WO2020166732A1 - 가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말 - Google Patents

가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말 Download PDF

Info

Publication number
WO2020166732A1
WO2020166732A1 PCT/KR2019/001662 KR2019001662W WO2020166732A1 WO 2020166732 A1 WO2020166732 A1 WO 2020166732A1 KR 2019001662 W KR2019001662 W KR 2019001662W WO 2020166732 A1 WO2020166732 A1 WO 2020166732A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmitting
visible light
light communication
receiving end
Prior art date
Application number
PCT/KR2019/001662
Other languages
English (en)
French (fr)
Inventor
이호재
이상림
이웅희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/001662 priority Critical patent/WO2020166732A1/ko
Priority to US17/310,562 priority patent/US11677467B2/en
Publication of WO2020166732A1 publication Critical patent/WO2020166732A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present invention relates to a method of transmitting a signal in visible light communication, and more particularly, to an adaptive constellation design of visible light communication.
  • next-generation mobile communication system after 4G, it is assumed that multi-party cooperative communication in which a number of senders and receivers form a network and exchange information. This is to maximize the information transmission rate and prevent the occurrence of communication shadow areas.
  • information theory rather than forming a point-to-point channel and transmitting all information in such a communication environment, forming a multipoint channel on the network and transmitting information flexibly is a way to increase the transmission speed. It is possible to approach the channel capacity.
  • visible light communication is a visible light (e.g., about 400 to 700 visible to the human eye) to wirelessly transmit data (e.g., voice data, numeric data, and image data). It is a communication medium that uses light with a wavelength in the range of nanometers (nm).
  • a visible light source such as a fluorescent light bulb or light emitting diode (LED)
  • LED light emitting diode
  • a receiving device eg, a camera, an imager in a mobile phone, or an ambient light sensor
  • the color gamut of a light source that can be transmitted is different according to the hardware capability of the transmitting device.
  • the receiving device is greatly influenced by the color characteristics of the interfering light existing around it. Therefore, there is a need for a modulation scheme for efficient signal decoding at the receiving end.
  • the technical problem to be achieved in the present invention is to provide a method of transmitting a signal in visible light communication that can reflect i) hardware characteristics of a transmitting device and ii) interfering light characteristics in order to solve the above-described problem.
  • a method of transmitting a signal in visible light communication includes receiving interference information from a receiving end, transmitting a constellation set index to the receiving end, and the constellation set index It may include transmitting the signal modulated based on the receiving end. Meanwhile, the constellation set index may be selected based on the received interference information.
  • the interference information may be generated based on the intensity of the interference light source detected by the receiving end.
  • the method of transmitting a signal in visible light communication further includes transmitting a reference signal sequence for channel measurement to the receiving end, and the interference information is determined by the receiving end using the reference signal sequence. Can be generated based on measuring.
  • the transmitter may select a constellation set that avoids an area of an interference light source indicated by the received interference information.
  • the transmitter may increase the signal strength of a color channel corresponding to a region of an interference light source indicated by the received interference information.
  • the constellation set index may be further selected based on hardware capability of the transmitting end.
  • the signal may be modulated through a CSK (Color-Shift Keying) modulation method.
  • CSK Color-Shift Keying
  • a method of transmitting a signal in visible light communication may provide an adaptive constellation set design in which a color region that can be expressed according to a mechanical characteristic of a light source (LED) reflects different characteristics. Accordingly, by using a constellation set defined based on Hardware Capability, there is a technical effect of minimizing the impairment for decoding between the receiving end and the transmitting end while maintaining the Euclidean distance between constellations to the maximum.
  • LED light source
  • a method of transmitting a signal in visible light communication may provide an adaptive constellation set design that reflects a characteristic of interference for a specific color according to an environment of a receiving end. Accordingly, there is a technical effect of minimizing the effect of specific interference by maintaining a uniform SINR of the receiving end by avoiding the influence of the interference light source.
  • a method of transmitting a signal in visible light communication has a technical effect of increasing system stability by maintaining a uniform SINR of a receiver by compensating for an effect of an interfering light source through adaptive power control.
  • FIG. 1 is a diagram illustrating a system for implementing the present invention.
  • FIG. 2 is a diagram showing an exemplary structure of a subframe in which a data channel and a control channel are TDM.
  • 3 to 4 are diagrams for explaining a single carrier modulation (SCM) method of visible light communication.
  • SCM single carrier modulation
  • MCM Multi Carrier Modulation
  • FIG. 6 is a diagram for explaining an OFDM modulation structure at a transmitter side of a conventional RF communication system.
  • FIG. 7 to 8 are diagrams for explaining the structure of a multi-carrier modulation transmitter in a visible light communication system.
  • CSK Color-Shift Keying
  • 10 to 11 are diagrams illustrating an entire color space according to wavelength and a specific color space that can be expressed according to characteristics of a device.
  • FIG. 12 is a diagram for describing a method of modulating a binary digital signal in a color space.
  • FIG. 13 is a diagram for explaining the application of Color-Shift Keying (CSK) modulation to MCM.
  • CSK Color-Shift Keying
  • 14 to 17 are diagrams for explaining a method of operating an adaptive constellation set according to an interference source.
  • 18 to 19 are diagrams for explaining a method of operating an adaptive constellation set according to hardware capability.
  • 20 to 23 are diagrams for explaining signaling of a transmitter and a receiver for operation of an adaptive constellation set.
  • the terminal collectively refers to a mobile or fixed user-end device, such as a user equipment (UE), a mobile station (MS), and an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • the base station collectively refers to any node of a network end communicating with the terminal, such as Node B, eNode B, Base Station, AP (Access Point), and gNode B (gNB).
  • a user equipment can receive information from a base station through a downlink, and the terminal can also transmit information through an uplink.
  • Information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with radio technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolved version of 3GPP LTE.
  • FIG. 1 is a diagram illustrating a system for implementing the present invention.
  • a wireless communication system includes a base station (BS) 10 and one or more terminals (UE) 20.
  • the transmitter may be part of the BS 10 and the receiver may be part of the UE 20.
  • BS 10 may include a processor 11, a memory 12, and a radio frequency (RF) unit 13 (transmitter and receiver).
  • the processor 11 may be configured to implement the UE 20 proposed procedures and/or methods described in this application.
  • the memory 12 is coupled with the processor 11 to store various pieces of information for operating the processor 11.
  • the RF unit 13 is coupled with the processor 11 to transmit and/or receive radio signals.
  • the UE 20 may include a processor 21, a memory 22 and an RF unit 23 (transmitter and receiver).
  • the processor 21 may be configured to implement the proposed procedure and/or method described in this application.
  • the memory 22 is coupled with the processor 21 to store various pieces of information for operating the processor 21.
  • the RF unit 23 is coupled with the processor 21 to transmit and/or receive radio signals.
  • BS 10 and/or UE 20 may have a single antenna and multiple antennas. When at least one of the BS 10 and the UE 20 has multiple antennas, the wireless communication system may be referred to as a multiple input multiple output (MIMO) system.
  • MIMO multiple input multiple output
  • the processor 21 of the terminal and the processor 11 of the base station process signals and data, excluding functions and storage functions for receiving or transmitting signals by the terminal 20 and the base station 10, respectively.
  • the processors 11 and 21 are not specifically mentioned below. Even if there is no particular mention of the processors 11 and 21, it can be said that a series of operations such as data processing are performed rather than a function of receiving or transmitting a signal.
  • the present invention proposes a new and diverse frame structure for a fifth generation (5G) communication system.
  • 5G fifth generation
  • scenarios can be classified into Enhanced Mobile BroadBand (eMBB)/Ultra-reliable Machine-Type Communications (uMTC)/Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • uMTC User-Type Communications
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with features such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • uMTC is a next-generation mobile communication scenario with features such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability ( For example, V2X, Emergency Service, Remote Control), and mMTC are next-generation mobile communication scenarios having characteristics of Low Cost, Low Energy, Short Packet, and Massive Connectivity (eg, IoT).
  • FIG. 2 is a diagram showing an exemplary structure of a subframe in which a data channel and a control channel are TDM.
  • a structure in which the control channel and the data channel as shown in FIG. 2 are time division multiplexed (TDM) may be considered as one of the frame structures. .
  • the shaded region represents a transmission region of a physical downlink control channel (eg, Physical Downlink Control Channel (PDCCH)) for DCI (Downlink Control Information) transmission, and the last symbol is UCI (Uplink Control Information) transmission.
  • a physical uplink control channel eg, Physical Uplink Control CHannel (PUCCH)
  • the DCI which is the control information transmitted by the eNB to the UE, may include information about cell configuration that the UE should know, DL specific information such as DL scheduling, and UL specific information such as UL grant.
  • UCI which is control information transmitted from the UE to the base station, may include an ACK/NACK report of HARQ for DL data, a CSI report for a DL channel state, and a scheduling request (SR).
  • SR scheduling request
  • the DL or UL section may be flexibly set for DL/UL flexibility.
  • it may be used as a data channel for DL data transmission (for example, a physical downlink shared channel), or a data channel for UL data transmission (for example, a physical uplink shared channel). (Physical Uplink Shared CHannel, PUSCH)) may be used.
  • the characteristic of this structure is that DL transmission and UL transmission are sequentially performed within one subframe, so that the eNB transmits DL data within the subframe, and may receive a HARQ ACK/NACK signal for the DL data from the UE. As a result, the time it takes to retransmit data when a data transmission error occurs is reduced, and thus, the latency of the final data transmission can be minimized.
  • this self-contained subframe structure there is a need for a time gap for the base station and the UE to switch from a transmission mode to a reception mode or a process to switch from a reception mode to a transmission mode.
  • some OFDM symbols at the time point at which the DL to UL is switched in the self-contained subframe structure is set as a guard period (GP).
  • VLC Visible Light Communication
  • SCM Single Carrier Modulation
  • OOK On-Off Keying
  • a light source expresses digital signals 1 and 0 according to ON and OFF.
  • OOK modulation can be modified in a manner such as pulse position modulation (PPM), which is modulated to a pulse position based on a clock.
  • PPM pulse position modulation
  • MCM multi carrier modulation
  • Hermitian symmetric modulated symbol is arranged in the first subcarrier mapping type of FIG. 5.
  • Hermitian symmetric arrangement means arranging symbols in the form of conjugate mirror symmetric left and right with the DC subcarrier boundary. This arrangement method transforms the time domain into a real value signal. After that, this method makes a final unipolar time domain signal by biasing as much as the minimum value (i.e., negative value with maximum amplitude) in the time domain.
  • ACO-OFDM In the second subcarrier mapping type of FIG. 5, half modulated symbols in DCO-OFDM are arranged in Hermitian symmetric manner while vacating a certain interval. In this subcarrier mapping, the waveform becomes a real value signal in the time domain, and the code is repeatedly displayed in an inverted form. This is a method of making a final unipolar time domain signal by performing zero clipping of the repeated waveform.
  • PAM-DMT In the third subcarrier mapping type of FIG. 5, a real value signal is flipped on the imaginary part based on the center in a PAM type. In this subcarrier mapping, in the time domain, the waveform becomes a real value signal, and the sign is inverted and appears repeatedly in a mirror symmetric form. Like ACO-OFDM, this is a method of making the final unipolar time domain signal by performing zero clipping.
  • Table 1 is for describing performance measures of each of the above-described DCO-OFDM, ACO-OFDM, and PAM-DMT methods.
  • the performance measure may be, for example, spectral efficiency (SE), PAPR, signal-to-noise ratio (SNR), and bit error rate (BER).
  • SE spectral efficiency
  • PAPR PAPR
  • SNR signal-to-noise ratio
  • BER bit error rate
  • DCO-OFDM has half the SE for Hermitian symmetry, but this can be regarded as the most optimal SE in unipolar OFDM.
  • DCO OFDM has a disadvantage that the SNR characteristics are deteriorated as the portion of the power carried in the signal in the actual transmit power is decreased due to the bias.
  • the DC-bias value is a constant value, which affects the performance when detecting a modulated symbol at the receiving end. Not given).
  • ACO-OFDM has a disadvantage of having half the SE of DCO OFDM. However, since DC bias is not required, all transmit power is carried in the desired signal, so it has relatively good SNR characteristics.
  • FIG. 6 is a diagram for explaining an OFDM modulation structure at a transmitter side of a conventional RF communication system.
  • an analog signal that has undergone OFDM Modulation is amplified through an RF Power Amplifier (PA).
  • PA RF Power Amplifier
  • the maximum amplification size of the signal may be limited by the performance limitation of the PA.
  • FIG. 7 shows a structure of a DCO-OFDM modulation transmitter in a VLC communication system
  • FIG. 8 shows a structure of an ACO-OFDM modulation transmitter in a VLC communication system.
