WO2020168504A1 - 一种传输线及通信线缆 - Google Patents

一种传输线及通信线缆 Download PDF

Info

Publication number
WO2020168504A1
WO2020168504A1 PCT/CN2019/075656 CN2019075656W WO2020168504A1 WO 2020168504 A1 WO2020168504 A1 WO 2020168504A1 CN 2019075656 W CN2019075656 W CN 2019075656W WO 2020168504 A1 WO2020168504 A1 WO 2020168504A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
dielectric
dielectric constant
transmission line
constant
Prior art date
Application number
PCT/CN2019/075656
Other languages
English (en)
French (fr)
Inventor
文玥
王超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/075656 priority Critical patent/WO2020168504A1/zh
Publication of WO2020168504A1 publication Critical patent/WO2020168504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Definitions

  • This application relates to the field of communications, and specifically to a transmission line and a communication cable.
  • the existing different interfaces such as the interface between the chip and the chip, the interface between the chip and the module, and the interface for the backplane interconnection, need to be connected through a communication cable.
  • the existing communication cable usually consists of a large number of transmission lines. These transmission lines have problems such as dense arrangement, difficult heat dissipation, and low transmission rate.
  • the common type of existing transmission lines is coaxial transmission lines, as shown in Figure 2.
  • a coaxial transmission line is usually composed of an inner conductor, an insulating dielectric layer, and an outer conductor layer. It is a shielded guided wave structure. Electromagnetic waves are mainly transmitted in the insulating dielectric layer by transverse electric and magnetic (TEM) waves. . Due to the limitation of the working frequency bandwidth of the existing transmission lines and when the transmission lines are too dense, the problem of coupling crosstalk between adjacent transmission lines will seriously affect the transmission rate and cause great troubles to high-speed data communication.
  • TEM transverse electric and magnetic
  • the embodiments of the present application provide a transmission line and a communication cable.
  • the transmission line is a surface wave transmission line, which has a wider working frequency band, can suppress coupling crosstalk, and improve the transmission rate.
  • the first aspect of the embodiments of the present application provides a transmission line, the transmission line includes: a conductor and a combined dielectric layer, the combined dielectric layer includes a first dielectric layer and a second dielectric layer; wherein the first dielectric layer is wrapped in On the outer surface of the conductor, the second dielectric layer is wrapped around the outer surface of the first dielectric layer, the dielectric constant of the first dielectric layer is the first dielectric constant, and the dielectric constant of the second dielectric layer is the second dielectric constant;
  • the first dielectric constant is greater than the second dielectric constant, electromagnetic waves are transmitted in the first dielectric layer in the form of surface waves, or when the first dielectric constant is less than the second dielectric constant, electromagnetic waves are transmitted in the second dielectric layer Transmission in the form of surface waves.
  • the transmission line transmits electromagnetic waves in the form of surface waves, and the structural characteristics of the combined medium layer can confine the electromagnetic energy of the electromagnetic wave in the combined medium layer, thereby reducing the radiation of electromagnetic energy to the outside of the combined medium layer and avoiding radiation outside the combined medium layer
  • the electromagnetic energy is coupled with the electromagnetic energy on the adjacent transmission line, which can suppress the generation of coupling crosstalk.
  • the electromagnetic wave transmitted by the surface wave of the transmission line can be millimeter wave or even terahertz wave, and its working frequency band is wider, which can increase the transmission rate.
  • the electromagnetic wave when the first dielectric constant is greater than the second dielectric constant, the electromagnetic wave is in the form of a transverse magnetic (TM) mode surface wave.
  • the second dielectric layer can suppress the electromagnetic energy of the surface electromagnetic wave from radiating to the outside of the combined dielectric layer, thereby suppressing coupling crosstalk.
  • the TM mode requires at least two dielectric layers to confine the electromagnetic energy, so its volume is smaller, lighter, and more convenient in manufacturing.
  • the first dielectric layer is adjacent to the metal conductor, and the electromagnetic surface wave is in the first When transmitted in a dielectric layer, the electromagnetic energy will interact with the metal conductor and cause metal loss. In addition, dielectric loss will occur when the electromagnetic surface wave is transmitted in the medium. Therefore, the TM mode has a greater loss of electromagnetic energy for transmission.
  • the combined dielectric layer further includes a third dielectric layer; the third dielectric layer is wrapped in On the outer surface of the second dielectric layer, the dielectric constant of the third dielectric layer is the third dielectric constant; the third dielectric constant is less than the second dielectric constant, and the electromagnetic wave is in the form of a transverse electric (TE) mode surface wave Transmission in the second medium layer.
  • TE transverse electric
  • the electromagnetic surface wave is transmitted in the second dielectric layer, and there is no metal loss, only dielectric loss. Therefore, compared with the TM mode, the TE mode has a smaller electromagnetic energy loss, but the TE mode requires at least three Only the dielectric layer can restrain the electromagnetic energy, so its volume will be relatively large, and the manufacturing will be more complicated.
  • the thickness of the first dielectric layer is greater than or equal to the first thickness, and the second thickness corresponds to the second dielectric layer A quarter of the wavelength of the medium. Only when the thickness of the first dielectric layer meets the requirement of the first thickness can the electromagnetic surface wave be stably transmitted in the first dielectric layer.
  • the thickness of the second dielectric layer is greater than or equal to the second thickness, and the second thickness corresponds to the second dielectric layer A quarter of the wavelength of the medium.
  • the thickness of the second dielectric layer meets the requirement of the second thickness to enable stable transmission of electromagnetic surface waves in the second dielectric layer.
  • the combined dielectric layer further includes a fourth dielectric layer; the fourth dielectric layer is wrapped in the second medium On the outer surface of the layer, the dielectric constant of the fourth dielectric layer is the fourth dielectric constant; the fourth dielectric constant is smaller than the second dielectric constant.
  • the fourth dielectric layer can further suppress the electromagnetic energy in the second dielectric layer from radiating to the outside of the combined dielectric layer, reducing coupling crosstalk.
  • the combined dielectric layer further includes a fifth dielectric layer; the fifth dielectric layer is wrapped in the third medium On the outer surface of the layer, the dielectric constant of the fifth dielectric layer is the fifth dielectric constant; the fifth dielectric constant is smaller than the third dielectric constant.
