WO2020166943A1 - Method for editing microalgae by using gene gun method - Google Patents

Method for editing microalgae by using gene gun method Download PDF

Info

Publication number
WO2020166943A1
WO2020166943A1 PCT/KR2020/001912 KR2020001912W WO2020166943A1 WO 2020166943 A1 WO2020166943 A1 WO 2020166943A1 KR 2020001912 W KR2020001912 W KR 2020001912W WO 2020166943 A1 WO2020166943 A1 WO 2020166943A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetracelmis
gene
microalgae
genus
rnp
Prior art date
Application number
PCT/KR2020/001912
Other languages
French (fr)
Korean (ko)
Inventor
진언선
장광석
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2020166943A1 publication Critical patent/WO2020166943A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • the present invention relates to a method for correcting microalgae using a gene gun method, microalgae with improved lipid production capacity accordingly, and a method for producing bioenergy using the microalgae.
  • Microalgae are single-celled organisms that photosynthesize using carbon dioxide and water as raw materials, and have a very short cycle of cell division and growth than higher plants (about 5-8 hours), such as health supplements, anti-aging ingredients, DHA, cosmetics raw materials, etc. It is a biological resource with high economic potential to be used as a useful high value-added industrial material.
  • Chlamydomonas reinhardtii has been studied the most as a model species in microalgae research, and the genome project has been completed, making it easy for gene research and manipulation. A variety of studies are in progress for use in industrial fields as well as academic research.
  • CRISPR gene scissors RNA-guided engineered nuclease (RGEN)
  • RGEN RNA-guided engineered nuclease
  • CRISPR gene scissors were found to be the easiest and most inexpensive scissors developed to date, as well as high accuracy and efficiency.
  • DNA scissors such as zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR gene scissors (RGEN) are used.
  • ZFN zinc finger nuclease
  • TALEN transcription activator-like effector nuclease
  • RGEN CRISPR gene scissors
  • An object of the present invention for solving the above problems is a method of correcting a gene by transferring a guide RNA specific to a target gene and an RNA guided endonuclease (RGEN) ribonucleoprotein (RNP) of a Cas protein to microalgae without introducing external DNA; And a gene-modified microalgal variant.
  • RGEN RNA guided endonuclease
  • RNP ribonucleoprotein
  • bioenergy composition comprising a method of producing bioenergy and a culture thereof using the microalgal mutant of the genus Tetracelmis with increased lipid production capacity.
  • the present inventors have a method for producing a mutant knock-out a target gene through gene editing using RNP by bombardment for transformation of microalgae of the genus Tetracelmis. And completed the present invention.
  • the present inventors applied the DNA-free RGEN RNP complex to microalgae, in order to use the gene gun method through the gold particle delivery system, the number of cells of the microalgae, the guide RNA concentration, the guide RNA type number, the concentration of the Cas9 protein. , And reaction conditions, etc., were established to develop a method for genetic editing of microalgae.
  • the present invention introduces a RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of a target gene-specific guide RNA and Cas protein into microalgae in the genus Tetracelmis using a gene gun; microalgae comprising: Provides a method of genetic modification.
  • RGEN RNA guided endonuclease
  • RNP ribonucleoprotein
  • the present invention provides a microalgal variant prepared by the calibration method.
  • the mutant may be one of the lipid content of tetra-cell misses in the AGP gene knockout cells (Tetraselmis sp.) Increases.
  • the present invention provides a variant of the genus Tetraselmis including an AGP gene mutation in which a nucleotide corresponding to the 99th to the 524th in the sequence represented by SEQ ID No. 4 is deleted.
  • the variant may include the AGP mutant gene of SEQ ID No: 5.
  • the variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
  • the tetracelmis TspAGP-M1 may have an improved C16:0 and C18:1 fatty acid production ability compared to a wild-type strain.
  • the present invention comprises the steps of accumulating lipids by culturing a variant of the genus tetracelmis; And it provides a bioenergy production method comprising the step of isolating the lipids moistened from the culture.
  • the bioenergy production method of the present invention may further include the step of chemically reacting the isolated fatty acid component.
  • the variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
  • the present invention may include a bioenergy composition comprising a culture of the variant of the genus Tetracelmis.
  • the variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
  • the present invention is a gene editing method or gene knockout of microalgae comprising introducing a RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of a target gene-specific guide RNA and Cas protein into the microalgae using a gene gun. out) method.
  • RGEN RNA guided endonuclease
  • RNP ribonucleoprotein
  • the RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of guide RNA and Cas protein is directly in microalgal cells without passing through a DNA carrier such as a plasmid (particle bombardment or particle gun). It characterized in that it is delivered by. Correcting a gene of a microalgae by directly transferring a gene into a microalgal cell by the gene gun method may also be expressed as a gene gun method transformation (Biolistic transformation) in another term.
  • gene correction or “gene knockout” refers to a frameshift mutation through deletion, substitution, duplication and/or insertion of some nucleotides at the target site of the target gene, so that the gene is normal. It refers to any genetic modification that prevents the production of a functioning protein.
  • the gene gun refers to a method of introducing DNA into cells by aggregating (cutting) DNA on the surface of microparticles of gold or tungsten and shooting them into cells using physical forces such as helium gas pressure (force). It means.
  • Metal microparticles with gene smears (aggregated) used in the gene gun have the advantage of penetrating cells well because they are heavier than their size, but the delivery and success of the gene to the target site are not constant, and the inserted gene is not repeated several times.
  • microalgae may be one or more selected from the group consisting of all single-celled organisms that photosynthesize using carbon dioxide and water as raw materials.
  • the microalgae can be a tetra-cell misses in (Tetraselmis sp.) Microalgae.
  • the method for genetic modification of microalgae of the present invention may be specifically carried out, including the following steps:
  • a reaction mixture containing a guide RNA (sgRNA) specific for a target gene and a Cas protein and fine metal particles are mixed to prepare a composition for RNP-delivery comprising fine metal particles encoded on the surface of ribonucleoprotein (RNP).
  • sgRNA guide RNA
  • RNP ribonucleoprotein
  • Transforming cells by applying a pressure of 500 psi or more to a rupture disk to launch fine metal particles coated on the surface of the RGEN RNP complex into microalgal cells of the genus Tetracelmis.
  • the calibration method may further include harvesting microalgal cells after incubating the cells to which the fine metal particles coated on the surface of the RGEN RNP complex are transferred for 2 to 5 days.
  • the reaction mixture may include a guide RNA (sgRNA) specific for a target gene, a Cas protein, and a reaction buffer.
  • the reaction mixture may further include water including distilled water.
  • sgRNA guide RNA
  • Cas protein 1 to 5 ug of guide RNA (sgRNA) specific to the target gene and 1 to 5 ug of Cas protein may be included.
  • 0.5 to 2 ⁇ L of the reaction buffer may be further included with respect to 10 ⁇ L of the reaction mixture.
  • the reaction buffer may be any buffer that can be used during Cas nuclease reaction,
  • the reaction buffer may include an amphoteric buffer, sodium chloride (NaCl), and magnesium chloride (MgCl 2 ).
  • the reaction buffer may further include a chelating agent, and the chelating agent may be EDTA, but is not limited thereto.
  • the reaction buffer is an ionic buffer, for example, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 10 to 50 mM, sodium chloride 50 to 200 mM, magnesium chloride 2.5 to 10 mM, and chelating agent 0.1 to 1 mM Or; 40-60 mM NaCl, 8-12 mM Tris-HCl, 8-12 mM MgCl 2 and 80-120 ⁇ g/mL BSA; 80 to 120 mM NaCl, 40 to 600 mM Tris-HCl, 8 to 12 mM MgCl 2 , and 0.8 to 1.2 mM DTT.
  • HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
  • the reaction buffer solution of the present invention may have a pH of 6.0 to 8.0.
  • the reaction mixture may be included in a delivery composition and delivered into cells by a gene gun.
  • the composition for delivery includes fine metal particles coated with ribonucleic acid protein on the surface as a material delivered into the desired cell, and may also be referred to as a composition for RNP-delivery.
  • the delivery composition of the present invention may be prepared by mixing a reaction mixture and fine metal particles.
  • the delivery composition may include one or more guide RNAs, and specifically may include two or more guide RNAs targeting different targeting sequences.
  • a mixed composition may be prepared in a form containing only one guide RNA, and in this case, at least one mixed composition may be prepared each including guide RNAs targeting different targeting sequences. In this case, the incubation may be performed for each mixed composition.
  • the step of mixing with microparticles to prepare a composition for RNP-delivery in the step of mixing with microparticles to prepare a composition for RNP-delivery, the'two or more kinds of mixed composition' is used for one RNP-delivery It can be mixed into the composition.
  • the RNP-delivery composition is a first reaction mixture comprising a guide RNA and a Cas protein specific for a first target gene; and a second reaction mixture comprising a guide RNA and a Cas protein specific for a second target gene
  • It may be a composition for RNP-delivery including fine metal particles coated with two or more ribonucleic acid proteins (RNP) by mixing with fine metal particles.
  • RNP ribonucleic acid proteins
  • the reaction mixture and the fine metal particles may be mixed in a volume ratio of 1 to 3: 1.
  • composition for RNP-delivery was prepared and used by mixing 20uL (1.2mg) gold nanoparticles with 40uL of the reaction mixture.
  • the fine metal particles may be included in the present invention and used regardless of their components as long as they are particles that can be used in the gene gun method.
  • the delivery composition may be placed on a macro-carrier and delivered to a gene gun.
  • the delivery composition may be placed on a macro-carrier, and a gene gun may be fired in a dried form.
  • the delivery composition may be placed on the macro-carrier disk at a level of 5 to 20 ⁇ L, and 1 to 8 macro-carrier disks on which the delivery composition is mounted may be prepared. Drying the macro-disc may be performed by natural drying or artificial drying, and preferably, an air drying (air-dry) method may be used.
  • the step of firing the RNP-delivery composition may include repeating 1 to 10 times.
  • the rupture disk may be 500 psi or more, and more specifically, the gene gun may be performed using a pressure of 1,000 to 1,500 psi. Preferably, it can be performed at 1100 to 1500 psi most preferably.
  • the pressure is lower than the above range when performing the gene gun, there is a problem that the gene transfer efficiency is lowered, and when the pressure is higher than the above-described pressure, the tetracelmis microalgal cells burst and die, or pass through the cells, and the intracellular introduction rate is low. There is.
  • the firing during still screen (stop screen) and may be a distance 1cm to 20cm of containing the microalgal cell plate (cell plate), an embodiment according to the example, tetra-cell misses in the 1100 to, or 1,500 psi to the microalgae
  • the gene gun can be performed at a distance of 5 cm to 10 cm or 8 cm to 10 cm.
  • the microalgal gene editing method of the present invention may further include preparing a cell plate containing the microalgae to be genetically corrected before the gene introduction.
  • the cell plate is to prepare a cell dish by centrifuging the microalgal cells of the exponential phase, concentrating in a fresh liquid medium, spreading the prepared cell concentrate on a medium plate, and evaporating the liquid medium through drying.
  • the cell concentrate may be spread on a medium plate in a size of 2 to 5 cm in diameter.
  • the cells may be plated on a medium plate in 1x10 6 to 1x10 8 cells.
  • medium includes nutrients required by a culture target, that is, a microorganism used as a culture medium in order to cultivate a microorganism, and may be a mixture by adding a substance for a special purpose.
  • the medium is also referred to as a culture medium or a culture medium, and is a concept including all of a natural medium, a synthetic medium, or a selective medium.
  • the medium may be MBL medium HS medium or TAP medium, but is not limited thereto and may be used differently depending on the target microalgae.
  • the microalgal gene editing method of the present invention may further include preparing fine metal particles to perform the gene gun method before introducing the gene.
  • the microparticles may be nano or micro-sized particles, and gold, tungsten or other metal microparticles may be used. Specifically, particles of 0.1 to 1.0 ⁇ m, or 0.4 to 0.8 ⁇ m may be used.
  • the microparticles may be prepared by washing with ethanol and water.
  • the calibration method of the present invention may further include preparing a guide RNA specific for the target gene.
  • RNA guide endonuclease refers to an endonuclease that forms a complex with single-stranded RNA or double-stranded RNA and cuts the targeting sequence of the gene target site contained in the RNA to perform gene correction.
  • RGEN RNA guide endonuclease
  • it may be an endonuclease involved in a type II CRISPR/Cas system, such as a typical Cas9 protein (CRISPR associated protein 9).
  • the Cas9 protein is Streptococcus sp. (Streptococcus sp.), For example, may be a Streptococcus blood yoge Ness (Streptococcus pyogenes) to the derived (SwissProt Accession number Q99ZW2), but is not limited thereto.
  • the Cas9 protein of SEQ ID No: 31 or a Cas9 protein having 80% or more homology thereto may be included.
  • the Cas9 protein may be isolated from a microorganism or may be non-naturally produced by a recombinant or synthetic method.
  • the Cas9 protein may further include an element commonly used for intranuclear delivery of eukaryotic cells (eg, nuclear localization signal (NLS), etc.), but is not limited thereto.
  • an element commonly used for intranuclear delivery of eukaryotic cells eg, nuclear localization signal (NLS), etc.
  • the guide sequence is a sequence comprising any polynucleotide having sufficient complementarity with the target sequence to hybridize with the target sequence and induce sequence-specific binding of the CRISPR complex to the target sequence.
  • the degree of complementarity between the'sequence of the region having complementarity to the target sequence' and the'its corresponding target sequence' in the guide sequence is about 50%, 60% when optimally aligned using an appropriate alignment algorithm. , 75%, 80%, 85%, 90%, 95%, 97.5%, 99% or more.
  • Optimal alignment can be determined by the use of any algorithm suitable for aligning the sequence, non-limiting examples of which are Smith-Waterman algorithm, Needleman-Wunsch algorithm, Burrows- Algorithms based on Burrows-Wheeler Transform (e.g.
  • guide sequences Has a length of 5 nucleotides or more, and more specifically, may be 5 nucleotides to 500 nucleotides in length, In some embodiments, the guide sequence may be about 10 to 100 nucleotides in length, but is not limited thereto. .
  • the ability of the guide sequence to induce sequence-specific binding of the CRISPR complex to the target sequence can be assessed by any suitable assay.
  • components of the CRISPR system sufficient to form a CRISPR complex comprising the guide sequence to be tested are assayed using next-generation sequencing techniques, e.g., after transfection with a vector encoding the components of the CRISPR sequence.
  • next-generation sequencing techniques e.g., after transfection with a vector encoding the components of the CRISPR sequence.
  • cleavage of a target polynucleotide sequence provides a component of a CRISPR complex comprising a target sequence, a guide sequence to be tested, and a control guide sequence different from the test guide sequence, and binding or cleavage between the test and control guide sequence reactions at the target sequence. It can be evaluated in vitro by comparing the proportions. Other assays are possible and will come to the person skilled in the art.
  • the guide sequence can be selected to target any target sequence.
  • the target sequence is a sequence within the genome of the cell. Exemplary target sequences include those that are unique in the target genome.
  • the guide RNA may be appropriately selected according to the target sequence or the type of endonuclease to form a complex and/or the microorganism derived therefrom.
  • the guide RNA may be one or more selected from the group consisting of CRISPR RNA (crRNA), trans- activating crRNA (tracrRNA), and single-stranded guide RNA (sgRNA), and depending on the type of endonucleotide, CRISPR RNA (crRNA) And a double-stranded complex of trans- activating crRNA (tracrRNA), or a single-stranded guide RNA (sgRNA).
  • the sgRNA may include a portion of crRNA and tracrRNA.
  • the Cas9 protein-containing complex has two guide RNAs, that is, a CRISPR RNA (crRNA) having a nucleotide sequence hybridizable with a target site of a gene, and an additional trans- activating crRNA (tracrRNA) to correct a desired gene.
  • crRNA CRISPR RNA
  • tracrRNA additional trans- activating crRNA
  • these crRNA and tracrRNA can be used in the form of a double-stranded crRNA:tracrRNA complex bonded to each other, or a single-stranded guide RNA (sgRNA) form by being linked through a linker.
  • sgRNA single-stranded guide RNA
  • the specific sequence of the guide RNA can be appropriately selected according to the type (derived microorganism) of the Cas9 protein, which can be easily recognized by those of ordinary skill in the art.
  • the crRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be expressed by the following general formula 1:
  • N cas9 is a targeting sequence site comprising a nucleotide sequence capable of hybridizing with a gene target site, and is a site determined according to the target site of the target gene, and l represents the number of nucleotides contained in the targeting sequence site, and is an integer of 18 to 22, May be for example 20;
  • a region containing 12 consecutive nucleotides (GUUUUAGAGCUA) adjacent to each other in the 3'direction of the targeting sequence region is an essential part of the crRNA.
  • X cas9 is a site containing m nucleotides located on the 3'side of the crRNA (that is, adjacent to the 3'direction of the essential part of the crRNA), where m is an integer from 0 to 12, such as 0 days. I can.
  • a sequence of a site having complementarity to a target sequence that is, a nucleotide sequence capable of hybridizing with a gene target site is 50% or more, 60% or more, 70% or more, 80% or more, It means a nucleotide sequence having sequence complementarity of 90% or more, 95% or more, 99% or more, or 100% (hereinafter, unless otherwise specified, the same meaning is used).
  • the X cas9 may include UGCUGUUUUG, and may be omitted, but is not limited thereto.
  • tracrRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be expressed by the following general formula 2:
  • the site containing 60 nucleotides is an essential part of tracrRNA,
  • Y cas9 is a site including p nucleotides located adjacent to the 5'end of the essential part of the tracrRNA, and may be omitted. That is, p may be an integer of 0 to 20, for example, 0 to 5, and the p nucleotides may be the same or different from each other, and may be independently selected from the group consisting of A, U, C, and G.
  • the sgRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes includes the targeting sequence site of the Cas9 crRNA and the crRNA site including the essential site, and the tracrRNA site including the essential site of the tracrRNA of Cas9 is a nucleotide linker. Through it may be to form a hairpin structure. More specifically, the sgRNA is the 3'end of the crRNA site and the tracrRNA in a double-stranded RNA molecule in which a crRNA site including a targeting sequence site and an essential site of crRNA and a tracrRNA site including an essential site of the tracrRNA of Cas9 are bound to each other. The 5'end of the site may have a hairpin structure connected through a nucleotide linker.
  • the targeting sequence site and essential site of crRNA and the essential site of tracrRNA are as described above.
  • the nucleotide linker included in the sgRNA refers to a loop portion on the crRNA and tracrRNA, and may include 3 to 5, such as 4 nucleotides, and the nucleotides may be the same or different from each other, A, U, C and Each of the groups consisting of G may be independently selected.
  • gRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be represented by the following general formula 3:
  • 20 consecutive nucleotides indicated by N are target sequence targeting sites (sequences complementary to the targeting site sequence of the target gene).
  • a primer sequence site may be present in front of the targeting site represented by N.
  • a nucleotide containing a TAATACGACTCACTATAG sequence was used as a T7 primer.
  • the crRNA (eg, represented by Formula 1) or sgRNA may further include 1 to 3 guanines (G) at the 5'end (ie, the 5'end of the targeting sequence site of the crRNA).
  • G guanines
  • the tracrRNA or sgRNA may further include a terminating site including 5 to 7 uracils (U) at the 3'end of the essential portion (60 nt) of the tracrRNA.
  • the guide RNA may be prepared by referring to the contents described in "Kim, H. & Kim, J.-S. Nat. Rev. Genet. 15 , 321-334 (2014)".
  • Another example provides a guide RNA for the correction (replacement, deletion and/or insertion) of specific genes in microalgae.
  • the target gene may be an endogenous gene.
  • the target gene may be AGP (ADP glucose pyrophosphorylase), FTSY (Chloroplast SRP receptor), ZEP (Zeaxanthin epoxidase), or the like, but is not limited thereto.
  • the gene correction can be made specifically for the target site. It can be used without being limited to the kind of genes contained in birds.
  • the guide RNA may be a double-stranded complex of crRNA and tracrRNA or sgRNA as described above, and the crRNA contained in the double-stranded complex or sgRNA includes a targeting sequence site capable of hybridizing with any specific site of the gene to be corrected. I can.
  • the guide when injected once a gene gun, the guide can be transmitted to RNA 0.7 ⁇ 2 ⁇ g and Cas protein 0.7 ⁇ 2 ⁇ g. In this case, there is an advantage of increasing the transformation efficiency, since there is no problem in that the tetracelmis cells are damaged or poorly delivered.
  • the variant may be a microalgae of the genus Tetracelmis in which the AGP gene has been knocked out.
  • the tetra-cell has a miss in the micro-algae without synthesizing a starch the AGP gene knockout appear for gene correction of the present invention, the microalgae cells are lipid production excellent properties.
  • the variant may be a microalgae of the genus Tetracelmis including a genetically mutated AGP gene having a nucleotide deletion corresponding to the 99th nucleotide to the 524th in the genomic DNA of AGP of SEQ ID No: 4.
  • the AGP genome of SEQ ID No: 4 represents a partial sequence of AGP, it corresponds to the 99th to 524th in the sequence represented by SEQ ID No.: 4 in the AGP genome sequence of microalgae of the genus Tetracelmis.
  • the deletion of the nucleotide is included in the variation of the present invention.
  • the variant may include a genetically mutated AGP gene having a nucleotide deletion corresponding to the 301 th to 589 th cDNA of the AGP gene of SEQ ID No: 2.
  • the variant may have an AGP gene comprising the cDNA sequence of SEQ ID No: 5.
  • the genus Tetracelmis Using KCTC12432BP as the original strain, the AGP mutant was selected by performing AGP gene knockout according to the gene correction method of the present invention, and the selected mutant was named TspAGP-M1, and the Korea Research Institute of Bioscience and Biotechnology Life Resource Center (KCTC) On January 10, 2019, it was deposited with the accession number KCTC 13787BP.
  • Tetra cell Miss TspAGP-M1 mutant of the invention has increased properties by the knockout of the AGP gene compared to the wild type strain capability lipid production.
  • the lipid content in the dry weight identified in an example of the present invention was improved by 274% (w/w) compared to the wild-type strain, and the lipid content (lipid productivity) per 1 L of the culture medium was improved by 225% compared to the wild-type strain.
  • the content of C16:0 and C18:1 which are highly usable saturated fatty acids among fuel components, is remarkably increased, and has excellent utility as a microalgae for biomass production.
  • the transformant is possible without any external DNA introduction has the advantage that there is no risk of the transgenic organism.
  • it is possible to further increase the probability of gene mutation through specific mutations of the desired gene, and the total gene condition of the present invention is optimized for transformation of tetracelmis cells, which is very meaningful in that the efficiency can be further increased. There is.
  • RNA is temporarily present, not by plasmid overexpression, there is a problem that the transformation efficiency is very low due to repair, etc., but different targeting sequences as described above
  • mutations occur at two or more sites at the same time, so the probability of causing genetic mutations is very high.
  • Tetra cell Miss TspAGP-M1 mutant is the lipid content of the dry weight has a very excellent properties as compared to wild-type, in particular, utilization of the high saturated fatty acids of C16 of the fuel component of the present invention: side high 1 content: 0 and C18 It has properties suitable for bioenergy production in
  • the present invention comprises the steps of accumulating lipids by culturing tetracelmis TspAGP-M1 microalgae having accession number KCTC 13787BP, which does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type; And it provides a bioenergy production method comprising the step of isolating the lipids moistened from the culture.
  • the step of culturing the tetracelmis TspAGP-M1 microalgae can be performed in the culture medium and the culture medium in which the tetracelmis is viable, and the incubator used in the technical field to which the present invention belongs, light source, temperature and time It can be carried out using culture conditions including the like.
  • the culturing may include culturing until the lipid content per dry weight of the tetracelmis TspAGP-M1 microalgae is 20% or more.
  • Tetracelmis TspAGP-M1 microalgae of the present invention are cultured under conditions of temperature 18 to 25°C, white fluorescent source 40 to 120 ⁇ mol photon m -2 s -1 intensity, 14 to 18 hours light condition, 7 to 9 hours dark condition May be, but is not limited thereto.
  • the step of isolating the lipid may be performed by lysing the cells and extracting a hydrocarbon containing the lipid.
  • the lysis of the cells may be carried out according to methods such as heat, base, acid, enzyme, physical treatment (eg, mechanical destruction, ultrasonic, osmotic treatment), autolysis by lysis virus or lysis gene expression.
  • Extracting the hydrocarbon containing the lipid may be performed by centrifuging the hydrocarbon secreted from the cell to separate the hydrocarbon in the hydrophobic layer, or by treating the cell or cell fraction with a protease to degrade the contaminant protein before or after centrifugation.
  • the bioenergy production method of the present invention may further include the step of chemically reacting the isolated lipid.
  • Lipids can be processed into fuels more suitable for use in industry and life by the above chemical reaction.
  • the chemical reaction may be performed by processing by enzymes or by processing by heat and other catalysts. It can be engineered to reduce the number of carbon-carbon double or triple bonds, remove cyclic structures in hydrocarbons, or increase the hydrogen:carbon ratio.
  • the chemical reaction can be carried out using conventional methods used to produce fuels suitable for use in automobiles or engines from bioenergy.
  • the present invention may include a bioenergy composition comprising a culture of tetracelmis TspAGP-M1 microalgae, which has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild type. have.
  • the culture is obtained by culturing the microalgae of the present invention, and contains a high content of the desired component (e.g., a lipid, a hydrocarbon component) by a form of removing the microalgae after cultivation, a concentrate, a dried product, or a fraction of the culture. It means including all fractions.
  • Tetracelmis TspAGP-M1 microalgae of the present invention has a high content of lipid per dry cell weight of 20% or more, and the content of saturated fatty acids C16:0 and C18:1 among the lipids is particularly high, and the culture of the algae It has an excellent effect as a bio energy composition.
  • the bio-energy may be a gasoline or diesel composition including lipids produced from the present invention Tetracelmis TspAGP-M1 microalgae, or including a processed component of the lipid as an energy source.
  • the correction method according to the present invention is to selectively knock out a desired gene using CRISPR gene scissors without introducing foreign DNA, and by introducing RNP into microalgal cells using the gene gun method, the desired gene without introduction of foreign DNA It has the advantage that can be selectively corrected.
  • Figure 1 shows the result in accordance with an embodiment of the present invention analyzed the base sequence of the AGP gene of tetra-cell microalgae miss in the RNP is introduced by gene chongbeop by PCR.
  • Wt represents a wild - type tetracelmis genus microalgae
  • lines 1-1-1 to 2-2-7 each represent a transformed tetracelmis genus microalgae according to an embodiment of the present invention.
  • Figure 2 is the result confirming the AGP genetic information of the transformed, selected from the tetra-switched cell Miss in micro-algae mutation objects (objects in the line 2-1-6 in the mutant, FIG. 1) in accordance with an embodiment of the invention in the genome level Show.
  • Wt represents the wild - type tetracelmis genus microalgae.
  • FIG. 3 is a photograph showing the result confirming the performance of the starch must AGP mutant cell tetrahydro Miss in micro-algae (Mutant) and wild-type cells tetrahydro Miss in micro-algae (WT) selected in accordance with an embodiment of the invention.
  • Figure 4 is an AGP mutant selected in accordance with an embodiment of the invention tetrahydro cell Miss in micro-algae (AGP mutant) and wild-type tetra cell misses a nitrogen deficiency of microalgae (WT) (ND) / or nitrogen sufficiently (NS) conditions
  • WT microalgae
  • NS nitrogen sufficiently
  • AGP AGP mutant tetrahydro cell Miss in micro-algae
  • WT wild-type tetra cell Miss in micro-algae
  • Figure 6 is an AGP mutant tetrahydro cell Miss in micro-algae selected in accordance with an embodiment of the invention (AGP mutant) and dry weight (DW) the total content and fatty acid type analysis fatty acid per of the wild-type tetra cell Miss in micro-algae (WT) This is a graph showing the results.
  • AGP mutant tetrahydro cell Miss in micro-algae selected in accordance with an embodiment of the invention
  • DW dry weight
  • FIG. 7 is a graph showing the fatty acid type content per dry weight (DW) of the AGP mutant tetrahydro cell Miss in micro-algae (AGP mutant) and wild-type tetra cell Miss in micro-algae (WT) selected in accordance with an embodiment of the invention .
  • DW fatty acid type content per dry weight
  • Figure 8 shows the cDNA sequence (SEQ ID No: 1) of the AGP gene of wild-type tetracelmis microalgae used in an embodiment of the present invention.
  • FIG. 10 shows the protein sequence (SEQ ID No: 3) of the AGP gene of wild-type tetracelmis microalgae identified in an embodiment of the present invention.
  • FIG. 11 shows the cDNA sequence (SEQ ID No: 5) of the AGP gene of the tetracelmis genus microalgal mutant TspAGP-M1 isolated in an embodiment of the present invention.
  • / indicates the deleted site compared to the wild-type AGP sequence between two target sequences for RGEN RNP.
  • FIG. 12 shows the protein sequence (SEQ ID No: 6) of the AGP gene of the tetracelmis genus microalgal mutant TspAGP-M1 isolated in an embodiment of the present invention.
  • FIG. 13 is an image of the AGP protein sequence (SEQ ID No: 3) of the wild-type tetracelmis microalgae identified according to an embodiment of the present invention and the AGP protein sequence (SEQ ID No: 12) of Chlamydomonas reinhardti. This is the result of comparing the same sex.
  • Figure 14 is the AGP protein sequence (SEQ ID No: 3) of the wild-type tetraselmis microalgae identified according to an embodiment of the present invention and the protein sequence of the AGP gene of the tetracelmis microalgae mutant TspAGP-M1 (SEQ This is the result of comparing ID No:6).
  • AGP ADP glucose pyrophosphorylase
  • 5'and 3'RACE rapid amplification cDNA end PCR was performed.
  • 5'-RACE it is a specific reverse primer (#512, 5'-AGTAGATCTTGTTCACGCCGCT-3', SEQ ID No: 9) and a specific reverse primer (#513, 5'-TCTTCTTGGTCAGCGGGTACAG-3', SEQ ID No: 10) was used.
  • a specific forward primer #511, GGGAGGACATCGGAACCATC, SEQ ID No: 11
  • the full length sequence of AGP cDNA of Tetracelmis was confirmed as follows.
  • the 5'- side genomic DNA nucleotide sequence where the start codon is located was analyzed by genomic PCR using #488 Forward primer (ACAGAGGCATGTGGTCGC) and #490 Reverse primer (TTCTCCGCAAACTCGACGAT). As a result, the following genetic information could be confirmed.
  • Genomic DNA genetic information of the 5'-end region of the AGP gene (SEQ ID No: 4)
  • the Cas9 target gene sequence was confirmed by targeting the two nucleotide sequences marked with yellow background, and sgRNA capable of acting on the complementary nucleotide sequence at this position was constructed.
  • a target sgRNA was prepared according to the method provided by invitrogen's "GeneArt TM Precision gRNA Synthesis Kit".
  • Target # RGEN Target (5'-3') (AGP targeting sequence) Position Cleavage Positin (%) direction GC Contents(%, w/o PAM) Out-of-frame Score T1 (SEQ ID No: 15) ATATCGGGCACGGTGCCATCAGG 92 12.1 - 60.0 67.9 T2 (SEQ ID No: 16) TGGCCCTCTTCTTGGTCAGCGGG 306 38.8 - 60.0 74.4 T3 (SEQ ID No: 17) GTTCTTCGGGCTCTGCTGCGCGG 518 65.2 - 65.0 65.8 T4 (SEQ ID No: 18) CATGTACTGGCGCACCGCGTCGG 563 70.8 - 65.0 68.8
  • 'CDS (coding sequence) position' refers to the relative position of the cut point in genomic DNA.
  • the + in the direction is the same direction as the target sequence, that is, the same sequence is the sequence of RGEN, and-is the sequence in the opposite direction to the target sequence, that is, the sequence bound to the target sequence, which is complementary to each other. It means the sequence of relationships.
  • 'Out-of-frame Score' refers to the possibility of a frameshift-induced deletion that occurs when broken double-stranded DNA is repaired by a microhomology-mediated end join (MMEJ) pathway.
  • MMEJ microhomology-mediated end join
  • AGP target #1 T1-FW (SEQ ID No: 19) TAATACGACTCACTATAG ATATCGGGCACGGTGCC T1-RV (SEQ ID No: 20) TTCTAGCTCTAAAAC GATGGCACCGTGCCCGATAT AGP target #2 T2-FW (SEQ ID No: 21) TAATACGACTCACTATAG TGGCCCTCTTCTTGGTC T2-RV (SEQ ID No: 22) TTCTAGCTCTAAAAC GCTGACCAAGAAGAGGGCCA AGP target #3 T3-FW (SEQ ID No: 23) TAATACGACTCACTATAG GTTCTTCGGGCTCTGCT T3-RV (SEQ ID No: 24) TTCTAGCTCTAAAAC CGCAGCAGAGCCCGAAGAAC AGP target #4 T4-FW (SEQ ID No: 25) TAATACGACTCACTATAG CATGTACTGGCGCACCG T4-
  • the Cas9 protein to be used in the preparation of the transformant was used by purchasing a recombinant Cas9 protein (Recombinant Cas9 protein; S.pyogenes, Cat No# TGEN_CP4) from Tulgen.
  • Recombinant Cas9 protein S.pyogenes, Cat No# TGEN_CP4
  • the composition of the MBL liquid medium is as shown in Table 3.
  • Gold particles were washed by vortexing 60 mg of Bio-Rad's Microcarrier, 0.6 ⁇ m gold (Cat #165-2262) in 100% EtOH (1 mL) for 2 minutes, and separated by centrifugation. , Washed with DEPC-treated nuclease-free distilled water. This was repeatedly washed 3 times and stored in 1 mL of distilled water (RNAse-free DW) without nucleic acid hydrolase, and used for subsequent tests.
  • Experimental Example 4 Gene correction by genetic gun method transformation (biolistic delivery) by RNP
  • RGEN RNA-guided engineered nuclear
  • RNP ribonucleoprotein
  • sgRNA and Cas9 protein prepared in Test Example 3 were prepared in distilled water (nuclease free DW) without nucleic acid hydrolase, respectively.
  • Mixture-1 Mixture-2 Cas9 protein 2 ug reaction buffer (x10) 1 ⁇ L sgRNA target #1 2 ug Add distilled water to total 10 ⁇ L Cas9 protein 2 ug, reaction buffer (x10) 1 ⁇ L sgRNA target #3 2 ug Add distilled water to total 10 ⁇ L
  • Reaction buffer (X10) 200 mM HEPES1 M NaCl 50 mM MgCl 2 1 mM EDTA, pH 6.5
  • Each RNP-transferred cell plate was stored in an incubator at 20° C. for 3 days, and then each microalgal cell was harvested by spreading it with MBL liquid medium. The harvested cells were diluted and plated on a new MBL agar medium so that the harvested cells could be separated into colonies and grown, and cultured at 20° C. for 16 hours and 8 hours in a light-dark cycle.
  • Test Example 1 Tetraselmis sp. using the CRISPR- Cas9 RNP method . Transformant identification
  • genomic DNA was first used as a template by PCR method in order to select a mutant in which the AGP gene was knocked out from among microalgae in the genus Tetracelmis into which RNP was introduced by the gene gun method.
  • TspAGP-M1 one type of mutant (individual of line 2-1-6 in FIG. 1) was selected and named TspAGP-M1.
  • the TspAGP-M1 mutant strain was deposited with the Korea Research Institute of Bioscience and Biotechnology Life Resources Center (KCTC) on January 10, 2019, and was given the accession number KCTC 13787BP.
  • the AGP gene protein sequence (420 amino acids) of the above mutant is as follows:
  • cells in a healthy state were obtained by culturing the cells in a nitrogen-rich medium and a nitrogen-depleted medium, respectively.
  • control and mutants that reached the stationary growth phase were cultured for 3 days in a nitrogen-containing medium (Nitrogen sufficient media (NS) and nitrogen-deficient medium (ND)), followed by nile red staining. was performed, and the fluorescence value was measured to confirm the intracellular lipid droplet.
  • NS nitrogen-containing medium
  • ND nitrogen-deficient medium
  • the mutant showed strong fluorescence compared to the control under both NS and ND conditions, and particularly, a stronger fluorescence value was confirmed under the nitrogen deficiency condition (ND). Therefore, it was confirmed that the prepared AGP mutant could promote an increase in lipid content by inhibiting the synthesis of starch.
  • Tetracelmis genus grown in flask culture conditions After 3 days of changing the cells to nitrogen-deficient media (ND) in the stationary growth stage, the content and composition of lipid components were analyzed by FAME analysis (Kim Z-Hun, Park Yong- Sung, Ryu Young-Jin, Lee Choul-Gyun. 2017 Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters.Biotechnology and Bioprocess Engineering 22:397-404.).
  • the lipid content of the AGP mutant increased to 21.05% in dry weight, 274% compared to the control.
  • Wild type AGP mutant Fatty acid content (w/w%) 7.68 (100%) 21.05 (274%)
  • the content and composition of lipid components were analyzed by FAME analysis method.
  • the content of the lipid component was investigated as the fatty acid content per cell dry weight in mg/g DCW (dry weight) and the fatty acid concentration per culture volume in mg/L (culture medium volume).
  • the total fatty acid content and composition of wild-type tetracelmis genus microalgae and the present invention TspASP-M1 microalgae were measured under nitrogen starvation for 3 days.
  • the total content of fatty acids was calculated based on dry cell weight (DCW). Values represent the mean ⁇ standard deviation of the three biological replicates of each strain, and statistically significant differences were determined by Student's t-test (* p ⁇ 0.001).
  • the total lipid content in the dry weight increased by 274% in the mutant (TspAGP-M1) compared to the control (wild type).
  • the productivity of the fatty acid that is, the total lipid content per culture volume
  • the total lipid productivity was also increased in the mutant.