  • a voltage amplifier, a voltage to current (V-to-I) transducer, and an electrical to optical (E-to-O) device are all non-linear devices. Therefore, the analog signal that has undergone modulation is amplified and converted.
  • V-to-I voltage to current
  • E-to-O electrical to optical
  • dimming control through DC biasing is exemplified, and in the case of the reverse polarity, the dimming control may be performed through signal reconstruction.
  • CSK modulation is a method that can express a digital signal by a combination of colors based on the color characteristics of a light source. For example, when a digital signal is generated as shown in FIG. 9, the digital signal is converted into an (x, y) color space signal through color coding. The converted (x, y) color space signal is transmitted through a colored light source.
  • the color space may be defined as shown in FIG. 10, and the chromaticity distribution table may follow the CIE 1931 color space (IEEE 802.15.7).
  • the outer curved boundary line corresponds to monochromatic light, and the wavelength of each monochromatic light is indicated in nanometers.
  • the colors displayed in FIG. 10 may vary slightly depending on the color space of the color display device. No device known in the art can accurately represent all the colors shown in FIG. 10. That is, as illustrated in FIG. 11, a color area that can be expressed according to the class of the equipment may be different.
  • one color when it is not monochromatic light, it may be generated by mixing a plurality of color light sources (e.g., LEDs).
  • the color point (x, y) is transformed by RGB.
  • each value of R, G, and B is converted into X, Y, and Z values, and corresponds to (x, y) values in the color space.
  • a binary bit stream corresponding to a star display can be defined as shown in [Table 2]. That is, it is possible to modulate the signal based on the Euclidean distance characteristic in the color space.
  • the transmitter i) transmits the analog signal generated through the OFDM modulator to each value of R, G, and B corresponding to the (x, y) coordinates in the color space as an optical source through each light source, the LED. And ii) transmits it through an optical channel.
  • the receiving end ii) receive a signal through a photo diode, ii) convert an analog signal into a digital signal through an OFDM demodulator, and iii) correspond each signal of R, G, and B to the color space (x, y) ( The signal is decoded based on x, y) values.
  • the above-described methods have a problem in that the color gamut that can be represented for each device is different and is greatly affected by the color characteristics of the interfering light. Therefore, for efficient decoding at the receiving end, a Modulation scheme that can reflect i) device characteristics and ii) interference optical characteristics is required.
  • the present invention proposes an adaptive color shift keying (CSK) modulation technique that reflects i) device characteristics and ii) interfering light characteristics of a light source in visible light communication.
  • CSK color shift keying
  • Modulation Constellation is designed in the color space based on the color characteristics. Accordingly, if the color characteristics of the interference light source exist, the degree of interference corresponding to each constellation may be different. For example, a high frequency of green (G) reflected light may exist in a forest or forest area, and a high frequency of yellow (R and G) reflected light may exist in an unpaved or desert area.
  • G green
  • R and G yellow
  • a method of modulating a signal in visible light communication proposes a method of minimizing the influence of the interfering light by using the characteristics of the interfering light.
  • CSK Modulation eg, a camera
  • the color of the interfering light source may be recognized from the surrounding environment perceived through the visual sensor, and color interference may be derived in the application layer based on the intensity of the color recognized or measured by the visual sensor.
  • the interfering light may be specified through a reference signal.
  • Interference for each color can be measured based on SINR measurement received from a photo diode in the physical layer. More specifically, supposing that Pi, Pj, and Pk are signals corresponding to R, G, and B colors as shown in FIG. 14, the transmitter may use a reference signal sequence for channel estimation for each color.
  • the receiving end can measure the received power of the photo diode through color filters and estimate the SINR. Referring to FIG. 15, it can be seen that there is a difference in SINR for each color.
  • the receiving end may determine that green light interference exists.
  • a method of modulating a signal according to an aspect of the present invention defines a constellation set for modulation by avoiding a region corresponding to the color of the interfering light source in order to minimize the influence of interference according to the color of the interfering light source.
  • the interference light source for green light is measured as shown in FIG. 16, since decoding is not effective at the receiving end of the green light source in the color space, the transmitting end avoids the color space area where the interference light source exists. Constellation set can be used.
  • the above-described method of modulating a signal can be interpreted as reducing an area in which constellation may exist in a color space in order to avoid the influence of an interfering light source. Accordingly, since the Euclidean distance between constellations becomes close, the overall performance for signal decoding may be reduced, but the SINR of the receiver is uniformly maintained, thereby minimizing the effect of specific interference.
  • a method of modulating a signal according to an aspect of the present invention proposes to enhance the SINR of the receiver by increasing the signal strength of the color channel corresponding to the color of the interfering light source in order to compensate for the influence of the interference according to the color of the interfering light source. do. For example, as shown in FIG. 17, suppose that Pi, Pj, and Pk are factors that control the power of signals corresponding to the R, G, and B colors. By controlling the power of the signal for each color, the influence of the interference light source is reduced. You can compensate.
  • SINR_G of a receiver can be enhanced by amplifying the size of Pj corresponding to the G color by x dB and transmitting it.
  • x can be determined by the degree of interference.
  • the above-described method of modulating the signal compensates for the influence of the interfering light source through adaptive power control. Accordingly, there may be restrictions on the use of total power, but system stability can be improved by uniformly maintaining the SINR of the receiver.
  • Modulation Constellation is designed in the color space based on the color characteristics.
  • Light sources eg, LEDs, headlights, street lights
  • Color space areas that can be expressed according to cost or purpose of use. That is, as illustrated in FIG. 18, a color area that can be expressed according to the class of the equipment may be different.
  • An optimal constellation set for modulation can be defined according to the color space area that the light source can represent. For example, as shown in FIG. 19, there may be a difference in an area of a color space that can be expressed according to a hardware class.
  • a Constellation Set that maximizes Euclidean Distance within a color space that can be expressed by hardware class can be determined within the (x, y) color space.
  • the CSK Modulation Set optimized for Hardware Class 0 is Set Class 0
  • the CSK Modulation Set optimized for Hardware Class N is used as Set Class N for Hardware Class N.
  • Constellation Design in the defined color space can be used. That is, by using a defined constellation set according to hardware capability, it is possible to minimize the impairment for decoding between the receiving end and the transmitting end while maintaining the Euclidean Distance between constellations to the maximum.
  • the Adaptive Constellation Set Design can be applied to devices between heterogeneous. That is, different devices can operate different constellation sets for each Tx-Rx pair. For example, when Device 1 is Class 1 and Device 2 is Class 2, transmission from Device 1 to Device 2 modulates the data with Constellation Set Class 1, and transmission from Device 2 to Device 1 is Constellation Set Class. Data can be modulated and transmitted with 2.
  • the receiving end (Rx) that wants to receive data performs Color Interference Measurement or Color Interference Sensing corresponding to Implementation 1.1. That is, the receiver can measure Color Interference based on Visual Sensor Information or measure Color Interference based on Reference Signal. Meanwhile, the Color Interference Measurement of the receiver may be performed periodically or when interference light is detected.
  • the receiving end transmits Interference Information to the transmitting end (Tx) based on the measured interference information.
  • SINR information eg, SINR_G, SINR_B, SINR_R
  • transmission through a Control Channel e.g., in the case of LTE, Control Signaling for RRC Connection or PUCCH, PDCCH, etc.
  • a Data Channel e.g., in the case of LTE, PUSCH, PDSCH, etc.
  • the transmitting end (Tx) adaptively selects the Constellation Set based on the received Interference Information.
  • the constellation sets may be predefined (or previously promised to the receiving end (Rx)) information.
  • the transmitting end (Tx) transmits the selected constellation set index to the receiving end (Rx) through the Control Channel.
  • the transmitting end (Tx) modulates the data to be transmitted based on the selected constellation set and transmits it to the receiving end (Rx).
  • the receiving end (Rx) that wants to receive data performs Color Interference Measurement or Color Interference Sensing corresponding to Implementation 1.1. That is, the receiver can measure Color Interference based on Visual Sensor Information or measure Color Interference based on Reference Signal. Meanwhile, the Color Interference Measurement of the receiver may be performed periodically or when interference light is detected.
  • the receiving end (Rx) adaptively selects a constellation set based on the measured Interference Information.
  • the Constellation Sets may be predefined (or previously agreed upon with the transmitting end (Tx)).
  • the receiving end (Rx) transmits the selected constellation set index to the transmitting end (Tx) through the Control Channel.
  • the transmitting end (Tx) modulates the data to be transmitted based on the received Constellation Set Index and transmits it to the receiving end (Rx).
  • the receiving end (Rx) that wants to receive data performs Color Interference Measurement or Color Interference Sensing corresponding to Implementation 1.1. That is, the receiver can measure Color Interference based on Visual Sensor Information or measure Color Interference based on Reference Signal.
  • SINR information eg, SINR_G, SINR_B, SINR_R
  • transmission through a Control Channel e.g., in the case of LTE, Control Signaling for RRC Connection or PUCCH, PDCCH, etc.
  • a Data Channel e.g., in the case of LTE, PUSCH, PDSCH, etc.
  • the transmitting end (Tx) adaptively selects Power Control based on the received Interference Information. At this time, the degree of power control may be selected in a predefined manner.
  • the transmitter (Tx) transmits the data to be transmitted to the receiver (Rx) based on the signal power selected by the adaptive power control.
  • Hardware Capability can be defined between the transmitting end and the receiving end in advance. For example, normalized classes from Class 0 to Class 3 can be classified.
  • CSK Constellation Set suitable for each class is defined in advance and can be shared between the transmitting end and the receiving end. Or, when performing a connection with the receiving end (e.g., in the case of LTE, RRC Connection step, etc.) can be shared.
  • the transmitter selects the optimal constellation set or the constellation set according to its own class index from among the predefined CSK constellation sets for each class.
  • the transmitter transmits the selected Constellation Set Class index to the receiver through the Control Channel.
  • it may be shared when performing a connection with the receiving end (e.g., in the case of LTE, the RRC Connection step, etc.).
  • it may be shared before data transmission (e.g., in the case of LTE, DCI, etc.).
  • the transmitter modulates the data to be transmitted based on the selected constellation set and transmits it to the receiver.
  • a method of transmitting a signal in visible light communication includes receiving interference information from a receiving end, transmitting a constellation set index to the receiving end, and based on the constellation set index. Thus, it may include the step of transmitting the modulated signal to the receiving end. Meanwhile, the constellation set index may be selected based on the received interference information.
  • the interference information may be generated based on the intensity of the interference light source detected by the receiving end.
  • the method of transmitting a signal in visible light communication further includes transmitting a reference signal sequence for channel measurement to the receiving end, and the interference information is determined by the receiving end using the reference signal sequence. Can be generated based on measuring.
  • the transmitter may select a constellation set that avoids an area of an interference light source indicated by the received interference information.
  • the transmitter may increase the signal strength of a color channel corresponding to a region of an interference light source indicated by the received interference information.
  • the constellation set index may be further selected based on hardware capability of the transmitting end.
  • the signal may be modulated through a CSK (Color-Shift Keying) modulation method.
  • a transmitting end that transmits a signal controls a transmitting and receiving unit and the transmitting and receiving unit to receive interference information from a receiving end, and transmits a constellation set index to the receiving end, and the It may include a processor that transmits the modulated signal to the receiver based on the constellation set index.
  • the constellation set index may be selected based on the received interference information.
  • the interference information may be generated based on the intensity of the interference light source detected by the receiving end.
  • the processor may control the transmission/reception unit to transmit a reference signal sequence for channel measurement to the receiver.
  • the interference information may be generated based on the reception terminal measuring a channel using the reference signal sequence.
  • the processor may select a constellation set that avoids an area of an interference light source indicated by the received interference information.
  • the processor may increase the signal strength of a color channel corresponding to a region of an interference light source indicated by the received interference information.
  • the constellation set index may be further selected based on hardware capability of the transmitting end.
  • the signal may be modulated through a CSK (Color-Shift Keying) modulation method.
  • the present invention can be applied industrially in various wireless communication systems such as 3GPP LTE/LTE-A and 5G systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

