WO2020168508A1 - 参考像素的自适应滤波方法及装置、电子设备 - Google Patents

参考像素的自适应滤波方法及装置、电子设备 Download PDF

Info

Publication number
WO2020168508A1
WO2020168508A1 PCT/CN2019/075678 CN2019075678W WO2020168508A1 WO 2020168508 A1 WO2020168508 A1 WO 2020168508A1 CN 2019075678 W CN2019075678 W CN 2019075678W WO 2020168508 A1 WO2020168508 A1 WO 2020168508A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
taps
angle
prediction mode
prediction
Prior art date
Application number
PCT/CN2019/075678
Other languages
English (en)
French (fr)
Inventor
蔡文婷
朱建清
Original Assignee
富士通株式会社
蔡文婷
朱建清
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蔡文婷, 朱建清 filed Critical 富士通株式会社
Priority to PCT/CN2019/075678 priority Critical patent/WO2020168508A1/zh
Publication of WO2020168508A1 publication Critical patent/WO2020168508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing

Definitions

  • the present invention relates to the field of information technology, in particular to an adaptive filtering method and device for reference pixels, and electronic equipment.
  • reference pixels used for intra prediction are conditionally filtered using a smoothing filter to improve the visual performance of the prediction block.
  • the smoothing filter is determined based on the selected intra prediction mode and the size of the coding block.
  • the filtering process is selected according to the size of the coding block and the continuity of the reference pixels.
  • a 3-tap filter with a tap gain of [1 2 1]/4 is used for filtering.
  • the outermost reference pixel p[-1][2N-1] And p[2M-1][-1] is extended from the boundary.
  • two other reference pixels adjacent to it are used for filtering.
  • angle prediction directions are defined with a sampling accuracy of 1/32, and the prediction mode based on the angle is called the angle prediction mode.
  • the angular prediction mode the position of the pixel of the coding block is projected to the reference pixel and the sample is interpolated by using the selected angular prediction direction to obtain the predicted pixel value.
  • a wide-angle mode including more angle prediction directions gradually appeared, including angles less than 45 degrees and greater than 225 degrees.
  • two non-adjacent reference pixels may be used to predict the coded block, which results in discontinuity of pixels in the predicted block, thereby affecting the visual performance of the predicted block.
  • the embodiment of the present invention provides an adaptive filtering method and device for reference pixels, and electronic equipment, which adaptively determines the number of taps of a suitable filter according to the angle used for prediction in the angle prediction mode, and according to the determined number of taps Using the filter to filter the reference pixels can solve the problem of pixel discontinuity in the prediction block caused when the reference pixels are used to predict the coding block, so that the pixels are smoother, and the visual performance of the prediction block can be improved.
  • an adaptive filtering method for reference pixels comprising: determining the number of taps of the filter according to an angle used for prediction in an angular prediction mode; and according to the determined tap A filter is used to perform filtering processing on the reference pixels, so as to obtain a prediction block by predicting the coding block according to the angle and using the reference pixels after the filtering processing.
  • an adaptive filtering device for reference pixels, the device comprising: a determining unit configured to determine the number of taps of the filter according to an angle used for prediction in an angle prediction mode And a filtering unit for performing filtering processing on the reference pixel using a filter according to the determined number of taps, so as to predict the encoding block according to the angle and using the reference pixels after filtering processing to obtain a prediction block .
  • an electronic device including the apparatus according to the second aspect of the embodiments of the present invention.
  • the beneficial effects of the present invention are: adaptively determine the number of taps of a suitable filter according to the angle used for prediction in the angular prediction mode, and use the filter to filter the reference pixels according to the determined number of taps, which can solve
  • the reference pixels are used to predict the coded block, the problem of pixel discontinuity in the prediction block is caused, so that the pixels are smoother, so that the visual performance of the prediction block can be improved.
  • FIG. 1 is a schematic diagram of an adaptive filtering method for reference pixels in Embodiment 1 of the present invention
  • Embodiment 1 of the present invention is a schematic diagram of the angle prediction mode of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of predicting a coded block using a horizontal prediction mode according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of filtering reference pixels by using two cascaded 3-tap filters according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of an adaptive filtering device for reference pixels according to Embodiment 2 of the present invention.
  • Fig. 6 is a schematic diagram of an electronic device according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic block diagram of the system configuration of an electronic device according to Embodiment 3 of the present invention.
  • FIG. 1 is a schematic diagram of an adaptive filtering method for reference pixels in Embodiment 1 of the present invention. As shown in Figure 1, the method includes:
  • Step 101 Determine the number of taps of the filter according to the angle used for prediction in the angle prediction mode.
  • Step 102 Use a filter to perform filtering processing on the reference pixel according to the determined number of taps, so as to predict the coding block according to the angle and using the filtered reference pixel to obtain a prediction block.
  • the number of taps of the appropriate filter is adaptively determined according to the angle used for prediction in the angle prediction mode, and the filter is used to filter the reference pixels according to the determined number of taps.
  • the use of reference pixels to predict the coding block causes the problem of discontinuity of the pixels of the prediction block, which makes the pixels smoother, thereby improving the visual performance of the prediction block.
  • the angle prediction mode refers to a mode for predicting a coding block based on an angle.
  • the angle prediction mode may include a plurality of predetermined angles.
  • the angle in the angle prediction mode is based on the positive direction of the X axis in the horizontal direction.
  • the angle prediction mode is a wide-angle mode, which includes angles less than 45 degrees and greater than 225 degrees.
  • FIG. 2 is a schematic diagram of the angle prediction mode of Embodiment 1 of the present invention. As shown in Figure 2, based on the positive X direction, the angle prediction mode includes multiple angles less than 45 degrees and greater than 225 degrees. The angle between the direction pointed by each arrow in Figure 2 and the positive X direction is All angles. The angle shown in FIG. 2 is only an example of the angle prediction mode of the present invention, and it may also include other angles or more angles.