Abstract

The present invention relates to a method for editing the genes of microalgae by using a gene gun method on an RNA-guided engineered nuclease (RGNE) RNP complex. A gene editing method according to the present invention can apply, to Tetraselmis sp. microalgaean, an RGNE RNP method for accurately and selectively editing a desired gene without foreign DNA introduction, thereby enabling a Tetraselmis variant having improved lipid productivity to be provided.

Description

유전자 총법을 이용한 미세조류의 교정 방법Correction method of microalgae using gene gun method
본 발명은 유전자 총법을 이용한 미세조류의 교정 방법, 이에 따른 지질생산능이 개선된 미세조류 및 상기 미세조류를 이용해서 바이오에너지를 생산하는 방법에 관한 것이다.The present invention relates to a method for correcting microalgae using a gene gun method, microalgae with improved lipid production capacity accordingly, and a method for producing bioenergy using the microalgae.
미세조류(microalgae)는 이산화탄소와 물을 원료로 광합성을 하는 단세포 생물로서 고등식물보다 세포분열 및 성장의 주기가 매우 짧아(약 5-8시간) 건강보조식품, 항노화 성분, DHA, 화장품 원료 등의 유용한 고부가가치 산업용 소재로 이용되는 경제적 잠재력이 높은 생물자원이다. 그 중에서 클라미도모나스(Chlamydomonas reinhardtii)는 미세조류 연구에서 모델종으로서 가장 많이 연구가 되어 왔으며 게놈프로젝트가 완료되어 유전자 연구 및 조작에 용이하다. 학술적 연구뿐만 아니라 산업분야에서 활용하기 위한 다양한 연구가 진행 중이다.Microalgae are single-celled organisms that photosynthesize using carbon dioxide and water as raw materials, and have a very short cycle of cell division and growth than higher plants (about 5-8 hours), such as health supplements, anti-aging ingredients, DHA, cosmetics raw materials, etc. It is a biological resource with high economic potential to be used as a useful high value-added industrial material. Among them, Chlamydomonas reinhardtii has been studied the most as a model species in microalgae research, and the genome project has been completed, making it easy for gene research and manipulation. A variety of studies are in progress for use in industrial fields as well as academic research.
한편, 크리스퍼 유전자 가위(RNA-guided engineered nuclease; RGEN)는 2013년 처음 개발된 이래, 지난 2년 여간 비약적으로 발전하여 인간세포는 물론, 가축, 곤충, 벼, 밀과 같은 식물세포, 병원균 등 다양한 종에 대하여 폭넓게 이용되고 있다. 이 방법은 박테리아가 외부 DNA의 침입을 막고자 형성한 크리스퍼 면역시스템을 유전자가위로 차용한 것이다. 즉, 특정 유전자의 염기서열을 찾아가는 염기서열 조각(크리스퍼 부분)을 제작해 절단 효소인 카스9(Cas9)와 짝을 이루게 하면, 짝을 이룬 크리스퍼 시스템은 표적이 되는 DNA 염기서열에 달라붙어 유전자의 특정 부위를 절단한다. 크리스퍼 유전자 가위는 현재까지 개발된 가위 중에 가장 제작이 용이하고 저렴할 뿐 아니라 정확성과 효율성도 높은 것으로 확인되었다. 그러나, 크리스퍼 유전자 가위를 세포에 도입하는데 있어 징크핑거뉴클레아제 (zinc finger nuclease; ZFN), 탈렌(transcription activator-like effector nuclease; TALEN), 크리스퍼 유전자 가위(RGEN)와 같은 유전자 가위를 DNA 플라스미드를 통하여 도입하여 형질 전환시키는 경우, 형질전환체를 만드는 과정에서 외부 DNA를 삽입하였기 때문에, GMO(Genetically Modified Organism)로 분류될 가능성이 높아 식품, 의료, 화장품 및 기타 산업분야에서 활용되는데 한계가 있다. 따라서, GMO 문제가 발생하지 않는 유전자 교정방법의 개발이 요구된다. On the other hand, CRISPR gene scissors (RNA-guided engineered nuclease (RGEN)) has developed rapidly over the past two years since it was first developed in 2013, and has developed a variety of pathogens, including human cells as well as plant cells such as livestock, insects, rice, and wheat. It is widely used for species. This method borrows the CRISPR immune system formed by bacteria to prevent the invasion of foreign DNA with genetic scissors. In other words, if a nucleotide sequence fragment (Crisper part) that searches for the nucleotide sequence of a specific gene is made and paired with the cleavage enzyme Cas9, the paired CRISPR system adheres to the target DNA nucleotide sequence. Cuts a specific part of the gene. CRISPR gene scissors were found to be the easiest and most inexpensive scissors developed to date, as well as high accuracy and efficiency. However, in introducing CRISPR gene scissors into cells, DNA scissors such as zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR gene scissors (RGEN) are used. In the case of transformation by introducing through a plasmid, it is highly likely to be classified as GMO (Genetically Modified Organism) because foreign DNA was inserted in the process of making the transformant, so it is limited to be used in food, medical, cosmetic and other industries. have. Therefore, there is a need to develop a method for editing genes that does not cause GMO problems.
최근 크리스퍼 유전자 가위를 세포에 도입시 외부 DNA 삽입 없는(DNA-free) 가이드 RNA와 단백질 복합체(ribonucleoprotein, RNP)로 전달하는 방법이 개발되었다. 이는 획기적인 형질전환 방법이 될 수 있으나, 이러한 방법은 일부 미세조류에만 적용이 가능하다는 한계가 있고, 현재까지는 화학물질 처리를 통해서 세포벽이 약화된 클라미도모나스 레인하드티아이(Chlamydomonas reinhardtii)나 규조류인 페오닥틸럼 트리코뉴튬(Phaeodactylum tricornutum)에서만 크리스퍼 유전자 가위를 이용한 형질전환 방법이 개발되었으나, 상기 두 종류의 미세조류 이외에 다양한 유용 미세조류를 대상으로 RGEN-RNP 기술을 동일한 방법으로 이용할 수 없다는 문제가 있다. 특히, 국내에서 발견되고, 다양한 산업에서 활용가치가 높은 테트라셀미스 속 미세조류에 적용가능한 크리스퍼 유전자 가위를 이용한 DNA Free에 의한 유전자 교정 방법은 아직 개발된바 없어, 테트라셀미스 속 미세조류에 적용가능한 유전자 교정방법에 대한 개발이 여전히 요구되고 있다.Recently, when CRISPR gene scissors are introduced into cells, a method of delivering a guide RNA without foreign DNA insertion (DNA-free) and a protein complex (ribonucleoprotein, RNP) has been developed. This however can be a way conversion revolutionary transformation, this method has limitations that can be applied to only some algae on the current cell walls through a chemical process by weakening Chlamydomonas rain hard tiahyi (Chlamydomonas reinhardtii) or diatoms in peoh Although the transformation method using CRISPR gene scissors was developed only in Phaeodactylum tricornutum , there is a problem that the RGEN-RNP technology cannot be used in the same way for various useful microalgae other than the two types of microalgae. . In particular, a DNA-free gene editing method using CRISPR gene scissors, which is found in Korea and applicable to microalgae in the genus Tetracelmis, which has high utility value in various industries, has not yet been developed. There is still a need to develop an applicable gene correction method.
상기한 문제점을 해결하기 위한 본 발명의 목적은 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질의 RGEN(RNA guided endonuclease) RNP(ribonucleoprotein)를 외부 DNA 도입 없이 미세조류로 전달하여 유전자를 교정하는 방법; 및 유전자가 교정된 미세조류 변이체를 제공하는 것이다.An object of the present invention for solving the above problems is a method of correcting a gene by transferring a guide RNA specific to a target gene and an RNA guided endonuclease (RGEN) ribonucleoprotein (RNP) of a Cas protein to microalgae without introducing external DNA; And a gene-modified microalgal variant.
특히, 본 발명은 테트라셀미스 속 미세조류에 대한 유전자 교정방법 및 상기 교정방법에 의하여 변이된 지질 생산능이 증가된 테트라셀미스 속 미세조류 변이체를 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a gene correction method for microalgae in the genus Tetracelmis, and a mutant of the genus Tetracelmis in which the ability to produce lipids mutated by the correction method is increased.
또한, 본 발명은 상기 지질 생산능이 증가된 테트라셀미스 속 미세조류 변이체를 이용해서 바이오에너지를 생산하는 방법 및 이의 배양물을 포함하는 바이오에너지 조성물을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a bioenergy composition comprising a method of producing bioenergy and a culture thereof using the microalgal mutant of the genus Tetracelmis with increased lipid production capacity.
상기와 같은 목적을 달성하기 위해서, 본 발명자들은 테트라셀미스속 미세조류의 형질전환을 위해서, 유전자총법(bombardment)에 의한 RNP를 이용한 유전자 교정을 통해 타겟 유전자를 knock-out 시킨 돌연변이체의 제조 방법을 개발하고 본 발명을 완성하였다. 특히, 본 발명자들은 DNA-free RGEN RNP 복합체를 미세조류에 적용함에 있어, 금입자 전달 시스템을 통한 유전자총법을 이용하고자 해당 미세조류의 세포 수, 가이드 RNA 농도, 가이드 RNA 종류 수, Cas9 단백질의 농도, 반응 조건 등 최적화 조건을 확립하여 미세조류의 유전자 교정 방법을 개발하였다.In order to achieve the above object, the present inventors have a method for producing a mutant knock-out a target gene through gene editing using RNP by bombardment for transformation of microalgae of the genus Tetracelmis. And completed the present invention. In particular, the present inventors applied the DNA-free RGEN RNP complex to microalgae, in order to use the gene gun method through the gold particle delivery system, the number of cells of the microalgae, the guide RNA concentration, the guide RNA type number, the concentration of the Cas9 protein. , And reaction conditions, etc., were established to develop a method for genetic editing of microalgae.
이러한 측면에서 본 발명은 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질의 RGEN(RNA guided endonuclease) RNP(ribonucleoprotein) 복합체를 유전자총을 이용하여 테트라셀미스 속 미세조류로 도입하는 것;을 포함하는 미세조류의 유전자 교정방법을 제공한다. In this aspect, the present invention introduces a RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of a target gene-specific guide RNA and Cas protein into microalgae in the genus Tetracelmis using a gene gun; microalgae comprising: Provides a method of genetic modification.
또한, 본 발명은 상기 교정방법에 의해 제조된 미세조류 변이체를 제공한다. 상기 변이체는 테트라셀미스 속(Tetraselmis sp.)의 AGP 유전자가 넉아웃된 세포 내 지질함량이 증가된 것일 수 있다. In addition, the present invention provides a microalgal variant prepared by the calibration method. The mutant may be one of the lipid content of tetra-cell misses in the AGP gene knockout cells (Tetraselmis sp.) Increases.
구체적으로, 본 발명은 SEQ ID No.: 4로 표시되는 서열에서 99번째 내지 524번째에 상응하는 뉴클레오티드가 결실된 AGP 유전자 변이를 포함하는 테트라셀미스 속 변이체를 제공한다. Specifically, the present invention provides a variant of the genus Tetraselmis including an AGP gene mutation in which a nucleotide corresponding to the 99th to the 524th in the sequence represented by SEQ ID No. 4 is deleted.
상기 변이체는 SEQ ID No: 5의 AGP 변이 유전자를 포함하는 것일 수 있다.The variant may include the AGP mutant gene of SEQ ID No: 5.
상기 변이체는 기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1 미세조류 일 수 있다.The variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
상기 테트라셀미스 TspAGP-M1은 C16:0과 C18:1 지방산 생산능이 야생형 균주와 비교해서 개선된 것일 수 있다.The tetracelmis TspAGP-M1 may have an improved C16:0 and C18:1 fatty acid production ability compared to a wild-type strain.
또한, 본 발명은 테트라셀미스 속 변이체를 배양하여 지질을 축적시키는 단계; 및 배양물로부터 축정된 지질을 단리시키는 단계를 포함하는 바이오에너지 생산방법을 제공한다.In addition, the present invention comprises the steps of accumulating lipids by culturing a variant of the genus tetracelmis; And it provides a bioenergy production method comprising the step of isolating the lipids moistened from the culture.
본 발명의 바이오에너지 생산방법은 상기 단리된 지방산 성분을 화학적 반응시키는 단계를 추가로 포함할 수 있다.The bioenergy production method of the present invention may further include the step of chemically reacting the isolated fatty acid component.
상기 변이체는 기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1 미세조류일 수 있다. The variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
또한, 본 발명은 상기 테트라셀미스 속 변이체의 배양물을 포함하는 바이오에너지 조성물을 포함할 수 있다. 상기 변이체는 기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1 미세조류일 수 있다. In addition, the present invention may include a bioenergy composition comprising a culture of the variant of the genus Tetracelmis. The variant may be a tetracelmis TspAGP-M1 microalgae that has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 이하에서 기술하는 특정 실시예 및 설명은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명을 특정한 개시 형태에 대해 한정하려는 의도는 아니다. 본 발명의 범위는 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention may be modified in various ways and may have various forms, and the specific examples and descriptions described below are only intended to aid understanding of the present invention, and the intention to limit the present invention to a specific disclosure form is no. It is to be understood that the scope of the present invention includes all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질의 RGEN(RNA guided endonuclease) RNP(ribonucleoprotein) 복합체를 유전자총을 이용하여 미세조류에 도입하는 것을 포함하는 미세조류의 유전자 교정 방법 또는 유전자 녹아웃(knock out) 방법에 관한 것이다.The present invention is a gene editing method or gene knockout of microalgae comprising introducing a RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of a target gene-specific guide RNA and Cas protein into the microalgae using a gene gun. out) method.
본 발명의 유전자 교정 방법은 가이드 RNA 및 Cas 단백질의 RGEN(RNA guided endonuclease) RNP(ribonucleoprotein) 복합체를 플라스미드 등의 DNA 운반체를 통하지 않고 직접 미세조류 세포 내에 유전자총(법)(particle bombardment 또는 particle gun)에 의하여 전달하는 것을 특징으로 한다. 상기 유전자총법에 의하여 미세조류 세포 내로 유전자를 직접 전달하여 미세조류의 유전자를 교정하는 것은 다른 용어로 유전자총법 형질전환(Biolistic transformation)으로도 표현될 수 있다. In the gene editing method of the present invention, the RGEN (RNA guided endonuclease) RNP (ribonucleoprotein) complex of guide RNA and Cas protein is directly in microalgal cells without passing through a DNA carrier such as a plasmid (particle bombardment or particle gun). It characterized in that it is delivered by. Correcting a gene of a microalgae by directly transferring a gene into a microalgal cell by the gene gun method may also be expressed as a gene gun method transformation (Biolistic transformation) in another term.
본 명세서에서 "유전자 교정" 또는 "유전자 녹아웃(knock out)"은 타겟 유전자의 타겟 부위에서 일부 뉴클레오타이드의 결실, 치환, 중복 및/또는 삽입을 통해서 구조이동 돌연변이(frameshift mutation)를 유도하여 유전자가 정상적 기능을 하는 단백질을 생산하지 못하도록 하는 모든 유전자 조작을 의미한다.In the present specification, "gene correction" or "gene knockout" refers to a frameshift mutation through deletion, substitution, duplication and/or insertion of some nucleotides at the target site of the target gene, so that the gene is normal. It refers to any genetic modification that prevents the production of a functioning protein.
본 명세서에서 유전자총(법)은 금 또는 텅스텐의 미세입자의 표면에 DNA를 응집(도마)시켜서 헬륨가스압(력) 등의 물리적인 힘을 이용해서 세포 내로 쏘아 넣어 세포에 DNA를 도입하는 방법을 의미한다. 유전자총에서 사용하는 유전자가 도말(응집)된 금속 미세입자는 크기에 비해서 무겁기 때문에 세포를 잘 뚫고 들어가는 장점이 있으나, 유전자의 표적부위로의 전달 및 성공 여부가 일정하지 않고, 삽입 유전자가 여러 번 삽입될 때 과발현될 수 있으며, 투과할 수 있는 조직의 두께가 한정되어 있고, 미세입자를 이용하기 때문에 세포 내 독성을 유발할 수 있다는 문제 때문에, 테트라셀미스 미세조류 내 유전자 도입에 적용하는 어려움이 있었다. In the present specification, the gene gun (method) refers to a method of introducing DNA into cells by aggregating (cutting) DNA on the surface of microparticles of gold or tungsten and shooting them into cells using physical forces such as helium gas pressure (force). it means. Metal microparticles with gene smears (aggregated) used in the gene gun have the advantage of penetrating cells well because they are heavier than their size, but the delivery and success of the gene to the target site are not constant, and the inserted gene is not repeated several times. Due to the problem that it can be overexpressed when inserted, the thickness of the permeable tissue is limited, and because of the use of microparticles, it can cause intracellular toxicity, there has been a difficulty in applying it to the introduction of genes in tetracelmis microalgae. .
그러나, 본 발명은 크리스퍼 유전자 가위(RNA-guided engineered nuclease; RGEN) 기술과 함께 유전자 교정을 위해 유전자 총을 이용함으로써, 교정 또는 넉아웃을 원하는 타겟 위치에서 정확하게 유전자 교정이 일어나게 할 수 있고, 세포 독성 등을 유발하지 않는 최적의 조건을 확립하여, 본 발명을 완성하였다. 본 발명을 이용하는 경우, 종래 일부 미세조류에만 적용가능 했던 RGEN RNP 방법에 의한 유전자 교정을 테트라셀미스 속 미세조류에 적용할 수 있고, 이에 최적화된 유전자 교정방법을 제공할 수 있다는 점에서 의미가 있다.However, according to the present invention, by using a gene gun for gene correction together with CRISPR gene scissors (RNA-guided engineered nuclease; RGEN) technology, it is possible to accurately correct the gene at the desired target position for correction or knockout, and The present invention was completed by establishing optimal conditions that do not cause toxicity or the like. In the case of using the present invention, it is meaningful in that gene correction by the RGEN RNP method, which was previously applicable only to some microalgae, can be applied to microalgae in the genus Tetracelmis, and an optimized gene correction method can be provided. .
본 명세서에서 "미세조류"는 이산화탄소와 물을 원료로 광합성을 하는 모든 단세포 생물로 이루어진 군에서 선택된 1종 이상일 수 있다. 본 발명의 일 구현예에서, 상기 미세조류는 테트라셀미스 속(Tetraselmis sp.) 미세조류일 수 있다. In the present specification, "microalgae" may be one or more selected from the group consisting of all single-celled organisms that photosynthesize using carbon dioxide and water as raw materials. In one embodiment, the microalgae can be a tetra-cell misses in (Tetraselmis sp.) Microalgae.
상기 테트라셀미스 속(Tetraselmis sp.) 미세조류는 테트라셀미스 아라크리스(Tetraselmis alacris), 테트라셀미스 아피쿨라타(Tetraselmis apiculata), 테트라셀미스 아스쿠스(Tetraselmis ascus), 테트라셀미스 아스티그마티카(Tetraselmis astigmatica), 테트라셀미스 추이(Tetraselmis chui), 테트라셀미스 콘볼루테(Tetraselmis convolutae), 테트라셀미스 코디포미스(Tetraselmis cordiformis), 테트라셀미스 데시카카르이(Tetraselmis desikacharyi), 테트라셀미스 그라실리스(Tetraselmis gracilis), 테트라셀미스 하제니(Tetraselmis hazeni), 테트라셀미스 임펠루시다(Tetraselmis impellucida), 테트라셀미스 인콘스피쿠아(Tetraselmis inconspicua), 테트라셀미스 레비스(Tetraselmis levis), 테트라셀미스 마쿨라테(Tetraselmis maculate), 테트라셀미스 마리나(Tetraselmis marina), 테트라셀미스 마이크로파필라타(Tetraselmis micropapillata), 테트라셀미스 루벤스(Tetraselmis rubens), 테트라셀미스 스트리아타(Tetraselmis striata), 테트라셀미스 수에시카(Tetraselmis suecica), 테트라셀미스 테트라브라키아(Tetraselmis tetrabrachia), 테트라셀미스 테트라헬레(Tetraselmis tetrathele), 테트라셀미스 벨루코사(Tetraselmis verrucosa), 테트라셀미스 웨스트니(Tetraselmis wettsteinii)로 구성된 군에서 선택된 하나 이상 일 수 있으나, 이에 한정되는 것은 아니다. The tetra-cell misses in (Tetraselmis sp.) Microalgae tetrahydro cell Miss Ara Chris (Tetraselmis alacris), tetra-cell Miss Bahia Kula other (Tetraselmis apiculata), tetra-cell misses Ars kusu (Tetraselmis ascus), tetra-cell Miss O stigmasterol urticae ( Tetraselmis astigmatica ) , Tetraselmis chui , Tetraselmis convolutae , Tetraselmis cordiformis , Tetraselmis desikacharyi , Tetraselmis desikacharyi room-less (Tetraselmis gracilis), tetra-cell misses and Jenny (Tetraselmis hazeni), tetra-cell misses impel Lucida (Tetraselmis impellucida), tetra-cell misses inkon RY exigua (Tetraselmis inconspicua), tetra-cell Miss Levy's (Tetraselmis levis), tetra-cell Miss Marcoola Te (Tetraselmis maculate), tetra-cell Miss Marina (Tetraselmis marina), tetra-cell misses microwave pillars other (Tetraselmis micropapillata), tetra-cell misses Rubens (Tetraselmis rubens), tetra-cell misses registry Atta (Tetraselmis striata), tetra-cell Miss can Brassica (Tetraselmis suecica), tetra-cell misses tetrahydro bra Escherichia (Tetraselmis tetrabrachia), tetra-cell misses tetrahydro helre (Tetraselmis tetrathele), tetra-cell Miss Belo Kosa (Tetraselmis verrucosa), and tetra-cell Miss West Needle (Tetraselmis wettsteinii) It may be one or more selected from the group consisting of, but is limited thereto no.
일 구체예로서, 본 발명의 미세조류의 유전자 교정방법은 구체적으로 다음 단계를 포함하여 수행될 수 있다:In one embodiment, the method for genetic modification of microalgae of the present invention may be specifically carried out, including the following steps:
표적 유전자에 특이적인 가이드 RNA(sgRNA) 및 Cas 단백질을 포함하는 반응 혼합물과 미세 금속입자를 혼합하여 리보핵산단백질(ribonucleoprotein, RNP)이 표면에 코딩된 미세 금속입자를 포함하는 RNP-전달용조성물을 준비하는 것;A reaction mixture containing a guide RNA (sgRNA) specific for a target gene and a Cas protein and fine metal particles are mixed to prepare a composition for RNP-delivery comprising fine metal particles encoded on the surface of ribonucleoprotein (RNP). To prepare;
상기 RNP-전달용조성물을 마크로-캐리어 디스크 상에서 건조시키는 것; 및 Drying the RNP-delivery composition on a macro-carrier disk; And
파열 디스크(rupture disk)에 500 psi 이상의 압력을 가하여 상기 RGEN RNP 복합체가 표면에 코팅된 미세 금속입자를 테트라셀미스 속 미세조류 세포로 발사하여 세포를 형질전환 하는 것.Transforming cells by applying a pressure of 500 psi or more to a rupture disk to launch fine metal particles coated on the surface of the RGEN RNP complex into microalgal cells of the genus Tetracelmis.
상기 교정방법은 RGEN RNP 복합체가 표면에 코팅된 미세 금속입자가 전달된 세포를 2 내지 5일 동안 인큐베이션한 후 미세조류 세포들을 수확하는 것을 더 포함하여 수행될 수 있다. 상기 반응 혼합물은 표적 유전자에 특이적인 가이드 RNA(sgRNA), Cas 단백질 및 반응완충액을 포함할 수 있다. 또한, 상기 반응 혼합물은 증류수를 포함하는 물을 더 포함할 수 있다. The calibration method may further include harvesting microalgal cells after incubating the cells to which the fine metal particles coated on the surface of the RGEN RNP complex are transferred for 2 to 5 days. The reaction mixture may include a guide RNA (sgRNA) specific for a target gene, a Cas protein, and a reaction buffer. In addition, the reaction mixture may further include water including distilled water.
상기 반응 혼합물 10 μL에 대하여 표적 유전자에 특이적인 가이드 RNA(sgRNA) 1 내지 5 ug 와 Cas 단백질 1 내지 5 ug이 포함될 수 있다. 또한, 상기 반응 혼합물 10 μL에 대하여 반응완충액 0.5 내지 2 μL를 더 포함할 수 있다. With respect to 10 μL of the reaction mixture, 1 to 5 ug of guide RNA (sgRNA) specific to the target gene and 1 to 5 ug of Cas protein may be included. In addition, 0.5 to 2 μL of the reaction buffer may be further included with respect to 10 μL of the reaction mixture.
상기 반응버퍼는 Cas 뉴클레아제(Nuclease) 반응 시 사용될 수 있는 버퍼라면 모두 이용할 수 있고, The reaction buffer may be any buffer that can be used during Cas nuclease reaction,