가시광 통신에서 신호를 전송하는 방법이 제안된다. 가시광 통신에서 신호를 전송하는 방법은 수신단으로부터 간섭 정보를 수신하는 단계, 성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하는 단계, 그리고 상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 단계를 포함할 수 있다. 한편, 상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택될 수 있다.

Description

가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말
본 발명은 가시광 통신에서 신호를 전송하는 방법에 관한 것으로, 보다 상세하게는, 가시광 통신의 적응적 성상도 디자인 (adaptive constellation design)에 관한 것이다.
4G 이후의 차세대 이동통신 시스템에서는 다수의 송신자와 수신자가 네트워크를 구성하여 정보를 주고 받는 다자간 협력 통신을 가정하고 있는데 이는 정보 전송률을 극대화하고 통신 음영 지역이 잘 발생하지 않게 하고자 함이다. 정보이론에 따르면 이러한 통신 환경에서 모든 정보를 점대점 채널을 형성해서 전송하는 것보다 네트워크 상에서 다중점 채널을 적절히 형성해서 정보를 유동적으로 전송하는 것이 전송 속도를 더 높일 수 있는 방법이 되며 전체 네트워크의 채널 용량에 근접할 수 있게 된다.
한편, 가시광 통신(visible light communication; VLC)은 데이터(예를 들어, 음성 데이터, 숫자 데이터 및 영상 데이터)를 무선으로 송신하기 위해 가시광(예를 들어, 인간의 육안으로 볼 수 있는 약 400 내지 700 나노미터들(nm)의 범위의 파장을 갖는 광)을 이용하는 통신 매체이다. VLC를 이용하여 데이터를 송신하기 위해, 형광 전구 또는 발광 다이오드(LED)와 같은 가시광원은 매우 빠른 속도로 세기 변조 또는 턴 온 및 오프될 수 있다. 수신 디바이스(예를 들어, 카메라, 이동 전화의 화상기 또는 주위 광 센서)는 세기 변조된 광을 수신하고 이를 사용자의 사용 및/또는 향유를 위해 수신 디바이스가 처리할 수 있는 데이터로 변환할 수 있다.
한편, 가시광 통신에서는 송신 디바이스의 하드웨어 능력 (hardware capability)에 따라 전송할 수 있는 광원의 색 영역이 다르다. 또한, 수신 디바이스는 주변에 존재하는 간섭 광의 색 특성에 영향을 크게 받는다는 문제가 있다. 따라서, 수신단에서의 효율적인 신호 복호를 위한 변조 방법 (Modulation scheme)이 필요하다.
본 발명에서 이루고자 하는 기술적 과제는 전술한 문제를 해결하기 위해 i) 송신 디바이스의 하드웨어 특성과 ii) 간섭 광 특성을 반영할 수 있는 가시광 통신에서 신호를 전송하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한, 가시광 통신에서 신호를 전송하는 방법은 수신단으로부터 간섭 정보를 수신하는 단계, 성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하는 단계, 그리고 상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 단계를 포함할 수 있다. 한편, 상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택될 수 있다.
한편, 상기 간섭 정보는 상기 수신단에 의해 감지된 간섭 광원의 강도 (intensity)에 기초하여 생성될 수 있다.
한편, 가시광 통신에서 신호를 전송하는 방법은 채널 측정을 위한 참조 신호 시퀀스 (Reference signal sequence)를 상기 수신단에 전송하는 단계를 더 포함하고, 상기 간섭 정보는 상기 참조 신호 시퀀스를 이용하여 상기 수신단이 채널을 측정하는 것에 기초하여 생성될 수 있다.
한편, 상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역을 회피하는 성상도 세트 (constellation set)를 선택할 수 있다.
한편, 상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역에 대응하는 색 채널 (color channel)의 신호 세기를 증가시킬 수 있다.
한편, 상기 성상도 세트 인덱스는 상기 송신단의 하드웨어 능력 (hardware capability)에 더 기초하여 선택될 수 있다.
한편, 상기 신호는 CSK (Color-Shift Keying) 변조 방법을 통해 변조될 수 있다.
본 발명의 일 측면에 따른 가시광 통신에서 신호를 전송하는 방법은 광원(LED)의 기계적 특성에 따라 표현할 수 있는 색의 영역이 다른 특성을 반영하는 적응적인 Constellation Set Design을 제공할 수 있다. 그에 따라, Hardware Capability에 기초하여 정의된 Constellation Set을 사용함으로써, Constellation간 Euclidean Distance를 최대로 유지하면서, 수신단과 송신단 사이의 복호에 대한 Impairment를 최소화하는 기술적 효과가 있다.
본 발명의 다른 일 측면에 따른 가시광 통신에서 신호를 전송하는 방법은 수신단의 환경에 따라 특정 색에 대한 간섭의 특성을 반영하는 적응적인 Constellation Set Design 을 제공할 수 있다. 그에 따라, 간섭 광원의 영향을 회피함으로써 수신단의 SINR을 균일하게 유지하여 특정 간섭에 의한 영향을 최소화하는 기술적 효과가 있다.
본 발명의 다른 일 측면에 따른 가시광 통신에서 신호를 전송하는 방법은 간섭 광원에 의한 영향을 Adaptive Power Control을 통해 보상함으로써, 수신단의 SINR을 균일하게 유지하여 시스템 안정성을 높이는 기술적 효과가 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명을 구현하기 위한 시스템을 예시한 도면이다.
도 2는 데이터 채널과 제어 채널이 TDM된 서브프레임의 구조를 예시적으로 나타낸 도면이다.
도 3 내지 도 4는 가시광 통신의 Single Carrier Modulation (SCM) 방법을 설명하기 위한 도면이다.
도 5는 가시광 통신의 Multi Carrier Modulation (MCM) 방법을 설명하기 위한 도면이다.
도 6은 종래의 RF 통신 시스템의 송신단 측면에서의 OFDM modulation 구조를 설명하기 위한 도면이다.
도 7 내지 도 8은 가시광 통신 시스템의 multi-carrier modulation 송신단 구조를 설명하기 위한 도면이다.
도 9는 Color-Shift Keying (CSK) modulation을 설명하기 위한 도면이다.
도 10 내지 도 11은 파장에 따른 전체 색 공간 및 장치의 특성에 따라 표현할 수 있는 특정 색 공간을 나타낸 도면이다.
도 12는 색 공간 상에서 binary digital 신호를 변조하는 방법을 설명하기 위한 도면이다.
도 13은 Color-Shift Keying (CSK) modulation을 MCM에 적용한 것을 설명하기 위한 도면이다.
도 14 내지 도 17은 Interference Source에 따른 Adaptive Constellation Set 운용 방법을 설명하기 위한 도면이다.
도 18 내지 도 19는 Hardware Capability에 따른 Adaptive Constellation Set 운용 방법을 설명하기 위한 도면이다.
도 20 내지 도 23은 Adaptive Constellation Set 운용을 위한 송신단 및 수신단의 Signaling을 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A, 5G 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point), gNode B (gNB) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다.
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 본 발명을 구현하기 위한 시스템을 예시한 도면이다.
도 1을 참조하면, 무선 통신 시스템은 기지국(BS) (10) 및 하나 이상의 단말(UE) (20)를 포함한다. 하향링크에서, 송신기는 BS (10)의 일부일 수 있고, 수신기는 UE (20)의 일부일 수 있다. 상향링크에서, BS (10)는 프로세서 (11), 메모리 (12), 및 무선 주파수 (RF) 유닛 (13)(송신기 및 수신기)을 포함 할 수 있다. 프로세서 (11)는 UE (20) 본 출원에 기재된 제안된 절차들 및/또는 방법들을 구현하도록 구성될 수 있다. 메모리 (12)는 프로세서 (11)와 결합되어 프로세서 (11)를 동작시키기 위한 다양한 정보를 저장한다. RF 유닛 (13)은 프로세서 (11)와 결합되어 무선 신호를 송신 및/또는 수신한다. UE (20)는 프로세서 (21), 메모리 (22) 및 RF 유닛 (23)(송신기 및 수신기)을 포함 할 수 있다. 프로세서 (21)는 본 출원에서 설명된 제안된 절차 및/또는 방법을 구현하도록 구성 될 수 있다. 메모리 (22)는 프로세서 (21)와 결합되어 프로세서 (21)를 동작시키기 위한 다양한 정보를 저장한다. RF 유닛 (23)은 프로세서 (21)와 결합되어 무선 신호를 송신 및/또는 수신한다. BS (10) 및/또는 UE (20)는 단일 안테나 및 다중 안테나를 가질 수 있다. BS (10) 및 UE (20) 중 적어도 하나가 다중 안테나를 갖는 경우, 무선 통신 시스템은 MIMO (multiple input multiple output) 시스템으로 불릴 수 있다.
본 명세서에서 단말의 프로세서(21)와 기지국의 프로세서(11)는 각각 단말(20) 및 기지국(10)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(11, 21)를 언급하지 않는다. 특별히 프로세서(11, 21)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명에서는 5세대(5G) 통신 시스템을 위한 새롭고 다양한 프레임 구조를 제안한다. 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/Ultra-reliable Machine-Type Communications (uMTC)/Massive Machine-Type Communications (mMTC) 등으로 시나리오를 구분할 수 있다. eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, uMTC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).
도 2는 데이터 채널과 제어 채널이 TDM된 서브프레임의 구조를 예시적으로 나타낸 도면이다. 5G new RAT (NR)에서는 지연(latency)를 최소화하기 위한 목적으로서 도 2와 같은 제어 채널과 데이터 채널이 시간분할다중화(Time Division Multiplexing, TDM)되는 구조가 프레임 구조의 한 가지로서 고려될 수 있다.