  • step 101 the number of taps of the filter is determined according to the angle used for prediction in the angle prediction mode. For example, when the angle belongs to different angle intervals, the filter has a different number of taps. In this embodiment, each angle interval can be set according to actual needs.
  • the angle used for prediction is selected according to actual needs.
  • the angle prediction mode may include a horizontal prediction mode and a vertical prediction mode.
  • the angle range of the horizontal prediction mode is 0° ⁇ 90°
  • the angle range of the vertical prediction mode is 180° ⁇ 270°.
  • the embodiment of the present invention mainly specifically describes these two prediction modes.
  • each angle in the range of 0° to 90° belongs to the horizontal prediction mode, and each angle in the range of 180° to 270° belongs to the vertical prediction mode.
  • the smaller the angle used for prediction the more the number of taps of the determined filter
  • the larger the angle used for prediction the more the taps of the determined filter The greater the number.
  • the number of taps of the filter can be determined according to the tangent value of the angle selected for prediction. For example, the number of taps of the filter is determined according to the interval to which the tangent value of the angle belongs.
  • the number of taps of the filter is determined to be 3, for example, the tap gain is [1 2 1]/4, that is, 3 taps with tap gains of 1/4, 2/4, and 1/4 respectively filter;
  • the number of taps of the filter is determined to be 5.
  • the tap gain is [1 4 6 4 1]/16, that is, the tap gains are 1/16, 4/16, and 6 respectively.
  • the number of taps of the filter is determined to be 7, that is, a 7-tap filter
  • the number of taps of the filter may be determined according to the tangent value of the difference between the angle selected for prediction and 180°. For example, the number of taps of the filter is determined according to the interval to which the tangent value belongs.
  • the number of taps of the filter is determined to be 3.
  • the tap gains used are [1 2 1]/4, that is, the tap gains are 1/4, 2/4, 1/4 3-tap filter;
  • the number of taps of the filter is determined to be 5.
  • the tap gain is [1 4 6 4 1]/16, that is, the tap gain is 1/16 respectively , 4/16, 6/16, 4/16, 1/16 5-tap filter;
  • the number of taps of the filter is determined to be 7, that is, a 7-tap filter
  • the number of taps of the filter is determined to be 9, that is, a 9-tap filter
  • a filter is used to perform filtering processing on the reference pixel according to the determined number of taps.
  • a filter with the number of taps determined in step 101 can be used directly to filter the reference pixels.
  • the specific filtering method can use the existing technology, and the filtering method of the horizontal prediction mode will be exemplified below.
  • FIG. 3 is a schematic diagram of using a horizontal prediction mode to predict a coded block according to Embodiment 1 of the present invention.
  • the top row is 16 reference pixels, which are used to predict the coding block of size 8 ⁇ 4 located below these reference pixels, where the angle selected for prediction is used, that is, Figure 3
  • the angle ⁇ indicated by the middle arrow is predicted.
  • p[0][0] taking the position of the pixel at the upper left corner of the coding block with a size of 8 ⁇ 4 as a reference, it is denoted as p[0][0], and [0][0] represents its coordinates in the X and Y directions.
  • P'[x][-1] represents the filtered pixel p[x][-1]
  • a 1 , a 2 , a 3 represent the tap gain of the 3-tap filter
  • ">>" represents the right Shift operation.
  • the 5-tap filter is directly used for filtering, for example, the following formula (2) is used for filtering:
  • P'[x][-1] represents the filtered pixel p[x][-1], a 1 , a 2 , a 3 , a 4 , a 5 represent the tap gain of the 5-tap filter, ">>" indicates the right shift operation.
  • P'[x][-1] represents the filtered pixel p[x][-1], a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 represent 7-tap filtering
  • the tap gain of the generator, ">>" means right shift operation.
  • P'[x][-1] represents the filtered pixel p[x][-1], a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ,a 7 ,a 8 , a 9 represents the tap gain of the 9-tap filter, and ">>" represents the right shift operation.
  • the specific filtering method of the reference pixel is exemplarily described above.
  • the vertical prediction mode it uses the reference pixels located in the left column of the coding block, and its specific filtering method is similar to the filtering method of the reference pixels in the horizontal prediction mode, and will not be repeated here.
  • the preset threshold can be set according to actual needs.
  • the preset threshold value is 3.
  • multiple cascaded 3-tap filters can be used to filter the reference pixels.
  • step 101 For example, if the number of taps determined in step 101 is 5, then two cascaded 3-tap filters can be used instead of 5-tap filters to filter the reference pixels; for another example, the number of taps determined in step 101 is 7 , Then, 3 cascaded 3-tap filters can be used instead of 7-tap filters to filter the reference pixels; and so on.
  • FIG. 4 is a schematic diagram of filtering a reference pixel using two 3-tap filters in cascade according to Embodiment 1 of the present invention. As shown in FIG. 4, the reference pixels arranged in a row are filtered one by one in the order from left to right.
  • the first 3-tap filter in the cascade is used to filter the n, n+1, n+2 reference pixels, and the filtering result is used as the intermediate filtering result of the n+1 reference pixel, and then the stage
  • the connected second 3-tap filter filters the intermediate filtering results of the n-1th and nth reference pixels and the n+1th reference pixel to obtain the final filtering result of the nth reference pixel, where n Is the serial number of the reference pixel, n is a positive integer, which is less than or equal to the total number of reference pixels.
  • the reference pixel after the filtering process can be used to predict the coding block according to the angle to obtain the prediction block.
  • the specific prediction method can use the existing technology, which will not be repeated here.
  • the number of taps of the appropriate filter is adaptively determined according to the angle used for prediction in the angle prediction mode, and the filter is used to filter the reference pixels according to the determined number of taps.
  • the use of reference pixels to predict the coding block causes the problem of discontinuity of the pixels of the prediction block, which makes the pixels smoother, thereby improving the visual performance of the prediction block.
  • FIG. 5 is a schematic diagram of an adaptive filtering device for reference pixels according to Embodiment 2 of the present invention. As shown in FIG. 5, the device 500 includes:
  • the determining unit 501 is configured to determine the number of taps of the filter according to the angle used for prediction in the angle prediction mode;
  • the filtering unit 502 is configured to use a filter to perform filtering processing on the reference pixels according to the determined number of taps, so as to predict the coding block according to the angle and using the filtered reference pixels to obtain a prediction block.
  • the filter when the angle belongs to different angle intervals, the filter has a different number of taps.
  • the angle prediction mode may include a horizontal prediction mode and a vertical prediction mode.
  • the angle range of the horizontal prediction mode is 0° ⁇ 90°
