a second portion of the data channel. In some examples, the control information indicates a first coding rate and a first modulation order associated with a first coding scheme and the control information indicates a second coding rate and a second modulation order associated with a second coding scheme.
The apparatus includes a first coding scheme encoder component 1208 configured to encode information using the first coding scheme. For example, the first coding scheme encoder component 1208 may encode the control channel provided by the control channel component 1206 using the first coding scheme. The first coding scheme encoder component 1208 may also encode the first portion of the data channel provided by the data channel component 1210 using the first coding scheme. In some examples, the first coding scheme is a polar coding scheme.
The apparatus includes a data channel component 1210 configured to generate the data channel. In some examples, the data channel includes a first portion and a second portion. In some examples, the respective sizes of the first portion and the second portion may depend one threshold sizes associated with different coding schemes. In some examples, the sizes of the first portion and the second portion are the same size. The data channel component 1210 provides the first portion to the first coding scheme encoder component 1208 and provides the second portion to the second coding scheme encoder component 1212. In some examples, based on the feedback provided by the feedback handling component 1214, the data channel component 1210 only provides one of the portions to the respective coding  scheme encoder component  1208, 1212. For example, if the feedback indicates that the UE 1250 successfully decoded the first portion of the data channel but was unsuccessful in decoding the  second portion of the data channel, the data channel component 1210 may facilitate the retransmission of the second portion of the data channel by providing the second portion to the second coding scheme encoder component 1212.
The apparatus includes a second coding scheme encoder component 1212 configured to encode information using the second coding scheme. For example, the second coding scheme encoder component 1212 may encode the second portion of the data channel provided by the data channel component 1210 using the second coding scheme. In some examples, the second coding scheme is an LDPC coding scheme.
The apparatus includes a feedback handling component 1214 configured to process the feedback provided by the UE 1250 to determine whether the UE 1250 successfully decoded the data channel. In some examples, based on the feedback indicating that the UE 1250 did not successfully decode the data channel, the feedback handling component 1214 may provide the feedback to the control channel component 1206 and the data channel component 1210 to facilitate retransmitting at least one portion of the data channel (e.g., the at least one portion of the data channel that was not successfully decoded by the UE 1250) .
The apparatus includes a transmission component 1216 configured to transmit communications to the receiver 1250. For example, the transmission component 1216 may transmit to the receiver 1250 the encoded control channel provided by the first coding scheme encoder component 1208 and the duo coded data channel provided by the first coding scheme encoder component 1208 and the second coding scheme encoder component 1212. In some examples, prior to transmitting the duo coded data channel to the receiver 1250, the transmission component 1216 may time division multiplex the encoded first portion with the encoded second portion. In some examples, prior to transmitting the duo coded data channel to the receiver 1250, the transmission component 1216 may frequency division multiplex the encoded first portion with the encoded second portion.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 11. As such, each block in the aforementioned flowchart of FIG. 11 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated  processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1202' employing a processing system 1314. The processing system 1314 may be implemented with a bus architecture, represented generally by the bus 1324. The bus 1324 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1314 and the overall design constraints. The bus 1324 links together various circuits including one or more processors and/or hardware components, represented by the processor 1304, the  components  1204, 1206, 1208, 1210, 1212, 1214, 1216, and the computer-readable medium /memory 1306. The bus 1324 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The processing system 1314 may be coupled to a transceiver 1310. The transceiver 1310 is coupled to one or more antennas 1320. The transceiver 1310 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1310 receives a signal from the one or more antennas 1320, extracts information from the received signal, and provides the extracted information to the processing system 1314, specifically the reception component 1204. In addition, the transceiver 1310 receives information from the processing system 1314, specifically the transmission component 1216, and based on the received information, generates a signal to be applied to the one or more antennas 1320. The processing system 1314 includes a processor 1304 coupled to a computer-readable medium /memory 1306. The processor 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1306. The software, when executed by the processor 1304, causes the processing system 1314 to perform the various functions described supra for any particular apparatus. The computer-readable medium /memory 1306 may also be used for storing data that is manipulated by the processor 1304 when executing software. The processing system 1314 further includes at least one of the  components  1204, 1206, 1208, 1210, 1212, 1214, 1216. The components may be software components running in the processor 1304, resident/stored in the computer readable medium /memory 1306, one or more hardware components coupled to the processor 1304, or some combination thereof. The processing system 1314 may be a component of the base station 310 and may  include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375. The processing system 1314 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
In one configuration, the apparatus 1202/1202' for wireless communication includes means for generating a control channel for a data channel including a first portion and a second portion; means for transmitting the control channel; means for encoding the first portion using a first coding scheme; means for encoding the second portion using a second coding scheme; means for generating the data channel including the first portion encoded using the first coding scheme and the second portion encoded using the second coding scheme; means for transmitting the data channel; means for receiving feedback based on the decoding of the data channel; means for determining whether the feedback indicates that the data channel was successfully decoded; means for determining whether the feedback is for separate transport blocks; means for retransmitting unsuccessfully decoded transport block (s) when the feedback is for separate transport blocks; and means for retransmitting the data channel including the first portion and the second portion when the feedback is for a single transport block. The aforementioned means may be one or more of the aforementioned components of the apparatus 1202 and/or the processing system 1314 of the apparatus 1202' configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1314 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375 or the TX Processor 368, the RX Processor 356, and the controller/processor 359, if the apparatus is a UE. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 or the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in  a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, where reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2019075706-appb-000001
Figure PCTCN2019075706-appb-000002
Figure PCTCN2019075706-appb-000003
Figure PCTCN2019075706-appb-000004
Figure PCTCN2019075706-appb-000005
Figure PCTCN2019075706-appb-000006
Figure PCTCN2019075706-appb-000007
Figure PCTCN2019075706-appb-000008