도 2에서 빗금 친 영역은 DCI(Downlink Control Information) 전달을 위한 물리 하향링크 제어 채널 (예를 들어, Physical Downlink Control Channel (PDCCH))의 전송 영역을 나타내고, 마지막 심볼은 UCI(Uplink Control Information) 전달을 위한 물리 상향링크 제어 채널 (예를 들어, Physical Uplink Control CHannel (PUCCH))의 전송 영역을 나타낸다. 여기서 eNB가 UE에게 전달하는 제어 정보인 DCI는 UE가 알아야 하는 cell configuration 에 관한 정보, DL scheduling 등의 DL specific한 정보, 그리고 UL grant 등과 같은 UL specific 정보 등을 포함할 수 있다. 또한 UE가 기지국에게 전달하는 제어 정보인 UCI는 DL data에 대한 HARQ의 ACK/NACK report, DL 채널 상태에 대한 CSI report, 그리고 SR(Scheduling Request) 등을 포함할 수 있다.
도 2에서 해칭 표시가 없는 영역은 DL/UL flexibility 를 위해 DL 또는 UL 구간이 flexible하게 설정될 수 있다. 일 예로서, DL 데이터 전송을 위한 데이터 채널(예를 들어, 물리 하향링크 공유 채널 (Physical Downlink Shared Channel))로 사용될 수도 있고, UL 데이터 전송을 위한 데이터 채널(예를 들어, 물리 상향링크 공유 채널(Physical Uplink Shared CHannel, PUSCH))가 사용될 수도 있다. 이러한 구조의 특징은 한 개의 subframe 내에서 DL 전송과 UL 전송의 순차적으로 진행되어, eNB가 subframe 내에서 DL data를 보내고, UE로부터 상기 DL data에 대한 HARQ ACK/NACK 신호를 수신할 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained subframe 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 time gap이 필요하다. 이를 위하여 self-contained subframe 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM symbol이 guard period(GP)로 설정되게 된다.
가시광 통신 (Visible Light Communication, VLC )
가시광 시스템의 경우, 일반적으로 가시광의 깜박거림을 기반으로 신호를 표현하는 OOK (On-Off Keying)에 기반한 Single Carrier Modulation (SCM) scheme들이 있다. 도 3 내지 도 4를 참조하면, OOK modulation 은 광원은 ON과 OFF에 따라 digital 신호 1 과 0을 표현하는 방식이다. OOK modulation은 clock을 기반으로 pulse position으로 modulation 되는 pulse position modulation (PPM) 등의 방식 등으로 변형될 수 있다.
가시광 통신 시스템에 있어서, multi carrier modulation (MCM) scheme들에 대한 연구가 진행되고 있다. Single carrier modulation scheme과 비교할 때, MCM scheme은 multipath에 대한 강인한 특성을 갖고, single tap equalizer가 가능하며, DC wandering과 flickering interference에 강인한 특성을 갖는다. VLC를 위한 MCM 기반 waveform은 i) One dimension (real-value) 신호만을 가져야 하고, ii) Unipolar 특성을 가져야 한다는 조건을 만족해야 한다.
전술한 조건을 만족하는 다양한 MCM scheme들이 소개된 바 있다. 이러한 MCM scheme들은 DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse-amplitude modulated discrete multi-tone modulation (PAM-DMT)로 분류될 수 있다. 도 5를 참조하여 이들에 대해 설명하도록 한다.
i) DCO-OFDM: 도 5의 첫 번째 subcarrier mapping형태로 Hermitian symmetric 하게 modulated symbol을 배치한다. Hermitian symmetric하게 배치하는 방법은 DC subcarrier를 경계로 좌우로 거울대칭에 conjugate형태로 symbol을 배치하는 것을 의미한다. 이러한 배치방법은 time domain에서 real value 신호로 변형시켜준다. 이후 time domain단에서 가장 minimum value(i.e., negative value with maximum amplitude)에 해당되는 만큼 bias를 시켜 최종unipolar time domain 신호를 만드는 방법이다.
ii) ACO-OFDM: 도 5의 두 번째 subcarrier mapping형태로 DCO-OFDM에서의 절반의 modulated symbol을 일정간격을 비우면서 Hermitian symmetric하게 배치한다. 이러한 subcarrier mapping은 time domain에서 waveform이 real value signal의 형태가 되며 부호가 반전된 형태로 반복하여 나타나게 된다. 이렇게 반복하여 나타나는 waveform을 zero clipping을 하여 최종 unipolar time domain 신호를 만드는 방법이다.
iii) PAM-DMT: 도 5의 세 번째 subcarrier mapping형태로 PAM형태로 real value 신호를 imaginary part에 가운데를 기준으로 flip하여 배치한다. 이러한 subcarrier mapping은 time domain에서 waveform이 real value signal의 형태가 되며 부호가 반전된 형태로 거울 대칭 형태로 반복하여 나타나게 된다. ACO-OFDM 마찬가지로 zero clipping을 하여 최종 unipolar time domain 신호를 만드는 방법이다.
표 1은 전술한 DCO-OFDM, ACO-OFDM 및 PAM-DMT 방법 각각의 performance measure를 설명하기 위한 것이다. performance measure는 예를 들면 spectral efficiency (SE), PAPR, signal-to-noise ratio (SNR), bit error rate (BER)일 수 있다.
SE SNR BER
DCO OFDM O X X
ACO OFDM X O O
PAM DMT OFDM X O
표 1을 참조하면, DCO-OFDM의 경우 Hermitian symmetry 특성을 위해서 절반의 SE를 갖지만 이는 unipolar OFDM에서 가장 최적의 SE로 볼 수 있다. 다만 DCO OFDM은 bias에 의해서 실제 transmit power에서 signal에 실리는 power의 portion이 작게 됨에 따라서 SNR 특성이 떨어지는 단점을 가진다 (DC-bias value는 constant한 값으로 이는 수신단에서 modulated symbol detection시 성능에 영향을 주지 않음).
표 1을 참조하면, ACO-OFDM의 경우 DCO OFDM의 절반의 SE를 갖는 단점을 가진다. 하지만 DC bias가 필요하지 않기 때문에 transmit power가 모두 desired signal에 실리기 때문에 상대적으로 좋은 SNR 특성을 가진다.
표 1을 참조하면, PAM DMT 경우 대부분 ACO OFDM과 동일한 특성을 지닌다. 하지만 modulation을 quadrature complex symbol을 이용하기 보다는 one dimension으로 amplitude에 기반하여 symbol간 distance 특성이 떨어져 ACO OFDM보다 BER 성능이 떨어지는 단점이 있다.
도 6은 종래의 RF 통신 시스템의 송신단 측면에서의 OFDM modulation 구조를 설명하기 위한 도면이다. 도 6을 참조하면, OFDM Modulation을 거친 Analog 신호는 RF Power Amplifier (PA)를 통해 증폭된다. 이 때, PA의 성능 제한에 의해 신호의 최대 증폭 크기가 제한될 수 있다.
반면, 가시광 통신 시스템의 multi-carrier modulation 송신단 구조는 도 7 내지 도 8과 같을 수 있다. 보다 구체적으로, 도 7은 VLC 통신 시스템의 DCO-OFDM Modulation 송신기 구조를 나타낸 것이고, 도 8은 VLC 통신 시스템의 ACO-OFDM Modulation 송신기 구조를 나타낸 것이다.
도 7 내지 도 8에서 Voltage Amplifier와 V-to-I (Voltage to Current) Transducer 그리고 E-to-O (Electrical to Optical) Device (e.g., LED)는 모두 Non-linear 특성을 가지는 장치이다. 따라서, Modulation을 거친 Analog 신호는 증폭되고 변환된다. 도 7 내지 도 8에서는 DC Biasing을 통한 Dimming Control을 예로 들었으며, Reverse Polarity를 기반으로 하는 경우에는 신호의 재구성을 통해 Dimming Control이 이루어 질 수 있다.
Color-Shift Keying ( CSK ) modulation
전술한 SCM 방식과 MCM 방식은 Color-Shift Keying (CSK) modulation을 기반으로 동작할 수 있다. CSK modulation은 광원의 색 특성을 기반으로 색의 조합에 의해 digital 신호를 표현할 수 있는 방법이다. 예를 들면, 도 9에 도시된 것과 같이 digital 신호가 생성되면, 상기 digital 신호는 color coding을 통해, (x, y) color space 신호로 변환된다. 변환된 (x, y) color space 신호는 색을 가진 광원을 통해 전송된다. 색 공간 (color space)은 도 10에 도시된 것과 같이 정의될 수 있고, 색도 분포표는 CIE 1931 color space를 따를 수 있다 (IEEE 802.15.7).
도 10을 참조하면, 외곽의 곡선 모양 경계선은 단색광에 해당하며, 각각의 단색광의 파장이 나노미터로 표시되어 있다. 도 10에 표시된 색깔은 색 표시 장치의 색 공간에 따라 다소 차이가 있을 수 있다. 종래에 알려진 어떠한 장치도 도 10에 표시된 모든 색을 정확하게 표현할 수는 없다. 즉, 도 11에 도시된 것과 같이 장비의 Class에 따라 표현할 수 있는 색의 영역이 다를 수 있다.
한편, 하나의 색은 단색광이 아닌 경우, 다수개의 색 광원 (e.g., LED)의 mixing되어 생성될 수 있다. 그 color point (x, y)는 RGB에 의해 transform된다. [수학식 1]을 참조하면, R, G, B 각 값은 X, Y, Z 값으로 변환되어, color space 상에서 (x, y) 값에 대응된다.
Figure PCTKR2019001662-appb-img-000001
상기 특성을 이용하여, binary digital 신호의 변조를 수행할 수 있다. 예를 들어, 특정 장치에서 표현할 수 있는 색의 영역이 도 12에 도시된 것과 같다고 하면, 별의 표시에 대응되는 binary bit stream을 [표 2]와 같이 정의할 수 있다. 즉, Color space 상에서의 Euclidean distance 특성을 기반으로 신호의 변조가 가능하다.
Figure PCTKR2019001662-appb-img-000002
