WO2020166714A1 - Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid - Google Patents

Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid Download PDF

Info

Publication number
WO2020166714A1
WO2020166714A1 PCT/JP2020/005875 JP2020005875W WO2020166714A1 WO 2020166714 A1 WO2020166714 A1 WO 2020166714A1 JP 2020005875 W JP2020005875 W JP 2020005875W WO 2020166714 A1 WO2020166714 A1 WO 2020166714A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
antibody
seq
antigen
Prior art date
Application number
PCT/JP2020/005875
Other languages
French (fr)
Japanese (ja)
Inventor
俊元 越智
正貴 安川
克斗 竹中
Original Assignee
国立大学法人愛媛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人愛媛大学 filed Critical 国立大学法人愛媛大学
Priority to JP2020572348A priority Critical patent/JPWO2020166714A1/en
Publication of WO2020166714A1 publication Critical patent/WO2020166714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • the present invention relates to complexed proteins, antibody complexes, pharmaceutical compositions, and nucleic acids.
  • one antibody molecule has an antigen binding domain that shows binding to different antigens.
  • the multispecific antibody By making the multispecific antibody an antibody that binds to a tumor antigen and CD3 ⁇ , T cell-mediated cytotoxicity can be induced. Therefore, the multispecific antibody is under clinical development as an anticancer agent. .. Further, according to the multispecific antibody, it is possible to arrange a plurality of proteins in the vicinity, and therefore, a therapeutic agent for hemophilia that targets a blood coagulation factor has been developed and marketed.
  • bispecific antibodies are composed of two types of heavy chains (H chains) and two types of light chains (L chains).
  • H chains heavy chains
  • L chains light chains
  • the number of combinations of two H chains and two L chains in the expressed antibody is ten, and in addition to the bispecific antibody, 9 kinds of unnecessary antibodies will be produced (Patent Document 1).
  • an object of the present invention is to provide a complexed protein capable of adding a desired antigen-binding property to an antibody or an antigen-binding fragment thereof.
  • the complexed protein of the present invention comprises a first antigen-binding domain and a second antigen-binding domain,
  • the first antigen-binding domain is capable of binding an immunoglobulin
  • the second antigen binding domain is capable of binding a desired antigen.
  • the antibody complex of the present invention comprises an antibody capable of binding to a target antigen or an antigen-binding fragment thereof, and a complexed protein,
  • the complexed protein is the complexed protein of the present invention,
  • the complexed protein binds to the antibody or the antigen-binding fragment thereof through the first antigen-binding domain to form a complex.
  • the pharmaceutical composition of the present invention contains the complexed protein of the present invention.
  • the nucleic acid of the present invention encodes the complexed protein of the present invention.
  • the complexed protein of the present invention it is possible to add a desired antigen-binding property to an antibody or an antigen-binding fragment thereof.
  • FIG. 1 is a schematic diagram showing an example of the present invention
  • (A) is a schematic diagram showing an example of a complexed protein of the present invention
  • (B) is an immunized protein with a complexed protein of the present invention.
  • FIG. 2 is a schematic diagram showing an example of formation of a complex with a globulin and the obtained antibody complex.
  • FIG. 2 is a histogram showing the binding between the antibody complex and cells in Example 1.
  • FIG. 3 is a graph showing the ratio of cytokine-producing cells in Example 1.
  • FIG. 4 is a graph showing the ratio of cytokine-producing cells in Example 1.
  • FIG. 5 is a histogram showing the binding between the antibody complex and cells in Example 2.
  • FIG. 6 is a graph showing the ratio of cytokine-producing cells in Example 2.
  • FIG. 7 is a graph showing the ratio of cytokine-producing cells in Example 2.
  • FIG. 8 is a graph showing the proportion of cells in which CFSE is attenuated in Example 3.
  • FIG. 9 is a graph showing the ratio of activated CD4 + T cells (CD4 + CD25 + ) and regulatory T cells (CD4 + CD25 + CD45RA + FoxP3 + ) in Example 3.
  • FIG. 10 is a graph showing the ratio of IFN- ⁇ producing cells and the ratio of increased CD107a expression in Example 4.
  • FIG. 11 is a graph showing the ratio of IFN- ⁇ producing cells and the ratio of increased CD107a expression in Example 4.
  • FIG. 12 is a graph showing activation of NK cells and T cells in Example 4.
  • FIG. 13 is a graph showing the activation of NK cells and T cells in Example 4.
  • FIG. 14 is a graph showing the activation of NK cells and T cells in Example 4.
  • FIG. 15 is a graph showing the cytotoxicity in Example 4.
  • FIG. 16 is a graph showing the relative proportion of producing cells in Example 5.
  • FIG. 17 is a diagram regarding the antitumor activity in the living body in Example 6.
  • the complexed protein of the present invention includes a first antigen-binding domain (hereinafter, also referred to as “first binding domain”), a second antigen-binding domain (hereinafter, “second binding domain”). Also referred to as “”), the first antigen-binding domain is capable of binding an immunoglobulin, and the second antigen-binding domain is capable of binding a desired antigen.
  • the complexed protein of the present invention is characterized in that the first antigen-binding domain can bind to an immunoglobulin and the second antigen-binding domain can bind to a desired antigen.
  • the configuration and conditions of are not particularly limited.
  • the complexed protein of the present invention can bind to an immunoglobulin, that is, an antibody or an antigen-binding fragment thereof by the first binding domain, as shown in FIG. 1(A). Moreover, the complexed protein of the present invention can bind to a desired antigen by the second antigen-binding domain. Therefore, as shown in FIG. 1(B), when the complexed protein of the present invention is brought into contact with an immunoglobulin, the complexed protein binds with the immunoglobulin to form a complex. As a result, the formed antibody complex contains, as an antigen-binding domain, the second binding domain of the complexed protein in addition to the antigen-binding domain of immunoglobulin.
  • the complexed protein can impart a new antigen-binding domain called the second binding domain to the immunoglobulin by complexing with the immunoglobulin.
  • the target to which the second binding domain binds can be a desired antigen. Therefore, according to the complexed protein of the present invention, binding properties for a desired antigen can be added to the antibody or its antigen-binding fragment. Therefore, according to the complexed protein of the present invention, an antibody complex having the same function as that of the multispecific antibody can be easily produced.
  • the target of the second binding domain, that is, the desired antigen is regulated, and by using in combination with the immunoglobulin, similar to the above-described multispecific antibody. It can exert its function.
  • the desired antigen to which the second binding domain binds is an antigen expressed on T cells such as CD3, and the binding target of the binding domain of the immunoglobulin is a tumor antigen, thereby forming the complex.
  • An antibody complex of a protein and the above immunoglobulin can be used as an anticancer agent that exhibits the same function as an anticancer agent containing a multispecific antibody, for example, because it can bind to cancer cells and recruit T cells and NK cells. it can.
  • the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, and the antibody complex can be, for example, the above-mentioned hemophilia therapeutic agent.
  • the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, so that, for example, the receptor or the like forming the complex is separated, Signals mediated by receptors can be suppressed.
  • the antibody complex can bind to a plurality of antigens, it can be used to remove a plurality of antigens, for example, to remove an antigen that causes a disease.
  • the “domain” means, for example, in a polypeptide, a three-dimensionally structured or functionally integrated region.
  • the polypeptide include peptides having a length of 10 amino acids or more.
  • “capable of binding” may mean that an antibody or the like, which is a binding substance, actually binds to a binding target that is bound to the binding substance, or a molecular docking method or the like is used.
  • the former may be used in the simulation, but the former is preferable.
  • the binding between the binding substance and the binding target can be detected, for example, by using an analysis method of protein-protein interaction, and for example, antibody-antigen reaction such as co-immunoprecipitation, pull-down assay, ELISA method, flow cytometry, etc. It can be detected using the method used.
  • the binding between the binding product and the binding target is detected by, for example, contacting a cell expressing the binding target with a labeled binding product, and then detecting a label in the cell. it can.
  • the immunoglobulin may be an antibody or an antigen-binding fragment thereof, but is preferably an antibody containing a constant region (Fc region) or an antigen-binding fragment thereof, since it has high stability in vivo. , And more preferably an antibody.
  • the immunoglobulin can also be referred to as a soluble immunoglobulin, for example.
  • the antibody or antigen-binding fragment thereof to which the complexed protein of the present invention is bound is also referred to as “antibody or the like”.
  • the binding target such as the antibody is not particularly limited and can be any antigen.
  • the antibody or the like can bind to, for example, one or more antigens.
  • the antibody and the like can be referred to as, for example, a multispecific antibody such as a bispecific antibody or an antigen-binding fragment thereof.
  • a multispecific antibody such as a bispecific antibody or an antigen-binding fragment thereof.
  • the type of the antibody include IgA, IgD, IgE, IgG, or IgM.
  • IgA include IgA1 and IgA2.
  • IgG include IgG1, IgG2, IgG3, and IgG4.
  • the antigen-binding fragment is, for example, a part of the antibody, more specifically, a polypeptide containing the binding region or the variable region of the antibody.
  • antigen-binding fragment examples include Fab, Fab′, F(ab′)2, Fv fragment, rIgG (half IgG) fragment, single chain antibody (scFv), and double variable domain antibody (DVD-IgTM).
  • diabody triabody, tetrabody, tanda, flexibody which is a combination of scFv and diabody, tandem scFv (for example, BiTE (Registered trademark), Micromet), DART (trademark) (MacroGenics), Fcab (trademark) or mAb 2 (trademark) (F-star), Fc engineering antibody (Xencor) or DuoBody (trademark) (Genmab). Company) etc.
  • a known immunoglobulin that is, a known antibody or an antigen-binding fragment thereof may be used, or a new antibody or an antigen-binding fragment thereof obtained by immunizing with an arbitrary antigen may be used. Good.
  • the origin of the antibody and the like is not particularly limited, and examples thereof include human and non-human animals.
  • the non-human animals include mammals such as mice, rats, dogs, monkeys, rabbits, sheep, horses and pigs; birds such as chicken and Emu; and the like.
  • the antibody and the like may be derived from a plurality of animals, for example. That is, the antibody or the like may be a chimeric antibody or an antigen-binding fragment thereof, or a humanized antibody or an antigen-binding fragment thereof.
  • the first binding domain only needs to be able to bind to the immunoglobulin (antibody or the like).
  • the binding position of the first binding domain in the antibody or the like that is, the position of the epitope of the first binding domain in the antibody or the like is not particularly limited and inhibits the binding between the antibody and the antigen such as the antibody. It can be set arbitrarily within the range that does not.
  • the first binding domain has, for example, an epitope in a region other than the binding region or the variable region of the antibody or the like, and preferably has a constant (Fc) region.
  • the Fc region may be a heavy chain Fc region or a light chain Fc region. Examples of the Fc region of the heavy chain include CH1 region, CH2 region, or CH3 region.
  • the Fc region of the light chain examples include CL region.
  • the first binding domain preferably has an epitope in a region other than the binding region of the Fc receptor in the immunoglobulin, since it can suppress a decrease in complement activity or cytotoxic activity mediated by an antibody, for example.
  • a specific example is the CH1 region or CH3 region.
  • the first binding domain has, for example, an epitope in a region other than positions 232 to 236 in the region represented by EU numbering of the Fc region, Is 237-447th, 237-340th, 341-447th, 250-447th, 260-447th, 270-447th, 280-447th, 290-447th, 300-447th, 310-447th Position, 320-447th, 330-447th, 340-447th, 350-447th, 360-447th, 370-447th, 380-447th, 390-447th, 400-447th, 410-447th Position, 420-447, or 430-447.
  • the EU numbering can be determined according to Reference Document 1 below. Reference 1: Edelman, GM et al., Proc. Natl. Acad. USA, 63, 78-85 (1969).
  • the Fc receptor binding region of the immunoglobulin is, for example, a region that binds via the Fc receptor when NK cells exhibit antibody-dependent cellular cytotoxicity (ADCC) activity.
  • the region of the immunoglobulin other than the Fc receptor binding region can be referred to as a region in the Fc region that does not inhibit NK cell ADCC activity.
  • the region of the immunoglobulin other than the Fc receptor binding region can be examined using, for example, whether or not the ADCC activity of NK cells is suppressed. As a specific example, it is shown when an antibody, a cell expressing an antigen to which the antibody binds (target cell), a complexed protein having a first binding domain of interest, and NK cells are co-cultured.
  • the NK cell cytotoxicity is significantly different from the NK cell cytotoxicity shown when the antibody, cells expressing the antigen to which the antibody binds (target cells), and NK cells are co-cultured. If not, it can be said that the first binding domain of interest in the complexed protein binds to a region of the immunoglobulin other than the Fc receptor binding region.
  • the binding region of the Fc receptor in the immunoglobulin is, for example, among the regions represented by EU numbering of the Fc region, positions 233 to 237 (ELLGG), 239 (S), 265 (D), 269 ( E), 294th (E), 296-298th (YNS), 328th (L) and 329th (P).
  • the number of target cells and the number of NK cells, and the culture conditions can be set, for example, according to the examples described below.
  • the first binding domain only needs to be able to bind to an immunoglobulin, and for example, the structure of a polypeptide capable of binding to an immunoglobulin can be adopted.
  • Specific examples of the first binding domain include a receptor that binds to the antibody and the like, and an antibody or an antigen-binding fragment thereof that binds to the antibody and the like.
  • “binding” refers to, for example, contacting an antibody or the like to be measured with an antigen, and then measuring the resulting complex by flow cytometry, as compared with a control antibody that does not bind to the antigen, This means that the fluorescence intensity is significantly increased.
  • the first binding domain When the first binding domain is a receptor that binds to an antibody or the like, the first binding domain may be, for example, an Fc receptor.
  • the type of the Fc receptor is not particularly limited and can be appropriately set depending on, for example, the type of the immunoglobulin.
  • the Fc receptor includes, for example, Fc ⁇ R (CD89), Fc ⁇ R such as Fc ⁇ / ⁇ R; Fc ⁇ R such as Fc ⁇ RI; Fc ⁇ RIa (CD64), Fc ⁇ RIIa (CD32), Fc ⁇ RIIb1 (CD32), Fc ⁇ RIIb2 (CD32), Fc ⁇ RIIIa (CD16), Fc ⁇ R of Fc ⁇ RIIIb; Fc ⁇ R such as Fc ⁇ / ⁇ R; FcRn (neonatal Fc receptor); and the like.
  • the immunoglobulin is IgG
  • the Fc receptor is, for example, Fc ⁇ R.
  • the first binding domain may be a polypeptide consisting of the entire amino acid sequence of the Fc receptor or a partial sequence thereof. In the latter case, the polypeptide consisting of said subsequence is capable of binding to said immunoglobulin, ie comprises the ligand binding domain of said Fc receptor.
  • the first binding domain When the first binding domain is an antibody or an antigen-binding fragment thereof that binds to an antibody or the like, the first binding domain can adopt a structure similar to that of the antibody or the antigen-binding fragment thereof described above. It has a chain variable region and a light chain variable region.
  • the heavy chain variable region and the light chain variable region of the first binding domain are also referred to as the first heavy chain variable region and the first light chain variable region, respectively.
  • the first heavy chain variable region and the first light chain variable region have the same structure as the heavy chain variable region and the light chain variable region in the antibody molecule.
  • the heavy chain variable region and the light chain variable region of an antibody molecule each have three complementarity determining regions (CDRs). CDR is also called a hypervariable domain.
  • CDR is a region in which the primary structure has particularly high variability, and it is usually separated at three positions on the primary structure.
  • three CDRs in the heavy chain variable region are determined from the amino terminal (N-terminal) side in the amino acid sequence of the heavy chain variable region, heavy chain CDR1 (CDRH1), heavy chain CDR2 (CDRH2), and heavy chain CDR3. (CDRH3), and the three CDRs in the light chain variable region are represented by the light chain CDR1 (CDRL1), the light chain CDR2 (CDRL2), and the light chain CDR3 (CDRL3 from the amino-terminal side in the amino acid sequence of the light chain variable region. ).
  • the first binding domain preferably comprises an scFv, ie an scFv capable of binding the immunoglobulin.
  • the scFv can be prepared, for example, by linking the heavy chain variable region and the light chain variable region with a linker peptide.
  • the amino acid sequence of the linker peptide is not particularly limited.
  • the first heavy chain variable region and the first light chain variable region are, for example, the antibody and the like. May be derived from the heavy chain variable region and the light chain variable region of the antibody that binds to, or the heavy chain variable region and the light chain variable region of the antibody capable of binding to the obtained antibody etc. It may be derived, or may be derived from the heavy chain variable region and the light chain variable region of an antibody capable of binding to an antibody etc. obtained by a screening method such as phage display.
  • the complementarity determining regions (CDRs) in the heavy chain variable region and the light chain variable region are important for the binding of the antibody to the antigen. Therefore, the CDRH1, CDRH2, and CDRH3 of the first heavy chain variable region may be polypeptides each consisting of the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the antibody or the like. However, it may be a polypeptide containing the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the above-mentioned antibody or the like.
  • CDRL1, CDRL2, and CDRL3 of the first light chain variable region may each be a polypeptide comprising the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of the antibody that binds to the antibody or the like.
  • it may be a polypeptide containing the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of an antibody that binds to the above-mentioned antibody or the like.
  • the region other than CDRH1, CDRH2, and CDRH3, that is, the framework region (FR) may include, for example, the FR of the heavy chain variable region in the antibody that binds to the antibody or the like. ..
  • the FRs are usually separated in four places on the primary structure.
  • four FRs in the heavy chain variable region are labeled from the N-terminal side in the amino acid sequence of the heavy chain variable region to heavy chain FR1 (FRH1), heavy chain FR2 (FRH2), heavy chain FR3 (FRH3) , And heavy chain FR4 (FRH4).
  • the CDRHs and the FRHs are arranged in the order of FRH1, CDRH1, FRH2, CDRH2, FRH3, CDRH3, and FRH4 from the N-terminal side in the amino acid sequence of the heavy chain variable region. ..
  • FRH1, FRH2, FRH3, and FRH4 in the first heavy chain variable region may be, for example, a polypeptide consisting of the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the antibody or the like, respectively, It may be a polypeptide containing the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the above-mentioned antibody or the like.
  • the “antibody that binds to an antibody or the like” in the description of each CDRH and the “antibody that binds to an antibody or the like” in the description of each FRH are preferably the same antibody and the like.
  • the region other than CDRL1, CDRL2, and CDRL3, that is, the framework region (FR) may include, for example, the FR of the light chain variable region in the antibody that binds to the antibody or the like. ..
  • the FRs are usually separated in four places on the primary structure.
  • four FRs in the light chain variable region are labeled from the N-terminal side in the amino acid sequence of the light chain variable region, ie, light chain FR1 (FRL1), light chain FR2 (FRL2), light chain FR3 (FRL3). , And light chain FR4 (FRL4).
  • the CDRLs and the FRLs are arranged, for example, in the order of FRL1, CDRL1, FRL2, CDRL2, FRL3, CDRL3, and FRL4 from the N-terminal side in the amino acid sequence of the light chain variable region.
  • FRL1, FRL2, FRL3, and FRL4 in the first light chain variable region may be, for example, polypeptides each comprising the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the antibody or the like, It may be a polypeptide containing the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the antibody or the like.
  • the “antibody that binds to an antibody or the like” in the description of each CDRL and the “antibody that binds to an antibody or the like” in the description of each FRL are preferably the same antibody and the like.
  • the “antibody that binds to an antibody or the like” in the description of each CDRH and the “antibody that binds to an antibody or the like” in the description of each CDRL are preferably the same antibody and the like.
  • the antibody that binds to the antibody or the like is not particularly limited and can be appropriately selected depending on the type of the antibody or the like.
  • the antibody that binds to the antibody or the like may be an antibody that binds to a known antibody or the like, or an antibody capable of binding to the antibody or the like obtained by immunizing with the antibody or the like.
  • the antibody is human IgG
  • examples of the antibody that binds to human IgG include the antibodies described in References 2 and 3 below.
  • the antibody when the antibody is human IgG, the antibody (clone name) that binds to human IgG is, for example, HP6017, HP6000, HP6018, HP6043, HP6052, HP6064, HP6065, HP6087, HP6092, HP6044, HP6046, HP6063, etc. Can be given. Hybridomas producing antibodies of the various clones can be obtained from depository institutions such as American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • Reference 2 Jefferis, R et.al., “Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study.”, Immunol Lett., 1985, volume 10, Issues 3-4 , pages 223-52
  • Reference 3 Reimer CB et.al, “Evaluation of thirty-one mouse monoclonal antibodies to human IgG epitopes.”, Hybridoma., 1984, volume 3, Issue 3, pages 263-75.
  • the first binding domain is, for example, when an antibody complex is formed with a human IgG antibody, human NK cells bind to the antibody complex via an Fc ⁇ receptor, Since the human NK cells can exhibit ADCC activity, it preferably contains the following first heavy chain variable region and first light chain variable region.
  • First heavy chain variable region Including CDRH1, CDRH2, and CDRH3, CDRH1 is a polypeptide containing the following amino acid sequence (H1-A), CDRH2 is a polypeptide containing the following amino acid sequence (H2-A), CDRH3 is a polypeptide containing the amino acid sequence of (H3-A) below.
  • CDRL1 is a polypeptide containing the following amino acid sequence (L1-A)
  • CDRL2 is a polypeptide containing the amino acid sequence of (L2-A) below
  • CDRL3 is a polypeptide containing the following (L3-A) amino acid sequence.
  • H1-A The following (H1-A1), (H1-A2) or (H1-A3) amino acid sequence (H1-A1) SEQ ID NO: 1 (GYTFTNYW) amino acid sequence (H1-A2) SEQ ID NO: 1 Amino acid sequence having 80% or more identity to the sequence (H1-A3)
  • amino acid sequence of SEQ ID NO: 1 one or several amino acids are deleted, substituted, inserted and/or added
  • H2-A Amino acid sequence of (H2-A1), (H2-A2) or (H2-A3) below (H2-A1) SEQ ID NO: 2 (IYPGGGIT) (H2-A2) Amino acid of SEQ ID NO: 2 Amino acid sequence having 80% or more identity to the sequence (H2-A3)
  • amino acid sequence of SEQ ID NO: 2 one or several amino acids are deleted, substituted, inserted and/or added
  • H3-A Amino acid sequence of (H3-A1), (H3-A2) or (H3
  • (L1-A) Amino acid sequence of the following (L1-A1), (L1-A2) or (L1-A3) (L1-A1) SEQ ID NO: 4 (QDIKSY) (L1-A2) Amino acid of SEQ ID NO: 4 Amino acid sequence having 80% or more identity to the sequence (L1-A3)
  • L2-A amino acid sequence of SEQ ID NO: 4
  • one or several amino acids are deleted, substituted, inserted and/or added
  • L2-A The following (L2-A1), (L2-A2) or (L2-A3) amino acid sequence (L2-A1) SEQ ID NO:5 (YST) amino acid sequence (L2-A2) SEQ ID NO:5 amino acid Amino acid sequence having 80% or more identity to the sequence (L2-A3) SEQ ID NO: 5 amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added
  • L3-A Amino acid sequence of the following (L3-A1), (L3
  • identity is, for example, the degree of identity when the sequences to be compared are properly aligned, and means the occurrence rate (%) of exact matches of amino acids between the sequences.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, respectively. Is.
  • the identity can be calculated with default parameters using analysis software such as BLAST and FASTA (the same applies hereinafter).
  • substitution and the like means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 4, 1 to 3, 1 or 2 It is one.
  • the substitution of the amino acid may be, for example, a conservative substitution (hereinafter the same).
  • the conservative substitution means substituting one or several amino acids with other amino acids and/or amino acid derivatives so that the function of the protein is not substantially changed.
  • the “substituted amino acid” and the “substituted amino acid” have similar properties and/or functions, for example.
  • the hydrophobic and hydrophilic indices (hydropathy), chemical properties such as polarity and charge, or physical properties such as secondary structure are similar.
  • Amino acids or amino acid derivatives having similar properties and/or functions are known in the art, for example.
  • non-polar amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • Polar amino acids neutral amino acids
  • neutral amino acids include glycine, serine, and threonine.
  • positively charged amino acids (basic amino) acids include arginine, histidine, lysine, etc.
  • negatively charged amino acids include aspartic acid, Examples thereof include glutamic acid.
  • the first heavy chain variable region preferably contains, for example, a polypeptide consisting of the following (H-A) amino acid sequence.
  • the second light chain variable region preferably contains, for example, a polypeptide having the following amino acid sequence (LA).
  • H-A1 amino acid sequence SEQ ID NO: 13 amino acid sequence SEQ ID NO 13: QVQLQQPGAELVKPGASVKMSCKAS GYTFTNYW INWVKQRPGQGLEWIGD IYPGGGIT NYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYC SRSYGKYFDY WGQGTTLIVSS (H-A2) Amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 13 (H-A3) In the amino acid sequence of SEQ ID NO: 13, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
  • LA the following (L-A1), (L -A2) or (L-A3) of the amino acid sequence (L-A1) SEQ ID NO: 14 amino acid sequence SEQ ID NO 14: DIKMTQSPSSMYASVGERVTITCKAS QDIKSY LTWYQKKPWKSPRTLIF YST RLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYC LQHDESPFT FGGGTKLEIK (L-A2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 14 (L-A3) In the amino acid sequence of SEQ ID NO: 14, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
  • the above-mentioned (H-A1) amino acid sequence is, for example, a sequence including the (H1-A1) of CDRH1, the (H2-A1) of CDRH2, and the (H3-A1) of CDRH3.
  • the amino acid sequence of (H-A2) includes, for example, the amino acid sequences of (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO: 13.
  • the amino acid sequence may have an identity of 70% or more.
  • the amino acid sequence of (H-A3) includes, for example, the amino acid sequences of CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO: 13. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
  • the above-mentioned (L-A1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences.
  • the amino acid sequence of (L-A2) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:14. It may be an amino acid sequence having 70% or more identity with the sequence.
  • the amino acid sequence of (L-A3) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid of SEQ ID NO:14. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • amino acid sequence of the heavy chain variable region and the amino acid sequence of the light chain variable region “1 or several” regarding substitution and the like are, for example, 1 to 30, 1 to 20, 1 to 15, respectively. It is 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, 1.
  • the first binding domain is, for example, when an antibody complex is formed with a human IgG antibody, human NK cells bind to the antibody complex via an Fc ⁇ receptor, Since the human NK cells can exhibit ADCC activity, it preferably contains a polypeptide comprising the amino acid sequence of the first scFv below.
  • the polypeptides having the amino acid sequences of (S-A2) and (S-A3) below can bind to human IgG, for example.
  • the above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the (H1-A1) of CDRH1, (H2-A1) of CDRH2, and (H3-A1) of CDRH3.
  • the amino acid sequence of (S-A2) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO:15.
  • the amino acid sequence may have an identity of 70% or more.
  • the amino acid sequence of (S-A3) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO:15. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
  • the (S-A1) amino acid sequence is, for example, a sequence including the (H-A1) amino acid sequence of the first heavy chain variable region.
  • the amino acid sequence of (S-A2) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region and has 70% or more identity to the amino acid sequence of SEQ ID NO: 15. May be an amino acid sequence having
  • the amino acid sequence of (S-A3) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and in the amino acid sequence of SEQ ID NO: 15, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
  • the above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences.
  • the amino acid sequence of (S-A2) includes, for example, (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:15. It may be an amino acid sequence having 70% or more identity with the sequence.
  • the amino acid sequence of (S-A3) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:15. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
  • the above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the (L-A1) amino acid sequence of the first light chain variable region.
  • the amino acid sequence of (S-A2) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 15. May be an amino acid sequence having
  • the amino acid sequence of (S-A3) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and in the amino acid sequence of SEQ ID NO: 15, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, It is 97% or more, 98% or more, and 99% or more.
  • amino acid sequence of (S-A3) “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, respectively. 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3 One, two or one.
  • the second binding domain can bind to a desired antigen as described above.
  • the desired antigen include antigens (proteins) expressed in immune cells, antigens (proteins) in body fluids, tumor antigens, virus antigens, bacterial antigens, parasite antigens, antigens associated with autoimmune diseases, sugar chain antigens, etc. Can be given.
  • the tumor antigen means, for example, a biomolecule having antigenicity such as an antigen newly expressed by a canceration of cells or an antigen whose expression level is increased.
  • the tumor antigen may be, for example, a tumor-specific antigen or a tumor-associated antigen.
  • the desired antigen is preferably different from the antigen to which the antibody or the like can bind, for example.
  • Examples of the antigens expressed on the immune cells include antigens expressed on T cells, NK cells, or NKT cells.
  • Examples of the antigen expressed on the T cell include a T cell activation protein or a T cell activation suppression protein.
  • Examples of the T cell activating protein include CD2, CD3, CD4, CD5, CD8 ⁇ , CD8 ⁇ , CD27, CD28, CD134 (OX40), CD137 (4-1BB), CD154, GITR, ICOS, etc., and are preferred.
  • Examples of the CD3 include CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , CD3 ⁇ , and CD3 ⁇ , and preferably CD3 ⁇ .
  • Examples of the T cell activation inhibitory protein include CTLA4, PD-1, LAG3, B7-H3, TIM3, and TIGIT.
  • Examples of the antigens expressed on the NK cells include NK cell activation proteins and NK cell activation suppression proteins.
  • NK cell activating protein include CD94/NKG2C, CD94/NKG2E, NKG2D/NKG2D and the like.
  • Examples of the NK cell activation suppressing protein include KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, KIR3DL2, KIR2DL4, KIR2DL5 and KIR3DL3.
  • the antigen expressed in the NKT cell is, for example, an NKT cell activation protein or an NKT cell activation inhibitory protein, and specific examples include the description of the T cell-expressed antigen and the NK cell-expressed antigen. Can be used.
  • Examples of the antigen in the body fluid include cytokines and blood coagulation factors.
  • examples of the cytokine include TNF (Tumor Necrosis Factor) such as TNF- ⁇ and TNF- ⁇ ; lymphotoxin; IL-1 to IL-38 (eg, IL-1 ⁇ , IL-1 ⁇ , IL-2, IL- 3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-11, IL-12, IL-17, IL-18, IL-23, IL-33, IL-36 and the like); chemokines; hematopoietic factors; cell growth factors; adipokines; growth factors such as VEGF; and the like.
  • TNF Tumor Necrosis Factor
  • IL-1 to IL-38 eg, IL-1 ⁇ , IL-1 ⁇ , IL-2, IL- 3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10,
  • the tumor antigens include, for example, 5T4, ⁇ 5 ⁇ 1-integrin, 707-AP, ⁇ -fetoprotein (AFP), lectin-reactive AFP, ART-4, AURKA (AURORA A), B7H4, BAGE, ⁇ -catenin, BCMA, Bcr-.
  • abl BTAA, MN/CA IX antigen, CA125, CA19-9, CA72-4, CAMEL, CAP-1, CASP-8, CD4, CD19, CD20, CD22, CD25, CD27, CD30, CD33, CD47, CD52, CD56, CD80, CD96, CD123, CDK4, carcinoembryonic antigen (CEA), CLL1, CT, Cyclin A1, Cyp-B, DAM, EGFR, ErbB3, ELF2M, EMMPRIN, EpCam, ETV6-AML1, G250, GAGE (GAGE).
  • CEA carcinoembryonic antigen
  • GD2 GangliosideG2
  • GnT-V Gp100
  • GPA33 GPC3, HAGE
  • ⁇ -human chorionic gonadotropin HCG
  • HER2/neu HLA-A*0201-R170I, HPV -E7, HSP70-2M, HST-2, iCE, insulin growth factor (IGF)-1, IGF-2, IGF-1R, IL-2R, IL-5, KIAA0205, K-Ras, LAGE, LDLR/FUT, MAGE (MAGE-3, MAGE-4, MAGE-5, MAGE-6 etc.), MART-1/melan-A, MART-2/Ski, MC1R, mesothelin (MSLN), myosin, MUC1, MUM-1, MUM -2, MUM-3, NA88-A, prostatic acid phosphatase (PAP), proteinase-3, PRAME (Melanoma antigen preferential
  • TEL/AML1 TGF ⁇
  • TIM3 TPI/m
  • TRP-1 TRP-2
  • TRP-2/INT2 VEGF
  • the viral antigens are, for example, adenovirus (adenovirus) adenoviridae such as (Adenoviridae); coronavirus (coronavirus) coronavirus family, such as (Coronaviridae); Ebola virus (Ebolavirus) Filoviridae such as (Filoviridae); Flaviviridae such as hepatitis C virus (HCV: hepatitis C virus), dengue virus (Dengue virus), Japanese encephalitis virus (Japanese encephalitis virus), west Nile virus (west Nile virus), yellow fever virus (yellow fever virus) ( Flaviviridae); B hepatitis virus (HVB: hepatitis B virus) hepadnaviridae such as (Hepadnaviridae); herpes simplex virus type 1 (HSV-1: herpes simplex virus -1), herpes simplex virus type 2 (HSV-2 : Herpes simplex virus-2), varicell
  • Parvovirus such as Parvovirus B19 Viruses ( Parvoviridae ); enterovirus (enterovirus), poliovirus (poliovirus), human rhinovirus AB (human rhinovirus AB), hepatitis A virus (hepatitis A virus), coxsackievirus (coxsackievirus), echovirus (echo) virus) etc.; Picornaviridae ); smallpox virus (variola virus); vaccinia virus (Vaccinia virus) and other poxviridae ( Poxviridae ); human immunodeficiency virus (HIV: human immunodeficiency virus)-1, 2, human T-lymphotropic virus (HTLV: human T-lymphocytropic virus ) -I, Retroviridae of II such as (Retroviridae); rabies virus (rabies virus), vesicular stomatitis virus (vesicular stomatitis virus), etc. rhabdo
  • the bacterial antigen can be, for example, tetanus (Clostridium tetani) Clostridium genus, etc. (Clostridium); E. (Escherichia coli) Esukerikia genus such as (Escherichia); Helicobacter pylori (Helicobacter pyloris) Helicobacter, such as (Helicobacter); Legionella ⁇ Legionella genus ( Legionella ) such as Pneumophilia ( Legionella pneumophila ); Listeria genus ( Listeria ) such as Listeria monocytogenes ( Mycobacterium tuberculosis ), Mycobacterium leprae , Mycobacterium avium (Mycobacterium avium), Mycobacterium intracellulare et (Mycobacterium intracellulare), Mycobacterium kansasii (Mycobacterium kansasii), Mycobacterium Gorudone (Mycobacterium gordonae) My
  • Staphylococcus pneumococcal (Streptococcus pneumoniae), Streptococcus, such as Streptococcus pyogenes (Streptococcus pyogenes) (Streptococcus); Antigens derived from bacteria such as
  • the parasite antigens include, for example, liver fluke ( Clonorchis sinensis ), Schistosoma japonicum ( Schistosoma japonicum ), human carnivore ( Ascaris lumbricoides ), human pinworm ( Enterobius vermicularis ), Cysticercus cellulosae , and broad-segment cleft head.
  • Antigens derived from parasites such as insects ( Diphyllobothrium latum ), Echinococcus ( Echinococcus ), Entamoeba histolytica ), and Plasmodium malaria ( Plasmodium ).
  • the second binding domain may be, for example, a receptor or a ligand that binds to the desired antigen, or an antibody or an antigen-binding fragment thereof that binds to the desired antigen.
  • the first binding domain includes, for example, a receptor that binds to the ligand or a ligand that binds to the receptor, It can be appropriately set depending on the type of ligand or receptor.
  • the ligand is a CTLA4 ligand
  • the receptor is, for example, CTLA4.
  • the ligand is PD-1 ligand
  • the receptor is PD-1.
  • the second binding domain When the second binding domain is an antibody or an antigen-binding fragment thereof that binds to a desired antigen, the second binding domain can adopt the same structure as the above-mentioned antibody or an antigen-binding fragment thereof. It has a chain variable region and a light chain variable region.
  • the heavy chain variable region and the light chain variable region of the second binding domain are also referred to as the second heavy chain variable region and the second light chain variable region, respectively.
  • the above description can be applied to the antigen-binding fragment.
  • the second binding domain preferably comprises an scFv, ie an scFv capable of binding the desired antigen.
  • the second heavy chain variable region and the second light chain variable region are, for example,
  • the heavy chain variable region and the light chain variable region of the antibody which may be derived from the heavy chain variable region and the light chain variable region of the antibody that bind to the antigen, may be immunized with the desired antigen and bind to the obtained desired antigen. It may be derived from the variable region, or may be derived from the heavy chain variable region and the light chain variable region of the antibody capable of binding to the antibody etc. obtained by a screening method such as phage display.
  • the complementarity determining regions (CDRs) in the heavy chain variable region and the light chain variable region are important for the binding of the antibody to the antigen. Therefore, the CDRH1, CDRH2, and CDRH3 of the second heavy chain variable region are each a polypeptide consisting of the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the desired antigen. Alternatively, it may be a polypeptide containing the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the desired antigen.
  • CDRL1, CDRL2, and CDRL3 of the second light chain variable region may each be a polypeptide comprising the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of the antibody that binds to the desired antigen. However, it may be a polypeptide containing the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of an antibody that binds to the desired antigen.
  • the region other than CDRH1, CDRH2, and CDRH3, that is, the framework region (FR) may include, for example, the FR of the heavy chain variable region in the antibody that binds to the desired antigen.
  • FRH1, FRH2, FRH3, and FRH4 in the second heavy chain variable region may be, for example, a polypeptide comprising the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the desired antigen, respectively.
  • it may be a polypeptide containing the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of an antibody that binds to the desired antigen.
  • the “antibody that binds to the desired antigen” in the description of each CDRH and the “antibody that binds to the desired antigen” in the description of each FRH are preferably the same antibody and the like.
  • a region other than CDRL1, CDRL2, and CDRL3, that is, the framework region (FR) may include, for example, the FR of the light chain variable region in the antibody that binds to the desired antigen.
  • FRL1, FRL2, FRL3, and FRL4 in the second light chain variable region may be, for example, a polypeptide comprising the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the desired antigen, respectively.
  • the polypeptide may include the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the desired antigen.
  • the “antibody that binds to the desired antigen” in the description of each CDRL and the “antibody that binds to the desired antigen” in the description of each FRL are preferably the same antibody and the like.
  • the “antibody that binds to the desired antigen” in the description of each CDRH and the “antibody that binds to the desired antigen” in the description of each CDRL are preferably the same antibody and the like.
  • the second heavy chain variable region and the second light chain variable region are, for example,
  • the heavy chain variable region and the light chain variable region of the antibody that bind to the antigen may be used, or the heavy chain variable region and the light chain variable region of the desired antibody capable of binding to the desired antigen obtained by immunizing with the desired antigen Areas may be used.
  • the desired antigen is human CD3 ⁇
  • examples of the antibody (clone name) that binds to human CD3 ⁇ include OKT3 antibody, UCHT1 antibody, L2K antibody, HIT3a antibody, 28F11 antibody, and 27H5 antibody.
  • the second binding domain binds to T cells via the second binding domain when the second binding domain forms an antibody complex with the antibody or the like, for example.
  • the T cells can exert cytotoxic activity, it is preferable to include the following second heavy chain variable region and second light chain variable region.
  • CDRH1 is a polypeptide containing the following amino acid sequence (H1-B)
  • CDRH2 is a polypeptide containing the following amino acid sequence (H2-B)
  • CDRH3 is a polypeptide containing the following amino acid sequence (H3-B).
  • CDRL1 is a polypeptide containing the following amino acid sequence (L1-B)
  • CDRL2 is a polypeptide containing the amino acid sequence of (L2-B) below
  • CDRL3 is a polypeptide containing the following amino acid sequence (L3-B).
  • H1-B The following (H1-B1), (H1-B2) or (H1-B3) amino acid sequence (H1-B1) SEQ ID NO: 7 (GYTFTRYT) amino acid sequence (H1-B2) SEQ ID NO: 7 amino acid Amino acid sequence having 80% or more identity to the sequence (H1-B3)
  • H2-B Amino acid sequence of (H2-B1), (H2-B2) or (H2-B3) below (H2-B1) SEQ ID NO: 8 (INPSRGYT) amino acid sequence (H2-B2) SEQ ID NO: 8 Amino acid sequence having 80% or more identity to the sequence (H2-B3)
  • Amino acid sequence of SEQ ID NO: 8 with one or several amino acids deleted, substituted, inserted and/or added H3-B)
  • H3-B3 amino acid sequence having 80% or more identity to the sequence (H2-B3)
  • (L1-B) Amino acid sequence of the following (L1-B1), (L1-B2) or (L1-B3) (L1-B1) SEQ ID NO: 10 (SSVSY) (L1-B2) Amino acid of SEQ ID NO: 10 Amino acid sequence having 80% or more identity to the sequence (L1-B3), wherein the amino acid sequence of SEQ ID NO: 10 has one or several amino acids deleted, substituted, inserted and/or added (L2-B) The following (L2-B1), (L2-B2) or (L2-B3) amino acid sequence (L2-B1) SEQ ID NO: 11 (DTS) amino acid sequence (L2-B2) SEQ ID NO: 11 Amino acid sequence (L2-B3) having an identity of 80% or more with respect to the sequence, wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 11.
  • (L3-B) Amino acid sequence of (L3-B1), (L3-B2) or (L3-B3) below (L3-B1) SEQ ID NO: 12 (QQWSSNPFT) amino acid sequence (L3-B2) SEQ ID NO: 12 Amino acid sequence having 80% or more identity to the sequence (L3-B3) SEQ ID NO: 12 amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added .
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98%, respectively. As a result, it is 99% or more.
  • substitution and the like means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 4, 1 to 3, 1 or 2 It is one.
  • the second heavy chain variable region preferably contains, for example, a polypeptide consisting of the following (H-B) amino acid sequence.
  • the second light chain variable region preferably contains, for example, a polypeptide having the amino acid sequence of (LB) below.
  • H-B1 amino acid sequence SEQ ID NO: 16 amino acid sequence SEQ ID NO 16: QVQLQQSGAELARPGASVKMSCKAS GYTFTRYT MHWVKQRPGQGLEWIGY INPSRGYT NYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYC ARYYDDHYCLDY WGQGTTLTVSS (H-B2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 16 (H-B3) In the amino acid sequence of SEQ ID NO: 16, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
  • the above-mentioned (H-B1) amino acid sequence is, for example, a sequence including the (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3.
  • the amino acid sequence of (H-B2) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:16.
  • the amino acid sequence may have an identity of 70% or more.
  • the amino acid sequence of (H-B3) includes, for example, the amino acid sequences of (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO: 16. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
  • the above-mentioned (L-B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences.
  • the amino acid sequence of (L-B2) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:17. It may be an amino acid sequence having 70% or more identity with the sequence.
  • the amino acid sequence of (L-B3) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:17. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, respectively. 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
  • substitution and the like are, for example, 1 to 30, 1 to 20, 1 to 15, respectively. It is 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, 1.
  • the second binding domain binds to T cells via the second binding domain in the antibody complex when forming an antibody complex with the antibody or the like.
  • the T cells can exhibit cytotoxic activity, it is preferable to include a polypeptide having the amino acid sequence of the second scFv below.
  • a polypeptide comprising the amino acid sequences of (S-B2) and (S-B3) below can bind to CD3 ⁇ , for example.
  • the above-mentioned (S-B1) amino acid sequence is, for example, a sequence including the (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3.
  • the amino acid sequence of (S-B2) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:18.
  • the amino acid sequence may have an identity of 70% or more.
  • the amino acid sequence of (S-B3) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:18. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
  • the (S-B1) amino acid sequence is, for example, a sequence containing the (H-B1) amino acid sequence of the second heavy chain variable region.
  • the amino acid sequence of (S-B2) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 18. May be an amino acid sequence having
  • the amino acid sequence of (S-B3) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and in the amino acid sequence of SEQ ID NO: 18, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
  • the above-mentioned (S-B1) amino acid sequence is, for example, a sequence containing the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences.
  • the amino acid sequence of (S-B2) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO: 18 It may be an amino acid sequence having 70% or more identity with the sequence.
  • the amino acid sequence of (S-B3) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:18. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
  • the above-mentioned (S-B1) amino acid sequence is, for example, a sequence containing the (L-B1) amino acid sequence of the second light chain variable region.
  • the amino acid sequence of (S-B2) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 18.
  • the amino acid sequence of (S-B3) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has one or several amino acids in the amino acid sequence of SEQ ID NO: 18. It may be a deleted, substituted, inserted and/or added amino acid sequence.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, respectively. It is 97% or more, 98% or more, and 99% or more.
  • amino acid sequence of (S-B3) “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, respectively. 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3 One, two or one.
  • the first binding domain and the second binding domain may be directly or indirectly linked, or when the first binding domain and the second binding domain coexist, both are It may be formed so as to be associated (bonded).
  • the first binding domain and the second binding domain are linked by a linker peptide (domain linker).
  • the domain linker is composed of, for example, 1 to 40, 1 to 18, 1 to 15, 1 to 7, 1 to 3, 1 or 2 amino acids.
  • the domain linker is composed of, for example, amino acids such as glycine and serine, and a specific example thereof is (G m S) n .
  • the m is a positive integer, for example, an integer of 1 to 6.
  • the n is a positive integer, for example, an integer of 1 to 6.
  • the m and n may be the same or different.
  • a specific example of the domain linker is a polypeptide having the amino acid sequence of SEQ ID NO: 19 below.
  • charges of amino acid side chains can be used.
  • the association can be induced, for example, by adding a domain of an amino acid having a positive charge to one binding domain and adding a domain of an amino acid having a negative charge to the other binding domain.
  • a combination of a tag sequence and a polypeptide that recognizes the tag sequence can be used.
  • Domain linker SEQ ID NO: 19: SGSGSG
  • the complexed protein of the present invention can be used in combination with an antibody capable of binding to a tumor antigen to recruit NK cells and T cells and induce cytotoxic activity against tumors, the following (B) A polypeptide consisting of an amino acid sequence is preferred.
  • the polypeptides having the amino acid sequences of (B2) and (B3) below can bind to human IgG and/or CD3 ⁇ , for example.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1) amino acid sequences.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequences of CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1), and And may be an amino acid sequence having 70% or more identity.
  • the amino acid sequence of (B3) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence including the (H-A1) amino acid sequence of the first heavy chain variable region.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence.
  • the amino acid sequence of (B3) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences.
  • the amino acid sequence of (B2) above includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and On the other hand, it may be an amino acid sequence having 70% or more identity.
  • the amino acid sequence of (B3) includes, for example, (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
  • the aforementioned (B1) amino acid sequence is, for example, a sequence containing the (L-A1) amino acid sequence of the first light chain variable region.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and has 70% or more identity with the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence.
  • the amino acid sequence of (B3) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
  • the amino acid sequence of (B1) is a sequence containing the amino acid sequences of (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3, for example.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequences of CDRH1 (H1-B1), CDRH2 (H2-B1), and CDRH3 (H3-B1), and And may be an amino acid sequence having 70% or more identity.
  • the amino acid sequence of (B3) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence including the (H-B1) amino acid sequence of the second heavy chain variable region.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence.
  • the amino acid sequence of (B3) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20. On the other hand, it may be an amino acid sequence having 70% or more identity.
  • the amino acid sequence of (B3) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
  • the above-mentioned (B1) amino acid sequence is, for example, a sequence containing the (L-B1) amino acid sequence of the second light chain variable region.
  • the amino acid sequence of (B2) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has 70% or more identity with the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence.
  • the amino acid sequence of (B3) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97%. As described above, it is 98% or more and 99% or more.
  • amino acid sequence of (B3) “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, One or two and one.
  • the complexed protein of the present invention has one or more of the second binding domains.
  • each second binding domain may bind the same antigen or different antigens.
  • each second binding domain may bind to the same epitope of the same antigen, or may bind to different epitopes of the same antigen.
  • the complexed protein of the present invention preferably has a cross-linking portion capable of cross-linking with the immunoglobulin.
  • the complexed protein of the present invention can stabilize the obtained antibody complex by forming a complex with the immunoglobulin and then cross-linking with the immunoglobulin. Therefore, the complexed protein having the cross-linked portion can prevent dissociation of the immunoglobulin and the complexed protein when the antibody complex is administered to a living body, and is effective as a pharmaceutical composition.
  • the cross-linking portion is preferably a photo-reactive cross-linking portion that undergoes a cross-linking reaction upon irradiation with light.
  • the complexed protein of the present invention has a photoreactive cross-linking moiety
  • some or all of the amino acids constituting the complexed protein for example, as the photo-reactive cross-linking moiety, a photoactive reactive group
  • a photoactive reactive group it is preferable that a part or all of the amino acids constituting the first binding domain have a photoactive reactive group as the photoreactive crosslinker.
  • the amino acid having a photoactive type reactive group include L-photo-leucine, L-photo-isoleucine, L-photo-methionine and the like.
  • the complexed protein having an amino acid having a photoactive reactive group is, for example, an amino acid having a photoactive reactive group in addition to or in place of the corresponding amino acid in the expression system of the complexed protein.
  • Reference Document 4 For the amino acid having a photoactive reactive group and the crosslinking method using the same, refer to Reference Document 4 below.
  • Reference 4 Monika Suchanek et.al., “Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells.”, Nature Method, 2005, DOI:10.1038/NMETH752
  • the first binding domain of the complexed protein binds to an antibody or the like, but when the antibody or the like has an additional sequence, the first binding domain may be capable of binding to the additional sequence.
  • the additional sequence include tags such as peptide tags and protein tags. Examples of the tag include FLAG (registered trademark) tag, HA tag, His tag, Myc tag, V5 tag, and truncated NGFR (nerve growth factor receptor).
  • the additional sequence is added to at least one of the N-terminus and the C-terminus of the complexed protein of the present invention, for example.
  • the additional sequence is a His tag
  • the His tag is added to the C-terminus of the complexed protein of the present invention, for example.
  • the complexed protein of the present invention and the additional sequence may be linked by the above-mentioned linker peptide.
  • the method for producing the complexed protein of the present invention is not particularly limited, and for example, it can be produced by genetic engineering based on the above-mentioned amino acid sequence information. Specifically, for example, it can be performed as follows.
  • the present invention is not limited to this example.
  • an expression vector containing a nucleic acid encoding the complexed protein of the present invention is introduced into a host to obtain a transformant. Then, the transformant is cultured to obtain a transformant expressing the complexed protein. Then, the transformant is cultured, the fraction containing the complexed protein is collected, and the complexed protein is isolated or purified from the obtained collected fraction.
  • the expression vector examples include a vector containing a nucleic acid encoding the complexed protein.
  • the expression vector can be prepared, for example, by ligating a nucleic acid encoding the complexed protein to a ligation vector.
  • the type of the ligation vector is not particularly limited, and examples thereof include retrovirus vectors such as oncoretrovirus vector, lentivirus vector, pseudotype vector; adenovirus vector, adeno-associated virus (AAV) vector, simian virus vector, vaccinia.
  • retrovirus vectors such as oncoretrovirus vector, lentivirus vector, pseudotype vector
  • adenovirus vector, adeno-associated virus (AAV) vector examples thereof include viral vectors such as viral vectors, Sendai viral vectors, Epstein-Barr virus (EBV) vectors and HSV vectors.
  • ESV Epstein-Barr virus
  • the ligation vector examples include pUC, pCMV, pMX, and pELP.
  • the ligation vector can be appropriately set, for example, according to the host into which the expression vector is introduced.
  • the host is not particularly limited, and examples thereof include cultured cells of mammalian origin such as HEK cells, CHO cells, COS cells and NSO cells.
  • the expression vector preferably has a regulatory sequence that regulates the expression of the nucleic acid encoding the complexed protein, for example.
  • the regulatory sequence include a promoter, a terminator, an enhancer, a polyadenylation signal sequence, an origin of replication sequence (ori), and the like.
  • the arrangement of the regulatory sequences in the expression vector is not particularly limited.
  • the regulatory sequence may be arranged, for example, so that the expression of the complexed protein can be functionally regulated, and can be arranged based on a known method.
  • the regulatory sequence for example, a sequence that the ligation vector has in advance may be used, the ligation vector may further have the regulatory sequence inserted, or the ligation vector may have other regulatory sequences. May be replaced with the regulatory sequence of.
  • the expression vector may further have a selection marker coding sequence, for example.
  • selection marker include drug resistance markers, fluorescent protein markers, enzyme markers, cell surface receptor markers, and the like.
  • the method for culturing the transformant is not particularly limited and can be appropriately determined according to the type of the host.
  • the fraction containing the complexed protein can be collected, for example, as a liquid fraction by crushing the cultured transformant.
  • the isolation or purification of the complexed protein is not particularly limited, and a known method can be adopted.
  • the complexed protein of the present invention can be used for producing the antibody complex of the present invention described below.
  • the complexed protein of the present invention can be used as a pharmaceutical composition by forming a complex with the antibody or the like.
  • the antibody complex of the present invention includes an antibody capable of binding to a target antigen or an antigen-binding fragment thereof and a complexing protein, and the complexing protein is the complexing protein of the present invention. And the complexed protein binds to the antibody or the antigen-binding fragment thereof through the first antigen-binding domain to form a complex.
  • the antibody complex of the present invention contains the complexed protein of the present invention, and the complexed protein of the present invention forms a complex with an antibody capable of binding to a target antigen or an antigen-binding fragment thereof. Is a feature, and other configurations and conditions are not particularly limited.
  • the antibody complex of the present invention contains a second antigen binding domain of the complexed protein of the present invention in addition to the antigen binding domain of the antibody or the antigen binding fragment thereof. Therefore, the antibody complex of the present invention can exhibit the same function as, for example, the above-described multispecific antibody.
  • the antibody of the present invention is obtained by using a desired antigen to which the second binding domain binds as an antigen expressed on T cells such as CD3, and a binding target of the binding domain such as the antibody as a tumor antigen.
  • the complex can be used as an anticancer agent that exhibits the same function as an anticancer agent containing a multispecific antibody, because it can bind to cancer cells and recruit T cells and NK cells, for example.
  • the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, and the antibody complex is, for example, hemophilia described above. It can be used as a therapeutic agent for hemophilia that exhibits the same function as a therapeutic agent.
  • the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, so that, for example, the receptor forming the complex is separated. However, the signal mediated by the receptor can be suppressed.
  • the antibody complex of the present invention can bind to a plurality of antigens, it can be used to remove a plurality of antigens, for example, to remove an antigen that causes a disease.
  • the description of the complexed protein of the present invention can be applied to the antibody complex of the present invention.
  • the target antigen is not particularly limited and can be any antigen.
  • the target antigen is, for example, an antigen associated with a disease, and the description of the desired antigen can be cited as a specific example.
  • the antigen associated with the disease is, for example, an antigen related to the onset of the disease or the progression of symptoms, an antigen effective in the treatment of the disease, an antigen whose expression is increased or decreased in the disease, or a cell causing the disease. Examples include antigens that are expressed.
  • the disease is not particularly limited, and examples thereof include tumors such as malignant lymphoma, leukemia, myeloma, lung cancer, breast cancer, kidney cancer, colorectal cancer, and ovarian cancer; immune diseases such as allergic disease or autoimmune disease; blood.
  • the target antigens include, for example, Angiopoietin, CD19, CD20, CD30, CD38, CD123, CEA, cMET, EpCam, GPA33, GPC3, Her1, Her2, Her2, Examples include IGF1R, PSMA, VEGF, EGFR, BCMA and the like.
  • the target antigen examples include blood coagulation factors such as factor IXa, factor X, vWF, IIb/IIIa and the like.
  • the target antigens are IL-1 ⁇ , IL-1 ⁇ , IL-4, IL-5, IL-6, IL-13, IL-17, Examples include IL-23 and TNF- ⁇ .
  • the target antigen is preferably different from the desired antigen.
  • the antibody or the like may be, for example, an antibody that binds to a known target antigen, or an antibody that can bind to the antibody or the like obtained by immunizing with the target antigen.
  • examples of the antibody and the like include FMC63 antibody and SJ25C1.
  • examples of the antibody and the like include rituximab (Rituximab) and obinutuzumab (Obinutuzumab).
  • examples of the antibody and the like include Daratumumab.
  • the antibody or the like is preferably an antibody containing an Fc region or an antigen-binding fragment thereof, more preferably an antibody.
  • the first binding domain is capable of binding immunoglobulin. Therefore, in the antibody complex of the present invention, the complexed protein is bound to the antibody or the antigen-binding fragment thereof by the first binding domain thereof. That is, in the antibody complex of the present invention, the antibody and the like and the complexed protein form a complex.
  • the present invention is not limited to this, and the complexed protein, the antibody and the like may be unbound.
  • the antibody complex of the present invention can be referred to as, for example, a composition for forming an antibody complex or a kit for forming an antibody complex.
  • the antibody and the like and the complexed protein are preferably crosslinked.
  • cross-linking the antibody complex of the present invention it is possible to prevent the antibody complex from separating into the antibody or the like and the complexed protein when administered to a living body.
  • the crosslink can be formed using, for example, the crosslink part in the description of the complexed protein, and the description of the crosslink part can be incorporated.
  • the method for producing an antibody complex of the present invention includes, for example, a contact step of bringing an antibody capable of binding to the target antigen or an antigen-binding fragment thereof into contact with the complexed protein.
  • a contact step of bringing an antibody capable of binding to the target antigen or an antigen-binding fragment thereof into contact with the complexed protein.
  • an antibody or an antigen-binding fragment thereof capable of binding to the target antigen is contacted with the complexing protein, whereby the first binding domain in the complexing protein binds to the antibody or the like.
  • the temperature in the contacting step is, for example, 0 to 40°C and 4 to 37°C.
  • the contact time in the contact step is, for example, 10 to 180 minutes or 30 to 60 minutes.
  • the moles of possible antibody or antigen binding fragment thereof binds to the target antigen in the contacting step (M Ab), the ratio between the number of moles of complexing proteins (M CO) (M Ab: M CO) is It is not particularly limited and is, for example, 1:0.01 to 100, 0.1 to 10.
  • the ratio ( MAb : MCO ) is preferably, for example, after the contacting step, the free complexed protein can be reduced, and the side reaction when the antibody complex is administered to a living body can be suppressed. Is 1:1 or less, more preferably 1:0.01 to 1, 1:0.1 to 1, 1:0.1 to 0.9, 1:0.1 to 0.8, and 1. : 0.1 to 0.7, 1: 0.1 to 0.6, 1: 0.1 to 0.5.
  • the method for producing an antibody complex of the present invention may include a cross-linking step of cross-linking the antibody or the like and the complexed protein when the complexed protein has a cross-linked portion.
  • a cross-linking step for example, refer to Reference 4 above.
  • the method for producing an antibody complex of the present invention may include, for example, a purification step of purifying the antibody complex after the contacting step or after the crosslinking step.
  • the purification method in the purification step is not particularly limited.
  • the antibody complex has a larger molecular weight than the antibody or the like and the complexed protein. Therefore, the purification step can be carried out by molecular exclusion chromatography such as gel filtration chromatography or molecular sieve chromatography.
  • the antibody complex may be purified by affinity chromatography using the antibody or the antigen of the complexed protein.
  • the antibody complex of the present invention can be used as a pharmaceutical composition.
  • the pharmaceutical composition of the present invention contains the complexed protein of the present invention as described above.
  • the pharmaceutical composition of the present invention is characterized by containing the complexed protein of the present invention, and the other constitution and conditions are not particularly limited.
  • the description of the complexed protein and antibody complex of the present invention can be applied to the pharmaceutical composition of the present invention.
  • the pharmaceutical composition of the present invention can be used, for example, in the therapeutic method of the present invention described below.
  • the pharmaceutical composition of the present invention may include, for example, an antibody capable of binding to a target antigen or an antigen-binding fragment thereof.
  • the complexed protein and the antibody or the like may or may not form a complex.
  • the complexed protein is bound to the antibody or antigen-binding fragment thereof by its first binding domain.
  • the complexed protein and the antibody or the like are preferably in an unmixed state, for example.
  • the pharmaceutical composition of the present invention can also be referred to as a pharmaceutical kit, for example.
  • the pharmaceutical composition of the present invention may include other components such as a pharmaceutically acceptable carrier and diluent.
  • the other components are not particularly limited, and examples thereof include a preservative, an antioxidant, a chelating agent, a stabilizer, an emulsifier, a dispersant, a suspending agent and a thickener.
  • examples of the preservative include thimerosal, 2-phenoxyethanol and the like.
  • examples of the chelating agent include ethylenediaminetetraacetic acid and glycoletherdiaminetetraacetic acid.
  • the administration conditions of the pharmaceutical composition of the present invention are not particularly limited, and the administration form, administration method, administration timing, dose, etc. can be appropriately set depending on, for example, the type of target disease, the age of the patient, and the like.
  • the method of using the pharmaceutical composition of the present invention is not particularly limited, and for example, the pharmaceutical composition of the present invention may be administered to the administration subject.
  • Examples of the administration target include cells, tissues or organs.
  • Examples of the administration target include humans and non-human animals other than humans.
  • Examples of the non-human animal include mammals such as mouse, rat, dog, monkey, rabbit, sheep, horse and pig.
  • the administration may be, for example, in vivo or in vitro .
  • the administration form (dosage form) of the pharmaceutical composition of the present invention is not particularly limited, and examples thereof include injections (implanted injections, sustained injections, infusions (forms for drip infusion), freeze-dried injections, powder injections). , Filled syringes, cartridges, etc.) and liquid preparations such as injection preparations.
  • the administration method is not particularly limited and can be appropriately determined depending on the administration subject, for example.
  • Examples of the administration method include parenteral administration and oral administration.
  • Examples of the parenteral administration include local administration, subcutaneous administration, intradermal administration, intramuscular administration, intraperitoneal administration, intravenous administration, intralymphatic administration, intratumoral administration and the like.
  • the dose of the complexed protein is not particularly limited.
  • the pharmaceutical composition of the present invention when used in vivo, it can be appropriately determined depending on, for example, the type of subject to be administered, symptoms, age, administration method and the like.
  • the dose of the complexed protein per administration when administered to humans, is, for example, 1 to 1500 mg, 25 to 375 mg, 75 to 200 mg, or about 125 mg (eg, 100 to 150 mg).
  • the dose of the antibody or the like per administration is, for example, 1 to 5000 mg, 75 to 1125 mg, 225 to 600 mg, or about 375 mg (eg, 300 to 450 mg).
  • the dose of the antibody complex is not particularly limited.
  • the dose of the antibody complex per administration is, for example, 1 to 7500 mg, 100 to 1500 mg, 350 to 800 mg, about 500 mg (eg, 400 to 600 mg).
  • the frequency of administration of the pharmaceutical composition of the present invention is, for example, once every 1 to 6 weeks.
  • the compounded amount of the complexed protein or the antibody complex is preferably contained in a container such as a vial at a concentration or amount that can realize the exemplified administration conditions.
  • the nucleic acid of the present invention encodes the complexed protein of the present invention.
  • the nucleic acid of the present invention is characterized in that it encodes the complexed protein of the present invention, and other constitutions and conditions are not particularly limited.
  • the description of the complexed protein, antibody complex, and pharmaceutical composition of the present invention can be incorporated.
  • the complexed protein of the present invention can be produced.
  • the nucleic acid of the present invention can be prepared by a conventional method, for example, based on the amino acid sequence of the complexed protein of the present invention.
  • a base sequence encoding the amino acid sequence of each domain described above is obtained, and based on the base sequence, a molecular biology method and/or Alternatively, it can be prepared by a chemical synthesis method.
  • the base sequence of the nucleic acid may be codon-optimized, for example, depending on the origin of cells expressing the complexed protein of the present invention.
  • the complexed protein contains the first binding domain and the second binding domain, as described above. Therefore, the nucleic acid of the present invention includes a nucleic acid sequence (polynucleotide) encoding the first binding domain and a nucleic acid sequence (polynucleotide) encoding the second binding domain.
  • polynucleotide encoding the first binding domain include the following (sa) polynucleotides.
  • (S-a1) A polynucleotide encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO:15 (s-a2)
  • the polynucleotides (s-a1) to (s-a3) are nucleic acids encoding the polypeptides (S-A1) to (S-A3), respectively, and are (S-A1) to (S-A3). -The description of the polypeptide in A3) can be incorporated.
  • the polynucleotide (s-a4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 13 and 14 in the complexed protein of the present invention.
  • the polynucleotides (s-a5) and (s-a6) the polynucleotide encoding the amino acid sequence corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 21 is, for example, , Saved.
  • the nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 21 is, for example, respectively in the heavy chain variable region and the light chain variable region of the first binding domain in the complexed protein of the present invention.
  • the amino acid sequence of CDR can be referred to.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, It is 97% or more, 98% or more, and 99% or more.
  • substitution and the like is, for example, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 90, 1-72, 1-60, 1-45, 1-30, 1-20, 1-9, 1-8, 1-7, 1- The number is 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
  • polynucleotide encoding the second binding domain include the following (sb) polynucleotides.
  • Sb Polynucleotide (nucleic acid) of (s-b1), (s-b2), (s-b3), (s-b4), (s-b5), or (s-b6) below
  • S-b1 Polynucleotide encoding a polypeptide consisting of amino acid sequence of SEQ ID NO: 18 (s-b2) Comprising an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 18, and having CD3 ⁇
  • Polynucleotide encoding a binding polypeptide (s-b3) consists of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 18, and binds to CD3 ⁇ Polynucleotide encoding the polypeptide (s-b4) consisting of the nucleotide sequence of S
  • the polynucleotides of (s-b1) to (s-b3) are nucleic acids encoding the polypeptides of (S-B1) to (S-B3), respectively, and are (S-B1) to (S-B3). -The description of the polypeptide in B3) can be incorporated.
  • the polynucleotide (s-b4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 16 and 17 in the complexed protein of the present invention.
  • the polynucleotide encoding the amino acid sequence corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 22 is, for example, , Saved.
  • the nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 22 is, for example, respectively in the heavy chain variable region and the light chain variable region of the second binding domain in the complexed protein of the present invention.
  • the amino acid sequence of CDR can be referred to.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, respectively. It is 97% or more, 98% or more, and 99% or more.
  • substitution and the like is, for example, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 90, 1-72, 1-60, 1-45, 1-30, 1-20, 1-9, 1-8, 1-7, 1- The number is 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
  • polynucleotide encoding the complexed protein include the polynucleotide (b) below.
  • B Polynucleotide (nucleic acid) of the following (b1), (b2), (b3), (b4), (b5), or (b6)
  • a polynucleotide (b3) encoding a polypeptide that binds to AA is composed of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 20, and human IgG and/or
  • the polynucleotides (b1) to (b3) are nucleic acids encoding the polypeptides (B1) to (B3), respectively, and the description of the polypeptides (B1) to (B3) can be incorporated.
  • the polynucleotide (b4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 15 and 18 in the complexed protein of the present invention.
  • the polynucleotides of (b5) and (b6) the polynucleotides encoding the amino acid sequences corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 23 are conserved, for example. There is.
  • the nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 23 has, for example, a heavy chain variable region and a light chain variable region of the first binding domain in the complexed protein of the present invention, respectively.
  • the amino acid sequence of each CDR in the heavy chain variable region and the light chain variable region of the second binding domain can be referred to.
  • the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97%, respectively. As described above, it is 98% or more and 99% or more.
  • substitution and the like are, for example, 1 to 450, 1 to 400, 1 to 350, 1 to 300, 1 to 250, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 72, 1 to 60, 1 to 45, 1 to 30, 1 to 20, 1 to 10,
  • the numbers are 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
  • the complexed protein of the present invention and an antibody or an antigen-binding fragment thereof capable of binding to the target antigen are administered to a patient (administration step).
  • the therapeutic method of the present invention is characterized by administering the complexed protein of the present invention to a patient, and other steps and conditions are not particularly limited.
  • the description of the complexed protein, antibody complex, and pharmaceutical composition of the present invention can be applied to the therapeutic method of the present invention.
  • a disease associated with the target antigen can be treated.
  • the complexed protein and the antibody or the like may be administered separately or simultaneously.
  • an antibody complex of the complexed protein and the antibody or the like may be administered in the administration step.
  • the complexed protein binds to the antibody or the like by its first antigen-binding domain to form a complex.
  • a nucleic acid encoding the complexed protein may be administered as the complexed protein.
  • the disease related to the target antigen is not particularly limited, and examples thereof include tumors such as malignant lymphoma, leukemia, myeloma, lung cancer, breast cancer, kidney cancer, colon cancer, and ovarian cancer; allergic diseases or autoimmune diseases. And the like; genetic diseases such as hemophilia, idiopathic thrombocytopenic purpura, and von Willebrand disease; neurological diseases such as Alzheimer's disease, multiple sclerosis, Guillain-Barre syndrome, and the like.
  • tumors such as malignant lymphoma, leukemia, myeloma, lung cancer, breast cancer, kidney cancer, colon cancer, and ovarian cancer
  • allergic diseases or autoimmune diseases and the like
  • genetic diseases such as hemophilia, idiopathic thrombocytopenic purpura, and von Willebrand disease
  • neurological diseases such as Alzheimer's disease, multiple sclerosis, Guillain-Barre syndrome, and the like.
  • the target antigen and the disease is not particularly limited.
  • the target antigen is a tumor antigen.
  • the desired antigen in the complexed protein is, for example, an antigen expressed in the immune cells, preferably CD3.
  • the target antigen is an antigen expressed on B cells such as CD19, CD20, CD38.
  • the desired antigen in the complexed protein is, for example, an antigen expressed in the immune cells, preferably CD3.
  • the target antigen is, for example, an allergen or cytokine.
  • the desired antigen in the complexed protein is, for example, an allergen or cytokine, preferably an antigen different from the target antigen.
  • the target antigen is, for example, the aforementioned blood coagulation factor.
  • the desired antigen in the complexed protein is, for example, the above-mentioned blood coagulation factor, preferably an antigen different from the target antigen.
  • the present invention is the complexed protein or antibody complex of the present invention for use in a method for treating a disease associated with a target antigen.
  • the present invention is also the use of the complexed protein or antibody complex of the present invention for the manufacture of a medicament for treating a disease associated with a target antigen.
  • the use of the present invention can be incorporated by reference for the conjugated proteins, antibody conjugates, and pharmaceutical compositions of the present invention.
  • Example 1 After preparing the complexed protein of the present invention, an antibody complex is prepared, and the antibody complex is provided with a binding property to a desired antigen, and the antibody complex is the same as the multispecific antibody. It was confirmed that the function of was exhibited.
  • B-BiTE complexed protein having a first binding domain capable of binding to human IgG and a second binding domain capable of binding to CD3 ⁇ (hereinafter, also referred to as “B-BiTE”) ) was prepared.
  • a polynucleotide encoding B-BiTE was synthesized using an artificial gene synthesis service (GeneArt (trademark), manufactured by Thermo Fisher Scientifics).
  • GeneArt artificial gene synthesis service
  • the polynucleotide encoding B-BiTE was designed as follows.
  • a heavy chain variable region and a light chain variable region derived from a mouse anti-human IgG mAb were linked by a linker peptide (GGGGSGGGGSGGGGS: SEQ ID NO: 24), and a scFv capable of binding to human IgG (first binding) Domain) designed.
  • the HP6017 antibody is known to be able to bind to all subclasses of human IgG.
  • the heavy chain variable region and the light chain variable region derived from human CD3 ⁇ mAb were linked by a linker peptide (GGGGSGGGGSGGGGS: SEQ ID NO: 24), and scFv (second binding domain) capable of binding to human CD3 ⁇ ) was designed. Furthermore, the first binding domain and the second binding domain are linked in this order from the N terminus via a domain linker (SGSG: SEQ ID NO: 19), and the domain linker is further linked to the C terminus.
  • B-BiTE was designed by connecting a His tag (His ⁇ 6 tag) via Then, the base sequence of the polynucleotide (SEQ ID NO: 26) encoding B-BiTE was determined from the designed amino acid sequence of B-BiTE (SEQ ID NO: 25). Then, a polynucleotide encoding B-BiTE was synthesized.
  • the polynucleotide encoding B-BiTE was introduced into a pMX expression vector (B-BiTE expression vector).
  • a retrovirus was prepared by introducing the B-BiTE expression vector into Plat-A cells (provided by the Institute of Medical Science, University of Tokyo) using a transfection reagent (TransIT293, manufactured by Takara Bio).
  • TransIT293 Transfection reagent
  • a polynucleotide encoding B-BiTE was introduced into 293T cells to prepare B-BiTE-producing 293T cells (293T/B-BiTE cells).
  • the Plat-A cells used were those maintained in DMEM medium containing 10% fetal calf serum (FCS), 1 ⁇ g/mL puromycin, and 10 ⁇ g/mL blasticidin.
  • FCS fetal calf serum
  • the obtained 293T/B-BiTE cells were cultured, and B-BiTE was produced from the obtained culture supernatant using a His-tag column (His GraviTrap column, manufactured by GE healthcare).
  • the culture solution of 293T/B-BiTE cells was a DMEM medium supplemented with Ultra Low IgG FBS (manufactured by Thermo Fisher Scientific).
  • the culture conditions of 293T cells and Plat-A cells were 37° C., 5% CO 2 and a humid atmosphere.
  • the cell culture conditions were the same.
  • B-BiTE binding ability Next, it was confirmed that B-BiTE binds to human IgG and human CD3 ⁇ with the target antigen CD19.
  • an antibody complex was formed between B-BiTE and an anti-CD19 antibody (human IgG1 chimeric antibody, clone FMC63) or a control antibody (human IgG1 chimeric antibody, clone MOPC21).
  • the variable region of each antibody is a mouse antibody, and the constant region is a human antibody.
  • B-BiTE, an anti-CD19 antibody or a control antibody is added to a serum-free phosphate buffer (PBS) at a concentration of B-BiTE (B) and a concentration of the antibody (A).
  • PBS serum-free phosphate buffer
  • the concentration ratio (B:A) was 1:3, and the mixture was incubated at room temperature (about 25° C.) for 1 hour.
  • the ratio ( MAb : MCO ) becomes 1:about 1.
  • the obtained mixed solution was used as an antibody complex (CD19/B-BiTE or isotype/B-BiTE).
  • the B-BiTE concentration was 10 ⁇ g/mL, and the antibody concentration was 30 ⁇ g/mL.
  • the cells that react with the antibody complex are KT1 cells (CD3 - CD19 - cells, chronic myelogenous leukemia-derived cell line (established in Ehime University School of Medicine, First University)), KT1/CD19 cells (CD3 - CD19 + cells). ), K562 cells (CD3 ⁇ CD19 ⁇ cells, obtained from ATCC), K562/CD19 cells (CD3 ⁇ CD19 + cells), Raji cells (CD3 ⁇ CD19 + cells), Jurkat76 cells (CD3 ⁇ CD19 ⁇ cells), and Jurkat. The cells (CD3 + CD19 ⁇ cells) were used.
  • KT1/CD19 cells and K562/CD19 cells were prepared by introducing a polynucleotide encoding human CD19 using a retrovirus into KT1 cells and K562 cells, respectively.
  • a retrovirus was prepared in the same manner except that a pMX expression vector containing a polynucleotide (SEQ ID NO: 27) encoding human CD19 was introduced instead of the B-BiTE expression vector.
  • KT1/CD19 cells and K562/CD19 cells were prepared by infecting KT1 cells and K562 cells with the obtained retrovirus.
  • the culture solution of KT1 cells and KT1/CD19 cells was RPMI medium containing 10% FCS.
  • the culture solution of K562 cells, K562/CD19 cells, Raji cells, Jurkat76 cells, and Jurkat cells, and K562/CD20 cells and K562/CD38 cells described later was 10% FCS-containing RPMI1640 medium.
  • KT1 cells, KT1/CD19 cells, K562 cells, K562/CD19 cells, Raji cells, Jurkat76 cells, and Jurkat cells are mixed with a mixed solution containing CD19/B-BiTE or isotype/B-BiTE, and the mixture is mixed for 30 minutes 4 Incubated at °C. After the incubation, each cell was washed and stained with a PE-labeled anti-His antibody (clone GG11-8F3.5.1). Then, for each cell after staining, binding between each cell and the antibody complex was examined using a flow cytometer (Gallios flow cytometer, manufactured by Beckman Coulter). The control was measured in the same manner except that the antibody complex was not added. The results are shown in FIG.
  • FIG. 2 is a histogram showing the binding between the antibody complex and cells.
  • (A) shows KT1 cells
  • (B) shows KT1/CD19 cells
  • (C) shows K562 cells
  • (D) shows K562/CD19 cells
  • (E) shows Raji cells
  • (F). Shows the results of Jurkat76 cells
  • (G) shows the results of Jurkat cells.
  • the horizontal axis represents the fluorescence intensity of the anti-His antibody
  • the vertical axis represents the relative value of the count number.
  • no binding was observed in the control.
  • the antibody complex of the complexed protein and the control antibody showed binding to CD3 ⁇ and therefore bound to Jurkat cells. ..
  • the antibody complex (CD19/B-BiTE) of the complexed protein and the anti-CD19 antibody was added to CD19 and CD3 ⁇ .
  • the binding property it bound to KT1/CD19 cells, K562/CD19 cells, Raji cells and Jurkat cells. From these results, it was found that the complexed protein of the present invention can add a binding property to a desired antigen to the binding target antibody.
  • the bispecific antibody can activate T cells by recruiting T cells to cells expressing the target antigen. Therefore, it was examined whether B-BiTE/CD19 has a similar function. Specifically, except that the concentration of B-BiTE was 2.5 ⁇ g/mL and the concentration of the antibody was 7.5 ⁇ g/mL, CD19/B-BiTE or Isotype/B-BiTE was prepared.
  • FIG. 3 and 4 are graphs showing the ratio of cytokine-producing cells. 3 and 4, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of each cytokine-producing cell.
  • FIG. 3 shows the results when the target cells were K562 cells or K562/CD19 cells
  • FIG. 4 shows the results when the target cells were Raji cells. As shown in FIG. 3, when K562 cells that did not express CD19 and CD3 were used as target cells, no cytokine production was observed in the CD19/B-BiTE and isotype/B-BiTE addition groups.
  • the CD19/B-BiTE-added group had a significantly higher proportion of cytokine-producing cells than the isotype/B-BiTE-added group.
  • the CD19/B-BiTE-added group showed significantly more cytokine-producing cells than the isotype/B-BiTE-added group. The proportion was increasing. From these results, it was found that the antibody complex of the present invention, like the bispecific antibody, can recruit T cells to cells expressing the target antigen and activate T cells.
  • the complexed protein of the present invention forms an antibody complex, the antibody complex is imparted with binding properties to a desired antigen, and the antibody complex has multispecificity. It was found that it exerts the same function as an antibody.
  • Example 2 It was found that an antibody complex of the present invention was prepared, that the antibody complex has a binding property to a desired antigen, and that the antibody complex exhibits a function similar to that of a multispecific antibody. It was
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the antibody complex (CD20/B-BiTE or CD38) was used in the same manner as in Example 1(2). /B-BiTE) was prepared.
  • Cells that react with the antibody complex are K562 cells (CD3 - CD20 - CD38 - cells, obtained from ATCC), K562/CD20 cells (CD3 - CD20 + CD38 - cells), K562/CD38 cells (CD3 - CD20 - CD38 + cells). Cells), Raji cells (CD3 ⁇ CD20 + CD38 + cells), Jurkat76 cells (CD3 ⁇ CD20 ⁇ CD38 ⁇ cells), and Jurkat cells (CD3 + CD20 ⁇ CD38 ⁇ cells).
  • K562/CD20 cells and K562/CD38 cells used retroviruses except that a polynucleotide encoding human CD20 and a polynucleotide encoding human CD38 were used in place of the polynucleotide encoding human CD19, respectively.
  • a polynucleotide encoding human CD20 and a polynucleotide encoding human CD38 were used in place of the polynucleotide encoding human CD19, respectively.
  • K562/CD20 cells and K562/CD38 cells were used instead of KT1 cells, KT1/CD19 cells, and K562/CD19 cells, and CD20/B-BiTE or CD38/B- was used instead of CD19/B-BiTE.
  • the binding between each cell and the antibody complex was examined in the same manner as in Example 1(2) except that BiTE was used.
  • the control was measured in the same manner except that the antibody complex was not added.
  • FIG. 5 is a histogram showing the binding between the antibody complex and cells.
  • (A) is K562 cells
  • (B) is K562/CD20 cells
  • (C) is K562/CD38 cells
  • (D) is Raji cells
  • (E) is Jurkat cells
  • (F). Shows the results of Jurkat76 cells.
  • 5A to 5F the horizontal axis represents the fluorescence intensity of the anti-His antibody
  • the vertical axis represents the relative value of the count number. As shown in FIGS. 5(A) to 5(F), no binding was observed in the control. Further, as shown in FIG.
  • the antibody complex of the complexed protein and the control antibody showed binding to CD3 ⁇ and therefore bound to Jurkat cells. ..
  • the antibody complex of the complexed protein and the anti-CD20 antibody (CD20/B-BiTE) binds to CD20 and CD3 ⁇ . To show sex, it bound to K562/CD20 cells, Raji cells and Jurkat cells. Then, as shown in FIGS.
  • the antibody complex of the complexed protein and the anti-CD38 antibody exhibits binding to CD38 and CD3 ⁇ , It bound to K562/CD38 cells, Raji cells and Jurkat cells. From these results, it was found that the complexed protein of the present invention can add a binding property to a desired antigen to the binding target antibody.
  • CD20/B-BiTE and CD38/B-BiTE exhibit the same function as the bispecific antibody.
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, the B-BiTE concentration was 2.5 ⁇ g/mL, and the antibody concentration was 7.5 ⁇ g/mL.
  • CD20/B-BiTE or CD38/B-BiTE was prepared in the same manner as in Example 1(2) except that the amount was changed to mL.
  • CD20/B-BiTE or CD38/B-BiTE was used, and instead of K562/CD19 cells, K562/CD20 cells or K562/CD38 cells were used, except that The proportion of cells producing cytokines was calculated in the same manner as in Example 1(3). The results are shown in FIGS. 6 and 7.
  • FIG. 6 and 7 are graphs showing the ratio of cytokine-producing cells. 6 and 7, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of each cytokine-producing cell.
  • FIG. 6 shows the results when the target cells were K562 cells, K562/CD20 cells or K562/CD38 cells
  • FIG. 7 shows the results when the target cells were Raji cells.
  • K562 cells that do not express CD20, CD38 and CD3 were used as target cells, cytokine production was not observed in the CD20/B-BiTE, CD38/B-BiTE and isotype/B-BiTE addition groups. I could't see it.
  • the CD20/B-BiTE-added group and the CD38/B-BiTE-added group had The proportion of cytokine-producing cells was significantly increased as compared with. From these results, it was found that the antibody complex of the present invention, like the bispecific antibody, can recruit T cells to cells expressing the target antigen and activate T cells.
  • the complexed protein of the present invention forms an antibody complex, the antibody complex is imparted with binding properties to a desired antigen, and the antibody complex has multispecificity. It was found that the antibody functions similarly to the antibody.
  • Example 3 It was confirmed that the antibody complex of the present invention can induce the proliferation of other T cells while substantially suppressing the proliferation of regulatory T cells.
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the antibody complex (CD20/B-BiTE or CD38) was used in the same manner as in Example 1(2). /B-BiTE) was prepared.
  • CD3 + T cells were prepared in the same manner as in Example 1(3) above.
  • the T cells obtained were incubated in PBS containing 0.5 ⁇ mol/L CFSE (5-(and -6)-Carboxyfluorescein diacetate succinimidyl ester) for 15 minutes at 37° C., and the T cells were labeled with CFSE.
  • CFSE 0.5 ⁇ mol/L CFSE
  • CFSE-labeled T cells and 2.0 ⁇ 10 4 target cells were treated with the above CD20/B-BiTE, CD38/B-BiTE, or isotype/B-BiTE.
  • the target cells were K562/CD19 cells, K562/CD20 cells, K562/CD38 cells and Raji cells.
  • the T cells were treated with Alexa647-labeled anti-human FoxP3 antibody (clone 206D), PE-labeled anti-human CD45RA antibody (clone HI100), the PC5-labeled anti-human CD8 antibody (clone B9.11), and APC-Cy7-labeled anti-human.
  • the cells were stained with a CD4 antibody (clone OKT4) and a BV421 anti-human CD25 antibody (clone BC96).
  • the stained T cells were measured by the flow cytometer, and the proportion of CFSE-attenuated cells and the proportion of regulatory T cells in the T cells were measured. These results are shown in FIGS. 8 and 9 (ns: not siginificant, *: p ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001, and so on).
  • FIG. 8 is a graph showing the percentage of cells in which CFSE is attenuated.
  • the horizontal axis represents the type of antibody complex and the vertical axis represents the proportion of proliferated cells.
  • isotype/B-BiTE since T cell proliferation does not occur, CFSE strongly positive cells are obtained as indicated by arrows in the figure.
  • K562/CD38 cells and CD38/B-BiTE the proliferation of T cells causes the attenuation of CFSE, so that the cells that proliferate are weakly positive for CFSE, as shown by the arrow in the figure. Become.
  • the CD19/B-BiTE-added group showed significantly expanded CD4 + T cells and CD8 + compared to the isotype/B-BiTE-added group.
  • the proportion of T cells was increasing.
  • the CD20/B-BiTE-added group showed significantly proliferated CD4 + T cells and CD8 + compared to the isotype/B-BiTE-added group.
  • the proportion of T cells was increasing.
  • the CD38/B-BiTE-added group showed significantly increased CD4 + T and CD8 + T compared with the isotype/B-BiTE-added group.
  • the proportion of cells was increasing.
  • Raji cells expressing CD19, CD20 and CD38 are used as target cells, the CD19/B-BiTE addition group, the CD20/B-BiTE addition group and the CD38/B-BiTE addition group are isotype/B-
  • the proportion of significantly proliferated CD4 + T cells and CD8 + T cells was increased compared to the BiTE-added group.
  • FIG. 9 is a graph showing the ratio of activated CD4 + T cells (CD4 + CD25 + ) and regulatory T cells (CD4 + CD25 + CD45RA + FoxP3 + ).
  • the horizontal axis represents the type of antibody complex or the subset of regulatory T cells
  • the vertical axis represents the ratio of activated CD4 + T cells (CD4 + CD25 + ), or activated.
  • the percentage of regulatory T cell subsets in CD4 + T cells (CD4 + CD25 + ) is shown.
  • the CD4 + CD25 + cells, and developed with the expression of CD45RA and FoxP3, and CD45RA + FoxP3 + cells group, CD45RA - FoxP3 a cell population +++ was defined as regulatory T cells.
  • the CD45RA ⁇ FoxP3 + cell group was determined to be activated T cells based on Reference Document 5 below. In this example, no CD45RA ⁇ FoxP3 ++ cell group was found in the peripheral blood T cells after culture.
  • K562/CD19 cells expressing CD19 were used as target cells, the proportion of CD4 + T cells that were significantly activated in the CD19/B-BiTE addition group was significantly higher than that in the isotype/B-BiTE addition group.
  • the proportion of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) and activated T cells (CD4 + CD25 + FoxP3 + CD45RA ⁇ ) remained unchanged.
  • the CD20/B-BiTE-added group showed significantly activated CD4 + T cells as compared with the isotype/B-BiTE-added group. Although the proportion was increased, the proportion of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) remained unchanged, and the proportion of activated T cells (CD4 + CD25 + FoxP3 + CD45RA ⁇ ) was slightly increased. did. Furthermore, when K562/CD38 cells expressing CD38 were used as target cells, the CD38/B-BiTE addition group showed significantly activated CD4 + T cells compared to the isotype/B-BiTE addition group.
  • the CD19/B-BiTE addition group, the CD20/B-BiTE addition group and the CD38/B-BiTE addition group are isotype/B-
  • the ratio of CD4 + T cells that were significantly activated was increased compared to the BiTE-added group, the ratio of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) did not change, and the activity was unchanged.
  • the ratio of activated T cells (CD4 + CD25 + FoxP3 + CD45RA ⁇ ) slightly increased in the CD19/B-BiTE-added group.
  • the antibody complex of the present invention can substantially suppress the proliferation of regulatory T cells while inducing the proliferation of other T cells.
  • Example 4 It was confirmed that the antibody complex of the present invention can activate NK cells alone or NK cells and T cells.
  • Activation of NK cells In place of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, the concentration of B-BiTE was 2.5 ⁇ g/mL, and the concentration of the antibody was 7
  • An antibody complex (CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 0.5 ⁇ g/mL.
  • NK cell isolation kit manufactured by Miltenyi Biotec
  • the concentration of the antibody was 7.5 ⁇ g/mL when the antibody was used alone.
  • the target cells were K562/CD20 cells, K562/CD38 cells and Raji cells. After the culture, BFA was added so that the concentration was 5 ⁇ mol/L, and the culture was further continued for 4 hours. After fixing NK cells with 1% PFA, permeabilization of the cell membrane was performed, and further, APC-labeled anti-human CD107a (clone H4A3), the PC7-labeled anti-human IFN- ⁇ antibody, and FITC-labeled anti-human CD16 antibody (clone). 3G8) and PE-labeled anti-human CD56 antibody (clone HCD56). The stained NK cells were measured with the flow cytometer. The control was measured in the same manner except that the target cells were not added. Then, based on the expression of CD107a in the control, the rate of increase in CD107a expression was calculated. The results are shown in Figures 10 and 11.
  • 10 and 11 are graphs showing the ratio of IFN- ⁇ producing cells and the ratio of increased CD107a expression.
  • the horizontal axis represents the type of antibody or antibody complex
  • the vertical axis represents the proportion of IFN- ⁇ producing cells or the proportion of increased CD107a expression.
  • FIGS. 10 and 11 when there are target cells that express the target antigen CD20 or CD38, and when there is an antibody that binds to the target antigen, when there is a target that does not express the target antigen, and the target It was found that NK cells were activated due to an increase in the percentage of IFN- ⁇ producing cells and an increase in CD107a expression, as compared with the case where an antibody that does not bind to the antigen was present.
  • NK cells were activated due to an increase in the ratio of IFN- ⁇ producing cells and an increase in the expression of CD107a, as compared with the case where there was an antibody complex that did not bind.
  • the antibody complex of the present invention can induce the activation of NK cells similarly to the antibody.
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used to adjust the concentration of B-BiTE to 2.5 ⁇ g/mL
  • An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 7.5 ⁇ g/mL.
  • Human peripheral blood was collected from a healthy person. Next, human peripheral blood mononuclear cells were extracted from the peripheral blood, and then the obtained human peripheral blood mononuclear cells and B cell removal kit (CD19 microbeads, manufactured by Miltenyi Biotec) were used to remove B cells. By doing so, a cell group containing NK cells, T cells and monocytes was purified.
  • B cell removal kit CD19 microbeads, manufactured by Miltenyi Biotec
  • 2 ⁇ 10 5 cell groups and 2.0 ⁇ 10 5 target cells were treated with the anti-CD19 antibody, anti-CD20 antibody, anti-CD38 antibody, control antibody, CD19/B-BiTE, CD20/
  • the concentration of the antibody was 7.5 ⁇ g/mL when the antibody was used alone.
  • the target cells were K562/CD19 cells, K562/CD20 cells and K562/CD38 cells. After the culture, BFA was added so that the concentration became 5 ⁇ mol/L, and the culture was further continued for 5 hours.
  • APC-Cy7 anti-human CD4 antibody (clone RPA-T4), Alexa700-labeled anti-human CD56 antibody (clone 5.1H11), V450 anti-human CD107a antibody (clone H4A3), PE-labeled anti-human TNF- ⁇ antibody (clone MAb11).
  • APC-labeled anti-human IL-2 antibody (clone MQ1-17H12), PC7-labeled anti-human IFN- ⁇ antibody (clone B27), PC5-labeled anti-human CD8 antibody (clone B9.11), and FITC-labeled anti-human CD16 antibody ( It was stained with clone 3G8). The cells after the staining were measured with the flow cytometer. Then, the rate of increase in CD107a expression was calculated based on the cytokine expression and CD107a expression in the target cells as controls. The results are shown in FIGS.
  • 12 to 14 are graphs showing activation of NK cells and T cells. 12 to 14, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of cells producing each cytokine or the proportion of increased expression of CD107a. As shown in FIGS. 12 to 14, when target cells that express the target antigen CD19, CD20 or CD38 exist, and when an antibody that binds to the target antigen exists, and when a target that does not express the target antigen exists It was found that the NK cells were activated by the increase in the ratio of IFN- ⁇ producing cells in the NK cells and the increase in the expression of CD107a, as compared with the case where the antibody that does not bind to the target antigen was present.
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, and the concentration of B-BiTE was set to 1 ⁇ g/mL.
  • An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 3 ⁇ g/mL.
  • E:T was 20:1, 10:1, 5:1 or The purified cell group was added to the well in which the target cells were cultured so that the ratio was 2.5:1. Further, the above-mentioned anti-CD20 antibody, anti-CD38 antibody, control antibody, isotpye/B-BiTE, CD20/B-BiTE or CD38/B-BiTE was added.
  • the concentration of the antibody was 3 ⁇ g/mL. Then, after culturing for 18 hours, the supernatant was collected, and the counting rate (CPM: count per minute) of radiation per minute was measured using AccuFLEXg7010 (manufactured by HITACHI). The control was measured in the same manner except that the purified cell group was not added. Then, the cytotoxicity (specific melting rate) was measured based on the following formula (1). The results are shown in FIG.
  • K (L E ⁇ L S )/(L Max ⁇ L S ) ⁇ 100(%) (1)
  • K Cytotoxicity
  • L E measurement of CPM
  • L S measured value of CPM in the case of target cells only
  • L Max measurement of CPM in the case of adding 0.2% Triton-X in PBS to wells of target cells only
  • FIG. 15 is a graph showing cytotoxicity.
  • the horizontal axis represents the E/T ratio and the vertical axis represents the cytotoxicity.
  • K562 which does not express the target antigens CD20 and CD38
  • specific cytotoxicity did not occur, and the cytotoxicity in each group was similar.
  • K562 and Raji cells expressing the target antigen CD20 or CD38 are used as target cells, the presence of an antibody or antibody complex that binds to the target antigen causes cytotoxicity in a dose ratio-dependent manner on the effector. Increased.
  • the antibody-complex-added group had increased cytotoxicity as compared with the antibody-added group. From these results, it was found that the antibody complex of the present invention can induce the cytotoxic activity and its inducing ability is enhanced as compared with the antibody alone.
  • Example 5 It was confirmed that the antibody complex of the present invention induces cytokine production of T cells in a concentration-dependent manner.
  • an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the B-BiTE concentration was 2.5 ⁇ g/mL and the antibody concentration was 7.5 ⁇ g/mL.
  • An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) above.
  • the cells were fixed with 1% PFA, and then the cell membrane was permeabilized. Further, the ratio of cells producing each cytokine was calculated in the same manner as in Example 1 (3) above. Then, in each of the cytokines of CD4 + T cells and CD8 + T cells, the ratio of the cells producing the cytokine when the antibody complex was added at 10 ⁇ g/mL was set to 100%, and the relative ratio of the producing cells was calculated. .. The results are shown in FIG.
  • FIG. 16 is a graph showing the relative proportion of producer cells.
  • the upper row shows the results of CD8 + T cells, and the lower row shows the results of CD4 + T cells.
  • the horizontal axis represents the total concentration of B-BiTE and the antibody, and the vertical axis represents the relative proportion of producing cells.
  • the numerical value described adjacent to the name of the antibody complex in each graph shows EC50.
  • CD8 + T cells and CD4 + T cells increased the proportion of cells producing each cytokine, depending on the concentration of the antibody complex. From these results, it was found that the antibody complex of the present invention induces T cell cytokine production in a concentration-dependent manner.
  • Example 6 It was confirmed that the antibody complex of the present invention exhibits antitumor activity in vivo.
  • Raji cells expressing SLR were the same as those of the above except that Raji cells were used instead of K562 cells and a polynucleotide encoding SLR was used instead of the polynucleotide encoding human CD19.
  • SLR is an intracellular protein
  • a polynucleotide encoding a truncated NGFR gene can be used as a polynucleotide encoding SLR by using a furin cleavage site (RAKR: SEQ ID NO: 32) and a spacer.
  • Ligation was performed via a polynucleotide encoding the sequence (SGSG (same sequence as the domain linker)) and the codon-optimized P2A sequence (ATNFSLLKQAGDVEENPGP: SEQ ID NO: 33).
  • SLR protein (SLR/furin-sgsg-p2a/dNGFR, SEQ ID NO: 30) MEEENIVNGDRPRDLVFPGTAGLQLYQSLYKYSYITDGIIDAHTNEVISYAQIFETSCRLAVSLEKYGLDHNNVVAICSENNIHFFGPLIAALYQGIPMATSNDMYTEREMIGHLNISKPCLMFCSKKSLPFILKVQKHLDFLKKVIVIDSMYDINGVECVFSFVSRYTDHAFDPVKFNPKEFDPLERTALIMTSSGTTGLPKGVVISHRSITIRFVHSSDPIYGTRIAPDTSILAIAPFHHAFGLFTALAYFPVGLKIVMVKKFEGEFFLKTIQNYKIASIVVPPPIMVYLAKSPLVDEYNLSSLTEIACGGSPLGRDIADKVAKRLKVHGILQGYGLTETCSALILSPNDRELKKGAIGTPMPYVQVKVIDINTGKALGPREKGEICFKSQMLMKGY
  • a 5-week-old NOG mouse (NOD/Shi-scid, IL-2R ⁇ KO.Jic mouse, purchased from In-Vivo Science) was irradiated with 1.5 Gy of ⁇ -ray.
  • 5 ⁇ 10 5 Raji/SLR cells were intravenously administered to the NOG mouse and transplanted.
  • activated effector cells containing 5 ⁇ 10 6 T cells and NK cells and 30 ⁇ g/150 ⁇ L of the anti-CD20 antibody or 40 ⁇ g/150 ⁇ L of the effector cells.
  • CD20/B-BiTE was administered intravenously.
  • 1.0 ⁇ 10 6 peripheral blood mononuclear cells were cultured for about 7 to 10 days in the presence of IL-2 100 U/mL and anti-CD3 antibody (clone OKT3) 50 ng/mL.
  • CD20/B-BiTE was prepared by mixing 30 ⁇ g of anti-CD20 antibody and 10 ⁇ g of B-BiTE at room temperature for 1 hour and then diluting with PBS to 40 ⁇ g/150 ⁇ L. Then, the size of the tumor on the 5th, 8th and 12th days after the transplantation was measured by an image analyzer (AEQUORIA-2D/8600 bioluminescence imaging assays, manufactured by Hamamatsu Photonics). The control was measured in the same manner except that the antibody and antibody complex were not administered. These results are shown in FIG.
  • FIG. 17 is a diagram relating to antitumor activity in a living body.
  • (A) shows a protocol
  • (B) is a photograph measured by an image analyzer
  • (C) is a graph showing the size of a tumor.
  • a region surrounded by a white line is a region where a tumor exists.
  • the tumor size was reduced in the anti-CD20 antibody or antibody complex administration group as compared with the control.
  • the tumor in the antibody-conjugated group was significantly reduced as compared with the anti-CD20 antibody-administered group.
  • the antibody complex of the present invention exhibits antitumor activity in vivo, and that it has higher antitumor activity than the antibody alone.
  • Rituximab used as the anti-CD20 antibody is known as an antibody having high ADCC activity by NK cells. It is speculated that when an antibody preparation having a low ADCC activity and a weak therapeutic effect is combined with a complexed protein, the antitumor effect can be more clearly enhanced in vivo as compared with the antibody alone.
  • the antibody complex of the present invention exhibits antitumor activity in vivo.
  • Appendix The whole or part of the exemplary embodiments and examples described above can be described as, but not limited to, the following supplementary notes.
  • Appendix 1 Including a first antigen-binding domain and a second antigen-binding domain, The first antigen-binding domain is capable of binding an immunoglobulin, The second antigen-binding domain is a complexed protein capable of binding a desired antigen.
  • Appendix 2 The complexed protein of Appendix 1, wherein the first antigen binding domain is capable of binding to an immunoglobulin constant (Fc) region.
  • Fc immunoglobulin constant
  • the complexed protein according to Appendix 2 wherein the first antigen-binding domain has an epitope within the region of positions 237 to 447 in the site represented by EU numbering of the Fc region. (Appendix 4) 4.
  • the first heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
  • the first light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3,
  • CDRH1 is a polypeptide containing the following amino acid sequence (H1-A)
  • CDRH2 is a polypeptide containing the following amino acid sequence (H2-A)
  • CDRH3 is a polypeptide containing the following amino acid sequence (H3-A)
  • CDRL1 is a polypeptide containing the following amino acid sequence (L1-A)
  • CDRL2 is a polypeptide containing the amino acid sequence of (L2-A) below
  • CDRL3 is a polypeptide containing the amino acid sequence of (L3-A) below
  • H2-A1, (H2-A2) or (H2-A3) amino acid sequence (H2-A1) SEQ ID NO: 2 amino acid sequence (H2-A2) SEQ ID NO: 2 amino acid sequence is 80 Amino acid sequence having% or more identity (H2-A3) Amino acid sequence of SEQ ID NO: 2 in which one or several amino acids have been deleted, substituted, inserted and/or added (H3-A) (H3-A1), (H3-A2) or (H3-A3) amino acid sequence (H3-A1) SEQ ID NO:3 amino acid sequence (H3-A2) 80% or more of the amino acid sequence of SEQ ID NO:3 Amino acid sequence having identity (H3-A3) In the amino acid sequence of SEQ ID NO: 3, one or several amino acids have been deleted, substituted, inserted and/or added (L1-A) the following (L1- A1), (L1-A2) or (L1-A3) amino acid sequence (L1-A1) SEQ ID NO: 4 amino acid
  • the second heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
  • the second light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3
  • CDRH1 is a polypeptide containing the following amino acid sequence (H1-B)
  • CDRH2 is a polypeptide containing the following amino acid sequence (H2-B)
  • CDRH3 is a polypeptide containing the following amino acid sequence (H3-B)
  • CDRL1 is a polypeptide containing the following amino acid sequence (L1-B)
  • CDRL2 is a polypeptide containing the amino acid sequence of (L2-B) below
  • CDRL3 is a polypeptide containing the following amino acid sequence (L3-B), wherein the complexed protein according to note 9: (H1-B) The following (H1-B1), (H1-B2) or (H1-B3) amino acid sequence (H1-B1)
  • (Appendix 14) An antibody or an antigen-binding fragment thereof capable of binding to a target antigen, and a complexed protein,
  • the complexed protein is the complexed protein according to any one of appendices 1 to 13, The antibody complex, wherein the complexed protein binds to the antibody or an antigen-binding fragment thereof through a first antigen-binding domain thereof to form a complex.
  • (Appendix 15) 15.
  • the antibody complex according to appendix 14, wherein the antibody or antigen-binding fragment thereof and the complexed protein are crosslinked.
  • (Appendix 16) 16 16.
  • (Appendix 17) The antibody complex according to any one of appendices 14 to 16, wherein the target antigen is a tumor antigen.
  • (Appendix 18) A pharmaceutical composition comprising the complexed protein according to any one of appendices 1 to 13.
  • (Appendix 19) 19.
  • the pharmaceutical composition according to appendix 19, wherein the complexed protein binds to the antibody or the antigen-binding fragment thereof by the first antigen-binding domain thereof to form a complex.
  • (Appendix 21) A nucleic acid encoding the complexed protein according to any one of appendices 1 to 13.
  • (Appendix 22) A method for treating a disease associated with a target antigen, which comprises administering the complexed protein according to any one of appendices 1 to 13 and an antibody capable of binding to the target antigen or an antigen-binding fragment thereof to a patient.
  • the target antigen is a tumor antigen, 24.
  • the treatment method according to appendix 22 or 23, wherein the disease associated with the target antigen is cancer.
  • the complexed protein of the present invention it is possible to add the binding property for a desired antigen to the antibody or the antigen-binding fragment thereof. Therefore, the present invention can be said to be extremely useful in the field of medicine and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Provided is a complexed protein that is capable of imparting, to an antibody or an antigen-binding fragment thereof, a binding ability to a desired antigen. The complexed protein according to the present invention contains a first antigen-binding domain and a second antigen-binding domain, wherein the first antigen-binding domain is capable of binding to immunoglobulin while the second antigen-binding domain is capable of binding to the desired antigen.