상기 반응완충액은 양쪽 이온성 완충제, 염화나트륨(NaCl), 및 염화마그네슘(MgCl2)을 포함할 수 있다. 또한, 상기 반응 완충액은 킬레이트제를 더 포함할 수 있고, 상기 킬레이트제는 일 예로 EDTA 일 수 있으나, 이에 한정되는 것은 아니다. The reaction buffer may include an amphoteric buffer, sodium chloride (NaCl), and magnesium chloride (MgCl 2 ). In addition, the reaction buffer may further include a chelating agent, and the chelating agent may be EDTA, but is not limited thereto.
상기 반응완충액은 일 예로, 이온성 완충제로 HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 10 내지 50 mM, 염화나트륨 50 내지 200 mM, 염화마그네슘 2.5 내지 10 mM 및 킬레이트제 0.1 내지 1 mM를 포함하거나; 40 내지 60 mM NaCl, 8 내지 12 mM Tris-HCl, 8 내지 12 mM MgCl2 및 80 내지 120 μg/mL BSA를 포함하거나; 80 내지 120 mM NaCl, 40 내지 600 mM Tris-HCl, 8 내지12 mM MgCl2, 및 0.8 내지 1.2 mM DTT를 포함할 수 있다. 또한, 뉴클레아제 버퍼로서 상업적으로 판매되는 것을 이용할 수 있고, 본 발명의 일 구현예에서는 NEB(New England Biolabs)사의 Cas9 Nuclease buffer #M0386를 이용하였다. The reaction buffer is an ionic buffer, for example, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 10 to 50 mM, sodium chloride 50 to 200 mM, magnesium chloride 2.5 to 10 mM, and chelating agent 0.1 to 1 mM Or; 40-60 mM NaCl, 8-12 mM Tris-HCl, 8-12 mM MgCl 2 and 80-120 μg/mL BSA; 80 to 120 mM NaCl, 40 to 600 mM Tris-HCl, 8 to 12 mM MgCl 2 , and 0.8 to 1.2 mM DTT. In addition, commercially available ones may be used as nuclease buffers, and in one embodiment of the present invention, Cas9 Nuclease buffer #M0386 of NEB (New England Biolabs) was used.
본 발명의 반응완충액은 pH는 6.0 내지 8.0 일 수 있다. The reaction buffer solution of the present invention may have a pH of 6.0 to 8.0.
상기 반응 혼합물은 전달용조성물에 포함되어, 유전자 총에 의해 세포 내로 전달될 수 있다. 본 발명에서 전달용조성물은 목적하는 세포 내로 전달되는 물질로서 표면에 리보핵산단백질이 코팅된 미세 금속입자를 포함하는 것으로, RNP-전달용조성물로도 지칭될 수 있다. 본 발명의 전달용조성물은 반응 혼합물과 미세 금속입자를 혼합하여 준비할 수 있다. The reaction mixture may be included in a delivery composition and delivered into cells by a gene gun. In the present invention, the composition for delivery includes fine metal particles coated with ribonucleic acid protein on the surface as a material delivered into the desired cell, and may also be referred to as a composition for RNP-delivery. The delivery composition of the present invention may be prepared by mixing a reaction mixture and fine metal particles.
상기 전달용조성물은 가이드 RNA를 1종 이상 포함할 수 있고, 구체적으로 서로 다른 타겟팅 서열을 표적화하는 가이드 RNA를 2종 이상 포함할 수 있다. 또는, 가이드 RNA를 1종만 포함하는 형태로 혼합조성물을 준비할 수 있고, 이 경우 서로 다른 타겟팅 서열을 표적화하는 가이드 RNA를 각각 포함하는 혼합조성물을 1종 이상 준비할 수 있다. 이 경우 상기 인큐베이션은 각각의 혼합조성물에 대해서 수행될 수 있다. '1종의 가이드 RNA'를 포함하는 혼합조성물을 2종 이상 준비한 경우, RNP-전달용조성물을 준비하기 위해 미세입자와 혼합하는 단계에서 상기 '2종 이상의 혼합조성물'을 하나의 RNP-전달용조성물에 혼합시킬 수 있다. The delivery composition may include one or more guide RNAs, and specifically may include two or more guide RNAs targeting different targeting sequences. Alternatively, a mixed composition may be prepared in a form containing only one guide RNA, and in this case, at least one mixed composition may be prepared each including guide RNAs targeting different targeting sequences. In this case, the incubation may be performed for each mixed composition. In the case of preparing two or more kinds of mixed compositions containing'one kind of guide RNA', in the step of mixing with microparticles to prepare a composition for RNP-delivery, the'two or more kinds of mixed composition' is used for one RNP-delivery It can be mixed into the composition.
구체적으로, 상기 RNP-전달용조성물은 제1 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질을 포함하는 제1 반응 혼합물;과 제2 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질을 포함하는 제2 반응 혼합물을 미세 금속입자와 혼합하여 2개 이상의 리보핵산단백질(RNP)가 코팅된 미세 금속입자를 포함하는 RNP-전달용조성물 일 수 있다. 이 경우, 2 개이상의 유전자를 표적하여 돌연변이를 유도할 수 있기 때문에, 유전자 넉아웃 돌연변이를 일으키는 확률을 더욱 향상시킬 수 있다는 장점이 있다. Specifically, the RNP-delivery composition is a first reaction mixture comprising a guide RNA and a Cas protein specific for a first target gene; and a second reaction mixture comprising a guide RNA and a Cas protein specific for a second target gene It may be a composition for RNP-delivery including fine metal particles coated with two or more ribonucleic acid proteins (RNP) by mixing with fine metal particles. In this case, since it is possible to induce a mutation by targeting two or more genes, there is an advantage that the probability of causing a gene knockout mutation can be further improved.
상기 반응 혼합물과 미세 금속입자는 1 내지 3 : 1의 부피비로 혼합될 수 있다. The reaction mixture and the fine metal particles may be mixed in a volume ratio of 1 to 3: 1.
본 발명의 일 실시예에서는, 상기 반응 혼합물 40uL에 대해 금 나노입자 20uL (1.2mg)을 혼합하여 RNP-전달용 조성물을 제조하여 사용하였다.In an embodiment of the present invention, a composition for RNP-delivery was prepared and used by mixing 20uL (1.2mg) gold nanoparticles with 40uL of the reaction mixture.
상기 미세 금속입자는 유전자 총법에서 사용될 수 있는 입자라면 그 성분에 관계없이 본 발명에 포함되어 사용될 수 있다.The fine metal particles may be included in the present invention and used regardless of their components as long as they are particles that can be used in the gene gun method.
상기 전달용조성물은 마크로-캐리어 상에 놓여서, 유전자 총으로 전달될 수 있는데, 이 경우 전달용조성물은 마크로-캐리어 상에 위치시키고, 건조시킨 형태로 유전자 총 발사를 수행할 수 있다. The delivery composition may be placed on a macro-carrier and delivered to a gene gun. In this case, the delivery composition may be placed on a macro-carrier, and a gene gun may be fired in a dried form.
상기 마크로-캐리어 디스크 상에 전달용조성물은 5 내지 20 μL 수준으로 놓을 수 있고, 상기 전달용조성물을 올린 마크로-캐리어 디스크는 1 내지 8장 준비할 수 있다. 상기 마크로-디스크를 건조하는 것은 자연건조 또는 인공건조를 모두 사용할 수 있고, 바람직하게는 공기건조(풍건, Air-dry) 방법을 이용할 수 있다. The delivery composition may be placed on the macro-carrier disk at a level of 5 to 20 μL, and 1 to 8 macro-carrier disks on which the delivery composition is mounted may be prepared. Drying the macro-disc may be performed by natural drying or artificial drying, and preferably, an air drying (air-dry) method may be used.
상기 RNP-전달용조성물을 발사하는 단계는 1 내지 10회 반복수행하는 것을 포함할 수 있다. The step of firing the RNP-delivery composition may include repeating 1 to 10 times.
테트라셀미스 속 미세조류의 경우, 상기 파열디스크 압력(rupture disk)은 500 psi 이상 일 수 있고, 보다 구체적으로는 1,000 내지 혹은 1,500 psi의 압력을 이용하여 유전자총을 수행할 수 있다. 바람직하게는 가장 바람직하게는 1100 내지 1500 psi로 수행할 수 있다. 유전자총 수행 시 압력이 상기한 범위보다 낮은 경우 유전자 전달 효율이 떨어지는 문제가 있고, 상기한 압력보다 높은 경우 테트라셀미스 미세조류 세포가 터져서 사멸하거나, 세포를 통과해서, 세포 내 도입율이 낮은 문제가 있다. In the case of microalgae in the genus Tetracelmis, the rupture disk may be 500 psi or more, and more specifically, the gene gun may be performed using a pressure of 1,000 to 1,500 psi. Preferably, it can be performed at 1100 to 1500 psi most preferably. When the pressure is lower than the above range when performing the gene gun, there is a problem that the gene transfer efficiency is lowered, and when the pressure is higher than the above-described pressure, the tetracelmis microalgal cells burst and die, or pass through the cells, and the intracellular introduction rate is low. There is.
상기 발사 시, 정지스크린(stop screen)과 미세조류가 포함된 세포플레이트(cell plate)의 거리는 1cm 내지 20cm 일 수 있고, 일 실시예에 따라, 테트라셀미스 속 미세조류에 1100 내지 혹은 1,500 psi의 압력을 적용하는 경우 5 cm 내지 10 cm 또는 8 cm 내지 10 cm의 거리로 유전자총을 수행할 수 있다. The firing during still screen (stop screen) and may be a distance 1cm to 20cm of containing the microalgal cell plate (cell plate), an embodiment according to the example, tetra-cell misses in the 1100 to, or 1,500 psi to the microalgae When applying pressure, the gene gun can be performed at a distance of 5 cm to 10 cm or 8 cm to 10 cm.
미세조류에 상기한 본 발명의 유전자총 수행 방법을 적용하는 경우, 종래 크리스퍼 유전자 가위에 의한 형질전환이 어려웠던 미세조류의 형질전환 성공률을 높일 수 있다. When the method of performing the gene gun of the present invention is applied to microalgae, it is possible to increase the success rate of transformation of microalgae, which has been difficult to transform by conventional CRISPR gene scissors.
본 발명의 미세조류 유전자 교정 방법은 상기 유전자 도입 전에 유전자 교정을 하고자 하는 미세조류를 포함하는 세포 플레이트를 준비하는 것을 더 포함할 수 있다. 상기 세포 플레이트는 지수기의 미세조류 세포를 원심 분리한 후, 신선한 액체 배지에서 농축하고, 준비된 상기 세포 농축물을 배지 플레이트 위에 도말한 후, 건조를 통해 액체배지를 증발시켜서 세포 접시를 제조하는 것 일 수 있다. 여기서 상기 세포 농축물은 배지 플레이트 위에 지름 2 내지 5cm 크기로 도말할 수 있다. 상기 세포는 1x106 내지 1x108 개 세포로 배지 플레이트에 도말될 수 있다. The microalgal gene editing method of the present invention may further include preparing a cell plate containing the microalgae to be genetically corrected before the gene introduction. The cell plate is to prepare a cell dish by centrifuging the microalgal cells of the exponential phase, concentrating in a fresh liquid medium, spreading the prepared cell concentrate on a medium plate, and evaporating the liquid medium through drying. Can be Here, the cell concentrate may be spread on a medium plate in a size of 2 to 5 cm in diameter. The cells may be plated on a medium plate in 1x10 6 to 1x10 8 cells.
본 발명에서 "배지"는 미생물을 배양하기 위하여 배양대상 즉 배양체가 되는 미생물이 필요로 하는 영양물질을 포함하는 것으로 특수한 목적을 위한 물질이 추가로 첨가되어 혼합된 것일 수 있다. 상기 배지는 배양기 또는 배양액이라고도 하며, 천연 배지, 합성 배지 또는 선택 배지를 모두 포함하는 개념이다. 상기 배지는 MBL배지 HS 배지 또는 TAP 배지일 수 있으나, 이에 한정되지 않고 대상 미세조류에 따라 다르게 이용될 수 있다. In the present invention, "medium" includes nutrients required by a culture target, that is, a microorganism used as a culture medium in order to cultivate a microorganism, and may be a mixture by adding a substance for a special purpose. The medium is also referred to as a culture medium or a culture medium, and is a concept including all of a natural medium, a synthetic medium, or a selective medium. The medium may be MBL medium HS medium or TAP medium, but is not limited thereto and may be used differently depending on the target microalgae.
본 발명의 미세조류 유전자 교정 방법은 상기 유전자 도입 전에 유전자총법을 수행하기 미세 금속입자를 준비하는 것을 더 포함할 수 있다. 본 발명에서 상기 미세입자는 나노 또는 마이크로 사이즈의 입자일 수 있고, 금, 텅스텐 또는 그 외 금속 미세입자를 이용할 수 있다. 구체적으로 0.1 내지 1.0 μm, 또는 0.4 내지 0.8 μm의 입자를 이용할 수 있다. 상기 미세입자는 에탄올 및 물을 이용하여 세척하여 준비될 수 있다. The microalgal gene editing method of the present invention may further include preparing fine metal particles to perform the gene gun method before introducing the gene. In the present invention, the microparticles may be nano or micro-sized particles, and gold, tungsten or other metal microparticles may be used. Specifically, particles of 0.1 to 1.0 μm, or 0.4 to 0.8 μm may be used. The microparticles may be prepared by washing with ethanol and water.
본 발명의 교정방법은 표적 유전자에 특이적인 가이드 RNA를 준비하는 것을 더 포함할 수 있다. The calibration method of the present invention may further include preparing a guide RNA specific for the target gene.
본 발명에서 "RNA 가이드 엔도뉴클레아제(RGEN)"는 단일가닥 RNA 또는 이중가닥 RNA와 복합체를 형성하며 RNA에 포함된 유전자 표적부위 타겟팅 서열을 절단하여 유전자 교정 작용을 하는 엔도뉴클레아제를 의미하는 것으로, 대표적으로 Cas9 단백질 (CRISPR associated protein 9) 등과 같은 타입 Ⅱ의 CRISPR/Cas 시스템에 수반되는 엔도뉴클레아제일 수 있다.In the present invention, "RNA guide endonuclease (RGEN)" refers to an endonuclease that forms a complex with single-stranded RNA or double-stranded RNA and cuts the targeting sequence of the gene target site contained in the RNA to perform gene correction. As such, it may be an endonuclease involved in a type II CRISPR/Cas system, such as a typical Cas9 protein (CRISPR associated protein 9).
상기 Cas9 단백질은 스트렙토코커스 sp. (Streptococcus sp.), 예컨대, 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래의 것 (SwissProt Accession number Q99ZW2)일 수 있으나, 이에 제한되는 것은 아니다. 일 예로 SEQ ID No: 31의 Cas9 단백질 또는 이와 80% 이상의 상동성을 갖는 Cas9 단백질을 포함하는 것 일 수 있다. The Cas9 protein is Streptococcus sp. (Streptococcus sp.), For example, may be a Streptococcus blood yoge Ness (Streptococcus pyogenes) to the derived (SwissProt Accession number Q99ZW2), but is not limited thereto. For example, the Cas9 protein of SEQ ID No: 31 or a Cas9 protein having 80% or more homology thereto may be included.
상기 Cas9 단백질은 미생물에서 분리된 것 또는 재조합적 방법 또는 합성적 방법으로 비자연적 생산된 것(non-naturally occurring)일 수 있다. 상기 Cas9 단백질은 진핵세포의 핵 내 전달을 위하여 통상적으로 사용되는 요소 (예컨대, 핵위치신호(nuclear localization signal; NLS) 등)를 추가로 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The Cas9 protein may be isolated from a microorganism or may be non-naturally produced by a recombinant or synthetic method. The Cas9 protein may further include an element commonly used for intranuclear delivery of eukaryotic cells (eg, nuclear localization signal (NLS), etc.), but is not limited thereto.
본 발명의 일 실시예에서는 스트렙토코커스 피요게네스 유래의 Cas9 단백질을 테트라셀미스 속 미세조류의 유전자 교정에 사용하였고, 구체적으로 재조합 Cas9 단백질(Recombinant Cas9 protein; Cat No# TGEN_CP4)을 ㈜툴젠으로부터 구입하여 사용하였다. Purchased from ㈜ tuljen a; (Cat No # TGEN_CP4 Recombinant Cas9 protein) In one embodiment of the invention Streptococcus blood was used Cas9 protein yoge Ness derived from a gene correction of microalgae in tetra cell miss, specifically recombinant Cas9 protein And used.
일반적으로, 가이드 서열은 표적 서열과 혼성화하고, 표적 서열로의 CRISPR 복합체의 서열-특이적 결합을 유도하기에 충분한, 표적 서열과의 상보성을 갖는 임의의 폴리뉴클레오티드를 포함하는 서열이다. 일부 구현예에서, 가이드 서열에서 '표적서열에 상보성을 갖는 부위의 서열'과 '그의 상응하는 표적 서열' 간의 상보성의 정도는 적절한 정렬 알고리즘을 사용하여 최적으로 정렬되는 경우, 약 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99% 이상이다. 최적의 정렬은 서열을 정렬하기에 적절한 임의의 알고리즘의 사용으로 결정될 수 있으며, 그의 비제한적인 예는 스미스-워터만(Smith-Waterman) 알고리즘, 니들만-분쉬(Needleman-Wunsch) 알고리즘, 버로우즈-휠러 트랜스폼(Burrows-Wheeler Transform)에 기초한 알고리즘(예를 들어, 버로우즈 휠러 얼라이너(Burrows Wheeler Aligner)), ClustalW, Clustal X, BLAT, 노보얼라인(Novoalign)(노보크라프트 테크놀로지즈(Novocraft Technologies), ELAND(일루미나(Illumina), 미국 캘리포니아주 샌디에고), SOAP(soap.genomics.org.cn에서 이용 가능) 및 Maq(maq.sourceforge.net에서 이용가능)를 포함한다. 일부 구현예에서, 가이드 서열은 5개 뉴클레오티드 이상의 길이를 가지며, 보다 구체적으로는 5개 뉴클레오티드 내지 500개 뉴클레오티드의 길이 일 수 있다. 일부 구현예에서, 가이드 서열은 약 10 내지 100개 뉴클레오티드 길이일 수 있으나, 이에 한정되는 것은 아니다. In general, the guide sequence is a sequence comprising any polynucleotide having sufficient complementarity with the target sequence to hybridize with the target sequence and induce sequence-specific binding of the CRISPR complex to the target sequence. In some embodiments, the degree of complementarity between the'sequence of the region having complementarity to the target sequence' and the'its corresponding target sequence' in the guide sequence is about 50%, 60% when optimally aligned using an appropriate alignment algorithm. , 75%, 80%, 85%, 90%, 95%, 97.5%, 99% or more. Optimal alignment can be determined by the use of any algorithm suitable for aligning the sequence, non-limiting examples of which are Smith-Waterman algorithm, Needleman-Wunsch algorithm, Burrows- Algorithms based on Burrows-Wheeler Transform (e.g. Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies) , ELAND (Illumina, San Diego, CA, USA), SOAP (available from soap.genomics.org.cn) and Maq (available from maq.sourceforge.net) In some embodiments, guide sequences Has a length of 5 nucleotides or more, and more specifically, may be 5 nucleotides to 500 nucleotides in length, In some embodiments, the guide sequence may be about 10 to 100 nucleotides in length, but is not limited thereto. .
표적 서열로의 CRISPR 복합체의 서열-특이적 결합을 유도하는 가이드 서열의 능력은 임의의 적절한 검정에 의해 평가될 수 있다. 예를 들어, 시험되는 가이드 서열을 포함하는 CRISPR 복합체를 형성하기에 충분한 CRISPR 시스템의 성분은 예를 들어, CRISPR 서열의 성분을 인코딩하는 벡터로의 트랜스펙션 후에, 차세대염기서열 분석 기술을 이용한 검정에 의한 표적 서열 내의 우선적인 절단의 평가에 의해서 상응하는 표적 서열을 갖는 숙주 세포로 제공될 수 있다. 유사하게, 표적 폴리뉴클레오티드 서열의 절단은 표적 서열, 시험되는 가이드 서열 및 시험 가이드 서열과 상이한 대조군 가이드 서열을 포함하는 CRISPR 복합체의 성분을 제공하고, 표적 서열에서 시험 및 대조군 가이드 서열 반응 간의 결합 또는 절단 비율을 비교함으로써 시험관에서 평가될 수 있다. 다른 검정이 가능하며, 당업자에게 떠오를 것이다. 가이드 서열은 임의의 표적 서열을 표적화하도록 선택될 수 있다. 일부 구현예에서, 표적 서열은 세포의 게놈 내의 서열이다. 예시적인 표적 서열은 표적 게놈에서 독특한 것들을 포함한다.The ability of the guide sequence to induce sequence-specific binding of the CRISPR complex to the target sequence can be assessed by any suitable assay. For example, components of the CRISPR system sufficient to form a CRISPR complex comprising the guide sequence to be tested are assayed using next-generation sequencing techniques, e.g., after transfection with a vector encoding the components of the CRISPR sequence. By evaluation of preferential cleavage within the target sequence by, it can be provided to a host cell having a corresponding target sequence. Similarly, cleavage of a target polynucleotide sequence provides a component of a CRISPR complex comprising a target sequence, a guide sequence to be tested, and a control guide sequence different from the test guide sequence, and binding or cleavage between the test and control guide sequence reactions at the target sequence. It can be evaluated in vitro by comparing the proportions. Other assays are possible and will come to the person skilled in the art. The guide sequence can be selected to target any target sequence. In some embodiments, the target sequence is a sequence within the genome of the cell. Exemplary target sequences include those that are unique in the target genome.
즉, 상기 가이드 RNA는 표적 서열에 따라 또는 복합체를 형성할 엔도뉴클레아제의 종류 및/또는 그 유래 미생물에 따라서 적절히 선택될 수 있다. 예컨대, 상기 가이드 RNA는 CRISPR RNA(crRNA), trans-activating crRNA(tracrRNA), 및 단일 가닥 가이드 RNA(sgRNA)로 이루어진 군에서 선택된 1종 이상일 수 있으며, 엔도뉴클레오타이드 종류에 따라서, CRISPR RNA(crRNA) 및 trans-activating crRNA(tracrRNA)의 이중가닥 복합체, 또는 단일 가닥 가이드 RNA(sgRNA)일 수 있다. 상기 sgRNA는 crRNA 및 tracrRNA의 부분을 포함할 수 있다.That is, the guide RNA may be appropriately selected according to the target sequence or the type of endonuclease to form a complex and/or the microorganism derived therefrom. For example, the guide RNA may be one or more selected from the group consisting of CRISPR RNA (crRNA), trans- activating crRNA (tracrRNA), and single-stranded guide RNA (sgRNA), and depending on the type of endonucleotide, CRISPR RNA (crRNA) And a double-stranded complex of trans- activating crRNA (tracrRNA), or a single-stranded guide RNA (sgRNA). The sgRNA may include a portion of crRNA and tracrRNA.
예컨대, Cas9 단백질을 포함하는 복합체(Cas9 시스템)은 목적하는 유전자 교정을 위하여 두 개의 가이드 RNA, 즉, 유전자의 표적 부위와 혼성화 가능한 뉴클레오타이드 서열을 갖는 CRISPR RNA(crRNA)와 추가적인 trans-activating crRNA(tracrRNA)를 필요로 하며, 이들 crRNA와 tracrRNA는 서로 결합된 이중 가닥 crRNA:tracrRNA 복합체 형태, 또는 링커를 통하여 연결되어 단일 가닥 가이드 RNA (single-stranded guide RNA; sgRNA) 형태로 사용될 수 있다. For example, the Cas9 protein-containing complex (Cas9 system) has two guide RNAs, that is, a CRISPR RNA (crRNA) having a nucleotide sequence hybridizable with a target site of a gene, and an additional trans- activating crRNA (tracrRNA) to correct a desired gene. ), and these crRNA and tracrRNA can be used in the form of a double-stranded crRNA:tracrRNA complex bonded to each other, or a single-stranded guide RNA (sgRNA) form by being linked through a linker.
상기 가이드 RNA의 구체적 서열은 Cas9 단백질의 종류(유래 미생물)에 따라서 적절히 선택할 수 있으며, 이는 이 발명이 속하는 기술 분야의 통상의 지식을 가진 자가 용이하게 알 수 있는 사항이다.The specific sequence of the guide RNA can be appropriately selected according to the type (derived microorganism) of the Cas9 protein, which can be easily recognized by those of ordinary skill in the art.
일 예에서, Streptococcus pyogenes 유래의 Cas9 단백질을 포함한 Cas9 시스템에 사용되는 crRNA는 다음의 일반식 1로 표현될 수 있다:In one example, the crRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be expressed by the following general formula 1:
5'-(Ncas9)l-GUUUUAGAGCUA-(Xcas9)m-3' (일반식 1)5'-(N cas9 ) l -GUUUUAGAGCUA-(X cas9 ) m -3' (general formula 1)
상기 일반식 1에서, In the general formula 1,
Ncas9는 유전자 표적 부위와 혼성화 가능한 뉴클레오타이드 서열을 포함하는 타겟팅 서열 부위로서 표적 유전자의 표적 부위에 따라서 결정되는 부위이며, l은 상기 타겟팅 서열 부위에 포함된 뉴클레오타이드 수를 나타내는 것으로 18 내지 22의 정수, 예컨대 20일 수 있고;N cas9 is a targeting sequence site comprising a nucleotide sequence capable of hybridizing with a gene target site, and is a site determined according to the target site of the target gene, and l represents the number of nucleotides contained in the targeting sequence site, and is an integer of 18 to 22, May be for example 20;
상기 타겟팅 서열 부위의 3' 방향으로 인접하여 위치하는 연속하는 12개의 뉴클레오타이드(GUUUUAGAGCUA)를 포함하는 부위는 crRNA의 필수적 부분이다.A region containing 12 consecutive nucleotides (GUUUUAGAGCUA) adjacent to each other in the 3'direction of the targeting sequence region is an essential part of the crRNA.
또한, Xcas9는 crRNA의 3' 쪽에 위치하는(즉, 상기 crRNA의 필수적 부분의 3' 방향으로 인접하여 위치하는) m개의 뉴클레오타이드를 포함하는 부위로, m은 0 내지 12의 정수, 예컨대 0일 수 있다. In addition, X cas9 is a site containing m nucleotides located on the 3'side of the crRNA (that is, adjacent to the 3'direction of the essential part of the crRNA), where m is an integer from 0 to 12, such as 0 days. I can.