  • the angle range of the vertical prediction mode is 180° ⁇ 270°.
  • the determining unit 501 for the horizontal prediction mode the smaller the angle used for prediction, the more the number of taps of the filter is determined; for the vertical prediction mode, the larger the angle used for prediction, The more taps of the filter are determined.
  • the filtering unit 502 may use a filter with a certain number of taps to perform filtering processing on the reference pixels.
  • the number of taps determined by the determining unit 501 is a first number
  • the filtering unit 502 uses at least two cascaded filters with a second number of taps when the first number is greater than a preset threshold.
  • the reference pixel is filtered, and the second number is less than the first number.
  • the implementation of the functions of the above-mentioned units can refer to the implementation of the steps of the adaptive filtering method in Embodiment 1, which will not be repeated here.
  • the number of taps of the appropriate filter is adaptively determined according to the angle used for prediction in the angle prediction mode, and the filter is used to filter the reference pixels according to the determined number of taps.
  • the use of reference pixels to predict the coding block causes the problem of discontinuity of the pixels of the prediction block, which makes the pixels smoother, thereby improving the visual performance of the prediction block.
  • FIG. 6 is a schematic diagram of the electronic device according to Embodiment 3 of the present invention.
  • the electronic device 600 includes an adaptive filtering device 601 for reference pixels, wherein the structure and function of the adaptive filtering device 601 for reference pixels are the same as those described in Embodiment 2, and will not be repeated here.
  • FIG. 7 is a schematic block diagram of the system configuration of an electronic device according to Embodiment 3 of the present invention.
  • the electronic device 700 may include a central processing unit 701 and a memory 702; the memory 702 is coupled to the central processing unit 701.
  • This figure is exemplary; other types of structures can also be used to supplement or replace this structure to implement telecommunication functions or other functions.
  • the electronic device 700 may further include: an input unit 703, a display 704, and a power supply 705.
  • the function of the reference pixel adaptive filtering device described in Embodiment 1 may be integrated into the central processing unit 701.
  • the central processor 701 may be configured to: determine the number of taps of the filter according to the angle used for prediction in the angular prediction mode; and according to the determined number of taps, use the filter to filter the reference pixels,
  • the prediction block is obtained by predicting the coding block according to the angle and using the reference pixels after the filtering process.
  • the filters have different numbers of taps.
  • the angular prediction mode includes a horizontal prediction mode and a vertical prediction mode
  • the angle range of the horizontal prediction mode is 0° ⁇ 90°, and the angle range of the vertical prediction mode is 180° ⁇ 270°.
  • the determining the number of taps of the filter according to the angle used for prediction in the angular prediction mode includes: for the horizontal prediction mode, the smaller the angle used for prediction is, the number of taps of the filter is determined The more; for the vertical prediction mode, the larger the angle used for prediction, the more the number of taps of the filter is determined.
  • using a filter to perform filtering processing on the reference pixel according to the determined number of taps includes: using a filter with the determined number of taps to perform filtering processing on the reference pixel.
  • using a filter to perform filtering processing on the reference pixel according to the determined number of taps includes: the determined number of taps is a first number, and when the first number is greater than a preset threshold, using At least two cascaded filters with a second number of taps perform filtering processing on the reference pixels, the second number being smaller than the first number.
  • the reference pixel adaptive filtering device described in Embodiment 1 can be configured separately from the central processing unit 701.
  • the reference pixel adaptive filtering device can be configured as a chip connected to the central processing unit 701. The function of the adaptive filtering device of the reference pixel is realized through the control of the central processor 701.
  • the electronic device 700 does not necessarily include all the components shown in FIG. 7.
  • the central processing unit 701 is sometimes called a controller or operating control, and may include a microprocessor or other processor devices and/or logic devices.
  • the central processing unit 701 receives input and controls various components of the electronic device 700 Operation.
  • the memory 702 may be one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • the central processing unit 701 can execute the program stored in the memory 702 to implement information storage or processing.
  • the functions of other components are similar to the existing ones, so I won't repeat them here.
  • Each component of the electronic device 700 can be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present invention.
  • the number of taps of the appropriate filter is adaptively determined according to the angle used for prediction in the angle prediction mode, and the filter is used to filter the reference pixels according to the determined number of taps.
  • the use of reference pixels to predict the coding block causes the problem of discontinuity of the pixels of the prediction block, which makes the pixels smoother, thereby improving the visual performance of the prediction block.
  • the embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in an adaptive filtering device for reference pixels or an electronic device, the program causes the computer to perform the Or, the adaptive filtering method for reference pixels described in Embodiment 1 is executed in an electronic device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the self-adaptation of the reference pixel described in embodiment 1 in the adaptive filtering device or electronic device of the reference pixel. Adapt the filtering method.
  • the method of training in the adaptive filtering device of reference pixels described in conjunction with the embodiment of the present invention can be directly embodied in hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in FIG. 5 may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in Figure 1.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional block diagrams described in FIG. 5 and/or one or more combinations of the functional block diagrams can be implemented as general-purpose processors, digital signal processors (DSP), and special-purpose processors for performing the functions described in this application.
  • One or more of the functional block diagrams described in FIG. 5 and/or one or more combinations of the functional block diagrams can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessors, One or more microprocessors or any other such configuration combined with DSP communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种参考像素的自适应滤波方法及装置、电子设备。根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。