Description

複合体化タンパク質、抗体複合体、医薬組成物、および核酸Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid
 本発明は、複合体化タンパク質、抗体複合体、医薬組成物、および核酸に関する。 The present invention relates to complexed proteins, antibody complexes, pharmaceutical compositions, and nucleic acids.
 多重特異性抗体では、1つの抗体分子が、異なる抗原に対して結合性を示す抗原結合ドメインを有する。前記多重特異性抗体を、腫瘍抗原とCD3εとに結合する抗体とすることにより、T細胞を介した細胞傷害を誘導できることから、前記多重特異性抗体は、抗癌剤としての臨床開発が進められている。また、前記多重特異性抗体によれば、複数のタンパク質を近傍に配置することも可能になるため、血液凝固因子をターゲットとした血友病治療薬が開発され、販売されている。 In a multispecific antibody, one antibody molecule has an antigen binding domain that shows binding to different antigens. By making the multispecific antibody an antibody that binds to a tumor antigen and CD3ε, T cell-mediated cytotoxicity can be induced. Therefore, the multispecific antibody is under clinical development as an anticancer agent. .. Further, according to the multispecific antibody, it is possible to arrange a plurality of proteins in the vicinity, and therefore, a therapeutic agent for hemophilia that targets a blood coagulation factor has been developed and marketed.
 しかしながら、多重特異性抗体は、その製造効率が極めて低く、またその製造が困難であるという問題がある。例えば、二重特異性抗体は、2種類の重鎖(H鎖)および2種類の軽鎖(L鎖)から構成される。また、2種類のH鎖および2種類のL鎖を発現させ、前記二重特異性抗体を製造する場合、発現する抗体における2つのH鎖および2つのL鎖の組合せは10通りとなり、目的とする二重特異性抗体以外に9種類もの不要な抗体が製造されることとなる(特許文献1)。 However, multispecific antibodies have problems that their production efficiency is extremely low and their production is difficult. For example, bispecific antibodies are composed of two types of heavy chains (H chains) and two types of light chains (L chains). Moreover, when two types of H chains and two types of L chains are expressed to produce the bispecific antibody, the number of combinations of two H chains and two L chains in the expressed antibody is ten, and In addition to the bispecific antibody, 9 kinds of unnecessary antibodies will be produced (Patent Document 1).
国際公開第2013/065708号公報International Publication No. 2013/065708
 そこで、本発明は、抗体またはその抗原結合断片に対して、所望の抗原に対する結合性を付加可能な複合体化タンパク質の提供を目的とする。 Therefore, an object of the present invention is to provide a complexed protein capable of adding a desired antigen-binding property to an antibody or an antigen-binding fragment thereof.
 前記目的を達成するため、本発明の複合体化タンパク質は、第1の抗原結合ドメインと、第2の抗原結合ドメインとを含み、
前記第1の抗原結合ドメインは、免疫グロブリンに結合可能であり、
前記第2の抗原結合ドメインは、所望の抗原に結合可能である。
To achieve the above object, the complexed protein of the present invention comprises a first antigen-binding domain and a second antigen-binding domain,
The first antigen-binding domain is capable of binding an immunoglobulin,
The second antigen binding domain is capable of binding a desired antigen.
 本発明の抗体複合体は、標的抗原に結合可能な抗体またはその抗原結合断片と、複合体化タンパク質とを含み、
前記複合体化タンパク質は、前記本発明の複合体化タンパク質であり、
前記複合体化タンパク質は、その第1の抗原結合ドメインより前記抗体またはその抗原結合断片と結合し、複合体化している。
The antibody complex of the present invention comprises an antibody capable of binding to a target antigen or an antigen-binding fragment thereof, and a complexed protein,
The complexed protein is the complexed protein of the present invention,
The complexed protein binds to the antibody or the antigen-binding fragment thereof through the first antigen-binding domain to form a complex.
 本発明の医薬組成物は、前記本発明の複合体化タンパク質を含む。 The pharmaceutical composition of the present invention contains the complexed protein of the present invention.
 本発明の核酸は、前記本発明の複合体化タンパク質をコードする。 The nucleic acid of the present invention encodes the complexed protein of the present invention.
 本発明の複合体化タンパク質によれば、抗体またはその抗原結合断片に対して、所望の抗原に対する結合性を付加できる。 According to the complexed protein of the present invention, it is possible to add a desired antigen-binding property to an antibody or an antigen-binding fragment thereof.
図1は、本発明の一例を示す模式図であり、(A)は、本発明の複合体化タンパク質の一例を示す模式図であり、(B)は、本発明の複合体化タンパク質と免疫グロブリンとの複合体の複合体の形成および得られた抗体複合体一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the present invention, (A) is a schematic diagram showing an example of a complexed protein of the present invention, and (B) is an immunized protein with a complexed protein of the present invention. FIG. 2 is a schematic diagram showing an example of formation of a complex with a globulin and the obtained antibody complex. 図2は、実施例1における抗体複合体と細胞との結合を示すヒストグラムである。FIG. 2 is a histogram showing the binding between the antibody complex and cells in Example 1. 図3は、実施例1におけるサイトカイン産生細胞の割合を示すグラフである。FIG. 3 is a graph showing the ratio of cytokine-producing cells in Example 1. 図4は、実施例1におけるサイトカイン産生細胞の割合を示すグラフである。FIG. 4 is a graph showing the ratio of cytokine-producing cells in Example 1. 図5は、実施例2における抗体複合体と細胞との結合を示すヒストグラムである。FIG. 5 is a histogram showing the binding between the antibody complex and cells in Example 2. 図6は、実施例2におけるサイトカイン産生細胞の割合を示すグラフである。FIG. 6 is a graph showing the ratio of cytokine-producing cells in Example 2. 図7は、実施例2におけるサイトカイン産生細胞の割合を示すグラフである。FIG. 7 is a graph showing the ratio of cytokine-producing cells in Example 2. 図8は、実施例3におけるCFSEが減衰している細胞の割合を示すグラフである。FIG. 8 is a graph showing the proportion of cells in which CFSE is attenuated in Example 3. 図9は、実施例3における活性化しているCD4T細胞(CD4CD25)および制御性T細胞(CD4CD25CD45RAFoxP3)の割合を示すグラフである。FIG. 9 is a graph showing the ratio of activated CD4 + T cells (CD4 + CD25 + ) and regulatory T cells (CD4 + CD25 + CD45RA + FoxP3 + ) in Example 3. 図10は、実施例4におけるIFN-γの産生細胞の割合およびCD107aの発現上昇の割合を示すグラフである。FIG. 10 is a graph showing the ratio of IFN-γ producing cells and the ratio of increased CD107a expression in Example 4. 図11は、実施例4におけるIFN-γの産生細胞の割合およびCD107aの発現上昇の割合を示すグラフである。FIG. 11 is a graph showing the ratio of IFN-γ producing cells and the ratio of increased CD107a expression in Example 4. 図12は、実施例4におけるNK細胞およびT細胞の活性化を示すグラフである。FIG. 12 is a graph showing activation of NK cells and T cells in Example 4. 図13は、実施例4におけるNK細胞およびT細胞の活性化を示すグラフである。FIG. 13 is a graph showing the activation of NK cells and T cells in Example 4. 図14は、実施例4におけるNK細胞およびT細胞の活性化を示すグラフである。FIG. 14 is a graph showing the activation of NK cells and T cells in Example 4. 図15は、実施例4における細胞傷害性を示すグラフである。FIG. 15 is a graph showing the cytotoxicity in Example 4. 図16は、実施例5における相対的な産生細胞の割合を示すグラフである。FIG. 16 is a graph showing the relative proportion of producing cells in Example 5. 図17は、実施例6における生体における抗腫瘍活性に関する図である。FIG. 17 is a diagram regarding the antitumor activity in the living body in Example 6.
<複合体化タンパク質>
 本発明の複合体化タンパク質は、前述のように、第1の抗原結合ドメインと(以下、「第1の結合ドメイン」ともいう)、第2の抗原結合ドメイン(以下、「第2の結合ドメイン」ともいう)とを含み、前記第1の抗原結合ドメインは、免疫グロブリンに結合可能であり、前記第2の抗原結合ドメインは、所望の抗原に結合可能である。本発明の複合体化タンパク質は、前記第1の抗原結合ドメインは、免疫グロブリンに結合可能であり、前記第2の抗原結合ドメインは、所望の抗原に結合可能であることが特徴であり、その他の構成および条件は、特に制限されない。
<Complexed protein>
As described above, the complexed protein of the present invention includes a first antigen-binding domain (hereinafter, also referred to as “first binding domain”), a second antigen-binding domain (hereinafter, “second binding domain”). Also referred to as “”), the first antigen-binding domain is capable of binding an immunoglobulin, and the second antigen-binding domain is capable of binding a desired antigen. The complexed protein of the present invention is characterized in that the first antigen-binding domain can bind to an immunoglobulin and the second antigen-binding domain can bind to a desired antigen. The configuration and conditions of are not particularly limited.
 本発明の複合体化タンパク質は、図1(A)に示すように、前記第1の結合ドメインにより、免疫グロブリン、すなわち、抗体またはその抗原結合断片と結合できる。また、本発明の複合体化タンパク質は、前記第2の抗原結合ドメインにより、所望の抗原に結合できる。このため、図1(B)に示すように、本発明の複合体化タンパク質を免疫グロブリンと接触させると、前記複合体化タンパク質が免疫グロブリンと結合することにより、複合体化する。この結果、形成された抗体複合体は、抗原結合ドメインとして、免疫グロブリンの抗原結合ドメインに加え、前記複合体化タンパク質の第2の結合ドメインを含む。すなわち、前記複合体化タンパク質は、前記免疫グロブリンと複合体化することにより、前記免疫グロブリンに対して、前記第2の結合ドメインという新たな抗原結合ドメインを付与できる。また、前記第2の結合ドメインが結合する対象は、所望の抗原とできる。このため、本発明の複合体化タンパク質によれば、抗体またはその抗原結合断片に対して、所望の抗原に対する結合性を付加できる。したがって、本発明の複合体化タンパク質によれば、多重特異性抗体と同様の機能を有する抗体複合体を簡便に製造できる。また、本発明の複合体化タンパク質では、前記第2の結合ドメインの結合対象、すなわち、前記所望の抗原を制御し、前記免疫グロブリンと組合せて使用することで前述の多重特異性抗体と同様の機能を発揮できる。具体例として、前記第2の結合ドメインが結合する所望の抗原をCD3等のT細胞上に発現する抗原とし、前記免疫グロブリンの結合ドメインの結合対象を腫瘍抗原とすることにより、前記複合体化タンパク質と前記免疫グロブリンとの抗体複合体は、例えば、がん細胞に結合し、かつT細胞とNK細胞とをリクルートできるため、多重特異性抗体を含む抗癌剤と同様の機能を発揮する抗癌剤として使用できる。また、前記抗体複合体は、前記第2の結合ドメインの結合対象と、前記免疫グロブリンの結合対象とを近傍に配置することができ、前記抗体複合体は、例えば、前述の血友病治療薬と同様の機能を発揮する血友病治療薬として使用できる。前記抗体複合体は、前記第2の結合ドメインの結合対象と、前記免疫グロブリンの結合対象とを近傍に配置することができるため、例えば、複合体を形成している受容体等を離隔し、受容体を介したシグナルを抑制することができる。さらに、前記抗体複合体は、例えば、複数の抗原に結合可能であるため、複数の抗原の除去にも使用でき、例えば、疾患の原因物質となる抗原の除去にも使用できる。 The complexed protein of the present invention can bind to an immunoglobulin, that is, an antibody or an antigen-binding fragment thereof by the first binding domain, as shown in FIG. 1(A). Moreover, the complexed protein of the present invention can bind to a desired antigen by the second antigen-binding domain. Therefore, as shown in FIG. 1(B), when the complexed protein of the present invention is brought into contact with an immunoglobulin, the complexed protein binds with the immunoglobulin to form a complex. As a result, the formed antibody complex contains, as an antigen-binding domain, the second binding domain of the complexed protein in addition to the antigen-binding domain of immunoglobulin. That is, the complexed protein can impart a new antigen-binding domain called the second binding domain to the immunoglobulin by complexing with the immunoglobulin. Further, the target to which the second binding domain binds can be a desired antigen. Therefore, according to the complexed protein of the present invention, binding properties for a desired antigen can be added to the antibody or its antigen-binding fragment. Therefore, according to the complexed protein of the present invention, an antibody complex having the same function as that of the multispecific antibody can be easily produced. Further, in the complexed protein of the present invention, the target of the second binding domain, that is, the desired antigen is regulated, and by using in combination with the immunoglobulin, similar to the above-described multispecific antibody. It can exert its function. As a specific example, the desired antigen to which the second binding domain binds is an antigen expressed on T cells such as CD3, and the binding target of the binding domain of the immunoglobulin is a tumor antigen, thereby forming the complex. An antibody complex of a protein and the above immunoglobulin can be used as an anticancer agent that exhibits the same function as an anticancer agent containing a multispecific antibody, for example, because it can bind to cancer cells and recruit T cells and NK cells. it can. Further, in the antibody complex, the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, and the antibody complex can be, for example, the above-mentioned hemophilia therapeutic agent. It can be used as a hemophilia drug that exhibits the same function as. In the antibody complex, the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, so that, for example, the receptor or the like forming the complex is separated, Signals mediated by receptors can be suppressed. Furthermore, since the antibody complex can bind to a plurality of antigens, it can be used to remove a plurality of antigens, for example, to remove an antigen that causes a disease.
 本発明において、「ドメイン」は、例えば、ポリペプチドにおいて、立体構造または機能的にまとまった領域を意味する。前記ポリペプチドは、例えば、10アミノ酸以上の長さを有するペプチドがあげられる。 In the present invention, the “domain” means, for example, in a polypeptide, a three-dimensionally structured or functionally integrated region. Examples of the polypeptide include peptides having a length of 10 amino acids or more.
 本発明において、「結合可能」は、結合物である抗体等が、前記結合物に結合される結合対象物に対して実際に結合することを意味してもよいし、分子ドッキング法等を用いたシミュレーションにおいて結合することを意味してもよいが、好ましくは、前者である。前記結合物と前記結合対象物との結合は、例えば、タンパク質間相互作用の解析方法を利用して検出でき、例えば、共免疫沈降、プルダウンアッセイ、ELISA法、フローサイトメトリー等の抗体抗原反応を利用した方法を利用して検出できる。具体例として、前記結合物と前記結合対象物との結合は、例えば、前記結合対象物を発現する細胞と、標識化した結合物とを接触後、前記細胞において、標識を検出することにより検出できる。 In the present invention, “capable of binding” may mean that an antibody or the like, which is a binding substance, actually binds to a binding target that is bound to the binding substance, or a molecular docking method or the like is used. The former may be used in the simulation, but the former is preferable. The binding between the binding substance and the binding target can be detected, for example, by using an analysis method of protein-protein interaction, and for example, antibody-antigen reaction such as co-immunoprecipitation, pull-down assay, ELISA method, flow cytometry, etc. It can be detected using the method used. As a specific example, the binding between the binding product and the binding target is detected by, for example, contacting a cell expressing the binding target with a labeled binding product, and then detecting a label in the cell. it can.
 本発明において、前記免疫グロブリンは、抗体でもよいし、その抗原結合断片でもよいが、好ましくは、定常領域(Fc領域)を含む抗体またはその抗原結合断片であり、生体における安定性が高いことから、より好ましくは、抗体である。前記免疫グロブリンは、例えば、可溶型免疫グロブリンということもできる。以下、特に言及しない限り、本発明の複合体化タンパク質の結合対象である抗体またはその抗原結合断片について、「抗体等」ともいう。前記抗体等の結合対象は、特に制限されず、任意の抗原とできる。前記抗体等は、例えば、1つまたは複数の抗原に結合可能である。後者の場合、前記抗体等は、例えば、二重特異性抗体等の多重特異性抗体またはその抗原結合断片ということもできる。前記抗体の種類は、例えば、IgA、IgD、IgE、IgG、またはIgMがあげられる。IgAは、例えば、IgA1またはIgA2があげられる。IgGは、例えば、IgG1、IgG2、IgG3、またはIgG4があげられる。前記抗原結合断片は、例えば、前記抗体の一部、より具体的には、前記抗体の結合領域または可変領域を含むポリペプチドである。前記抗原結合断片は、例えば、Fab、Fab’、F(ab’)2、Fv断片、rIgG(半IgG)断片、一本鎖抗体(scFv)、二重可変ドメイン抗体(DVD-Ig(商標))、ダイアボディ(diabody)、トリアボディ(triabody)、テトラボディ(tetrabody)、タンダブ(tanda)、scFvとダイアボディとの組合せであるフレキシボディ(flexibody)、タンデム(tandem)scFv(例えば、BiTE(登録商標)、Micromet社),DART(登録商標)(MacroGenics社)、Fcab(商標)またはmAb(商標)(F-star社)、Fc engineering抗体(Xencor社)またはDuoBody(登録商標)(Genmab社)等があげられる。前記免疫グロブリンは、公知の免疫グロブリン、すなわち、公知の抗体またはその抗原結合断片を用いてもよいし、任意の抗原を免疫することにより得られる、新たな抗体またはその抗原結合断片を用いてもよい。 In the present invention, the immunoglobulin may be an antibody or an antigen-binding fragment thereof, but is preferably an antibody containing a constant region (Fc region) or an antigen-binding fragment thereof, since it has high stability in vivo. , And more preferably an antibody. The immunoglobulin can also be referred to as a soluble immunoglobulin, for example. Hereinafter, unless otherwise specified, the antibody or antigen-binding fragment thereof to which the complexed protein of the present invention is bound is also referred to as “antibody or the like”. The binding target such as the antibody is not particularly limited and can be any antigen. The antibody or the like can bind to, for example, one or more antigens. In the latter case, the antibody and the like can be referred to as, for example, a multispecific antibody such as a bispecific antibody or an antigen-binding fragment thereof. Examples of the type of the antibody include IgA, IgD, IgE, IgG, or IgM. Examples of IgA include IgA1 and IgA2. Examples of IgG include IgG1, IgG2, IgG3, and IgG4. The antigen-binding fragment is, for example, a part of the antibody, more specifically, a polypeptide containing the binding region or the variable region of the antibody. Examples of the antigen-binding fragment include Fab, Fab′, F(ab′)2, Fv fragment, rIgG (half IgG) fragment, single chain antibody (scFv), and double variable domain antibody (DVD-Ig™). ), diabody, triabody, tetrabody, tanda, flexibody which is a combination of scFv and diabody, tandem scFv (for example, BiTE (Registered trademark), Micromet), DART (trademark) (MacroGenics), Fcab (trademark) or mAb 2 (trademark) (F-star), Fc engineering antibody (Xencor) or DuoBody (trademark) (Genmab). Company) etc. As the immunoglobulin, a known immunoglobulin, that is, a known antibody or an antigen-binding fragment thereof may be used, or a new antibody or an antigen-binding fragment thereof obtained by immunizing with an arbitrary antigen may be used. Good.
 前記抗体等の由来は、特に制限されず、例えば、ヒトまたは非ヒト動物があげられる。前記非ヒト動物は、例えば、マウス、ラット、イヌ、サル、ウサギ、ヒツジ、ウマ、ブタ等の哺乳類;ニワトリ、エミュー等の鳥類;等があげられる。前記抗体等は、例えば、複数の動物に由来してもよい。すなわち、前記抗体等は、キメラ抗体またはその抗原結合断片でもよいし、ヒト化抗体またはその抗原結合断片でもよい。 The origin of the antibody and the like is not particularly limited, and examples thereof include human and non-human animals. Examples of the non-human animals include mammals such as mice, rats, dogs, monkeys, rabbits, sheep, horses and pigs; birds such as chicken and Emu; and the like. The antibody and the like may be derived from a plurality of animals, for example. That is, the antibody or the like may be a chimeric antibody or an antigen-binding fragment thereof, or a humanized antibody or an antigen-binding fragment thereof.
 前記第1の結合ドメインは、前記免疫グロブリン(抗体等)に結合可能であればよい。前記抗体等における第1の結合ドメインの結合位置、すなわち、前記抗体等における第1の結合ドメインのエピトープの位置は、特に制限されず、前記抗体等と、前記抗体等の抗原との結合を阻害しない範囲で、任意に設定できる。前記第1の結合ドメインは、例えば、前記抗体等における結合領域または可変領域以外の領域内にエピトープを有し、好ましくは、定常(Fc)領域内にエピトープを有する。前記Fc領域は、重鎖のFc領域でもよいし、軽鎖のFc領域でもよい。前記重鎖のFc領域は、例えば、CH1領域、CH2領域、またはCH3領域があげられる。前記軽鎖のFc領域は、例えば、CL領域があげられる。前記第1の結合ドメインは、例えば、抗体を介した補体活性または細胞傷害活性の低下を抑制できることから、前記免疫グロブリンにおけるFc受容体の結合領域以外の領域内にエピトープを有することが好ましく、具体例として、CH1領域またはCH3領域があげられる。前記抗体等がIgGまたはその抗原結合断片の場合、前記第1の結合ドメインは、例えば、Fc領域のEUナンバリングで表される部位のうち232~236位以外の領域内にエピトープを有し、好ましくは、237~447位、237~340位、341~447位、250~447位、260~447位、270~447位、280~447位、290~447位、300~447位、310~447位、320~447位、330~447位、340~447位、350~447位、360~447位、370~447位、380~447位、390~447位、400~447位、410~447位、420~447位、または430~447位の領域内にエピトープを有する。前記EUナンバリングは、下記参考文献1に準じて決定できる。
参考文献1:Edelman, G.M. et al., Proc. Natl. Acad. USA, 63, 78-85 (1969)
The first binding domain only needs to be able to bind to the immunoglobulin (antibody or the like). The binding position of the first binding domain in the antibody or the like, that is, the position of the epitope of the first binding domain in the antibody or the like is not particularly limited and inhibits the binding between the antibody and the antigen such as the antibody. It can be set arbitrarily within the range that does not. The first binding domain has, for example, an epitope in a region other than the binding region or the variable region of the antibody or the like, and preferably has a constant (Fc) region. The Fc region may be a heavy chain Fc region or a light chain Fc region. Examples of the Fc region of the heavy chain include CH1 region, CH2 region, or CH3 region. Examples of the Fc region of the light chain include CL region. The first binding domain preferably has an epitope in a region other than the binding region of the Fc receptor in the immunoglobulin, since it can suppress a decrease in complement activity or cytotoxic activity mediated by an antibody, for example. A specific example is the CH1 region or CH3 region. When the antibody or the like is IgG or an antigen-binding fragment thereof, the first binding domain has, for example, an epitope in a region other than positions 232 to 236 in the region represented by EU numbering of the Fc region, Is 237-447th, 237-340th, 341-447th, 250-447th, 260-447th, 270-447th, 280-447th, 290-447th, 300-447th, 310-447th Position, 320-447th, 330-447th, 340-447th, 350-447th, 360-447th, 370-447th, 380-447th, 390-447th, 400-447th, 410-447th Position, 420-447, or 430-447. The EU numbering can be determined according to Reference Document 1 below.
Reference 1: Edelman, GM et al., Proc. Natl. Acad. USA, 63, 78-85 (1969).
 前記免疫グロブリンにおけるFc受容体の結合領域は、例えば、NK細胞が抗体依存性細胞傷害(ADCC)活性を示す際に、そのFc受容体を介して結合する領域である。前記免疫グロブリンにおけるFc受容体の結合領域以外の領域は、例えば、Fc領域において、NK細胞のADCC活性を阻害しない領域ということもできる。また、前記免疫グロブリンにおけるFc受容体の結合領域以外の領域は、例えば、NK細胞のADCC活性が、抑制されるか否かを指標に検討できる。具体例として、抗体と、前記抗体が結合する抗原を発現する細胞(標的細胞)と、対象の第1の結合ドメインを有する複合体化タンパク質と、NK細胞とを共存して培養した際に示すNK細胞の傷害活性が、抗体と、前記抗体が結合する抗原を発現する細胞(標的細胞)と、NK細胞とを共存して培養した際に示すNK細胞の傷害活性を基準として、有意差がない場合、前記複合体化タンパク質における対象の第1の結合ドメインは、前記免疫グロブリンにおけるFc受容体の結合領域以外の領域に結合しているといえる。前記免疫グロブリンにおけるFc受容体の結合領域は、例えば、Fc領域のEUナンバリングで表される部位のうち、233~237位(ELLGG)、239位(S)、265位(D)、269位(E)、294位(E)、296~298位(YNS)、328位(L)および329位(P)である。前記標的細胞の数およびNK細胞の数、ならびに培養条件は、例えば、後述の実施例に準じて設定できる。 The Fc receptor binding region of the immunoglobulin is, for example, a region that binds via the Fc receptor when NK cells exhibit antibody-dependent cellular cytotoxicity (ADCC) activity. The region of the immunoglobulin other than the Fc receptor binding region can be referred to as a region in the Fc region that does not inhibit NK cell ADCC activity. In addition, the region of the immunoglobulin other than the Fc receptor binding region can be examined using, for example, whether or not the ADCC activity of NK cells is suppressed. As a specific example, it is shown when an antibody, a cell expressing an antigen to which the antibody binds (target cell), a complexed protein having a first binding domain of interest, and NK cells are co-cultured. The NK cell cytotoxicity is significantly different from the NK cell cytotoxicity shown when the antibody, cells expressing the antigen to which the antibody binds (target cells), and NK cells are co-cultured. If not, it can be said that the first binding domain of interest in the complexed protein binds to a region of the immunoglobulin other than the Fc receptor binding region. The binding region of the Fc receptor in the immunoglobulin is, for example, among the regions represented by EU numbering of the Fc region, positions 233 to 237 (ELLGG), 239 (S), 265 (D), 269 ( E), 294th (E), 296-298th (YNS), 328th (L) and 329th (P). The number of target cells and the number of NK cells, and the culture conditions can be set, for example, according to the examples described below.
 前記第1の結合ドメインは、前述のように、免疫グロブリンに結合可能であればよく、例えば、免疫グロブリンに結合可能なポリペプチドの構造を採用できる。具体例として、前記第1の結合ドメインは、例えば、前記抗体等に結合する受容体、前記抗体等に結合する、抗体またはその抗原結合断片があげられる。本発明において「結合」は、例えば、測定対象の抗体等と抗原とを接触後、得られた複合体をフローサイトメトリーで測定した際に、前記抗原と結合しないコントロールの抗体と比較して、有意に蛍光強度が上昇していることを意味する。 As described above, the first binding domain only needs to be able to bind to an immunoglobulin, and for example, the structure of a polypeptide capable of binding to an immunoglobulin can be adopted. Specific examples of the first binding domain include a receptor that binds to the antibody and the like, and an antibody or an antigen-binding fragment thereof that binds to the antibody and the like. In the present invention, “binding” refers to, for example, contacting an antibody or the like to be measured with an antigen, and then measuring the resulting complex by flow cytometry, as compared with a control antibody that does not bind to the antigen, This means that the fluorescence intensity is significantly increased.
 前記第1の結合ドメインが抗体等に結合する受容体の場合、前記第1の結合ドメインは、例えば、Fc受容体があげられる。前記Fc受容体の種類は、特に制限されず、例えば、前記免疫グロブリンの種類に応じて適宜設定できる。前記Fc受容体は、例えば、FcαRI(CD89)、Fcα/μR等のFcαR;FcεRI等のFcεR;FcγRIa(CD64)、FcγRIIa(CD32)、FcγRIIb1(CD32)、FcγRIIb2(CD32)、FcγRIIIa(CD16)、FcγRIIIbのFcγR;Fcα/μR等のFcμR;FcRn(neonatal Fc receptor);等があげられる。前記免疫グロブリンがIgGの場合、前記Fc受容体は、例えば、FcγR等があげられる。前記第1の結合ドメインは、前記Fc受容体の全アミノ酸配列からなるポリペプチドでもよいし、その部分配列からなるポリペプチドでもよい。後者の場合、前記部分配列からなるポリペプチドは、前記免疫グロブリンに結合可能である、すなわち、前記Fc受容体のリガンド結合ドメインを含む。 When the first binding domain is a receptor that binds to an antibody or the like, the first binding domain may be, for example, an Fc receptor. The type of the Fc receptor is not particularly limited and can be appropriately set depending on, for example, the type of the immunoglobulin. The Fc receptor includes, for example, FcαR (CD89), FcαR such as Fcα/μR; FcεR such as FcεRI; FcγRIa (CD64), FcγRIIa (CD32), FcγRIIb1 (CD32), FcγRIIb2 (CD32), FcγRIIIa (CD16), FcγR of FcγRIIIb; FcμR such as Fcα/μR; FcRn (neonatal Fc receptor); and the like. When the immunoglobulin is IgG, the Fc receptor is, for example, FcγR. The first binding domain may be a polypeptide consisting of the entire amino acid sequence of the Fc receptor or a partial sequence thereof. In the latter case, the polypeptide consisting of said subsequence is capable of binding to said immunoglobulin, ie comprises the ligand binding domain of said Fc receptor.
 前記第1の結合ドメインが抗体等に結合する、抗体またはその抗原結合断片である場合、前記第1の結合ドメインは、前述の抗体またはその抗原結合断片と同様の構造を採用でき、例えば、重鎖可変領域および軽鎖可変領域を有する。以下、前記第1の結合ドメインの重鎖可変領域および軽鎖可変領域を、それぞれ、第1の重鎖可変領域および第1の軽鎖可変領域ともいう。前記第1の重鎖可変領域および前記第1の軽鎖可変領域は、抗体分子における重鎖可変領域および軽鎖可変領域と同様の構造を有する。一般に、抗体分子の重鎖可変領域および軽鎖可変領域は、それぞれ、3ヶ所の相補性決定領域(CDR:Complemetarity determining region)を有している。CDRは、超可変領域(hypervariable domain)ともいう。CDRは、前記重鎖および軽鎖の可変領域でも、特に一次構造の変異性が高い領域であり、一次構造上において、通常、3ヶ所に分離している。本発明において、重鎖可変領域における3ヶ所のCDRを、重鎖可変領域のアミノ酸配列におけるアミノ末端(N末端)側から、重鎖CDR1(CDRH1)、重鎖CDR2(CDRH2)、および重鎖CDR3(CDRH3)と表し、軽鎖可変領域における3ヶ所のCDRを、軽鎖可変領域のアミノ酸配列におけるアミノ末端側から、軽鎖CDR1(CDRL1)、軽鎖CDR2(CDRL2)、および軽鎖CDR3(CDRL3)と表す。これらの部位は、立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。前記抗原結合断片は、前述の説明を援用できる。前記第1の結合ドメインは、scFvを含むことが好ましい、すなわち、前記免疫グロブリンに結合可能なscFvを含むことが好ましい。前記scFvは、例えば、重鎖可変領域と、軽鎖可変領域とをリンカーペプチドで連結することにより調製できる。前記リンカーペプチドのアミノ酸配列は、特に制限されない。 When the first binding domain is an antibody or an antigen-binding fragment thereof that binds to an antibody or the like, the first binding domain can adopt a structure similar to that of the antibody or the antigen-binding fragment thereof described above. It has a chain variable region and a light chain variable region. Hereinafter, the heavy chain variable region and the light chain variable region of the first binding domain are also referred to as the first heavy chain variable region and the first light chain variable region, respectively. The first heavy chain variable region and the first light chain variable region have the same structure as the heavy chain variable region and the light chain variable region in the antibody molecule. Generally, the heavy chain variable region and the light chain variable region of an antibody molecule each have three complementarity determining regions (CDRs). CDR is also called a hypervariable domain. Even in the variable regions of the heavy chain and the light chain, CDR is a region in which the primary structure has particularly high variability, and it is usually separated at three positions on the primary structure. In the present invention, three CDRs in the heavy chain variable region are determined from the amino terminal (N-terminal) side in the amino acid sequence of the heavy chain variable region, heavy chain CDR1 (CDRH1), heavy chain CDR2 (CDRH2), and heavy chain CDR3. (CDRH3), and the three CDRs in the light chain variable region are represented by the light chain CDR1 (CDRL1), the light chain CDR2 (CDRL2), and the light chain CDR3 (CDRL3 from the amino-terminal side in the amino acid sequence of the light chain variable region. ). These sites are conformationally close to each other and determine their specificity for binding antigen. The above description can be applied to the antigen-binding fragment. The first binding domain preferably comprises an scFv, ie an scFv capable of binding the immunoglobulin. The scFv can be prepared, for example, by linking the heavy chain variable region and the light chain variable region with a linker peptide. The amino acid sequence of the linker peptide is not particularly limited.
 前記第1の結合ドメインが前記第1の重鎖可変領域および第1の軽鎖可変領域を有する場合、前記第1の重鎖可変領域および第1の軽鎖可変領域は、例えば、前記抗体等に結合する抗体の重鎖可変領域および軽鎖可変領域に由来してもよいし、前記抗体等で免疫し、得られた抗体等に結合可能な抗体の重鎖可変領域および軽鎖可変領域に由来してもよいし、ファージディスプレイ等のスクリーニング方法により得られた、抗体等に結合可能な抗体の重鎖可変領域および軽鎖可変領域に由来してもよい。 When the first binding domain has the first heavy chain variable region and the first light chain variable region, the first heavy chain variable region and the first light chain variable region are, for example, the antibody and the like. May be derived from the heavy chain variable region and the light chain variable region of the antibody that binds to, or the heavy chain variable region and the light chain variable region of the antibody capable of binding to the obtained antibody etc. It may be derived, or may be derived from the heavy chain variable region and the light chain variable region of an antibody capable of binding to an antibody etc. obtained by a screening method such as phage display.
 抗体の抗原に対する結合性には、前述のように、重鎖可変領域および軽鎖可変領域における相補性決定領域(CDR)が重要である。このため、前記第1の重鎖可変領域のCDRH1、CDRH2、およびCDRH3は、それぞれ、前記抗体等に結合する抗体の重鎖可変領域のCDRH1、CDRH2、およびCDRH3のアミノ酸配列からなるポリペプチドでもよいし、前記抗体等に結合する抗体の重鎖可変領域のCDRH1、CDRH2、およびCDRH3のアミノ酸配列を含むポリペプチドでもよい。また、前記第1の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3は、それぞれ、前記抗体等に結合する抗体の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3のアミノ酸配列からなるポリペプチドでもよいし、前記抗体等に結合する抗体の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3のアミノ酸配列を含むポリペプチドでもよい。 As described above, the complementarity determining regions (CDRs) in the heavy chain variable region and the light chain variable region are important for the binding of the antibody to the antigen. Therefore, the CDRH1, CDRH2, and CDRH3 of the first heavy chain variable region may be polypeptides each consisting of the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the antibody or the like. However, it may be a polypeptide containing the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the above-mentioned antibody or the like. Further, CDRL1, CDRL2, and CDRL3 of the first light chain variable region may each be a polypeptide comprising the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of the antibody that binds to the antibody or the like. Alternatively, it may be a polypeptide containing the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of an antibody that binds to the above-mentioned antibody or the like.
 前記第1の重鎖可変領域において、CDRH1、CDRH2、およびCDRH3以外の領域、すなわち、フレームワーク領域(FR)は、例えば、前記抗体等に結合する抗体における重鎖可変領域のFRを含んでもよい。前記FRは、一次構造上において、通常、4ヶ所に分離している。本発明において、前記重鎖可変領域における4ヶ所のFRを、前記重鎖可変領域のアミノ酸配列におけるN末端側から、重鎖FR1(FRH1)、重鎖FR2(FRH2)、重鎖FR3(FRH3)、および重鎖FR4(FRH4)と表す。なお、前記各CDRHと、前記各FRHとは、例えば、前記重鎖可変領域のアミノ酸配列におけるN末端側から、FRH1、CDRH1、FRH2、CDRH2、FRH3、CDRH3、およびFRH4の順序で配置されている。前記第1の重鎖可変領域におけるFRH1、FRH2、FRH3、およびFRH4は、例えば、それぞれ、前記抗体等に結合する抗体のFRH1、FRH2、FRH3、およびFRH4のアミノ酸配列からなるポリペプチドでもよいし、前記抗体等に結合する抗体のFRH1、FRH2、FRH3、およびFRH4のアミノ酸配列を含むポリペプチドでもよい。前記各CDRHの説明における「抗体等に結合する抗体」と、前記各FRHの説明における「抗体等に結合する抗体」とは、同じ抗体等であることが好ましい。 In the first heavy chain variable region, the region other than CDRH1, CDRH2, and CDRH3, that is, the framework region (FR) may include, for example, the FR of the heavy chain variable region in the antibody that binds to the antibody or the like. .. The FRs are usually separated in four places on the primary structure. In the present invention, four FRs in the heavy chain variable region are labeled from the N-terminal side in the amino acid sequence of the heavy chain variable region to heavy chain FR1 (FRH1), heavy chain FR2 (FRH2), heavy chain FR3 (FRH3) , And heavy chain FR4 (FRH4). The CDRHs and the FRHs are arranged in the order of FRH1, CDRH1, FRH2, CDRH2, FRH3, CDRH3, and FRH4 from the N-terminal side in the amino acid sequence of the heavy chain variable region. .. FRH1, FRH2, FRH3, and FRH4 in the first heavy chain variable region may be, for example, a polypeptide consisting of the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the antibody or the like, respectively, It may be a polypeptide containing the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the above-mentioned antibody or the like. The “antibody that binds to an antibody or the like” in the description of each CDRH and the “antibody that binds to an antibody or the like” in the description of each FRH are preferably the same antibody and the like.
 前記第1の軽鎖可変領域において、CDRL1、CDRL2、およびCDRL3以外の領域、すなわち、フレームワーク領域(FR)は、例えば、前記抗体等に結合する抗体における軽鎖可変領域のFRを含んでもよい。前記FRは、一次構造上において、通常、4ヶ所に分離している。本発明において、前記軽鎖可変領域における4ヶ所のFRを、前記軽鎖可変領域のアミノ酸配列におけるN末端側から、軽鎖FR1(FRL1)、軽鎖FR2(FRL2)、軽鎖FR3(FRL3)、および軽鎖FR4(FRL4)と表す。なお、前記各CDRLと、前記各FRLとは、例えば、前記軽鎖可変領域のアミノ酸配列におけるN末端側から、FRL1、CDRL1、FRL2、CDRL2、FRL3、CDRL3、およびFRL4の順序で配置されている。前記第1の軽鎖可変領域におけるFRL1、FRL2、FRL3、およびFRL4は、例えば、それぞれ、前記抗体等に結合する抗体のFRL1、FRL2、FRL3、およびFRL4のアミノ酸配列からなるポリペプチドでもよいし、前記抗体等に結合する抗体のFRL1、FRL2、FRL3、およびFRL4のアミノ酸配列を含むポリペプチドでもよい。前記各CDRLの説明における「抗体等に結合する抗体」と、前記各FRLの説明における「抗体等に結合する抗体」とは、同じ抗体等であることが好ましい。また、前記各CDRHの説明における「抗体等に結合する抗体」と、前記各CDRLの説明における「抗体等に結合する抗体」とは、同じ抗体等であることが好ましい。 In the first light chain variable region, the region other than CDRL1, CDRL2, and CDRL3, that is, the framework region (FR) may include, for example, the FR of the light chain variable region in the antibody that binds to the antibody or the like. .. The FRs are usually separated in four places on the primary structure. In the present invention, four FRs in the light chain variable region are labeled from the N-terminal side in the amino acid sequence of the light chain variable region, ie, light chain FR1 (FRL1), light chain FR2 (FRL2), light chain FR3 (FRL3). , And light chain FR4 (FRL4). The CDRLs and the FRLs are arranged, for example, in the order of FRL1, CDRL1, FRL2, CDRL2, FRL3, CDRL3, and FRL4 from the N-terminal side in the amino acid sequence of the light chain variable region. .. FRL1, FRL2, FRL3, and FRL4 in the first light chain variable region may be, for example, polypeptides each comprising the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the antibody or the like, It may be a polypeptide containing the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the antibody or the like. The “antibody that binds to an antibody or the like” in the description of each CDRL and the “antibody that binds to an antibody or the like” in the description of each FRL are preferably the same antibody and the like. In addition, the “antibody that binds to an antibody or the like” in the description of each CDRH and the “antibody that binds to an antibody or the like” in the description of each CDRL are preferably the same antibody and the like.
 前記抗体等に結合する抗体は、特に制限されず、例えば、抗体等の種類に応じて適宜選択できる。前記抗体等に結合する抗体は、公知の抗体等に結合する抗体でもよいし、前記抗体等で免疫し、得られた抗体等に結合可能な抗体でもよい。前記抗体がヒトIgGの場合、ヒトIgGに結合する抗体は、例えば、下記参考文献2および参考文献3に記載されている抗体があげられる。具体例として、前記抗体がヒトIgGの場合、ヒトIgGに結合する抗体(クローン名)は、例えば、HP6017、HP6000、HP6018、HP6043、HP6052、HP6064、HP6065、HP6087、HP6092、HP6044、HP6046、HP6063等があげられる。前記各種クローンの抗体を産生するハイブリドーマは、例えば、American Type Culture Collection (ATCC)等の寄託機関から入手できる。
参考文献2:Jefferis, R et.al., “Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study.”, Immunol Lett., 1985, volume 10, Issues 3-4, pages 223-52
参考文献3: Reimer CB et.al, “Evaluation of thirty-one mouse monoclonal antibodies to human IgG epitopes.”, Hybridoma., 1984, volume 3, Isuue 3, pages 263-75
The antibody that binds to the antibody or the like is not particularly limited and can be appropriately selected depending on the type of the antibody or the like. The antibody that binds to the antibody or the like may be an antibody that binds to a known antibody or the like, or an antibody capable of binding to the antibody or the like obtained by immunizing with the antibody or the like. When the antibody is human IgG, examples of the antibody that binds to human IgG include the antibodies described in References 2 and 3 below. As a specific example, when the antibody is human IgG, the antibody (clone name) that binds to human IgG is, for example, HP6017, HP6000, HP6018, HP6043, HP6052, HP6064, HP6065, HP6087, HP6092, HP6044, HP6046, HP6063, etc. Can be given. Hybridomas producing antibodies of the various clones can be obtained from depository institutions such as American Type Culture Collection (ATCC).
Reference 2: Jefferis, R et.al., “Evaluation of monoclonal antibodies having specificity for human IgG sub-classes: results of an IUIS/WHO collaborative study.”, Immunol Lett., 1985, volume 10, Issues 3-4 , pages 223-52
Reference 3: Reimer CB et.al, “Evaluation of thirty-one mouse monoclonal antibodies to human IgG epitopes.”, Hybridoma., 1984, volume 3, Issue 3, pages 263-75.
 前記抗体等がヒトIgGの場合、前記第1の結合ドメインは、例えば、ヒトIgG抗体と抗体複合体を形成した際に、前記抗体複合体にFcγ受容体を介してヒトNK細胞が結合し、前記ヒトNK細胞がADCC活性を発揮可能であることから、下記第1の重鎖可変領域および第1の軽鎖可変領域を含むことが好ましい。
(第1の重鎖可変領域)
CDRH1、CDRH2、およびCDRH3を含み、
 CDRH1が、下記(H1-A)のアミノ酸配列を含むポリペプチドであり、
 CDRH2が、下記(H2-A)のアミノ酸配列を含むポリペプチドであり、
 CDRH3が、下記(H3-A)のアミノ酸配列を含むポリペプチドである。
(第1の軽鎖可変領域)
CDRL1、CDRL2、およびCDRL3を含み、
 CDRL1が、下記(L1-A)のアミノ酸配列を含むポリペプチドであり、
 CDRL2が、下記(L2-A)のアミノ酸配列を含むポリペプチドであり、
 CDRL3が、下記(L3-A)のアミノ酸配列を含むポリペプチドである。
When the antibody or the like is human IgG, the first binding domain is, for example, when an antibody complex is formed with a human IgG antibody, human NK cells bind to the antibody complex via an Fcγ receptor, Since the human NK cells can exhibit ADCC activity, it preferably contains the following first heavy chain variable region and first light chain variable region.
(First heavy chain variable region)
Including CDRH1, CDRH2, and CDRH3,
CDRH1 is a polypeptide containing the following amino acid sequence (H1-A),
CDRH2 is a polypeptide containing the following amino acid sequence (H2-A),
CDRH3 is a polypeptide containing the amino acid sequence of (H3-A) below.
(First light chain variable region)
Includes CDRL1, CDRL2, and CDRL3,
CDRL1 is a polypeptide containing the following amino acid sequence (L1-A),
CDRL2 is a polypeptide containing the amino acid sequence of (L2-A) below,
CDRL3 is a polypeptide containing the following (L3-A) amino acid sequence.
(H1-A)下記(H1-A1)、(H1-A2)または(H1-A3)のアミノ酸配列
(H1-A1)配列番号1(GYTFTNYW)のアミノ酸配列
(H1-A2)配列番号1のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H1-A3)配列番号1のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H2-A)下記(H2-A1)、(H2-A2)または(H2-A3)のアミノ酸配列
(H2-A1)配列番号2(IYPGGGIT)のアミノ酸配列
(H2-A2)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H2-A3)配列番号2のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H3-A)下記(H3-A1)、(H3-A2)または(H3-A3)のアミノ酸配列
(H3-A1)配列番号3(SRSYGKYFDY)のアミノ酸配列
(H3-A2)配列番号3のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H3-A3)配列番号3のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H1-A) The following (H1-A1), (H1-A2) or (H1-A3) amino acid sequence (H1-A1) SEQ ID NO: 1 (GYTFTNYW) amino acid sequence (H1-A2) SEQ ID NO: 1 Amino acid sequence having 80% or more identity to the sequence (H1-A3) In the amino acid sequence of SEQ ID NO: 1, one or several amino acids are deleted, substituted, inserted and/or added (H2-A) Amino acid sequence of (H2-A1), (H2-A2) or (H2-A3) below (H2-A1) SEQ ID NO: 2 (IYPGGGIT) (H2-A2) Amino acid of SEQ ID NO: 2 Amino acid sequence having 80% or more identity to the sequence (H2-A3) In the amino acid sequence of SEQ ID NO: 2, one or several amino acids are deleted, substituted, inserted and/or added (H3-A) Amino acid sequence of (H3-A1), (H3-A2) or (H3-A3) below (H3-A1) SEQ ID NO: 3 (SRSYGKYFDY) (H3-A2) Amino acid of SEQ ID NO: 3 Amino acid sequence having 80% or more identity to the sequence (H3-A3) In the amino acid sequence of SEQ ID NO: 3, one or several amino acids have been deleted, substituted, inserted and/or added
(L1-A)下記(L1-A1)、(L1-A2)または(L1-A3)のアミノ酸配列
(L1-A1)配列番号4(QDIKSY)のアミノ酸配列
(L1-A2)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L1-A3)配列番号4のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L2-A)下記(L2-A1)、(L2-A2)または(L2-A3)のアミノ酸配列
(L2-A1)配列番号5(YST)のアミノ酸配列
(L2-A2)配列番号5のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L2-A3)配列番号5のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L3-A)下記(L3-A1)、(L3-A2)または(L3-A3)のアミノ酸配列
(L3-A1)配列番号6(LQHDESPFT)のアミノ酸配列
(L3-A2)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L3-A3)配列番号6のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
(L1-A) Amino acid sequence of the following (L1-A1), (L1-A2) or (L1-A3) (L1-A1) SEQ ID NO: 4 (QDIKSY) (L1-A2) Amino acid of SEQ ID NO: 4 Amino acid sequence having 80% or more identity to the sequence (L1-A3) In the amino acid sequence of SEQ ID NO: 4, one or several amino acids are deleted, substituted, inserted and/or added (L2-A) The following (L2-A1), (L2-A2) or (L2-A3) amino acid sequence (L2-A1) SEQ ID NO:5 (YST) amino acid sequence (L2-A2) SEQ ID NO:5 amino acid Amino acid sequence having 80% or more identity to the sequence (L2-A3) SEQ ID NO: 5 amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added (L3-A) Amino acid sequence of the following (L3-A1), (L3-A2) or (L3-A3) (L3-A1) SEQ ID NO:6 (LQHDESPFT) (L3-A2) Amino acid of SEQ ID NO:6 Amino acid sequence having 80% or more identity to the sequence (L3-A3) In the amino acid sequence of SEQ ID NO: 6, one or several amino acids are deleted, substituted, inserted and/or added ..
 前記各CDRにおいて、「同一性」は、例えば、比較する配列同士を適切にアライメントしたときの同一性の程度であり、前記配列間のアミノ酸の正確な一致の出現率(%)を意味する。前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。前記同一性は、例えば、BLAST、FASTA等の解析ソフトウェアを用いて、デフォルトのパラメータにより算出できる(以下、同様)。 In each of the CDRs, “identity” is, for example, the degree of identity when the sequences to be compared are properly aligned, and means the occurrence rate (%) of exact matches of amino acids between the sequences. The “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, respectively. Is. The identity can be calculated with default parameters using analysis software such as BLAST and FASTA (the same applies hereinafter).
 前記各CDRにおいて、置換等に関する「1個または数個」は、それぞれ、例えば、1~10個、1~7個、1~5個、1~4個、1~3個、1または2個、1個である。 In each of the CDRs, “1 or several” regarding substitution and the like means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 4, 1 to 3, 1 or 2 It is one.
 前記アミノ酸の置換は、例えば、保存的置換であってもよい(以下、同様)。前記保存的置換は、タンパク質の機能を実質的に改変しないように、1個または数個のアミノ酸を、他のアミノ酸および/またはアミノ酸誘導体に置換することを意味する。「置換するアミノ酸」と「置換されるアミノ酸」とは、例えば、性質および/または機能が類似していることが好ましい。具体的には、例えば、疎水性および親水性の指標(ハイドロパシー)、極性、電荷等の化学的性質、または、二次構造等の物理的性質等が類似していることが好ましい。前記性質および/または機能が類似するアミノ酸またはアミノ酸誘導体は、例えば、当該技術分野において公知である。具体例として、非極性アミノ酸(疎水性アミノ酸)は、例えば、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニン等があげられ、極性アミノ酸(中性アミノ酸)は、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システイン等があげられ、陽電荷を有するアミノ酸(塩基性アミノ)酸は、アルギニン、ヒスチジン、リジン等があげられ、負電荷を有するアミノ酸(酸性アミノ酸)は、アスパラギン酸、グルタミン酸等があげられる。 The substitution of the amino acid may be, for example, a conservative substitution (hereinafter the same). The conservative substitution means substituting one or several amino acids with other amino acids and/or amino acid derivatives so that the function of the protein is not substantially changed. It is preferable that the “substituted amino acid” and the “substituted amino acid” have similar properties and/or functions, for example. Specifically, for example, it is preferable that the hydrophobic and hydrophilic indices (hydropathy), chemical properties such as polarity and charge, or physical properties such as secondary structure are similar. Amino acids or amino acid derivatives having similar properties and/or functions are known in the art, for example. Specific examples include non-polar amino acids (hydrophobic amino acids) such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine. Polar amino acids (neutral amino acids) include glycine, serine, and threonine. , Tyrosine, glutamine, asparagine, cysteine, etc., positively charged amino acids (basic amino) acids include arginine, histidine, lysine, etc., negatively charged amino acids (acidic amino acids) include aspartic acid, Examples thereof include glutamic acid.
 前記第1の重鎖可変領域は、例えば、下記(H-A)のアミノ酸配列からなるポリペプチドを含むことが好ましい。また、前記第2の軽鎖可変領域は、例えば、下記(L-A)のアミノ酸配列からなるポリペプチドを含むことが好ましい。 The first heavy chain variable region preferably contains, for example, a polypeptide consisting of the following (H-A) amino acid sequence. The second light chain variable region preferably contains, for example, a polypeptide having the following amino acid sequence (LA).
(H-A)下記(H-A1)、(H-A2)または(H-A3)のアミノ酸配列
(H-A1)配列番号13のアミノ酸配列
配列番号13:QVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSS
(H-A2)配列番号13のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H-A3)配列番号13のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(HA) following (H-A1), (H -A2) or (H-A3) of the amino acid sequence (H-A1) SEQ ID NO: 13 amino acid sequence SEQ ID NO 13: QVQLQQPGAELVKPGASVKMSCKAS GYTFTNYW INWVKQRPGQGLEWIGD IYPGGGIT NYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYC SRSYGKYFDY WGQGTTLIVSS
(H-A2) Amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 13 (H-A3) In the amino acid sequence of SEQ ID NO: 13, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
(L-A)下記(L-A1)、(L-A2)または(L-A3)のアミノ酸配列
(L-A1)配列番号14のアミノ酸配列
配列番号14:DIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIK
(L-A2)配列番号14のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L-A3)配列番号14のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(LA) the following (L-A1), (L -A2) or (L-A3) of the amino acid sequence (L-A1) SEQ ID NO: 14 amino acid sequence SEQ ID NO 14: DIKMTQSPSSMYASVGERVTITCKAS QDIKSY LTWYQKKPWKSPRTLIF YST RLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYC LQHDESPFT FGGGTKLEIK
(L-A2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 14 (L-A3) In the amino acid sequence of SEQ ID NO: 14, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
 前記(H-A1)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3の(H3-A1)のアミノ酸配列を含む配列である。前記(H-A2)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号13のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(H-A3)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号13のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (H-A1) amino acid sequence is, for example, a sequence including the (H1-A1) of CDRH1, the (H2-A1) of CDRH2, and the (H3-A1) of CDRH3. The amino acid sequence of (H-A2) includes, for example, the amino acid sequences of (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO: 13. The amino acid sequence may have an identity of 70% or more. The amino acid sequence of (H-A3) includes, for example, the amino acid sequences of CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO: 13. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
 前記(L-A1)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含む配列である。前記(L-A2)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号14のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(L-A3)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号14のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (L-A1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences. The amino acid sequence of (L-A2) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:14. It may be an amino acid sequence having 70% or more identity with the sequence. The amino acid sequence of (L-A3) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid of SEQ ID NO:14. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
 前記重鎖可変領域のアミノ酸配列および前記軽鎖可変領域のアミノ酸配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the amino acid sequence of the heavy chain variable region and the amino acid sequence of the light chain variable region, the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記重鎖可変領域のアミノ酸配列および前記軽鎖可変領域のアミノ酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~30個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the amino acid sequence of the heavy chain variable region and the amino acid sequence of the light chain variable region, “1 or several” regarding substitution and the like are, for example, 1 to 30, 1 to 20, 1 to 15, respectively. It is 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, 1.
 前記抗体等がヒトIgGの場合、前記第1の結合ドメインは、例えば、ヒトIgG抗体と抗体複合体を形成した際に、前記抗体複合体にFcγ受容体を介してヒトNK細胞が結合し、前記ヒトNK細胞がADCC活性を発揮可能であることから、下記第1のscFvのアミノ酸配列からなるポリペプチドを含むことが好ましい。下記(S-A2)および(S-A3)のアミノ酸配列からなるポリペプチドは、例えば、ヒトIgGに結合可能である。 When the antibody or the like is human IgG, the first binding domain is, for example, when an antibody complex is formed with a human IgG antibody, human NK cells bind to the antibody complex via an Fcγ receptor, Since the human NK cells can exhibit ADCC activity, it preferably contains a polypeptide comprising the amino acid sequence of the first scFv below. The polypeptides having the amino acid sequences of (S-A2) and (S-A3) below can bind to human IgG, for example.
(第1のscFv)
(S-A)下記(S-A1)、(S-A2)または(S-A3)のアミノ酸配列
(S-A1)配列番号15のアミノ酸配列
配列番号15:DIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSS
(S-A2)配列番号15のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(S-A3)配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(First scFv)
(SA) the following (S-A1), (S-A2) or (S-A3) of the amino acid sequence (S-A1) SEQ ID NO: 15 amino acid sequence SEQ ID NO 15: DiaikeiemutikyuesuPiesuesuemuwaieiesubuijiiarubuitiaitishikeieiesukyudiaikeiesuwaierutidaburyuwaikyukeikeiPidaburyukeiesuPiarutieruaiefuwaiesutiaruerueidijibuiPiesuaruefuesujiesujiesujikyudiefuesuerutiaiesuesueruiesudiditieitiwaiwaishierukyueichidiiesuPiefutiefujijijitikeieruiaikeijijijijiesujijijijiesujijijijiesukyubuikyuerukyukyuPijieiierubuikeiPijieiesubuikeiemuesushikeieiesujiwaitiefutienuwaidaburyuaienudaburyubuikeikyuaruPijikyujieruidaburyuaijidiaiwaiPijijijiaitienuwaienuikeiefukeitikeieitierutieruditiesuesuesutibuiwaiemukyueruesuesuerutiesuidiesueiVYYCSRSYGKYFDYWGQGTTLIVSS
(S-A2) Amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 15 (S-A3) In the amino acid sequence of SEQ ID NO: 15, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
 前記(S-A1)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3の(H3-A1)のアミノ酸配列を含む配列である。前記(S-A2)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-A3)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the (H1-A1) of CDRH1, (H2-A1) of CDRH2, and (H3-A1) of CDRH3. The amino acid sequence of (S-A2) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO:15. The amino acid sequence may have an identity of 70% or more. The amino acid sequence of (S-A3) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and the amino acid sequence of SEQ ID NO:15. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