본 명세서에서, "표적서열에 상보성을 갖는 부위의 서열", 즉, 유전자 표적 부위와 혼성화 가능한 뉴클레오타이드 서열은 유전자 표적 부위의 뉴클레오타이드 서열과 50% 이상, 60% 이상, 70% 이상, 80% 이상, 90% 이상, 95% 이상, 99% 이상, 또는 100%의 서열 상보성을 갖는 뉴클레오타이드 서열을 의미한다 (이하, 특별한 언급이 없는 한 동일한 의미로 사용된다).In the present specification, "a sequence of a site having complementarity to a target sequence", that is, a nucleotide sequence capable of hybridizing with a gene target site is 50% or more, 60% or more, 70% or more, 80% or more, It means a nucleotide sequence having sequence complementarity of 90% or more, 95% or more, 99% or more, or 100% (hereinafter, unless otherwise specified, the same meaning is used).
일 예에서, 상기 Xcas9는 UGCUGUUUUG를 포함할 수 있으며, 생략될 수 있으나 이에 제한되지 않는다. In one example, the X cas9 may include UGCUGUUUUG, and may be omitted, but is not limited thereto.
또한, Streptococcus pyogenes 유래의 Cas9 단백질을 포함한 Cas9 시스템에 사용되는 tracrRNA는 다음의 일반식 2로 표현될 수 있다:In addition, the tracrRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be expressed by the following general formula 2:
(일반식 2)(General formula 2)
5'-(Ycas9)p-UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC-3' 5'-(Y cas9 ) p -UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC-3'
상기 일반식 2에서, In the above general formula 2,
60개의 뉴클레오타이드 (UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC)를 포함하는 부위는 tracrRNA의 필수적 부분이고,The site containing 60 nucleotides (UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC) is an essential part of tracrRNA,
Ycas9는 상기 tracrRNA의 필수적 부분의 5' 말단에 인접하여 위치하는 p개의 뉴클레오타이드를 포함하는 부위로, 생략될 수 있다. 즉, p는 0 내지 20의 정수, 예컨대 0 내지 5의 정수일 수 있으며, 상기 p개의 뉴클레오타이드들은 서로 같거나 다를 수 있고, A, U, C 및 G로 이루어진 군에서 각각 독립적으로 선택될 수 있다.Y cas9 is a site including p nucleotides located adjacent to the 5'end of the essential part of the tracrRNA, and may be omitted. That is, p may be an integer of 0 to 20, for example, 0 to 5, and the p nucleotides may be the same or different from each other, and may be independently selected from the group consisting of A, U, C, and G.
또한, Streptococcus pyogenes 유래의 Cas9 단백질을 포함한 Cas9 시스템에 사용되는 sgRNA는 상기 Cas9의 crRNA의 타겟팅 서열 부위와 필수적 부위를 포함하는 crRNA 부위와 상기 Cas9의 tracrRNA의 필수적 부위를 포함하는 tracrRNA 부위가 뉴클레오타이드 링커를 통하여 헤어핀 구조를 형성하는 것일 수 있다. 보다 구체적으로, 상기 sgRNA는 crRNA의 타겟팅 서열 부위와 필수적 부위를 포함하는 crRNA 부위와 상기 Cas9의 tracrRNA의 필수적 부위를 포함하는 tracrRNA 부위가 서로 결합된 이중 가닥 RNA 분자에서 crRNA 부위의 3' 말단과 tracrRNA 부위의 5' 말단이 뉴클레오타이드 링커를 통하여 연결된 헤어핀 구조를 갖는 것일 수 있다.In addition, the sgRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes includes the targeting sequence site of the Cas9 crRNA and the crRNA site including the essential site, and the tracrRNA site including the essential site of the tracrRNA of Cas9 is a nucleotide linker. Through it may be to form a hairpin structure. More specifically, the sgRNA is the 3'end of the crRNA site and the tracrRNA in a double-stranded RNA molecule in which a crRNA site including a targeting sequence site and an essential site of crRNA and a tracrRNA site including an essential site of the tracrRNA of Cas9 are bound to each other. The 5'end of the site may have a hairpin structure connected through a nucleotide linker.
crRNA의 타겟팅 서열 부위와 필수적 부위 및 tracrRNA의 필수적 부위는 앞서 설명한 바와 같다. 상기 sgRNA에 포함되는 뉴클레오타이드 링커는 crRNA과 tracrRNA 상의 loop 부분을 의미하며, 3 내지 5개, 예컨대 4개의 뉴클레오타이드를 포함하는 것일 수 있으며, 상기 뉴클레오타이드들은 서로 같거나 다를 수 있고, A, U, C 및 G로 이루어진 군에서 각각 독립적으로 선택될 수 있다. The targeting sequence site and essential site of crRNA and the essential site of tracrRNA are as described above. The nucleotide linker included in the sgRNA refers to a loop portion on the crRNA and tracrRNA, and may include 3 to 5, such as 4 nucleotides, and the nucleotides may be the same or different from each other, A, U, C and Each of the groups consisting of G may be independently selected.
또한, Streptococcus pyogenes 유래의 Cas9 단백질을 포함한 Cas9 시스템에 사용되는 gRNA는 다음의 일반식 3으로 표현될 수 있다:In addition, gRNA used in the Cas9 system including the Cas9 protein derived from Streptococcus pyogenes can be represented by the following general formula 3:
(일반식 3)(General formula 3)
5'-NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'5'-NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'
상기 일반식 3에서 N으로 표시된 연속하는 20개의 뉴클레오티드는 표적서열 타겟팅 부위(표적하는 유전자의 타겟팅하는 부위의 서열과 상보적인 서열)이다. In the general formula 3, 20 consecutive nucleotides indicated by N are target sequence targeting sites (sequences complementary to the targeting site sequence of the target gene).
상기 gRNA 합성 시, 상기 일반식 3에서, N으로 표시되는 타겟팅 부위 앞에 프라이머 서열부위가 존재할 수 있다. 일 예로 본 발명에서는 T7 프라이머로 TAATACGACTCACTATAG 서열을 포함한 뉴클레오티드를 이용하였다. When synthesizing the gRNA, in the general formula 3, a primer sequence site may be present in front of the targeting site represented by N. For example, in the present invention, a nucleotide containing a TAATACGACTCACTATAG sequence was used as a T7 primer.
상기 crRNA (예컨대, 일반식 1로 표현됨) 또는 sgRNA는 5' 말단 (즉, crRNA의 타겟팅 서열 부위의 5' 말단)에 1 내지 3개의 구아닌(G)을 추가로 포함할 수 있다.The crRNA (eg, represented by Formula 1) or sgRNA may further include 1 to 3 guanines (G) at the 5'end (ie, the 5'end of the targeting sequence site of the crRNA).
상기 tracrRNA 또는 sgRNA는 tracrRNA의 필수적 부분(60nt)의 3' 말단에 5개 내지 7개의 우라실 (U)을 포함하는 종결부위를 추가로 포함할 수 있다.The tracrRNA or sgRNA may further include a terminating site including 5 to 7 uracils (U) at the 3'end of the essential portion (60 nt) of the tracrRNA.
일 예에서 상기 가이드 RNA는 "Kim, H. & Kim, J.-S. Nat. Rev. Genet. 15, 321-334 (2014)"에 기재된 내용을 참조하여 준비할 수 있다.In one example, the guide RNA may be prepared by referring to the contents described in "Kim, H. & Kim, J.-S. Nat. Rev. Genet. 15 , 321-334 (2014)".
다른 예는 미세조류의 특정 유전자의 교정(치환, 결실 및/또는 삽입)을 위한 가이드 RNA를 제공한다.Another example provides a guide RNA for the correction (replacement, deletion and/or insertion) of specific genes in microalgae.
본 발명에서 표적 유전자는 내재적 유전자일 수 있다. 본 발명의 일 구현예에서 상기 표적 유전자는 AGP(ADP glucose pyrophosphorylase), FTSY (Chloroplast SRP receptor), ZEP (Zeaxanthin epoxidase) 등 일 수 있으나, 이에 제한되는 것은 아니다. 특히, 본 발명의 교정방법을 이용하는 경우, 형질전환을 목적하는 미세조류 내 타겟 유전자의 유전정보를 기초로 타겟부위를 설정하는 경우, 타겟부위 특이적으로 유전자 교정이 나타날 수 있게 할 수 있어, 미세조류 내에 포함된 유전자의 종류에 제한되지 않고 사용되리 수 있다. In the present invention, the target gene may be an endogenous gene. In one embodiment of the present invention, the target gene may be AGP (ADP glucose pyrophosphorylase), FTSY (Chloroplast SRP receptor), ZEP (Zeaxanthin epoxidase), or the like, but is not limited thereto. In particular, in the case of using the correction method of the present invention, when the target site is set based on the genetic information of the target gene in the microalgae for transformation, the gene correction can be made specifically for the target site. It can be used without being limited to the kind of genes contained in birds.
상기 가이드 RNA는 앞서 설명한 바와 같은 crRNA와 tracrRNA의 이중가닥 복합체 또는 sgRNA일 수 있으며, 상기 이중가닥 복합체 또는 sgRNA에 포함된 crRNA는 교정하고자하는 유전자의 임의의 특정 부위와 혼성화 가능한 타겟팅 서열부위를 포함할 수 있다.The guide RNA may be a double-stranded complex of crRNA and tracrRNA or sgRNA as described above, and the crRNA contained in the double-stranded complex or sgRNA includes a targeting sequence site capable of hybridizing with any specific site of the gene to be corrected. I can.
또한, 본 발명의 유전자 총법에서 1x106 개의 테트라셀미스 세포에 대하여, 유전자총을 1회 분사하는 경우, 가이드 RNA 0.7 ~ 2 ㎍ 및 Cas 단백질 0.7 ~ 2 ㎍을 전달할 수 있다. 이 경우 테트라셀미스 세포가 망가지거나 전달이 잘 되지않는 문제점이 발생하지 않아, 형질전환 효율을 높일 수 있는 장점이 있다. Further, with respect to the 1x10 6 cells of tetra Miss cells in gene chongbeop of the invention, when injected once a gene gun, the guide can be transmitted to RNA 0.7 ~ 2 ㎍ and Cas protein 0.7 ~ 2 ㎍. In this case, there is an advantage of increasing the transformation efficiency, since there is no problem in that the tetracelmis cells are damaged or poorly delivered.
본 발명의 다른 양태로, 상기 유전자 교정방법에 의해 제작된 유전자 교정 미세조류 변이체를 제공한다.In another aspect of the present invention, there is provided a genetically corrected microalgal variant produced by the gene editing method.
일 구현예에서, 상기 변이체는 AGP 유전자가 넉아웃된 테트라셀미스 속 미세조류일 수 있다. 상기 테트라셀미스 속 미세조류는 본 발명의 유전자 교정에 따라 AGP 유전자 넉아웃이 나타나 전분을 합성하지 않고, 미세조류 세포 내 지질 생성량이 우수한 특성을 갖는다. 상기 변이체는 SEQ ID No: 4의 AGP의 유전체 DNA에서 99번째 뉴클레오티드에서 524번째에 상응하는 뉴클레오티드 결실의 유전자 변이된 AGP 유전자를 포함하는 테트라셀미스 속 미세조류일 수 있다. 즉, 상기 SEQ ID No: 4의 AGP의 유전체는 AGP의 일부 서열을 나타내는 것이므로, 테트라셀미스 속 미세조류의 AGP 유전체 서열에서 SEQ ID No.: 4로 표시되는 서열에서 99번째 내지 524번째에 상응하는 뉴클레오티드의 결실은 본 발명의 변이에 포함되는 것이다. In one embodiment, the variant may be a microalgae of the genus Tetracelmis in which the AGP gene has been knocked out. The tetra-cell has a miss in the micro-algae without synthesizing a starch the AGP gene knockout appear for gene correction of the present invention, the microalgae cells are lipid production excellent properties. The variant may be a microalgae of the genus Tetracelmis including a genetically mutated AGP gene having a nucleotide deletion corresponding to the 99th nucleotide to the 524th in the genomic DNA of AGP of SEQ ID No: 4. That is, since the AGP genome of SEQ ID No: 4 represents a partial sequence of AGP, it corresponds to the 99th to 524th in the sequence represented by SEQ ID No.: 4 in the AGP genome sequence of microalgae of the genus Tetracelmis. The deletion of the nucleotide is included in the variation of the present invention.
상기 변이체는 SEQ ID No: 2의 AGP 유전자의 cDNA에서 301번째 내지 589번째에 상응하는 뉴클레오티드 결실의 유전자 변이된 AGP 유전자를 포함하는 것 일 수 있다. 상기 변이체는 SEQ ID No: 5의 cDNA 서열을 포함하는 AGP 유전자를 갖는 것 일 수 있다. The variant may include a genetically mutated AGP gene having a nucleotide deletion corresponding to the 301 th to 589 th cDNA of the AGP gene of SEQ ID No: 2. The variant may have an AGP gene comprising the cDNA sequence of SEQ ID No: 5.
본 발명의 일 구현예에서, 테트라셀미스 속. KCTC12432BP를 원균주로하여, 본 발명의 유전자 교정방법에 따른 AGP 유전자 넉아웃을 수행하여 AGP 돌연변이체를 선발하였으며, 선발된 돌연변이체는 TspAGP-M1으로 명명하여, 한국생명공학연구원 생명자원센터(KCTC)에 2019년 1월 10일자로 기탁되어, 수탁번호 KCTC 13787BP를 부여받았다.In one embodiment of the present invention, the genus Tetracelmis . Using KCTC12432BP as the original strain, the AGP mutant was selected by performing AGP gene knockout according to the gene correction method of the present invention, and the selected mutant was named TspAGP-M1, and the Korea Research Institute of Bioscience and Biotechnology Life Resource Center (KCTC) On January 10, 2019, it was deposited with the accession number KCTC 13787BP.
본 발명의 테트라셀미스 TspAGP-M1 돌연변이는 AGP 유전자의 넉아웃으로 지질 생산능이 야생형 균주와 비교해서 높아진 특성을 갖는다. Tetra cell Miss TspAGP-M1 mutant of the invention has increased properties by the knockout of the AGP gene compared to the wild type strain capability lipid production.
본 발명의 일 실시예에 확인한 건조 중량 중 지질 함량이 야생형 균주와 비교해서 274% (w/w) 향상되었고, 배양액 1L당 지질 함량(지질 생산성)은 야생형 균주와 비교해서 225% 향상되었음을 확인하였다. 특히, 연료 성분 중 활용성이 높은 포화 지방산인 C16:0과 C18:1 함량이 현저히 증가하여, 바이오매스 생산을 위한 미세조류로서 그 활용성이 우수한 특성을 갖는다. It was confirmed that the lipid content in the dry weight identified in an example of the present invention was improved by 274% (w/w) compared to the wild-type strain, and the lipid content (lipid productivity) per 1 L of the culture medium was improved by 225% compared to the wild-type strain. . In particular, the content of C16:0 and C18:1, which are highly usable saturated fatty acids among fuel components, is remarkably increased, and has excellent utility as a microalgae for biomass production.
본 발명의 테트라셀미스 변이체 제조 방법에 의하는 경우, DNA 운반체를 사용하지 않고, 외부의 DNA 도입없이 형질전환이 가능하여 유전자 변형 유기체의 위험성이 없다는 이점이 있다. 특히, 목적하는 유전자의 특이적 변이를 통해서 유전자 변이확률을 더욱 높일 수 있으며, 본 발명의 유전자 총 조건은 테트라셀미스 세포의 형질전환에 최적화되어 있어, 그 효율을 더욱 높일 수 있다는 점에서 매우 의미가 있다. 특히, 본 발명의 Cas 단백질 가이드 RNA 복합체의 경우, 플라스미드 과발현에 의한 방법이 아닌 일시적으로 RNA가 존재하는 형태이므로, repair 등에 의해 형질전환 효율이 매우 낮아지는 문제가 있으나, 상기와 같이 서로 다른 타겟팅 서열을 표적화하는 가이드 RNA를 2종 이상 포함하여 유전자총법에 의한 형질전환을 수행하는 경우, 유전자의 2 이상의 부위에서 동시에 변이를 발생시키므로 유전자 변이를 일으키는 확률이 매우 높아지는 장점이 있다.If depend on cell-tetrahydro miss mutant production process of the present invention, without the use of carrier DNA, the transformant is possible without any external DNA introduction has the advantage that there is no risk of the transgenic organism. In particular, it is possible to further increase the probability of gene mutation through specific mutations of the desired gene, and the total gene condition of the present invention is optimized for transformation of tetracelmis cells, which is very meaningful in that the efficiency can be further increased. There is. In particular, in the case of the Cas protein guide RNA complex of the present invention, since RNA is temporarily present, not by plasmid overexpression, there is a problem that the transformation efficiency is very low due to repair, etc., but different targeting sequences as described above In the case of performing transformation by the gene gun method including two or more kinds of guide RNAs targeting, mutations occur at two or more sites at the same time, so the probability of causing genetic mutations is very high.
본 발명의 테트라셀미스 TspAGP-M1 돌연변이는 건조 중량 중 지질 함량이 야생형과 비교해서 매우 우수한 특성을 가지며, 특히, 연료 성분 중 활용성이 높은 포화 지방산인 C16:0과 C18:1 함량이 높다는 측면에서 바이오에너지 생산에 적합한 특성을 갖는다. 이러한 측면에서 본 발명은 기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1 미세조류를 배양하여 지질을 축적시키는 단계; 및 배양물로부터 축정된 지질을 단리시키는 단계를 포함하는 바이오에너지 생산방법을 제공한다. Tetra cell Miss TspAGP-M1 mutant is the lipid content of the dry weight has a very excellent properties as compared to wild-type, in particular, utilization of the high saturated fatty acids of C16 of the fuel component of the present invention: side high 1 content: 0 and C18 It has properties suitable for bioenergy production in In this aspect, the present invention comprises the steps of accumulating lipids by culturing tetracelmis TspAGP-M1 microalgae having accession number KCTC 13787BP, which does not have starch-producing ability, and has improved lipid-producing ability compared to wild-type; And it provides a bioenergy production method comprising the step of isolating the lipids moistened from the culture.
상기 테트라셀미스 TspAGP-M1 미세조류를 배양하는 단계는 앞서 기술한 배양배지 및 테트라셀미스가 생존가능한 배양배지에서 수행될 수 있고, 본 발명이 속하는 기술분야에서 사용되는 배양기, 광원, 온도 및 시간 등을 포함하는 배양 조건을 이용해서 수행될 수 있다. 상기 배양은 테트라셀미스 TspAGP-M1 미세조류의 건조 중량 당 지질 함량이 20% 이상이 될 때까지 배양하는 것을 포함할 수 있다. The step of culturing the tetracelmis TspAGP-M1 microalgae can be performed in the culture medium and the culture medium in which the tetracelmis is viable, and the incubator used in the technical field to which the present invention belongs, light source, temperature and time It can be carried out using culture conditions including the like. The culturing may include culturing until the lipid content per dry weight of the tetracelmis TspAGP-M1 microalgae is 20% or more.
본 발명의 테트라셀미스 TspAGP-M1 미세조류는 온도 18 내지 25℃, 백색형광원 40 내지 120 μmol photon m-2s-1 세기 조건에서, 14 내지 18시간 광조건, 7 내지 9시간 암조건으로 배양될 수 있으나, 이에 한정되는 것은 아니다. Tetracelmis TspAGP-M1 microalgae of the present invention are cultured under conditions of temperature 18 to 25°C, white fluorescent source 40 to 120 μmol photon m -2 s -1 intensity, 14 to 18 hours light condition, 7 to 9 hours dark condition May be, but is not limited thereto.
상기 지질을 단리시키는 단계는 세포를 용해하고 지질을 포함한 탄화수소를 추출하는 것으로 수행될 수 있다. 상기 세포의 용해는 열, 염기, 산성, 효소, 물리적 처리 (예를 들어 기계적 파괴, 초음파, 삼투처리), 용균 바이러스 또는 용균 유전자 발현에 의한 자가용해 등의 방법에 따라 수행될 수 있다. The step of isolating the lipid may be performed by lysing the cells and extracting a hydrocarbon containing the lipid. The lysis of the cells may be carried out according to methods such as heat, base, acid, enzyme, physical treatment (eg, mechanical destruction, ultrasonic, osmotic treatment), autolysis by lysis virus or lysis gene expression.
상기 지질을 포함한 탄화수소를 추출하는 것은 세포로부터 분비된 탄화수소를 원심분리시켜 소수성 층의 탄화수소를 분리하거나, 세포 또는 세포 분획물을 프로테아제로 처리하여, 원심분리 전이나 후에 오염성 단백질을 분해시킬 수 있다. Extracting the hydrocarbon containing the lipid may be performed by centrifuging the hydrocarbon secreted from the cell to separate the hydrocarbon in the hydrophobic layer, or by treating the cell or cell fraction with a protease to degrade the contaminant protein before or after centrifugation.
본 발명의 바이오에너지 생산방법은 상기 단리된 지질을 화학적 반응시키는 단계를 추가로 포함할 수 있다. 지질은 상기 화학적 반응에 의해서 산업 및 생활에서 사용되는데 보다 적합한 연료로 가공될 수 있다. 상기 화학적 반응은 효소에 의한 가공 또는 열 및 기타 촉매에 의한 가공에 의하여 수행될 수 있다. 탄소-탄소 이중 또는 삼중 결합의 수를 감소시키고, 탄화수소 내의 고리형 구조를 제거하거나, 수소:탄소 비를 증가시키시도록 가공될 수 있다. 상기 화학적 반응은 바이오에너지로부터 자동차 또는 엔진의 사용에 적합한 연료를 생산하기 위해 사용되는 통상적인 방법을 이용해서 수행될 수 있다. The bioenergy production method of the present invention may further include the step of chemically reacting the isolated lipid. Lipids can be processed into fuels more suitable for use in industry and life by the above chemical reaction. The chemical reaction may be performed by processing by enzymes or by processing by heat and other catalysts. It can be engineered to reduce the number of carbon-carbon double or triple bonds, remove cyclic structures in hydrocarbons, or increase the hydrogen:carbon ratio. The chemical reaction can be carried out using conventional methods used to produce fuels suitable for use in automobiles or engines from bioenergy.
또한, 본 발명은 기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1 미세조류의 배양물을 포함하는 바이오에너지 조성물을 포함할 수 있다. In addition, the present invention may include a bioenergy composition comprising a culture of tetracelmis TspAGP-M1 microalgae, which has accession number KCTC 13787BP, does not have starch-producing ability, and has improved lipid-producing ability compared to wild type. have.
상기 배양물은 본 발명 대상 미세조류를 배양한 것으로 배양 이후 미세조류를 제거한 형태, 배양물의 농축물, 건조물 또는 또는 분획에 의해서 목적하는 성분(예를 들어 지질, 탄화수소 성분)을 고함량으로 포함하는 분획물을 모두 포함하는 의미이다. 본 발명의 테트라셀미스 TspAGP-M1 미세조류는 세포 건조중량 당 지질의 함량이 20% 이상으로 높고, 상기 지질 중 포화 지방산인 C16:0과 C18:1 함량이 특히 높아, 상기 조류의 배양물은 바이오 에너지 조성물로 우수한 효과를 갖는다.The culture is obtained by culturing the microalgae of the present invention, and contains a high content of the desired component (e.g., a lipid, a hydrocarbon component) by a form of removing the microalgae after cultivation, a concentrate, a dried product, or a fraction of the culture. It means including all fractions. Tetracelmis TspAGP-M1 microalgae of the present invention has a high content of lipid per dry cell weight of 20% or more, and the content of saturated fatty acids C16:0 and C18:1 among the lipids is particularly high, and the culture of the algae It has an excellent effect as a bio energy composition.
상기 바이오 에너지는 본 발명 테트라셀미스 TspAGP-M1 미세조류로부터 생산된 지질을 포함하거나, 상기 지질의 가공된 성분을 에너지원으로 포함하는 가솔린 또는 디젤 조성물 일 수 있다. The bio-energy may be a gasoline or diesel composition including lipids produced from the present invention Tetracelmis TspAGP-M1 microalgae, or including a processed component of the lipid as an energy source.
본 발명에 따른 교정방법은 외래의 DNA 도입이 없이 크리스퍼 유전자 가위를 이용하여 원하는 유전자를 선택적으로 녹아웃시키는 것으로, RNP를 유전자총법을 이용하여 미세조류 세포 내로 도입시킴으로서, 외부 DNA의 도입 없이 원하는 유전자를 선택적으로 교정할 수 있다는 이점을 갖는다.The correction method according to the present invention is to selectively knock out a desired gene using CRISPR gene scissors without introducing foreign DNA, and by introducing RNP into microalgal cells using the gene gun method, the desired gene without introduction of foreign DNA It has the advantage that can be selectively corrected.
도 1은 본 발명의 일 실시예에 따라 유전자총법에 의해 RNP가 도입된 테트라셀미스 속 미세조류의 AGP 유전자의 염기서열을 PCR로 분석한 결과를 보여준다. Wt는 야생형 테트라셀미스 속 미세조류를 나타내고, 1-1-1 내지 2-2-7 라인은 각각 본 발명의 일 실시예에 따라 형질전환된 테트라셀미스 속 미세조류를 나타낸다. Figure 1 shows the result in accordance with an embodiment of the present invention analyzed the base sequence of the AGP gene of tetra-cell microalgae miss in the RNP is introduced by gene chongbeop by PCR. Wt represents a wild - type tetracelmis genus microalgae, and lines 1-1-1 to 2-2-7 each represent a transformed tetracelmis genus microalgae according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라 형질전환된 테트라셀미스 속 미세조류 중에서 선발된 돌연변이 개체(mutant, 도 1에서 2-1-6 라인의 개체)의 AGP 유전정보를 게놈수준에서 확인한 결과를 보여준다. Wt는 야생형 테트라셀미스 속 미세조류를 나타낸다.Figure 2 is the result confirming the AGP genetic information of the transformed, selected from the tetra-switched cell Miss in micro-algae mutation objects (objects in the line 2-1-6 in the mutant, FIG. 1) in accordance with an embodiment of the invention in the genome level Show. Wt represents the wild - type tetracelmis genus microalgae.
도 3은 본 발명의 실시예에 따라 선발된 AGP 돌연변이 테트라셀미스 속 미세조류(Mutant)와 야생형 테트라셀미스 속 미세조류(WT)의 전분합성능을 확인한 결과를 보여주는 사진이다. 3 is a photograph showing the result confirming the performance of the starch must AGP mutant cell tetrahydro Miss in micro-algae (Mutant) and wild-type cells tetrahydro Miss in micro-algae (WT) selected in accordance with an embodiment of the invention.