Claims (46)

  1. A method of wireless communication at a receiver, comprising:
    receiving, by the receiver, a data channel, wherein a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; and
    decoding the data channel using the first coding scheme and the second coding scheme.
  2. The method of claim 1, wherein the first coding scheme is a polar coding scheme and the second coding scheme is a low-density parity-check (LDPC) coding scheme.
  3. The method of claim 1, further including:
    receiving a control channel comprising control information associated with the data channel, wherein the control information is encoded using the first coding scheme.
  4. The method of claim 3, wherein the control information is encoded using a polar coding scheme.
  5. The method of claim 3, wherein the control information indicates a first location associated with the first portion of the data channel and a second location associated with the second portion of the data channel.
  6. The method of claim 3, wherein the control information indicates a first coding rate and a first modulation order associated with the first coding scheme and the control information indicates a second coding rate and a second modulation order associated with the second coding scheme.
  7. The method of claim 6, wherein at least one of the first coding rate is different than the second coding rate or the first modulation order is different than the second modulation order.
  8. The method of claim 1, wherein the first portion of the data channel is time division multiplexed with the second portion of the data channel, and wherein the decoding of the data channel includes:
    decoding the first portion of the data channel; and
    after the decoding of the first portion of the data channel, decoding the second portion of the data channel.
  9. The method of claim 1, wherein the first portion of the data channel is frequency division multiplexed with the second portion of the data channel, and wherein the decoding of the data channel includes:
    concurrently decoding the first portion of the data channel and the second portion of the data channel.
  10. The method of claim 1, further including:
    transmitting feedback regarding decoding of the data channel, the first portion of the data channel and the second portion of the data channel being associated with a same hybrid automatic repeat request (HARQ) identifier.
  11. The method of claim 10, wherein the first portion of the data channel and the second portion of the data channel are comprised in a transport block, and wherein when the feedback indicates a failure to decode the transport block, the method further includes:
    receiving a retransmission of the transport block.
  12. The method of claim 1, further including:
    transmitting feedback associated with the data channel, wherein the feedback comprises at least one first bit indicating first feedback for the first portion of the data channel and at least one second bit indicating second feedback for the second portion of the data channel.
  13. The method of claim 12, wherein the first portion of the data channel comprises a first transport block and the second portion of the data channel comprises a second transport block, and wherein the feedback indicates that one of the first transport block and the second transport block was successfully decoded and the other of the first transport block and the second transport block was unsuccessfully decoded, and the method further includes:
    receiving a retransmission of the other of the first transport block and the second transport block that was unsuccessfully decoded.
  14. The method of claim 1, wherein a first size of the second portion of the data channel is greater than a second size of the first portion of the data channel.
  15. The method of claim 1, wherein the receiver comprises a user equipment (UE) or a base station.
  16. An apparatus for wireless communication at a receiver, comprising:
    means for receiving a data channel, wherein a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; and
    means for decoding the data channel using the first coding scheme and the second coding scheme.
  17. The apparatus of claim 16, wherein the first coding scheme is a polar coding scheme and the second coding scheme is a low-density parity-check (LDPC) coding scheme.
  18. The apparatus of claim 16, further including:
    means for receiving a control channel comprising control information associated with the data channel, wherein the control information is encoded using the first coding scheme.
  19. The apparatus of claim 18, further including:
    means for decoding the control information using a polar coding scheme.
  20. The apparatus of claim 18, wherein the control information indicates a first location associated with the first portion of the data channel and a second location associated with the second portion of the data channel.
  21. The apparatus of claim 18, wherein the control information indicates a first coding rate and a first modulation order associated with the first coding scheme and the control information indicates a second coding rate and a second modulation order associated with the second coding scheme.
  22. The apparatus of claim 21, wherein at least one of the first coding rate is different than the second coding rate or the first modulation order is different than the second modulation order.
  23. The apparatus of claim 16, wherein the first portion of the data channel is time division multiplexed with the second portion of the data channel, and wherein the means for decoding the data channel includes:
    means for decoding the first portion of the data channel; and
    means for decoding the second portion of the data channel after the decoding of the first portion of the data channel.
  24. The apparatus of claim 16, wherein the first portion of the data channel is frequency division multiplexed with the second portion of the data channel, and wherein the means for decoding the data channel includes:
    means for concurrently decoding the first portion of the data channel and the second portion of the data channel.
  25. The apparatus of claim 16, further including:
    means for transmitting feedback regarding decoding of the data channel, the first portion of the data channel and the second portion of the data channel being associated with a same hybrid automatic repeat request (HARQ) identifier.