전술한 방법을 MCM에 적용하면 도 13과 같이 표현할 수 있다. 즉, SCM에서와 같이 송신단은 i) color space 상의 (x, y) 좌표에 해당하는 R, G, B 각각의 값에 OFDM modulator를 통해 생성된 analog 신호를 각각의 광원인 LED를 통해 optical source로 변환하고, ii) 이를 optical channel을 통해 전송한다. 수신단에서는 ii) photo diode를 통해 신호를 수신하고, ii) OFDM demodulator를 통해 아날로그 신호를 디지털 신호로 변환하고, iii) R, G, B 각각의 신호를 color space (x,y)에 대응시킴으로써 (x, y) 값에 의해 신호를 복호한다.
한편, 전술한 방법들은 장치 별로 나타낼 수 있는 색의 영역이 다르며, 간섭 광의 색 특성에 영향을 크게 받는다는 문제가 있다. 따라서, 수신단에서의 효율적인 복호를 위해 i) 장치 특성과 ii) 간섭 광 특성을 반영할 수 있는 Modulation scheme이 필요하다.
Adaptive Constellation design
본 발명에서는 가시광 통신에서 광원의 i) 장치 특성과 ii) 간섭 광의 특성을 반영하는 Adaptive Color shift keying (CSK) Modulation 기법을 제안한다. 구체적으로, 도 14 내지 도 17을 통해 Interference Source에 따른 Adaptive Constellation Set 운용 방법을 설명하고, 도 18 내지 도 19를 통해 Hardware Capability에 따른 Adaptive Constellation Set 운용 방법을 설명하고, 도 20 내지 도 23을 통해 Adaptive Constellation Set 운용을 위한 송신단 및 수신단의 Signaling에 대해 설명하도록 한다.
Implementation 1. Interference Source에 따른 Adaptive Constellation Set 운용 방법
CSK Modulation 방식은 Color의 특성을 기반으로 Color space 상에서, Modulation Constellation이 Design 되어 있다. 따라서, 간섭 광원의 색 특성이 존재한다면, 각 Constellation에 해당하는 간섭의 정도가 다를 수 있다. 예를 들면, 숲 또는 산림 지역에서는 높은 빈도의 녹색 (G)의 반사광이 존재할 수 있고, 비포장 또는 사막 지역에서는 높은 빈도의 황색 (R and G)의 반사광이 존재할 수 있다. 본 발명의 일 측면에 따른 가시광 통신에서 신호를 변조하는 방법은 간섭 광의 특성을 이용하여 간섭광의 영향을 최소화 하는 방법을 제안한다.
Implementation 1.1. Color Interference Measurements
본 발명의 일 측면에 따르면, 간섭광의 측정에는 CSK Modulation (예를 들면, 카메라)이 이용될 수 있다. visual sensor를 통해 인지된 주변 환경으로부터 간섭 광원의 색이 인지될 수 있고, visual sensor로 인지 또는 측정된 색의 강도를 기반으로 Application Layer에서 color interference가 도출될 수 있다.
한편, 참조 신호 (Reference Signal)을 통해 간섭광이 특정될 수도 있다. Physical Layer에서 Photo Diode로 수신되는 SINR measurement를 기반으로 color 별 간섭이 측정될 수 있다. 보다 구체적으로, 도 14에 도시된 것과 같이 Pi, Pj, Pk가 R, G, B 색에 대응되는 신호라고 하면, 송신단은 각 색별로 Channel Estimation을 위한 Reference Signal Sequence를 이용할 수 있다. 수신단은 색 별 filter를 통해 photo diode의 수신 전력을 측정하고 SINR을 추정할 수 있다. 도 15를 참조하면, 색 별 SINR의 차이가 있음을 알 수 있다. 예를 들면, 녹색 광원에 대한 간섭 량이 큰 경우, 송신단과 수신단 사이에 동일 Optical Channel (예를 들면, physical channel)을 통과했음에도 불구하고, 색 별 SINR에 차이가 존재한다 (예를 들면, SINR B = SINR R > SINR G). 이 경우, 수신단은 녹색 광의 간섭이 존재함을 판단할 수 있다.
Implementation 1.2. Adaptive Constellation Design for Visible Light Communication
1.2.1. Proposed Adaptive Constellation Set Design for Interference Avoidance
본 발명의 일 측면에 따른 신호를 변조하는 방법은 간섭 광원의 색에 따른 Interference의 영향을 최소화 하기 위해, 간섭 광원의 색에 해당하는 영역을 회피하여 Modulation에 대한 Constellation Set을 정의한다. 도 16에 도시된 것과 같이 녹색 광에 대한 간섭 광원이 측정된 경우, Color space 에서 녹색 광원의 영역은 수신단에서 복호가 유효하지 않으므로, 송신단은 간섭 광원이 존재하는 color space 영역을 회피하여 정의되는 새로운 Constellation set을 사용할 수 있다.
Figure PCTKR2019001662-appb-img-000003
[표 3]을 참조하면, 기존에 최적화 된 CSK Modulation의 Set이 Set 0라고 할 때, i) 녹색 간섭광이 존재하는 경우 Set IG가 사용되고, ii) 청색 간섭광이 존재하는 경우 Set IB가 사용되고, iii) 적색 간섭광이 존재하는 경우 Set IR이 사용될 수 있다.
전술한 신호를 변조하는 방법은 간섭 광원의 영향을 회피하기 위해 Color Space내 Constellation이 존재할 수 있는 영역을 축소시키는 것으로 해석될 수 있다. 그에 따라, Constellation 간 Euclidean distance가 가까워지기 때문에 신호 복호에 대한 전체 성능은 감소할 수 있으나, 수신단의 SINR을 균일하게 유지하여 특정 간섭에 의한 영향을 최소화 할 수 있다.
1.2.2. Proposed Adaptive Color Power Control
본 발명의 일 측면에 따른 신호를 변조하는 방법은 간섭 광원의 색에 따른 Interference의 영향을 보상 하기 위해, 간섭 광원의 색에 해당하는 Color channel의 신호 세기를 증가시킴으로써 수신단의 SINR을 강화하는 것을 제안한다. 예를 들면, 도 17에 도시된 것과 같이 Pi, Pj, Pk가 R, G, B 색에 대응되는 신호의 Power를 제어하는 Factor라고 하면, 각 색별로 신호의 Power를 제어함으로써 간섭 광원의 영향을 보상할 수 있다.
예를 들면, 녹색의 간섭 광원이 존재하는 경우, G 색에 해당하는 Pj의 크기를 x dB 증폭하여 송신함으로써, 수신단의 SINR_G를 강화할 수 있다. 여기서 x 는 간섭의 정도에 의해 정해질 수 있다. 전술한 신호를 변조하는 방법은 간섭 광원에 의한 영향을 Adaptive Power Control을 통해 보상한다. 그에 따라, 전체 Power 사용에 대한 제약이 있을 수 있으나, 수신단의 SINR을 균일하게 유지하여 시스템 안정성을 높일 수 있다.
Implementation 2. Hardware Capability에 따른 Adaptive Constellation Set 운용 방법
CSK Modulation 방식은 Color의 특성을 기반으로 Color space 상에서 Modulation Constellation이 Design 되어 있다. 가시광 통신에 사용되는 광원 (예를 들면, LED, headlight, 가로등)은 비용 또는 사용 목적에 따라 표현할 수 있는 color space 영역의 차이가 있을 수 있다. 즉, 도 18에 도시된 것과 같이 장비의 Class에 따라 표현할 수 있는 색의 영역이 다를 수 있다.
Implementation 2.1. Proposed Adaptive Constellation Set Design for Hardware Capability
광원이 표현할 수 있는 color space 영역에 따라 modulation에 대한 최적의 constellation set을 정의할 수 있다. 예를 들면, 도 19에 도시된 것과 같이 Hardware Class에 따라 표현할 수 있는 Color space의 영역에 차이가 존재할 수 있다. Hardware Class 별로 표현할 수 있는 Color space 내에서 Euclidean Distance를 최대화 하는 Constellation Set을 (x, y) Color space 내에서 결정할 수 있다.
예를 들면, [표 4]와 같이 Hardware Class 0에 최적화 된 CSK Modulation의 Set이 Set Class 0라고 할 때, Hardware Class N은 Hardware Class N에 최적화 된 CSK Modulation Set이 Set Class N을 사용하여, 새롭게 정의된 Color space 내 Constellation Design을 사용할 수 있다. 즉, Hardware Capability에 따라, 정의된 Constellation Set을 사용함으로써, Constellation간 Euclidean Distance를 최대로 유지하면서, 수신단과 송신단 사이의 복호에 대한 Impairment를 최소화 할 수 있다.
Figure PCTKR2019001662-appb-img-000004
Implementation 2.2. Proposed Adaptive Constellation Set Design for Heterogeneous Device
한편, 전술한 Hardware capability에 따른 Adaptive Constellation Set Design은 이종 (Heterogeneous) 간 Device에도 적용될 수 있다. 즉, 이종간 Device에서는 Tx - Rx Pair 마다 다른 Constellation Set을 운용할 수 있다. 예를 들면, Device 1 은 Class 1이고 Device 2는 Class 2라고 할 때, Device 1에서 Device 2로의 송신은 Constellation Set Class 1로 Data를 변조하여 전송하고, Device 2에서 Device 1로의 송신은 Constellation Set Class 2로 Data를 변조하여 전송할 수 있다.
Implementation 3. Adaptive Constellation Set 운용을 위한 Signaling
앞서 Implementation 1 내지 Implementation 2를 통해 제안된 Adaptive Constellation set 운용 방법을 이용하는 송신단 및 수신단의 signal flow에 대하여 이하에서 설명하도록 한다.
Implementation 3.1. Proposed Adaptive Constellation Set Indication for Interference Avoidance (Tx Selection)
도 20을 참조하여 송신단 및 수신단의 signal flow에 대하여 설명하도록 한다.
i) Data를 수신하고자 하는 수신단 (Rx)은 전술한 Implementation 1.1.에 해당하는 Color Interference Measurement 또는 Color Interference Sensing을 수행한다. 즉, 수신단은 Visual Sensor Information을 기반으로 Color Interference를 측정하거나 Reference Signal을 기반으로 Color Interference를 측정할 수 있다. 한편, 수신단의 Color Interference Measurement는 주기적으로 수행되거나 간섭광이 감지될 때 수행될 수 있다.