 前記(S-A1)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含む配列である。前記(S-A2)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-A3)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The (S-A1) amino acid sequence is, for example, a sequence including the (H-A1) amino acid sequence of the first heavy chain variable region. The amino acid sequence of (S-A2) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region and has 70% or more identity to the amino acid sequence of SEQ ID NO: 15. May be an amino acid sequence having The amino acid sequence of (S-A3) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and in the amino acid sequence of SEQ ID NO: 15, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
 前記(S-A1)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含む配列である。前記(S-A2)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-A3)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences. The amino acid sequence of (S-A2) includes, for example, (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:15. It may be an amino acid sequence having 70% or more identity with the sequence. The amino acid sequence of (S-A3) includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and the amino acid sequence of SEQ ID NO:15. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
 前記(S-A1)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含む配列である。前記(S-A2)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-A3)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含み、且つ、配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-A1) amino acid sequence is, for example, a sequence including the (L-A1) amino acid sequence of the first light chain variable region. The amino acid sequence of (S-A2) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 15. May be an amino acid sequence having The amino acid sequence of (S-A3) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and in the amino acid sequence of SEQ ID NO: 15, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
 前記(S-A2)のアミノ酸配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the amino acid sequence of (S-A2), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, It is 97% or more, 98% or more, and 99% or more.
 前記(S-A3)のアミノ酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~72個、1~60個、1~48個、1~40個、1~24個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the amino acid sequence of (S-A3), “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, respectively. 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3 One, two or one.
 前記第2の結合ドメインは、前述のように、所望の抗原に結合可能である。前記所望の抗原は、例えば、免疫細胞に発現する抗原(タンパク質)、体液中の抗原(タンパク質)腫瘍抗原、ウイルス抗原、細菌抗原、寄生虫抗原、自己免疫疾患に関連する抗原、糖鎖抗原等があげられる。前記腫瘍抗原は、例えば、細胞のがん化により、新たに発現する抗原、発現量が増加する抗原等の抗原性を有する生体分子を意味する。前記腫瘍抗原は、例えば、腫瘍特異的抗原でもよいし、腫瘍関連抗原でもよい。前記所望の抗原は、例えば、前記抗体等が結合可能な抗原と異なることが好ましい。 The second binding domain can bind to a desired antigen as described above. Examples of the desired antigen include antigens (proteins) expressed in immune cells, antigens (proteins) in body fluids, tumor antigens, virus antigens, bacterial antigens, parasite antigens, antigens associated with autoimmune diseases, sugar chain antigens, etc. Can be given. The tumor antigen means, for example, a biomolecule having antigenicity such as an antigen newly expressed by a canceration of cells or an antigen whose expression level is increased. The tumor antigen may be, for example, a tumor-specific antigen or a tumor-associated antigen. The desired antigen is preferably different from the antigen to which the antibody or the like can bind, for example.
 前記免疫細胞に発現する抗原は、例えば、T細胞、NK細胞、またはNKT細胞に発現する抗原があげられる。前記T細胞に発現する抗原は、例えば、T細胞の活性化タンパク質またはT細胞の活性化抑制タンパク質あげられる。前記T細胞活性化タンパク質としては、例えば、CD2、CD3、CD4、CD5、CD8α、CD8β、CD27、CD28、CD134(OX40)、CD137(4-1BB)、CD154、GITR、ICOS等があげられ、好ましくは、CD3である。前記CD3は、例えば、CD3γ、CD3δ、CD3ε、CD3ζ、CD3η等があげられ、好ましくは、CD3εである。前記T細胞の活性化抑制タンパク質は、例えば、CTLA4、PD-1、LAG3、B7-H3、TIM3、TIGIT等があげられる。前記NK細胞に発現する抗原は、例えば、NK細胞の活性化タンパク質またはNK細胞の活性化抑制タンパク質があげられる。前記NK細胞の活性化タンパク質は、例えば、CD94/NKG2C、CD94/NKG2E、NKG2D/NKG2D等があげられる。前記NK細胞の活性化抑制タンパク質は、例えば、KIR2DL1、KIR2DL2、KIR2DL3、KIR3DL1、KIR3DL2、KIR2DL4、KIR2DL5、KIR3DL3等があげられる。前記NKT細胞に発現する抗原は、例えば、NKT細胞の活性化タンパク質またはNKT細胞の活性化抑制タンパク質であり、具体例として、前記T細胞に発現する抗原および前記NK細胞に発現する抗原の説明を援用できる。 Examples of the antigens expressed on the immune cells include antigens expressed on T cells, NK cells, or NKT cells. Examples of the antigen expressed on the T cell include a T cell activation protein or a T cell activation suppression protein. Examples of the T cell activating protein include CD2, CD3, CD4, CD5, CD8α, CD8β, CD27, CD28, CD134 (OX40), CD137 (4-1BB), CD154, GITR, ICOS, etc., and are preferred. Is CD3. Examples of the CD3 include CD3γ, CD3δ, CD3ε, CD3ζ, and CD3η, and preferably CD3ε. Examples of the T cell activation inhibitory protein include CTLA4, PD-1, LAG3, B7-H3, TIM3, and TIGIT. Examples of the antigens expressed on the NK cells include NK cell activation proteins and NK cell activation suppression proteins. Examples of the NK cell activating protein include CD94/NKG2C, CD94/NKG2E, NKG2D/NKG2D and the like. Examples of the NK cell activation suppressing protein include KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, KIR3DL2, KIR2DL4, KIR2DL5 and KIR3DL3. The antigen expressed in the NKT cell is, for example, an NKT cell activation protein or an NKT cell activation inhibitory protein, and specific examples include the description of the T cell-expressed antigen and the NK cell-expressed antigen. Can be used.
 前記体液中の抗原は、例えば、サイトカイン、血液凝固因子等があげられる。前記サイトカインは、例えば、TNF-α、TNF-β等のTNF(Tumor Necrosis Factor);リンフォトキシン;IL-1~IL-38(例えば、IL-1α、IL-1β、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-10、IL-11、IL-12、IL-17、IL-18、IL-23、IL-33、IL-36等)のインターロイキン;ケモカイン;造血因子;細胞増殖因子;アディポカイン;VEGF等の成長因子;等があげられる。 Examples of the antigen in the body fluid include cytokines and blood coagulation factors. Examples of the cytokine include TNF (Tumor Necrosis Factor) such as TNF-α and TNF-β; lymphotoxin; IL-1 to IL-38 (eg, IL-1α, IL-1β, IL-2, IL- 3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-11, IL-12, IL-17, IL-18, IL-23, IL-33, IL-36 and the like); chemokines; hematopoietic factors; cell growth factors; adipokines; growth factors such as VEGF; and the like.
 前記腫瘍抗原は、例えば、5T4、α5β1-インテグリン、707-AP、αフェトプロテイン(AFP)、レクチン反応性AFP、ART-4、AURKA(AURORA A)、B7H4、BAGE、β-カテニン、BCMA、Bcr-abl、BTAA、MN/CA IX抗原、CA125、CA19-9、CA72-4、CAMEL、CAP-1、CASP-8、CD4、CD19、CD20、CD22、CD25、CD27、CD30、CD33、CD47、CD52、CD56、CD80、CD96、CD123、CDK4、癌胎児性抗原(CEA)、CLL1、CT、Cyclin A1、Cyp-B、DAM、EGFR、ErbB3、ELF2M、EMMPRIN、EpCam、ETV6-AML1、G250、GAGE(GAGE-1、GAGE-2等)、GD2(Ganglioside G2)、GnT-V、Gp100、GPA33、GPC3、HAGE、β-ヒト絨毛性ゴナドトロピン(HCG)、HER2/neu、HLA-A*0201-R170I、HPV-E7、HSP70-2M、HST-2、iCE、インスリン増殖因子(IGF)-1、IGF-2、IGF-1R、IL-2R、IL-5、KIAA0205、K-Ras、LAGE、LDLR/FUT、MAGE(MAGE-3、MAGE-4、MAGE-5、MAGE-6等)、MART-1/melan-A、MART-2/Ski、MC1R、mesothelin(MSLN)、ミオシン、MUC1、MUM-1、MUM-2、MUM-3、NA88-A、前立腺酸性フォスファターゼ(PAP)、プロテイナーゼ-3、PRAME(Melanoma antigen preferentially expressed in tumors)、p53、p190マイナーbcr-abl、Pml/RARα、前立腺腫瘍抗原-1(PCTA-1)、PRAME、前立腺特異的抗原(PSA)、PSM、PSMA、RAGE、RAS、RHAMM(CD168)、RU1、RU2、SAGE、SART-1、SART-3、サイログロブリン、サバイビン、テロメラーゼ逆転写酵素(TERTまたはTRT)、TEL/AML1、TGFβ、TIM3、TPI/m、TRP-1、TRP-2、TRP-2/INT2、VEGF、WT1、NY-Eso-1、NY-Eso-B等があげられる。 The tumor antigens include, for example, 5T4, α5β1-integrin, 707-AP, α-fetoprotein (AFP), lectin-reactive AFP, ART-4, AURKA (AURORA A), B7H4, BAGE, β-catenin, BCMA, Bcr-. abl, BTAA, MN/CA IX antigen, CA125, CA19-9, CA72-4, CAMEL, CAP-1, CASP-8, CD4, CD19, CD20, CD22, CD25, CD27, CD30, CD33, CD47, CD52, CD56, CD80, CD96, CD123, CDK4, carcinoembryonic antigen (CEA), CLL1, CT, Cyclin A1, Cyp-B, DAM, EGFR, ErbB3, ELF2M, EMMPRIN, EpCam, ETV6-AML1, G250, GAGE (GAGE). -1, GAGE-2, etc.), GD2 (GangliosideG2), GnT-V, Gp100, GPA33, GPC3, HAGE, β-human chorionic gonadotropin (HCG), HER2/neu, HLA-A*0201-R170I, HPV -E7, HSP70-2M, HST-2, iCE, insulin growth factor (IGF)-1, IGF-2, IGF-1R, IL-2R, IL-5, KIAA0205, K-Ras, LAGE, LDLR/FUT, MAGE (MAGE-3, MAGE-4, MAGE-5, MAGE-6 etc.), MART-1/melan-A, MART-2/Ski, MC1R, mesothelin (MSLN), myosin, MUC1, MUM-1, MUM -2, MUM-3, NA88-A, prostatic acid phosphatase (PAP), proteinase-3, PRAME (Melanoma antigen preferentially expressed intumors), p53, p190 minor bcr-abl, Pml/RARα, prostate tumor antigen-1 ( PCTA-1), PRAME, prostate specific antigen (PSA), PSM, PSMA, RAGE, RAS, RHAMM (CD168), RU1, RU2, SAGE, SART-1, SART-3, thyroglobulin, survivin, telomerase reverse transcriptase. (TERT or TRT), TEL/AML1, TGFβ, TIM3, TPI/m, TRP-1, TRP-2, TRP-2/INT2, VEGF, WT1, NY-Eso-1, NY-Eso-B, etc. To be
 前記ウイルス抗原は、例えば、アデノウイルス(adenovirus)等のアデノウイルス科(Adenoviridae);コロナウイルス(coronavirus)等のコロナウイルス科(Coronaviridae);エボラウイルス属(Ebolavirus)等のフィロウイルス科(Filoviridae);C型肝炎ウイルス(HCV:hepatitis C virus)、デングウイルス(Dengue virus)、日本脳炎ウイルス(Japanese encephalitis virus)、西ナイルウイルス(west Nile virus)、黄熱ウイルス(yellow fever virus)等のフラビウイルス科(Flaviviridae);B型肝炎ウイルス(HVB:Hepatitis B Virus)等のヘパドナウイルス科(Hepadnaviridae);単純ヘルペスウイルス1型(HSV-1:herpes simplex virus-1)、単純ヘルペスウイルス2型(HSV-2:herpes simplex virus-2)、水痘・帯状疱疹ウイルス(VZV:varicella zoster virus)、ヒトサイトメガロウイルス(HCMV:human cytomegalovirus)、EBウイルス(EBV:Epstein-Barr virus)、カポジ肉腫関連ヘルペスウイルス(KSHV:Kaposi's sarcoma-associated herpesvirus)等のヘルペスウイルス科(Herpesviridae);A型インフルエンザウイルス属(Influenzavirus A)、B型インフルエンザウイルス属(Influenzavirus B)、C型インフルエンザウイルス属(Influenzavirus C)等のオルソミクソウイルス科(Orthomyxoviridae);麻疹ウイルス(measles virus)、ヒトパラインフルエンザウイルス1~4型(Human parainfluenza virus 1~4)、ムンプスウイルス(Mumps virus)、RSウイルス(Respiratory syncytial virus)等のパラミクソウイルス科(Paramyxoviridae);パルボウイルスB19(Parvovirus B19)等のパルボウイルス科(Parvoviridae);エンテロウイルス(enterovirus)、ポリオウイルス(poliovirus)、ヒトライノウイルスA~B(human rhinovirus A~B)、A型肝炎ウイルス(hepatitis A virus)、コクサッキーウイルス(coxsackievirus)、エコーウイルス(echo virus)等のピコルナウイルス科(Picornaviridae);天然痘ウイルス(variola virus)、ワクチニアウイルス(Vaccinia virus)等のポックスウイルス科(Poxviridae);ヒト免疫不全ウイルス(HIV:human immunodeficiency virus)-1, 2、ヒトTリンパ好性ウイルス(HTLV:human T-lymphocytropic virus)-I,II等のレトロウイルス科(Retroviridae);狂犬病ウイルス(Rabies virus)、水疱性口内炎ウイルス(Vesicular stomatitis virus)等のラブドウイルス科(Rhabdoviridae);風疹ウイルス(Rubella virus)、チクングニアウイルス(Chikungunya virus)等のトガウイルス科(Togaviridae);等のウイルス由来の抗原があげられる。 The viral antigens are, for example, adenovirus (adenovirus) adenoviridae such as (Adenoviridae); coronavirus (coronavirus) coronavirus family, such as (Coronaviridae); Ebola virus (Ebolavirus) Filoviridae such as (Filoviridae); Flaviviridae such as hepatitis C virus (HCV: hepatitis C virus), dengue virus (Dengue virus), Japanese encephalitis virus (Japanese encephalitis virus), west Nile virus (west Nile virus), yellow fever virus (yellow fever virus) ( Flaviviridae); B hepatitis virus (HVB: hepatitis B virus) hepadnaviridae such as (Hepadnaviridae); herpes simplex virus type 1 (HSV-1: herpes simplex virus -1), herpes simplex virus type 2 (HSV-2 : Herpes simplex virus-2), varicella zoster virus (VZV), human cytomegalovirus (HCMV), EB virus (EBV: Epstein-Barr virus), Kaposi's sarcoma-related herpes virus (KSHV) : Kaposi's sarcoma-associated herpesvirus) and other herpesviruses ( Herpesviridae ); orthomyxoviruses such as influenza A virus genus (Influenzavirus A), influenza B virus genus (Influenzavirus B), influenza C virus genus (Influenzavirus C) Family ( Orthomyxoviridae ); Paramyxoviridae family such as measles virus (measles virus), human parainfluenza virus types 1 to 4 (Human parainfluenza virus 1 to 4), mumps virus (Respiratory syncytial virus), etc. Paramyxoviridae ); Parvovirus such as Parvovirus B19 Viruses ( Parvoviridae ); enterovirus (enterovirus), poliovirus (poliovirus), human rhinovirus AB (human rhinovirus AB), hepatitis A virus (hepatitis A virus), coxsackievirus (coxsackievirus), echovirus (echo) virus) etc.; Picornaviridae ); smallpox virus (variola virus); vaccinia virus (Vaccinia virus) and other poxviridae ( Poxviridae ); human immunodeficiency virus (HIV: human immunodeficiency virus)-1, 2, human T-lymphotropic virus (HTLV: human T-lymphocytropic virus ) -I, Retroviridae of II such as (Retroviridae); rabies virus (rabies virus), vesicular stomatitis virus (vesicular stomatitis virus), etc. rhabdovirus of Family ( Rhabdoviridae ); Rubella virus (Rubella virus), Chikungunya virus (Chikungunya virus), etc. Togaviridae ( Togaviridae );
 前記細菌抗原は、例えば、破傷風菌(Clostridium tetani)等のクロストリジウム属(Clostridium);大腸菌(Escherichia coli)等のエスケリキア属(Escherichia);ヘリコバクター・ピロリ(Helicobacter pyloris)等のヘリコバクター属(Helicobacter);レジオネラ・ニューモフィリア(Legionella pneumophila)等のレジオネラ属(Legionella);リステリア・モノサイトゲネス(Listeria monocytogenes)等のリステリア属(Listeria);結核菌(Mycobacterium tuberculosis)、ライ菌(Mycobacterium leprae)、マイコバクテリウム・アビウム(Mycobacterium avium)、マイコバクテリウム・イントラセルラーエ(Mycobacterium intracellulare)、マイコバクテリウム・カンサシ(Mycobacterium kansasii)、マイコバクテリウム・ゴルドネ(Mycobacterium gordonae)等のマイコバクテリウム属(Mycobacterium);淋菌(Neisseria gonorrhoeae)、髄膜炎菌(Neisseria meningitidis)等のナイセリア属(Neisseria);緑膿菌(Pseudomonas aeruginosa)等のシュードモナス属(Pseudomonas);チフス菌(Salmonella enterica serovar Typhi)、パラチフス菌(Salmonella enterica serovar Paratyphi A)等のサルモネラ属(Salmonella);黄色ブドウ球菌(Staphylococcus aureus)等のブドウ球菌属(Staphylococcus);肺炎レンサ球菌(Streptococcus pneumoniae)、化膿レンサ球菌(Streptococcus pyogenes)等のレンサ球菌属(Streptococcus);等の細菌由来の抗原があげられる。 The bacterial antigen can be, for example, tetanus (Clostridium tetani) Clostridium genus, etc. (Clostridium); E. (Escherichia coli) Esukerikia genus such as (Escherichia); Helicobacter pylori (Helicobacter pyloris) Helicobacter, such as (Helicobacter); Legionella・Legionella genus ( Legionella ) such as Pneumophilia ( Legionella pneumophila ); Listeria genus ( Listeria ) such as Listeria monocytogenes ( Mycobacterium tuberculosis ), Mycobacterium leprae , Mycobacterium avium (Mycobacterium avium), Mycobacterium intracellulare et (Mycobacterium intracellulare), Mycobacterium kansasii (Mycobacterium kansasii), Mycobacterium Gorudone (Mycobacterium gordonae) Mycobacterium such as (Mycobacterium); Neisseria gonorrhoeae (Neisseria gonorrhoeae), Neisseria, such as Neisseria meningitidis (Neisseria meningitidis) (Neisseria); Pseudomonas aeruginosa (Pseudomonas aeruginosa) Pseudomonas such as (Pseudomonas); Salmonella typhi (Salmonella enterica serovar typhi), paratyphoid bacteria (Salmonella enterica serovar Paratyphi a) Salmonella such as (Salmonella); Staphylococcus aureus (Staphylococcus aureus) Staphylococcus etc. (Staphylococcus); pneumococcal (Streptococcus pneumoniae), Streptococcus, such as Streptococcus pyogenes (Streptococcus pyogenes) (Streptococcus); Antigens derived from bacteria such as
 前記寄生虫抗原は、例えば、肝吸虫(Clonorchis sinensis)、日本住血吸虫(Schistosoma japonicum)、ヒトカイチュウ(Ascaris lumbricoides)、ヒト蟯虫(Enterobius vermicularis)、有鉤嚢虫(Cysticercus cellulosae)、広節裂頭条虫(Diphyllobothrium latum)、エキノコックス(Echinococcus)、赤痢アメーバ(Entamoeba histolytica)、マラリア原虫(Plasmodium)等の寄生虫由来の抗原があげられる。 The parasite antigens include, for example, liver fluke ( Clonorchis sinensis ), Schistosoma japonicum ( Schistosoma japonicum ), human carnivore ( Ascaris lumbricoides ), human pinworm ( Enterobius vermicularis ), Cysticercus cellulosae , and broad-segment cleft head. Antigens derived from parasites such as insects ( Diphyllobothrium latum ), Echinococcus ( Echinococcus ), Entamoeba histolytica ), and Plasmodium malaria ( Plasmodium ).
 前記第2の結合ドメインは、例えば、前記所望の抗原に結合する受容体またはリガンドでもよいし、前記所望の抗原に結合する、抗体またはその抗原結合断片があげられる。 The second binding domain may be, for example, a receptor or a ligand that binds to the desired antigen, or an antibody or an antigen-binding fragment thereof that binds to the desired antigen.
 前記第2の結合ドメインが所望の抗原に結合するリガンドまたは受容体の場合、前記第1の結合ドメインは、例えば、前記リガンドに結合する受容体または前記受容体に結合するリガンドがあげられ、前記リガンドまたは受容体の種類に応じて、適宜設定できる。具体例として、前記リガンドがCTLA4リガンドの場合、前記受容体は、例えば、CTLA4があげられる。前記リガンドがPD-1リガンドの場合、前記受容体は、PD-1があげられる。 When the second binding domain is a ligand or receptor that binds to a desired antigen, the first binding domain includes, for example, a receptor that binds to the ligand or a ligand that binds to the receptor, It can be appropriately set depending on the type of ligand or receptor. As a specific example, when the ligand is a CTLA4 ligand, the receptor is, for example, CTLA4. When the ligand is PD-1 ligand, the receptor is PD-1.
 前記第2の結合ドメインが所望の抗原に結合する抗体またはその抗原結合断片である場合、前記第2の結合ドメインは、前述の抗体またはその抗原結合断片と同様の構造を採用でき、例えば、重鎖可変領域および軽鎖可変領域を有する。以下、前記第2の結合ドメインの重鎖可変領域および軽鎖可変領域を、それぞれ、第2の重鎖可変領域および第2の軽鎖可変領域ともいう。前記抗原結合断片は、前述の説明を援用できる。前記第2の結合ドメインは、scFvを含むことが好ましい、すなわち、前記所望の抗原に結合可能なscFvを含むことが好ましい。 When the second binding domain is an antibody or an antigen-binding fragment thereof that binds to a desired antigen, the second binding domain can adopt the same structure as the above-mentioned antibody or an antigen-binding fragment thereof. It has a chain variable region and a light chain variable region. Hereinafter, the heavy chain variable region and the light chain variable region of the second binding domain are also referred to as the second heavy chain variable region and the second light chain variable region, respectively. The above description can be applied to the antigen-binding fragment. The second binding domain preferably comprises an scFv, ie an scFv capable of binding the desired antigen.
 前記第2の結合ドメインが前記第2の重鎖可変領域および第2の軽鎖可変領域を有する場合、前記第2の重鎖可変領域および第2の軽鎖可変領域は、例えば、前記所望の抗原に結合する抗体の重鎖可変領域および軽鎖可変領域に由来してもよいし、前記所望の抗原で免疫し、得られた所望の抗原に結合可能な抗体の重鎖可変領域および軽鎖可変領域に由来してもよいし、ファージディスプレイ等のスクリーニング方法により得られた、抗体等に結合可能な抗体の重鎖可変領域および軽鎖可変領域に由来してもよい。 When the second binding domain has the second heavy chain variable region and the second light chain variable region, the second heavy chain variable region and the second light chain variable region are, for example, The heavy chain variable region and the light chain variable region of the antibody, which may be derived from the heavy chain variable region and the light chain variable region of the antibody that bind to the antigen, may be immunized with the desired antigen and bind to the obtained desired antigen. It may be derived from the variable region, or may be derived from the heavy chain variable region and the light chain variable region of the antibody capable of binding to the antibody etc. obtained by a screening method such as phage display.
 抗体の抗原に対する結合性には、前述のように、重鎖可変領域および軽鎖可変領域における相補性決定領域(CDR)が重要である。このため、前記第2の重鎖可変領域のCDRH1、CDRH2、およびCDRH3は、それぞれ、前記所望の抗原に結合する抗体の重鎖可変領域のCDRH1、CDRH2、およびCDRH3のアミノ酸配列からなるポリペプチドでもよいし、前記所望の抗原に結合する抗体の重鎖可変領域のCDRH1、CDRH2、およびCDRH3のアミノ酸配列を含むポリペプチドでもよい。また、前記第2の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3は、それぞれ、前記所望の抗原に結合する抗体の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3のアミノ酸配列からなるポリペプチドでもよいし、前記所望の抗原に結合する抗体の軽鎖可変領域のCDRL1、CDRL2、およびCDRL3のアミノ酸配列を含むポリペプチドでもよい。 As described above, the complementarity determining regions (CDRs) in the heavy chain variable region and the light chain variable region are important for the binding of the antibody to the antigen. Therefore, the CDRH1, CDRH2, and CDRH3 of the second heavy chain variable region are each a polypeptide consisting of the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the desired antigen. Alternatively, it may be a polypeptide containing the amino acid sequences of CDRH1, CDRH2, and CDRH3 of the heavy chain variable region of the antibody that binds to the desired antigen. Further, CDRL1, CDRL2, and CDRL3 of the second light chain variable region may each be a polypeptide comprising the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of the antibody that binds to the desired antigen. However, it may be a polypeptide containing the amino acid sequences of CDRL1, CDRL2, and CDRL3 of the light chain variable region of an antibody that binds to the desired antigen.
 前記第2の重鎖可変領域において、CDRH1、CDRH2、およびCDRH3以外の領域、すなわち、フレームワーク領域(FR)は、例えば、前記所望の抗原に結合する抗体における重鎖可変領域のFRを含んでもよい。前記第2の重鎖可変領域におけるFRH1、FRH2、FRH3、およびFRH4は、例えば、それぞれ、前記所望の抗原に結合する抗体のFRH1、FRH2、FRH3、およびFRH4のアミノ酸配列からなるポリペプチドでもよいし、前記所望の抗原に結合する抗体のFRH1、FRH2、FRH3、およびFRH4のアミノ酸配列を含むポリペプチドでもよい。前記各CDRHの説明における「所望の抗原に結合する抗体」と、前記各FRHの説明における「所望の抗原に結合する抗体」とは、同じ抗体等であることが好ましい。 In the second heavy chain variable region, the region other than CDRH1, CDRH2, and CDRH3, that is, the framework region (FR) may include, for example, the FR of the heavy chain variable region in the antibody that binds to the desired antigen. Good. FRH1, FRH2, FRH3, and FRH4 in the second heavy chain variable region may be, for example, a polypeptide comprising the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of the antibody that binds to the desired antigen, respectively. Alternatively, it may be a polypeptide containing the amino acid sequences of FRH1, FRH2, FRH3, and FRH4 of an antibody that binds to the desired antigen. The “antibody that binds to the desired antigen” in the description of each CDRH and the “antibody that binds to the desired antigen” in the description of each FRH are preferably the same antibody and the like.
 前記第2の軽鎖可変領域において、CDRL1、CDRL2、およびCDRL3以外の領域、すなわち、フレームワーク領域(FR)は、例えば、前記所望の抗原に結合する抗体における軽鎖可変領域のFRを含んでもよい。前記第2の軽鎖可変領域におけるFRL1、FRL2、FRL3、およびFRL4は、例えば、それぞれ、前記所望の抗原に結合する抗体のFRL1、FRL2、FRL3、およびFRL4のアミノ酸配列からなるポリペプチドでもよいし、前記所望の抗原に結合する抗体のFRL1、FRL2、FRL3、およびFRL4のアミノ酸配列を含むポリペプチドでもよい。前記各CDRLの説明における「所望の抗原に結合する抗体」と、前記各FRLの説明における「所望の抗原に結合する抗体」とは、同じ抗体等であることが好ましい。また、前記各CDRHの説明における「所望の抗原に結合する抗体」と、前記各CDRLの説明における「所望の抗原に結合する抗体」とは、同じ抗体等であることが好ましい。 In the second light chain variable region, a region other than CDRL1, CDRL2, and CDRL3, that is, the framework region (FR) may include, for example, the FR of the light chain variable region in the antibody that binds to the desired antigen. Good. FRL1, FRL2, FRL3, and FRL4 in the second light chain variable region may be, for example, a polypeptide comprising the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the desired antigen, respectively. The polypeptide may include the amino acid sequences of FRL1, FRL2, FRL3, and FRL4 of the antibody that binds to the desired antigen. The “antibody that binds to the desired antigen” in the description of each CDRL and the “antibody that binds to the desired antigen” in the description of each FRL are preferably the same antibody and the like. The “antibody that binds to the desired antigen” in the description of each CDRH and the “antibody that binds to the desired antigen” in the description of each CDRL are preferably the same antibody and the like.
 前記第2の結合ドメインが前記第2の重鎖可変領域および第2の軽鎖可変領域を有する場合、前記第2の重鎖可変領域および第2の軽鎖可変領域は、例えば、前記所望の抗原に結合する抗体の重鎖可変領域および軽鎖可変領域を用いてもよいし、前記所望の抗原により免疫し、得られた前記所望の抗原結合可能な抗体の重鎖可変領域および軽鎖可変領域を用いてもよい。具体例として、前記所望の抗原がヒトCD3εの場合、ヒトCD3εに結合する抗体(クローン名)は、例えば、OKT3抗体、UCHT1抗体、L2K抗体、HIT3a抗体、28F11抗体、27H5抗体等があげられる。 When the second binding domain has the second heavy chain variable region and the second light chain variable region, the second heavy chain variable region and the second light chain variable region are, for example, The heavy chain variable region and the light chain variable region of the antibody that bind to the antigen may be used, or the heavy chain variable region and the light chain variable region of the desired antibody capable of binding to the desired antigen obtained by immunizing with the desired antigen Areas may be used. As a specific example, when the desired antigen is human CD3ε, examples of the antibody (clone name) that binds to human CD3ε include OKT3 antibody, UCHT1 antibody, L2K antibody, HIT3a antibody, 28F11 antibody, and 27H5 antibody.
 前記所望の抗原がCD3εの場合、前記第2の結合ドメインは、例えば、前記抗体等と抗体複合体を形成した際に、前記抗体複合体に前記第2の結合ドメインを介してT細胞が結合し、前記T細胞が細胞傷害活性を発揮可能であることから、下記第2の重鎖可変領域および第2の軽鎖可変領域を含むことが好ましい。
(第2の重鎖可変領域)
CDRH1、CDRH2、およびCDRH3を含み、
 CDRH1が、下記(H1-B)のアミノ酸配列を含むポリペプチドであり、
 CDRH2が、下記(H2-B)のアミノ酸配列を含むポリペプチドであり、
 CDRH3が、下記(H3-B)のアミノ酸配列を含むポリペプチドである。
(第2の軽鎖可変領域)
CDRL1、CDRL2、およびCDRL3を含み、
 CDRL1が、下記(L1-B)のアミノ酸配列を含むポリペプチドであり、
 CDRL2が、下記(L2-B)のアミノ酸配列を含むポリペプチドであり、
 CDRL3が、下記(L3-B)のアミノ酸配列を含むポリペプチドである。
When the desired antigen is CD3ε, the second binding domain binds to T cells via the second binding domain when the second binding domain forms an antibody complex with the antibody or the like, for example. However, since the T cells can exert cytotoxic activity, it is preferable to include the following second heavy chain variable region and second light chain variable region.
(Second heavy chain variable region)
Including CDRH1, CDRH2, and CDRH3,
CDRH1 is a polypeptide containing the following amino acid sequence (H1-B),
CDRH2 is a polypeptide containing the following amino acid sequence (H2-B),
CDRH3 is a polypeptide containing the following amino acid sequence (H3-B).
(Second light chain variable region)
Includes CDRL1, CDRL2, and CDRL3,
CDRL1 is a polypeptide containing the following amino acid sequence (L1-B),
CDRL2 is a polypeptide containing the amino acid sequence of (L2-B) below,
CDRL3 is a polypeptide containing the following amino acid sequence (L3-B).
(H1-B)下記(H1-B1)、(H1-B2)または(H1-B3)のアミノ酸配列
(H1-B1)配列番号7(GYTFTRYT)のアミノ酸配列
(H1-B2)配列番号7のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H1-B3)配列番号7のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H2-B)下記(H2-B1)、(H2-B2)または(H2-B3)のアミノ酸配列
(H2-B1)配列番号8(INPSRGYT)のアミノ酸配列
(H2-B2)配列番号8のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H2-B3)配列番号8のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H3-B)下記(H3-B1)、(H3-B2)または(H3-B3)のアミノ酸配列
(H3-B1)配列番号9(ARYYDDHYCLDY)のアミノ酸配列
(H3-B2)配列番号9のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H3-B3)配列番号9のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H1-B) The following (H1-B1), (H1-B2) or (H1-B3) amino acid sequence (H1-B1) SEQ ID NO: 7 (GYTFTRYT) amino acid sequence (H1-B2) SEQ ID NO: 7 amino acid Amino acid sequence having 80% or more identity to the sequence (H1-B3) In the amino acid sequence of SEQ ID NO: 7, one or several amino acids are deleted, substituted, inserted and/or added (H2-B) Amino acid sequence of (H2-B1), (H2-B2) or (H2-B3) below (H2-B1) SEQ ID NO: 8 (INPSRGYT) amino acid sequence (H2-B2) SEQ ID NO: 8 Amino acid sequence having 80% or more identity to the sequence (H2-B3) Amino acid sequence of SEQ ID NO: 8 with one or several amino acids deleted, substituted, inserted and/or added (H3-B) The following (H3-B1), (H3-B2) or (H3-B3) amino acid sequence (H3-B1) SEQ ID NO: 9 (ARYYDDHYCLDY) amino acid sequence (H3-B2) SEQ ID NO: 9 Amino acid sequence having 80% or more identity to the sequence (H3-B3) In the amino acid sequence of SEQ ID NO: 9, one or several amino acids are deleted, substituted, inserted and/or added
(L1-B)下記(L1-B1)、(L1-B2)または(L1-B3)のアミノ酸配列
(L1-B1)配列番号10(SSVSY)のアミノ酸配列
(L1-B2)配列番号10のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L1-B3)配列番号10のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L2-B)下記(L2-B1)、(L2-B2)または(L2-B3)のアミノ酸配列
(L2-B1)配列番号11(DTS)のアミノ酸配列
(L2-B2)配列番号11のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L2-B3)配列番号11のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L3-B)下記(L3-B1)、(L3-B2)または(L3-B3)のアミノ酸配列
(L3-B1)配列番号12(QQWSSNPFT)のアミノ酸配列
(L3-B2)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L3-B3)配列番号12のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
(L1-B) Amino acid sequence of the following (L1-B1), (L1-B2) or (L1-B3) (L1-B1) SEQ ID NO: 10 (SSVSY) (L1-B2) Amino acid of SEQ ID NO: 10 Amino acid sequence having 80% or more identity to the sequence (L1-B3), wherein the amino acid sequence of SEQ ID NO: 10 has one or several amino acids deleted, substituted, inserted and/or added (L2-B) The following (L2-B1), (L2-B2) or (L2-B3) amino acid sequence (L2-B1) SEQ ID NO: 11 (DTS) amino acid sequence (L2-B2) SEQ ID NO: 11 Amino acid sequence (L2-B3) having an identity of 80% or more with respect to the sequence, wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 11. (L3-B) Amino acid sequence of (L3-B1), (L3-B2) or (L3-B3) below (L3-B1) SEQ ID NO: 12 (QQWSSNPFT) amino acid sequence (L3-B2) SEQ ID NO: 12 Amino acid sequence having 80% or more identity to the sequence (L3-B3) SEQ ID NO: 12 amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added ..
 前記各CDRにおいて、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In each of the CDRs, the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98%, respectively. As a result, it is 99% or more.
 前記各CDRにおいて、置換等に関する「1個または数個」は、それぞれ、例えば、1~10個、1~7個、1~5個、1~4個、1~3個、1または2個、1個である。 In each of the CDRs, “1 or several” regarding substitution and the like means, for example, 1 to 10, 1 to 7, 1 to 5, 1 to 4, 1 to 3, 1 or 2 It is one.
 前記第2の重鎖可変領域は、例えば、下記(H-B)のアミノ酸配列からなるポリペプチドを含むことが好ましい。また、前記第2の軽鎖可変領域は、例えば、下記(L-B)のアミノ酸配列からなるポリペプチドを含むことが好ましい。 The second heavy chain variable region preferably contains, for example, a polypeptide consisting of the following (H-B) amino acid sequence. The second light chain variable region preferably contains, for example, a polypeptide having the amino acid sequence of (LB) below.
(H-B)下記(H-B1)、(H-B2)または(H-B3)のアミノ酸配列
(H-B1)配列番号16のアミノ酸配列
配列番号16:QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSS
(H-B2)配列番号16のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H-B3)配列番号16のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(HB) below (H-B1), (H -B2) or (H-B3) of the amino acid sequence (H-B1) SEQ ID NO: 16 amino acid sequence SEQ ID NO 16: QVQLQQSGAELARPGASVKMSCKAS GYTFTRYT MHWVKQRPGQGLEWIGY INPSRGYT NYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYC ARYYDDHYCLDY WGQGTTLTVSS
(H-B2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 16 (H-B3) In the amino acid sequence of SEQ ID NO: 16, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
(L-B)下記(L-B1)、(L-B2)または(L-B3)のアミノ酸配列
(L-B1)配列番号17のアミノ酸配列
配列番号17:QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIN
(L-B2)配列番号17のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L-B3)配列番号17のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(LB) following (L-B1), (L -B2) or (L-B3) of the amino acid sequence (L-B1) of SEQ ID NO: 17 amino acid sequence SEQ ID NO: 17: QIVLTQSPAIMSASPGEKVTMTCSAS SSVSY MNWYQQKSGTSPKRWIY DTS KLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYC QQWSSNPFT FGSGTKLEIN
(L-B2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 17 (L-B3) In the amino acid sequence of SEQ ID NO: 17, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
 前記(H-B1)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3の(H3-B1)のアミノ酸配列を含む配列である。前記(H-B2)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号16のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(H-B3)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号16のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (H-B1) amino acid sequence is, for example, a sequence including the (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3. The amino acid sequence of (H-B2) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:16. The amino acid sequence may have an identity of 70% or more. The amino acid sequence of (H-B3) includes, for example, the amino acid sequences of (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO: 16. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
 前記(L-B1)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含む配列である。前記(L-B2)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号17のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(L-B3)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号17のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (L-B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences. The amino acid sequence of (L-B2) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:17. It may be an amino acid sequence having 70% or more identity with the sequence. The amino acid sequence of (L-B3) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:17. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
 前記重鎖可変領域のポリペプチドおよび前記軽鎖可変領域のポリペプチドにおいて、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the heavy chain variable region polypeptide and the light chain variable region polypeptide, the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, respectively. 95% or more, 96% or more, 97% or more, 98% or more, 99% or more.
 前記重鎖可変領域のポリペプチドおよび前記軽鎖可変領域のポリペプチドにおいて、置換等に関する「1個または数個」は、それぞれ、例えば、1~30個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the heavy chain variable region polypeptide and the light chain variable region polypeptide, “one or several” regarding substitution and the like are, for example, 1 to 30, 1 to 20, 1 to 15, respectively. It is 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, 1.
 前記所望の抗原がCD3εの場合、前記第2の結合ドメインは、例えば、前記抗体等と抗体複合体を形成した際に、前記抗体複合体に前記第2の結合ドメインを介してT細胞が結合し、前記T細胞が細胞傷害活性を発揮可能であることから、下記第2のscFvのアミノ酸配列からなるポリペプチドを含むことが好ましい。下記(S-B2)および(S-B3)のアミノ酸配列からなるポリペプチドは、例えば、CD3εに結合可能である。 When the desired antigen is CD3ε, the second binding domain binds to T cells via the second binding domain in the antibody complex when forming an antibody complex with the antibody or the like. However, since the T cells can exhibit cytotoxic activity, it is preferable to include a polypeptide having the amino acid sequence of the second scFv below. A polypeptide comprising the amino acid sequences of (S-B2) and (S-B3) below can bind to CD3ε, for example.
(第2のscFv)
(S-B)下記(S-B1)、(S-B2)または(S-B3)のアミノ酸配列
(S-B1)配列番号18のアミノ酸配列
配列番号18:QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIN
(S-B2)配列番号18のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(S-B3)配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(Second scFv)
(SB) following (S-B1), (S-B2) or (S-B3) of the amino acid sequence (S-B1) of SEQ ID NO: 18 amino acid sequence SEQ ID NO: 18: KyubuikyuerukyukyuesujieiierueiaruPijieiesubuikeiemuesushikeieiesujiwaitiefutiaruwaitiemueichidaburyubuikeikyuaruPijikyujieruidaburyuaijiwaiaienuPiesuarujiwaitienuwaienukyukeiefukeidikeieitierutitidikeiesuesuesutieiwaiemukyueruesuesuerutiesuidiesueibuiwaiwaishieiaruwaiwaididieichiwaishierudiwaidaburyujikyujititierutibuiesuesujijijijiesujijijijiesujijijijiesukyuaibuierutikyuesuPieiaiemuesuEiesupijiikeibuitiemutishiesueiesuesuesubuiesuwaiemuenudaburyuwaikyukyukeiesujitiesuPikeiarudaburyuaiwaiditiesukeierueiesujibuiPieieichiefuarujiesujiesujitiesuwaiesuerutiaiesujiemuieiidiAATYYCQQWSSNPFTFGSGTKLEIN
(S-B2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 18 (S-B3) In the amino acid sequence of SEQ ID NO: 18, one or several amino acids are deleted or substituted , Inserted and/or added amino acid sequence
 前記(S-B1)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3の(H3-B1)のアミノ酸配列を含む配列である。前記(S-B2)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-B3)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-B1) amino acid sequence is, for example, a sequence including the (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3. The amino acid sequence of (S-B2) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:18. The amino acid sequence may have an identity of 70% or more. The amino acid sequence of (S-B3) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and the amino acid sequence of SEQ ID NO:18. In, it may be an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added.
 前記(S-B1)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含む配列である。前記(S-B2)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-B3)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The (S-B1) amino acid sequence is, for example, a sequence containing the (H-B1) amino acid sequence of the second heavy chain variable region. The amino acid sequence of (S-B2) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 18. May be an amino acid sequence having The amino acid sequence of (S-B3) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and in the amino acid sequence of SEQ ID NO: 18, one or several amino acids are It may be a deleted, substituted, inserted and/or added amino acid sequence.
 前記(S-B1)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含む配列である。前記(S-B2)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-B3)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-B1) amino acid sequence is, for example, a sequence containing the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences. The amino acid sequence of (S-B2) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO: 18 It may be an amino acid sequence having 70% or more identity with the sequence. The amino acid sequence of (S-B3) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and the amino acid sequence of SEQ ID NO:18. It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the sequence.
 前記(S-B1)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含む配列である。前記(S-B2)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(S-B3)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含み、且つ、配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (S-B1) amino acid sequence is, for example, a sequence containing the (L-B1) amino acid sequence of the second light chain variable region. The amino acid sequence of (S-B2) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO: 18. May be an amino acid sequence having The amino acid sequence of (S-B3) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has one or several amino acids in the amino acid sequence of SEQ ID NO: 18. It may be a deleted, substituted, inserted and/or added amino acid sequence.
 前記(S-B2)のアミノ酸配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the amino acid sequence of (S-B2), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, respectively. It is 97% or more, 98% or more, and 99% or more.
 前記(S-B3)のアミノ酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~72個、1~60個、1~48個、1~40個、1~24個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the amino acid sequence of (S-B3), “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, respectively. 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3 One, two or one.
 前記第1の結合ドメインおよび前記第2の結合ドメインは、直接または間接的に連結されていてもよいし、前記第1の結合ドメインと前記第2の結合ドメインとを共存させた場合、両者が会合(結合)するように形成してもよい。前記間接的な連結の場合、前記第1の結合ドメインおよび前記第2の結合ドメインは、リンカーペプチド(ドメインリンカー)により連結されていることが好ましい。前記ドメインリンカーは、例えば、1~40個、1~18個、1~15個、1~7個、1~3個、1個または2個のアミノ酸から構成される。前記ドメインリンカーは、例えば、グリシンおよびセリン等のアミノ酸から構成されており、具体例として、(GS)があげられる。前記mは、正の整数であり、例えば、1~6の整数である。前記nは、正の整数であり、例えば、1~6の整数である。前記mとnとは、同じでもよいし、異なってもよい。具体例として、ドメインリンカーは、下記配列番号19のアミノ酸配列からなるポリペプチドがあげられる。前記会合は、例えば、アミノ酸側鎖の電荷を利用できる。具体例として、前記会合は、例えば、一方の結合ドメインに正の電荷を有するアミノ酸のドメインを付加し、他方の結合ドメインに負の電荷を有するアミノ酸のドメインを付加することにより、誘導できる。また、前記会合は、例えば、タグ配列とタグ配列を認識するポリペプチドの組合せ等も利用できる。
ドメインリンカー(配列番号19):SGSG
The first binding domain and the second binding domain may be directly or indirectly linked, or when the first binding domain and the second binding domain coexist, both are It may be formed so as to be associated (bonded). In the case of the indirect linkage, it is preferable that the first binding domain and the second binding domain are linked by a linker peptide (domain linker). The domain linker is composed of, for example, 1 to 40, 1 to 18, 1 to 15, 1 to 7, 1 to 3, 1 or 2 amino acids. The domain linker is composed of, for example, amino acids such as glycine and serine, and a specific example thereof is (G m S) n . The m is a positive integer, for example, an integer of 1 to 6. The n is a positive integer, for example, an integer of 1 to 6. The m and n may be the same or different. A specific example of the domain linker is a polypeptide having the amino acid sequence of SEQ ID NO: 19 below. For the association, for example, charges of amino acid side chains can be used. As a specific example, the association can be induced, for example, by adding a domain of an amino acid having a positive charge to one binding domain and adding a domain of an amino acid having a negative charge to the other binding domain. Further, for the association, for example, a combination of a tag sequence and a polypeptide that recognizes the tag sequence can be used.
Domain linker (SEQ ID NO: 19): SGSG
 本発明の複合体化タンパク質は、例えば、腫瘍抗原に結合可能な抗体と組合せて利用することにより、NK細胞およびT細胞をリクルートでき、腫瘍に対する細胞傷害活性を誘導できることから、下記(B)のアミノ酸配列からなるポリペプチドが好ましい。下記(B2)および(B3)のアミノ酸配列からなるポリペプチドは、例えば、ヒトIgGおよび/またはCD3εに結合可能である。 Since the complexed protein of the present invention can be used in combination with an antibody capable of binding to a tumor antigen to recruit NK cells and T cells and induce cytotoxic activity against tumors, the following (B) A polypeptide consisting of an amino acid sequence is preferred. The polypeptides having the amino acid sequences of (B2) and (B3) below can bind to human IgG and/or CD3ε, for example.
(B)下記(B1)、(B2)、(B3)のアミノ酸配列
(B1)配列番号20のアミノ酸配列
配列番号20:MMRPIVLVLLFATSAAADIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSSSGSGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIN
(B2)配列番号20のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(B3)配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(B) below (B1), (B2), amino acid sequence (B1) SEQ ID NO: 20 amino acid sequence SEQ ID NO: 20 (B3): MMRPIVLVLLFATSAAADIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSSSGSGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIN
(B2) Amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO: 20. (B3) In the amino acid sequence of SEQ ID NO: 20, one or several amino acids are deleted, substituted, inserted and/or Or added amino acid sequence
 前記(B1)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3の(H3-A1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、CDRH1の(H1-A1)、CDRH2の(H2-A1)、およびCDRH3(H3-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1) amino acid sequences. The amino acid sequence of (B2) includes, for example, the amino acid sequences of CDRH1 (H1-A1), CDRH2 (H2-A1), and CDRH3 (H3-A1), and And may be an amino acid sequence having 70% or more identity. The amino acid sequence of (B3) includes, for example, (H1-A1) of CDRH1, (H2-A1) of CDRH2, and CDRH3 (H3-A1), and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
 前記(B1)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、第1の重鎖可変領域の(H-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence including the (H-A1) amino acid sequence of the first heavy chain variable region. The amino acid sequence of (B2) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence. The amino acid sequence of (B3) includes, for example, the amino acid sequence of (H-A1) of the first heavy chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
 前記(B1)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、CDRL1の(L1-A1)、CDRL2の(L2-A1)、およびCDRL3の(L3-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-A1), CDRL2 (L2-A1), and CDRL3 (L3-A1) amino acid sequences. The amino acid sequence of (B2) above includes, for example, the amino acid sequences of (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and On the other hand, it may be an amino acid sequence having 70% or more identity. The amino acid sequence of (B3) includes, for example, (L1-A1) of CDRL1, (L2-A1) of CDRL2, and (L3-A1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
 前記(B1)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、第1の軽鎖可変領域の(L-A1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The aforementioned (B1) amino acid sequence is, for example, a sequence containing the (L-A1) amino acid sequence of the first light chain variable region. The amino acid sequence of (B2) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and has 70% or more identity with the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence. The amino acid sequence of (B3) includes, for example, the amino acid sequence of (L-A1) of the first light chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
 前記(B1)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3の(H3-B1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、CDRH1の(H1-B1)、CDRH2の(H2-B1)、およびCDRH3(H3-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The amino acid sequence of (B1) is a sequence containing the amino acid sequences of (H1-B1) of CDRH1, (H2-B1) of CDRH2, and (H3-B1) of CDRH3, for example. The amino acid sequence of (B2) includes, for example, the amino acid sequences of CDRH1 (H1-B1), CDRH2 (H2-B1), and CDRH3 (H3-B1), and And may be an amino acid sequence having 70% or more identity. The amino acid sequence of (B3) includes, for example, (H1-B1) of CDRH1, (H2-B1) of CDRH2, and CDRH3 (H3-B1), and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
 前記(B1)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、第2の重鎖可変領域の(H-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence including the (H-B1) amino acid sequence of the second heavy chain variable region. The amino acid sequence of (B2) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and has 70% or more identity to the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence. The amino acid sequence of (B3) includes, for example, the amino acid sequence of (H-B1) of the second heavy chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
 前記(B1)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、CDRL1の(L1-B1)、CDRL2の(L2-B1)、およびCDRL3の(L3-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence including the CDL1 (L1-B1), CDRL2 (L2-B1), and CDRL3 (L3-B1) amino acid sequences. The amino acid sequence of (B2) includes, for example, the amino acid sequences of (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20. On the other hand, it may be an amino acid sequence having 70% or more identity. The amino acid sequence of (B3) includes, for example, (L1-B1) of CDRL1, (L2-B1) of CDRL2, and (L3-B1) of CDRL3, and in the amino acid sequence of SEQ ID NO: 20, It may be an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added.
 前記(B1)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含む配列である。前記(B2)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列に対して、70%以上の同一性を有するアミノ酸配列であってもよい。前記(B3)のアミノ酸配列は、例えば、第2の軽鎖可変領域の(L-B1)のアミノ酸配列を含み、且つ、配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列であってもよい。 The above-mentioned (B1) amino acid sequence is, for example, a sequence containing the (L-B1) amino acid sequence of the second light chain variable region. The amino acid sequence of (B2) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and has 70% or more identity with the amino acid sequence of SEQ ID NO:20. It may be an amino acid sequence. The amino acid sequence of (B3) includes, for example, the amino acid sequence of (L-B1) of the second light chain variable region, and one or several amino acids are deleted in the amino acid sequence of SEQ ID NO:20. , A substituted, inserted and/or added amino acid sequence.
 前記(B2)のアミノ酸配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the amino acid sequence of (B2), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97%. As described above, it is 98% or more and 99% or more.
 前記(B3)のアミノ酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~72個、1~60個、1~48個、1~40個、1~24個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the amino acid sequence of (B3), “one or several” regarding substitution and the like is, for example, 1 to 72, 1 to 60, 1 to 48, 1 to 40, 1 to 24, 1 to 20, 1 to 15, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, One or two and one.
 本発明の複合体化タンパク質は、前記第2の結合ドメインを1つまたは複数有する。後者の場合、各第2の結合ドメインは、同じ抗原に結合してもよいし、異なる抗原に結合してもよい。また、各第2の結合ドメインが同じ抗原に結合する場合、各第2の結合ドメインは、同じ抗原の同一のエピトープに結合してもよいし、同じ抗原の異なるエピトープに結合してもよい。 The complexed protein of the present invention has one or more of the second binding domains. In the latter case, each second binding domain may bind the same antigen or different antigens. Further, when each second binding domain binds to the same antigen, each second binding domain may bind to the same epitope of the same antigen, or may bind to different epitopes of the same antigen.
 本発明の複合体化タンパク質は、前記免疫グロブリンと架橋可能な架橋部を有することが好ましい。このような構成を有することにより、本発明の複合体化タンパク質は、前記免疫グロブリンと複合体化後に、前記免疫グロブリンと架橋することで、得られた抗体複合体を安定化できる。このため、前記架橋部を有する複合体化タンパク質によれば、前記抗体複合体を生体に投与した際に、前記免疫グロブリンと前記複合体化タンパク質との解離を防止でき、医薬組成物として効果的に使用できる。前記架橋部は、光の照射により、架橋反応が生じる光反応性架橋部が好ましい。本発明の複合体化タンパク質が光反応性架橋部を有する場合、前記複合体化タンパク質を構成するアミノ酸の一部または全部が、例えば、前記光反応性架橋部として、光活性型の反応基を有し、好ましくは、前記第1の結合ドメインを構成するアミノ酸の一部または全部が、前記光反応性架橋部として、光活性型の反応基を有する。前記光活性型の反応基を有するアミノ酸は、例えば、L-photo-ロイシン、L-photo-イソロイシン、L-photo-メチオニン等があげられる。前記光活性型の反応基を有するアミノ酸を有する複合体化タンパク質は、例えば、前記複合体化タンパク質の発現系において、対応するアミノ酸に加えてまたは代えて、前記光活性型の反応基を有するアミノ酸を発現系に添加し、前記複合体化タンパク質を発現させることにより、調製できる。前記光活性型の反応基を有するアミノ酸およびそれを用いた架橋方法は、下記参考文献4を参照できる。
参考文献4:Monika Suchanek et.al., “Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells.”, Nature Method, 2005, DOI:10.1038/NMETH752
The complexed protein of the present invention preferably has a cross-linking portion capable of cross-linking with the immunoglobulin. With such a constitution, the complexed protein of the present invention can stabilize the obtained antibody complex by forming a complex with the immunoglobulin and then cross-linking with the immunoglobulin. Therefore, the complexed protein having the cross-linked portion can prevent dissociation of the immunoglobulin and the complexed protein when the antibody complex is administered to a living body, and is effective as a pharmaceutical composition. Can be used for The cross-linking portion is preferably a photo-reactive cross-linking portion that undergoes a cross-linking reaction upon irradiation with light. When the complexed protein of the present invention has a photoreactive cross-linking moiety, some or all of the amino acids constituting the complexed protein, for example, as the photo-reactive cross-linking moiety, a photoactive reactive group It is preferable that a part or all of the amino acids constituting the first binding domain have a photoactive reactive group as the photoreactive crosslinker. Examples of the amino acid having a photoactive type reactive group include L-photo-leucine, L-photo-isoleucine, L-photo-methionine and the like. The complexed protein having an amino acid having a photoactive reactive group is, for example, an amino acid having a photoactive reactive group in addition to or in place of the corresponding amino acid in the expression system of the complexed protein. Can be prepared by adding to the expression system to express the complexed protein. For the amino acid having a photoactive reactive group and the crosslinking method using the same, refer to Reference Document 4 below.