도 4는 본 발명의 일 실시예에 따라 선발된 AGP 돌연변이 테트라셀미스 속 미세조류(AGP mutant)와 야생형 테트라셀미스 속 미세조류(WT)의 질소 결핍(ND)/또는 질소 충분(NS) 조건에서 세포내 지질 용적을 Nile-red 염색을 통해서 확인한 결과를 보여주는 그래프이다. Figure 4 is an AGP mutant selected in accordance with an embodiment of the invention tetrahydro cell Miss in micro-algae (AGP mutant) and wild-type tetra cell misses a nitrogen deficiency of microalgae (WT) (ND) / or nitrogen sufficiently (NS) conditions Is a graph showing the results of confirming the intracellular lipid volume through Nile-red staining.
도 5는 본 발명의 일 실시예에 따라 선발된 AGP 돌연변이 테트라셀미스 속 미세조류(AGP)와 야생형 테트라셀미스 속 미세조류(WT)의 세포내 지질 용적을 Bodipy 염색을 통해서 확인한 결과를 보여주는 사진이다. 5 is a photograph showing the result confirming the intracellular lipid volume of the AGP mutant tetrahydro cell Miss in micro-algae (AGP) and wild-type tetra cell Miss in micro-algae (WT) selected in accordance with an embodiment of the invention through a Bodipy dye to be.
도 6은 본 발명의 일 실시예에 따라 선발된 AGP 돌연변이 테트라셀미스 속 미세조류(AGP mutant)와 야생형 테트라셀미스 속 미세조류(WT)의 건조중량(DW) 당 지방산 총 함량 및 지방산 종류 분석 결과를 보여주는 그래프이다.Figure 6 is an AGP mutant tetrahydro cell Miss in micro-algae selected in accordance with an embodiment of the invention (AGP mutant) and dry weight (DW) the total content and fatty acid type analysis fatty acid per of the wild-type tetra cell Miss in micro-algae (WT) This is a graph showing the results.
도 7은 본 발명의 일 실시예에 따라 선발된 AGP 돌연변이 테트라셀미스 속 미세조류(AGP mutant)와 야생형 테트라셀미스 속 미세조류(WT)의 건조중량(DW) 당 지방산 종류별 함량을 보여주는 그래프이다.7 is a graph showing the fatty acid type content per dry weight (DW) of the AGP mutant tetrahydro cell Miss in micro-algae (AGP mutant) and wild-type tetra cell Miss in micro-algae (WT) selected in accordance with an embodiment of the invention .
도 8은 본 발명의 일 실시예에서 사용된 야생형 테트라셀미스속 미세조류의 AGP유전자의 cDNA 서열(SEQ ID No:1)을 나타낸다. Figure 8 shows the cDNA sequence (SEQ ID No: 1) of the AGP gene of wild-type tetracelmis microalgae used in an embodiment of the present invention.
도 9은 본 발명의 일 실시예에서 확인된 야생형 테트라셀미스속 미세조류의 AGP유전자의 전장 cDNA 서열(SEQ ID No:2)을 나타낸다.9 shows the full-length cDNA sequence (SEQ ID No: 2) of the AGP gene of wild-type tetracelmis microalgae identified in an example of the present invention.
도 10는 본 발명의 일 실시예에서 확인된 야생형 테트라셀미스속 미세조류의 AGP유전자의 단백질 서열(SEQ ID No:3)을 나타낸다.FIG. 10 shows the protein sequence (SEQ ID No: 3) of the AGP gene of wild-type tetracelmis microalgae identified in an embodiment of the present invention.
도 11은 본 발명의 일 실시예에서 분리된 테트라셀미스속 미세조류 돌연변이체 TspAGP-M1의 AGP유전자의 cDNA 서열(SEQ ID No:5)을 나타낸다. 그림에서 /는 RGEN RNP를 위한 두 개의 타겟 서열 사이에 야생형 AGP 서열과 비교해서 결실된 부위를 나타낸다.11 shows the cDNA sequence (SEQ ID No: 5) of the AGP gene of the tetracelmis genus microalgal mutant TspAGP-M1 isolated in an embodiment of the present invention. In the figure, / indicates the deleted site compared to the wild-type AGP sequence between two target sequences for RGEN RNP.
도 12는 본 발명의 일 실시예에서 분리된 테트라셀미스속 미세조류 돌연변이체 TspAGP-M1의 AGP유전자의 단백질 서열(SEQ ID No:6)을 나타낸다.12 shows the protein sequence (SEQ ID No: 6) of the AGP gene of the tetracelmis genus microalgal mutant TspAGP-M1 isolated in an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따라 확인된 야생형 테트라셀미스 미세조류의 AGP 단백질 서열(SEQ ID No:3)과 클라미도모나스 레인하드티이의 AGP 단백질 서열(SEQ ID No:12)의 상동성을 비교한 결과이다.13 is an image of the AGP protein sequence (SEQ ID No: 3) of the wild-type tetracelmis microalgae identified according to an embodiment of the present invention and the AGP protein sequence (SEQ ID No: 12) of Chlamydomonas reinhardti. This is the result of comparing the same sex.
도 14는 본 발명의 일 실시예에 따라 확인된 야생형 테트라셀미스 미세조류의 AGP 단백질 서열(SEQ ID No:3)과 테트라셀미스속 미세조류 돌연변이체 TspAGP-M1의 AGP유전자의 단백질 서열(SEQ ID No:6)을 비교한 결과이다.Figure 14 is the AGP protein sequence (SEQ ID No: 3) of the wild-type tetraselmis microalgae identified according to an embodiment of the present invention and the protein sequence of the AGP gene of the tetracelmis microalgae mutant TspAGP-M1 (SEQ This is the result of comparing ID No:6).
이하, 본 발명의 실시예를 통해 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식이 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, it will be described in detail through an embodiment of the present invention. The following examples are merely illustrative of the present invention, and the scope of the present invention is not limited to the following examples. These embodiments are provided to complete the disclosure of the present invention, and to fully inform the scope of the invention to those skilled in the art to which the present invention belongs, and the present invention is defined by the scope of the claims. Only.
[실시예][Example]
실험예 1. Tetraselmis sp.의 AGP 유전자 클로닝Experimental Example 1. Cloning of AGP gene of Tetraselmis sp.
형질전환용 타겟 유전자로 전분(starch) 합성 유전자의 주요 효소인 ADP glucose pyrophosphorylase(AGP) 유전자 확보하기 위해, 인하대학교 이철균 교수 연구실에서 기 확보한 유전 정보 콘티그(contig)들 중에서 TR24688_c0_g13의 homology 분석을 통해 AGP 유전자의 정보를 확인하고, cDNA와 genomic DNA를 주형으로 한 PCR을 통해 AGP 유전자를 클로닝하였다.In order to secure the ADP glucose pyrophosphorylase (AGP) gene, the main enzyme of the starch synthesis gene as a target gene for transformation, the homology analysis of TR24688_c0_g13 among the genetic information contigs previously obtained in the laboratory of Professor Cheol-gyun Lee of Inha University was conducted. The information on the AGP gene was confirmed through this, and the AGP gene was cloned through PCR using cDNA and genomic DNA as templates.
#455 정방향 프라이머: 5'-CAGAAGCAGACGGTGAATGC-3' (SEQ ID No: 7)#455 Forward Primer: 5'-CAGAAGCAGACGGTGAATGC-3' (SEQ ID No: 7)
#456 역방향 프라이머: 5'-TGCGCGCTTAAATGATGGTG-3' (SEQ ID No: 8)#456 Reverse Primer: 5'-TGCGCGCTTAAATGATGGTG-3' (SEQ ID No: 8)
#455 & #456 프라이머에 의한 AGP1의 cDNA 서열 (SEQ ID No: 1)CDNA Sequence of AGP1 by #455 &#456 Primers (SEQ ID No: 1)
(개시코돈:ATG, 종결코돈: TAA, 밑줄 프라이머 #455, #456의 위치)(Start codon:ATG, stop codon: TAA, position of underlined primers #455, #456)
CAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGTGCGCGCCAACGCAAAGATCTCCCACTCCGTTGTGGGCGTGCGTGCGCTGATCTCTGAGAACACCGTCGTGGAGGACTCCATGATCATGGGCGCGGACTACTACGAGACCCTGGAGGAGTGCCAGCTGGTGCCGGGCTGCCTGCCCATGGGCATCGGCCCCAACACGATCGTGAAGAAGGCGATCATCGACAAGAATGCCCGCATCGGCGCCAACTGCCAGATTGTGAACAAGGACAACGTGATGGAGGCCAACGAGGAGGAGAAGGGCTACATCATCAAGGATGGCATCATTGTGGTGTGCAAGGACGCCATTATCCCCGACGGCACCATCATT TAA GCGCGC CAGAAGCAGACGGTGAATGC GGCCACCGTGGAGGAG ATG TGCGCGCCAACGCAAAGATCTCCCACTCCGTTGTGGGCGTGCGTGCGCTGATCTCTGAGAACACCGTCGTGGAGGACTCCATGATCATGGGCGCGGACTACTACGAGACCCTGGAGGAGTGCCAGCTGGTGCCGGGCTGCCTGCCCATGGGCATCGGCCCCAACACGATCGTGAAGAAGGCGATCATCGACAAGAATGCCCGCATCGGCGCCAACTGCCAGATTGTGAACAAGGACAACGTGATGGAGGCCAACGAGGAGGAGAAGGGCTACATCATCAAGGATGGCATCATTGTGGTGTGCAAGGACGCCATTATCCCCGACGG CACCATCATT TAA GCGCGC
이후, 완전한 cDNA 유전자를 확인하기 위해서, 5'와 3' RACE(rapid amplification cDNA end) PCR을 수행하였다. 이때, 5'-RACE 분석을 위해서 특이적 역방향 프라이며(#512, 5'-AGTAGATCTTGTTCACGCCGCT-3', SEQ ID No: 9)와 특이적 역방향 프라이머(#513, 5'-TCTTCTTGGTCAGCGGGTACAG-3', SEQ ID No: 10)를 이용하였다. 3'-RACE 분석을 위해서는 특이적 정방향 프라이머(#511, GGGAGGACATCGGAACCATC, SEQ ID No: 11)를 이용하였다. 각각의 RACE 분석 결과 테트라셀미스의 AGP cDNA의 전장 서열을 다음과 같이 확인하였다. Then, in order to confirm the complete cDNA gene, 5'and 3'RACE (rapid amplification cDNA end) PCR was performed. At this time, for 5'-RACE analysis, it is a specific reverse primer (#512, 5'-AGTAGATCTTGTTCACGCCGCT-3', SEQ ID No: 9) and a specific reverse primer (#513, 5'-TCTTCTTGGTCAGCGGGTACAG-3', SEQ ID No: 10) was used. For 3'-RACE analysis, a specific forward primer (#511, GGGAGGACATCGGAACCATC, SEQ ID No: 11) was used. As a result of each RACE analysis, the full length sequence of AGP cDNA of Tetracelmis was confirmed as follows.
RACE 분석을 통한 AGP의 전장 cDNA 서열 (SEQ ID No: 2)Full-length cDNA sequence of AGP through RACE analysis (SEQ ID No: 2)
(개시코돈:ATG, 종결코돈: TAA, 밑줄-프라이머의 위치, 이탤릭-5'UTR- region 과 3'UTR-region, 음영- Cas9 표적서열)(Start codon: ATG, stop codon: TAA, underscore-primer position, italic-5'UTR-region and 3'UTR-region, shaded- Cas9 target sequence)
gactctgcgcctctccacggtgctcacacgcgcacgtttcttcctcacgcatcagccgcgtcactgtagccagg ATGGCGACCGCCACCATAGCCCAGGCCCAGCTCGGCGCTCGCGCTAAGACCGCCGGCGTCGGCAGCGTGCGCAGCGTCCGCGGCGTGCGCGTCCCGCAGATCAGCCGCCCTCGTGCTGCCCGCGTCGCACAGAGGCATGTGGTCGCGTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCTGATGGCACCGTGCCCGATATCAGCAAGACTGTGCTGGGAATCATCCTGGGCGGCGGCGCGGGCACCCGCCTGTACCCGCTGACCAAGAAGAGGGCCAAGCCCGCGGTGCCGCTGGGCGCCAACTACCGCCTGATCGACATCCCCGTGAGCAACTGCATCAACAGCGGCGTGAACAAGATCTACTGCCTCACGCAGTTCAACTCGGCCTCCCTGAACCGCCACCTCTCCCAGGCCTACAACTCGAACATCGGAGGCTACATGGACAAGGGCTTCGTGGAGGTGCTGGCCGCGCAGCAGAGCCCGAAGAACCCCAACTGGTTCCAGGGCACGGCCGACGCGGTGCGCCAGTACATGTGGCTGTTTGAGGAGGCGATGGCCAACGGCGTGGAGGACTTCCTCATCCTGTCGGGCGACCACCTGTACCGCATGGACTACCAGGAGTTTGTGGCCGCGCACCGCGCCGCGAAGGCCGCCATCACTGTCGCCGCGCTGCCCTGCGCCGAGAAGCAGGCCGAGGCGTTTGGCCTCATGAAGATCGATGACTCTGGCCGTATCGTCGAGTTTGCGGAGAAGCCCACCGGCGACGCGCTCAAGGCTATGCGCATCGACACCACCGTGCTCGGCCTCGACGCGGAGCGGGCGGCGGAGATGCCGTACCTGGCCTCGATGGGCATCTACGTGATGAAGGGCACGCTGCTGCGCGAGCTGCTGGACGACAACCCGGACGCGAACGACTTCGGCTCGGAGATCATCCCGTTTGCCAAGGACAAGGGATCCAAGGTGCAGGCGTTCCTGTTTGACGGCTACTGGGAGGACATCGGAACCATCGAGGCCTTTTACAGCGCCAACCTGGCCCTCACCGACCCCGACGCCCCCAAATTCAGCTTCTACGAGCGCGAGGCGCCCATCTACACCATGCCGCGCTTCTTGCCGCCCTCCAAGATGCTGGACGCGGACGTGGCCAACAGCATCATCGGCGACGGCTGCGTCGTGCGCGCCAACGCAAAGATCTCCCACTCCGTTGTGGGCGTGCGTGCGCTGATCTCTGAGAACACCGTCGTGGAGGACTCTATGATCATGGGCGCGGACTACTACGAGACCCTGGAGGAGTGCCAGCTGGTGCCGGGCTGCCTGCCCATGGGCATCGGCCCCAACACGATCGTGAAGAAGGCGATCATCGACAAGAATGCCCGCATCGGCGCCAACTGCCAGATTGTGAACAAGGACAACGTGATGGAGGCCAACGAGGAGGAGAAGGGCTACATCATCAAGGATGGCATCATTGTGGTGTGCAAGGACGCCATTATCCCCGACGGCACCATCATTTAA gcgcgcccccatgcataccttcctatcccccctcccctcccctcccctcccctcgtcaatggaaatagcgccgatagttacagagttaccgtgtgacctagtggacctggtgggggtgtaatgaatcccctttttgcgtcaaaaaaaaaaaaaaaaaaaaa gactctgcgcctctccacggtgctcacacgcgcacgtttcttcctcacgcatcagccgcgtcactgtagccagg ATG GCGACCGCCACCATAGCCCAGGCCCAGCTCGGCGCTCGCGCTAAGACCGCCGGCGTCGGCAGCGTGCGCAGCGTCCGCGGCGTGCGCGTCCCGCAGATCAGCCGCCCTCGTGCTGCCCGCGTCGCACAGAGGCATGTGGTCGCGTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCT GATGGCACCGTGCCCGATAT CAGCAAGACTGTGCTGGGAATCATCCTGGGCGGCGGCGCGGGCACCCGC CTGTACCCGCTGACCAAGAAGA GGGCCAAGCCCGCGGTGCCGCTGGGCGCCAACTACCGCCTGATCGACATCCCCGTGAGCAACTGCATCAAC AGCGGCGTGAACAAGATCTACT GCCTCACGCAGTTCAACTCGGCCTCCCTGAACCGCCACCTCTCCCAGGCCTACAACTCGAACATCGGAGGCTACATGGACAAGGGCTTCGTGGAGGTGCTGGCCG CGCAGCAGAGCCCGAAGAAC CCCAACTGGTTCCAGGGCACGGCCGACGCGGTGCGCCAGTACATGTGGCTGTTTGAGGAGGCGATGGCCAACGGCGTGGAGGACTTCCTCATCCTGTCGGGCGACCACCTGTACCGCATGGACTACCAGGAGTTTGTGGCCGCGCACCGCGCCGCGAAGGCCGCCATCACTGTCGCCGCGCTGCCCTGCGCCGAGAAGCAGGCCGAGGCGTTTGGCCTCATGAAGATCGATGACTCTGGCCGTATCGTCGAGTTTGCGGAGAAGCCCACCGGCGACGCGCTCAAGGCTATGCGCATCGACACCACCGTGCTCGGCCTCGACGCGGAGCGGGCGGCGGAGATGCCGTACCTGGCCTCGATGGGCATCTACGTGATGAAGGGCACGC TGCTGCGCGAGCTGCTGGACGACAACCCGGACGCGAACGACTTCGGCTCGGAGATCATCCCGTTTGCCAAGGACAAGGGATCCAAGGTGCAGGCGTTCCTGTTTGACGGCTACT GGGAGGACATCGGAACCATC GAGGCCTTTTACAGCGCCAACCTGGCCCTCACCGACCCCGACGCCCCCAAATTCAGCTTCTACGAGCGCGAGGCGCCCATCTACACCATGCCGCGCTTCTTGCCGCCCTCCAAGATGCTGGACGCGGACGTGGCCAACAGCATCATCGGCGACGGCTGCGTCGTGCGCGCCAACGCAAAGATCTCCCACTCCGTTGTGGGCGTGCGTGCGCTGATCTCTGAGAACACCGTCGTGGAGGACTCTATGATCATGGGCGCGGACTACTACGAGACCCTGGAGGAGTGCCAGCTGGTGCCGGGCTGCCTGCCCATGGGCATCGGCCCCAACACGATCGTGAAGAAGGCGATCATCGACAAGAATGCCCGCATCGGCGCCAACTGCCAGATTGTGAACAAGGACAACGTGATGGAGGCCAACGAGGAGGAGAAGGGCTACATCATCAAGGATGGCATCATTGTGGTGTGCAAGGACGCCATTATCCCCGACGGCACCATCATT TAA gcgcgcccccatgcataccttcctatcccccctcccctcccctcccctcccctcgtcaatggaaatagcgccgatagttacagagttaccgtgtgacctagtggacctggtgggggtgtaatgaatcccctttttgcgtcaaaaaaaaaaaaaaaaaaaaa
상기한 완전한 cDNA 서열정보를 통해서 야생형 테트라셀미스의 AGP 단백질의 아미노산 서열을 다음과 같이 확인하였다. Through the complete cDNA sequence information described above, the amino acid sequence of the AGP protein of wild-type tetracelmis was confirmed as follows.
야생형 AGP 단백질 서열 (SEQ ID No: 3) Wild type AGP protein sequence (SEQ ID No: 3)
MATATIAQAQLGARAKTAGVGSVRSVRGVRVPQISRPRAARVAQRHVVASAQKQTVNAATVEEMAASSVAAPLPDGTVPDISKTVLGIILGGGAGTRLYPLTKKRAKPAVPLGANYRLIDIPVSNCINSGVNKIYCLTQFNSASLNRHLSQAYNSNIGGYMDKGFVEVLAAQQSPKNPNWFQGTADAVRQYMWLFEEAMANGVEDFLILSGDHLYRMDYQEFVAAHRAAKAAITVAALPCAEKQAEAFGLMKIDDSGRIVEFAEKPTGDALKAMRIDTTVLGLDAERAAEMPYLASMGIYVMKGTLLRELLDDNPDANDFGSEIIPFAKDKGSKVQAFLFDGYWEDIGTIEAFYSANLALTDPDAPKFSFYEREAPIYTMPRFLPPSKMLDADVANSIIGDGCVVRANAKISHSVVGVRALISENTVVEDSMIMGADYYETLEECQLVPGCLPMGIGPNTIVKKAIIDKNARIGANCQIVNKDNVMEANEEEKGYIIKDGIIVVCKDAIIPDGTIIMATATIAQAQLGARAKTAGVGSVRSVRGVRVPQISRPRAARVAQRHVVASAQKQTVNAATVEEMAASSVAAPLPDGTVPDISKTVLGIILGGGAGTRLYPLTKKRAKPAVPLGANYRLIDIPVSNCINSGVNKIYCLTQFNSASLNRHLSQAYNSNIGGYMDKGFVEVLAAQQSPKNPNWFQGTADAVRQYMWLFEEAMANGVEDFLILSGDHLYRMDYQEFVAAHRAAKAAITVAALPCAEKQAEAFGLMKIDDSGRIVEFAEKPTGDALKAMRIDTTVLGLDAERAAEMPYLASMGIYVMKGTLLRELLDDNPDANDFGSEIIPFAKDKGSKVQAFLFDGYWEDIGTIEAFYSANLALTDPDAPKFSFYEREAPIYTMPRFLPPSKMLDADVANSIIGDGCVVRANAKISHSVVGVRALISENTVVEDSMIMGADYYETLEECQLVPGCLPMGIGPNTIVKKAIIDKNARIGANCQIVNKDNVMEANEEEKGYIIKDGIIVVCKDAIIPDGTII
상기한 테트라셀미스의 AGP 단백질 아미노산 서열을 클라미도모나스 레인하드티이의 AGP 단백질 서열(Sequence ID: XP_001691854.1, SEQ ID No: 12)과 비교한 결과, 66%의 동일성(identity)과 79%의 상동성 (homology)을 가짐을 확인하였다. As a result of comparing the amino acid sequence of the AGP protein of Tetracelmis with the AGP protein sequence (Sequence ID: XP_001691854.1, SEQ ID No: 12) of Chlamydomonas reinhardtii, 66% identity and 79% It was confirmed to have a homology of.
상기 유전자 정보를 바탕으로 개시 코돈(start codon)이 위치한 5'- 쪽 게놈 DNA(genomic DNA) 염기서열을 #488 Forward primer(ACAGAGGCATGTGGTCGC)와 #490 Reverse primer(TTCTCCGCAAACTCGACGAT) 을 이용하여 genomic PCR로 분석한 결과, 다음과 같은 유전정보를 확인할 수 있었다.Based on the gene information, the 5'- side genomic DNA nucleotide sequence where the start codon is located was analyzed by genomic PCR using #488 Forward primer (ACAGAGGCATGTGGTCGC) and #490 Reverse primer (TTCTCCGCAAACTCGACGAT). As a result, the following genetic information could be confirmed.
AGP 유전자의 5'-말단 영역의 게놈 DNA 유전정보 (SEQ ID No: 4)Genomic DNA genetic information of the 5'-end region of the AGP gene (SEQ ID No: 4)
(볼드표시: intron; 일반: exon; 밑줄: 프라이머 위치)(Bold: intron; general: exon; underline: primer position)
ACAGAGGCATGTGGTCGCGTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCTGATGGCACCGTGCCCGATATCAGCAAGGTGCTGCTGCACCGCCTCGTGCTGCTCCCTGCCCCAATCACATCCTACCCGCCCAATGAGAGAGTCATCGCCTGCCAGCCGCTCACTGCTTTCTACCCCCATCCACCCCCCTCCTCCACCCTGCTGCCGCCTCGCAGACTGTGCTGGGAATCATCCTGGGCGGCGGCGCGGGCACCCGCCTGTACCCGCTGACCAAGAAGAGGGCCAAGCCCGCGGTGCCGCTGGGCGCCAACTACCGCCTGATCGACATCCCCGTGAGCAACTGCATCAACAGCGGCGTGAACAAGATCTACTGCCTCACGCAGTTCAACTCGGCCTCCCTGAACCGCCACCTCTCCCAGGCCTACAACTCGAACATCGGAGGCTACATGGACAAGGGCTTCGTGGAGGTGCTGGCCGCGCAGCAGAGCCCGAAGAACCCCAACTGGTTCCAGGGGACGGCCGACGCGGTGCGCCAGTACATGTGGCTGTTTGAGGAGGCGATGGCCAACGGCGTGGAGGACTTCCTCATCCTGTCGGGCGACCACCTGTACCGCATGGACTACCAGGAGTTTGTGGCCGCGCACCGCGCCGCGAAGGCCGCCATCACTGTCGCCGCGCTGCCCTGCGCCGAGAAGCAGGCCGAGGCGTTTGGCCTCATGAAGATCGATGACTCCGGCCGTATCGTCGAGTTTGCGGAGAA ACAGAGGCATGTGGTCGC GTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCTGATGGCACCGTGCCCGATATCAGCAAG GTGCTGCTGCACCGCCTCGTGCTGCTCCCTGCCCCAATCACATCCTACCCGCCCAATGAGAGAGTCATCGCCTGCCAGCCGCTCACTGCTTTCTACCCCCATCCACCCCCCTCCTCCACCCTGCTGCCGCCTCGCAG ATCGTCGAGTTTGCGGAGAA
실험예 2. gRNA의 타겟 부위 선정 및 sgRNA 합성Experimental Example 2. Selection of target site for gRNA and synthesis of sgRNA
위의 AGP 유전자 정보에서 노랑색 바탕으로 표시된 두 군데의 염기서열을 대상으로 Cas9 target 유전자 서열을 확정하고 이 위치의 상보적 염기서열에 작용 가능한 sgRNA를 제작하였다. sgRNA 합성에 invitrogen사의 "GeneArtTM Precision gRNA Synthesis Kit"에서 제공한 방법에 따라 타겟 sgRNA를 제작하였다.In the above AGP gene information, the Cas9 target gene sequence was confirmed by targeting the two nucleotide sequences marked with yellow background, and sgRNA capable of acting on the complementary nucleotide sequence at this position was constructed. For sgRNA synthesis, a target sgRNA was prepared according to the method provided by invitrogen's "GeneArt TM Precision gRNA Synthesis Kit".
Target #Target # RGEN Target (5'-3')(AGP 타겟팅 서열)RGEN Target (5'-3') (AGP targeting sequence) PositionPosition Cleavage Positin (%)Cleavage Positin (%) 방향direction GC Contents(%, w/o PAM)GC Contents(%, w/o PAM) Out-of-frame ScoreOut-of-frame Score
T1(SEQ ID No: 15)T1 (SEQ ID No: 15) ATATCGGGCACGGTGCCATCAGGATATCGGGCACGGTGCCATCAGG 9292 12.112.1 -- 60.060.0 67.967.9
T2(SEQ ID No: 16)T2 (SEQ ID No: 16) TGGCCCTCTTCTTGGTCAGCGGGTGGCCCTCTTCTTGGTCAGCGGG 306306 38.838.8 -- 60.060.0 74.474.4
T3(SEQ ID No: 17)T3 (SEQ ID No: 17) GTTCTTCGGGCTCTGCTGCGCGGGTTCTTCGGGCTCTGCTGCGCGG 518518 65.265.2 -- 65.065.0 65.865.8
T4(SEQ ID No: 18)T4 (SEQ ID No: 18) CATGTACTGGCGCACCGCGTCGGCATGTACTGGCGCACCGCGTCGG 563563 70.870.8 -- 65.065.0 68.868.8
상기 표 1에서 전체 게놈에서 65보다 더 높은 프레임-외 스코어(Out-of-frame Score)를 가진 AGP 유전자의 코딩 서열 영역에서 4개의 sgRNA를 신중하게 디자인하였다. 'CDS(코딩 서열) 위치'는 유전체 DNA에서 절단 지점의 상대적인 위치를 의미한다. 방향(Direction)의 +는 타겟 서열과 동일한 방향, 즉 같은 시퀀스가 RGEN의 시퀀스이며, -는 타겟 서열과 역 방향, 즉 표적 서열(target sequence)과 결합되어 있는 서열인 서로 상보적인(reverse complement) 관계의 서열을 의미한다. '프레임-외 스코어(Out-of-frame Score)'는 깨진 이중-가닥 DNA가 미세 상동성-매개된 단부 연결(MMEJ) 경로에 의해 수선될 때 발생하는 프레임쉬프트-유도 결실의 가능성을 가리킨다. 이때 사용한 타겟 gRNA 제조용 올리고뉴클레오티드는 다음과 같다.In Table 1 above, four sgRNAs were carefully designed in the coding sequence region of the AGP gene with an out-of-frame score higher than 65 in the whole genome. 'CDS (coding sequence) position' refers to the relative position of the cut point in genomic DNA. The + in the direction is the same direction as the target sequence, that is, the same sequence is the sequence of RGEN, and-is the sequence in the opposite direction to the target sequence, that is, the sequence bound to the target sequence, which is complementary to each other. It means the sequence of relationships. 'Out-of-frame Score' refers to the possibility of a frameshift-induced deletion that occurs when broken double-stranded DNA is repaired by a microhomology-mediated end join (MMEJ) pathway. The oligonucleotide for preparing the target gRNA used at this time is as follows.
TargetTarget PrimerPrimer Seuecne (5'-3') (밑줄은 타겟팅 서열)Seuecne (5'-3') ( underlined is the targeting sequence)
AGP target #1 AGP target #1 T1-FW(SEQ ID No: 19)T1-FW (SEQ ID No: 19) TAATACGACTCACTATAGATATCGGGCACGGTGCC TAATACGACTCACTATAG ATATCGGGCACGGTGCC
T1-RV(SEQ ID No: 20)T1-RV (SEQ ID No: 20) TTCTAGCTCTAAAACGATGGCACCGTGCCCGATAT TTCTAGCTCTAAAAC GATGGCACCGTGCCCGATAT
AGP target #2 AGP target #2 T2-FW(SEQ ID No: 21)T2-FW (SEQ ID No: 21) TAATACGACTCACTATAGTGGCCCTCTTCTTGGTC TAATACGACTCACTATAG TGGCCCTCTTCTTGGTC
T2-RV(SEQ ID No: 22)T2-RV (SEQ ID No: 22) TTCTAGCTCTAAAACGCTGACCAAGAAGAGGGCCA TTCTAGCTCTAAAAC GCTGACCAAGAAGAGGGCCA
AGP target #3 AGP target #3 T3-FW(SEQ ID No: 23)T3-FW (SEQ ID No: 23) TAATACGACTCACTATAGGTTCTTCGGGCTCTGCT TAATACGACTCACTATAG GTTCTTCGGGCTCTGCT
T3-RV(SEQ ID No: 24)T3-RV (SEQ ID No: 24) TTCTAGCTCTAAAACCGCAGCAGAGCCCGAAGAAC TTCTAGCTCTAAAAC CGCAGCAGAGCCCGAAGAAC
AGP target #4 AGP target #4 T4-FW(SEQ ID No: 25)T4-FW (SEQ ID No: 25) TAATACGACTCACTATAGCATGTACTGGCGCACCG TAATACGACTCACTATAG CATGTACTGGCGCACCG
T4-RV(SEQ ID No: 26)T4-RV (SEQ ID No: 26) TTCTAGCTCTAAAACACGCGGTGCGCCAGTACATG TTCTAGCTCTAAAAC ACGCGGTGCGCCAGTACATG
위의 프라이머들을 사용하여 제조사가 제공한 방법에 따라 각각의 타겟(target) sgRNA를 PCR과 in vitro 전사(transcription), 정제(purification) 과정을 통해 10 μL의 핵산가수분해효소 없는 물(nuclease free water)에서 제조하였다. 이들 생성된 sgRNA의 함량은 A260nm에서 분광광도계(spectrophotometer)를 사용하여 측정하였다. 최종 합성된 gRNA의 서열은 다음과 같다. AGP UargeU #1 (SEQ ID No: 27) Using the above primers, 10 μL of nuclease-free water was performed through PCR, in vitro transcription, and purification processes for each target sgRNA according to the method provided by the manufacturer. ). The content of these generated sgRNAs was measured using a spectrophotometer at A260nm. The sequence of the final synthesized gRNA is as follows. AGP UargeU #1 (SEQ ID No: 27)
AUAUCGGGCACGGUGCCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'AUAUCGGGCACGGUGCCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'
AGP UargeU #2 (SEQ ID No: 28)AGP UargeU #2 (SEQ ID No: 28)
UGGCCCUCUUCUUGGUCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'UGGCCCUCUUCUUGGUCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'
AGP UargeU #3 (SEQ ID No: 29)AGP UargeU #3 (SEQ ID No: 29)
GUUCUUCGGGCUCUGCUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'GUUCUUCGGGCUCUGCUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'