Description

参考像素的自适应滤波方法及装置、电子设备 技术领域
本发明涉及信息技术领域,尤其涉及一种参考像素的自适应滤波方法及装置、电子设备。
背景技术
在HEVC(高效率视频编码,High Efficiency Video Coding)标准中,用于帧内预测的参考像素有条件的使用平滑滤波器进行滤波,以改善预测块的视觉表现。为了最佳的使用平滑滤波器,基于选择的帧内预测模式以及编码块的大小,确定该滤波器的使用。
当确定使用滤波器对参考像素进行滤波时,根据编码块的大小以及参考像素的连续性来选择滤波处理。在默认情况下,使用抽头增益为[1 2 1]/4的3抽头滤波器进行滤波处理,对于大小为M×N的编码块,最外侧的参考像素p[-1][2N-1]和p[2M-1][-1]是由边界拓展出来的,对其他参考像素,使用与其相邻的两个其他参考像素来进行滤波。
在HEVC标准中,以1/32的采样精度定义了33个角度预测方向,根据角度进行预测的模式称为角度预测模式。在角度预测模式中,通过使用选择的角度预测方向将编码块的像素的位置投影到参考像素并对样本进行插值,从而获得预测像素值。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,随着编码技术的发展,逐渐出现了包括更多角度预测方向的广角模式,其包括了小于45度以及大于225度的角度。当使用广角模式来预测编码块时,可能会使用两个不相邻的参考像素对编码块进行预测,从而导致预测块中的像素的不连续性,从而影响了预测块的视觉表现。
本发明实施例提供一种参考像素的自适应滤波方法及装置、电子设备,根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。
根据本发明实施例的第一方面,提供一种参考像素的自适应滤波方法,所述方法包括:根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,以根据所述角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
根据本发明实施例的第二方面,提供一种参考像素的自适应滤波装置,所述装置包括:确定单元,其用于根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及滤波单元,其用于根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,以根据所述角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
根据本发明实施例的第三方面,提供一种电子设备,所述电子设备包括根据本发明实施例的第二方面所述的装置。
本发明的有益效果在于:根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明实施例1的参考像素的自适应滤波方法的一示意图;
图2是本发明实施例1的角度预测模式的一示意图;
图3是本发明实施例1的使用水平预测模式对编码块进行预测的一示意图;
图4是本发明实施例1的使用级联的2个3抽头滤波器对参考像素进行滤波的一示意图;
图5是本发明实施例2的参考像素的自适应滤波装置的一示意图;
图6是本发明实施例3的电子设备的一示意图;
图7是本发明实施例3的电子设备的系统构成的一示意框图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
实施例1
本发明实施例提供一种参考像素的自适应滤波方法。图1是本发明实施例1的参考像素的自适应滤波方法的一示意图。如图1所示,该方法包括:
步骤101:根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及
步骤102:根据确定的抽头的数量,使用滤波器对该参考像素进行滤波处理,以根据该角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
由上述实施例可知,根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素 之间更加平滑,从而能够提高预测块的视觉表现。
在本实施例中,该角度预测模式是指根据角度来对编码块进行预测的模式。该角度预测模式可以包括多个预定的角度。
在本实施例中,该角度预测模式中的角度是以水平方向的X轴的正方向为基准的。
例如,该角度预测模式是广角模式,其包括了小于45度以及大于225度的角度。
图2是本发明实施例1的角度预测模式的一示意图。如图2所示,以X正方向为基准,该角度预测模式包括了小于45度以及大于225度的多个角度,图2中的各个箭头所指的方向与X正方向的夹角即为各个角度。图2所示的角度仅是本发明的角度预测模式的一个示例,其也可以包括其他的角度或更多的角度。
在步骤101中,根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量。例如,当该角度属于不同的角度区间时,该滤波器具有不同的抽头数量。在本实施例中,各个角度区间可以根据实际需要而设置。
在本实施例中,该用于预测的角度是根据实际的需要而选择的。
在本实施例中,例如,该角度预测模式可以包括水平预测模式和垂直预测模式,该水平预测模式的角度范围是0°~90°,该垂直预测模式的角度范围是180°~270°。本发明实施例主要针对这两种预测模式进行具体的说明。
例如,如图2所示,以正X方向为基准,在0°~90°的范围内的各个角度属于水平预测模式,在180°~270°的范围内的各个角度属于垂直预测模式。
在本实施例中,对于水平预测模式,用于预测的角度越小,则确定的滤波器的抽头数量越多;对于垂直预测模式,用于预测的角度越大,则确定的滤波器的抽头数量越多。
下面,首先针对水平预测模式进行具体的说明。
在本实施例中,对于角度范围为0°~90°的水平预测模式,可以根据选择的用于预测的角度的正切值来确定滤波器的抽头数量。例如,根据角度的正切值属于的区间来确定滤波器的抽头数量。
例如,选择的用于预测的角度为α,那么,