ii) 수신단은 측정된 간섭 정보 (Measured Interference Information)에 기초하여 송신단 (Tx)에 Interference Information을 전송한다. 예를 들면, 수신단은 각 Color Channel 별 SINR 정보 (e.g., SINR_G, SINR_B, SINR_R) 또는 정규화된 Interference의 Index를 (e.g., 00=reserved, 01=G, 10=B, 11=R) 송신단에 전달할 수 있다. 이 때, Control Channel을 통한 전송 (e.g., LTE의 경우, RRC Connection을 위한 Control Signaling 또는 PUCCH, PDCCH 등) 또는 Data Channel을 통한 전송이 (e.g., LTE의 경우, PUSCH, PDSCH 등) 가능할 수 있다.
iii) 송신단 (Tx)은 전달받은 Interference Information에 기초하여 적응적으로 Constellation Set을 선택한다. 이 때, Constellation Set들은 Predefined된 (또는, 수신단 (Rx)과 사전에 약속된) 정보일 수 있다.
iv, v) 송신단 (Tx)은 선택된 Constellation Set index를 Control Channel을 통해 수신단 (Rx)에 전송한다. 송신단 (Tx)은 선택한 Constellation Set을 기반으로 전송하고자 하는 Data를 변조하여 수신단 (Rx)에 전송한다.
Implementation 3.2. Proposed Adaptive Constellation Set Indication for Interference Avoidance (Rx Selection)
도 21을 참조하여 송신단 및 수신단의 signal flow에 대하여 설명하도록 한다.
i) Data를 수신하고자 하는 수신단 (Rx)은 전술한 Implementation 1.1.에 해당하는 Color Interference Measurement 또는 Color Interference Sensing을 수행한다. 즉, 수신단은 Visual Sensor Information을 기반으로 Color Interference를 측정하거나 Reference Signal을 기반으로 Color Interference를 측정할 수 있다. 한편, 수신단의 Color Interference Measurement는 주기적으로 수행되거나 간섭광이 감지될 때 수행될 수 있다.
ii) 수신단 (Rx)은 측정한 Interference Information을 기반으로 적응적으로 Constellation Set을 선택한다. 이 때, Constellation Set들은 Predefined된 (또는, 송신단 (Tx)과 사전에 약속된) 정보일 수 있다.
iii, iv) 수신단 (Rx)은 선택된 Constellation Set index를 Control Channel을 통해 송신단 (Tx)에 전송한다. 송신단 (Tx)은 수신한 Constellation Set Index를 기반으로 전송하고자 하는 Data를 변조하여 수신단 (Rx)에 전송한다.
Implementation 3.3. Proposed Adaptive Power Control Indication
도 22를 참조하여 송신단 및 수신단의 signal flow에 대하여 설명하도록 한다.
i) Data를 수신하고자 하는 수신단 (Rx)은 전술한 Implementation 1.1.에 해당하는 Color Interference Measurement 또는 Color Interference Sensing을 수행한다. 즉, 수신단은 Visual Sensor Information을 기반으로 Color Interference를 측정하거나 Reference Signal을 기반으로 Color Interference를 측정할 수 있다.
ii) 수신단은 측정된 간섭 정보 (Measured Interference Information)에 기초하여 송신단 (Tx)에 Interference Information을 전송한다. 예를 들면, 수신단은 각 Color Channel 별 SINR 정보 (e.g., SINR_G, SINR_B, SINR_R) 또는 정규화된 Interference의 Index를 (e.g., 00=reserved, 01=G, 10=B, 11=R) 송신단에 전달할 수 있다. 이 때, Control Channel을 통한 전송 (e.g., LTE의 경우, RRC Connection을 위한 Control Signaling 또는 PUCCH, PDCCH 등) 또는 Data Channel을 통한 전송이 (e.g., LTE의 경우, PUSCH, PDSCH 등) 가능할 수 있다.
iii, iv) 송신단 (Tx)은 전달받은 Interference Information에 기초하여 적응적으로 Power Control을 선택한다. 이 때, Power Control의 정도는 사전에 정의된 방식으로 선택될 수 있다. 송신단 (Tx)은 Adaptive power control에 의해 선택된 signal power를 기반으로 전송하고자 하는 Data를 수신단 (Rx)에 전송한다.
Implementation 3.4. Proposed Adaptive Constellation Set Indication for Hardware Capability
도 23을 참조하여 송신단 및 수신단의 signal flow에 대하여 설명하도록 한다.
i) 송신단 (Tx)에서 송신단의 Hardware Capability를 정의한다. Hardware Capability는 사전에 송신단과 수신단 사이에 정의될 수 있다. 예를 들면, Class 0 내지 3까지 정규화된 Class가 구분될 수 있다.
ii) 각 Class에 적합한 CSK Constellation Set을 정의한다. 각 Class에 적합한 CSK Constellation Set은 사전에 정의되어, 송신단과 수신단 사이에 공유될 수 있다. 또는, 수신단과의 Connection 수행 시 (e.g., LTE의 경우, RRC Connection 단계 등) 공유 될 수 있다.
iii) 송신단은 사전에 정의된 Class 별 CSK Constellation Set 중에서, 최적의 Constellation Set 또는 자신의 Class Index에 따른 Constellation Set을 선택한다.
iv) 송신단은 선택된 Constellation Set Class index를 Control Channel을 통해 수신단에 전송한다. 또는, 수신단과의 Connection 수행 시 (e.g., LTE의 경우, RRC Connection 단계 등) 공유 될 수도 있다. 또는, 전송할 Data가 있을 때 Data 전송 전에 (e.g., LTE의 경우, DCI 등) 공유될 수도 있다.
v) 송신단은 선택한 Constellation Set을 기반으로 전송하고자 하는 Data를 변조하여 수신단에 전송한다.
전술한 Implementation 3의 모든 동작은 Unicast 또는 P2P 관점에서 설명되었으나, Broadcast/Multicast 환경에서도 동일하게 적용될 수 있다. 예를 들면, 다수 device의 class가 혼재해 있는 경우, 가장 작은(min) color space를 표현할 수 있는 Class 단위 (e.g., Class 0)를 기준으로 Constellation set class를 선택하여 Data 를 변조하여 전송하도록 설계될 수 있다. 또는, 다수 device의 간섭 환경이 혼재해 있는 경우, 모든 간섭을 고려하여, Constellation set 을 design하거나 선택하여 Data 를 변조하여 전송하도록 설계될 수도 있다.
본 발명의 일 측면에 따른 가시광 통신에서 신호를 전송하는 방법은 수신단으로부터 간섭 정보를 수신하는 단계, 성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하는 단계, 그리고 상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 단계를 포함할 수 있다. 한편, 상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택될 수 있다.
한편, 상기 간섭 정보는 상기 수신단에 의해 감지된 간섭 광원의 강도 (intensity)에 기초하여 생성될 수 있다. 한편, 가시광 통신에서 신호를 전송하는 방법은 채널 측정을 위한 참조 신호 시퀀스 (Reference signal sequence)를 상기 수신단에 전송하는 단계를 더 포함하고, 상기 간섭 정보는 상기 참조 신호 시퀀스를 이용하여 상기 수신단이 채널을 측정하는 것에 기초하여 생성될 수 있다. 한편, 상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역을 회피하는 성상도 세트 (constellation set)를 선택할 수 있다. 한편, 상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역에 대응하는 색 채널 (color channel)의 신호 세기를 증가시킬 수 있다. 한편, 상기 성상도 세트 인덱스는 상기 송신단의 하드웨어 능력 (hardware capability)에 더 기초하여 선택될 수 있다. 한편, 상기 신호는 CSK (Color-Shift Keying) 변조 방법을 통해 변조될 수 있다.
본 발명의 일 측면에 따른 가시광 통신에서 신호를 전송하는 송신단은 송수신부 및 상기 송수신부를 제어하여 수신단으로부터 간섭 정보를 수신하고, 성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하고, 그리고 상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 프로세서를 포함할 수 있다. 또한, 상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택될 수 있다.
한편, 상기 간섭 정보는 상기 수신단에 의해 감지된 간섭 광원의 강도 (intensity)에 기초하여 생성될 수 있다. 한편, 상기 프로세서는 상기 송수신부를 제어하여 채널 측정을 위한 참조 신호 시퀀스 (Reference signal sequence)를 상기 수신단에 전송할 수 있다. 또한, 상기 간섭 정보는 상기 참조 신호 시퀀스를 이용하여 상기 수신단이 채널을 측정하는 것에 기초하여 생성될 수 있다. 한편, 상기 프로세서는 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역을 회피하는 성상도 세트 (constellation set)를 선택할 수 있다. 한편, 상기 프로세서는 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역에 대응하는 색 채널 (color channel)의 신호 세기를 증가시킬 수 있다. 한편, 상기 성상도 세트 인덱스는 상기 송신단의 하드웨어 능력 (hardware capability)에 더 기초하여 선택될 수 있다. 한편, 상기 신호는 CSK (Color-Shift Keying) 변조 방법을 통해 변조될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
발명의 실시를 위한 다양한 형태가 상기 발명의 실시를 위한 최선의 형태에서 설명되었다.
상기 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A, 5G 시스템 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.