AGP UargeU #4 (SEQ ID No: 30)AGP UargeU #4 (SEQ ID No: 30)
CAUGUACUGGCGCACCGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'CAUGUACUGGCGCACCGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU-3'
또한, 형질전환체 제조에 사용될 Cas9 단백질은 ㈜툴젠에서 재조합 Cas9 단백질(Recombinant Cas9 protein; S.pyogenes, Cat No# TGEN_CP4)을 구입하여 사용하였다. In addition, the Cas9 protein to be used in the preparation of the transformant was used by purchasing a recombinant Cas9 protein (Recombinant Cas9 protein; S.pyogenes, Cat No# TGEN_CP4) from Tulgen.
실험예 3. 유전자총법(Bombardment) 위한 금 나노입자(Gold nano particle)와 미세조류 세포 플레이트의 준비 Experimental Example 3. Preparation of gold nanoparticles and microalgal cell plates for bombardment
형질전환에 사용될 야생형 균주로서, 테트라셀미스 속(Tetraselmis sp., 기탁번호: KCTC12432BP) 미세조류는 온도 20℃, 백색형광원 50~100 μmol photon m-2s-1 세기 조건에서 16시간 광조건 8시간 암조건으로 MBL 액체 배지에서 배양하였다. MBL 액체 배지의 구성은 표 3에 나타낸 바와 같다A wild-type strain to be used for transfection, cell misses in tetra (Tetraselmis sp, deposit number:. KCTC12432BP) microalgae temperature 20 ℃, white fluorescent light source 50 ~ 100 μmol photon m -2 s -1 and intensity condition 16 hours light condition 8 It was cultured in MBL liquid medium under dark conditions. The composition of the MBL liquid medium is as shown in Table 3.
ComponentsComponents /L/L
NaClNaCl 24.7 g24.7 g
KClKCl 0.66 g0.66 g
MgCl2·6H2OMgCl 2 6H 2 O 8.48 g8.48 g
CaCl2·2H2OCaCl 2 2H 2 O 1.90 g1.90 g
MgSO4·7H2OMgSO 4 7H 2 O 6.318 g6.318 g
NaHCO3 NaHCO 3 0.18 g0.18 g
NaNO3 NaNO 3 225 mg225 mg
NaH2PO4·H2ONaH 2 PO 4 H 2 O 15 mg15 mg
Tris (pH 7.4)Tris (pH 7.4) 1.214 g1.214 g
Trace element solution of f/2 mediaTrace element solution of f/2 media 1 mL1 mL
Vitamin solution of f/2 mediaVitamin solution of f/2 media 1 mL1 mL
성장이 활발한 지수 단계(exponential stage)의 테트라셀미스 속(Tetraselmis sp.) 미세조류 세포를 2000 x g, 5분 조건에서 원심분리한 후, 신선한 MBL 액체 배지에 1x107 cell/mL 되도록 농축하고, 준비된 미세조류 1 mL(1x107 cell)를 MBL 아가(1.2%) 플레이트의 중심에 지름 3 cm정도 크기로 올려놓았다. 그리고 클린벤치(Clean bench)에서 액체 배지가 증발되어 없어질 때까지 말려서 보관 후, 유전자총법(bombardment)에 사용하였다. 금 입자(Gold particle)는 Bio-Rad사의 마이크로캐리어(Microcarrier), 금 0.6 μm(Cat #165-2262) 60mg을 100% EtOH(1mL)에서 2분간 볼텍싱하여 세척하고, 원심분리하여 분리한 후, DEPC-처리된 뉴클레아제 없는 증류수로 세척하였다. 이를 3번 반복 세척하여 최종 1 mL의 핵산가수분해효소 없는 증류수(RNAse-free DW)에 보관하여, 이후 시험에 사용하였다. 실험예 4. RNP에 의한 유전자총법 형질전환(biolistic delivery)에 의한 유전자 교정 After growth is centrifuged at active index step tetrahydro cell misses in (Tetraselmis sp.) Microalgae cells 2000 xg, 5 bun conditions (exponential stage), and concentrated in fresh MBL liquid medium to 1x10 7 cell / mL, prepared 1 mL (1x10 7 cells) of microalgae was placed on the center of an MBL agar (1.2%) plate in a size of about 3 cm in diameter. Then, it was dried and stored in a clean bench until the liquid medium was evaporated and disappeared, and then used for bombardment. Gold particles were washed by vortexing 60 mg of Bio-Rad's Microcarrier, 0.6 μm gold (Cat #165-2262) in 100% EtOH (1 mL) for 2 minutes, and separated by centrifugation. , Washed with DEPC-treated nuclease-free distilled water. This was repeatedly washed 3 times and stored in 1 mL of distilled water (RNAse-free DW) without nucleic acid hydrolase, and used for subsequent tests. Experimental Example 4. Gene correction by genetic gun method transformation (biolistic delivery) by RNP
RGEN(RNA-guided engineered nuclear) RNP(ribonucleoprotein)를 in vitro에서 제작하고, 다음 방법에 따라, 이를 유전자총법에 의한 세포내 전달(particle biolistic delivery)을 수행하였다.RGEN (RNA-guided engineered nuclear) RNP (ribonucleoprotein) was prepared in vitro , and it was carried out intracellular delivery (particle biolistic delivery) by gene gun method according to the following method.
a) 상기 시험예 3에서 제조한 sgRNA와 Cas9 단백질을 각각 핵산가수분해효소 없는 증류수(nuclease free DW)에 준비하였다 a) The sgRNA and Cas9 protein prepared in Test Example 3 were prepared in distilled water (nuclease free DW) without nucleic acid hydrolase, respectively.
b) 4번의 유전자총(bombardment) 충격(shot)을 위해 다음과 표 4와 같은 믹스쳐(mixture)를 준비하였다 b) For the 4th bombardment shot, a mixture as shown in Table 4 was prepared.
c) 각각의 믹스쳐들을 상온에서 30분 동안 인큐베이션 한다. 이 때, 두 가지의 sgRNA를 혼합하여 동시에 유전자 총을 수행하였다. c) Incubate each mixture for 30 minutes at room temperature. At this time, two sgRNAs were mixed to perform gene gun at the same time.
d) Mixture-1(10 μL)과 Mixture-2(10 μL)를 섞어 준 후, 상기 혼합물에 세척해 둔 금 입자 10 μL (금 입자 농도: 6mg/ml)를 넣어, 바로 파이펫팅(pipeting)으로 혼합하였다. d) After mixing Mixture-1 (10 μL) and Mixture-2 (10 μL), add 10 μL of washed gold particles (gold particle concentration: 6 mg/ml) to the mixture, and pipetting immediately. Mixed with.
e) 클린 벤치(Clean benchtop)에서 미리 세척해 준비해 두었던 마크로 캐리어 디스크(macro-carrier disk, Bio-rad 사) 위에 상기 d)의 혼합물을 10 μL씩 올려 주었다. 동일한 방법으로 총 4장의 마크로 캐리어 디스크를 준비하였다. 그 후 건조 (Air-dry) 하였다. e) 10 μL of the mixture of d) was placed on a macro-carrier disk (Bio-rad) prepared by washing in advance on a clean benchtop. In the same way, a total of 4 macro carrier disks were prepared. After that, it was dried (Air-dry).
f) 이 후, 입자 전달(particle bombardment) 4회 수행하였다. 이때, 파열판(rupture disk)의 압력은 900 psi, 1100 psi, 1350 psi, 또는 1550 psi disk를 각각 사용하였고, 정지스크린(stop screen)과 세포 플레이트(cell plate)와의 거리는 9cm에서 수행하였다.f) After this, particle bombardment was performed 4 times. At this time, the pressure of the rupture disk was 900 psi, 1100 psi, 1350 psi, or 1550 psi disk, respectively, and the distance between the stop screen and the cell plate was 9 cm.
Mixture-1Mixture-1 Mixture-2Mixture-2
Cas9 단백질 2 ug 반응버퍼 (x10) 1 μLsgRNA 타겟 #1 2ug전체 10 μL까지 증류수 첨가 Cas9 protein 2 ug reaction buffer (x10) 1 μL sgRNA target #1 2 ug Add distilled water to total 10 μL Cas9 단백질 2 ug,반응버퍼 (x10) 1 μLsgRNA 타겟 #3 2ug전체 10 μL까지 증류수 첨가Cas9 protein 2 ug, reaction buffer (x10) 1 μL sgRNA target #3 2 ug Add distilled water to total 10 μL
상기 표 4에서, Cas9 단백질은 2 μL증류수에 포함된 형태로 사용하였다. 이때 반응 버퍼 (x10) 의 조성은 다음과 같다. 본 실험에서는 NEB사의 버퍼(NEB Cas9 Nuclease buffer #M0386)를 사용하였다. In Table 4, Cas9 protein was used in a form contained in 2 μL distilled water. At this time, the composition of the reaction buffer (x10) is as follows. In this experiment, NEB's buffer (NEB Cas9 Nuclease buffer #M0386) was used.
반응버퍼 (X10)Reaction buffer (X10)
200 mM HEPES1 M NaCl50 mM MgCl21 mM EDTA, pH 6.5200 mM HEPES1 M NaCl 50 mM MgCl 2 1 mM EDTA, pH 6.5
각각 RNP가 전달된 세포 플레이트를 3일간 20℃ 조건으로 인큐베이터에서 보관한 후, 각 미세조류 세포들을 MBL 액체 배지로 스프레딩(spreading)하여 수확하였다. 상기 수확된 세포들이 콜로니(colony)로 분리되어 자랄 수 있도록, 희석하여 새로운 MBL 아가 배지에 도말하고, 20℃에서 16시간 8시간 명암 주기로 배양하였다. 시험예 1. CRISPR-Cas9 RNP 방법을 이용한 Tetraselmis sp. 형질전환체 확인 Each RNP-transferred cell plate was stored in an incubator at 20° C. for 3 days, and then each microalgal cell was harvested by spreading it with MBL liquid medium. The harvested cells were diluted and plated on a new MBL agar medium so that the harvested cells could be separated into colonies and grown, and cultured at 20° C. for 16 hours and 8 hours in a light-dark cycle. Test Example 1. Tetraselmis sp. using the CRISPR- Cas9 RNP method . Transformant identification
상기 실험예 4에서 유전자총법에 의한 RNP가 도입된 테트라셀미스 속 미세조류 중에서, AGP 유전자가 넉아웃(knock-out)된 돌연변이체 선별하기 위해 우선 PCR 방법으로 게놈 DNA(genomic DNA)를 주형으로 타겟 부위를 확보하고 이들의 염기서열을 분석하여, 1종의 돌연변이체(도 1에서 2-1-6 line의 개체)를 선발하였고, TspAGP-M1이라 명명하였다.In Experimental Example 4, genomic DNA was first used as a template by PCR method in order to select a mutant in which the AGP gene was knocked out from among microalgae in the genus Tetracelmis into which RNP was introduced by the gene gun method. By securing the target site and analyzing their nucleotide sequence, one type of mutant (individual of line 2-1-6 in FIG. 1) was selected and named TspAGP-M1.
상기 TspAGP-M1 돌연변이 균주는 한국생명공학연구원 생명자원센터(KCTC)에 2019년 1월 10일자로 기탁되어, 수탁번호 KCTC 13787BP를 부여받았다.The TspAGP-M1 mutant strain was deposited with the Korea Research Institute of Bioscience and Biotechnology Life Resources Center (KCTC) on January 10, 2019, and was given the accession number KCTC 13787BP.
확인된 돌연변이체 2-1-6 line (TspAGP-M1) 의 AGP 유전자의 cDNA 서열 (SEQ ID No: 5)CDNA sequence of the AGP gene of the identified mutant 2-1-6 line (TspAGP-M1) (SEQ ID No: 5)
(/: 야생형 AGP 유전자 서열에서 사용된 두 군데의 Cas9 표적 위치 사이의 핵산 서열이 제거된 위치)(/: the nucleic acid sequence between the two Cas9 target sites used in the wild-type AGP gene sequence was removed)
ATGGCGACCGCCACCATAGCCCAGGCCCAGCTCGGCGCTCGCGCTAAGACCGCCGGCGTCGGCAGCGTGCGCAGCGTCCGCGGCGTGCGCGTCCCGCAGATCAGCCGCCCTCGTGCTGCCCGCGTCGCACAGAGGCATGTGGTCGCGTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCTGATG/AGCAGAGCCCGAAGAACCCCAACTGGTTCCAGGGCACGGCCGACGCGGTGCGCCAGTACATGTGGCTGTTTGAGGAGGCGATGGCCAACGGCGTGGAGGACTTCCTCATCCTGTCGGGCGACCACCTGTACCGCATGGACTACCAGGAGTTTGTGGCCGCGCACCGCGCCGCGAAGGCCGCCATCACTGTCGCCGCGCTGCCCTGCGCCGAGAAGCAGGCCGAGGCGTTTGGCCTCATGAAGATCGATGACTCTGGCCGTATCGTCGAGTTTGCGGAGAAGCCCACCGGCGACGCGCTCAAGGCTATGCGCATCGACACCACCGTGCTCGGCCTCGACGCGGAGCGGGCGGCGGAGATGCCGTACCTGGCCTCGATGGGCATCTACGTGATGAAGGGCACGCTGCTGCGCGAGCTGCTGGACGACAACCCGGACGCGAACGACTTCGGCTCGGAGATCATCCCGTTTGCCAAGGACAAGGGATCCAAGGTGCAGGCGTTCCTGTTTGACGGCTACTGGGAGGACATCGGAACCATCGAGGCCTTTTACAGCGCCAACCTGGCCCTCACCGACCCCGACGCCCCCAAATTCAGCTTCTACGAGCGCGAGGCGCCCATCTACACCATGCCGCGCTTCTTGCCGCCCTCCAAGATGCTGGACGCGGACGTGGCCAACAGCATCATCGGCGACGGCTGCGTCGTGCGCGCCAACGCAAAGATCTCCCACTCCGTTGTGGGCGTGCGTGCGCTGATCTCTGAGAACACCGTCGTGGAGGACTCTATGATCATGGGCGCGGACTACTACGAGACCCTGGAGGAGTGCCAGCTGGTGCCGGGCTGCCTGCCCATGGGCATCGGCCCCAACACGATCGTGAAGAAGGCGATCATCGACAAGAATGCCCGCATCGGCGCCAACTGCCAGATTGTGAACAAGGACAACGTGATGGAGGCCAACGAGGAGGAGAAGGGCTACATCATCAAGGATGGCATCATTGTGGTGTGCAAGGACGCCATTATCCCCGACGGCACCATCATTTAA ATG GCGACCGCCACCATAGCCCAGGCCCAGCTCGGCGCTCGCGCTAAGACCGCCGGCGTCGGCAGCGTGCGCAGCGTCCGCGGCGTGCGCGTCCCGCAGATCAGCCGCCCTCGTGCTGCCCGCGTCGCACAGAGGCATGTGGTCGCGTCGGCGCAGAAGCAGACGGTGAATGCGGCCACCGTGGAGGAGATGGCCGCCTCCAGTGTGGCTGCCCCTCTACCT GATG / AGCAGAGCCCGAAGAA TAA
상기한 돌연변이체의 AGP 유전자 단백질 서열(420 아미노산)은 다음과 같다:The AGP gene protein sequence (420 amino acids) of the above mutant is as follows:
MATATIAQAQLGARAKTAGVGSVRSVRGVRVPQISRPRAARVAQRHVVASAQKQTVNAATVEEMAASSVAAPLPDEQSPKNPNWFQGTADAVRQYMWLFEEAMANGVEDFLILSGDHLYRMDYQEFVAAHRAAKAAITVAALPCAEKQAEAFGLMKIDDSGRIVEFAEKPTGDALKAMRIDTTVLGLDAERAAEMPYLASMGIYVMKGTLLRELLDDNPDANDFGSEIIPFAKDKGSKVQAFLFDGYWEDIGTIEAFYSANLALTDPDAPKFSFYEREAPIYTMPRFLPPSKMLDADVANSIIGDGCVVRANAKISHSVVGVRALISENTVVEDSMIMGADYYETLEECQLVPGCLPMGIGPNTIVKKAIIDKNARIGANCQIVNKDNVMEANEEEKGYIIKDGIIVVCKDAIIPDGTIIMATATIAQAQLGARAKTAGVGSVRSVRGVRVPQISRPRAARVAQRHVVASAQKQTVNAATVEEMAASSVAAPLPDEQSPKNPNWFQGTADAVRQYMWLFEEAMANGVEDFLILSGDHLYRMDYQEFVAAHRAAKAAITVAALPCAEKQAEAFGLMKIDDSGRIVEFAEKPTGDALKAMRIDTTVLGLDAERAAEMPYLASMGIYVMKGTLLRELLDDNPDANDFGSEIIPFAKDKGSKVQAFLFDGYWEDIGTIEAFYSANLALTDPDAPKFSFYEREAPIYTMPRFLPPSKMLDADVANSIIGDGCVVRANAKISHSVVGVRALISENTVVEDSMIMGADYYETLEECQLVPGCLPMGIGPNTIVKKAIIDKNARIGANCQIVNKDNVMEANEEEKGYIIKDGIIVVCKDAIIPDGTII
또한, 야생형 AGP 단백질과 돌연변이 테트라셀미스의 AGP 단백질을 비교 분석한 결과, 97개의 아미노산이 제거되었고, 1개의 신규 아미노산(E)이 생성됨을 확인하였다.In addition, as a result of comparative analysis of the wild-type AGP protein and the mutant tetracelmis AGP protein, it was confirmed that 97 amino acids were removed and 1 new amino acid (E) was generated.
시험예 2. 선발된 AGP 돌연변이체의 특성 분석 Test Example 2. Characterization of the selected AGP mutants
선발된 AGP 돌연변이체의 특성 분석을 위해 스테이셔널 성장(stational growth) 단계에서 질소결핍 배지조건(N-deficient media, ND)을 유도한 후, 루골(lugol) 염색(staining)을 통해 전분의 합성유무와 나일-레드 염색(nile-red staining)을 이용해서 세포내 지질 용적(intracellular lipid droplet)의 생성 정도를 확인하였다. For characterization of the selected AGP mutants, after inducing nitrogen-deficient media (ND) in the stational growth stage, whether or not starch was synthesized through lugol staining. And nile-red staining were used to confirm the degree of formation of intracellular lipid droplets.
구체적으로, 질소가 충분한 배지와 질소 고갈 배지에서 각각 세포를 배양하여 건강한 상태의 세포를 획득하였다. OD750 = 1인 세포 배양액 1ml에 루골용액 1μl를 넣고, 30초 동안 세포를 균일하게 섞어준 후, 질소 조건에 따라 루골용액에 반응한 색깔을 비교하였다.Specifically, cells in a healthy state were obtained by culturing the cells in a nitrogen-rich medium and a nitrogen-depleted medium, respectively. 1 μl of Lugol's solution was added to 1 ml of the cell culture solution of OD 750 = 1, and the cells were uniformly mixed for 30 seconds, and the colors reacted to the Lugol's solution were compared according to nitrogen conditions.
질소 고갈 조건에서 세포는 스트레스를 받아 세포 내에 전분과 지질을 축적하는데, 도 3에 나타낸 바와 같이, 야생형 균주의 경우 질소 고갈 조건에서 세포 내 전분이 루골 용액으로 염색되어 보라색을 나타내는 것을 확인할 수 있다. 그러나, AGP 돌연변이체에서는 AGP 유전자의 녹아웃으로 인해 전분 합성이 저해되어, 질소 고갈 환경에서도 루골에 의한 변색반응이 일어나지 않았다. 따라서, 도 3에 나타낸 바와같이, 본 발명의 AGP 녹아웃 변이체에서 AGP 녹아웃이 잘 된 것을 확인할 수 있다. Under nitrogen-depleted conditions, cells are stressed and accumulate starch and lipids in the cells.As shown in FIG. 3, in the case of the wild-type strain, it can be confirmed that the starch in the cells is stained with Lugol's solution under nitrogen-depleted conditions, resulting in purple color. However, in the AGP mutant, starch synthesis was inhibited due to the knockout of the AGP gene, and the color change reaction by Lugol did not occur even in a nitrogen depleted environment. Therefore, as shown in Figure 3, it can be confirmed that the AGP knockout was well performed in the AGP knockout variant of the present invention.
또한, 또한 스테이셔널 성장기에 도달한 대조구와 돌연변이체를 질소 성분이 첨가된 정상배지(Nitrogen sufficient media, NS)와 질소 결핍 배지(ND)에서 3일간 배양한 후, 나일 레드 염색(nile red staining)을 수행하고, 형광값을 측정하여 세포 내 지질 용적(intracellular lipid droplet)을 확인하였다. In addition, the control and mutants that reached the stationary growth phase were cultured for 3 days in a nitrogen-containing medium (Nitrogen sufficient media (NS) and nitrogen-deficient medium (ND)), followed by nile red staining. Was performed, and the fluorescence value was measured to confirm the intracellular lipid droplet.
도 4 및 도 5에 나타낸 바와 같이, 돌연변이체는 NS와 ND 조건 모두에서 대조구에 비해 강한 형광을 나타냄을 확인하였고, 특히 질소결핍 조건(ND)에서 보다 강력한 형광값을 확인할 수 있었다. 따라서 제작된 AGP 돌연변이체는 전분의 합성이 저해됨으로서 지질 함량의 증가를 촉진할 수 있다는 것을 확인할 수 있었다.As shown in FIGS. 4 and 5, it was confirmed that the mutant showed strong fluorescence compared to the control under both NS and ND conditions, and particularly, a stronger fluorescence value was confirmed under the nitrogen deficiency condition (ND). Therefore, it was confirmed that the prepared AGP mutant could promote an increase in lipid content by inhibiting the synthesis of starch.
시험예 3. 선발된 AGP 돌연변이체의 지질성분 함량과 성분 분석Test Example 3. Analysis of Lipid Components and Components of Selected AGP Mutants
플라스크 배양 조건에서 성장한 테트라셀미스 속. 세포들을 스테이셔너리 성장 단계에서 질소 결핍 배지 조건(N-deficient media, ND)으로 변경한 3일 후, 지질 성분의 함량과 성분 분석을 FAME 분석 방법을 수행하였다(Kim Z-Hun, Park Yong-Sung, Ryu Young-Jin, Lee Choul-Gyun. 2017 Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters. Biotechnology and Bioprocess Engineering 22:397-404.).Tetracelmis genus grown in flask culture conditions. After 3 days of changing the cells to nitrogen-deficient media (ND) in the stationary growth stage, the content and composition of lipid components were analyzed by FAME analysis (Kim Z-Hun, Park Yong- Sung, Ryu Young-Jin, Lee Choul-Gyun. 2017 Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters.Biotechnology and Bioprocess Engineering 22:397-404.).
분석 결과, AGP 돌연변이체는 지질 함량이 건조중량 중 21.05%로 대조구 대비 274%로 증가하였다. As a result of the analysis, the lipid content of the AGP mutant increased to 21.05% in dry weight, 274% compared to the control.
야생형Wild type AGP 돌연변이체AGP mutant
지방산 함량(w/w%)Fatty acid content (w/w%) 7.68(100%)7.68 (100%) 21.05(274%)21.05 (274%)
상기 분석된 지질함량의 변화 중에서 FAME 분석을 통해 성분 분석을 확인한 결과, 도 6 및 도 7에 나타낸 바와 같이, AGP 돌연변이체에서 지방산 함량이 더욱 높았고, 특히, 연료 성분 중 활용성이 높은 포화 지방산인 C16:0과 C18:1 함량이 현저히 증가하였다. 돌연변이체에서 야생형 보다 이 두 종류의 지방산의 농도의 급격한 증가와 총 지질 생산성의 증가는 바이오연료 생산성에 매우 중요한 의미를 갖는다고 할 수 있다.시험예 4. AGP 돌연변이체의 지질성분 함량과 성분 분석 As a result of confirming the component analysis through FAME analysis among the changes in the analyzed lipid content, as shown in FIGS. 6 and 7, the fatty acid content was higher in the AGP mutant. The contents of C16:0 and C18:1 were significantly increased. The rapid increase in the concentration of these two types of fatty acids and the increase in total lipid productivity compared to the wild type in the mutant can be said to have very important implications for biofuel productivity. Test Example 4. Analysis of Lipid Components and Components of AGP Mutant
BC-PBR(Bubble column photobioreactor) 배양 방법으로 2L 컬럼에서 배양한 테트라셀미스속 대조구와 돌연변이체 세포들을 스테이셔너리 성장 단계에서 질소 결핍 배지조건 (N-deficient media, ND)으로 변경한 3일 후, 지질 성분의 함량과 성분 분석을 FAME 분석 방법을 수행하였다. 지질 성분의 함량을 세포 건조중량 당 지방산 함량(content)를 mg/g DCW(건조중량)으로 그리고 배양 부피당 지방산 농도(concentration)를 mg/L(배양배지 부피)으로 조사하였다.Three days after changing the control and mutant cells of the genus Tetracelmis cultured on a 2L column by the BC-PBR (Bubble column photobioreactor) culture method to nitrogen-deficient media (ND) in the stationary growth stage , The content and composition of lipid components were analyzed by FAME analysis method. The content of the lipid component was investigated as the fatty acid content per cell dry weight in mg/g DCW (dry weight) and the fatty acid concentration per culture volume in mg/L (culture medium volume).
야생형 테트라셀미스 속 미세조류와 본 발명 TspASP-M1 미세조류의 총 지방산 함량 및 조성은 3일 간 질소 기아 상태에서 측정되었다. 지방산의 총 함량은 건조 세포 중량 (DCW)을 기준으로 계산되었다. 값은 각 균주의 3 가지 생물학적 복제물의 평균 ± 표준 편차를 나타내며, 통계적으로 유의미한 차이는 스튜던트 t- 테스트 (* p <0.001)에 의해 결정되었다.The total fatty acid content and composition of wild-type tetracelmis genus microalgae and the present invention TspASP-M1 microalgae were measured under nitrogen starvation for 3 days. The total content of fatty acids was calculated based on dry cell weight (DCW). Values represent the mean ± standard deviation of the three biological replicates of each strain, and statistically significant differences were determined by Student's t-test (* p <0.001).
TetraselmisTetraselmis sp. sp.
Wild TypeWild Type TspAGP-M1TspAGP-M1
지방산 성분Fatty acid component mg/g DCW (% to total FAs)mg/g DCW (% to total FAs)
C16:0C16:0 19.31 ± 0.9819.31 ± 0.98 (25.14)(25.14) 51.23 ± 5.89* 51.23 ± 5.89 * (24.33)(24.33)
C16:1C16:1 2.52 ± 0.562.52 ± 0.56 (3.28)(3.28) 11.45 ± 0.54* 11.45 ± 0.54 * (5.44)(5.44)
C16:3C16:3 00 2.83 ± 0.11* 2.83 ± 0.11 * (1.34)(1.34)
C16:4C16:4 8.77 ± 1.998.77 ± 1.99 (11.42)(11.42) 19.42 ± 2.80* 19.42 ± 2.80 * (9.22)(9.22)
C18:0C18:0 4.99 ± 0.554.99 ± 0.55 (6.50)(6.50) 5.72 ± 0.405.72 ± 0.40 (2.72)(2.72)
C18:1C18:1 11.09 ± 1.3511.09 ± 1.35 (14.44)(14.44) 60.68 ± 4.31* 60.68 ± 4.31 * (28.82)(28.82)
C18:2C18:2 5.85 ± 1.085.85 ± 1.08 (7.62)(7.62) 13.22 ± 1.0713.22 ± 1.07 (6.28)(6.28)
C18:3C18:3 9.88 ± 2.129.88 ± 2.12 (12.86)(12.86) 24.02 ± 1.79* 24.02 ± 1.79 * (11.41)(11.41)
etc.etc. 14.38 ± 0.2114.38 ± 0.21 (18.73)(18.73) 22.00 ± 2.58* 22.00 ± 2.58 * (10.45)(10.45)
총 지방산 함량Total fatty acid content 76.78 ± 3.5576.78 ± 3.55 210.55 ± 7.18210.55 ± 7.18 ** (WT 대비 274% 증가)(274% increase compared to WT)
FA productivitya(mg/L/day)FA productivity a (mg/L/day) 11.06 ± 1.5611.06 ± 1.56 24.86 ± 2.4124.86 ± 2.41 ** (WT 대비 225% 증가)(225% increase compared to WT)
a: 8일간의 배양조건에서 측정된 지질함량 대비 생산성(productivity)을 계산함.a: Calculate the productivity (productivity) relative to the lipid content measured in the culture condition for 8 days.
도 6 및 도 7에 나타낸 바와 같이, 건조중량 중 총 지질함량은 돌연변이체(TspAGP-M1)가 대조구(wild type)와 비교해서 274% 증가하였다. 하지만, 돌연변이체의 성장속도가 대조구에 비해 느려, 지방산, 즉 배양 부피당 총 지질함량 생산성은 225% 증가됨을 확인할 수 있었다. 따라서, 돌연변이체에서 총 지질 생산성도 높아졌음을 알 수 있다. 2L 컬럼 배양에서도 돌연변이체에서 연료 성분 중 활용성이 높은 포화 지방산인 C16:0과 C18:1 함량이 현저히 증가함을 확인하였다.As shown in FIGS. 6 and 7, the total lipid content in the dry weight increased by 274% in the mutant (TspAGP-M1) compared to the control (wild type). However, since the growth rate of the mutant was slower than that of the control, it was confirmed that the productivity of the fatty acid, that is, the total lipid content per culture volume, was increased by 225%. Thus, it can be seen that the total lipid productivity was also increased in the mutant. Even in 2L column culture, it was confirmed that the contents of C16:0 and C18:1, which are highly utilizable saturated fatty acids among the fuel components, were significantly increased in the mutant.
Figure PCTKR2020001912-appb-I000002
Figure PCTKR2020001912-appb-I000002