  26. The apparatus of claim 25, wherein the first portion of the data channel and the second portion of the data channel are comprised in a transport block, and wherein when the feedback indicates a failure to decode the transport block, the apparatus further includes:
    means for receiving a retransmission of the transport block.
  27. The apparatus of claim 16, further including:
    means for transmitting feedback associated with the data channel, wherein the feedback comprises at least one first bit indicating first feedback for the first portion of the data channel and at least one second bit indicating second feedback for the second portion of the data channel.
  28. The apparatus of claim 27, wherein the first portion of the data channel comprises a first transport block and the second portion of the data channel comprises a second transport block, and wherein the feedback indicates that one of the first transport block and the second transport block was successfully decoded and the other of the first transport block and the second transport block was unsuccessfully decoded, and the apparatus further includes:
    means for receiving a retransmission of the other of the first transport block and the second transport block that was unsuccessfully decoded.
  29. The apparatus of claim 16, wherein a first size of the second portion of the data channel is greater than a second size of the first portion of the data channel.
  30. The apparatus of claim 16, wherein the receiver comprises a user equipment (UE) or a base station.
  31. An apparatus for wireless communication at a receiver, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, by the receiver, a data channel, wherein a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; and
    decode the data channel using the first coding scheme and the second coding scheme.
  32. The apparatus of claim 31, wherein the first coding scheme is a polar coding scheme and the second coding scheme is a low-density parity-check (LDPC) coding scheme.
  33. The apparatus of claim 31, wherein the at least one processor is further configured to:
    receive a control channel comprising control information associated with the data channel, wherein the control information is encoded using the first coding scheme.
  34. The apparatus of claim 33, wherein the control information is encoded using a polar coding scheme.
  35. The apparatus of claim 33, wherein the control information indicates a first location associated with the first portion of the data channel and a second location associated with the second portion of the data channel.
  36. The apparatus of claim 33, wherein the control information indicates a first coding rate and a first modulation order associated with the first coding scheme and the control information indicates a second coding rate and a second modulation order associated with the second coding scheme.
  37. The apparatus of claim 36, wherein at least one of the first coding rate is different than the second coding rate or the first modulation order is different than the second modulation order.
  38. The apparatus of claim 31, wherein the first portion of the data channel is time division multiplexed with the second portion of the data channel, and wherein the at least one processor is further configured to decode the data channel by:
    decoding the first portion of the data channel; and
    after the decoding of the first portion of the data channel, decoding the second portion of the data channel.
  39. The apparatus of claim 31, wherein the first portion of the data channel is frequency division multiplexed with the second portion of the data channel, and wherein the at least one processor is further configured to decode the data channel by:
    concurrently decoding the first portion of the data channel and the second portion of the data channel.
  40. The apparatus of claim 31, wherein the at least one processor is further configured to:
    transmit feedback regarding decoding of the data channel, the first portion of the data channel and the second portion of the data channel being associated with a same hybrid automatic repeat request (HARQ) identifier.
  41. The apparatus of claim 40, wherein the first portion of the data channel and the second portion of the data channel are comprised in a transport block, and wherein when the feedback indicates a failure to decode the transport block, the at least one processor is further configured to:
    receive a retransmission of the transport block.
  42. The apparatus of claim 31, wherein the at least one processor is further configured to:
    transmit feedback associated with the data channel, wherein the feedback comprises at least one first bit indicating first feedback for the first portion of the data channel and at least one second bit indicating second feedback for the second portion of the data channel.
  43. The apparatus of claim 42, wherein the first portion of the data channel comprises a first transport block and the second portion of the data channel comprises a second transport block, and wherein the feedback indicates that one of the first transport block and the second transport block was successfully decoded and the other of the first transport block and the second  transport block was unsuccessfully decoded, and the at least one processor is further configured to:
    receive a retransmission of the other of the first transport block and the second transport block that was unsuccessfully decoded.
  44. The apparatus of claim 31, wherein a first size of the second portion of the data channel is greater than a second size of the first portion of the data channel.
  45. The apparatus of claim 31, wherein the receiver comprises a user equipment (UE) or a base station.
  46. A computer-readable medium storing computer executable code for wireless communication at a receiver, the code, when executed, causes a processor to:
    receive, by the receiver, a data channel, wherein a first portion of the data channel is encoded using a first coding scheme and a second portion of the data channel is encoded using a second coding scheme; and
    decode the data channel using the first coding scheme and the second coding scheme.
PCT/CN2019/075706 2019-02-21 2019-02-21 Methods and apparatus to facilitate duo coding of data channels WO2020168514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075706 WO2020168514A1 (en) 2019-02-21 2019-02-21 Methods and apparatus to facilitate duo coding of data channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075706 WO2020168514A1 (en) 2019-02-21 2019-02-21 Methods and apparatus to facilitate duo coding of data channels