当tanα>1/2时,确定滤波器的抽头数量为3,例如,使用抽头增益为[1 2 1]/4,即抽头增益分别为1/4、2/4、1/4的3抽头滤波器;
当1/3<tanα≤1/2时,确定滤波器的抽头数量为5,例如,抽头增益为[1 4 6 4  1]/16,即抽头增益分别为1/16、4/16、6/16、4/16、1/16的5抽头滤波器;
当1/4<tanα≤1/3时,确定滤波器的抽头数量为7,即7抽头滤波器;
当1/5<tanα≤1/4时,确定滤波器的抽头数量为9,即9抽头滤波器;
以此类推。
在本实施例中,对于角度范围为180°~270°的垂直预测模式,可以根据选择的用于预测的角度与180°的差值的正切值来确定滤波器的抽头数量。例如,根据该正切值属于的区间来确定滤波器的抽头数量。
例如,选择的用于预测的角度为α,那么,
当tan(270°-α)>1/2时,确定滤波器的抽头数量为3,例如,使用抽头增益为[1 2 1]/4,即抽头增益分别为1/4、2/4、1/4的3抽头滤波器;
当1/3<tan(270°-α)≤1/2时,确定滤波器的抽头数量为5,例如,抽头增益为[1 4 6 4 1]/16,即抽头增益分别为1/16、4/16、6/16、4/16、1/16的5抽头滤波器;
当1/4<tan(270°-α)≤1/3时,确定滤波器的抽头数量为7,即7抽头滤波器;
当1/5<tan(270°-α)≤1/4时,确定滤波器的抽头数量为9,即9抽头滤波器;
以此类推。
在步骤102中,根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理。
在本实施例中,可以直接使用具有步骤101所确定数量的抽头的滤波器对参考像素进行滤波。其具体的滤波方法可以使用现有技术,下面针对水平预测模式对其滤波方法进行示例性的说明。
图3是本发明实施例1的使用水平预测模式对编码块进行预测的一示意图。如图3所示,最上面一行为16个参考像素,其用于对位于这些参考像素下面的大小为8×4的编码块进行预测,其中,使用选择的用于预测的角度,即图3中箭头所指的角度α进行预测。其中,以大小为8×4的编码块左上角的像素的位置为基准,记为p[0][0],[0][0]表示其在X和Y方向上的坐标。
当tanα>1/2时,直接使用3抽头滤波器进行滤波,例如,使用以下的公式(1)进行滤波处理:
Figure PCTCN2019075678-appb-000001
其中,P'[x][-1]表示经过滤波处理的像素p[x][-1],a 1,a 2,a 3表示3抽头滤波器的抽头增益,“>>”表示向右移位操作。
当1/3<tanα≤1/2时,直接使用5抽头滤波器进行滤波,例如,使用以下的公式(2)进行滤波处理:
Figure PCTCN2019075678-appb-000002
其中,P'[x][-1]表示经过滤波处理的像素p[x][-1],a 1,a 2,a 3,a 4,a 5表示5抽头滤波器的抽头增益,“>>”表示向右移位操作。
当1/4<tanα≤1/3时,直接使用7抽头滤波器进行滤波,例如,使用以下的公式(3)进行滤波处理:
Figure PCTCN2019075678-appb-000003
其中,P'[x][-1]表示经过滤波处理的像素p[x][-1],a 1,a 2,a 3,a 4,a 5,a 6,a 7表示7抽头滤波器的抽头增益,“>>”表示向右移位操作。
当1/5<tanα≤1/4时,直接使用9抽头滤波器进行滤波,例如,使用以下的公式(4)进行滤波处理:
Figure PCTCN2019075678-appb-000004
其中,P'[x][-1]表示经过滤波处理的像素p[x][-1],a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9表示9抽头滤波器的抽头增益,“>>”表示向右移位操作。
以上针对水平预测模式,对参考像素的具体滤波方法进行了示例性的说明。对于垂直预测模式,其使用的是位于编码块的左侧一列的参考像素,其具体的滤波方法与水平预测模式中参考像素的滤波方法类似,此处不再赘述。
在本实施例中,当步骤101所确定的抽头的第一数量大于预设阈值时,也可以不直接使用具有步骤101所确定数量的抽头的滤波器对参考像素进行滤波,而是使用至少两个级联的、具有第二数量的抽头的滤波器对参考像素进行滤波处理,该第二数量 小于该第一数量。该预设阈值可以根据实际需要而设置。
这样,通过多个较少数量抽头的滤波器来替代较多数量抽头的滤波器,能够简化硬件设计,同时确保滤波的效果。
例如,该预设阈值为3,当需要使用超过3个抽头的滤波器时,可以使用多个级联的3抽头滤波器来对参考像素进行滤波。
例如,步骤101所确定的抽头数量为5,那么,可以使用2个级联的3抽头滤波器来替代5抽头滤波器来对参考像素进行滤波;又例如,步骤101所确定的抽头数量为7,那么,可以使用3个级联的3抽头滤波器来替代7抽头滤波器来对参考像素进行滤波;以此类推。
图4是本发明实施例1的使用级联的2个3抽头滤波器对参考像素进行滤波的一示意图。如图4所示,按照从左到右的顺序对排列为一行的参考像素逐个进行滤波。其中,利用级联的第1个3抽头滤波器对第n,n+1,n+2个参考像素进行滤波,将滤波的结果作为第n+1个参考像素的中间滤波结果,再利用级联的第2个3抽头滤波器对第n-1个和第n个参考像素以及第n+1个参考像素的中间滤波结果进行滤波,得到第n个参考像素的最终滤波结果,其中,n为参考像素的序号,n为正整数,其小于或等于参考像素的总数。
在根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理之后,则可以根据该角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。具体的预测方法可以使用现有技术,此处不再赘述。
由上述实施例可知,根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。
实施例2
本发明实施例还提供一种参考像素的自适应滤波装置,其对应于实施例1的自适应滤波方法。图5是本发明实施例2的参考像素的自适应滤波装置的一示意图。如图5所示,装置500包括:
确定单元501,其用于根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及