Claims (14)

  1. 가시광 통신에서 송신단이 신호를 전송하는 방법에 있어서,
    수신단으로부터 간섭 정보를 수신하는 단계;
    성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하는 단계; 및
    상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 단계를 포함하고,
    상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택되는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  2. 제 1 항에 있어서,
    상기 간섭 정보는 상기 수신단에 의해 감지된 간섭 광원의 강도 (intensity)에 기초하여 생성되는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  3. 제 1 항에 있어서,
    채널 측정을 위한 참조 신호 시퀀스 (Reference signal sequence)를 상기 수신단에 전송하는 단계를 더 포함하고,
    상기 간섭 정보는 상기 참조 신호 시퀀스를 이용하여 상기 수신단이 채널을 측정하는 것에 기초하여 생성되는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  4. 제 1 항에 있어서,
    상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역을 회피하는 성상도 세트 (constellation set)를 선택하는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  5. 제 1 항에 있어서,
    상기 송신단은 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역에 대응하는 색 채널 (color channel)의 신호 세기를 증가시키는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  6. 제 1 항에 있어서,
    상기 성상도 세트 인덱스는 상기 송신단의 하드웨어 능력 (hardware capability)에 더 기초하여 선택되는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  7. 제 1 항에 있어서,
    상기 신호는 CSK (Color-Shift Keying) 변조 방법을 통해 변조되는, 가시광 통신에서 송신단이 신호를 전송하는 방법.
  8. 가시광 통신에서 신호를 전송하는 송신단에 있어서,
    송수신부; 및
    상기 송수신부를 제어하여 수신단으로부터 간섭 정보를 수신하고, 성상도 세트 인덱스 (Constellation Set Index)를 상기 수신단에 전송하고, 그리고 상기 성상도 세트 인덱스에 기초하여 변조된 신호를 상기 수신단에 전송하는 프로세서를 포함하고,
    상기 성상도 세트 인덱스는 상기 수신된 간섭 정보에 기초하여 선택되는, 가시광 통신에서 신호를 전송하는 송신단.
  9. 제 8 항에 있어서,
    상기 간섭 정보는 상기 수신단에 의해 감지된 간섭 광원의 강도 (intensity)에 기초하여 생성되는, 가시광 통신에서 신호를 전송하는 송신단.
  10. 제 8 항에 있어서,
    상기 프로세서는 상기 송수신부를 제어하여 채널 측정을 위한 참조 신호 시퀀스 (Reference signal sequence)를 상기 수신단에 전송하고,
    상기 간섭 정보는 상기 참조 신호 시퀀스를 이용하여 상기 수신단이 채널을 측정하는 것에 기초하여 생성되는, 가시광 통신에서 신호를 전송하는 송신단.
  11. 제 8 항에 있어서,
    상기 프로세서는 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역을 회피하는 성상도 세트 (constellation set)를 선택하는, 가시광 통신에서 신호를 전송하는 송신단.
  12. 제 8 항에 있어서,
    상기 프로세서는 상기 수신된 간섭 정보가 지시하는 간섭 광원의 영역에 대응하는 색 채널 (color channel)의 신호 세기를 증가시키는, 가시광 통신에서 신호를 전송하는 송신단.
  13. 제 8 항에 있어서,
    상기 성상도 세트 인덱스는 상기 송신단의 하드웨어 능력 (hardware capability)에 더 기초하여 선택되는, 가시광 통신에서 신호를 전송하는 송신단.
  14. 제 8 항에 있어서,
    상기 신호는 CSK (Color-Shift Keying) 변조 방법을 통해 변조되는, 가시광 통신에서 신호를 전송하는 송신단.
PCT/KR2019/001662 2019-02-12 2019-02-12 가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말 WO2020166732A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/001662 WO2020166732A1 (ko) 2019-02-12 2019-02-12 가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말
US17/310,562 US11677467B2 (en) 2019-02-12 2019-02-12 Method for transmitting signals in visible light communications and terminal for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/001662 WO2020166732A1 (ko) 2019-02-12 2019-02-12 가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말