  • the fifth dielectric layer can further inhibit the electromagnetic energy in the third dielectric layer from radiating to the outside of the combined dielectric layer, reducing coupling crosstalk.
  • the material of the first dielectric layer or the second dielectric layer Including silicon dioxide this material has a high dielectric constant, which can reduce the thickness requirements of the dielectric layer for transmitting electromagnetic surface waves, reduce the volume of the transmission line, and this material has low loss of electromagnetic surface waves.
  • a second aspect of the present application provides a communication cable, which includes at least two transmission lines as described in the first aspect. Since the transmission line described in the first aspect has the characteristics of broadband, low crosstalk, and high transmission rate, the communication cable can reach the required transmission effect with a smaller number of transmission lines, reducing cable density and reducing space Occupied.
  • the transmission line provided by the embodiment of the application is composed of a conductor and a combined dielectric layer.
  • the combined dielectric layer includes a first dielectric layer and a second dielectric layer. Electromagnetic waves are transmitted in the form of surface waves in the first dielectric layer or the second dielectric layer, so
  • the transmission line has a wider working frequency band, and the dielectric structure of the combined dielectric layer can suppress the electromagnetic energy of the electromagnetic wave from radiating outside the combined dielectric layer, and can reduce the generation of coupling crosstalk and energy loss, thereby increasing the transmission rate of the transmission line.
  • An embodiment of the present application also provides a communication cable, which is composed of at least two transmission lines described above. Since the transmission lines have a higher transmission rate, the communication cable does not need to integrate too many transmission lines to meet transmission requirements. The cable density is reduced and space is saved.
  • Figure 1 is a schematic diagram of the structure of an existing communication cable
  • Figure 2 is a schematic diagram of the structure of a coaxial transmission line
  • FIG. 3 is a schematic diagram of an embodiment of a transmission line in an embodiment of the application.
  • FIG. 4 is a schematic diagram of another embodiment of a transmission line in an embodiment of the application.
  • FIG. 5 is a schematic diagram of another embodiment of a transmission line in an embodiment of the application.
  • FIG. 6 is a schematic diagram of another embodiment of a transmission line in an embodiment of the application.
  • FIG. 7 is a schematic diagram of another embodiment of a transmission line in an embodiment of the application.
  • Figure 8 is a coupling field distribution diagram when a single-layer dielectric surface wave transmission line generates coupling crosstalk
  • FIG. 9 is a diagram of the coupling field distribution of TM mode surface electromagnetic waves in an embodiment of the application.
  • FIG. 10 is a diagram of the coupling field distribution of TE mode surface electromagnetic waves in an embodiment of this application.
  • FIG. 11 is a schematic diagram of an embodiment of a communication cable in an embodiment of this application.
  • FIG. 12 is a schematic diagram of another embodiment of a communication cable in an embodiment of this application.
  • the embodiments of the present application provide a transmission line, which can effectively reduce the coupling crosstalk between adjacent transmission lines and increase the transmission rate.
  • the embodiment of the present application also provides a communication cable. Detailed descriptions are given below.
  • Ethernet devices need to transmit data through communication cables.
  • Communication cables are composed of multiple transmission lines.
  • the interconnection and backplane interconnection require the transmission line to reach a transmission rate of 112Gbps.
  • the traditional transmission line has a high layout density, and the problem of coupling crosstalk between adjacent transmission lines is prone to occur, and the working frequency band of these transmission lines is relatively narrow. These problems lead to a slower transmission rate of the transmission line.
  • traditional transmission lines can no longer meet the existing needs.
  • an embodiment of the present application proposes a transmission line that can suppress the coupling crosstalk and increase the communication rate.
  • Fig. 3 is a schematic diagram of an embodiment of a transmission line in an embodiment of the present application.
  • the transmission line in the embodiment of the present application may include: a conductor 10 and a combined dielectric layer 20, where the conductor 10 may be a round conductor or other types of conductors, which may be metal conductors or other types.
  • the material of the conductor is not specifically limited here.
  • the combined dielectric layer 20 includes at least two dielectric layers.
  • the conductor in FIG. 3 is a round conductor.
  • the combined dielectric layer 20 may include a first dielectric layer 201 and a second dielectric layer 202.
  • the first dielectric layer 201 is wrapped around the outer surface of the conductor 10
  • the second dielectric layer 202 is wrapped on the outer surface of the first dielectric layer 201
  • the dielectric constant of the first dielectric layer 201 is the first dielectric constant
  • the dielectric constant of the second dielectric layer 202 is the second dielectric constant.
  • first dielectric constant When the first dielectric constant is greater than the second dielectric constant, electromagnetic waves are transmitted in the first dielectric layer 201 in the form of surface waves, or when the first dielectric constant is less than the second dielectric constant, the electromagnetic waves are transmitted in the second dielectric layer. 202 is transmitted in the form of surface waves.
  • the transmission line provided in the present application is a surface wave transmission line, and the waveguide structure formed by the conductor and the combined dielectric layer is a surface wave waveguide.
  • This waveguide structure can transmit electromagnetic waves in the form of surface waves.
  • the traditional transmission line such as a common coaxial line, has a traditional electromagnetic waveguide structure.
  • the coaxial line is composed of an inner conductor, an insulating medium, and an outer conductor layer.
  • the outer conductor layer is also called a shielding layer, which can shield electromagnetic waves and transmit them in the insulating medium in the layer.
  • the electromagnetic waves transmitted in the insulating medium are TEM waves.
  • the surface wave waveguide of the transmission line provided in this application can transmit millimeter waves or even terahertz waves, while the highest frequency electromagnetic wave that can be transmitted by the traditional transmission line is only millimeter waves, so the operating frequency band of the transmission line provided in this application Wider, can greatly improve the transmission rate.
  • Electromagnetic waves transmitted in the form of surface waves can be called electromagnetic surface waves.