滤波单元502,其用于根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,以根据该角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
在本实施例中,该角度属于不同的角度区间时,该滤波器具有不同的抽头数量。
在本实施例中,该角度预测模式可以包括水平预测模式和垂直预测模式,该水平预测模式的角度范围是0°~90°,该垂直预测模式的角度范围是180°~270°。
在本实施例中,该确定单元501对于该水平预测模式,用于预测的角度越小,则确定的该滤波器的抽头数量越多;对于该垂直预测模式,用于预测的角度越大,则确定的该滤波器的抽头数量越多。
在本实施例中,滤波单元502可以使用具有确定的数量的抽头的滤波器,对参考像素进行滤波处理。
在本实施例中,确定单元501确定的抽头的数量为第一数量,滤波单元502当该第一数量大于预设阈值时,使用至少两个级联的、具有第二数量的抽头的滤波器对参考像素进行滤波处理,第二数量小于第一数量。
在本实施例中,上述各个单元的功能的实现可以参见实施例1中的自适应滤波方法的各个步骤的实施,此处不再赘述。
由上述实施例可知,根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。
实施例3
本发明实施例还提供了一种电子设备,图6是本发明实施例3的电子设备的一示意图。如图6所示,电子设备600包括参考像素的自适应滤波装置601,其中,参考像素的自适应滤波装置601的结构和功能与实施例2中的记载相同,此处不再赘述。
图7是本发明实施例3的电子设备的系统构成的一示意框图。如图7所示,电子设备700可以包括中央处理器701和存储器702;存储器702耦合到中央处理器701。该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
如图7所示,该电子设备700还可以包括:输入单元703、显示器704、电源705。
在一个实施方式中,实施例1所述的参考像素的自适应滤波装置的功能可以被集成到中央处理器701中。其中,中央处理器701可以被配置为:根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,以根据所述角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
例如,所述用于预测的角度属于不同的角度区间时,所述滤波器具有不同的抽头数量。
例如,所述角度预测模式包括水平预测模式和垂直预测模式,
所述水平预测模式的角度范围是0°~90°,所述垂直预测模式的角度范围是180°~270°。
例如,所述根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量,包括:对于所述水平预测模式,用于预测的角度越小,则确定的所述滤波器的抽头数量越多;对于所述垂直预测模式,用于预测的角度越大,则确定的所述滤波器的抽头数量越多。
例如,所述根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,包括:使用具有确定的所述数量的抽头的滤波器,对所述参考像素进行滤波处理。
例如,所述根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,包括:确定的抽头的所述数量为第一数量,当所述第一数量大于预设阈值时,使用至少两个级联的、具有第二数量的抽头的滤波器对所述参考像素进行滤波处理,所述第二数量小于所述第一数量。
在另一个实施方式中,实施例1所述的参考像素的自适应滤波装置可以与中央处理器701分开配置,例如可以将参考像素的自适应滤波装置配置为与中央处理器701连接的芯片,通过中央处理器701的控制来实现参考像素的自适应滤波装置的功能。
在本实施例中电子设备700也并不是必须要包括图7中所示的所有部件。
如图7所示,中央处理器701有时也称为控制器或操作控件,可以包括微处理器或其它处理器装置和/或逻辑装置,中央处理器701接收输入并控制电子设备700的各个部件的操作。
存储器702,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。并且中央处理器701可执行该存储 器702存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。电子设备700的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,根据角度预测模式中的用于预测的角度自适应的确定合适的滤波器的抽头数量,并根据确定的抽头的数量,使用滤波器对参考像素进行滤波处理,能够解决在使用参考像素对编码块预测时导致预测块的像素不连续的问题,使得像素之间更加平滑,从而能够提高预测块的视觉表现。
本发明实施例还提供一种计算机可读程序,其中当在用于参考像素的自适应滤波装置或电子设备中执行所述程序时,所述程序使得计算机在所述参考像素的自适应滤波装置或电子设备中执行实施例1所述的参考像素的自适应滤波方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在参考像素的自适应滤波装置或电子设备中执行实施例1所述的参考像素的自适应滤波方法。
结合本发明实施例描述的在参考像素的自适应滤波装置中进行训练的方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图5中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图5描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集 成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图5描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (13)