Publications (1)

Publication Number Publication Date
WO2020168514A1 true WO2020168514A1 (en) 2020-08-27

Family

ID=72144823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075706 WO2020168514A1 (en) 2019-02-21 2019-02-21 Methods and apparatus to facilitate duo coding of data channels

Country Status (1)

Country Link
WO (1) WO2020168514A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089110A2 (en) * 2006-02-01 2007-08-09 Lg Electronics Inc. A method of transmitting and receiving data using superposition modulation in a wireless communication system
US20070270170A1 (en) * 2006-05-17 2007-11-22 Lg Electronics Inc. Method of implementing superposition coding for a forward link in a wireless communication system
US20140192732A1 (en) * 2013-01-09 2014-07-10 Qualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089110A2 (en) * 2006-02-01 2007-08-09 Lg Electronics Inc. A method of transmitting and receiving data using superposition modulation in a wireless communication system
US20070270170A1 (en) * 2006-05-17 2007-11-22 Lg Electronics Inc. Method of implementing superposition coding for a forward link in a wireless communication system
US20140192732A1 (en) * 2013-01-09 2014-07-10 Qualcomm Incorporated Identifying modulation and coding schemes and channel quality indicators

Similar Documents

Publication Publication Date Title
US11129188B2 (en) Early termination of PUSCH with new uplink grant
US10862560B2 (en) PDSCH rate matching for aperiodic CSI-RS
US11324041B2 (en) Signaling of default and scheduled beam in cot
US11044589B2 (en) V2X network based relaying
US11770844B2 (en) Methods and apparatus for signaling of network coding information to facilitate feedback processing
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
AU2019399488A1 (en) Default beam selection based on a subset of coresets
US11171765B2 (en) System and method for indicating preemption of transmissions
US10827440B2 (en) Indication of potential NR UL transmission in NE-DC
US11617136B2 (en) Non-terrestrial network power control based on HARQ retransmission on or off
US20210105100A1 (en) Prioritization between a scheduling request and harq feedback
US11405809B2 (en) Radio link monitoring reference signals for UEs that do not support CSI-RS based radio link monitoring
US11671995B2 (en) Time domain resource allocation-based HARQ-ACK feedback generation
US11575488B2 (en) Coverage enhancement for a beam change acknowledgement
WO2020123032A1 (en) Gap transmission in channel occupancy time
US11470609B2 (en) Methods and apparatus to facilitate layer 1 cross-carrier repetition
US20210289482A1 (en) Data aided receivers for ultra-reliable low latency communications
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
WO2020168514A1 (en) Methods and apparatus to facilitate duo coding of data channels
WO2022061698A1 (en) Recover from downlink data transfer failure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915935

Country of ref document: EP

Kind code of ref document: A1