  • a common method is to cover a dielectric layer outside the conductor, so that electromagnetic waves propagate in the dielectric layer along the conductor in the form of surface waves.
  • the thickness of the medium layer of the surface wave transmission line of a single-layer medium needs to be at least a quarter of the thickness of the medium wavelength, so that the electromagnetic energy of the surface electromagnetic wave can be confined in the medium layer as much as possible, so that the electromagnetic energy can be transmitted stably, but when the electromagnetic surface When the wave propagates in the dielectric layer, its electromagnetic energy will radiate to the outside of the dielectric layer. At this time, if a dielectric layer with a smaller dielectric constant than the dielectric layer is added outside the dielectric layer, a high dielectric constant dielectric layer can be formed.
  • the dielectric structure with the inner and low dielectric constant dielectric layers on the outside, and the low dielectric constant dielectric layer on the outside can effectively inhibit the high dielectric constant dielectric layer from radiating electromagnetic energy to the outside of the dielectric layer, thereby confining electromagnetic energy in the dielectric layer.
  • This medium structure can greatly reduce the electromagnetic energy radiated by the electromagnetic surface wave transmitted in the medium layer to the outside of the medium layer. Under this structure, the electromagnetic energy radiated by the electromagnetic surface wave outside the medium layer is almost negligible, so it can avoid radiation to The electromagnetic energy outside the dielectric layer is coupled to the adjacent transmission line, thereby suppressing the occurrence of coupling crosstalk.
  • the transmission line in the embodiment of this application has a wider working frequency band and can be used to transmit millimeter waves and terahertz waves. Both electromagnetic wave frequency bands are very wide, and the spectrum resources in the terahertz frequency band are very rich. , The use of it can greatly increase the transmission rate of the transmission line, and the multi-layer dielectric structure of the transmission line can confine the electromagnetic energy in the dielectric layer, reduce the electromagnetic energy radiated to the outside of the dielectric layer, and avoid the electromagnetic energy radiated outside the dielectric layer from coupling to Adjacent transmission lines, thereby suppressing coupling crosstalk between transmission lines. It can be seen that the transmission line proposed in the present application has the characteristics of wide operating frequency and low crosstalk, which greatly improves its transmission rate.
  • the first dielectric constant when the first dielectric constant is greater than the second dielectric constant, electromagnetic waves are transmitted in the first dielectric layer 201 in the transverse magnetic (TM) mode, and the second dielectric
  • the layer 202 and the first dielectric layer 201 form a dielectric structure with a high dielectric constant dielectric layer inside and a low dielectric constant dielectric layer outside.
  • the second dielectric layer 202 can suppress the TM mode electromagnetic surface wave transmitted in the first dielectric layer 201
  • the electromagnetic energy is radiated to the outside of the combined dielectric layer 20, so that the electromagnetic energy is bound in the first dielectric layer 201, which greatly reduces the electromagnetic energy radiated outside the transmission line in the combined dielectric layer 20, thereby effectively suppressing the coupling crosstalk between adjacent transmission lines produce.
  • the TM mode electromagnetic surface wave is transmitted in the first dielectric layer 201, and the thickness of the first dielectric layer 201 needs to be at least the first thickness, which is a quarter of the wavelength of the medium corresponding to the first dielectric layer
  • the wavelength of the medium corresponding to the first medium layer is related to the size of the first dielectric constant.
  • the smaller the thickness requirement of the first dielectric layer is, it is beneficial to reduce the volume of the transmission line and facilitate the use.
  • the material of the first dielectric layer may be a silicon dioxide material.
  • This material has a higher dielectric constant and a lower dielectric loss, which can reduce the loss of electromagnetic waves during transmission in the first dielectric layer, and reduce the The thickness of a dielectric layer is required to reduce the volume of the transmission line.
  • silica material is only a preferred solution.
  • the first dielectric constant when the first dielectric constant is greater than the second dielectric constant, electromagnetic waves are transmitted in the first dielectric layer 201 in the form of transverse magnetic (TM) mode surface waves, and the second dielectric layer 202 functions to suppress The electromagnetic energy of the electromagnetic surface wave transmitted in the first dielectric layer 201 radiates outward.
  • the thickness of the second dielectric layer 202 is not too high. Therefore, for the purpose of reducing the volume of the transmission line, the thickness of the second dielectric layer 202 can be less than The thickness of the first dielectric layer 201.
  • the combined dielectric layer 20 may further include a third dielectric layer 203, the third dielectric layer 203 covering the conductor 10 On the outer surface, the dielectric constant of the third dielectric layer 203 is the third dielectric constant, and the third dielectric constant is smaller than the second dielectric constant.
  • the electromagnetic wave can pass through the first dielectric layer 201 to the second dielectric layer 202 and be a transverse electric wave (transverse electric wave).
  • TE transverse electric wave
  • the third dielectric layer 203 and the second dielectric layer 202 can form a dielectric structure with a high dielectric constant dielectric layer inside and a low dielectric constant dielectric layer outside,
  • the third dielectric layer 203 can suppress the electromagnetic energy of the TE mode surface electromagnetic wave transmitted in the second dielectric layer 202 from radiating to the outside of the combined dielectric layer 20, so that the electromagnetic energy is trapped in the second dielectric layer 202, reducing the combined dielectric layer 20 The electromagnetic energy radiated to the outside of the transmission line, thereby suppressing the generation of coupling crosstalk between adjacent transmission lines.
  • the TE mode electromagnetic surface wave is transmitted in the second dielectric layer 202, and the thickness of the second dielectric layer 202 needs to be at least the second thickness, which is a quarter of the wavelength of the medium corresponding to the second dielectric layer. 1.
  • the wavelength of the medium corresponding to the second dielectric layer is related to the size of the second dielectric constant. The larger the second dielectric constant, the smaller the wavelength of the medium corresponding to the second dielectric layer, and the smaller the second thickness. Therefore, the smaller the thickness of the second dielectric layer is required, it is beneficial to reduce the volume of the transmission line. It’s more convenient.
  • the material of the second dielectric layer may be a silicon dioxide material.