  1. 一种参考像素的自适应滤波方法,所述方法包括:
    根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及
    根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,以根据所述角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
  2. 根据权利要求1所述的方法,其中,
    所述用于预测的角度属于不同的角度区间时,所述滤波器具有不同的抽头数量。
  3. 根据权利要求1所述的方法,其中,
    所述角度预测模式包括水平预测模式和垂直预测模式,
    所述水平预测模式的角度范围是0°~90°,所述垂直预测模式的角度范围是180°~270°。
  4. 根据权利要求3所述的方法,其中,所述根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量,包括:
    对于所述水平预测模式,用于预测的角度越小,则确定的所述滤波器的抽头数量越多;
    对于所述垂直预测模式,用于预测的角度越大,则确定的所述滤波器的抽头数量越多。
  5. 根据权利要求1所述的方法,其中,所述根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,包括:
    使用具有确定的所述数量的抽头的滤波器,对所述参考像素进行滤波处理。
  6. 根据权利要求1所述的方法,其中,所述根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,包括:
    确定的抽头的所述数量为第一数量,当所述第一数量大于预设阈值时,使用至少两个级联的、具有第二数量的抽头的滤波器对所述参考像素进行滤波处理,所述第二数量小于所述第一数量。
  7. 一种参考像素的自适应滤波装置,所述装置包括:
    确定单元,其用于根据角度预测模式中的用于预测的角度确定滤波器的抽头的数量;以及
    滤波单元,其用于根据确定的抽头的数量,使用滤波器对所述参考像素进行滤波处理,以根据所述角度并使用经过滤波处理后的参考像素对编码块进行预测而得到预测块。
  8. 根据权利要求7所述的装置,其中,
    所述用于预测的角度属于不同的角度区间时,所述滤波器具有不同的抽头数量。
  9. 根据权利要求7所述的装置,其中,
    所述角度预测模式包括水平预测模式和垂直预测模式,
    所述水平预测模式的角度范围是0°~90°,所述垂直预测模式的角度范围是180°~270°。
  10. 根据权利要求9所述的装置,其中,
    所述确定单元对于所述水平预测模式,用于预测的角度越小,则确定的所述滤波器的抽头数量越多;对于所述垂直预测模式,用于预测的角度越大,则确定的所述滤波器的抽头数量越多。
  11. 根据权利要求7所述的装置,其中,
    所述滤波单元使用具有确定的所述数量的抽头的滤波器,对所述参考像素进行滤波处理。
  12. 根据权利要求7所述的装置,其中,
    确定的抽头的所述数量为第一数量,
    所述滤波单元当所述第一数量大于预设阈值时,使用至少两个级联的、具有第二数量的抽头的滤波器对所述参考像素进行滤波处理,所述第二数量小于所述第一数量。
  13. 一种电子设备,所述电子设备包括根据权利要求7-12中的任一项所述的装置。
PCT/CN2019/075678 2019-02-21 2019-02-21 参考像素的自适应滤波方法及装置、电子设备 WO2020168508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075678 WO2020168508A1 (zh) 2019-02-21 2019-02-21 参考像素的自适应滤波方法及装置、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075678 WO2020168508A1 (zh) 2019-02-21 2019-02-21 参考像素的自适应滤波方法及装置、电子设备