Reference 4: Monika Suchanek et.al., “Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells.”, Nature Method, 2005, DOI:10.1038/NMETH752
 本発明において、前記複合体化タンパク質の第1の結合ドメインは、抗体等に結合するが、前記抗体等が付加配列を有する場合、前記第1の結合ドメインは、前記付加配列に結合可能でもよい。前記付加配列は、例えば、ペプチドタグ、プロテインタグ等のタグ等があげられる。前記タグは、例えば、FLAG(登録商標)タグ、HAタグ、Hisタグ、Mycタグ、V5タグ、切断型のNGFR(nerve growth factor receptor)等があげられる。前記付加配列は、例えば、本発明の複合体化タンパク質のN末端およびC末端の少なくとも一方に付加される。前記付加配列がHisタグの場合、前記Hisタグは、例えば、本発明の複合体化タンパク質のC末端に付加される。本発明の複合体化タンパク質と前記付加配列とは、前述のリンカーペプチドにより連結されてもよい。 In the present invention, the first binding domain of the complexed protein binds to an antibody or the like, but when the antibody or the like has an additional sequence, the first binding domain may be capable of binding to the additional sequence. .. Examples of the additional sequence include tags such as peptide tags and protein tags. Examples of the tag include FLAG (registered trademark) tag, HA tag, His tag, Myc tag, V5 tag, and truncated NGFR (nerve growth factor receptor). The additional sequence is added to at least one of the N-terminus and the C-terminus of the complexed protein of the present invention, for example. When the additional sequence is a His tag, the His tag is added to the C-terminus of the complexed protein of the present invention, for example. The complexed protein of the present invention and the additional sequence may be linked by the above-mentioned linker peptide.
 本発明の複合体化タンパク質の製造方法は、特に制限されず、例えば、前述のアミノ酸配列情報に基づいて、遺伝子工学的に製造することができる。具体的には、例えば、以下のようにして行うことができる。なお、本発明は、この例示には限定されない。 The method for producing the complexed protein of the present invention is not particularly limited, and for example, it can be produced by genetic engineering based on the above-mentioned amino acid sequence information. Specifically, for example, it can be performed as follows. The present invention is not limited to this example.
 まず、本発明の複合体化タンパク質をコードする核酸を含む発現ベクターを宿主に導入し、形質転換体を得る。そして、前記形質転換体を培養し、前記複合体化タンパク質を発現する形質転換体を得る。そして、前記形質転換体を培養し、前記複合体化タンパク質を含む画分を回収し、得られた回収画分から、前記複合体化タンパク質を単離または精製する。 First, an expression vector containing a nucleic acid encoding the complexed protein of the present invention is introduced into a host to obtain a transformant. Then, the transformant is cultured to obtain a transformant expressing the complexed protein. Then, the transformant is cultured, the fraction containing the complexed protein is collected, and the complexed protein is isolated or purified from the obtained collected fraction.
 前記発現ベクターは、例えば、前記複合体化タンパク質をコードする核酸を含むベクター等があげられる。前記発現ベクターは、例えば、前記複合体化タンパク質をコードする核酸を連結用ベクターに連結することで調製できる。前記連結用ベクターの種類は、特に制限されず、例えば、オンコレトロウイルスベクター、レンチウイルスベクター、シュードタイプベクター等のレトロウイルスベクター;アデノウイルスベクター、アデノ随伴ウイルス(AAV)ベクター、シミアンウイルスベクター、ワクシニアウイルスベクター、センダイウイルスベクター、エプスタイン・バー・ウイルス(EBV)ベクター、HSVベクター等のウイルスベクターがあげられる。具体例として、前記連結用ベクターは、例えば、pUC、pCMV、pMX、pELPがあげられる。前記連結用ベクターは、例えば、前記発現ベクターを導入する宿主に応じて、適宜設定することもできる。前記宿主は、特に制限されず、例えば、HEK細胞、CHO細胞、COS細胞、NSO細胞等の哺乳類由来の培養細胞等があげられる。 Examples of the expression vector include a vector containing a nucleic acid encoding the complexed protein. The expression vector can be prepared, for example, by ligating a nucleic acid encoding the complexed protein to a ligation vector. The type of the ligation vector is not particularly limited, and examples thereof include retrovirus vectors such as oncoretrovirus vector, lentivirus vector, pseudotype vector; adenovirus vector, adeno-associated virus (AAV) vector, simian virus vector, vaccinia. Examples thereof include viral vectors such as viral vectors, Sendai viral vectors, Epstein-Barr virus (EBV) vectors and HSV vectors. Specific examples of the ligation vector include pUC, pCMV, pMX, and pELP. The ligation vector can be appropriately set, for example, according to the host into which the expression vector is introduced. The host is not particularly limited, and examples thereof include cultured cells of mammalian origin such as HEK cells, CHO cells, COS cells and NSO cells.
 前記発現ベクターは、例えば、前記複合体化タンパク質をコードする核酸の発現を調節する、調節配列を有することが好ましい。前記調節配列は、例えば、プロモーター、ターミネーター、エンハンサー、ポリアデニル化シグナル配列、複製起点配列(ori)等があげられる。前記発現ベクターにおいて、前記調節配列の配置は特に制限されない。前記発現ベクターにおいて、前記調節配列は、例えば、前記複合体化タンパク質の発現を、機能的に調節できるように配置されていればよく、公知の方法に基づいて配置できる。前記調節配列は、例えば、前記連結ベクターが予め備える配列を利用してもよいし、前記連結ベクターに、さらに、前記調節配列を挿入してもよいし、前記連結ベクターが備える調節配列を、他の調節配列に置き換えてもよい。 The expression vector preferably has a regulatory sequence that regulates the expression of the nucleic acid encoding the complexed protein, for example. Examples of the regulatory sequence include a promoter, a terminator, an enhancer, a polyadenylation signal sequence, an origin of replication sequence (ori), and the like. The arrangement of the regulatory sequences in the expression vector is not particularly limited. In the expression vector, the regulatory sequence may be arranged, for example, so that the expression of the complexed protein can be functionally regulated, and can be arranged based on a known method. As the regulatory sequence, for example, a sequence that the ligation vector has in advance may be used, the ligation vector may further have the regulatory sequence inserted, or the ligation vector may have other regulatory sequences. May be replaced with the regulatory sequence of.
 前記発現ベクターは、例えば、さらに、選択マーカーのコード配列を有してもよい。前記選択マーカーは、例えば、薬剤耐性マーカー、蛍光タンパク質マーカー、酵素マーカー、細胞表面レセプターマーカー等があげられる。 The expression vector may further have a selection marker coding sequence, for example. Examples of the selection marker include drug resistance markers, fluorescent protein markers, enzyme markers, cell surface receptor markers, and the like.
 前記形質転換体の培養方法は、特に制限されず、前記宿主の種類に応じて、適宜決定できる。前記複合体化タンパク質を含む画分は、例えば、培養した前記形質転換体を破砕し、液体画分として回収できる。前記複合体化タンパク質の単離または精製は、特に制限されず、公知の方法が採用できる。 The method for culturing the transformant is not particularly limited and can be appropriately determined according to the type of the host. The fraction containing the complexed protein can be collected, for example, as a liquid fraction by crushing the cultured transformant. The isolation or purification of the complexed protein is not particularly limited, and a known method can be adopted.
 本発明の複合体化タンパク質は、後述の本発明の抗体複合体の製造に使用できる。また、本発明の複合体化タンパク質は、例えば、前記抗体等と複合体を形成させることにより、医薬組成物として使用できる。 The complexed protein of the present invention can be used for producing the antibody complex of the present invention described below. In addition, the complexed protein of the present invention can be used as a pharmaceutical composition by forming a complex with the antibody or the like.
<抗体複合体>
 本発明の抗体複合体は、前述のように、標的抗原に結合可能な抗体またはその抗原結合断片と、複合体化タンパク質とを含み、前記複合体化タンパク質は、前記本発明の複合体化タンパク質であり、前記複合体化タンパク質は、その第1の抗原結合ドメインより前記抗体またはその抗原結合断片と結合し、複合体化している。本発明の抗体複合体は、前記本発明の複合体化タンパク質を含み、前記本発明の複合体化タンパク質が、標的抗原に結合可能な抗体またはその抗原結合断片と複合体を形成していることが特徴であり、その他の構成および条件は、特に制限されない。本発明の抗体複合体は、前記抗体またはその抗原結合断片の抗原結合ドメインに加えて、本発明の複合体化タンパク質の第2の抗原結合ドメインを含む。このため、本発明の抗体複合体は、例えば、前述の多重特異性抗体と同様の機能を発揮できる。具体例として、前記第2の結合ドメインが結合する所望の抗原をCD3等のT細胞上に発現する抗原とし、前記抗体等の結合ドメインの結合対象を腫瘍抗原とすることにより、本発明の抗体複合体は、例えば、がん細胞に結合し、かつT細胞とNK細胞とをリクルートできるため、多重特異性抗体を含む抗癌剤と同様の機能を発揮する抗癌剤として使用できる。また、本発明の抗体複合体は、前記第2の結合ドメインの結合対象と、前記免疫グロブリンの結合対象とを近傍に配置することができ、前記抗体複合体は、例えば、前述の血友病治療薬と同様の機能を発揮する血友病治療薬として使用できる。本発明の抗体複合体は、前記第2の結合ドメインの結合対象と、前記免疫グロブリンの結合対象とを近傍に配置することができるため、例えば、複合体を形成している受容体等を離隔し、受容体を介したシグナルを抑制することができる。さらに、本発明の抗体複合体は、例えば、複数の抗原に結合可能であるため、複数の抗原の除去にも使用でき、例えば、疾患の原因物質となる抗原の除去にも使用できる。本発明の抗体複合体は、前記本発明の複合体化タンパク質の説明を援用できる。
<Antibody complex>
As described above, the antibody complex of the present invention includes an antibody capable of binding to a target antigen or an antigen-binding fragment thereof and a complexing protein, and the complexing protein is the complexing protein of the present invention. And the complexed protein binds to the antibody or the antigen-binding fragment thereof through the first antigen-binding domain to form a complex. The antibody complex of the present invention contains the complexed protein of the present invention, and the complexed protein of the present invention forms a complex with an antibody capable of binding to a target antigen or an antigen-binding fragment thereof. Is a feature, and other configurations and conditions are not particularly limited. The antibody complex of the present invention contains a second antigen binding domain of the complexed protein of the present invention in addition to the antigen binding domain of the antibody or the antigen binding fragment thereof. Therefore, the antibody complex of the present invention can exhibit the same function as, for example, the above-described multispecific antibody. As a specific example, the antibody of the present invention is obtained by using a desired antigen to which the second binding domain binds as an antigen expressed on T cells such as CD3, and a binding target of the binding domain such as the antibody as a tumor antigen. The complex can be used as an anticancer agent that exhibits the same function as an anticancer agent containing a multispecific antibody, because it can bind to cancer cells and recruit T cells and NK cells, for example. In the antibody complex of the present invention, the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, and the antibody complex is, for example, hemophilia described above. It can be used as a therapeutic agent for hemophilia that exhibits the same function as a therapeutic agent. In the antibody complex of the present invention, the binding target of the second binding domain and the binding target of the immunoglobulin can be arranged in the vicinity, so that, for example, the receptor forming the complex is separated. However, the signal mediated by the receptor can be suppressed. Furthermore, since the antibody complex of the present invention can bind to a plurality of antigens, it can be used to remove a plurality of antigens, for example, to remove an antigen that causes a disease. The description of the complexed protein of the present invention can be applied to the antibody complex of the present invention.
 前記標的抗原は、特に制限されず、任意の抗原とできる。前記標的抗原は、例えば、疾患に関連する抗原であり、具体例として、前記所望の抗原の説明を援用できる。前記疾患に関連する抗原は、例えば、前記疾患の発症または症状の進行に関係する抗原、疾患の治療に有効な抗原、疾患において発現が上昇または減少している抗原、疾患の原因となる細胞に発現する抗原等があげられる。前記疾患は、特に制限されず、例えば、悪性リンパ腫、白血病、骨髄腫、肺がん、乳がん、腎がん、大腸がん、卵巣がん等の腫瘍;アレルギー疾患または自己免疫疾患等の免疫疾患;血友病、特発性血小板減少性紫斑病、フォンビルブランド病等の遺伝子疾患;アルツハイマー病、多発性硬化症、ギランバレー症候群等の神経疾患;等があげられる。本発明の抗体複合体をがん治療薬として用いる場合、前記標的抗原は、例えば、Angiopoietin、CD19、CD20、CD30、CD38、CD123、CEA、cMET、EpCam、GPA33、GPC3、Her1、Her2、Her2、IGF1R、PSMA、VEGF、EGFR、BCMA等があげられる。また、本発明の抗体複合体を血友病治療薬として用いる場合、前記標的抗原は、例えば、factor IXa、factor X、vWF、IIb/IIIa等の血液凝固因子等があげられる。本発明の抗体複合体を抗原の除去による治療薬として用いる場合、前記標的抗原は、IL-1α、IL-1β、IL-4、IL-5、IL-6、IL-13、IL-17、IL-23、TNF-α等があげられる。前記標的抗原は、前記所望の抗原と異なることが好ましい。 The target antigen is not particularly limited and can be any antigen. The target antigen is, for example, an antigen associated with a disease, and the description of the desired antigen can be cited as a specific example. The antigen associated with the disease is, for example, an antigen related to the onset of the disease or the progression of symptoms, an antigen effective in the treatment of the disease, an antigen whose expression is increased or decreased in the disease, or a cell causing the disease. Examples include antigens that are expressed. The disease is not particularly limited, and examples thereof include tumors such as malignant lymphoma, leukemia, myeloma, lung cancer, breast cancer, kidney cancer, colorectal cancer, and ovarian cancer; immune diseases such as allergic disease or autoimmune disease; blood. Examples include genetic diseases such as friendship, idiopathic thrombocytopenic purpura, and von Willebrand disease; neurological diseases such as Alzheimer's disease, multiple sclerosis, Guillain-Barre syndrome, and the like. When the antibody complex of the present invention is used as a therapeutic drug for cancer, the target antigens include, for example, Angiopoietin, CD19, CD20, CD30, CD38, CD123, CEA, cMET, EpCam, GPA33, GPC3, Her1, Her2, Her2, Examples include IGF1R, PSMA, VEGF, EGFR, BCMA and the like. When the antibody complex of the present invention is used as a therapeutic agent for hemophilia, examples of the target antigen include blood coagulation factors such as factor IXa, factor X, vWF, IIb/IIIa and the like. When the antibody complex of the present invention is used as a therapeutic agent by removing an antigen, the target antigens are IL-1α, IL-1β, IL-4, IL-5, IL-6, IL-13, IL-17, Examples include IL-23 and TNF-α. The target antigen is preferably different from the desired antigen.
 前記抗体等は、例えば、公知の標的抗原に結合する抗体でもよいし、前記標的抗原で免疫し、得られた抗体等に結合可能な抗体でもよい。具体例として、前記標的抗原がCD19の場合、前記抗体等(クローン名)は、例えば、FMC63抗体、SJ25C1等があげられる。前記標的抗原がCD20の場合、前記抗体等は、例えば、リツキシマブ(Rituximab)、オビヌツズマブ(Obinutuzumab)等があげられる。前記標的抗原がCD38の場合、前記抗体等(クローン名)は、例えば、ダラツムマブ(Daratumumab)等があげられる。前記抗体等は、好ましくは、Fc領域を含む抗体またはその抗原結合断片であり、より好ましくは、抗体である。 The antibody or the like may be, for example, an antibody that binds to a known target antigen, or an antibody that can bind to the antibody or the like obtained by immunizing with the target antigen. As a specific example, when the target antigen is CD19, examples of the antibody and the like (clone name) include FMC63 antibody and SJ25C1. When the target antigen is CD20, examples of the antibody and the like include rituximab (Rituximab) and obinutuzumab (Obinutuzumab). When the target antigen is CD38, examples of the antibody and the like (clone name) include Daratumumab. The antibody or the like is preferably an antibody containing an Fc region or an antigen-binding fragment thereof, more preferably an antibody.
 前述のように、前記複合体化タンパク質において、前記第1の結合ドメインは、免疫グロブリンに結合可能である。このため、本発明の抗体複合体において、前記複合体化タンパク質は、その第1の結合ドメインにより前記抗体またはその抗原結合断片と結合している。すなわち、本発明の抗体複合体において、前記抗体等と、前記複合体化タンパク質とは複合体を形成している。ただし、本発明はこれに限定されず、前記複合体化タンパク質と、前記抗体等は、未結合の状態でもよい。この場合、本発明の抗体複合体は、例えば、抗体複合体形成用組成物、または抗体複合体形成用キットということもできる。 As mentioned above, in the complexed protein, the first binding domain is capable of binding immunoglobulin. Therefore, in the antibody complex of the present invention, the complexed protein is bound to the antibody or the antigen-binding fragment thereof by the first binding domain thereof. That is, in the antibody complex of the present invention, the antibody and the like and the complexed protein form a complex. However, the present invention is not limited to this, and the complexed protein, the antibody and the like may be unbound. In this case, the antibody complex of the present invention can be referred to as, for example, a composition for forming an antibody complex or a kit for forming an antibody complex.
 本発明の抗体複合体において、前記抗体等と、前記複合体化タンパク質とは、架橋されていることが好ましい。本発明の抗体複合体が架橋されることにより、例えば、生体への投与時に、前記抗体複合体が、前記抗体等と、前記複合体化タンパク質とに分離することを抑制できる。前記架橋は、例えば、前記複合体化タンパク質の説明における架橋部を用いて形成でき、前記架橋部の説明を援用できる。 In the antibody complex of the present invention, the antibody and the like and the complexed protein are preferably crosslinked. By cross-linking the antibody complex of the present invention, it is possible to prevent the antibody complex from separating into the antibody or the like and the complexed protein when administered to a living body. The crosslink can be formed using, for example, the crosslink part in the description of the complexed protein, and the description of the crosslink part can be incorporated.
 本発明の抗体複合体の製造方法は、例えば、前記標的抗原に結合可能な抗体またはその抗原結合断片と、前記複合体化タンパク質とを接触させる接触工程を含む。前記接触工程では、前記標的抗原に結合可能な抗体またはその抗原結合断片と、前記複合体化タンパク質とが接触することにより、前記複合体化タンパク質における第1の結合ドメインが、前記抗体等に結合し、前記抗体複合体を形成する。前記接触工程における温度は、例えば、0~40℃、4~37℃である。前記接触工程における接触時間は、例えば、10~180分、30~60分である。前記接触工程における前記標的抗原に結合可能な抗体またはその抗原結合断片のモル数(MAb)と、前記複合体化タンパク質のモル数(MCO)との比(MAb:MCO)は、特に制限されず、例えば、1:0.01~100、0.1~10である。前記比(MAb:MCO)は、例えば、前記接触工程後において、遊離している複合体化タンパク質を低減でき、前記抗体複合体を生体に投与した際の副反応を抑制できることから、好ましくは、1:1以下であり、より好ましくは、1:0.01~1、1:0.1~1、1:0.1~0.9、1:0.1~0.8、1:0.1~0.7、1:0.1~0.6、1:0.1~0.5である。 The method for producing an antibody complex of the present invention includes, for example, a contact step of bringing an antibody capable of binding to the target antigen or an antigen-binding fragment thereof into contact with the complexed protein. In the contacting step, an antibody or an antigen-binding fragment thereof capable of binding to the target antigen is contacted with the complexing protein, whereby the first binding domain in the complexing protein binds to the antibody or the like. To form the antibody complex. The temperature in the contacting step is, for example, 0 to 40°C and 4 to 37°C. The contact time in the contact step is, for example, 10 to 180 minutes or 30 to 60 minutes. The moles of possible antibody or antigen binding fragment thereof binds to the target antigen in the contacting step (M Ab), the ratio between the number of moles of complexing proteins (M CO) (M Ab: M CO) is It is not particularly limited and is, for example, 1:0.01 to 100, 0.1 to 10. The ratio ( MAb : MCO ) is preferably, for example, after the contacting step, the free complexed protein can be reduced, and the side reaction when the antibody complex is administered to a living body can be suppressed. Is 1:1 or less, more preferably 1:0.01 to 1, 1:0.1 to 1, 1:0.1 to 0.9, 1:0.1 to 0.8, and 1. : 0.1 to 0.7, 1: 0.1 to 0.6, 1: 0.1 to 0.5.
 本発明の抗体複合体の製造方法は、例えば、前記複合体化タンパク質が架橋部を有する場合、前記抗体等と前記複合体化タンパク質とを架橋する架橋工程を含んでもよい。前記架橋工程は、例えば、前記参考文献4を参照できる。 The method for producing an antibody complex of the present invention may include a cross-linking step of cross-linking the antibody or the like and the complexed protein when the complexed protein has a cross-linked portion. For the cross-linking step, for example, refer to Reference 4 above.
 本発明の抗体複合体の製造方法は、例えば、前記接触工程後または前記架橋工程後に、前記抗体複合体を精製する精製工程を含んでもよい。前記精製工程における精製方法は、特に制限されない。前記抗体複合体は、前記抗体等および前記複合体化タンパク質と比較して、分子量が大きくなっている。このため、前記精製工程では、ゲル濾過クロマトグラフィー等の分子排斥クロマトグラフィーまたは分子篩クロマトグラフィー等により実施できる。前記抗体複合体は、例えば、前記抗体等または前記複合体化タンパク質の抗原を利用して、アフィニティークロマトグラフィー等で精製してもよい。 The method for producing an antibody complex of the present invention may include, for example, a purification step of purifying the antibody complex after the contacting step or after the crosslinking step. The purification method in the purification step is not particularly limited. The antibody complex has a larger molecular weight than the antibody or the like and the complexed protein. Therefore, the purification step can be carried out by molecular exclusion chromatography such as gel filtration chromatography or molecular sieve chromatography. The antibody complex may be purified by affinity chromatography using the antibody or the antigen of the complexed protein.
 本発明の抗体複合体は、医薬組成物として使用できる。 The antibody complex of the present invention can be used as a pharmaceutical composition.
<医薬組成物>
 本発明の医薬組成物は、前述のように、前記本発明の複合体化タンパク質を含む。本発明の医薬組成物は、前記本発明の複合体化タンパク質を含むことが特徴であり、その他の構成および条件は、特に制限されない。本発明の医薬組成物は、前記本発明の複合体化タンパク質および抗体複合体の説明を援用できる。本発明の医薬組成物は、例えば、後述の本発明の治療方法に用いることができる。
<Pharmaceutical composition>
The pharmaceutical composition of the present invention contains the complexed protein of the present invention as described above. The pharmaceutical composition of the present invention is characterized by containing the complexed protein of the present invention, and the other constitution and conditions are not particularly limited. The description of the complexed protein and antibody complex of the present invention can be applied to the pharmaceutical composition of the present invention. The pharmaceutical composition of the present invention can be used, for example, in the therapeutic method of the present invention described below.
 本発明の医薬組成物は、例えば、標的抗原に結合可能な抗体またはその抗原結合断片を含んでもよい。この場合、前記複合体化タンパク質と、前記抗体等とは、複合体を形成してもよいし、形成しなくてもよい。前者の場合、前記複合体化タンパク質は、その第1の結合ドメインにより前記抗体またはその抗原結合断片と結合している。後者の場合、前記複合体化タンパク質と、前記抗体等とは、例えば、未混合の状態で有ることが好ましい。また、この場合、本発明の医薬組成物は、例えば、医薬キットということもできる。 The pharmaceutical composition of the present invention may include, for example, an antibody capable of binding to a target antigen or an antigen-binding fragment thereof. In this case, the complexed protein and the antibody or the like may or may not form a complex. In the former case, the complexed protein is bound to the antibody or antigen-binding fragment thereof by its first binding domain. In the latter case, the complexed protein and the antibody or the like are preferably in an unmixed state, for example. In this case, the pharmaceutical composition of the present invention can also be referred to as a pharmaceutical kit, for example.
 本発明の医薬組成物は、例えば、薬学的に許容される担体、希釈物等のその他の成分を含んでもよい。前記その他の成分は、特に制限されず、例えば、保存剤、抗酸化剤、キレート剤、安定化剤、乳化剤、分散剤、懸濁化剤、増粘剤等があげられる。前記保存剤は、例えば、チメロサール、2-フェノキシエタノール等があげられる。前記キレート剤は、例えば、エチレンジアミン4酢酸、グリコールエーテルジアミン4酢酸等があげられる。 The pharmaceutical composition of the present invention may include other components such as a pharmaceutically acceptable carrier and diluent. The other components are not particularly limited, and examples thereof include a preservative, an antioxidant, a chelating agent, a stabilizer, an emulsifier, a dispersant, a suspending agent and a thickener. Examples of the preservative include thimerosal, 2-phenoxyethanol and the like. Examples of the chelating agent include ethylenediaminetetraacetic acid and glycoletherdiaminetetraacetic acid.
 本発明の医薬組成物の投与条件は、特に制限されず、例えば、対象となる疾患の種類、患者の年齢等に応じて、投与形態、投与方法、投与時期、投与量等を適宜設定できる。本発明の医薬組成物の使用方法は、特に制限されず、例えば、前記投与対象に、本発明の医薬組成物を投与すればよい。 The administration conditions of the pharmaceutical composition of the present invention are not particularly limited, and the administration form, administration method, administration timing, dose, etc. can be appropriately set depending on, for example, the type of target disease, the age of the patient, and the like. The method of using the pharmaceutical composition of the present invention is not particularly limited, and for example, the pharmaceutical composition of the present invention may be administered to the administration subject.
 前記投与対象は、例えば、細胞、組織または器官があげられる。前記投与対象は、例えば、ヒト、ヒトを除く非ヒト動物があげられる。前記非ヒト動物は、前記非ヒト動物は、例えば、マウス、ラット、イヌ、サル、ウサギ、ヒツジ、ウマ、ブタ等の哺乳類等があげられる。前記投与は、例えば、in vivoでもin vitroでもよい。 Examples of the administration target include cells, tissues or organs. Examples of the administration target include humans and non-human animals other than humans. Examples of the non-human animal include mammals such as mouse, rat, dog, monkey, rabbit, sheep, horse and pig. The administration may be, for example, in vivo or in vitro .
 本発明の医薬組成物の投与形態(剤型)は、特に制限されず、例えば、注射剤(埋め込み注射、持続性注射剤、輸液剤(点滴用製剤等)、凍結乾燥注射剤、粉末注射剤、充填済シリンジ剤、カートリッジ剤等)等の注射投与用製剤等の液剤等である。 The administration form (dosage form) of the pharmaceutical composition of the present invention is not particularly limited, and examples thereof include injections (implanted injections, sustained injections, infusions (forms for drip infusion), freeze-dried injections, powder injections). , Filled syringes, cartridges, etc.) and liquid preparations such as injection preparations.
 前記投与方法は、特に制限されず、例えば、投与対象に応じて適宜決定できる。前記投与方法は、例えば、非経口投与、経口投与等があげられる。前記非経口投与は、例えば、局所投与、皮下投与、皮内投与、筋肉内投与、腹腔内投与、静脈内投与、リンパ管内投与、腫瘍内投与等があげられる。 The administration method is not particularly limited and can be appropriately determined depending on the administration subject, for example. Examples of the administration method include parenteral administration and oral administration. Examples of the parenteral administration include local administration, subcutaneous administration, intradermal administration, intramuscular administration, intraperitoneal administration, intravenous administration, intralymphatic administration, intratumoral administration and the like.
 本発明の医薬組成物において、前記複合体化タンパク質の投与量は、特に制限されない。本発明の医薬組成物をin vivoで使用する場合、例えば、投与対象の種類、症状、年齢、投与方法等により適宜決定できる。具体例として、ヒトに投与する場合、1回あたりの前記複合体化タンパク質の投与量は、例えば、1~1500mg、25~375mg、75~200mg、約125mg(例えば、100~150mg)である。具体例として、ヒトに投与する場合、1回あたりの前記抗体等の投与量は、例えば、1~5000mg、75~1125mg、225~600mg、約375mg(例えば、300~450mg)である。本発明の医薬組成物として、前記抗体複合体を投与する場合、前記抗体複合体の投与量は、特に制限されない。具体例として、ヒトに投与する場合、1回あたりの前記抗体複合体の投与量は、例えば、1~7500mg、100~1500mg、350~800mg、約500mg(例えば、400~600mg)である。本発明の医薬組成物の投与回数は、例えば、1週間~6週間に1回である。本発明の医薬組成物において、前記複合体化タンパク質または前記抗体複合体の配合量は、例示した投与条件を実現できるような濃度または量でバイアル等の容器に含まれていることが好ましい。 In the pharmaceutical composition of the present invention, the dose of the complexed protein is not particularly limited. When the pharmaceutical composition of the present invention is used in vivo, it can be appropriately determined depending on, for example, the type of subject to be administered, symptoms, age, administration method and the like. As a specific example, when administered to humans, the dose of the complexed protein per administration is, for example, 1 to 1500 mg, 25 to 375 mg, 75 to 200 mg, or about 125 mg (eg, 100 to 150 mg). As a specific example, when administered to humans, the dose of the antibody or the like per administration is, for example, 1 to 5000 mg, 75 to 1125 mg, 225 to 600 mg, or about 375 mg (eg, 300 to 450 mg). When the antibody complex is administered as the pharmaceutical composition of the present invention, the dose of the antibody complex is not particularly limited. As a specific example, when administered to humans, the dose of the antibody complex per administration is, for example, 1 to 7500 mg, 100 to 1500 mg, 350 to 800 mg, about 500 mg (eg, 400 to 600 mg). The frequency of administration of the pharmaceutical composition of the present invention is, for example, once every 1 to 6 weeks. In the pharmaceutical composition of the present invention, the compounded amount of the complexed protein or the antibody complex is preferably contained in a container such as a vial at a concentration or amount that can realize the exemplified administration conditions.
<核酸>
 本発明の核酸は、前記本発明の複合体化タンパク質をコードする。本発明の核酸は、前記本発明の複合体化タンパク質をコードすることが特徴であり、その他の構成および条件は、特に制限されない。本発明の核酸は、本発明の複合体化タンパク質、抗体複合体、および医薬組成物の説明を援用できる。本発明の核酸によれば、本発明の複合体化タンパク質を製造できる。
<Nucleic acid>
The nucleic acid of the present invention encodes the complexed protein of the present invention. The nucleic acid of the present invention is characterized in that it encodes the complexed protein of the present invention, and other constitutions and conditions are not particularly limited. For the nucleic acid of the present invention, the description of the complexed protein, antibody complex, and pharmaceutical composition of the present invention can be incorporated. According to the nucleic acid of the present invention, the complexed protein of the present invention can be produced.
 本発明の核酸は、例えば、前記本発明の複合体化タンパク質のアミノ酸配列に基づき、常法により調製できる。具体例として、前記本発明の複合体化タンパク質をコードする核酸は、例えば、前述の各ドメインの前記アミノ酸配列をコードする塩基配列を取得し、前記塩基配列に基づき、分子生物学的手法および/または化学的合成方法により調製できる。前記核酸の塩基配列は、例えば、本発明の複合体化タンパク質を発現させる細胞の由来に応じて、コドン最適化してもよい。 The nucleic acid of the present invention can be prepared by a conventional method, for example, based on the amino acid sequence of the complexed protein of the present invention. As a specific example, for the nucleic acid encoding the complexed protein of the present invention, for example, a base sequence encoding the amino acid sequence of each domain described above is obtained, and based on the base sequence, a molecular biology method and/or Alternatively, it can be prepared by a chemical synthesis method. The base sequence of the nucleic acid may be codon-optimized, for example, depending on the origin of cells expressing the complexed protein of the present invention.
 前記複合体化タンパク質は、前述のように、第1の結合ドメインおよび第2の結合ドメインを含む。このため、本発明の核酸は、前記第1の結合ドメインをコードする核酸配列(ポリヌクレオチド)および前記第2の結合ドメインをコードする核酸配列(ポリヌクレオチド)を含む。 The complexed protein contains the first binding domain and the second binding domain, as described above. Therefore, the nucleic acid of the present invention includes a nucleic acid sequence (polynucleotide) encoding the first binding domain and a nucleic acid sequence (polynucleotide) encoding the second binding domain.
 前記第1の結合ドメインをコードするポリヌクレオチドは、具体例として、例えば、下記(s-a)のポリヌクレオチドがあげられる。
(s-a)下記(s-a1)、(s-a2)、(s-a3)、(s-a4)、(s-a5)、または(s-a6)のポリヌクレオチド(核酸)
(s-a1)配列番号15のアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド
(s-a2)配列番号15のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、ヒトIgGに結合するポリペプチドをコードするポリヌクレオチド
(s-a3)配列番号15のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、ヒトIgGに結合するポリペプチドをコードするポリヌクレオチド
(s-a4)配列番号21の塩基配列からなるポリヌクレオチド
(s-a5)配列番号21の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、ヒトIgGに結合するポリペプチドをコードするポリヌクレオチド
(s-a6)配列番号21の塩基配列において、1個または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、ヒトIgGに結合するポリペプチドをコードするポリヌクレオチド
Specific examples of the polynucleotide encoding the first binding domain include the following (sa) polynucleotides.
(Sa) Polynucleotide (nucleic acid) of the following (s-a1), (s-a2), (s-a3), (s-a4), (s-a5), or (s-a6)
(S-a1) A polynucleotide encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO:15 (s-a2) An amino acid sequence having 80% or more identity to the amino acid sequence of SEQ ID NO:15, which is a human IgG Polynucleotide (s-a3) encoding a polypeptide that binds to human, comprising an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 15, Polynucleotide encoding a polypeptide that binds to (s-a4) Polynucleotide consisting of the nucleotide sequence of SEQ ID NO:21 (s-a5) Nucleotide sequence having 80% or more identity to the nucleotide sequence of SEQ ID NO:21 Consisting of the nucleotide sequence of polynucleotide (s-a6) SEQ ID NO: 21 encoding a polypeptide that binds to human IgG, in which one or several bases have been deleted, substituted, inserted and/or added And a polynucleotide encoding a polypeptide that binds to human IgG
配列番号21の塩基配列からなるポリヌクレオチド
5'-GACATCAAGATGACACAGAGCCCCAGCTCTATGTACGCCAGCGTGGGAGAGAGAGTGACCATTACCTGCAAGGCCAGCCAGGACATCAAGTCCTACCTGACCTGGTATCAGAAGAAGCCCTGGAAGTCCCCTCGGACACTGATCTTCTACAGCACCAGACTGGCCGATGGCGTGCCCAGCAGATTTTCTGGCTCTGGCAGCGGCCAGGACTTCAGCCTGACAATCAGCAGCCTGGAAAGCGACGACACCGCCACCTACTACTGCCTGCAGCACGACGAGAGCCCCTTCACATTTGGCGGAGGCACCAAGCTGGAAATCAAAGGAGGTGGAGGCTCTGGAGGTGGAGGCTCTGGAGGCGGTGGATCCCAAGTTCAGCTTCAGCAACCTGGCGCCGAGCTGGTTAAGCCTGGCGCCTCTGTGAAGATGAGCTGCAAAGCCAGCGGCTACACCTTCACCAACTACTGGATCAACTGGGTCAAGCAGCGGCCTGGCCAAGGCCTGGAATGGATCGGCGATATCTATCCTGGCGGCGGAATCACCAATTACAACGAGAAGTTCAAGACCAAGGCCACACTGACCCTGGACACCAGCAGCTCCACAGTGTACATGCAGCTGAGCAGCCTGACCAGCGAGGATAGCGCCGTGTACTACTGCAGCAGAAGCTACGGCAAGTACTTCGACTACTGGGGCCAGGGCACCACACTGATTGTGTCCTCG-3'
A polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 21
5'--3'
 前記(s-a1)~(s-a3)のポリヌクレオチドは、それぞれ、前記(S-A1)~(S-A3)のポリペプチドをコードする核酸であり、前記(S-A1)~(S-A3)のポリペプチドの説明を援用できる。 The polynucleotides (s-a1) to (s-a3) are nucleic acids encoding the polypeptides (S-A1) to (S-A3), respectively, and are (S-A1) to (S-A3). -The description of the polypeptide in A3) can be incorporated.
 前記(s-a4)のポリヌクレオチドは、前記本発明の複合体化タンパク質における配列番号13および14のアミノ酸配列を含むポリペプチドをコードするポリヌクレオチドである。前記(s-a5)および(s-a6)のポリヌクレオチドにおいて、前記配列番号21の塩基配列のCDRH1、CDRH2、CDRH3、CDRL1、CDRL2、およびCDRL3に対応するアミノ酸配列をコードするポリヌクレオチドは、例えば、保存されている。前記配列番号21の塩基配列における各CDRのアミノ酸配列をコードする塩基配列は、例えば、それぞれ、前記本発明の複合体化タンパク質における第1の結合ドメインの重鎖可変領域および軽鎖可変領域における各CDRのアミノ酸配列を参照できる。 The polynucleotide (s-a4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 13 and 14 in the complexed protein of the present invention. In the polynucleotides (s-a5) and (s-a6), the polynucleotide encoding the amino acid sequence corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 21 is, for example, , Saved. The nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 21 is, for example, respectively in the heavy chain variable region and the light chain variable region of the first binding domain in the complexed protein of the present invention. The amino acid sequence of CDR can be referred to.
 前記(s-a5)の塩基配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the base sequence (s-a5), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, It is 97% or more, 98% or more, and 99% or more.
 前記(s-a6)の塩基酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~216個、1~180個、1~144個、1~120個、1~90個、1~72個、1~60個、1~45個、1~30個、1~20個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the base acid sequence of (s-a6), “one or several” regarding substitution and the like is, for example, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 90, 1-72, 1-60, 1-45, 1-30, 1-20, 1-9, 1-8, 1-7, 1- The number is 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
 前記第2の結合ドメインをコードするポリヌクレオチドは、具体例として、例えば、下記(s-b)のポリヌクレオチドがあげられる。
(s-b)下記(s-b1)、(s-b2)、(s-b3)、(s-b4)、(s-b5)、または(s-b6)のポリヌクレオチド(核酸)
(s-b1)配列番号18のアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド
(s-b2)配列番号18のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、CD3εに結合するポリペプチドをコードするポリヌクレオチド
(s-b3)配列番号18のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、CD3εに結合するポリペプチドをコードするポリヌクレオチド
(s-b4)配列番号22の塩基配列からなるポリヌクレオチド
(s-b5)配列番号22の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、CD3εに結合するポリペプチドをコードするポリヌクレオチド
(s-b6)配列番号22の塩基配列において、1個または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、CD3εに結合するポリペプチドをコードするポリヌクレオチド
Specific examples of the polynucleotide encoding the second binding domain include the following (sb) polynucleotides.
(Sb) Polynucleotide (nucleic acid) of (s-b1), (s-b2), (s-b3), (s-b4), (s-b5), or (s-b6) below
(S-b1) Polynucleotide encoding a polypeptide consisting of amino acid sequence of SEQ ID NO: 18 (s-b2) Comprising an amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 18, and having CD3ε Polynucleotide encoding a binding polypeptide (s-b3) consists of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 18, and binds to CD3ε Polynucleotide encoding the polypeptide (s-b4) consisting of the nucleotide sequence of SEQ ID NO: 22 Polynucleotide (s-b5) consisting of the nucleotide sequence having 80% or more identity with the nucleotide sequence of SEQ ID NO: 22 , A polynucleotide encoding a polypeptide that binds to CD3ε (s-b6) consisting of a nucleotide sequence in which one or several nucleotides are deleted, substituted, inserted and/or added in the nucleotide sequence of SEQ ID NO: 22, Polynucleotide encoding a polypeptide that binds to CD3ε
配列番号22の塩基配列からなるポリヌクレオチド
5'-CAGGTCCAGTTGCAACAGTCTGGCGCTGAACTGGCTAGACCTGGCGCTAGCGTGAAGATGTCTTGCAAGGCCTCCGGATACACATTCACCCGGTACACCATGCATTGGGTTAAGCAGAGGCCCGGACAGGGACTTGAGTGGATCGGCTACATCAACCCCAGCCGGGGCTACACAAACTACAATCAGAAGTTTAAGGACAAGGCTACCCTCACCACCGACAAGAGCAGCAGCACAGCCTATATGCAGCTGTCCTCTCTGACCTCCGAGGACTCCGCCGTGTATTATTGCGCCCGGTACTACGACGACCACTACTGTCTGGATTATTGGGGACAGGGAACAACCCTGACCGTGTCCTCTGGTGGAGGAGGCTCAGGAGGAGGTGGCTCTGGTGGTGGAGGCTCGCAAATTGTGCTGACCCAGTCTCCTGCCATCATGAGCGCTAGCCCTGGCGAGAAAGTGACAATGACCTGTAGCGCCAGCAGCAGCGTGTCCTACATGAATTGGTATCAACAGAAGTCCGGCACAAGCCCCAAGAGATGGATCTACGACACCTCCAAGCTGGCCTCTGGCGTGCCAGCTCACTTTAGAGGAAGCGGCAGCGGCACCAGCTACTCCCTGACAATTTCTGGCATGGAAGCCGAGGACGCCGCTACCTACTATTGTCAGCAGTGGTCCAGCAATCCCTTCACCTTCGGCTCCGGAACAAAACTCGAAATCAAC-3'
A polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 22
5'--3'
 前記(s-b1)~(s-b3)のポリヌクレオチドは、それぞれ、前記(S-B1)~(S-B3)のポリペプチドをコードする核酸であり、前記(S-B1)~(S-B3)のポリペプチドの説明を援用できる。 The polynucleotides of (s-b1) to (s-b3) are nucleic acids encoding the polypeptides of (S-B1) to (S-B3), respectively, and are (S-B1) to (S-B3). -The description of the polypeptide in B3) can be incorporated.
 前記(s-b4)のポリヌクレオチドは、前記本発明の複合体化タンパク質における配列番号16および17のアミノ酸配列を含むポリペプチドをコードするポリヌクレオチドである。前記(s-b5)および(s-b6)のポリヌクレオチドにおいて、前記配列番号22の塩基配列のCDRH1、CDRH2、CDRH3、CDRL1、CDRL2、およびCDRL3に対応するアミノ酸配列をコードするポリヌクレオチドは、例えば、保存されている。前記配列番号22の塩基配列における各CDRのアミノ酸配列をコードする塩基配列は、例えば、それぞれ、前記本発明の複合体化タンパク質における第2の結合ドメインの重鎖可変領域および軽鎖可変領域における各CDRのアミノ酸配列を参照できる。 The polynucleotide (s-b4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 16 and 17 in the complexed protein of the present invention. In the polynucleotides (s-b5) and (s-b6), the polynucleotide encoding the amino acid sequence corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 22 is, for example, , Saved. The nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 22 is, for example, respectively in the heavy chain variable region and the light chain variable region of the second binding domain in the complexed protein of the present invention. The amino acid sequence of CDR can be referred to.
 前記(s-b5)の塩基配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the base sequence of (s-b5), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, respectively. It is 97% or more, 98% or more, and 99% or more.
 前記(s-b6)の塩基酸配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~216個、1~180個、1~144個、1~120個、1~90個、1~72個、1~60個、1~45個、1~30個、1~20個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the base acid sequence of (s-b6), “one or several” regarding substitution and the like is, for example, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 90, 1-72, 1-60, 1-45, 1-30, 1-20, 1-9, 1-8, 1-7, 1- The number is 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
 前記複合体化タンパク質をコードするポリヌクレオチドは、具体例として、例えば、下記(b)のポリヌクレオチドがあげられる。
(b)下記(b1)、(b2)、(b3)、(b4)、(b5)、または(b6)のポリヌクレオチド(核酸)
(b1)配列番号20のアミノ酸配列からなるポリペプチドをコードするポリヌクレオチド
(b2)配列番号20のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列からなり、ヒトIgGおよび/またはCD3εに結合するポリペプチドをコードするポリヌクレオチド
(b3)配列番号20のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列からなり、ヒトIgGおよび/またはCD3εに結合するポリペプチドをコードするポリヌクレオチド
(b4)配列番号23の塩基配列からなるポリヌクレオチド
(b5)配列番号23の塩基配列に対して、80%以上の同一性を有する塩基配列からなり、ヒトIgGおよび/またはCD3εに結合するポリペプチドをコードするポリヌクレオチド
(b6)配列番号23の塩基配列において、1個または数個の塩基が欠失、置換、挿入および/または付加された塩基配列からなり、ヒトIgGおよび/またはCD3εに結合するポリペプチドをコードするポリヌクレオチド
Specific examples of the polynucleotide encoding the complexed protein include the polynucleotide (b) below.
(B) Polynucleotide (nucleic acid) of the following (b1), (b2), (b3), (b4), (b5), or (b6)
(B1) A polynucleotide encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 20 (b2) An amino acid sequence having 80% or more identity with the amino acid sequence of SEQ ID NO: 20, and comprising human IgG and/or CD3ε A polynucleotide (b3) encoding a polypeptide that binds to AA is composed of an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 20, and human IgG and/or Alternatively, a polynucleotide encoding a polypeptide that binds to CD3ε (b4) consisting of the base sequence of SEQ ID NO:23 (b5) consisting of a base sequence having 80% or more identity with the base sequence of SEQ ID NO:23 (B6) a polynucleotide encoding a polypeptide that binds to human IgG and/or CD3ε, the nucleotide sequence of SEQ ID NO: 23 with one or several nucleotides deleted, substituted, inserted and/or added And a polynucleotide encoding a polypeptide that binds to human IgG and/or CD3ε
配列番号23の塩基配列からなるポリヌクレオチド
5'-ATGATGAGGCCCATCGTGCTGGTGCTGCTGTTTGCTACATCTGCGGCCGCCGACATCAAGATGACACAGAGCCCCAGCTCTATGTACGCCAGCGTGGGAGAGAGAGTGACCATTACCTGCAAGGCCAGCCAGGACATCAAGTCCTACCTGACCTGGTATCAGAAGAAGCCCTGGAAGTCCCCTCGGACACTGATCTTCTACAGCACCAGACTGGCCGATGGCGTGCCCAGCAGATTTTCTGGCTCTGGCAGCGGCCAGGACTTCAGCCTGACAATCAGCAGCCTGGAAAGCGACGACACCGCCACCTACTACTGCCTGCAGCACGACGAGAGCCCCTTCACATTTGGCGGAGGCACCAAGCTGGAAATCAAAGGAGGTGGAGGCTCTGGAGGTGGAGGCTCTGGAGGCGGTGGATCCCAAGTTCAGCTTCAGCAACCTGGCGCCGAGCTGGTTAAGCCTGGCGCCTCTGTGAAGATGAGCTGCAAAGCCAGCGGCTACACCTTCACCAACTACTGGATCAACTGGGTCAAGCAGCGGCCTGGCCAAGGCCTGGAATGGATCGGCGATATCTATCCTGGCGGCGGAATCACCAATTACAACGAGAAGTTCAAGACCAAGGCCACACTGACCCTGGACACCAGCAGCTCCACAGTGTACATGCAGCTGAGCAGCCTGACCAGCGAGGATAGCGCCGTGTACTACTGCAGCAGAAGCTACGGCAAGTACTTCGACTACTGGGGCCAGGGCACCACACTGATTGTGTCCTCGAGCGGATCTGGCCAGGTCCAGTTGCAACAGTCTGGCGCTGAACTGGCTAGACCTGGCGCTAGCGTGAAGATGTCTTGCAAGGCCTCCGGATACACATTCACCCGGTACACCATGCATTGGGTTAAGCAGAGGCCCGGACAGGGACTTGAGTGGATCGGCTACATCAACCCCAGCCGGGGCTACACAAACTACAATCAGAAGTTTAAGGACAAGGCTACCCTCACCACCGACAAGAGCAGCAGCACAGCCTATATGCAGCTGTCCTCTCTGACCTCCGAGGACTCCGCCGTGTATTATTGCGCCCGGTACTACGACGACCACTACTGTCTGGATTATTGGGGACAGGGAACAACCCTGACCGTGTCCTCTGGTGGAGGAGGCTCAGGAGGAGGTGGCTCTGGTGGTGGAGGCTCGCAAATTGTGCTGACCCAGTCTCCTGCCATCATGAGCGCTAGCCCTGGCGAGAAAGTGACAATGACCTGTAGCGCCAGCAGCAGCGTGTCCTACATGAATTGGTATCAACAGAAGTCCGGCACAAGCCCCAAGAGATGGATCTACGACACCTCCAAGCTGGCCTCTGGCGTGCCAGCTCACTTTAGAGGAAGCGGCAGCGGCACCAGCTACTCCCTGACAATTTCTGGCATGGAAGCCGAGGACGCCGCTACCTACTATTGTCAGCAGTGGTCCAGCAATCCCTTCACCTTCGGCTCCGGAACAAAACTCGAAATCAAC-3'
A polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 23
5'--3'
 前記(b1)~(b3)のポリヌクレオチドは、それぞれ、前記(B1)~(B3)のポリペプチドをコードする核酸であり、前記(B1)~(B3)のポリペプチドの説明を援用できる。 The polynucleotides (b1) to (b3) are nucleic acids encoding the polypeptides (B1) to (B3), respectively, and the description of the polypeptides (B1) to (B3) can be incorporated.
 前記(b4)のポリヌクレオチドは、前記本発明の複合体化タンパク質における配列番号15および18のアミノ酸配列を含むポリペプチドをコードするポリヌクレオチドである。前記(b5)および(b6)のポリヌクレオチドにおいて、前記配列番号23の塩基配列のCDRH1、CDRH2、CDRH3、CDRL1、CDRL2、およびCDRL3に対応するアミノ酸配列をコードするポリヌクレオチドは、例えば、保存されている。前記配列番号23の塩基配列における各CDRのアミノ酸配列をコードする塩基配列は、例えば、それぞれ、前記本発明の複合体化タンパク質における第1の結合ドメインの重鎖可変領域および軽鎖可変領域と、第2の結合ドメインの重鎖可変領域および軽鎖可変領域とにおける各CDRのアミノ酸配列を参照できる。 The polynucleotide (b4) is a polynucleotide encoding a polypeptide containing the amino acid sequences of SEQ ID NOs: 15 and 18 in the complexed protein of the present invention. In the polynucleotides of (b5) and (b6), the polynucleotides encoding the amino acid sequences corresponding to CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, and CDRL3 of the nucleotide sequence of SEQ ID NO: 23 are conserved, for example. There is. The nucleotide sequence encoding the amino acid sequence of each CDR in the nucleotide sequence of SEQ ID NO: 23 has, for example, a heavy chain variable region and a light chain variable region of the first binding domain in the complexed protein of the present invention, respectively. The amino acid sequence of each CDR in the heavy chain variable region and the light chain variable region of the second binding domain can be referred to.
 前記(b5)の塩基配列において、前記「同一性」は、それぞれ、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上である。 In the base sequence (b5), the “identity” is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97%, respectively. As described above, it is 98% or more and 99% or more.
 前記(b6)の塩基配列において、置換等に関する「1個または数個」は、それぞれ、例えば、1~450個、1~400個、1~350個、1~300個、1~250個、1~216個、1~180個、1~144個、1~120個、1~72個、1~60個、1~45個、1~30個、1~20個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1または2個、1個である。 In the nucleotide sequence of (b6), “one or several” regarding substitution and the like are, for example, 1 to 450, 1 to 400, 1 to 350, 1 to 300, 1 to 250, 1 to 216, 1 to 180, 1 to 144, 1 to 120, 1 to 72, 1 to 60, 1 to 45, 1 to 30, 1 to 20, 1 to 10, The numbers are 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 or 2, and 1.
<治療方法>
 本発明の標的抗原に関連する疾患の治療方法は、患者に、本発明の複合体化タンパク質と、標的抗原に結合可能な抗体またはその抗原結合断片とを投与する(投与工程)。本発明の治療方法は、前記本発明の複合体化タンパク質を患者に投与することが特徴であり、その他の工程および条件は、特に制限されない。本発明の治療方法は、前記本発明の複合体化タンパク質、抗体複合体、および医薬組成物の説明を援用できる。本発明の治療方法によれば、前記標的抗原に関連する疾患を治療できる。
<Treatment method>
In the method for treating a disease associated with the target antigen of the present invention, the complexed protein of the present invention and an antibody or an antigen-binding fragment thereof capable of binding to the target antigen are administered to a patient (administration step). The therapeutic method of the present invention is characterized by administering the complexed protein of the present invention to a patient, and other steps and conditions are not particularly limited. The description of the complexed protein, antibody complex, and pharmaceutical composition of the present invention can be applied to the therapeutic method of the present invention. According to the treatment method of the present invention, a disease associated with the target antigen can be treated.
 前記投与工程において、前記複合体化タンパク質と、前記抗体等とは別々に投与してもよいし、同時に投与してもよい。後者の場合、前記投与工程では、前記複合体化タンパク質と前記抗体等との抗体複合体を投与してもよい。この場合、前記複合体化タンパク質は、その第1の抗原結合ドメインにより前記抗体等と結合し、複合体化している。前記投与工程では、例えば、前記複合体化タンパク質として、前記複合体化タンパク質をコードする核酸を投与してもよい。 In the administration step, the complexed protein and the antibody or the like may be administered separately or simultaneously. In the latter case, an antibody complex of the complexed protein and the antibody or the like may be administered in the administration step. In this case, the complexed protein binds to the antibody or the like by its first antigen-binding domain to form a complex. In the administration step, for example, a nucleic acid encoding the complexed protein may be administered as the complexed protein.
 前記標的抗原に関連する疾患は例えば、特に制限されず、例えば、悪性リンパ腫、白血病、骨髄腫、肺がん、乳がん、腎がん、大腸がん、卵巣がん等の腫瘍;アレルギー疾患または自己免疫疾患等の免疫疾患;血友病、特発性血小板減少性紫斑病、フォンビルブランド病等の遺伝子疾患;アルツハイマー病、多発性硬化症、ギランバレー症候群等の神経疾患;等があげられる。 The disease related to the target antigen is not particularly limited, and examples thereof include tumors such as malignant lymphoma, leukemia, myeloma, lung cancer, breast cancer, kidney cancer, colon cancer, and ovarian cancer; allergic diseases or autoimmune diseases. And the like; genetic diseases such as hemophilia, idiopathic thrombocytopenic purpura, and von Willebrand disease; neurological diseases such as Alzheimer's disease, multiple sclerosis, Guillain-Barre syndrome, and the like.
 前記標的抗原と、前記疾患との組合せは、特に制限されない。具体例として、前記疾患ががん(腫瘍)である場合、前記標的抗原は、腫瘍抗原である。この場合、前記複合体化タンパク質における所望の抗原は、例えば、前記免疫細胞に発現する抗原であり、好ましくは、CD3である。前記疾患がB細胞リンパ腫である場合、前記標的抗原は、CD19、CD20、CD38等のB細胞に発現する抗原である。この場合、前記複合体化タンパク質における所望の抗原は、例えば、前記免疫細胞に発現する抗原であり、好ましくは、CD3である。前記疾患がアレルギー疾患である場合、前記標的抗原は、例えば、アレルゲンまたはサイトカインである。この場合、前記複合体化タンパク質における所望の抗原は、例えば、アレルゲンまたはサイトカインであり、好ましくは、前記標的抗原と異なる抗原である。前記疾患が血友病である場合、前記標的抗原は、例えば、前述の血液凝固因子である。この場合、前記複合体化タンパク質における所望の抗原は、例えば、前述の血液凝固因子であり、好ましくは、前記標的抗原と異なる抗原である。 The combination of the target antigen and the disease is not particularly limited. As a specific example, when the disease is cancer (tumor), the target antigen is a tumor antigen. In this case, the desired antigen in the complexed protein is, for example, an antigen expressed in the immune cells, preferably CD3. When the disease is B cell lymphoma, the target antigen is an antigen expressed on B cells such as CD19, CD20, CD38. In this case, the desired antigen in the complexed protein is, for example, an antigen expressed in the immune cells, preferably CD3. When the disease is an allergic disease, the target antigen is, for example, an allergen or cytokine. In this case, the desired antigen in the complexed protein is, for example, an allergen or cytokine, preferably an antigen different from the target antigen. When the disease is hemophilia, the target antigen is, for example, the aforementioned blood coagulation factor. In this case, the desired antigen in the complexed protein is, for example, the above-mentioned blood coagulation factor, preferably an antigen different from the target antigen.
<複合体化タンパク質または抗体複合体の使用>
 本発明は、標的抗原に関連する疾患の治療方法に使用するための、前記本発明の複合体化タンパク質または抗体複合体である。また、本発明は、標的抗原に関連する疾患の治療用医薬の製造のための前記本発明の複合体化タンパク質または抗体複合体の使用である。本発明の使用は、本発明の複合体化タンパク質、抗体複合体、および医薬組成物の説明を援用できる。
<Use of complexed protein or antibody complex>
The present invention is the complexed protein or antibody complex of the present invention for use in a method for treating a disease associated with a target antigen. The present invention is also the use of the complexed protein or antibody complex of the present invention for the manufacture of a medicament for treating a disease associated with a target antigen. The use of the present invention can be incorporated by reference for the conjugated proteins, antibody conjugates, and pharmaceutical compositions of the present invention.
 次に、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, an embodiment of the present invention will be described. However, the present invention is not limited to the following examples. Commercially available reagents were used according to their protocol unless otherwise indicated.
[実施例1]
 本発明の複合体化タンパク質を調製後、抗体複合体を調製し、前記抗体複合体は、所望の抗原に対する結合性が付与されていること、および前記抗体複合体は、多重特異性抗体と同様の機能を発揮することを確認した。
[Example 1]
After preparing the complexed protein of the present invention, an antibody complex is prepared, and the antibody complex is provided with a binding property to a desired antigen, and the antibody complex is the same as the multispecific antibody. It was confirmed that the function of was exhibited.
(1)B-BiTEの調製
 まず、ヒトIgGに結合可能な第1の結合ドメインと、CD3εに結合可能な第2の結合ドメインとを有する複合体化タンパク質(以下、「B-BiTE」ともいう)を調製した。具体的には、B-BiTEをコードするポリヌクレオチドを、人工遺伝子合成サービス(GeneArt(商標)、Thermo Fisher Scientifics社製)を利用して合成した。B-BiTEをコードするポリヌクレオチドは、以下のようにして設計した。まず、マウス抗ヒトIgG mAb(クローン:HP6017)由来の重鎖可変領域および軽鎖可変領域を、リンカーペプチド(GGGGSGGGGSGGGGS:配列番号24)により連結し、ヒトIgGに結合可能なscFv(第1の結合ドメイン)を設計した。なお、HP6017抗体は、ヒトIgGの全てのサブクラスに結合可能であることが知られている。