  • This material has a high dielectric constant and low dielectric loss, which can reduce the loss of electromagnetic waves during transmission in the second dielectric layer and reduce the second medium.
  • the thickness of the layer is required to reduce the volume of the transmission line. It should be understood that the above-mentioned silica material is only a preferred solution. In addition, there may be other materials that can achieve similar effects, which is not limited in this application.
  • the electromagnetic wave is surfaced in a transverse electric (TE) mode in the second dielectric layer 202 Waves are transmitted in the second dielectric layer 202.
  • the function of the third dielectric layer 203 is to inhibit the electromagnetic energy of the electromagnetic surface waves transmitted in the second dielectric layer 202 from radiating outward.
  • the function of the first dielectric layer 201 is to guide the electromagnetic surface waves.
  • the thickness of the third dielectric layer 203 and the first dielectric layer 201 is not too high, so for reducing
  • the thickness of the third dielectric layer 203 and the first dielectric layer 201 may be smaller than the thickness of the first dielectric layer 201.
  • the combined dielectric layer 20 may further include a fourth dielectric layer 204, which is wrapped on the outer surface of the second dielectric layer 202, as shown in FIG. Show.
  • the dielectric constant of the fourth dielectric layer 204 is the fourth dielectric constant, and the fourth dielectric constant is less than the second dielectric constant, so the fourth dielectric layer 204 and the second dielectric layer 202 can form a high dielectric constant dielectric layer.
  • the dielectric structure outside the low dielectric constant dielectric layer can further reduce the electromagnetic energy radiated to the outside of the combined dielectric layer 20.
  • the combined dielectric layer 20 may further include a fifth dielectric layer 205, and the fifth dielectric layer 205 is wrapped on the outer surface of the third dielectric layer 203, as shown in FIG. .
  • the dielectric constant of the fifth dielectric layer 205 is the fifth dielectric constant.
  • the third dielectric constant is greater than the fifth dielectric constant, the third dielectric layer 203 and the fifth dielectric layer 205 form a high dielectric constant dielectric layer.
  • the dielectric structure outside the low dielectric constant dielectric layer can also further reduce the electromagnetic energy radiated to the outside of the combined dielectric layer 20.
  • the transmission line transmits the electromagnetic surface wave in the TM mode
  • the electromagnetic surface wave is mainly transmitted in the first medium layer, and its electromagnetic energy is also concentrated and transmitted in the first medium layer.
  • the first dielectric layer is a dielectric layer wrapped on the outer surface of the metal conductor.
  • the electromagnetic energy will experience metal loss, and when electromagnetic energy is transmitted in the dielectric layer Due to the dielectric loss that occurs, the electromagnetic energy loss of the TM mode is relatively large, but the TM mode only needs two dielectric layers to achieve the restraint of the electromagnetic energy, making it smaller in size, more convenient to use, and more in manufacturing. Convenience.
  • the transmission line transmits an electromagnetic surface wave in the TE mode
  • the electromagnetic surface wave is mainly transmitted in the second medium layer, and its electromagnetic energy is also concentrated and transmitted in the second medium layer.
  • the second dielectric layer is not in contact with the metal conductor.
  • electromagnetic energy is transmitted in the second dielectric layer, there will be no metal loss of electromagnetic energy, but only dielectric loss when transmitted in the dielectric layer. Therefore, compared with TM mode, TE
  • the electromagnetic energy loss of the mode is small, but the TE mode requires at least three dielectric layers to achieve the restraint effect on the electromagnetic energy, so its volume is slightly larger, which is not conducive to miniaturization, and the manufacturing complexity is also higher.
  • adjusting the composition of the combined dielectric layer according to the dielectric constant can make electromagnetic waves propagate in the transmission line in the form of TM mode surface waves or TE mode surface waves.
  • the dielectric structure of the combined dielectric layer makes the energy of electromagnetic waves confined in Combine the dielectric layer to prevent electromagnetic energy on the transmission line from coupling to adjacent transmission lines, resulting in coupling crosstalk.
  • the transmission line can also use a larger number of dielectric layers to suppress the outward radiation of electromagnetic energy. There may be certain differences in actual effects, but the purpose of suppressing coupling crosstalk can also be achieved.
  • This application relates to the medium of the transmission line. The number of layers is not limited.
  • FIG. 8 The coupling field distribution diagram when coupling crosstalk occurs between adjacently placed single-layer dielectric surface wave transmission lines is shown in Figure 8. It can be seen from FIG. 8 that the electromagnetic energy on the transmission line A and the transmission line B placed adjacently are coupled with each other, thereby generating coupling crosstalk. This situation will cause great interference to high-speed data communication and affect the transmission rate.
  • Figure 9 is a TM mode surface electromagnetic wave coupling field distribution diagram. It can be seen from Figure 9 that compared with Figure 8, the electromagnetic energy on the transmission line C and the transmission line D placed adjacently in Figure 9 is stable, and the transmission line C and the transmission line D The degree of coupling crosstalk between is very low and can be ignored.
  • Figure 10 is the TE mode surface electromagnetic wave coupling field distribution diagram. It can be seen from Figure 10 that compared with Figure 8, the electromagnetic energy on the transmission line E and the transmission line F placed adjacently in Figure 10 is stable, and the transmission line E and the transmission line F The degree of coupling crosstalk between is very low and can be ignored as well.
  • the transmission line proposed in the embodiment of the present application can suppress the coupling crosstalk between the lines, thereby increasing the transmission rate.
  • the embodiment of the present application also provides a communication cable, which is shown in FIG. 11.
  • the communication cable may include at least two transmission lines 30, and the at least two transmission lines 30 are the transmission lines described in the foregoing embodiment.
  • the communication cable may further include a first connector 40 and a second connector 50.
  • the first connector 40 and the second connector 50 are respectively provided at both ends of the at least two transmission lines 30, which can be They are used to connect different interfaces.
  • the communication cable may further include a protective layer 60.
  • the protective layer 60 can wrap the at least two transmission lines 30 therein to prevent the at least two transmission lines 30 from being accidentally damaged, which can play a protective role.
  • the communication cable can achieve the required transmission effect with a smaller number of transmission lines, which can reduce the transmission line density of the communication cable and save space occupation.