Claims (18)

  1. 표적 유전자에 특이적인 가이드 RNA(sgRNA) 및 Cas 단백질을 포함하는 반응 혼합물과 미세 금속입자를 혼합하여 리보핵산단백질(ribonucleoprotein, RNP)이 표면에 코딩된 미세 금속입자를 포함하는 RNP-전달용조성물을 준비하는 것;A reaction mixture containing a guide RNA (sgRNA) specific for a target gene and a Cas protein and fine metal particles are mixed to prepare a composition for RNP-delivery comprising fine metal particles encoded on the surface of ribonucleoprotein (RNP). To prepare;
    상기 RNP-전달용조성물을 마크로-캐리어 디스크 상에서 건조시키는 것; 및 Drying the RNP-delivery composition on a macro-carrier disk; And
    파열 디스크(rupture disk)에 500 psi 이상의 압력을 가하여 상기 RGEN RNP 복합체가 표면에 코팅된 미세 금속입자를 테트라셀미스 속 미세조류 세포로 발사하는 것; Applying a pressure of 500 psi or more to a rupture disk to fire the fine metal particles coated on the surface of the RGEN RNP complex into microalgal cells in tetracelmis;
    그 유전자총을 이용하여 테트라셀미스 속 미세조류 세포로 도입하는 것;을 포함하는 테트라셀미스 속 미세조류의 유전자 교정방법.Using the gene gun to introduce the microalgal cells of the genus Tetracelmis; Gene editing method of the microalgae of the genus Tetracelmis comprising.
  2. 제1항에 있어서, The method of claim 1,
    상기 교정방법은 RGEN RNP 복합체가 표면에 코팅된 미세 금속입자가 전달된 세포를 2 내지 5일 동안 인큐베이션한 후 미세조류 세포들을 수확하는 것을 더 포함하는, 테트라셀미스 속 미세조류의 유전자 교정방법.The calibration method further comprises harvesting the microalgal cells after incubating the cells to which the fine metal particles coated on the surface of the RGEN RNP complex are transferred for 2 to 5 days, and then harvesting the microalgae.
  3. 제1항에 있어서,The method of claim 1,
    상기 RNP-전달용조성물을 준비하는 단계는 제1 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질을 포함하는 제1 반응 혼합물;과 제2 표적 유전자에 특이적인 가이드 RNA 및 Cas 단백질을 포함하는 제2 반응 혼합물을 미세 금속입자와 혼합하여 2개 이상의 리보핵산단백질(RNP)가 코팅된 미세 금속입자를 포함하는 RNP-전달용조성물을 준비하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법. The step of preparing the RNP-delivery composition includes a first reaction mixture comprising a guide RNA and a Cas protein specific for a first target gene; and a second reaction comprising a guide RNA and a Cas protein specific for a second target gene Mixing the mixture with fine metal particles to prepare a composition for RNP-delivery comprising two or more ribonucleic acid protein (RNP)-coated fine metal particles, the gene editing method of microalgae in the genus Tetracelmis.
  4. 제1항에 있어서,The method of claim 1,
    상기 반응 혼합물은 표적 유전자에 특이적인 가이드 RNA(sgRNA), Cas 단백질, 및 반응완충액을 포함하고, The reaction mixture contains a guide RNA (sgRNA) specific for a target gene, a Cas protein, and a reaction buffer,
    상기 반응완충액은 양쪽 이온성 완충제, 염화나트륨(NaCl), 및 염화마그네슘(MgCl2)를 포함하며, pH는 6.0 내지 8.0인, 테트라셀미스 속 미세조류의 유전자 교정방법.The reaction buffer solution includes a zwitterionic buffer, sodium chloride (NaCl), and magnesium chloride (MgCl 2 ), and the pH is 6.0 to 8.0, a method of genetic editing of microalgae in the genus Tetracelmis.
  5. 제4항에 있어서, The method of claim 4,
    상기 반응 혼합물 10 μL에 대하여 표적 유전자에 특이적인 가이드 RNA(sgRNA) 1 내지 5 ug, Cas 단백질 1 내지 5 ug, 반응완충액 0.5 내지 2 μL 및 증류수를 포함하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법.With respect to 10 μL of the reaction mixture, 1 to 5 ug of guide RNA (sgRNA) specific to the target gene, 1 to 5 ug of Cas protein, 0.5 to 2 μL of reaction buffer, and distilled water are included, Gene editing method.
  6. 제4항에 있어서,The method of claim 4,
    상기 반응완충액은 킬레이트제를 더 포함하고, The reaction buffer solution further comprises a chelating agent,
    양쪽 이온성 완충제 10mM 내지 50mM, 염화나트륨(NaCl) 50 내지 200mM, 염화마그네슘(MgCl2) 2.5 내지 10mM 및 킬레이트제 0.1 내지 1mM을 포함하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법.Zwitterionic buffer 10mM to 50mM, sodium chloride (NaCl) 50 to 200mM, magnesium chloride (MgCl 2 ) 2.5 to 10mM, and a chelating agent 0.1 to 1mM, comprising a gene correction method of microalgae in the genus Tetracelmis.
  7. 제1항에 있어서, The method of claim 1,
    상기 압력은 1,000 내지 1,500 psi인, 테트라셀미스 속 미세조류의 유전자 교정방법.The pressure is 1,000 to 1,500 psi, the gene editing method of microalgae in the genus Tetracelmis.
  8. 제1항에 있어서, The method of claim 1,
    금속입자 발사 시 정지스크린(stop sceen)과 테트라셀미스 미세조류 세포를 포함하는 세포 접시(cell plate)와의 거리는 8cm 내지 10cm인 테트라셀미스 속 미세조류의 유전자 교정방법.When the metal particles are fired, the distance between the stop screen and the cell plate including the tetracelmis microalgal cells is 8cm to 10cm.
  9. 제1항에 있어서,The method of claim 1,
    상기 마크로-캐리어 디스크 상에 5 내지 20μL의 RNP-전달용조성물을 건조하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법.The macro-carrier disk is to dry 5 to 20 μL of the RNP-delivery composition on the gene editing method of microalgae in the genus Tetracelmis.
  10. 제1항에 있어서, The method of claim 1,
    반응 혼합물과 미세 금속입자를 1 내지 2 : 1의 부피비로 혼합하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법.The method of genetic editing of microalgae in the genus Tetracelmis by mixing the reaction mixture and the fine metal particles in a volume ratio of 1 to 2: 1.
  11. 제1항에 있어서,The method of claim 1,
    상기 금속입자는 텅스텐 또는 금인, 테트라셀미스 속 미세조류의 유전자 교정방법.The metal particle is tungsten or gold, a method for genetic editing of microalgae in the genus Tetracelmis.
  12. 제1항에 있어서,The method of claim 1,
    상기 발사는 1 내지 10회 수행하는 것인, 테트라셀미스 속 미세조류의 유전자 교정방법.The firing is carried out 1 to 10 times, the gene editing method of microalgae in the genus Tetracelmis.
  13. SEQ ID No.: 4로 표시되는 서열에서 99번째 내지 524번째에 상응하는 뉴클레오티드가 결실된 AGP 유전자 변이를 포함하는 테트라셀미스 속 변이체.SEQ ID No.: A variant of the genus Tetracelmis including an AGP gene mutation in which a nucleotide corresponding to the 99th to the 524th in the sequence represented by 4 is deleted.
  14. 제13항에 있어서, The method of claim 13,
    상기 변이체는 SEQ ID No: 5의 AGP 변이 유전자를 포함하는 테트라셀미스 속 변이체. The variant is a variant of the genus Tetracelmis comprising the AGP variant gene of SEQ ID No: 5.
  15. 제13항에 있어서,The method of claim 13,
    기탁번호 KCTC 13787BP이고, 전분 생산능을 갖지않고, 야생형과 비교해서 개선된 지질 생산능을 갖는 테트라셀미스 TspAGP-M1인 테트라셀미스 속 변이체.Accession number KCTC 13787BP, does not have a starch-producing ability, a variant of the genus Tetracelmis, which is tetracelmis TspAGP-M1, which has an improved lipid-producing ability compared to the wild type.
  16. 제15항에 있어서,The method of claim 15,
    상기 테트라셀미스 TspAGP-M1은 C16:0과 C18:1 지방산 생산능이 야생형 균주와 비교해서 개선된 것인, 테트라셀미스 속 변이체.The tetracelmis TspAGP-M1 has improved C16:0 and C18:1 fatty acid production ability compared to the wild-type strain, tetracelmis genus variant.
  17. 제13항 내지 제16항 중 어느 한 항에 따른 테트라셀미스 속 변이체를 배양하여 지질을 축적시키는 단계; 및 배양물로부터 축적된 지질을 단리시키는 단계를 포함하는 바이오에너지 생산방법.Accumulating lipids by culturing the tetracelmis genus variant according to any one of claims 13 to 16; And Bioenergy production method comprising the step of isolating the accumulated lipid from the culture.
  18. 제13항 내지 제16항 중 어느 한 항에 따른 테트라셀미스 속 변이체의 배양물을 포함하는 바이오에너지 조성물.A bioenergy composition comprising a culture of a variant of the genus Tetracelmis according to any one of claims 13 to 16.
PCT/KR2020/001912 2019-02-11 2020-02-11 Method for editing microalgae by using gene gun method WO2020166943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190015770 2019-02-11
KR10-2019-0015770 2019-02-11