(1) Preparation of B-BiTE First, a complexed protein having a first binding domain capable of binding to human IgG and a second binding domain capable of binding to CD3ε (hereinafter, also referred to as “B-BiTE”) ) Was prepared. Specifically, a polynucleotide encoding B-BiTE was synthesized using an artificial gene synthesis service (GeneArt (trademark), manufactured by Thermo Fisher Scientifics). The polynucleotide encoding B-BiTE was designed as follows. First, a heavy chain variable region and a light chain variable region derived from a mouse anti-human IgG mAb (clone: HP6017) were linked by a linker peptide (GGGGSGGGGSGGGGS: SEQ ID NO: 24), and a scFv capable of binding to human IgG (first binding) Domain) designed. The HP6017 antibody is known to be able to bind to all subclasses of human IgG.
 つぎに、ヒトCD3ε mAb(クローン:OKT3)由来の重鎖可変領域および軽鎖可変領域を、リンカーペプチド(GGGGSGGGGSGGGGS:配列番号24)により連結し、ヒトCD3εに結合可能なscFv(第2の結合ドメイン)を設計した。さらに、前記第1の結合ドメインと、前記第2の結合ドメインとを、ドメインリンカー(SGSG:配列番号19)を介して、N末端からこの順序で連結し、さらに、そのC末端に前記ドメインリンカーを介してHisタグ(His×6タグ)を連結することにより、B-BiTEを設計した。そして、設計されたB-BiTEのアミノ酸配列(配列番号25)から、B-BiTEをコードするポリヌクレオチド(配列番号26)の塩基配列を決定した。そして、B-BiTEをコードするポリヌクレオチドを合成した。 Next, the heavy chain variable region and the light chain variable region derived from human CD3ε mAb (clone: OKT3) were linked by a linker peptide (GGGGSGGGGSGGGGS: SEQ ID NO: 24), and scFv (second binding domain) capable of binding to human CD3ε ) Was designed. Furthermore, the first binding domain and the second binding domain are linked in this order from the N terminus via a domain linker (SGSG: SEQ ID NO: 19), and the domain linker is further linked to the C terminus. B-BiTE was designed by connecting a His tag (His×6 tag) via Then, the base sequence of the polynucleotide (SEQ ID NO: 26) encoding B-BiTE was determined from the designed amino acid sequence of B-BiTE (SEQ ID NO: 25). Then, a polynucleotide encoding B-BiTE was synthesized.
B-BiTEのアミノ酸配列(配列番号25)
MMRPIVLVLLFATSAAADIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSSSGSGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINSGSGHHHHHH
Amino acid sequence of B-BiTE (SEQ ID NO:25)
MMRPIVLVLLFATSAAADIKMTQSPSSMYASVGERVTITCKASQDIKSYLTWYQKKPWKSPRTLIFYSTRLADGVPSRFSGSGSGQDFSLTISSLESDDTATYYCLQHDESPFTFGGGTKLEIKGGGGSGGGGSGGGGSQVQLQQPGAELVKPGASVKMSCKASGYTFTNYWINWVKQRPGQGLEWIGDIYPGGGITNYNEKFKTKATLTLDTSSSTVYMQLSSLTSEDSAVYYCSRSYGKYFDYWGQGTTLIVSSSGSGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEINSGSGHHHHHH
B-BiTEをコードするポリヌクレオチド(配列番号26、終止コドン含)
5'-ATGATGAGGCCCATCGTGCTGGTGCTGCTGTTTGCTACATCTGCGGCCGCCGACATCAAGATGACACAGAGCCCCAGCTCTATGTACGCCAGCGTGGGAGAGAGAGTGACCATTACCTGCAAGGCCAGCCAGGACATCAAGTCCTACCTGACCTGGTATCAGAAGAAGCCCTGGAAGTCCCCTCGGACACTGATCTTCTACAGCACCAGACTGGCCGATGGCGTGCCCAGCAGATTTTCTGGCTCTGGCAGCGGCCAGGACTTCAGCCTGACAATCAGCAGCCTGGAAAGCGACGACACCGCCACCTACTACTGCCTGCAGCACGACGAGAGCCCCTTCACATTTGGCGGAGGCACCAAGCTGGAAATCAAAGGAGGTGGAGGCTCTGGAGGTGGAGGCTCTGGAGGCGGTGGATCCCAAGTTCAGCTTCAGCAACCTGGCGCCGAGCTGGTTAAGCCTGGCGCCTCTGTGAAGATGAGCTGCAAAGCCAGCGGCTACACCTTCACCAACTACTGGATCAACTGGGTCAAGCAGCGGCCTGGCCAAGGCCTGGAATGGATCGGCGATATCTATCCTGGCGGCGGAATCACCAATTACAACGAGAAGTTCAAGACCAAGGCCACACTGACCCTGGACACCAGCAGCTCCACAGTGTACATGCAGCTGAGCAGCCTGACCAGCGAGGATAGCGCCGTGTACTACTGCAGCAGAAGCTACGGCAAGTACTTCGACTACTGGGGCCAGGGCACCACACTGATTGTGTCCTCGAGCGGATCTGGCCAGGTCCAGTTGCAACAGTCTGGCGCTGAACTGGCTAGACCTGGCGCTAGCGTGAAGATGTCTTGCAAGGCCTCCGGATACACATTCACCCGGTACACCATGCATTGGGTTAAGCAGAGGCCCGGACAGGGACTTGAGTGGATCGGCTACATCAACCCCAGCCGGGGCTACACAAACTACAATCAGAAGTTTAAGGACAAGGCTACCCTCACCACCGACAAGAGCAGCAGCACAGCCTATATGCAGCTGTCCTCTCTGACCTCCGAGGACTCCGCCGTGTATTATTGCGCCCGGTACTACGACGACCACTACTGTCTGGATTATTGGGGACAGGGAACAACCCTGACCGTGTCCTCTGGTGGAGGAGGCTCAGGAGGAGGTGGCTCTGGTGGTGGAGGCTCGCAAATTGTGCTGACCCAGTCTCCTGCCATCATGAGCGCTAGCCCTGGCGAGAAAGTGACAATGACCTGTAGCGCCAGCAGCAGCGTGTCCTACATGAATTGGTATCAACAGAAGTCCGGCACAAGCCCCAAGAGATGGATCTACGACACCTCCAAGCTGGCCTCTGGCGTGCCAGCTCACTTTAGAGGAAGCGGCAGCGGCACCAGCTACTCCCTGACAATTTCTGGCATGGAAGCCGAGGACGCCGCTACCTACTATTGTCAGCAGTGGTCCAGCAATCCCTTCACCTTCGGCTCCGGAACAAAACTCGAAATCAACAGCGGCTCCGGCCACCACCACCATCACCATTAA-3'
Polynucleotide encoding B-BiTE (SEQ ID NO: 26, including stop codon)
5'--3'
 前記B-BiTEをコードするポリヌクレオチドをpMX発現ベクター(B-BiTE発現ベクター)に導入した。つぎに、前記B-BiTE発現ベクターを、トランスフェクション試薬(TransIT293、Takara Bio社製)を用いて、Plat-A細胞(東大医科研より供与)に導入することにより、レトロウイルスを調製した。前記レトロウイルスを293T細胞に感染させることにより、B-BiTEをコードするポリヌクレオチドを293T細胞に導入し、B-BiTEを産生する293T細胞(293T/B-BiTE細胞)を調製した。前記Plat-A細胞は、10%ウシ胎児血清(FCS)、1μg/mLピューロマイシン、10μg/mLブラストサイジン含有DMEM培地で維持したものを使用した。得られた293T/B-BiTE細胞について、培養を行ない、得られた培養上清から、ヒスタグを利用したカラム(His GraviTrap column、GE healthcare社製)を用いて、B-BiTEを生成した。293T/B-BiTE細胞の培養液は、Ultra Low IgG FBS(Thermo Fisher Scientific社製)を添加したDMEM培地とした。なお、293T細胞およびPlat-A細胞の培養条件は、37℃、5%COとし、湿潤雰囲気下とした。以下、特に言及しない限り細胞の培養条件は同様とした。 The polynucleotide encoding B-BiTE was introduced into a pMX expression vector (B-BiTE expression vector). Next, a retrovirus was prepared by introducing the B-BiTE expression vector into Plat-A cells (provided by the Institute of Medical Science, University of Tokyo) using a transfection reagent (TransIT293, manufactured by Takara Bio). By infecting 293T cells with the retrovirus, a polynucleotide encoding B-BiTE was introduced into 293T cells to prepare B-BiTE-producing 293T cells (293T/B-BiTE cells). The Plat-A cells used were those maintained in DMEM medium containing 10% fetal calf serum (FCS), 1 μg/mL puromycin, and 10 μg/mL blasticidin. The obtained 293T/B-BiTE cells were cultured, and B-BiTE was produced from the obtained culture supernatant using a His-tag column (His GraviTrap column, manufactured by GE healthcare). The culture solution of 293T/B-BiTE cells was a DMEM medium supplemented with Ultra Low IgG FBS (manufactured by Thermo Fisher Scientific). The culture conditions of 293T cells and Plat-A cells were 37° C., 5% CO 2 and a humid atmosphere. Hereinafter, unless otherwise stated, the cell culture conditions were the same.
(2)B-BiTEの結合能
 つぎに、B-BiTEが、ヒトIgGおよびヒトCD3εに結合することを、標的抗原をCD19として確認した。まず、B-BiTEと、抗CD19抗体(ヒトIgG1キメラ抗体、clone FMC63)またはコントロール抗体(ヒトIgG1キメラ抗体、clone MOPC21)とで抗体複合体を形成させた。なお、各抗体の可変領域は、マウス抗体であり、定常領域は、ヒト抗体である。具体的には、血清不含のリン酸緩衝液(PBS)に、B-BiTEと、抗CD19抗体またはコントロールの抗体とを、B-BiTEの濃度(B)と前記抗体の濃度(A)との濃度比(B:A)が、1:3となるように添加し、1時間室温(約25℃)でインキュベートした。なお、B-BiTEの濃度(B)と前記抗体の濃度(A)を1:3とすることにより、前記比(MAb:MCO)は、1:約1となる。そして、得られた混合液を抗体複合体(CD19/B-BiTEまたはisotype/B-BiTE)として用いた。なお、B-BiTEの濃度は、10μg/mLとし、抗体の濃度は、30μg/mLとした。
(2) B-BiTE binding ability Next, it was confirmed that B-BiTE binds to human IgG and human CD3ε with the target antigen CD19. First, an antibody complex was formed between B-BiTE and an anti-CD19 antibody (human IgG1 chimeric antibody, clone FMC63) or a control antibody (human IgG1 chimeric antibody, clone MOPC21). The variable region of each antibody is a mouse antibody, and the constant region is a human antibody. Specifically, B-BiTE, an anti-CD19 antibody or a control antibody is added to a serum-free phosphate buffer (PBS) at a concentration of B-BiTE (B) and a concentration of the antibody (A). Was added so that the concentration ratio (B:A) was 1:3, and the mixture was incubated at room temperature (about 25° C.) for 1 hour. By setting the concentration (B) of B-BiTE and the concentration (A) of the antibody to 1:3, the ratio ( MAb : MCO ) becomes 1:about 1. Then, the obtained mixed solution was used as an antibody complex (CD19/B-BiTE or isotype/B-BiTE). The B-BiTE concentration was 10 μg/mL, and the antibody concentration was 30 μg/mL.
 抗体複合体と反応させる細胞は、KT1細胞(CD3CD19細胞、慢性骨髄性白血病由来細胞株(国立大学法人愛媛大学医学部第一内で樹立))、KT1/CD19細胞(CD3CD19細胞)、K562細胞(CD3CD19細胞、ATCCより入手)、K562/CD19細胞(CD3CD19細胞)、Raji細胞(CD3CD19細胞)、Jurkat76細胞(CD3CD19細胞)、およびJurkat細胞(CD3CD19細胞)とした。KT1/CD19細胞およびK562/CD19細胞は、それぞれ、KT1細胞およびK562細胞に、レトロウイルスを用いてヒトCD19をコードするポリヌクレオチドを導入することにより調製した。具体的には、前記B-BiTE発現ベクターに代えて、ヒトCD19をコードするポリヌクレオチド(配列番号27)を含むpMX発現ベクターを導入した以外は、同様にしてレトロウイルスを調製した。得られたレトロウイルスをKT1細胞およびK562細胞に感染させることにより、KT1/CD19細胞およびK562/CD19細胞を調製した。また、KT1細胞およびKT1/CD19細胞の培養液は、10%FCS含有RPMI培地とした。K562細胞、K562/CD19細胞、Raji細胞、Jurkat76細胞、およびJurkat細胞と、後述のK562/CD20細胞およびK562/CD38細胞の培養液は、10%FCS含有RPMI1640培地とした。 The cells that react with the antibody complex are KT1 cells (CD3 - CD19 - cells, chronic myelogenous leukemia-derived cell line (established in Ehime University School of Medicine, First University)), KT1/CD19 cells (CD3 - CD19 + cells). ), K562 cells (CD3 CD19 cells, obtained from ATCC), K562/CD19 cells (CD3 CD19 + cells), Raji cells (CD3 CD19 + cells), Jurkat76 cells (CD3 CD19 cells), and Jurkat. The cells (CD3 + CD19 cells) were used. KT1/CD19 cells and K562/CD19 cells were prepared by introducing a polynucleotide encoding human CD19 using a retrovirus into KT1 cells and K562 cells, respectively. Specifically, a retrovirus was prepared in the same manner except that a pMX expression vector containing a polynucleotide (SEQ ID NO: 27) encoding human CD19 was introduced instead of the B-BiTE expression vector. KT1/CD19 cells and K562/CD19 cells were prepared by infecting KT1 cells and K562 cells with the obtained retrovirus. The culture solution of KT1 cells and KT1/CD19 cells was RPMI medium containing 10% FCS. The culture solution of K562 cells, K562/CD19 cells, Raji cells, Jurkat76 cells, and Jurkat cells, and K562/CD20 cells and K562/CD38 cells described later was 10% FCS-containing RPMI1640 medium.
ヒトCD19をコードするポリヌクレオチド(配列番号27)
5'-ATGCCACCTCCTCGCCTCCTCTTCTTCCTCCTCTTCCTCACCCCCATGGAAGTCAGGCCCGAGGAACCTCTAGTGGTGAAGGTGGAAGAGGGAGATAACGCTGTGCTGCAGTGCCTCAAGGGGACCTCAGATGGCCCCACTCAGCAGCTGACCTGGTCTCGGGAGTCCCCGCTTAAACCCTTCTTAAAACTCAGCCTGGGGCTGCCAGGCCTGGGAATCCACATGAGGCCCCTGGCCATCTGGCTTTTCATCTTCAACGTCTCTCAACAGATGGGGGGCTTCTACCTGTGCCAGCCGGGGCCCCCCTCTGAGAAGGCCTGGCAGCCTGGCTGGACAGTCAATGTGGAGGGCAGCGGGGAGCTGTTCCGGTGGAATGTTTCGGACCTAGGTGGCCTGGGCTGTGGCCTGAAGAACAGGTCCTCAGAGGGCCCCAGCTCCCCTTCCGGGAAGCTCATGAGCCCCAAGCTGTATGTGTGGGCCAAAGACCGCCCTGAGATCTGGGAGGGAGAGCCTCCGTGTCTCCCACCGAGGGACAGCCTGAACCAGAGCCTCAGCCAGGACCTCACCATGGCCCCTGGCTCCACACTCTGGCTGTCCTGTGGGGTACCCCCTGACTCTGTGTCCAGGGGCCCCCTCTCCTGGACCCATGTGCACCCCAAGGGGCCTAAGTCATTGCTGAGCCTAGAGCTGAAGGACGATCGCCCGGCCAGAGATATGTGGGTAATGGAGACGGGTCTGTTGTTGCCCCGGGCCACAGCTCAAGACGCTGGAAAGTATTATTGTCACCGTGGCAACCTGACCATGTCATTCCACCTGGAGATCACTGCTCGGCCAGTACTATGGCACTGGCTGCTGAGGACTGGTGGCTGGAAGGTCTCAGCTGTGACTTTGGCTTATCTGATCTTCTGCCTGTGTTCCCTTGTGGGCATTCTTCATCTTCAAAGAGCCCTGGTCCTGAGGAGGAAAAGAAAGCGAATGACTGACCCCACCAGGAGATTCTTCAAAGTGACGCCTCCCCCAGGAAGCGGGCCCCAGAACCAGTACGGGAACGTGCTGTCTCTCCCCACACCCACCTCAGGCCTCGGACGCGCCCAGCGTTGGGCCGCAGGCCTGGGGGGCACTGCCCCGTCTTATGGAAACCCGAGCAGCGACGTCCAGGCGGATGGAGCCTTGGGGTCCCGGAGCCCGCCGGGAGTGGGCCCAGAAGAAGAGGAAGGGGAGGGCTATGAGGAACCTGACAGTGAGGAGGACTCCGAGTTCTATGAGAACGACTCCAACCTTGGGCAGGACCAGCTCTCCCAGGATGGCAGCGGCTACGAGAACCCTGAGGATGAGCCCCTGGGTCCTGAGGATGAAGACTCCTTCTCCAACGCTGAGTCTTATGAGAACGAGGATGAAGAGCTGACCCAGCCGGTCGCCAGGACAATGGACTTCCTGAGCCCTCATGGGTCAGCCTGGGACCCCAGCCGGGAAGCAACCTCCCTGGGGTCCCAGTCCTATGAGGATATGAGAGGAATCCTGTATGCAGCCCCCCAGCTCCGCTCCATTCGGGGCCAGCCTGGACCCAATCATGAGGAAGATGCAGACTCTTATGAGAACATGGATAATCCCGATGGGCCAGACCCAGCCTGGGGAGGAGGGGGCCGCATGGGCACCTGGAGCACCAGG-3'
Polynucleotide encoding human CD19 (SEQ ID NO:27)
5'--3'
 KT1細胞、KT1/CD19細胞、K562細胞、K562/CD19細胞、Raji細胞、Jurkat76細胞、およびJurkat細胞と、CD19/B-BiTEまたはisotype/B-BiTEを含む混合液とを混合し、30分間4℃でインキュベートした。前記インキュベート後、各細胞を洗浄し、PE標識抗His抗体(clone GG11-8F3.5.1)で染色した。そして、染色後の各細胞について、フローサイトメーター(Gallios flow cytometer、Beckman Coulter社製)を用いて各細胞と前記抗体複合体との結合を検討した。コントロールは、前記抗体複合体を添加しなかった以外は同様にして測定した。これらの結果を図2に示す。 KT1 cells, KT1/CD19 cells, K562 cells, K562/CD19 cells, Raji cells, Jurkat76 cells, and Jurkat cells are mixed with a mixed solution containing CD19/B-BiTE or isotype/B-BiTE, and the mixture is mixed for 30 minutes 4 Incubated at °C. After the incubation, each cell was washed and stained with a PE-labeled anti-His antibody (clone GG11-8F3.5.1). Then, for each cell after staining, binding between each cell and the antibody complex was examined using a flow cytometer (Gallios flow cytometer, manufactured by Beckman Coulter). The control was measured in the same manner except that the antibody complex was not added. The results are shown in FIG.
 図2は、抗体複合体と細胞との結合を示すヒストグラムである。図2において、(A)が、KT1細胞、(B)が、KT1/CD19細胞、(C)が、K562細胞、(D)が、K562/CD19細胞、(E)が、Raji細胞、(F)が、Jurkat76細胞、(G)が、Jurkat細胞の結果を示す。図2(A)~(G)において、横軸は、抗His抗体の蛍光強度を示し、縦軸は、カウント数の相対値を示す。図2(A)~(G)に示すように、コントロールでは、結合が観察されなかった。また、図2(G)に示すように、複合体化タンパク質とコントロール抗体との抗体複合体(isotype/B-BiTE)は、CD3εに対して結合性を示すため、Jurkat細胞に対して結合した。さらに、図2(B)、(D)、(E)および(G)に示すように、複合体化タンパク質と抗CD19抗体との抗体複合体(CD19/B-BiTE)は、CD19およびCD3εに対して結合性を示すため、KT1/CD19細胞、K562/CD19細胞、Raji細胞およびJurkat細胞に結合した。これらの結果から、本発明の複合体化タンパク質によれば、結合対象の抗体に対して、所望の抗原に対する結合性を付加可能であることがわかった。 FIG. 2 is a histogram showing the binding between the antibody complex and cells. In FIG. 2, (A) shows KT1 cells, (B) shows KT1/CD19 cells, (C) shows K562 cells, (D) shows K562/CD19 cells, (E) shows Raji cells, (F). ) Shows the results of Jurkat76 cells, and (G) shows the results of Jurkat cells. 2A to 2G, the horizontal axis represents the fluorescence intensity of the anti-His antibody, and the vertical axis represents the relative value of the count number. As shown in FIGS. 2(A) to (G), no binding was observed in the control. Further, as shown in FIG. 2(G), the antibody complex of the complexed protein and the control antibody (isotype/B-BiTE) showed binding to CD3ε and therefore bound to Jurkat cells. .. Furthermore, as shown in FIGS. 2(B), (D), (E) and (G), the antibody complex (CD19/B-BiTE) of the complexed protein and the anti-CD19 antibody was added to CD19 and CD3ε. In order to show the binding property, it bound to KT1/CD19 cells, K562/CD19 cells, Raji cells and Jurkat cells. From these results, it was found that the complexed protein of the present invention can add a binding property to a desired antigen to the binding target antibody.
(3)抗体複合体の機能
 二重特異性抗体は、標的抗原を発現する細胞にT細胞をリクルートし、T細胞を活性化できる。このため、B-BiTE/CD19についても同様の機能を有するか検討した。具体的には、B-BiTEの濃度を2.5μg/mLとし、抗体の濃度を7.5μg/mLとした以外は、前記実施例1(2)と同様にして、CD19/B-BiTEまたはisotype/B-BiTEを調製した。
(3) Function of antibody complex The bispecific antibody can activate T cells by recruiting T cells to cells expressing the target antigen. Therefore, it was examined whether B-BiTE/CD19 has a similar function. Specifically, except that the concentration of B-BiTE was 2.5 μg/mL and the concentration of the antibody was 7.5 μg/mL, CD19/B-BiTE or Isotype/B-BiTE was prepared.
 つぎに、末梢血中のCD4T細胞およびCD8T細胞を調製した。具体的には、健常者からヒト末梢血を回収した。つぎに、前記末梢血から、ヒト末梢血単核球を抽出後、得られたヒト末梢血単核球と、T細胞精製キット(Pan T cell isolation kit 、Miltenyi Biotec社製)を用いて、CD3T細胞を精製した。そして、2.5×10個のT細胞と、5.0×10個のターゲット細胞とを、前記CD19/B-BiTEまたはisotype/B-BiTEの存在下、2時間培養した(n=3)。前記ターゲット細胞は、K562細胞、K562/CD19細胞およびRaji細胞とした。前記培養後、5μg/mLとなるように、Brefeldin A(BFA)を添加し、さらに、18時間培養した。そして、T細胞を回収後、1%パラホルムアルデヒド(PFA)で固定後、細胞膜の透過処理を行い、PE標識抗ヒトTNF-α抗体(clone MAb11)、APC標識抗ヒトIL-2抗体(clone MQ1-17H12)およびPC7標識抗ヒトIFN-γ抗体(clone B27)と、PC5標識抗ヒトCD8抗体(clone B9.11)、FITC標識抗CD4抗体(clone OKT4)およびV450抗ヒトCD3抗体(clone UCHT1)で染色した。前記染色後のT細胞について、前記フローサイトメーターで測定し、各サイトカインを産生している細胞の割合を算出した。これらの結果を図3および4に示す。 Next, CD4 + T cells and CD8 + T cells in peripheral blood were prepared. Specifically, human peripheral blood was collected from a healthy person. Next, after extracting human peripheral blood mononuclear cells from the peripheral blood, using the obtained human peripheral blood mononuclear cells and a T cell purification kit (Pan T cell isolation kit, manufactured by Miltenyi Biotec), CD3 + T cells were purified. Then, 2.5×10 5 T cells and 5.0×10 4 target cells were cultured for 2 hours in the presence of the above CD19/B-BiTE or isotype/B-BiTE (n= 3). The target cells were K562 cells, K562/CD19 cells and Raji cells. After the culture, Brefeldin A (BFA) was added so that the concentration was 5 μg/mL, and the culture was further continued for 18 hours. After recovering T cells, the cells were fixed with 1% paraformaldehyde (PFA) and then permeabilized to give PE-labeled anti-human TNF-α antibody (clone MAb11) and APC-labeled anti-human IL-2 antibody (clone MQ1). -17H12) and PC7-labeled anti-human IFN-γ antibody (clone B27), PC5-labeled anti-human CD8 antibody (clone B9.11), FITC-labeled anti-CD4 antibody (clone OKT4) and V450 anti-human CD3 antibody (clone UCHT1). Stained with. The stained T cells were measured by the flow cytometer, and the ratio of cells producing each cytokine was calculated. The results are shown in Figures 3 and 4.
 図3および4は、サイトカイン産生細胞の割合を示すグラフである。図3および4において、横軸は、抗体または抗体複合体の種類を示し、縦軸は、各サイトカイン産生細胞の割合を示す。図3は、ターゲット細胞がK562細胞またはK562/CD19細胞の場合の結果を示し、図4は、ターゲット細胞がRaji細胞の場合の結果を示す。図3に示すように、CD19およびCD3を発現していないK562細胞をターゲット細胞とした場合、CD19/B-BiTEおよびisotype/B-BiTE添加群では、サイトカイン産生は見られなかった。これに対して、CD19を発現しているK562/CD19細胞をターゲット細胞とした場合、CD19/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意にサイトカイン産生細胞の割合が増加していた。また、図4に示すように、CD19を発現しているRaji細胞をターゲット細胞とした場合、CD19/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意にサイトカイン産生細胞の割合が増加していた。これらの結果から、本発明の抗体複合体は、二重特異性抗体と同様に、標的抗原を発現する細胞にT細胞をリクルートし、T細胞を活性化できることがわかった。 3 and 4 are graphs showing the ratio of cytokine-producing cells. 3 and 4, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of each cytokine-producing cell. FIG. 3 shows the results when the target cells were K562 cells or K562/CD19 cells, and FIG. 4 shows the results when the target cells were Raji cells. As shown in FIG. 3, when K562 cells that did not express CD19 and CD3 were used as target cells, no cytokine production was observed in the CD19/B-BiTE and isotype/B-BiTE addition groups. On the other hand, when K562/CD19 cells expressing CD19 were used as target cells, the CD19/B-BiTE-added group had a significantly higher proportion of cytokine-producing cells than the isotype/B-BiTE-added group. Was increasing. Further, as shown in FIG. 4, when Raji cells expressing CD19 were used as target cells, the CD19/B-BiTE-added group showed significantly more cytokine-producing cells than the isotype/B-BiTE-added group. The proportion was increasing. From these results, it was found that the antibody complex of the present invention, like the bispecific antibody, can recruit T cells to cells expressing the target antigen and activate T cells.
 以上のことから、本発明の複合体化タンパク質は、抗体複合体を形成し、前記抗体複合体は、所望の抗原に対する結合性が付与されていること、および前記抗体複合体は、多重特異性抗体と同様の機能を発揮することをがわかった。 From the above, the complexed protein of the present invention forms an antibody complex, the antibody complex is imparted with binding properties to a desired antigen, and the antibody complex has multispecificity. It was found that it exerts the same function as an antibody.
[実施例2]
 本発明の抗体複合体を調製し、前記抗体複合体は、所望の抗原に対する結合性が付与されていること、および前記抗体複合体は、多重特異性抗体と同様の機能を発揮することがわかった。
[Example 2]
It was found that an antibody complex of the present invention was prepared, that the antibody complex has a binding property to a desired antigen, and that the antibody complex exhibits a function similar to that of a multispecific antibody. It was
 前記抗CD19抗体に代えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用いた以外は、前記実施例1(2)と同様にして、抗体複合体(CD20/B-BiTEまたはCD38/B-BiTE)を調製した。 In place of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the antibody complex (CD20/B-BiTE or CD38) was used in the same manner as in Example 1(2). /B-BiTE) was prepared.
 抗体複合体と反応させる細胞は、K562細胞(CD3CD20CD38細胞、ATCCより入手)、K562/CD20細胞(CD3CD20CD38細胞)、K562/CD38細胞(CD3CD20CD38細胞)、Raji細胞(CD3CD20CD38細胞)、Jurkat76細胞(CD3CD20CD38細胞)、およびJurkat細胞(CD3CD20CD38細胞)とした。K562/CD20細胞およびK562/CD38細胞は、それぞれ、前記ヒトCD19をコードするポリヌクレオチドに代えて、ヒトCD20をコードするポリヌクレオチドおよびヒトCD38をコードするポリヌクレオチドを用いた以外は、レトロウイルスを用いて前記実施例1(2)と同様にして調製した。 Cells that react with the antibody complex are K562 cells (CD3 - CD20 - CD38 - cells, obtained from ATCC), K562/CD20 cells (CD3 - CD20 + CD38 - cells), K562/CD38 cells (CD3 - CD20 - CD38 + cells). Cells), Raji cells (CD3 CD20 + CD38 + cells), Jurkat76 cells (CD3 CD20 CD38 cells), and Jurkat cells (CD3 + CD20 CD38 cells). K562/CD20 cells and K562/CD38 cells used retroviruses except that a polynucleotide encoding human CD20 and a polynucleotide encoding human CD38 were used in place of the polynucleotide encoding human CD19, respectively. Was prepared in the same manner as in Example 1(2) above.
ヒトCD20をコードするポリヌクレオチド(配列番号28、終止コドン含)
5’-ATGACAACACCCAGAAATTCAGTAAATGGGACTTTCCCGGCAGAGCCAATGAAAGGCCCTATTGCTATGCAATCTGGTCCAAAACCACTCTTCAGGAGGATGTCTTCACTGGTGGGCCCCACGCAAAGCTTCTTCATGAGGGAATCTAAGACTTTGGGGGCTGTCCAGATTATGAATGGGCTCTTCCACATTGCCCTGGGGGGTCTTCTGATGATCCCAGCAGGGATCTATGCACCCATCTGTGTGACTGTGTGGTACCCTCTCTGGGGAGGCATTATGTATATTATTTCCGGATCACTCCTGGCAGCAACGGAGAAAAACTCCAGGAAGTGTTTGGTCAAAGGAAAAATGATAATGAATTCATTGAGCCTCTTTGCTGCCATTTCTGGAATGATTCTTTCAATCATGGACATACTTAATATTAAAATTTCCCATTTTTTAAAAATGGAGAGTCTGAATTTTATTAGAGCTCACACACCATATATTAACATATACAACTGTGAACCAGCTAATCCCTCTGAGAAAAACTCCCCATCTACCCAATACTGTTACAGCATACAATCTCTGTTCTTGGGCATTTTGTCAGTGATGCTGATCTTTGCCTTCTTCCAGGAACTTGTAATAGCTGGCATCGTTGAGAATGAATGGAAAAGAACGTGCTCCAGACCCAAATCTAACATAGTTCTCCTGTCAGCAGAAGAAAAAAAAGAACAGACTATTGAAATAAAAGAAGAAGTGGTTGGGCTAACTGAAACATCTTCCCAACCAAAGAATGAAGAAGACATTGAAATTATTCCAATCCAAGAAGAGGAAGAAGAAGAAACAGAGACGAACTTTCCAGAACCTCCCCAAGATCAGGAATCCTCACCAATAGAAAATGACAGCTCTCCTTAA-3’
Polynucleotide encoding human CD20 (SEQ ID NO: 28, including stop codon)
5'--3'
ヒトCD38をコードするポリヌクレオチド(配列番号29、終止コドン含)
5'-ATGGCCAACTGCGAGTTCAGCCCGGTGTCCGGGGACAAACCCTGCTGCCGGCTCTCTAGGAGAGCCCAACTCTGTCTTGGCGTCAGTATCCTGGTCCTGATCCTCGTCGTGGTGCTCGCGGTGGTCGTCCCGAGGTGGCGCCAGCAGTGGAGCGGTCCGGGCACCACCAAGCGCTTTCCCGAGACCGTCCTGGCGCGATGCGTCAAGTACACTGAAATTCATCCTGAGATGAGACATGTAGACTGCCAAAGTGTATGGGATGCTTTCAAGGGTGCATTTATTTCAAAACATCCTTGCAACATTACTGAAGAAGACTATCAGCCACTAATGAAGTTGGGAACTCAGACCGTACCTTGCAACAAGATTCTTCTTTGGAGCAGAATAAAAGATCTGGCCCATCAGTTCACACAGGTCCAGCGGGACATGTTCACCCTGGAGGACACGCTGCTAGGCTACCTTGCTGATGACCTCACATGGTGTGGTGAATTCAACACTTCCAAAATAAACTATCAATCTTGCCCAGACTGGAGAAAGGACTGCAGCAACAACCCTGTTTCAGTATTCTGGAAAACGGTTTCCCGCAGGTTTGCAGAAGCTGCCTGTGATGTGGTCCATGTGATGCTCAATGGATCCCGCAGTAAAATCTTTGACAAAAACAGCACTTTTGGGAGTGTGGAAGTCCATAATTTGCAACCAGAGAAGGTTCAGACACTAGAGGCCTGGGTGATACATGGTGGAAGAGAAGATTCCAGAGACTTATGCCAGGATCCCACCATAAAAGAGCTGGAATCGATTATAAGCAAAAGGAATATTCAATTTTCCTGCAAGAATATCTACAGACCTGACAAGTTTCTTCAGTGTGTGAAAAATCCTGAGGATTCATCTTGCACATCTGAGATCTGA-3'
Polynucleotide encoding human CD38 (SEQ ID NO: 29, including stop codon)
5'--3'
 そして、KT1細胞、KT1/CD19細胞、およびK562/CD19細胞に代えて、K562/CD20細胞およびK562/CD38細胞を用い、CD19/B-BiTEに代えて、CD20/B-BiTEまたはCD38/B-BiTEを用いた以外は、前記実施例1(2)と同様にして、各細胞と前記抗体複合体との結合を検討した。コントロールは、前記抗体複合体を添加しなかった以外は同様にして測定した。これらの結果を図5に示す。 Then, K562/CD20 cells and K562/CD38 cells were used instead of KT1 cells, KT1/CD19 cells, and K562/CD19 cells, and CD20/B-BiTE or CD38/B- was used instead of CD19/B-BiTE. The binding between each cell and the antibody complex was examined in the same manner as in Example 1(2) except that BiTE was used. The control was measured in the same manner except that the antibody complex was not added. These results are shown in FIG.
 図5は、抗体複合体と細胞との結合を示すヒストグラムである。図5において、(A)が、K562細胞、(B)が、K562/CD20細胞、(C)が、K562/CD38細胞、(D)が、Raji細胞、(E)が、Jurkat細胞、(F)が、Jurkat76細胞の結果を示す。図5(A)~(F)において、横軸は、抗His抗体の蛍光強度を示し、縦軸は、カウント数の相対値を示す。図5(A)~(F)に示すように、コントロールでは、結合が観察されなかった。また、図5(E)に示すように、複合体化タンパク質とコントロール抗体との抗体複合体(isotype/B-BiTE)は、CD3εに対して結合性を示すため、Jurkat細胞に対して結合した。さらに、図5(B)、(D)、および(E)に示すように、複合体化タンパク質と抗CD20抗体との抗体複合体(CD20/B-BiTE)は、CD20およびCD3εに対して結合性を示すため、K562/CD20細胞、Raji細胞およびJurkat細胞に結合した。そして、図5(C)~(E)に示すように、複合体化タンパク質と抗CD38抗体との抗体複合体(CD38/B-BiTE)は、CD38およびCD3εに対して結合性を示すため、K562/CD38細胞、Raji細胞およびJurkat細胞に結合した。これらの結果から、本発明の複合体化タンパク質によれば、結合対象の抗体に対して、所望の抗原に対する結合性を付加可能であることがわかった。 FIG. 5 is a histogram showing the binding between the antibody complex and cells. In FIG. 5, (A) is K562 cells, (B) is K562/CD20 cells, (C) is K562/CD38 cells, (D) is Raji cells, (E) is Jurkat cells, (F). ) Shows the results of Jurkat76 cells. 5A to 5F, the horizontal axis represents the fluorescence intensity of the anti-His antibody, and the vertical axis represents the relative value of the count number. As shown in FIGS. 5(A) to 5(F), no binding was observed in the control. Further, as shown in FIG. 5(E), the antibody complex of the complexed protein and the control antibody (isotype/B-BiTE) showed binding to CD3ε and therefore bound to Jurkat cells. .. Furthermore, as shown in FIGS. 5(B), (D), and (E), the antibody complex of the complexed protein and the anti-CD20 antibody (CD20/B-BiTE) binds to CD20 and CD3ε. To show sex, it bound to K562/CD20 cells, Raji cells and Jurkat cells. Then, as shown in FIGS. 5(C) to (E), the antibody complex of the complexed protein and the anti-CD38 antibody (CD38/B-BiTE) exhibits binding to CD38 and CD3ε, It bound to K562/CD38 cells, Raji cells and Jurkat cells. From these results, it was found that the complexed protein of the present invention can add a binding property to a desired antigen to the binding target antibody.
 つぎに、CD20/B-BiTEおよびCD38/B-BiTEが、二重特異性抗体と同様の機能を発揮するか検討した。具体的には、前記抗CD19抗体に代えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用い、B-BiTEの濃度を2.5μg/mLとし、抗体の濃度を7.5μg/mLとした以外は、前記実施例1(2)と同様にして、CD20/B-BiTEまたはCD38/B-BiTEを調製した。 Next, we examined whether CD20/B-BiTE and CD38/B-BiTE exhibit the same function as the bispecific antibody. Specifically, instead of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, the B-BiTE concentration was 2.5 μg/mL, and the antibody concentration was 7.5 μg/mL. CD20/B-BiTE or CD38/B-BiTE was prepared in the same manner as in Example 1(2) except that the amount was changed to mL.
 つぎに、CD19/B-BiTEに代えて、CD20/B-BiTEまたはCD38/B-BiTEを用い、K562/CD19細胞に代えて、K562/CD20細胞またはK562/CD38細胞を用いた以外は、前記実施例1(3)と同様にして、サイトカインを産生している細胞の割合を算出した。これらの結果を図6および7に示す。 Next, in place of CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE was used, and instead of K562/CD19 cells, K562/CD20 cells or K562/CD38 cells were used, except that The proportion of cells producing cytokines was calculated in the same manner as in Example 1(3). The results are shown in FIGS. 6 and 7.
 図6および7は、サイトカイン産生細胞の割合を示すグラフである。図6および7において、横軸は、抗体または抗体複合体の種類を示し、縦軸は、各サイトカイン産生細胞の割合を示す。図6は、ターゲット細胞がK562細胞、K562/CD20細胞またはK562/CD38細胞の場合の結果を示し、図7は、ターゲット細胞がRaji細胞の場合の結果を示す。図6に示すように、CD20、CD38およびCD3を発現していないK562細胞をターゲット細胞とした場合、CD20/B-BiTE、CD38/B-BiTEおよびisotype/B-BiTE添加群では、サイトカイン産生は見られなかった。これに対して、CD20を発現しているK562/CD20細胞をターゲット細胞とした場合、CD20/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意にサイトカイン産生細胞の割合が増加していた。また、CD38を発現しているK562/CD38細胞をターゲット細胞とした場合、CD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意にサイトカイン産生細胞の割合が増加していた。さらに、図7に示すように、CD20およびCD38を発現しているRaji細胞をターゲット細胞とした場合、CD20/B-BiTE添加群およびCD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意にサイトカイン産生細胞の割合が増加していた。これらの結果から、本発明の抗体複合体は、二重特異性抗体と同様に、標的抗原を発現する細胞にT細胞をリクルートし、T細胞を活性化できることがわかった。 6 and 7 are graphs showing the ratio of cytokine-producing cells. 6 and 7, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of each cytokine-producing cell. FIG. 6 shows the results when the target cells were K562 cells, K562/CD20 cells or K562/CD38 cells, and FIG. 7 shows the results when the target cells were Raji cells. As shown in FIG. 6, when K562 cells that do not express CD20, CD38 and CD3 were used as target cells, cytokine production was not observed in the CD20/B-BiTE, CD38/B-BiTE and isotype/B-BiTE addition groups. I couldn't see it. On the other hand, when K562/CD20 cells expressing CD20 were used as target cells, the CD20/B-BiTE-added group had a significantly higher percentage of cytokine-producing cells than the isotype/B-BiTE-added group. Was increasing. In addition, when K562/CD38 cells expressing CD38 were used as target cells, the proportion of cytokine-producing cells was significantly increased in the CD38/B-BiTE-added group as compared with the isotype/B-BiTE-added group. It was Furthermore, as shown in FIG. 7, when Raji cells expressing CD20 and CD38 were used as target cells, the CD20/B-BiTE-added group and the CD38/B-BiTE-added group had The proportion of cytokine-producing cells was significantly increased as compared with. From these results, it was found that the antibody complex of the present invention, like the bispecific antibody, can recruit T cells to cells expressing the target antigen and activate T cells.
 以上のことから、本発明の複合体化タンパク質は、抗体複合体を形成し、前記抗体複合体は、所望の抗原に対する結合性が付与されていること、および前記抗体複合体は、多重特異性抗体と同様の機能を発揮することがわかった。 From the above, the complexed protein of the present invention forms an antibody complex, the antibody complex is imparted with binding properties to a desired antigen, and the antibody complex has multispecificity. It was found that the antibody functions similarly to the antibody.
[実施例3]
 本発明の抗体複合体により、制御性T細胞の増殖を実質的に抑制しつつ、他のT細胞の増殖を誘導できることを確認した。
[Example 3]
It was confirmed that the antibody complex of the present invention can induce the proliferation of other T cells while substantially suppressing the proliferation of regulatory T cells.
 前記抗CD19抗体に代えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用いた以外は、前記実施例1(2)と同様にして、抗体複合体(CD20/B-BiTEまたはCD38/B-BiTE)を調製した。 In place of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the antibody complex (CD20/B-BiTE or CD38) was used in the same manner as in Example 1(2). /B-BiTE) was prepared.
 前記実施例1(3)と同様にして、CD3T細胞を調製した。得られたT細胞について、0.5μmol/L CFSE(5-(and -6)-Carboxyfluorescein diacetate succinimidyl ester)を含むPBS内で、15分間37℃でインキュベートし、T細胞をCFSEで標識した。 CD3 + T cells were prepared in the same manner as in Example 1(3) above. The T cells obtained were incubated in PBS containing 0.5 μmol/L CFSE (5-(and -6)-Carboxyfluorescein diacetate succinimidyl ester) for 15 minutes at 37° C., and the T cells were labeled with CFSE.
 つぎに、2.0×10個のCFSE標識T細胞と、2.0×10個のターゲット細胞とを、前記CD20/B-BiTE、CD38/B-BiTE、またはisotype/B-BiTEの存在下、5日間培養した(n=3)。前記ターゲット細胞は、K562/CD19細胞、K562/CD20細胞、K562/CD38細胞およびRaji細胞とした。前記培養後、T細胞を、Alexa647標識抗ヒトFoxP3抗体(clone 206D)、PE標識抗ヒトCD45RA抗体(clone HI100)、前記PC5標識抗ヒトCD8抗体(clone B9.11)、APC-Cy7標識抗ヒトCD4抗体(clone OKT4)、BV421抗ヒトCD25抗体(clone BC96)で染色した。前記染色後のT細胞について、前記フローサイトメーターで測定し、T細胞におけるCFSEが減衰している細胞の割合および制御性T細胞の割合を測定した。これらの結果を図8および9に示す(n.s.:not siginificant、*:p<0.05、**:p<0.01、***:p<0.001、以下、同様)。 Next, 2.0×10 5 CFSE-labeled T cells and 2.0×10 4 target cells were treated with the above CD20/B-BiTE, CD38/B-BiTE, or isotype/B-BiTE. In the presence, the cells were cultured for 5 days (n=3). The target cells were K562/CD19 cells, K562/CD20 cells, K562/CD38 cells and Raji cells. After the culture, the T cells were treated with Alexa647-labeled anti-human FoxP3 antibody (clone 206D), PE-labeled anti-human CD45RA antibody (clone HI100), the PC5-labeled anti-human CD8 antibody (clone B9.11), and APC-Cy7-labeled anti-human. The cells were stained with a CD4 antibody (clone OKT4) and a BV421 anti-human CD25 antibody (clone BC96). The stained T cells were measured by the flow cytometer, and the proportion of CFSE-attenuated cells and the proportion of regulatory T cells in the T cells were measured. These results are shown in FIGS. 8 and 9 (ns: not siginificant, *: p<0.05, **: p<0.01, ***: p<0.001, and so on).
 図8は、CFSEが減衰している細胞の割合を示すグラフである。図8において、横軸は、抗体複合体の種類を示し、縦軸は、増殖した細胞の割合を示す。図8のドットプロットに示すように、isotype/B-BiTEでは、T細胞の増殖が生じないため、図中の矢印で示すように、CFSE強陽性の細胞となる。他方、K562/CD38細胞およびCD38/B-BiTEでは、T細胞の増殖が生じることにより、CFSEの減衰が生じるため、増殖した細胞は、図中の矢印で示すように、CFSE弱陽性の細胞となる。そして、CD19を発現しているK562/CD19細胞をターゲット細胞とした場合、CD19/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に増殖したCD4T細胞およびCD8T細胞の割合が増加していた。また、CD20を発現しているK562/CD20細胞をターゲット細胞とした場合、CD20/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に増殖したCD4T細胞およびCD8T細胞の割合が増加していた。さらに、CD38を発現しているK562/CD38細胞をターゲット細胞とした場合、CD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に増殖したCD4TおよびCD8T細胞の割合が増加していた。そして、CD19、CD20およびCD38を発現しているRaji細胞をターゲット細胞とした場合、CD19/B-BiTE添加群、CD20/B-BiTE添加群およびCD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に増殖したCD4T細胞およびCD8T細胞の割合が増加していた。 FIG. 8 is a graph showing the percentage of cells in which CFSE is attenuated. In FIG. 8, the horizontal axis represents the type of antibody complex and the vertical axis represents the proportion of proliferated cells. As shown in the dot plot of FIG. 8, in isotype/B-BiTE, since T cell proliferation does not occur, CFSE strongly positive cells are obtained as indicated by arrows in the figure. On the other hand, in K562/CD38 cells and CD38/B-BiTE, the proliferation of T cells causes the attenuation of CFSE, so that the cells that proliferate are weakly positive for CFSE, as shown by the arrow in the figure. Become. When K562/CD19 cells expressing CD19 were used as the target cells, the CD19/B-BiTE-added group showed significantly expanded CD4 + T cells and CD8 + compared to the isotype/B-BiTE-added group. The proportion of T cells was increasing. Moreover, when K562/CD20 cells expressing CD20 were used as target cells, the CD20/B-BiTE-added group showed significantly proliferated CD4 + T cells and CD8 + compared to the isotype/B-BiTE-added group. The proportion of T cells was increasing. Furthermore, when K562/CD38 cells expressing CD38 were used as target cells, the CD38/B-BiTE-added group showed significantly increased CD4 + T and CD8 + T compared with the isotype/B-BiTE-added group. The proportion of cells was increasing. When Raji cells expressing CD19, CD20 and CD38 are used as target cells, the CD19/B-BiTE addition group, the CD20/B-BiTE addition group and the CD38/B-BiTE addition group are isotype/B- The proportion of significantly proliferated CD4 + T cells and CD8 + T cells was increased compared to the BiTE-added group.
 図9は、活性化しているCD4T細胞(CD4CD25)および制御性T細胞(CD4CD25CD45RAFoxP3)の割合を示すグラフである。図9において、横軸は、抗体複合体の種類、または制御性T細胞のサブセットを示し、縦軸は、活性化しているCD4T細胞(CD4CD25)の割合、または活性化しているCD4T細胞(CD4CD25)における制御性T細胞のサブセットの割合を示す。なお、CD4CD25細胞を、CD45RAとFoxP3との発現で展開し、CD45RAFoxP3の細胞群と、CD45RAFoxP3+++の細胞群とを制御性T細胞と定義した。また、CD45RAFoxP3の細胞群は、下記参考文献5に基づき、活性化T細胞と判断した。本実施例では、培養後の末梢血T細胞においてCD45RAFoxP3+++の細胞群を認めなかった。CD19を発現しているK562/CD19細胞をターゲット細胞とした場合、CD19/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に活性化しているCD4T細胞の割合が増加していたが、ナイーブな制御性T細胞(CD4CD25FoxP3CD45RA)および活性化T細胞(CD4CD25FoxP3CD45RA)の割合は変化しなかった。また、CD20を発現しているK562/CD20細胞をターゲット細胞とした場合、CD20/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に活性化しているCD4T細胞の割合が増加していたが、ナイーブな制御性T細胞(CD4CD25FoxP3CD45RA)の割合は変化せず、活性化T細胞(CD4CD25FoxP3CD45RA)の割合は若干増加した。さらに、CD38を発現しているK562/CD38細胞をターゲット細胞とした場合、CD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に活性化しているCD4T細胞の割合が増加していたが、ナイーブな制御性T細胞(CD4CD25FoxP3CD45RA)の割合は変化せず、活性化T細胞(CD4CD25FoxP3CD45RA)の割合は若干増加した。そして、CD19、CD20およびCD38を発現しているRaji細胞をターゲット細胞とした場合、CD19/B-BiTE添加群、CD20/B-BiTE添加群およびCD38/B-BiTE添加群は、isotype/B-BiTE添加群と比較して有意に活性化しているCD4T細胞の割合が増加していたが、ナイーブな制御性T細胞(CD4CD25FoxP3CD45RA)の割合は変化せず、活性化T細胞(CD4CD25FoxP3CD45RA)の割合は、CD19/B-BiTE添加群において若干増加した。
参考文献5:Makoto Miyara et.al., “Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor”, Immunity, 2009, volume 30, pages 899-911 
FIG. 9 is a graph showing the ratio of activated CD4 + T cells (CD4 + CD25 + ) and regulatory T cells (CD4 + CD25 + CD45RA + FoxP3 + ). In FIG. 9, the horizontal axis represents the type of antibody complex or the subset of regulatory T cells, and the vertical axis represents the ratio of activated CD4 + T cells (CD4 + CD25 + ), or activated. The percentage of regulatory T cell subsets in CD4 + T cells (CD4 + CD25 + ) is shown. Incidentally, the CD4 + CD25 + cells, and developed with the expression of CD45RA and FoxP3, and CD45RA + FoxP3 + cells group, CD45RA - FoxP3 a cell population +++ was defined as regulatory T cells. In addition, the CD45RA FoxP3 + cell group was determined to be activated T cells based on Reference Document 5 below. In this example, no CD45RA FoxP3 ++ cell group was found in the peripheral blood T cells after culture. When K562/CD19 cells expressing CD19 were used as target cells, the proportion of CD4 + T cells that were significantly activated in the CD19/B-BiTE addition group was significantly higher than that in the isotype/B-BiTE addition group. Although increased, the proportion of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) and activated T cells (CD4 + CD25 + FoxP3 + CD45RA ) remained unchanged. When K562/CD20 cells expressing CD20 were used as target cells, the CD20/B-BiTE-added group showed significantly activated CD4 + T cells as compared with the isotype/B-BiTE-added group. Although the proportion was increased, the proportion of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) remained unchanged, and the proportion of activated T cells (CD4 + CD25 + FoxP3 + CD45RA ) was slightly increased. did. Furthermore, when K562/CD38 cells expressing CD38 were used as target cells, the CD38/B-BiTE addition group showed significantly activated CD4 + T cells compared to the isotype/B-BiTE addition group. Although the proportion was increased, the proportion of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) remained unchanged, and the proportion of activated T cells (CD4 + CD25 + FoxP3 + CD45RA ) was slightly increased. did. When Raji cells expressing CD19, CD20 and CD38 are used as target cells, the CD19/B-BiTE addition group, the CD20/B-BiTE addition group and the CD38/B-BiTE addition group are isotype/B- Although the ratio of CD4 + T cells that were significantly activated was increased compared to the BiTE-added group, the ratio of naive regulatory T cells (CD4 + CD25 + FoxP3 + CD45RA + ) did not change, and the activity was unchanged. The ratio of activated T cells (CD4 + CD25 + FoxP3 + CD45RA ) slightly increased in the CD19/B-BiTE-added group.
Reference 5: Makoto Miyara et.al., “Functional Delineation and Differentiation Dynamics of Human CD4 + T Cells Expressing the FoxP3 Transcription Factor”, Immunity, 2009, volume 30, pages 899-911.
 これらの結果から、本発明の抗体複合体により、制御性T細胞の増殖を実質的に抑制しつつ、他のT細胞の増殖を誘導できることがわかった。 From these results, it was found that the antibody complex of the present invention can substantially suppress the proliferation of regulatory T cells while inducing the proliferation of other T cells.
[実施例4]
 本発明の抗体複合体により、NK細胞単独またはNK細胞およびT細胞を活性化できることを確認した。
[Example 4]
It was confirmed that the antibody complex of the present invention can activate NK cells alone or NK cells and T cells.
(1)NK細胞の活性化
 前記抗CD19抗体に代えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用い、B-BiTEの濃度を2.5μg/mLとし、抗体の濃度を7.5μg/mLとした以外は、前記実施例1(2)と同様にして、抗体複合体(CD20/B-BiTEまたはCD38/B-BiTE)を調製した。
(1) Activation of NK cells In place of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, the concentration of B-BiTE was 2.5 μg/mL, and the concentration of the antibody was 7 An antibody complex (CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 0.5 μg/mL.
 つぎに、NK細胞を末梢血から調製した。具体的には、健常者からヒト末梢血を回収した。つぎに、前記末梢血から、ヒト末梢血単核球を抽出後、得られたヒト末梢血単核球と、NK細胞精製キット(NK cell isolation kit、Miltenyi Biotec社製)を用いて、NK細胞を精製した。そして、1×10個のNK細胞と1.0×10個のターゲット細胞とを、前記抗CD20抗体、抗CD38抗体、コントロール抗体、CD20/B-BiTE、CD38/B-BiTE、またはisotype/B-BiTE、および100U/mL IL-2および10ng/mL IL-15の存在下、1時間培養した(n=3)。前記抗体の濃度は、抗体単独の場合、7.5μg/mLとした。前記ターゲット細胞は、K562/CD20細胞、K562/CD38細胞およびRaji細胞とした。前記培養後、5μmol/LとなるようにBFAを添加し、さらに4時間培養した。そして、NK細胞を、1%PFAで固定後、細胞膜の透過処理を行い、さらに、APC標識抗ヒトCD107a(clone H4A3)、前記PC7標識抗ヒトIFN-γ抗体、FITC標識抗ヒトCD16抗体(clone 3G8)、およびPE標識抗ヒトCD56抗体(clone HCD56)で染色した。前記染色後のNK細胞について、前記フローサイトメーターで測定した。コントロールは、前記ターゲット細胞を添加しなかった以外は同様に測定した。そして、コントロールにおけるCD107aの発現を基準として、CD107aの発現上昇の割合を算出した。これらの結果を図10および11に示す。 Next, NK cells were prepared from peripheral blood. Specifically, human peripheral blood was collected from a healthy person. Next, after extracting human peripheral blood mononuclear cells from the peripheral blood, the obtained human peripheral blood mononuclear cells and NK cell purification kit (NK cell isolation kit, manufactured by Miltenyi Biotec) were used to obtain NK cells. Was purified. Then, 1×10 5 NK cells and 1.0×10 5 target cells were treated with the anti-CD20 antibody, anti-CD38 antibody, control antibody, CD20/B-BiTE, CD38/B-BiTE, or isotype. /B-BiTE, and 100 U/mL IL-2 and 10 ng/mL IL-15 were incubated for 1 hour (n=3). The concentration of the antibody was 7.5 μg/mL when the antibody was used alone. The target cells were K562/CD20 cells, K562/CD38 cells and Raji cells. After the culture, BFA was added so that the concentration was 5 μmol/L, and the culture was further continued for 4 hours. After fixing NK cells with 1% PFA, permeabilization of the cell membrane was performed, and further, APC-labeled anti-human CD107a (clone H4A3), the PC7-labeled anti-human IFN-γ antibody, and FITC-labeled anti-human CD16 antibody (clone). 3G8) and PE-labeled anti-human CD56 antibody (clone HCD56). The stained NK cells were measured with the flow cytometer. The control was measured in the same manner except that the target cells were not added. Then, based on the expression of CD107a in the control, the rate of increase in CD107a expression was calculated. The results are shown in Figures 10 and 11.
 図10および11は、IFN-γの産生細胞の割合およびCD107aの発現上昇の割合を示すグラフである。図10および11において、横軸は、抗体または抗体複合体の種類を示し、縦軸は、IFN-γの産生細胞の割合またはCD107aの発現上昇の割合を示す。図10および11に示すように、標的抗原であるCD20またはCD38を発現するターゲット細胞が存在し、かつ前記標的抗原に結合する抗体が存在する場合、標的抗原を発現しないターゲットが存在する場合および標的抗原に結合しない抗体が存在する場合と比較して、IFN-γの産生細胞の割合の上昇およびCD107aの発現上昇が生じ、NK細胞が活性化していることがわかった。また、同様に、標的抗原であるCD20またはCD38を発現するターゲット細胞が存在し、かつ前記標的抗原に結合する抗体複合体が存在する場合、標的抗原を発現しないターゲットが存在する場合および標的抗原に結合しない抗体複合体が存在する場合と比較して、IFN-γの産生細胞の割合の上昇およびCD107aの発現上昇が生じ、NK細胞が活性化していることがわかった。また、抗CD20抗体添加群と、CD20/B-BiTE添加群では、IFN-γの産生細胞の割合の上昇およびCD107aの発現上昇に差が見られなかった。抗CD38抗体添加群と、CD38/B-BiTE添加群では、IFN-γの産生細胞の割合の上昇およびCD107aの発現上昇に差が見られなかった。これらのことから、本発明の抗体複合体は、抗体と同様に、NK細胞の活性化を誘導できることがわかった。 10 and 11 are graphs showing the ratio of IFN-γ producing cells and the ratio of increased CD107a expression. 10 and 11, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of IFN-γ producing cells or the proportion of increased CD107a expression. As shown in FIGS. 10 and 11, when there are target cells that express the target antigen CD20 or CD38, and when there is an antibody that binds to the target antigen, when there is a target that does not express the target antigen, and the target It was found that NK cells were activated due to an increase in the percentage of IFN-γ producing cells and an increase in CD107a expression, as compared with the case where an antibody that does not bind to the antigen was present. Similarly, when there is a target cell that expresses the target antigen CD20 or CD38, and when there is an antibody complex that binds to the target antigen, when there is a target that does not express the target antigen, and when there is a target antigen It was found that NK cells were activated due to an increase in the ratio of IFN-γ producing cells and an increase in the expression of CD107a, as compared with the case where there was an antibody complex that did not bind. In addition, there was no difference in the increase in the ratio of IFN-γ producing cells and the increase in the expression of CD107a between the anti-CD20 antibody-added group and the CD20/B-BiTE added group. There was no difference between the anti-CD38 antibody-added group and the CD38/B-BiTE-added group in the increase in the ratio of IFN-γ producing cells and the increase in the expression of CD107a. From these, it was found that the antibody complex of the present invention can induce the activation of NK cells similarly to the antibody.
(2)NK細胞およびT細胞の活性化
 前記抗CD19抗体に加えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用い、B-BiTEの濃度を2.5μg/mLとし、抗体の濃度を7.5μg/mLとした以外は、前記実施例1(2)と同様にして、抗体複合体(CD19/B-BiTE、CD20/B-BiTEまたはCD38/B-BiTE)を調製した。
(2) Activation of NK cells and T cells In addition to the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used to adjust the concentration of B-BiTE to 2.5 μg/mL, An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 7.5 μg/mL.
 健常者からヒト末梢血を回収した。つぎに、前記末梢血から、ヒト末梢血単核球を抽出後、得られたヒト末梢血単核球と、B細胞除去キット(CD19 microbeads、Miltenyi Biotec社製)を用いて、B細胞を除去することにより、NK細胞、T細胞および単球を含む細胞群を精製した。前記精製後、2×10個の細胞群と2.0×10個のターゲット細胞とを、前記抗CD19抗体、抗CD20抗体、抗CD38抗体、コントロール抗体、CD19/B-BiTE、CD20/B-BiTE、CD38/B-BiTE、またはisotype/B-BiTEの存在下、5時間培養した(n=3)。前記抗体の濃度は、抗体単独の場合、7.5μg/mLとした。前記ターゲット細胞は、K562/CD19細胞、K562/CD20細胞およびK562/CD38細胞とした。前記培養後、5μmol/LとなるようにBFAを添加し、さらに5時間培養した。そして、培養後の細胞を、1%PFAで固定後、細胞膜の透過処理を行った。さらに、APC-Cy7抗ヒトCD4抗体(clone RPA-T4)、Alexa700標識抗ヒトCD56抗体(clone 5.1H11)、V450抗ヒトCD107a抗体(clone H4A3)、PE標識抗ヒトTNF-α抗体(clone MAb11)、APC標識抗ヒトIL-2抗体(clone MQ1-17H12)、PC7標識抗ヒトIFN-γ抗体(clone B27)、PC5標識抗ヒトCD8抗体(clone B9.11)、およびFITC標識抗ヒトCD16抗体(clone 3G8)で染色した。前記染色後の細胞について、前記フローサイトメーターで測定した。そして、ターゲット細胞がコントロールにおけるサイトカイン発現およびCD107aの発現を基準として、CD107aの発現上昇の割合を算出した。これらの結果を図12~14に示す。 Human peripheral blood was collected from a healthy person. Next, human peripheral blood mononuclear cells were extracted from the peripheral blood, and then the obtained human peripheral blood mononuclear cells and B cell removal kit (CD19 microbeads, manufactured by Miltenyi Biotec) were used to remove B cells. By doing so, a cell group containing NK cells, T cells and monocytes was purified. After the purification, 2×10 5 cell groups and 2.0×10 5 target cells were treated with the anti-CD19 antibody, anti-CD20 antibody, anti-CD38 antibody, control antibody, CD19/B-BiTE, CD20/ The cells were cultured for 5 hours in the presence of B-BiTE, CD38/B-BiTE, or isotype/B-BiTE (n=3). The concentration of the antibody was 7.5 μg/mL when the antibody was used alone. The target cells were K562/CD19 cells, K562/CD20 cells and K562/CD38 cells. After the culture, BFA was added so that the concentration became 5 μmol/L, and the culture was further continued for 5 hours. Then, after culturing, the cells were fixed with 1% PFA, and then the cell membrane was permeabilized. Furthermore, APC-Cy7 anti-human CD4 antibody (clone RPA-T4), Alexa700-labeled anti-human CD56 antibody (clone 5.1H11), V450 anti-human CD107a antibody (clone H4A3), PE-labeled anti-human TNF-α antibody (clone MAb11). , APC-labeled anti-human IL-2 antibody (clone MQ1-17H12), PC7-labeled anti-human IFN-γ antibody (clone B27), PC5-labeled anti-human CD8 antibody (clone B9.11), and FITC-labeled anti-human CD16 antibody ( It was stained with clone 3G8). The cells after the staining were measured with the flow cytometer. Then, the rate of increase in CD107a expression was calculated based on the cytokine expression and CD107a expression in the target cells as controls. The results are shown in FIGS.
 図12~14は、NK細胞およびT細胞の活性化を示すグラフである。図12~14において、横軸は、抗体または抗体複合体の種類を示し、縦軸は、各サイトカインの産生細胞の割合またはCD107aの発現上昇の割合を示す。図12~14に示すように、標的抗原であるCD19、CD20またはCD38を発現するターゲット細胞が存在し、かつ前記標的抗原に結合する抗体が存在する場合、標的抗原を発現しないターゲットが存在する場合および標的抗原に結合しない抗体が存在する場合と比較して、NK細胞のIFN-γの産生細胞の割合の上昇およびCD107aの発現上昇が生じ、NK細胞が活性化していることがわかった。また、同様に、標的抗原であるCD19、CD20またはCD38を発現するターゲット細胞が存在し、かつ前記標的抗原に結合する抗体複合体が存在する場合、標的抗原を発現しないターゲットが存在する場合および標的抗原に結合しない抗体複合体が存在する場合と比較して、CD4T細胞およびCD8T細胞におけるIL-2、IFN-γおよびTNF-αの産生細胞の割合の上昇およびCD107aの発現上昇が生じ、NK細胞におけるIFN-γの産生細胞の割合の上昇およびCD107aの発現上昇が生じた。すなわち、CD4T細胞、CD8T細胞およびNK細胞が活性化していることがわかった。これらのことから、本発明の抗体複合体は、抗体と同様に、NK細胞およびT細胞の活性化を誘導できることがわかった。 12 to 14 are graphs showing activation of NK cells and T cells. 12 to 14, the horizontal axis represents the type of antibody or antibody complex, and the vertical axis represents the proportion of cells producing each cytokine or the proportion of increased expression of CD107a. As shown in FIGS. 12 to 14, when target cells that express the target antigen CD19, CD20 or CD38 exist, and when an antibody that binds to the target antigen exists, and when a target that does not express the target antigen exists It was found that the NK cells were activated by the increase in the ratio of IFN-γ producing cells in the NK cells and the increase in the expression of CD107a, as compared with the case where the antibody that does not bind to the target antigen was present. Similarly, when there is a target cell that expresses the target antigen, CD19, CD20, or CD38, and when there is an antibody complex that binds to the target antigen, there is a target that does not express the target antigen, and Increased proportion of IL-2, IFN-γ and TNF-α producing cells in CD4 + T cells and CD8 + T cells and increased expression of CD107a compared to the presence of antibody complexes that do not bind antigen. Occurred, resulting in an increase in the percentage of IFN-γ producing cells in NK cells and an increase in the expression of CD107a. That is, it was found that CD4 + T cells, CD8 + T cells and NK cells were activated. From these, it was found that the antibody complex of the present invention can induce the activation of NK cells and T cells similarly to the antibody.
(3)NK細胞およびT細胞の傷害活性の誘導
 前記抗CD19抗体に代えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用い、B-BiTEの濃度を1μg/mLとし、抗体の濃度を3μg/mLとした以外は、前記実施例1(2)と同様にして、抗体複合体(CD19/B-BiTE、CD20/B-BiTEまたはCD38/B-BiTE)を調製した。
(3) Induction of NK cell and T cell damaging activity In place of the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, and the concentration of B-BiTE was set to 1 μg/mL. An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) except that the concentration was 3 μg/mL.
 つぎに、5.0×10個のターゲット細胞であるK562細胞、K562/CD20細胞、K562/CD38細胞およびRaji細胞について、クロム51(51Cr)存在下で、1.5時間培養することにより、クロム51でラベルした。つぎに、前記実施例4(1)で精製した細胞群(E)と、前記クロム51でラベルしたターゲット細胞(T)について、E:Tが、20:1、10:1、5:1または2.5:1となるように、前記ターゲット細胞を培養しているウェルに、前記精製した細胞群を添加した。さらに、前記抗CD20抗体、抗CD38抗体、コントロール抗体、isotpye/B-BiTE、CD20/B-BiTEまたはCD38/B-BiTEを添加した。前記抗体の濃度は、3μg/mLとした。そして、18時間培養後、上清を回収し、1分間あたりの放射線の計数率(CPM:count per minute)を、AccuFLEXg7010(HITACHI社製)を用いて測定した。また、コントロールは、前記精製した細胞群を添加しなかった以外は、同様にして測定した。そして、下記式(1)に基づき、細胞傷害性(特異的融解の割合)を測定した。これらの結果を、図15に示す。
 