Landscapes

  • Insulated Conductors (AREA)

Abstract

本申请公开了一种传输线,该传输线包括:导体和组合介质层,该组合介质层包括第一介质层和第二介质层;该第一介质层包裹在导体的外表面,该第二介质层包裹在第一介质层的外表面,第一介质层的介电常数为第一介电常数,第二介质层的介电常数为第二介电常数;当第一介电常数大于第二介电常数时,电磁波在第一介质层中以表面波的形式传输,或者当第一介电常数小于第二介电常数时,电磁波在第二介质层中以表面波的形式传输。本申请还提供一种通信线缆。本申请提供的传输线可以抑制相邻传输线之间发生耦合串扰,同时具有工作频带宽的特性,提高了传输速率。

Description

一种传输线及通信线缆 技术领域
本申请涉及通信领域,具体涉及一种传输线及通信线缆。
背景技术
随着以太网的高速发展,接口及物理层标准的定义开始实施,与此同时,对不同接口之间的传输速率也有了更高的要求。
现有的不同接口,例如芯片与芯片之间的接口、芯片与模块之间的接口以及背板互连的接口,这些接口之间需要通过通信线缆进行连接。如图1所示,现有的通信线缆通常由大量的传输线组成,这些传输线存在排布密集、散热困难、传输速率低等问题,现有的传输线常见的类型为同轴传输线,如图2所示,同轴传输线通常由内导体、绝缘介质层和外导体层组成,其为一种屏蔽式导波结构,电磁波主要在绝缘介质层中以横电磁(transverse electric and magnetic,TEM)波传输。由于现有传输线工作频带宽度的限制以及传输线过于密集时,相邻传输线之间的耦合串扰问题,会严重影响传输速率,对高速数据通信带来极大的困扰。
由此可见,如何解决现有传输线工作频带较窄以及传输线之间的耦合串扰问题,以提高传输速率是需要解决的问题。
发明内容
本申请实施例提供了一种传输线及通信线缆,该传输线为表面波传输线,其工作频带更宽,并且可以抑制耦合串扰,提高了传输速率。
有鉴于此,本申请实施例的第一方面提供一种传输线,该传输线包括:导体和组合介质层,该组合介质层包括第一介质层和第二介质层;其中,第一介质层包裹在导体的外表面,第二介质层包裹在第一介质层的外表面,第一介质层的介电常数为第一介电常数,第二介质层的介电常数为第二介电常数;当第一介电常数大于第二介电常数时,电磁波在第一介质层中以表面波的形式传输,或者当第一介电常数小于第二介电常数时,电磁波在第二介质层中以表面波的形式传输。该传输线以表面波的形式传输电磁波,并且该组合介质层的结构特性可以将电磁波的电磁能量束缚在组合介质层中,从而减少电磁能量向组合介质层外辐射,以避免辐射到组合介质层外的电磁能量与相邻的传输线上的电磁能量耦合,可以抑制耦合串扰的产生,该传输线以表面波传输的电磁波可以是毫米波甚至太赫兹波,其工作频带更宽,可以提高传输速率。
可选的,结合上述第一方面,在第一种可能的实现方式中,当第一介电常数大于第二介电常数时,电磁波以横磁场(transverse magnetic,TM)模式表面波的形式在第一介质层传输。在这种实现方式中,第二介质层可以抑制电磁表面波的电磁能量向组合介质层外辐射,从而抑制耦合串扰。TM模式至少仅需要两个介质层就可以实现对电磁能量的束缚作用,所以其体积更小,更轻便,在制造上更加方便,但是第一介质层与金属导体相邻,电磁表面波在第一介质层中传输,其电磁能量会与金属导体作用,发生金属损耗,此外电磁表面波在介质中传输时会发生介质损耗,所以TM模式对传输的电磁能量损耗较大。
可选的,结合上述第一方面,在第二种可能的实现方式中,当第一介电常数小于第二介电常数时,组合介质层还包括第三介质层;第三介质层包裹在第二介质层的外表面,第三介质层的介电常数为第三介电常数;第三介电常数小于第二介电常数,电磁波以横电场(transverse electric,TE)模式表面波的形式在第二介质层传输。在这种实现方式中,电磁表面波在第二介质层中传输,不会发生金属损耗,只有介质损耗,所以相对于TM模式,TE模式的电磁能量损耗较小,但是TE模式至少需要三个介质层才能实现对电磁能量的束缚作用,所以其体积也会相对较大,制造上更加复杂。
可选的,结合上述第一方面第一种可能的实现方式,在第三种可能的实现方式中,第一介质层的厚度大于或等于第一厚度,该第二厚度为第二介质层对应的介质波长的四分之一。第一介质层的厚度达到第一厚度的要求才能使电磁表面波在第一介质层中稳定传输。
可选的,结合上述第一方面第二种可能的实现方式,在第四种可能的实现方式中,第二介质层的厚度大于或等于第二厚度,该第二厚度为第二介质层对应的介质波长的四分之一。第二介质层的厚度达到第二厚度的要求可以使电磁表面波在第二介质层中稳定传输。
可选的,结合上述第一方面第一种或第三种可能的实现方式,在第五种可能的实现方式中,组合介质层还包括第四介质层;第四介质层包裹在第二介质层的外表面,第四介质层的介电常数为第四介电常数;第四介电常数小于第二介电常数。该第四介质层可以进一步抑制第二介质层中的电磁能量向组合介质层外辐射,减少耦合串扰。
可选的,结合上述第一方面第二种或第四种可能的实现方式,在第六种可能的实现方式中,组合介质层还包括第五介质层;第五介质层包裹在第三介质层的外表面,第五介质层的介电常数为第五介电常数;第五介电常数小于第三介电常数。该第五介质层可以进一步抑制第三介质层中的电磁能量向组合介质层外辐射,减少耦合串扰。
可选的,结合上述第一方面、第一方面第一种至第四种中任意一种可能的实现方式,在第七种可能的实现方式中,第一介质层或第二介质层的材料包括二氧化硅,这种材料的介电常数高,可以降低传输电磁表面波的介质层厚厚度要求,减小传输线的体积,且这种材料对电磁表面波的损耗较小。
本申请第二方面提供一种通信线缆,该通信线缆包括至少两根如上述第一方面所述的传输线。由于上述第一方面所述的传输线具有宽频带、低串扰的特性,传输速率较高,所以该通信线缆可以以更少数量的传输线到达所需要的传输效果,降低了线缆密度,减少空间占用。
本申请实施例提供的传输线由导体和组合介质层构成,该组合介质层包括第一介质层和第二介质层,电磁波以表面波的形式在第一介质层或第二介质层中传输,所以该传输线的工作频带更宽,且组合介质层的介质结构可以抑制电磁波的电磁能量向组合介质层外辐射,可以减少耦合串扰的产生和能量损耗,从而提高了传输线的传输速率。本申请实施例还提供一种通信线缆,该通信线缆由至少两根上述传输线组成,由于上述传输线具有更高的传输速率,所以该通信线缆无需集成过多传输线便可以满足传输需求,降低了线缆密度,节省了空间。
附图说明
图1为现有通信线缆的结构组成示意图;
图2为同轴传输线的结构示意图;
图3为本申请实施例中传输线一个实施例示意图;
图4为本申请实施例中传输线另一实施例示意图;
图5为本申请实施例中传输线另一实施例示意图;
图6为本申请实施例中传输线另一实施例示意图;
图7为本申请实施例中传输线另一实施例示意图;
图8为单层介质表面波传输线产生耦合串扰时的耦合场分布图;
图9为本申请实施例中TM模式表面电磁波耦合场分布图;
图10为本申请实施例中TE模式表面电磁波耦合场分布图;
图11为本申请实施例中通信线缆一个实施例示意图;
图12为本申请实施例中通信线缆另一实施例示意图。
具体实施方式