Publications (1)

Publication Number Publication Date
WO2020166732A1 true WO2020166732A1 (ko) 2020-08-20

Family

ID=72044109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001662 WO2020166732A1 (ko) 2019-02-12 2019-02-12 가시광 통신에서 신호를 전송하는 방법 및 이를 위한 단말

Country Status (2)

Country Link
US (1) US11677467B2 (ko)
WO (1) WO2020166732A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511238A (zh) * 2020-12-28 2021-03-16 南京信息工程大学 一种基于im/dd的自适应偏置分层光ofdm方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085809A (zh) * 2022-06-15 2022-09-20 东莞信大融合创新研究院 一种抗遮挡的自适应盲接收方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586938B1 (ko) * 2014-03-27 2016-01-29 국민대학교산학협력단 색 공간 기반 영상 처리를 이용한 색상에 무관한 비주얼-mimo 통신 시스템 및 그 동작 방법
KR101709350B1 (ko) * 2010-06-23 2017-02-23 삼성전자주식회사 가시광 통신 시스템에서 다중 발광 다이오드를 이용하여 최적의 전송률을 얻기 위한 장치 및 방법
WO2018115483A1 (en) * 2016-12-23 2018-06-28 Vestel Elektronik Sanayi Ve Ticaret A.S. Visible light communication using colour shift keying

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986878B2 (en) * 2008-02-05 2011-07-26 Opnext Subsystems, Inc. Adjustable bit rate optical transmission using programmable signal modulation
CN104144015B (zh) * 2013-05-09 2018-08-21 中兴通讯股份有限公司 实现可见光通信的方法、系统及发送装置和接收装置
US9853734B1 (en) * 2015-04-16 2017-12-26 Inphi Corporation Apparatus and methods for digital signal constellation transformation
US10727951B2 (en) * 2016-07-20 2020-07-28 Nokia Of America Corporation Low-complexity constellation shaping
EP4221116B1 (en) * 2018-10-12 2024-05-29 Ciena Corporation Probabilistic constellation shaping of multi-dimensional symbols for improved tolerance to nonlinear impairments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709350B1 (ko) * 2010-06-23 2017-02-23 삼성전자주식회사 가시광 통신 시스템에서 다중 발광 다이오드를 이용하여 최적의 전송률을 얻기 위한 장치 및 방법
KR101586938B1 (ko) * 2014-03-27 2016-01-29 국민대학교산학협력단 색 공간 기반 영상 처리를 이용한 색상에 무관한 비주얼-mimo 통신 시스템 및 그 동작 방법
WO2018115483A1 (en) * 2016-12-23 2018-06-28 Vestel Elektronik Sanayi Ve Ticaret A.S. Visible light communication using colour shift keying

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN-MING DONG: "Adaptive multi-color shift keying constellation design for visible light communications considering lighting requirement", OPTICS COMMUNICATIONS, vol. 430, 1 January 2019 (2019-01-01), pages 293 - 298, XP055731689, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0030401818307624?via%3Dihub> [retrieved on 20191021] *
MANH LE TRAN: "Layered Adaptive Collaborative Constellation for MIMO Visible Light Communication", IEEE ACCESS, vol. 6, 4 December 2018 (2018-12-04), XP011701509 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511238A (zh) * 2020-12-28 2021-03-16 南京信息工程大学 一种基于im/dd的自适应偏置分层光ofdm方法
CN112511238B (zh) * 2020-12-28 2022-02-22 南京信息工程大学 一种基于im/dd的自适应偏置分层光ofdm方法

Also Published As

Publication number Publication date
US20220103253A1 (en) 2022-03-31
US11677467B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2018062717A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 방법 및 이를 위한 장치
WO2010044635A2 (ko) 가시광 통신 시스템 및 방법
WO2017007184A1 (ko) 단말 간 신호를 전송하는 방법 및 이를 위한 장치
WO2018016700A1 (ko) 무선 통신 시스템에서 상향링크 다중 안테나 전송 방법 및 이를 위한 장치
WO2012115366A1 (en) Method of performing measurement at ue in wireless communication system and apparatus thereof
WO2015065048A1 (en) Method and apparatus of controlling periodic csi reporting
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2010013961A2 (en) Method and apparatus of monitoring pdcch in wireless communication system
WO2011155777A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 채널상태정보 송수신 방법 및 장치
WO2010011104A2 (en) Method and apparatus of receiving data in wireless communication system
WO2018135867A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 빔 제어 방법 및 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
EP2406897A2 (en) Method and apparatus for uplink transmissions and cqi reports with carrier aggregation
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2010095884A2 (en) Method for indicating precoding matrix indicator in uplink mimo system with based on sc-fdma
WO2018066924A1 (ko) 무선 통신 시스템에서 하향링크 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
KR20120068929A (ko) 가시광 통신(vlc)을 위한 레이트 제어를 이용한 디밍 방법 및 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2012157968A2 (ko) 연계된 다중전송단 방식을 지원하는 제어정보의 전송장치 및 방법
WO2017074083A1 (ko) 무선 통신 시스템에서 단말의 채널상태정보 보고 방법 및 이를 위한 장치
WO2016167434A1 (ko) Fdr 방식을 지원하는 무선통신 시스템에서 안정적으로 상기 fdr 방식을 구동하기 위한 방법 및 이를 위한 장치
WO2013115550A1 (ko) CoMP 시스템에서 상향링크 제어채널 및 상향링크 데이터 채널 전송 방법 및 장치
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915019

Country of ref document: EP

Kind code of ref document: A1