 K=(L-L)/(LMax-L)×100(%)  ・・・(1)
   K:細胞傷害性
   L:CPMの測定値
   L:ターゲット細胞のみの場合のCPMの測定値
   LMax:ターゲット細胞のみのウェルに0.2%Triton-X含有PBSを添加した場合のCPMの測定値
Next, 5.0×10 3 target cells of K562 cells, K562/CD20 cells, K562/CD38 cells and Raji cells were cultured in the presence of chromium 51 ( 51 Cr) for 1.5 hours. , Labeled with chrome 51. Next, regarding the cell group (E) purified in Example 4(1) and the target cells (T) labeled with the chromium 51, E:T was 20:1, 10:1, 5:1 or The purified cell group was added to the well in which the target cells were cultured so that the ratio was 2.5:1. Further, the above-mentioned anti-CD20 antibody, anti-CD38 antibody, control antibody, isotpye/B-BiTE, CD20/B-BiTE or CD38/B-BiTE was added. The concentration of the antibody was 3 μg/mL. Then, after culturing for 18 hours, the supernatant was collected, and the counting rate (CPM: count per minute) of radiation per minute was measured using AccuFLEXg7010 (manufactured by HITACHI). The control was measured in the same manner except that the purified cell group was not added. Then, the cytotoxicity (specific melting rate) was measured based on the following formula (1). The results are shown in FIG.