本申请实施例提供一种传输线,可以有效减少相邻的传输线之间的耦合串扰,提高传输速率。本申请实施例还提供一种通信线缆。以下分别进行详细说明。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以太网设备之间需要通过通信线缆进行数据传输,通信线缆是由多根传输线组成的,随着以太网的发展,对通信线缆的传输速率也有了更高的要求,数据中心短距互连和背板互连要求传输线达到112Gbps的传输速率。如图1所示,传统的传输线排布密度大,相邻的传输线之间容易发生耦合串扰的问题,而且这些传输线的工作频带较窄,这些问题导致传输线的传输速率较慢,随着高速数据通信技术的发展,传统的传输线已经无法满足现有的需求。为解决工作频带窄以及耦合串扰导致传输线传输速率慢的问题,本申请实施例提出一种可抑制耦合串扰、提高通信速率的传输线。
图3是本申请实施例中传输线一个实施例示意图。
如图3所示,本申请实施例中传输线可以包括:导体10和组合介质层20,其中,导体10可以是圆导体,也可以是其他形式的导体,其可以是金属导体,也可以是其他材质的导体,具体此处不做限定。组合介质层20包括至少两个介质层。
参阅图3,图3中的导体以圆导体为例,组合介质层20可以包括第一介质层201和第二介质层202,第一介质层201包裹在导体10的外表面,第二介质层202包裹在第一介质层201的外表面,第一介质层201的介电常数为第一介电常数,第二介质层202的介电常数为第二介电常数。
当第一介电常数大于第二介电常数时,电磁波在第一介质层201中以表面波的形式传输,或者当第一介电常数小于第二介电常数时,电磁波在第二介质层202中以表面波的形式传输。
本申请提供的传输线为表面波传输线,其导体和组合介质层形成的波导结构为表面波波导,这种波导结构可以使得电磁波以表面波的形式传输。而传统的传输线,比如常见的同轴线,其波导结构为传统的电磁波导。同轴线由内导体、绝缘介质和外导体层组成,外导体层也称为屏蔽层,其可以将电磁波屏蔽在层内的绝缘介质中传输,其绝缘介质中传输的电磁波为TEM波。与传统的传输线相比,本申请提供的传输线的表面波波导可以传输毫米波甚至太赫兹波,而传统的传输线可以传输的最高频电磁波仅为毫米波,所以本申请提供的传输线的工作频带更宽,可以大大提高传输速率。
表面波在物理学中是指以指数衰减的形式沿不同介质之间的界面传播的电磁波,因为其可以沿着折射率梯度或者具有不同介电常数的两种介质之间的界面被引导,以表面波形式传输的电磁波可称为电磁表面波。要实现电磁表面波的有效传输,常用的方法是在导体外部覆盖一层介质层,使得电磁波以表面波的形式,沿着导体在介质层中传播。
单层介质的表面波传输线的介质层厚度至少需要达到介质波长的四分之一的厚度,才能使电磁表面波的电磁能量尽可能束缚在介质层内,使电磁能量稳定传输,但是当电磁表面波在介质层中传输时,其电磁能量会向该介质层外辐射,此时若在该介质层外增加一个介电常数比该介质层小的介质层,可以形成高介电常数介质层在内和低介电常数介质层在外的介质结构,在外的低介电常数介质层可以有效抑制高介电常数介质层中向介质层外辐射电磁能量,从而实现将电磁能量束缚在介质层内。这种介质结构可以大大减少在介质层中传输的电磁表面波向介质层外辐射的电磁能量,这种结构下电磁表面波向介质层外辐射的电磁能量几乎可以忽略不计,所以可以避免辐射到介质层外的电磁能量耦合到相邻的传输线上,从而抑制耦合串扰的发生。
本申请实施例中的传输线与传统传输线相比,其工作频带更宽,可以用于传输毫米波和太赫兹波,这两种电磁波的频带都非常宽,在太赫兹波频段的频谱资源非常丰富,加以利用可以大大提升传输线的传输速率,且该传输线的多层介质结构可以将电磁能量束缚在介质层内,减少向介质层外辐射的电磁能量,避免向介质层外辐射的电磁能量耦合到相邻传输线上,从而抑制传输线之间的耦合串扰。由此可见,本申请提出的传输线具有工作频带宽、低串扰的特性,大大提高了其传输速率。
参阅图4,优选地,作为一个实施例,当第一介电常数大于第二介电常数时,电磁波以横磁波(transverse magnetic,TM)模式表面波在第一介质层201传输,第二介质层202与第一介质层201形成高介电常数介质层在内和低介电常数介质层在外的介质结构,第二介质层202可以抑制第一介质层201中传输的TM模式电磁表面波的电磁能量向组合介质层20外辐射,使得电磁能量被束缚在第一介质层201中,大大减少了组合介质层20中辐射到传输线外的电磁能量,从而有效抑制相邻传输线之间耦合串扰的产生。
在本实施例中,TM模式电磁表面波在第一介质层201传输,第一介质层201的厚度需要至少达到第一厚度,该第一厚度为第一介质层对应的介质波长的四分之一,第一介质层对应的介质波长与第一介电常数的大小相关。第一介电常数越大,第一介质层对应的介质波长越小,第一厚度也就越小,第一介质层的厚度要求越小,有利于减小该传输线的体积,便于使用。
可选的,该第一介质层的材料可以是二氧化硅材料,这种材料的介电常数较高,介质损耗较小,可以减少电磁波在第一介质层中传输时的损耗,以及降低第一介质层的厚度要求,减小传输线体积。应理解,上述二氧化硅材料只是一种较佳的方案,除此之外,还可能有其他的材料可以达到近似的效果,本申请对此不做限定。
可选的,当第一介电常数大于第二介电常数时,电磁波以横磁波(transverse magnetic,TM)模式表面波的形式在第一介质层201传输,第二介质层202的作用是抑制第一介质层201中传输的电磁表面波的电磁能量向外辐射,第二介质层202的厚度没有过高的要求,所以出于减小传输线体积的目的,第二介质层202的厚度可以小于第一介质层201的厚度。
参阅图5,优选地,作为一个实施例,当第一介电常数小于第二介电常数时,组合介质层20还可以包括第三介质层203,第三介质层203包覆在导体10的外表面,第三介质层203的介电常数为第三介电常数,第三介电常数小于第二介电常数。
当第一介电常数小于第二介电常数,且第三介电常数小于第二介电常数时,电磁波可以穿过第一介质层201到达第二介质层202中并以横电波(transverse electric,TE)模式表面波的形式在第二介质层202中传输,第三介质层203和第二介质层202可以形成高介电常数介质层在内和低介电常数介质层在外的介质结构,第三介质层203可以抑制第二介质层202中传输的TE模式电磁表面波的电磁能量向组合介质层20外辐射,使得电磁能量被束缚在第二介质层202中,减少了组合介质层20中辐射到传输线外的电磁能量,从而抑制相邻传输线之间耦合串扰的产生。
在本实施例中,TE模式电磁表面波在第二介质层202传输,第二介质层202的厚度需要至少达到第二厚度,该第二厚度为第二介质层对应的介质波长的四分之一,第二介质层对应的介质波长与第二介电常数的大小相关。第二介电常数越大,第二介质层对应的介质波长越小,第二厚度也就越小,因此对第二介质层的厚度要求越小,有利于减小该传输线的体积,在使用上更加方便。
可选的,该第二介质层的材料可以是二氧化硅材料,这种材料的介电常数高,介质损耗小,可以减少电磁波在第二介质层中传输时的损耗,以及降低第二介质层的厚度要求,减小传输线体积。应理解,上述二氧化硅材料只是一种较佳的方案,除此之外,还可能有其他的材料可以达到类似的效果,本申请对此不做限定。
可选的,当第一介电常数小于第二介电常数,且第三介电常数小于第二介电常数时,电磁波在第二介质层202中以横电波(transverse electric,TE)模式表面波在第二介质层202中传输,第三介质层203的作用是抑制第二介质层202中传输的电磁表面波的电磁能量向外辐射,第一介质层201的作用是将电磁表面波引导到第二介质层202中,以减少电磁表面波在第一介质层201中传输时的金属损耗,第三介质层203以及第一介质层201的厚度没有过高的要求,所以出于减小传输线体积的目的,第三介质层203以及第一介质层201的厚度均可以小于第一介质层201的厚度。