Publications (1)

Publication Number Publication Date
WO2020166943A1 true WO2020166943A1 (en) 2020-08-20

Family

ID=72045387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001912 WO2020166943A1 (en) 2019-02-11 2020-02-11 Method for editing microalgae by using gene gun method

Country Status (2)

Country Link
KR (1) KR102358538B1 (en)
WO (1) WO2020166943A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813095B (en) * 2021-02-08 2022-06-24 中国科学院海洋研究所 Method for improving genetic transformation efficiency of seaweed over-expressed gene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006923A (en) * 2013-07-09 2015-01-20 인하대학교 산학협력단 A Novel Tetraselmis sp. MBEyh04Gc strain (KCTC 12432BP) and a method for producing biodiesel using the same
US20160304893A1 (en) * 2013-12-13 2016-10-20 Cellectis Cas9 nuclease platform for microalgae genome engineering
KR20170121051A (en) * 2016-04-22 2017-11-01 한양대학교 산학협력단 Method for gene editing in microalgae using RGEN RNP

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006923A (en) * 2013-07-09 2015-01-20 인하대학교 산학협력단 A Novel Tetraselmis sp. MBEyh04Gc strain (KCTC 12432BP) and a method for producing biodiesel using the same
US20160304893A1 (en) * 2013-12-13 2016-10-20 Cellectis Cas9 nuclease platform for microalgae genome engineering
KR20170121051A (en) * 2016-04-22 2017-11-01 한양대학교 산학협력단 Method for gene editing in microalgae using RGEN RNP

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANG KWANG SUK; KIM JONGRAE; PARK HANWOOL; HONG SEONG-JOO; LEE CHOUL-GYUN; JIN EONSEON: "Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method", BIORESOURCE TECHNOLOGY, vol. 303, no. 122932, 30 January 2020 (2020-01-30) - May 2020 (2020-05-01), pages 1 - 9, XP086057202 *
LI Y; HAN D; HU G; DAUVILLEE D; SOMMERFELD M; BALL S; HU Q: "Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol", METABOLIC ENGINEERING, vol. 12, no. 4, July 2010 (2010-07-01), pages 387 - 391, XP027079426 *
MANUEL SERIF, DUBOIS GWENDOLINE, FINOUX ANNE-LAURE, TESTE MARIE-ANGE, JALLET DENIS, DABOUSSI FAYZA: "One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing", NATURE COMMUNICATIONS, vol. 9, no. 3924, 25 September 2018 (2018-09-25), pages 1 - 10, XP055730983 *

Also Published As

Publication number Publication date
KR102358538B1 (en) 2022-02-07
KR20200098424A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6937740B2 (en) Genome editing system and usage
US11713471B2 (en) Class II, type V CRISPR systems
KR102271292B1 (en) Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
WO2019103442A2 (en) Genome editing composition using crispr/cpf1 system and use thereof
JP6751402B2 (en) Methods for modifying host cell proteins
US9567590B2 (en) Method of introducing a mitochondrial genome into a eukaryotic cell mitochondrion
KR20230021657A (en) Enzymes containing RUVC domains
WO2020166943A1 (en) Method for editing microalgae by using gene gun method
WO2019235907A1 (en) Composition for editing flavonoid biosynthetic gene by using crispr/cas9 system, and use thereof
WO2021002630A1 (en) Novel promoter hasp1 of phaeodactylum tricornutum and signal peptide thereof, and use thereof
WO2022098191A1 (en) Manufacturing method of circular nucleic acid template for producing high molecular weight protein using hydrogelated nucleic acid, and high-molecular weight protein production system
WO2019113463A1 (en) Improving algal lipid productivity via genetic modification of a tpr domain containing protein
US20220282296A1 (en) Biosurfactant-producing recombinant microorganism
WO2023043298A1 (en) Mutant microalgae having high cell growth rate and lipid productivity under fluctuating light conditions
CN112501171B (en) sgRNA targeting sequences of two specific targeting pig Pax7 genes and application
US20240132873A1 (en) Site-specific genome modification technology
KR20240049306A (en) Enzymes with RUVC domains
CN117222741A (en) Site-specific genomic modification techniques
AU2022335499A1 (en) Enzymes with ruvc domains
Pickerill et al. CRISPR mediated genome editing, a tool to dissect RNA modification processes
JP2023502967A (en) Non-selectable marker-free methods and compositions for modifying the genome of Bacillus
IT202100026639A1 (en) Diatom-based genetic engineering system methodology for the eco-sustainable production of ovothiols
WO2015182913A1 (en) Method for overexpression of target protein by gene silencing
KR20210118069A (en) DNA cutting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755355

Country of ref document: EP

Kind code of ref document: A1