K=(L E −L S )/(L Max −L S )×100(%) (1)
K: Cytotoxicity L E: measurement of CPM L S: measured value of CPM in the case of target cells only L Max: measurement of CPM in the case of adding 0.2% Triton-X in PBS to wells of target cells only
 図15は、細胞傷害性を示すグラフである。図15において、横軸はE/T比を示し、縦軸は、細胞傷害性を示す。図15に示すように、標的抗原であるCD20およびCD38を発現しないK562をターゲット細胞として用いた場合、特異的な細胞傷害は生じず、各群における細胞傷害性は同等であった。他方、標的抗原であるCD20またはCD38を発現するK562およびRaji細胞をターゲット細胞として用いた場合、前記標的抗原に結合する抗体または抗体複合体が存在すると、エフェクターの量比依存的に細胞傷害性が増大した。また、抗体添加群と、抗体複合体添加群とを比較すると、抗体複合体添加群は、抗体添加群と比較して、細胞傷害性が増大した。これらの結果から、本発明の抗体複合体は、細胞傷害活性を誘導できることおよびその誘導能は抗体単独より増強されていることがわかった。 FIG. 15 is a graph showing cytotoxicity. In FIG. 15, the horizontal axis represents the E/T ratio and the vertical axis represents the cytotoxicity. As shown in FIG. 15, when K562, which does not express the target antigens CD20 and CD38, was used as the target cells, specific cytotoxicity did not occur, and the cytotoxicity in each group was similar. On the other hand, when K562 and Raji cells expressing the target antigen CD20 or CD38 are used as target cells, the presence of an antibody or antibody complex that binds to the target antigen causes cytotoxicity in a dose ratio-dependent manner on the effector. Increased. In addition, when the antibody-added group and the antibody-complex-added group were compared, the antibody-complex-added group had increased cytotoxicity as compared with the antibody-added group. From these results, it was found that the antibody complex of the present invention can induce the cytotoxic activity and its inducing ability is enhanced as compared with the antibody alone.
[実施例5]
 本発明の抗体複合体が、濃度依存的に、T細胞のサイトカイン産生を誘導することを確認した。
[Example 5]
It was confirmed that the antibody complex of the present invention induces cytokine production of T cells in a concentration-dependent manner.
 前記抗CD19抗体に加えて、抗CD20抗体(Rituximab)または抗CD38抗体(Daratumumab)を用い、B-BiTEの濃度を2.5μg/mLとし、抗体の濃度を7.5μg/mLとした以外は、前記実施例1(2)と同様にして、抗体複合体(CD19/B-BiTE、CD20/B-BiTEまたはCD38/B-BiTE)を調製した。 In addition to the anti-CD19 antibody, an anti-CD20 antibody (Rituximab) or an anti-CD38 antibody (Daratumumab) was used, except that the B-BiTE concentration was 2.5 μg/mL and the antibody concentration was 7.5 μg/mL. An antibody complex (CD19/B-BiTE, CD20/B-BiTE or CD38/B-BiTE) was prepared in the same manner as in Example 1(2) above.
 前記実施例1(3)と同様にしてCD3T細胞を精製した。2.5×10個のCD3T細胞と5.0×10個のターゲット細胞とを、所定濃度(B-BiTEおよび抗体の総濃度;10μg/mL)のCD19/B-BiTE、CD20/B-BiTE、CD38/B-BiTE、またはisotype/B-BiTEの存在下、2時間培養した(n=3)。前記ターゲット細胞は、K562/CD19細胞、K562/CD20細胞またはK562/CD38細胞とした。前記培養後、5μmol/LとなるようにBFAを添加し、さらに18時間培養した。そして、培養後の細胞を、1%PFAで固定後、細胞膜の透過処理を行った。さらに、前記実施例1(3)と同様にして、各サイトカインを産生している細胞の割合を算出した。そして、CD4T細胞およびCD8T細胞の各サイトカインにおいて、10μg/mLの抗体複合体添加時のサイトカインを産生している細胞の割合を100%として、相対的な産生細胞の割合を算出した。これらの結果を図16に示す。 CD3 + T cells were purified in the same manner as in Example 1(3) above. 2.5×10 5 CD3 + T cells and 5.0×10 4 target cells were used at a predetermined concentration (total concentration of B-BiTE and antibody; 10 μg/mL) of CD19/B-BiTE, CD20. Culture was performed for 2 hours in the presence of /B-BiTE, CD38/B-BiTE, or isotype/B-BiTE (n=3). The target cells were K562/CD19 cells, K562/CD20 cells or K562/CD38 cells. After the culture, BFA was added so that the concentration became 5 μmol/L, and the culture was further continued for 18 hours. Then, after culturing, the cells were fixed with 1% PFA, and then the cell membrane was permeabilized. Further, the ratio of cells producing each cytokine was calculated in the same manner as in Example 1 (3) above. Then, in each of the cytokines of CD4 + T cells and CD8 + T cells, the ratio of the cells producing the cytokine when the antibody complex was added at 10 μg/mL was set to 100%, and the relative ratio of the producing cells was calculated. .. The results are shown in FIG.
 図16は、相対的な産生細胞の割合を示すグラフである。図16において、上段は、CD8T細胞の結果を示し、下段は、CD4T細胞の結果を示す。図16において、横軸は、B-BiTEおよび抗体の総濃度を示し、縦軸は、相対的な産生細胞の割合を示す。また、各グラフにおける抗体複合体の名称に隣接して記載されている数値は、EC50を示す。図16に示すように、抗体複合体の濃度依存的に、CD8T細胞およびCD4T細胞は、各サイトカインを産生する細胞の割合が増加した。これらの結果から、本発明の抗体複合体が、濃度依存的に、T細胞のサイトカイン産生を誘導することがわかった。 FIG. 16 is a graph showing the relative proportion of producer cells. In FIG. 16, the upper row shows the results of CD8 + T cells, and the lower row shows the results of CD4 + T cells. In FIG. 16, the horizontal axis represents the total concentration of B-BiTE and the antibody, and the vertical axis represents the relative proportion of producing cells. Moreover, the numerical value described adjacent to the name of the antibody complex in each graph shows EC50. As shown in FIG. 16, CD8 + T cells and CD4 + T cells increased the proportion of cells producing each cytokine, depending on the concentration of the antibody complex. From these results, it was found that the antibody complex of the present invention induces T cell cytokine production in a concentration-dependent manner.
[実施例6]
 本発明の抗体複合体が、生体内において、抗腫瘍活性を示すことを確認した。
[Example 6]
It was confirmed that the antibody complex of the present invention exhibits antitumor activity in vivo.
 SLRを発現するRaji細胞(Raji/SLR細胞)は、K562細胞に代えて、Raji細胞を用い、ヒトCD19をコードするポリヌクレオチドに代えて、SLRをコードするポリヌクレオチドを用いた以外は、前記実施例1(2)と同様にして、調製した。なお、SLRは細胞内タンパク質であるため、SLRをコードするポリヌクレオチドには、切断型のNGFR遺伝子(ΔNGFR)をコードするポリヌクレオチドを、フーリン(furin)切断部位(RAKR:配列番号32)、スペーサー配列(SGSG(ドメインリンカーと同配列))およびコドン最適化P2A配列(ATNFSLLKQAGDVEENPGP:配列番号33)をコードするポリヌクレオチドを介して、連結した。 Raji cells expressing SLR (Raji/SLR cells) were the same as those of the above except that Raji cells were used instead of K562 cells and a polynucleotide encoding SLR was used instead of the polynucleotide encoding human CD19. Prepared as in Example 1(2). Since SLR is an intracellular protein, a polynucleotide encoding a truncated NGFR gene (ΔNGFR) can be used as a polynucleotide encoding SLR by using a furin cleavage site (RAKR: SEQ ID NO: 32) and a spacer. Ligation was performed via a polynucleotide encoding the sequence (SGSG (same sequence as the domain linker)) and the codon-optimized P2A sequence (ATNFSLLKQAGDVEENPGP: SEQ ID NO: 33).
SLRタンパク質(SLR/furin-sgsg-p2a/dNGFR、配列番号30)
MEEENIVNGDRPRDLVFPGTAGLQLYQSLYKYSYITDGIIDAHTNEVISYAQIFETSCRLAVSLEKYGLDHNNVVAICSENNIHFFGPLIAALYQGIPMATSNDMYTEREMIGHLNISKPCLMFCSKKSLPFILKVQKHLDFLKKVIVIDSMYDINGVECVFSFVSRYTDHAFDPVKFNPKEFDPLERTALIMTSSGTTGLPKGVVISHRSITIRFVHSSDPIYGTRIAPDTSILAIAPFHHAFGLFTALAYFPVGLKIVMVKKFEGEFFLKTIQNYKIASIVVPPPIMVYLAKSPLVDEYNLSSLTEIACGGSPLGRDIADKVAKRLKVHGILQGYGLTETCSALILSPNDRELKKGAIGTPMPYVQVKVIDINTGKALGPREKGEICFKSQMLMKGYHNNPQATRDALDKDGWLHTGDLGYYDEDRFIYVVDRLKELIKYKGYQVAPAELENLLLQHPNISDAGVIGIPDEFAGQLPSACVVLEPGKTMTEKEVQDYIAELVTTTKHLRGGVVFIDSIPKGPTGKLMRNELRAIFAREQAKSKLRAKRSGSGATNFSLLKQAGDVEENPGPMDGPRLLLLLLLGVSLGGAKEACPTGLYTHSGECCKACNLGEGVAQPCGANQTVCEPCLDSVTFSDVVSATEPCKPCTECVGLQSMSAPCVEADDAVCRCAYGYYQDETTGRCEACRVCEAGSGLVFSCQDKQNTVCEECPDGTYSDEANHVDPCLPCTVCEDTERQLRECTRWADAECEEIPGRWITRSTPPEGSDSTAPSTQEPEAPPEQDLIASTVAGVVTTVMGSSQPVVTRGTTDNLIPVYCSILAAVVVGLVAYIAFKRWNS
SLR protein (SLR/furin-sgsg-p2a/dNGFR, SEQ ID NO: 30)
MEEENIVNGDRPRDLVFPGTAGLQLYQSLYKYSYITDGIIDAHTNEVISYAQIFETSCRLAVSLEKYGLDHNNVVAICSENNIHFFGPLIAALYQGIPMATSNDMYTEREMIGHLNISKPCLMFCSKKSLPFILKVQKHLDFLKKVIVIDSMYDINGVECVFSFVSRYTDHAFDPVKFNPKEFDPLERTALIMTSSGTTGLPKGVVISHRSITIRFVHSSDPIYGTRIAPDTSILAIAPFHHAFGLFTALAYFPVGLKIVMVKKFEGEFFLKTIQNYKIASIVVPPPIMVYLAKSPLVDEYNLSSLTEIACGGSPLGRDIADKVAKRLKVHGILQGYGLTETCSALILSPNDRELKKGAIGTPMPYVQVKVIDINTGKALGPREKGEICFKSQMLMKGYHNNPQATRDALDKDGWLHTGDLGYYDEDRFIYVVDRLKELIKYKGYQVAPAELENLLLQHPNISDAGVIGIPDEFAGQLPSACVVLEPGKTMTEKEVQDYIAELVTTTKHLRGGVVFIDSIPKGPTGKLMRNELRAIFAREQAKSKLRAKRSGSGATNFSLLKQAGDVEENPGPMDGPRLLLLLLLGVSLGGAKEACPTGLYTHSGECCKACNLGEGVAQPCGANQTVCEPCLDSVTFSDVVSATEPCKPCTECVGLQSMSAPCVEADDAVCRCAYGYYQDETTGRCEACRVCEAGSGLVFSCQDKQNTVCEECPDGTYSDEANHVDPCLPCTVCEDTERQLRECTRWADAECEEIPGRWITRSTPPEGSDSTAPSTQEPEAPPEQDLIASTVAGVVTTVMGSSQPVVTRGTTDNLIPVYCSILAAVVVGLVAYIAFKRWNS
SLRをコードするポリヌクレオチド(配列番号31)
5'-ATGGAAGAAGAGAACATCGTGAATGGCGATCGCCCTCGGGATCTGGTGTTCCCTGGCACAGCCGGCCTGCAGCTGTATCAGTCCCTGTATAAATACTCTTACATCACCGACGGAATCATCGACGCCCACACCAACGAGGTGATCTCCTATGCCCAGATTTTCGAAACAAGTTGCCGCCTGGCCGTGAGCCTGGAGAAGTATGGCCTGGATCACAACAACGTGGTGGCCATTTGCAGCGAGAACAACATCCACTTCTTCGGCCCTCTGATCGCTGCCCTATACCAGGGGATTCCAATGGCCACATCCAACGATATGTACACCGAGAGGGAGATGATCGGCCACCTGAACATCTCCAAGCCATGTCTGATGTTCTGTTCCAAGAAGTCCCTGCCATTCATCCTGAAGGTGCAGAAGCACCTGGACTTTCTCAAGAAGGTGATCGTGATCGACAGCATGTACGACATCAACGGCGTGGAGTGCGTGTTCAGTTTCGTGTCCCGGTACACCGATCATGCGTTCGATCCAGTGAAGTTCAACCCTAAAGAGTTTGATCCCCTGGAGAGAACCGCGCTGATCATGACATCCTCTGGAACAACCGGCCTGCCTAAGGGCGTGGTGATCAGCCACAGGAGCATCACCATCAGATTCGTCCACAGCAGCGATCCCATCTACGGCACCCGCATCGCCCCAGATACATCCATCCTGGCCATCGCCCCTTTCCACCACGCCTTCGGACTGTTTACCGCCCTGGCTTACTTTCCAGTGGGCCTGAAGATCGTGATGGTGAAAAAGTTTGAGGGCGAGTTCTTCCTGAAGACCATCCAGAACTACAAGATCGCTTCTATCGTGGTGCCTCCTCCAATCATGGTGTATCTGGCCAAGAGCCCTCTGGTGGATGAGTACAATCTGTCCAGCCTGACAGAGATCGCCTGTGGCGGCTCCCCTCTGGGCAGAGACATCGCCGACAAGGTGGCCAAGAGACTGAAGGTCCACGGCATCCTGCAGGGCTATGGCCTGACCGAGACCTGTAGCGCCCTGATCCTGAGCCCCAACGATAGAGAGCTGAAGAAGGGCGCCATCGGCACCCCTATGCCCTATGTCCAGGTGAAGGTGATTGACATCAACACCGGCAAAGCCCTGGGACCAAGAGAGAAGGGCGAGATTTGCTTCAAGAGCCAGATGCTGATGAAGGGCTACCACAACAACCCACAGGCCACCAGGGATGCCCTGGACAAGGACGGGTGGCTGCACACCGGCGATCTGGGCTACTACGACGAGGACAGATTCATCTATGTGGTGGATCGGCTGAAAGAACTCATCAAGTACAAGGGCTACCAGGTGGCCCCTGCCGAGCTGGAGAACTTGCTTCTGCAGCACCCTAACATCTCTGATGCCGGCGTCATCGGCATCCCAGACGAGTTTGCCGGCCAGCTGCCTTCCGCCTGTGTCGTGCTGGAGCCTGGCAAGACCATGACCGAGAAGGAGGTGCAGGATTATATCGCCGAGCTGGTGACCACCACCAAGCACCTGCGGGGCGGCGTGGTGTTCATCGACAGCATTCCGAAAGGCCCAACAGGCAAGCTGATGAGAAACGAGCTGAGGGCCATCTTTGCCCGCGAGCAGGCCAAGTCCAAGCTGAGGGCCAAGCGGTCCGGATCCGGAGCCACCAACTTCAGCCTGCTGAAGCAGGCCGGCGACGTGGAGGAGAACCCCGGCCCCATGGACGGGCCGCGCCTGCTGCTGTTGCTGCTTCTGGGGGTGTCCCTTGGAGGTGCCAAGGAGGCATGCCCCACAGGCCTGTACACACACAGCGGTGAGTGCTGCAAAGCCTGCAACCTGGGCGAGGGTGTGGCCCAGCCTTGTGGAGCCAACCAGACCGTGTGTGAGCCCTGCCTGGACAGCGTGACGTTCTCCGACGTGGTGAGCGCGACCGAGCCGTGCAAGCCGTGCACCGAGTGCGTGGGGCTCCAGAGCATGTCGGCGCCATGCGTGGAGGCCGACGACGCCGTGTGCCGCTGCGCCTACGGCTACTACCAGGATGAGACGACTGGGCGCTGCGAGGCGTGCCGCGTGTGCGAGGCGGGCTCGGGCCTCGTGTTCTCCTGCCAGGACAAGCAGAACACCGTGTGCGAGGAGTGCCCCGACGGCACGTATTCCGACGAGGCCAACCACGTGGACCCGTGCCTGCCCTGCACCGTGTGCGAGGACACCGAGCGCCAGCTCCGCGAGTGCACACGCTGGGCCGACGCCGAGTGCGAGGAGATCCCTGGCCGTTGGATTACACGGTCCACACCCCCAGAGGGCTCGGACAGCACAGCCCCCAGCACCCAGGAGCCTGAGGCACCTCCAGAACAAGACCTCATAGCCAGCACGGTGGCAGGTGTGGTGACCACAGTGATGGGCAGCTCCCAGCCCGTGGTGACCCGAGGCACCACCGACAACCTCATCCCTGTCTATTGCTCCATCCTGGCTGCTGTGGTTGTGGGTCTTGTGGCCTACATAGCCTTCAAGAGGTGGAACAGCTGA-3'
Polynucleotide encoding SLR (SEQ ID NO: 31)
5'--3'
 5週齢のNOGマウス(NOD/Shi-scid,IL-2RγKO・Jicマウス、In-Vivo Science社から購入)に1.5Gyのγ線を照射した。つぎに、図17(A)に示すように、前記NOGマウスに、5×10個のRaji/SLR細胞を静脈投与し、移植した。前記移植後を0日目として、6日目および11日目に、5×10個のT細胞およびNK細胞を含む活性化エフェクター細胞と、30μg/150μLの前記抗CD20抗体または40μg/150μLのCD20/B-BiTEとを、静脈投与した。エフェクター細胞は、1.0×10個の末梢血単核球を、IL-2 100 U/mLおよび抗CD3抗体 (clone OKT3) 50 ng/mLの存在下、7日-10日前後培養して調製した。CD20/B-BiTEは、30μgの抗CD20抗体と、10μgのB-BiTEとを室温で1時間混合した後、PBSにより40μg/150μLとなるように希釈し、調製した。そして、前記移植後5、8日および12日目における腫瘍の大きさをイメージアナライザー(AEQUORIA-2D/8600 bioluminescence imaging assays、Hamamatsu Photonics社製)により測定した。コントロールは、前記抗体および抗体複合体を投与しなかった以外は、同様にして測定した。これらの結果を図17に示す。 A 5-week-old NOG mouse (NOD/Shi-scid, IL-2RγKO.Jic mouse, purchased from In-Vivo Science) was irradiated with 1.5 Gy of γ-ray. Next, as shown in FIG. 17(A), 5×10 5 Raji/SLR cells were intravenously administered to the NOG mouse and transplanted. On day 6 and 11 after the transplantation, activated effector cells containing 5×10 6 T cells and NK cells and 30 μg/150 μL of the anti-CD20 antibody or 40 μg/150 μL of the effector cells. CD20/B-BiTE was administered intravenously. For effector cells, 1.0×10 6 peripheral blood mononuclear cells were cultured for about 7 to 10 days in the presence of IL-2 100 U/mL and anti-CD3 antibody (clone OKT3) 50 ng/mL. Prepared. CD20/B-BiTE was prepared by mixing 30 μg of anti-CD20 antibody and 10 μg of B-BiTE at room temperature for 1 hour and then diluting with PBS to 40 μg/150 μL. Then, the size of the tumor on the 5th, 8th and 12th days after the transplantation was measured by an image analyzer (AEQUORIA-2D/8600 bioluminescence imaging assays, manufactured by Hamamatsu Photonics). The control was measured in the same manner except that the antibody and antibody complex were not administered. These results are shown in FIG.
 図17は、生体における抗腫瘍活性に関する図である。図17において、(A)は、プロトコルを示し、(B)は、イメージアナライザーで測定された写真であり、(C)は、腫瘍の大きさを示すグラフである。図17(B)において、白線で囲った領域は、腫瘍が存在する領域である。図17(B)および(C)に示すように、前記抗CD20抗体または抗体複合体投与群は、コントロールと比較して、腫瘍の大きさが縮小した。また、前記抗体複合体投与群は、前記抗CD20抗体投与群と比較して、腫瘍が有意に縮小した。これらの結果から、本発明の抗体複合体が、生体内において、抗腫瘍活性を示すこと、および抗体単独より抗腫瘍活性が高いことがわかった。なお、抗CD20抗体として用いてるリツキシマブは、NK細胞によるADCC活性が高い抗体として知られている。ADCC活性が低く治療効果の弱い抗体製剤を複合体化タンパク質と組合わせた場合は、in vivoにおいて、抗体単独と比較してより明確に抗腫瘍効果を高めることができると推察される。 FIG. 17 is a diagram relating to antitumor activity in a living body. In FIG. 17, (A) shows a protocol, (B) is a photograph measured by an image analyzer, and (C) is a graph showing the size of a tumor. In FIG. 17B, a region surrounded by a white line is a region where a tumor exists. As shown in FIGS. 17(B) and (C), the tumor size was reduced in the anti-CD20 antibody or antibody complex administration group as compared with the control. In addition, the tumor in the antibody-conjugated group was significantly reduced as compared with the anti-CD20 antibody-administered group. From these results, it was found that the antibody complex of the present invention exhibits antitumor activity in vivo, and that it has higher antitumor activity than the antibody alone. Rituximab used as the anti-CD20 antibody is known as an antibody having high ADCC activity by NK cells. It is speculated that when an antibody preparation having a low ADCC activity and a weak therapeutic effect is combined with a complexed protein, the antitumor effect can be more clearly enhanced in vivo as compared with the antibody alone.
 以上のことから、本発明の抗体複合体が、生体内において、抗腫瘍活性を示すことがわかった。 From the above, it was found that the antibody complex of the present invention exhibits antitumor activity in vivo.
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the exemplary embodiments, the present invention is not limited to the above exemplary embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2019年2月15日に出願された日本出願特願2019-024976を基礎とする優先権を主張し、その開示のすべてをここに取り込む。 This application claims the priority right based on Japanese Patent Application No. 2019-024976 filed on Feb. 15, 2019, and incorporates all the disclosure thereof.
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
第1の抗原結合ドメインと、第2の抗原結合ドメインとを含み、
前記第1の抗原結合ドメインは、免疫グロブリンに結合可能であり、
前記第2の抗原結合ドメインは、所望の抗原に結合可能である、複合体化タンパク質。
(付記2)
前記第1の抗原結合ドメインは、免疫グロブリンの定常(Fc)領域に結合可能である、付記1記載の複合体化タンパク質。
(付記3)
前記第1の抗原結合ドメインは、Fc領域のEUナンバリングで表される部位のうち、237~447位の領域内にエピトープを有する、付記2記載の複合体化タンパク質。
(付記4)
前記第1の抗原結合ドメインは、第1の重鎖可変領域および第1の軽鎖可変領域を含む、付記1から3のいずれかに記載の複合体化タンパク質。
(付記5)
前記第1の重鎖可変領域は、重鎖相補性決定領域(CDRH)1、CDRH2、およびCDRH3を含み、
前記第1の軽鎖可変領域は、軽鎖相補性決定領域(CDRL)1、CDRL2、およびCDRL3を含み、
 CDRH1が、下記(H1-A)のアミノ酸配列を含むポリペプチドであり、
 CDRH2が、下記(H2-A)のアミノ酸配列を含むポリペプチドであり、
 CDRH3が、下記(H3-A)のアミノ酸配列を含むポリペプチドであり、
 CDRL1が、下記(L1-A)のアミノ酸配列を含むポリペプチドであり、
 CDRL2が、下記(L2-A)のアミノ酸配列を含むポリペプチドであり、
 CDRL3が、下記(L3-A)のアミノ酸配列を含むポリペプチドである、付記4記載の複合化タンパク質:
(H1-A)下記(H1-A1)、(H1-A2)または(H1-A3)のアミノ酸配列
(H1-A1)配列番号1のアミノ酸配列
(H1-A2)配列番号1のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H1-A3)配列番号1のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H2-A)下記(H2-A1)、(H2-A2)または(H2-A3)のアミノ酸配列
(H2-A1)配列番号2のアミノ酸配列
(H2-A2)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H2-A3)配列番号2のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H3-A)下記(H3-A1)、(H3-A2)または(H3-A3)のアミノ酸配列
(H3-A1)配列番号3のアミノ酸配列
(H3-A2)配列番号3のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H3-A3)配列番号3のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L1-A)下記(L1-A1)、(L1-A2)または(L1-A3)のアミノ酸配列
(L1-A1)配列番号4のアミノ酸配列
(L1-A2)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L1-A3)配列番号4のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L2-A)下記(L2-A1)、(L2-A2)または(L2-A3)のアミノ酸配列
(L2-A1)配列番号5のアミノ酸配列
(L2-A2)配列番号5のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L2-A3)配列番号5のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L3-A)下記(L3-A1)、(L3-A2)または(L3-A3)のアミノ酸配列
(L3-A1)配列番号6のアミノ酸配列
(L3-A2)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L3-A3)配列番号6のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
(付記6)
前記第1の抗原結合ドメインは、一本鎖抗体(scFv)を含む、付記1から5のいずれかに記載の複合体化タンパク質。
(付記7)
前記所望の抗原は、T細胞に発現する抗原である、付記1から6のいずれかに記載の複合体化タンパク質。
(付記8)
前記T細胞に発現する抗原は、CD3である、付記7記載の複合体化タンパク質。
(付記9)
前記第2の抗原結合ドメインは、第2の重鎖可変領域および第2の軽鎖可変領域を含む、付記1から8のいずれかに記載の複合体化タンパク質。
(付記10)
前記第2の重鎖可変領域は、重鎖相補性決定領域(CDRH)1、CDRH2、およびCDRH3を含み、
前記第2の軽鎖可変領域は、軽鎖相補性決定領域(CDRL)1、CDRL2、およびCDRL3を含み、
 CDRH1が、下記(H1-B)のアミノ酸配列を含むポリペプチドであり、
 CDRH2が、下記(H2-B)のアミノ酸配列を含むポリペプチドであり、
 CDRH3が、下記(H3-B)のアミノ酸配列を含むポリペプチドであり、
 CDRL1が、下記(L1-B)のアミノ酸配列を含むポリペプチドであり、
 CDRL2が、下記(L2-B)のアミノ酸配列を含むポリペプチドであり、
 CDRL3が、下記(L3-B)のアミノ酸配列を含むポリペプチドである、付記9記載の複合化タンパク質:
(H1-B)下記(H1-B1)、(H1-B2)または(H1-B3)のアミノ酸配列
(H1-B1)配列番号7のアミノ酸配列
(H1-B2)配列番号7のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H1-B3)配列番号7のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H2-B)下記(H2-B1)、(H2-B2)または(H2-B3)のアミノ酸配列
(H2-B1)配列番号8のアミノ酸配列
(H2-B2)配列番号8のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H2-B3)配列番号8のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(H3-B)下記(H3-B1)、(H3-B2)または(H3-B3)のアミノ酸配列
(H3-B1)配列番号9のアミノ酸配列
(H3-B2)配列番号9のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(H3-B3)配列番号9のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L1-B)下記(L1-B1)、(L1-B2)または(L1-B3)のアミノ酸配列
(L1-B1)配列番号10のアミノ酸配列
(L1-B2)配列番号10のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L1-B3)配列番号10のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L2-B)下記(L2-B1)、(L2-B2)または(L2-B3)のアミノ酸配列
(L2-B1)配列番号11のアミノ酸配列
(L2-B2)配列番号11のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L2-B3)配列番号11のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列
(L3-B)下記(L3-B1)、(L3-B2)または(L3-B3)のアミノ酸配列
(L3-B1)配列番号12のアミノ酸配列
(L3-B2)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
(L3-B3)配列番号12のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
(付記11)
前記第2の抗原結合ドメインは、一本鎖抗体(scFv)を含む、付記1から10のいずれかに記載の複合体化タンパク質。
(付記12)
前記免疫グロブリンと架橋可能な光反応性架橋部を含む、付記1から11のいずれかに記載の複合体化タンパク質。
(付記13)
前記第1の抗原結合ドメインを構成するアミノ酸が、前記光反応性架橋部として、光活性型の反応性官能基を有する、付記12記載の複合体化タンパク質。
(付記14)
標的抗原に結合可能な抗体またはその抗原結合断片と、複合体化タンパク質とを含み、
前記複合体化タンパク質は、付記1から13のいずれかの複合体化タンパク質であり、
前記複合体化タンパク質は、その第1の抗原結合ドメインより前記抗体またはその抗原結合断片と結合し、複合体化している、抗体複合体。
(付記15)
前記抗体またはその抗原結合断片と、前記複合体化タンパク質とは、架橋されている、付記14記載の抗体複合体。
(付記16)
前記標的抗原は、疾患に関連する抗原である、付記14または15記載の抗体複合体。
(付記17)
前記標的抗原は、腫瘍抗原である、付記14から16のいずれかに記載の抗体複合体。
(付記18)
付記1から13のいずれかに記載の複合体化タンパク質を含む、医薬組成物。
(付記19)
標的抗原に結合可能な抗体またはその抗原結合断片を含む、付記18記載の医薬組成物。
(付記20)
前記複合体化タンパク質は、その第1の抗原結合ドメインにより前記抗体またはその抗原結合断片と結合し、複合体化している、付記19記載の医薬組成物。
(付記21)
付記1から13のいずれかに記載の複合体化タンパク質をコードする、核酸。
(付記22)
患者に、付記1から13のいずれかに記載の複合体化タンパク質と、標的抗原に結合可能な抗体またはその抗原結合断片とを投与する、標的抗原に関連する疾患の治療方法。
(付記23)
前記複合体化タンパク質は、その第1の抗原結合ドメインにより前記抗体またはその抗原結合断片と結合し、複合体化している、付記22記載の治療方法。
(付記24)
前記標的抗原は、腫瘍抗原であり、
前記標的抗原に関連する疾患は、がんである、付記22または23記載の治療方法。
<Appendix>
The whole or part of the exemplary embodiments and examples described above can be described as, but not limited to, the following supplementary notes.
(Appendix 1)
Including a first antigen-binding domain and a second antigen-binding domain,
The first antigen-binding domain is capable of binding an immunoglobulin,
The second antigen-binding domain is a complexed protein capable of binding a desired antigen.
(Appendix 2)
The complexed protein of Appendix 1, wherein the first antigen binding domain is capable of binding to an immunoglobulin constant (Fc) region.
(Appendix 3)
3. The complexed protein according to Appendix 2, wherein the first antigen-binding domain has an epitope within the region of positions 237 to 447 in the site represented by EU numbering of the Fc region.
(Appendix 4)
4. The complexed protein according to any one of appendices 1 to 3, wherein the first antigen-binding domain comprises a first heavy chain variable region and a first light chain variable region.
(Appendix 5)
The first heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
The first light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3,
CDRH1 is a polypeptide containing the following amino acid sequence (H1-A),
CDRH2 is a polypeptide containing the following amino acid sequence (H2-A),
CDRH3 is a polypeptide containing the following amino acid sequence (H3-A),
CDRL1 is a polypeptide containing the following amino acid sequence (L1-A),
CDRL2 is a polypeptide containing the amino acid sequence of (L2-A) below,
CDRL3 is a polypeptide containing the amino acid sequence of (L3-A) below, The complex protein according to note 4:
(H1-A) The following (H1-A1), (H1-A2) or (H1-A3) amino acid sequence (H1-A1) SEQ ID NO: 1 amino acid sequence (H1-A2) SEQ ID NO: 1 amino acid sequence And an amino acid sequence (H1-A3) having 80% or more identity, in which one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 1 (H2-A3). A) The following (H2-A1), (H2-A2) or (H2-A3) amino acid sequence (H2-A1) SEQ ID NO: 2 amino acid sequence (H2-A2) SEQ ID NO: 2 amino acid sequence is 80 Amino acid sequence having% or more identity (H2-A3) Amino acid sequence of SEQ ID NO: 2 in which one or several amino acids have been deleted, substituted, inserted and/or added (H3-A) (H3-A1), (H3-A2) or (H3-A3) amino acid sequence (H3-A1) SEQ ID NO:3 amino acid sequence (H3-A2) 80% or more of the amino acid sequence of SEQ ID NO:3 Amino acid sequence having identity (H3-A3) In the amino acid sequence of SEQ ID NO: 3, one or several amino acids have been deleted, substituted, inserted and/or added (L1-A) the following (L1- A1), (L1-A2) or (L1-A3) amino acid sequence (L1-A1) SEQ ID NO: 4 amino acid sequence (L1-A2) SEQ ID NO: 4 amino acid sequence with 80% or more identity Amino acid sequence (L1-A3) which has the amino acid sequence of SEQ ID NO: 4 in which one or several amino acids have been deleted, substituted, inserted and/or added (L2-A) the following (L2-A1), (L2-A2) or (L2-A3) amino acid sequence (L2-A1) SEQ ID NO: 5 amino acid sequence (L2-A2) SEQ ID NO: 5 amino acid sequence having at least 80% identity to the amino acid sequence (L2-A3) The amino acid sequence of SEQ ID NO: 5 in which one or several amino acids are deleted, substituted, inserted and/or added (L3-A) The following (L3-A1), (L3- A2) or (L3-A3) amino acid sequence (L3-A1) SEQ ID NO: 6 amino acid sequence (L3-A2) SEQ ID NO: 6 amino acid sequence having an identity of 80% or more (L3- A3) An amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 6.
(Appendix 6)
The complexed protein according to any one of appendices 1 to 5, wherein the first antigen-binding domain comprises a single chain antibody (scFv).
(Appendix 7)
7. The complexed protein according to any one of appendices 1 to 6, wherein the desired antigen is an antigen expressed on T cells.
(Appendix 8)
7. The complexed protein according to appendix 7, wherein the antigen expressed on the T cell is CD3.
(Appendix 9)
9. The complexed protein according to any one of appendices 1 to 8, wherein the second antigen binding domain comprises a second heavy chain variable region and a second light chain variable region.
(Appendix 10)
The second heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
The second light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3,
CDRH1 is a polypeptide containing the following amino acid sequence (H1-B),
CDRH2 is a polypeptide containing the following amino acid sequence (H2-B),
CDRH3 is a polypeptide containing the following amino acid sequence (H3-B),
CDRL1 is a polypeptide containing the following amino acid sequence (L1-B),
CDRL2 is a polypeptide containing the amino acid sequence of (L2-B) below,
CDRL3 is a polypeptide containing the following amino acid sequence (L3-B), wherein the complexed protein according to note 9:
(H1-B) The following (H1-B1), (H1-B2) or (H1-B3) amino acid sequence (H1-B1) SEQ ID NO: 7 amino acid sequence (H1-B2) SEQ ID NO: 7 amino acid sequence And an amino acid sequence (H1-B3) having 80% or more identity, in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 7 (H2-B3). B) The following (H2-B1), (H2-B2) or (H2-B3) amino acid sequence (H2-B1) SEQ ID NO:8 amino acid sequence (H2-B2) SEQ ID NO:8 relative to the amino acid sequence 80 Amino acid sequence having% or more identity (H2-B3) Amino acid sequence of SEQ ID NO: 8 in which one or several amino acids are deleted, substituted, inserted and/or added (H3-B) (H3-B1), (H3-B2) or (H3-B3) amino acid sequence (H3-B1) SEQ ID NO: 9 amino acid sequence (H3-B2) 80% or more of the amino acid sequence of SEQ ID NO: 9 Amino acid sequence having identity (H3-B3) In the amino acid sequence of SEQ ID NO: 9, one or several amino acids have been deleted, substituted, inserted and/or added (L1-B) below (L1- B1), (L1-B2) or (L1-B3) amino acid sequence (L1-B1) SEQ ID NO: 10 amino acid sequence (L1-B2) SEQ ID NO: 10 amino acid sequence with 80% or more identity Amino acid sequence (L1-B3) having, in the amino acid sequence of SEQ ID NO: 10, one or several amino acids have been deleted, substituted, inserted and/or added (L2-B) the following (L2-B1), (L2-B2) or (L2-B3) amino acid sequence (L2-B1) SEQ ID NO: 11 amino acid sequence (L2-B2) SEQ ID NO: 11 amino acid sequence having an amino acid sequence having 80% or more identity (L2-B3) Amino acid sequence of SEQ ID NO: 11 in which one or several amino acids are deleted, substituted, inserted and/or added (L3-B) The following (L3-B1), (L3- B2) or (L3-B3) amino acid sequence (L3-B1) SEQ ID NO: 12 amino acid sequence (L3-B2) SEQ ID NO: 12 amino acid sequence having an identity of 80% or more (L3- B3) An amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 12.
(Appendix 11)
11. The complexed protein according to any one of appendices 1 to 10, wherein the second antigen binding domain comprises a single chain antibody (scFv).
(Appendix 12)
12. The complexed protein according to any one of appendices 1 to 11, comprising a photoreactive crosslinkable portion capable of crosslinking with the immunoglobulin.
(Appendix 13)
13. The complexed protein according to appendix 12, wherein the amino acid forming the first antigen-binding domain has a photoactive reactive functional group as the photoreactive cross-linking portion.
(Appendix 14)
An antibody or an antigen-binding fragment thereof capable of binding to a target antigen, and a complexed protein,
The complexed protein is the complexed protein according to any one of appendices 1 to 13,
The antibody complex, wherein the complexed protein binds to the antibody or an antigen-binding fragment thereof through a first antigen-binding domain thereof to form a complex.
(Appendix 15)
15. The antibody complex according to appendix 14, wherein the antibody or antigen-binding fragment thereof and the complexed protein are crosslinked.
(Appendix 16)
16. The antibody complex according to appendix 14 or 15, wherein the target antigen is an antigen associated with a disease.
(Appendix 17)
The antibody complex according to any one of appendices 14 to 16, wherein the target antigen is a tumor antigen.
(Appendix 18)
A pharmaceutical composition comprising the complexed protein according to any one of appendices 1 to 13.
(Appendix 19)
19. The pharmaceutical composition according to appendix 18, comprising an antibody capable of binding to a target antigen or an antigen-binding fragment thereof.
(Appendix 20)
20. The pharmaceutical composition according to appendix 19, wherein the complexed protein binds to the antibody or the antigen-binding fragment thereof by the first antigen-binding domain thereof to form a complex.
(Appendix 21)
A nucleic acid encoding the complexed protein according to any one of appendices 1 to 13.
(Appendix 22)
A method for treating a disease associated with a target antigen, which comprises administering the complexed protein according to any one of appendices 1 to 13 and an antibody capable of binding to the target antigen or an antigen-binding fragment thereof to a patient.
(Appendix 23)
23. The therapeutic method according to appendix 22, wherein the complexed protein binds to the antibody or an antigen-binding fragment thereof through a first antigen-binding domain thereof to form a complex.
(Appendix 24)
The target antigen is a tumor antigen,
24. The treatment method according to appendix 22 or 23, wherein the disease associated with the target antigen is cancer.
 以上説明したように、本発明の複合体化タンパク質によれば、抗体またはその抗原結合断片に対して、所望の抗原に対する結合性を付加できる。このため、本発明は、医薬分野等において、極めて有用といえる。 As described above, according to the complexed protein of the present invention, it is possible to add the binding property for a desired antigen to the antibody or the antigen-binding fragment thereof. Therefore, the present invention can be said to be extremely useful in the field of medicine and the like.