可选地,结合图4所示的传输线,作为一个实施例,组合介质层20还可以包括第四介质层204,第四介质层204包裹在第二介质层202的外表面,如图6所示。第四介质层204 的介电常数为第四介电常数,第四介电常数小于第二介电常数,所以第四介质层204可以与第二介质层202形成高介电常数介质层在内和低介电常数介质层在外的介质结构,可以进一步减少向组合介质层20外辐射的电磁能量。
同理,结合图5所示的传输线,作为一个实施例,组合介质层20还可以包括第五介质层205,第五介质层205包裹在第三介质层203的外表面,如图7所示。第五介质层205的介电常数为第五介电常数,当第三介电常数大于第五介电常数时,第三介质层203与第五介质层205形成高介电常数介质层在内和低介电常数介质层在外的介质结构,同样可以进一步减少向组合介质层20外辐射的电磁能量。
当该传输线以TM模式传输电磁表面波时,该电磁表面波主要在第一介质层中传输,其电磁能量也聚集在第一介质层中传输。第一介质层是包裹在金属导体外表面的介质层,当电磁能量在第一介质层中传输时,由于金属导体的存在,电磁能量会发生金属损耗,加上电磁能量在介质层中传输时发生的介质损耗,所以TM模式的电磁能量损耗相对较大,但是TM模式只需要两个介质层就可以实现对电磁能量的束缚作用,使得其体积更小,更便于使用,在制造上也更加方便。
当该传输线以TE模式传输电磁表面波时,该电磁表面波主要在第二介质层中传输,其电磁能量也聚集在第二介质层中传输。第二介质层不与金属导体接触,当电磁能量在第二介质层中传输时,电磁能量不会发生金属损耗,只会在介质层中传输时发生介质损耗,所以与TM模式相比较,TE模式的电磁能量损耗较小,但是TE模式至少需要三个介质层才可以实现对电磁能量的束缚作用,所以其体积稍大,不利于微小化,在制造上的复杂程度也更高。
综上所述,根据介电常数对组合介质层的组成进行调整可以使得电磁波以TM模式表面波或者TE模式表面波的形式在传输线内传输,组合介质层的介质结构使得电磁波的能量被束缚在组合介质层内,从而避免传输线上的电磁能量耦合到相邻传输线上,产生耦合串扰。
应理解,该传输线还可以采用数量更多的介质层以抑制电磁能量向外辐射,在实际效果上可能会存在一定的差异,但是同样可以达到抑制耦合串扰的目的,本申请对该传输线的介质层数量不做限定。
相邻摆放的单层介质表面波传输线之间产生耦合串扰时的耦合场分布图如图8所示。从图8中可以看到,相邻摆放的传输线A和传输线B上的电磁能量相互耦合,从而产生耦合串扰,这种情况会对高速数据通信造成极大的干扰,会影响传输速率。
图9是TM模式表面电磁波耦合场分布图,从图9中可以看到,与图8相比,图9中相邻摆放的传输线C和传输线D上的电磁能量稳定,传输线C和传输线D之间的耦合串扰程度非常低,可以忽略不计。
图10是TE模式表面电磁波耦合场分布图,从图10中可以看到,与图8相比,图10中相邻摆放的传输线E和传输线F上的电磁能量稳定,传输线E和传输线F之间的耦合串扰程度非常低,同样可以忽略不计。
由此可见,本申请实施例提出的传输线可以抑制线间的耦合串扰,从而提高传输速率。
本申请实施例还提供一种通信线缆,该通信线缆如图11所示。
该通信线缆可以包括至少两根传输线30,该至少两根传输线30为上述实施例所述的传输线。
可选地,该通信线缆还可以包括第一连接器40和第二连接器50,该第一连接器40和第二连接器50分别设置在该至少两根传输线30的两端,其可分别用于连接不同的接口。
可选地,作为一个实施例,该通信线缆还可以包括保护层60。请参阅图12,该保护层60可以将该至少两根传输线30包覆在其中,防止该至少两根传输线30受到意外破坏,可以起到保护作用。
由于本申请实施例中的传输线具有更高的传输速率,所以该通信线缆可以以更少数量的传输线达到所需要的传输效果,这样可以降低通信线缆的传输线密度,节省空间占用。
以上对本申请实施例所提供的传输线及通信线缆进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种传输线,其特征在于,包括:导体和组合介质层,所述组合介质层包括第一介质层和第二介质层;
    所述第一介质层包裹在所述导体的外表面,所述第二介质层包裹在所述第一介质层的外表面,所述第一介质层的介电常数为第一介电常数,所述第二介质层的介电常数为第二介电常数;
    当所述第一介电常数大于所述第二介电常数时,电磁波在所述第一介质层中以表面波的形式传输,或者当所述第一介电常数小于所述第二介电常数时,电磁波在所述第二介质层中以表面波的形式传输。
  2. 根据权利要求1所述的传输线,其特征在于,
    当所述第一介电常数大于所述第二介电常数时,所述电磁波以横磁场TM模式表面波的形式在所述第一介质层传输。
  3. 根据权利要求1所述的传输线,其特征在于,
    当所述第一介电常数小于所述第二介电常数时,所述组合介质层还包括第三介质层;
    所述第三介质层包裹在所述第二介质层的外表面,所述第三介质层的介电常数为第三介电常数;
    所述第三介电常数小于所述第二介电常数,所述电磁波以横电场TE模式表面波的形式在所述第二介质层传输。
  4. 根据权利要求2所述的传输线,其特征在于,所述第一介质层的厚度大于或等于第一厚度,所述第一厚度为所述第一介质层对应的介质波长的四分之一。
  5. 根据权利要求3所述的传输线,其特征在于,所述第二介质层的厚度大于或等于第二厚度,所述第二厚度为所述第二介质层对应的介质波长的四分之一。
  6. 根据权利要求2或4所述的传输线,其特征在于,所述组合介质层还包括第四介质层;
    所述第四介质层包裹在所述第二介质层的外表面,所述第四介质层的介电常数为第四介电常数;
    所述第四介电常数小于所述第二介电常数。
  7. 根据权利要求3或5任一所述的传输线,其特征在于,所述组合介质层还包括第五介质层;
    所述第五介质层包裹在所述第三介质层的外表面,所述第五介质层的介电常数为第五介电常数;
    所述第五介电常数小于所述第三介电常数。
  8. 根据权利要求1-7任一所述的传输线,其特征在于,所述第一介质层或所述第二介质层的材料包括二氧化硅。
  9. 一种通信线缆,其特征在于,所述通信线缆包括至少两根如权利要求1-8所述的传输线。
  10. 根据权利要求9所述的通信线缆,其特征在于,所述通信线缆还包括:第一连接 器与第二连接器;
    所述第一连接器与所述第二连接器分别设置于所述至少两根传输线的两端。
PCT/CN2019/075656 2019-02-21 2019-02-21 一种传输线及通信线缆 WO2020168504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075656 WO2020168504A1 (zh) 2019-02-21 2019-02-21 一种传输线及通信线缆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075656 WO2020168504A1 (zh) 2019-02-21 2019-02-21 一种传输线及通信线缆