Publications (1)

Publication Number Publication Date
WO2020168508A1 true WO2020168508A1 (zh) 2020-08-27

Family

ID=72143323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075678 WO2020168508A1 (zh) 2019-02-21 2019-02-21 参考像素的自适应滤波方法及装置、电子设备

Country Status (1)

Country Link
WO (1) WO2020168508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598917A (en) * 2020-09-18 2022-03-23 Imagination Tech Ltd Downscaler and method of downscaling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325256A (zh) * 2011-09-14 2012-01-18 河海大学常州校区 基于图像宏块编码模式决策的环路滤波方法
CN103339943A (zh) * 2010-12-08 2013-10-02 Lg电子株式会社 内预测方法及使用该方法的编码装置和解码装置
CN106170093A (zh) * 2016-08-25 2016-11-30 上海交通大学 一种帧内预测性能提升编码方法
WO2018063886A1 (en) * 2016-09-28 2018-04-05 Qualcomm Incorporated Improved interpolation filters for intra prediction in video coding
WO2018074626A1 (ko) * 2016-10-19 2018-04-26 디지털인사이트주식회사 적응적 보간 필터를 사용하는 비디오 코딩 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339943A (zh) * 2010-12-08 2013-10-02 Lg电子株式会社 内预测方法及使用该方法的编码装置和解码装置
CN102325256A (zh) * 2011-09-14 2012-01-18 河海大学常州校区 基于图像宏块编码模式决策的环路滤波方法
CN106170093A (zh) * 2016-08-25 2016-11-30 上海交通大学 一种帧内预测性能提升编码方法
WO2018063886A1 (en) * 2016-09-28 2018-04-05 Qualcomm Incorporated Improved interpolation filters for intra prediction in video coding
WO2018074626A1 (ko) * 2016-10-19 2018-04-26 디지털인사이트주식회사 적응적 보간 필터를 사용하는 비디오 코딩 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598917A (en) * 2020-09-18 2022-03-23 Imagination Tech Ltd Downscaler and method of downscaling

Similar Documents

Publication Publication Date Title
CN111738923B (zh) 图像处理方法、设备及存储介质
JP3761061B2 (ja) データ処理システムおよびデータ処理方法
CN106057163B (zh) 灰阶补偿方法、灰阶补偿装置及液晶显示装置
WO2020168508A1 (zh) 参考像素的自适应滤波方法及装置、电子设备
CN108492773B (zh) 一种图像显示方法、异形显示设备及具有存储功能的装置
US11669942B2 (en) Image de-warping system
CN109840912B (zh) 一种图像中异常像素的修正方法及计算设备
CN112396558A (zh) 图像处理方法、装置及计算机可读存储介质
US20110261061A1 (en) Method and system for processing image data on a per tile basis in an image sensor pipeline
CN109493826B (zh) 电子显示器边界增益系统和方法
CN110223244A (zh) 一种图像处理的方法、装置、电子设备和存储介质
US10877811B1 (en) Scheduler for vector processing operator allocation
CN107330849A (zh) 一种全景图像拼接的方法、装置、设备及存储介质
KR20200034504A (ko) 이미지 신호 프로세서, 상기 이미지 신호 프로세서의 동작 방법 및 상기 이미지 신호 프로세서를 포함하는 애플리케이션 프로세서
CN114898693A (zh) 伽马调试方法、装置、显示装置及计算机可读存储介质
TWI749831B (zh) 選擇編碼單元的幀內模式的裝置及方法
CN109165619A (zh) 一种图像的处理方法、装置及电子设备
CN108765503B (zh) 一种肤色检测方法、装置及终端
WO2024113590A1 (zh) 红外触摸屏的触点识别方法、装置及红外触摸屏
US20120200748A1 (en) Image processing apparatus, electronic camera, and storage medium storing image processing program
CN109271538A (zh) 一种图片存储方法及相关设备
CN110533653A (zh) 高压电气设备缺陷检测方法、装置及终端设备
CN111429384B (zh) 图像处理方法及装置
US11216307B1 (en) Scheduler for vector processing operator readiness
WO2021022467A1 (zh) 图像编码方法、装置以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916058

Country of ref document: EP

Kind code of ref document: A1