Claims (21)

  1. 第1の抗原結合ドメインと、第2の抗原結合ドメインとを含み、
    前記第1の抗原結合ドメインは、免疫グロブリンに結合可能であり、
    前記第2の抗原結合ドメインは、所望の抗原に結合可能である、複合体化タンパク質。
    Including a first antigen-binding domain and a second antigen-binding domain,
    The first antigen-binding domain is capable of binding an immunoglobulin,
    The second antigen-binding domain is a complexed protein capable of binding a desired antigen.
  2. 前記第1の抗原結合ドメインは、免疫グロブリンの定常(Fc)領域に結合可能である、請求項1記載の複合体化タンパク質。 2. The complexed protein of claim 1, wherein the first antigen binding domain is capable of binding an immunoglobulin constant (Fc) region.
  3. 前記第1の抗原結合ドメインは、Fc領域のEUナンバリングで表される部位のうち、237~447位の領域内にエピトープを有する、請求項2記載の複合体化タンパク質。 The complexed protein according to claim 2, wherein the first antigen-binding domain has an epitope within a region of positions 237 to 447 in the site represented by EU numbering of the Fc region.
  4. 前記第1の抗原結合ドメインは、第1の重鎖可変領域および第1の軽鎖可変領域を含む、請求項1から3のいずれか一項に記載の複合体化タンパク質。 4. The complexed protein of any one of claims 1-3, wherein the first antigen binding domain comprises a first heavy chain variable region and a first light chain variable region.
  5. 前記第1の重鎖可変領域は、重鎖相補性決定領域(CDRH)1、CDRH2、およびCDRH3を含み、
    前記第1の軽鎖可変領域は、軽鎖相補性決定領域(CDRL)1、CDRL2、およびCDRL3を含み、
     CDRH1が、下記(H1-A)のアミノ酸配列を含むポリペプチドであり、
     CDRH2が、下記(H2-A)のアミノ酸配列を含むポリペプチドであり、
     CDRH3が、下記(H3-A)のアミノ酸配列を含むポリペプチドであり、
     CDRL1が、下記(L1-A)のアミノ酸配列を含むポリペプチドであり、
     CDRL2が、下記(L2-A)のアミノ酸配列を含むポリペプチドであり、
     CDRL3が、下記(L3-A)のアミノ酸配列を含むポリペプチドである、請求項4記載の複合化タンパク質:
    (H1-A)下記(H1-A1)、(H1-A2)または(H1-A3)のアミノ酸配列
    (H1-A1)配列番号1のアミノ酸配列
    (H1-A2)配列番号1のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H1-A3)配列番号1のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (H2-A)下記(H2-A1)、(H2-A2)または(H2-A3)のアミノ酸配列
    (H2-A1)配列番号2のアミノ酸配列
    (H2-A2)配列番号2のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H2-A3)配列番号2のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (H3-A)下記(H3-A1)、(H3-A2)または(H3-A3)のアミノ酸配列
    (H3-A1)配列番号3のアミノ酸配列
    (H3-A2)配列番号3のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H3-A3)配列番号3のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L1-A)下記(L1-A1)、(L1-A2)または(L1-A3)のアミノ酸配列
    (L1-A1)配列番号4のアミノ酸配列
    (L1-A2)配列番号4のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L1-A3)配列番号4のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L2-A)下記(L2-A1)、(L2-A2)または(L2-A3)のアミノ酸配列
    (L2-A1)配列番号5のアミノ酸配列
    (L2-A2)配列番号5のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L2-A3)配列番号5のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L3-A)下記(L3-A1)、(L3-A2)または(L3-A3)のアミノ酸配列
    (L3-A1)配列番号6のアミノ酸配列
    (L3-A2)配列番号6のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L3-A3)配列番号6のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
    The first heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
    The first light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3,
    CDRH1 is a polypeptide containing the following amino acid sequence (H1-A),
    CDRH2 is a polypeptide containing the following amino acid sequence (H2-A),
    CDRH3 is a polypeptide containing the following amino acid sequence (H3-A),
    CDRL1 is a polypeptide containing the following amino acid sequence (L1-A),
    CDRL2 is a polypeptide containing the amino acid sequence of (L2-A) below,
    The complexed protein according to claim 4, wherein CDRL3 is a polypeptide containing the amino acid sequence of (L3-A) below:
    (H1-A) The following (H1-A1), (H1-A2) or (H1-A3) amino acid sequence (H1-A1) SEQ ID NO: 1 amino acid sequence (H1-A2) SEQ ID NO: 1 amino acid sequence And an amino acid sequence having 80% or more identity (H1-A3), the amino acid sequence of SEQ ID NO: 1 with one or several amino acids deleted, substituted, inserted and/or added;
    (H2-A) The following (H2-A1), (H2-A2) or (H2-A3) amino acid sequence (H2-A1) SEQ ID NO: 2 amino acid sequence (H2-A2) SEQ ID NO: 2 amino acid sequence And an amino acid sequence having an amino acid sequence of 80% or more (H2-A3) SEQ ID NO: 2 in which one or several amino acids are deleted, substituted, inserted and/or added;
    (H3-A) The following (H3-A1), (H3-A2) or (H3-A3) amino acid sequence (H3-A1) SEQ ID NO:3 amino acid sequence (H3-A2) SEQ ID NO:3 amino acid sequence And an amino acid sequence (H3-A3) having an identity of 80% or more (H3-A3), wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 3.
    (L1-A) The following (L1-A1), (L1-A2) or (L1-A3) amino acid sequence (L1-A1) SEQ ID NO: 4 amino acid sequence (L1-A2) SEQ ID NO: 4 relative to the amino acid sequence And an amino acid sequence (L1-A3) having an identity of 80% or more (L1-A3), in which one or several amino acids are deleted, substituted, inserted and/or added;
    (L2-A) The following (L2-A1), (L2-A2) or (L2-A3) amino acid sequence (L2-A1) SEQ ID NO:5 amino acid sequence (L2-A2) SEQ ID NO:5 amino acid sequence And an amino acid sequence (L2-A3) having an identity of 80% or more (L2-A3), wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 5.
    (L3-A) The following (L3-A1), (L3-A2) or (L3-A3) amino acid sequence (L3-A1) SEQ ID NO: 6 amino acid sequence (L3-A2) SEQ ID NO: 6 amino acid sequence An amino acid sequence having an identity of 80% or more (L3-A3), wherein the amino acid sequence of SEQ ID NO: 6 has one or several amino acids deleted, substituted, inserted and/or added.
  6. 前記第1の抗原結合ドメインは、一本鎖抗体(scFv)を含む、請求項1から5のいずれか一項に記載の複合体化タンパク質。 6. The complexed protein of any one of claims 1-5, wherein the first antigen binding domain comprises a single chain antibody (scFv).
  7. 前記所望の抗原は、T細胞に発現する抗原である、請求項1から6のいずれか一項に記載の複合体化タンパク質。 7. The complexed protein according to any one of claims 1 to 6, wherein the desired antigen is an antigen expressed on T cells.
  8. 前記T細胞に発現する抗原は、CD3である、請求項7記載の複合体化タンパク質。 The complexed protein according to claim 7, wherein the antigen expressed on the T cell is CD3.
  9. 前記第2の抗原結合ドメインは、第2の重鎖可変領域および第2の軽鎖可変領域を含む、請求項1から8のいずれか一項に記載の複合体化タンパク質。 9. The complexed protein of any one of claims 1-8, wherein the second antigen binding domain comprises a second heavy chain variable region and a second light chain variable region.
  10. 前記第2の重鎖可変領域は、重鎖相補性決定領域(CDRH)1、CDRH2、およびCDRH3を含み、
    前記第2の軽鎖可変領域は、軽鎖相補性決定領域(CDRL)1、CDRL2、およびCDRL3を含み、
     CDRH1が、下記(H1-B)のアミノ酸配列を含むポリペプチドであり、
     CDRH2が、下記(H2-B)のアミノ酸配列を含むポリペプチドであり、
     CDRH3が、下記(H3-B)のアミノ酸配列を含むポリペプチドであり、
     CDRL1が、下記(L1-B)のアミノ酸配列を含むポリペプチドであり、
     CDRL2が、下記(L2-B)のアミノ酸配列を含むポリペプチドであり、
     CDRL3が、下記(L3-B)のアミノ酸配列を含むポリペプチドである、請求項9記載の複合化タンパク質:
    (H1-B)下記(H1-B1)、(H1-B2)または(H1-B3)のアミノ酸配列
    (H1-B1)配列番号7のアミノ酸配列
    (H1-B2)配列番号7のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H1-B3)配列番号7のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (H2-B)下記(H2-B1)、(H2-B2)または(H2-B3)のアミノ酸配列
    (H2-B1)配列番号8のアミノ酸配列
    (H2-B2)配列番号8のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H2-B3)配列番号8のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (H3-B)下記(H3-B1)、(H3-B2)または(H3-B3)のアミノ酸配列
    (H3-B1)配列番号9のアミノ酸配列
    (H3-B2)配列番号9のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (H3-B3)配列番号9のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L1-B)下記(L1-B1)、(L1-B2)または(L1-B3)のアミノ酸配列
    (L1-B1)配列番号10のアミノ酸配列
    (L1-B2)配列番号10のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L1-B3)配列番号10のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L2-B)下記(L2-B1)、(L2-B2)または(L2-B3)のアミノ酸配列
    (L2-B1)配列番号11のアミノ酸配列
    (L2-B2)配列番号11のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L2-B3)配列番号11のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列;
    (L3-B)下記(L3-B1)、(L3-B2)または(L3-B3)のアミノ酸配列
    (L3-B1)配列番号12のアミノ酸配列
    (L3-B2)配列番号12のアミノ酸配列に対して、80%以上の同一性を有するアミノ酸配列
    (L3-B3)配列番号12のアミノ酸配列において、1個または数個のアミノ酸が欠失、置換、挿入および/または付加されたアミノ酸配列。
    The second heavy chain variable region comprises heavy chain complementarity determining region (CDRH) 1, CDRH2, and CDRH3,
    The second light chain variable region comprises light chain complementarity determining region (CDRL) 1, CDRL2, and CDRL3,
    CDRH1 is a polypeptide containing the following amino acid sequence (H1-B),
    CDRH2 is a polypeptide containing the following amino acid sequence (H2-B),
    CDRH3 is a polypeptide containing the following amino acid sequence (H3-B),
    CDRL1 is a polypeptide containing the following amino acid sequence (L1-B),
    CDRL2 is a polypeptide containing the amino acid sequence of (L2-B) below,
    The complexed protein according to claim 9, wherein CDRL3 is a polypeptide containing the amino acid sequence of (L3-B) below:
    (H1-B) The following (H1-B1), (H1-B2) or (H1-B3) amino acid sequence (H1-B1) SEQ ID NO: 7 amino acid sequence (H1-B2) SEQ ID NO: 7 amino acid sequence And an amino acid sequence (H1-B3) having 80% or more identity, in which one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO:7;
    (H2-B) The following (H2-B1), (H2-B2) or (H2-B3) amino acid sequence (H2-B1) SEQ ID NO:8 amino acid sequence (H2-B2) SEQ ID NO:8 amino acid sequence And an amino acid sequence having 80% or more identity (H2-B3) SEQ ID NO: 8 with one or several amino acids deleted, substituted, inserted and/or added;
    (H3-B) The following (H3-B1), (H3-B2) or (H3-B3) amino acid sequence (H3-B1) SEQ ID NO: 9 amino acid sequence (H3-B2) SEQ ID NO: 9 relative to the amino acid sequence An amino acid sequence (H3-B3) having an identity of 80% or more (H3-B3), wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 9;
    (L1-B) The following (L1-B1), (L1-B2) or (L1-B3) amino acid sequence (L1-B1) SEQ ID NO: 10 amino acid sequence (L1-B2) SEQ ID NO: 10 amino acid sequence And an amino acid sequence (L1-B3) having an identity of 80% or more (L1-B3), wherein one or several amino acids are deleted, substituted, inserted and/or added in the amino acid sequence of SEQ ID NO: 10.
    (L2-B) The following (L2-B1), (L2-B2) or (L2-B3) amino acid sequence (L2-B1) SEQ ID NO: 11 amino acid sequence (L2-B2) SEQ ID NO: 11 relative to the amino acid sequence And an amino acid sequence (L2-B3) having an identity of 80% or more (L2-B3), in which one or several amino acids are deleted, substituted, inserted and/or added;
    (L3-B) The following (L3-B1), (L3-B2) or (L3-B3) amino acid sequence (L3-B1) SEQ ID NO: 12 amino acid sequence (L3-B2) SEQ ID NO: 12 amino acid sequence And an amino acid sequence (L3-B3) having an identity of 80% or more (L3-B3), in which one or several amino acids are deleted, substituted, inserted and/or added.
  11. 前記第2の抗原結合ドメインは、一本鎖抗体(scFv)を含む、請求項1から10のいずれか一項に記載の複合体化タンパク質。 11. The complexed protein of any one of claims 1-10, wherein the second antigen binding domain comprises a single chain antibody (scFv).
  12. 前記免疫グロブリンと架橋可能な光反応性架橋部を含む、請求項1から11のいずれか一項に記載の複合体化タンパク質。 The complexed protein according to any one of claims 1 to 11, which comprises a photoreactive cross-linking portion capable of cross-linking with the immunoglobulin.
  13. 前記第1の抗原結合ドメインを構成するアミノ酸が、前記光反応性架橋部として、光活性型の反応性官能基を有する、請求項12記載の複合体化タンパク質。 13. The complexed protein according to claim 12, wherein the amino acid forming the first antigen-binding domain has a photoactive reactive functional group as the photoreactive cross-linking portion.
  14. 標的抗原に結合可能な抗体またはその抗原結合断片と、複合体化タンパク質とを含み、
    前記複合体化タンパク質は、請求項1から13のいずれか一項の複合体化タンパク質であり、
    前記複合体化タンパク質は、その第1の抗原結合ドメインより前記抗体またはその抗原結合断片と結合し、複合体化している、抗体複合体。
    An antibody or an antigen-binding fragment thereof capable of binding to a target antigen, and a complexed protein,
    The complexed protein is the complexed protein according to any one of claims 1 to 13,
    The antibody complex, wherein the complexed protein binds to the antibody or an antigen-binding fragment thereof through a first antigen-binding domain thereof to form a complex.
  15. 前記抗体またはその抗原結合断片と、前記複合体化タンパク質とは、架橋されている、請求項14記載の抗体複合体。 The antibody complex according to claim 14, wherein the antibody or the antigen-binding fragment thereof and the complexed protein are cross-linked.
  16. 前記標的抗原は、疾患に関連する抗原である、請求項14または15記載の抗体複合体。 The antibody complex according to claim 14 or 15, wherein the target antigen is an antigen associated with a disease.
  17. 前記標的抗原は、腫瘍抗原である、請求項14から16のいずれか一項に記載の抗体複合体。 The antibody complex according to any one of claims 14 to 16, wherein the target antigen is a tumor antigen.
  18. 請求項1から13のいずれか一項に記載の複合体化タンパク質を含む、医薬組成物。 A pharmaceutical composition comprising the complexed protein according to any one of claims 1 to 13.
  19. 標的抗原に結合可能な抗体またはその抗原結合断片を含む、請求項18記載の医薬組成物。 The pharmaceutical composition according to claim 18, comprising an antibody or an antigen-binding fragment thereof capable of binding to a target antigen.
  20. 前記複合体化タンパク質は、その第1の抗原結合ドメインにより前記抗体またはその抗原結合断片と結合し、複合体化している、請求項19記載の医薬組成物。 20. The pharmaceutical composition according to claim 19, wherein the complexed protein binds to the antibody or the antigen-binding fragment thereof by the first antigen-binding domain thereof to form a complex.
  21. 請求項1から13のいずれか一項に記載の複合体化タンパク質をコードする、核酸。 A nucleic acid encoding the complexed protein according to any one of claims 1 to 13.
PCT/JP2020/005875 2019-02-15 2020-02-14 Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid WO2020166714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572348A JPWO2020166714A1 (en) 2019-02-15 2020-02-14 Complexed proteins, antibody complexes, pharmaceutical compositions, and nucleic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-024976 2019-02-15
JP2019024976 2019-02-15

Publications (1)

Publication Number Publication Date
WO2020166714A1 true WO2020166714A1 (en) 2020-08-20

Family

ID=72044104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005875 WO2020166714A1 (en) 2019-02-15 2020-02-14 Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid

Country Status (2)

Country Link
JP (1) JPWO2020166714A1 (en)
WO (1) WO2020166714A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537157A (en) * 2004-03-30 2007-12-20 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブリュ ユニバーシティ オブ エルサレム Bispecific antibodies for targeting cells involved in allergic reactions, and compositions and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537157A (en) * 2004-03-30 2007-12-20 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブリュ ユニバーシティ オブ エルサレム Bispecific antibodies for targeting cells involved in allergic reactions, and compositions and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASSINO, Y. S. ET AL.: "Production of Bifunctional Monoclonal Antibodies to Human IgG and Horseradish Peroxidase and Their Utilization for Testing Anti- HIV Antibodies", BULLET IN OF EXPERIMENTAL BIOLOGY AND MEDICINE, vol. 117, no. 3, 1994, pages 291 - 293 *
OCHI, TOSHIKI ET AL.: "Cancer immunotherapy development", THE JAPANESE JOURNAL OF PEDIATRIC HEMATOLOGY / ONCOLOGY, vol. 55, no. 5, 2018, pages 339 - 344 *

Also Published As

Publication number Publication date
JPWO2020166714A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US11891444B2 (en) Variable regions for NKp46 binding proteins
AU2018393424B2 (en) Triabody, preparation method and use thereof
TWI788286B (en) Trispecific and/or trivalent binding proteins
TW202342544A (en) Anti-cd38 antibodies and methods of use
JP2018505154A (en) Monomeric Fc domain
JP2017532287A (en) Multispecific antigen binding protein
US11945871B2 (en) Anti-BTN3A antibodies and their use in treating cancer or infectious disorders
US20210371523A1 (en) Antibody molecules that bind to nkp30 and uses thereof
WO2019129054A1 (en) Triabody, preparation method and use thereof
US20200325232A1 (en) Multispecific antigen binding proteins
EP3902827A1 (en) Btn3a binding proteins and uses thereof
JP2023532807A (en) Antibodies that bind to PSMA and gamma-delta T cell receptors
JP7365654B2 (en) Anti-CLDN4-anti-CD137 bispecific antibody
US20190322767A1 (en) Heterodimeric antigen binding proteins
WO2020166714A1 (en) Complexed protein, antibody complex, pharmaceutical composition, and nucleic acid
JP7025059B2 (en) How to make CAR library and scFv
CN116917316A (en) Antibody molecules that bind to NKp30 and uses thereof
JP7496093B2 (en) Methods for producing CAR libraries and scFv
JP7496965B2 (en) BCMA-specific antibodies and chimeric antigen receptors
RU2812910C2 (en) Antibodies to cd38 and combinations with antibodies to cd3 and cd28
JP2023518686A (en) Antibodies and chimeric antigen receptors specific for BCMA
CA3191224A1 (en) Multispecific binding compounds that bind to pd-l1
KR20220144821A (en) CD137 binding molecules and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572348

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755129

Country of ref document: EP

Kind code of ref document: A1