Publications (1)

Publication Number Publication Date
WO2020168504A1 true WO2020168504A1 (zh) 2020-08-27

Family

ID=72143297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075656 WO2020168504A1 (zh) 2019-02-21 2019-02-21 一种传输线及通信线缆

Country Status (1)

Country Link
WO (1) WO2020168504A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463329A (en) * 1978-08-15 1984-07-31 Hirosuke Suzuki Dielectric waveguide
EP3306740A1 (de) * 2016-10-10 2018-04-11 Rosenberger Hochfrequenztechnik GmbH & Co. KG Dielektrisches wellenleiterkabel
CN109314297A (zh) * 2016-03-28 2019-02-05 韩国科学技术院 用于传输电磁波信号的波导管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463329A (en) * 1978-08-15 1984-07-31 Hirosuke Suzuki Dielectric waveguide
CN109314297A (zh) * 2016-03-28 2019-02-05 韩国科学技术院 用于传输电磁波信号的波导管
EP3306740A1 (de) * 2016-10-10 2018-04-11 Rosenberger Hochfrequenztechnik GmbH & Co. KG Dielektrisches wellenleiterkabel

Similar Documents

Publication Publication Date Title
US9472840B2 (en) Dielectric waveguide comprised of a core, a cladding surrounding the core and cylindrical shape conductive rings surrounding the cladding
US9093732B2 (en) Low power, high speed multi-channel chip-to-chip interface using dielectric waveguide
CN103650243B (zh) 一种天线
US11799184B2 (en) Interposer between an integrated circuit antenna interface and an external waveguide interface including an internal waveguide coupled between these interfaces
US10777868B2 (en) Waveguide comprising first and second dielectric parts, where the first dielectric part comprises two or more separate dielectric parts
US10772203B2 (en) Flat data transmission cable
US9039301B2 (en) Optical transceiver having enhanced EMI tolerance
US10879575B2 (en) Embedded filtering in PCB integrated ultra high speed dielectric waveguides using photonic band gap structures
US10395795B2 (en) Data transmission cable
CN105226359A (zh) 方同轴基片集成波导互连结构
US10079082B2 (en) Data transmission cable
US11605870B2 (en) Surface wave excitation device having a multi-layer PCB construction with closed regions therein
WO2020168504A1 (zh) 一种传输线及通信线缆
TWM517897U (zh) 數據傳輸線纜
CN113721330B (zh) 一种高速激光器组件及光模块
You et al. An ultra‐compact spoof surface plasmon polariton transmission line and its signal integrity analysis
US20210249747A1 (en) Balance-unbalance conversion apparatus, communications device, and communications system
Calò et al. Integrated Vivaldi antennas, an enabling technology for optical wireless networks on chip
JP2016506686A (ja) 低電力、高速マルチ−チャネル誘電体ウェーブガイドを利用したチップツーチップインタフェース
WO2020041968A1 (zh) 表面波转换耦合装置和表面波通信系统
CN110473656A (zh) 一种高速数据传输线
CN212434324U (zh) 柔性高速传输线对、高频传输线材及高频传输线缆
Kim Multi‐stack technique for a compact and wideband EBG structure in high‐speed multilayer printed circuit boards
WO2021129870A1 (zh) 传输线缆
CN108010634A (zh) 大数据用有源并行双导体带状高速数据传输组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915610

Country of ref document: EP

Kind code of ref document: A1