WO2020166625A1 - 通信方法、端末装置、基地局装置、および、集積回路 - Google Patents

通信方法、端末装置、基地局装置、および、集積回路 Download PDF

Info

Publication number
WO2020166625A1
WO2020166625A1 PCT/JP2020/005400 JP2020005400W WO2020166625A1 WO 2020166625 A1 WO2020166625 A1 WO 2020166625A1 JP 2020005400 W JP2020005400 W JP 2020005400W WO 2020166625 A1 WO2020166625 A1 WO 2020166625A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
parameter
terminal device
spatial relationship
base station
Prior art date
Application number
PCT/JP2020/005400
Other languages
English (en)
French (fr)
Inventor
星野 正幸
山田 昇平
高橋 宏樹
麗清 劉
秀和 坪井
Original Assignee
シャープ株式会社
鴻穎創新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 鴻穎創新有限公司 filed Critical シャープ株式会社
Priority to US17/428,656 priority Critical patent/US20220124633A1/en
Publication of WO2020166625A1 publication Critical patent/WO2020166625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present invention relates to a communication method, a terminal device, a base station device, and an integrated circuit.
  • the present application claims priority based on Japanese Patent Application No. 2019-24509 filed in Japan on February 14, 2019, the contents of which are incorporated herein by reference.
  • Non-Patent Document 1 LTE (Long Term Evolution)-Advanced Pro and NR (New Radio) are being used in the 3rd Generation Partnership Project (3GPP) as a wireless access method and wireless network technology for the 5th generation cellular system. technology) and standard development are being conducted (Non-Patent Document 1).
  • 3GPP 3rd Generation Partnership Project
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • An object of one aspect of the present invention is to provide a communication method, a terminal device, a base station device, and an integrated circuit that enable efficient communication in the above wireless communication system.
  • a communication method is a communication method for a terminal device, and receives an upper layer setting including an aggregation transmission parameter, a parameter applied to transmission power control, and a parameter of spatial relation information applied to PUSCH transmission. Then, when the aggregation transmission parameter is set, the transport block is repeatedly transmitted N times in N slots, the value of N is included in the aggregation transmission parameter, and the parameter of the path loss reference signal is , Included in the parameters applied to the transmission power control, one or more parameters of the spatial relationship information included in the parameters of the spatial relationship information applied to the PUSCH transmission, and the nth of the N times of repeated transmissions. The first spatial relationship information specified by the parameter of the one or more spatial relationship information is applied to the first transmission.
  • a communication method is a communication method for a base station device, and includes aggregation transmission parameters for a terminal device, parameters applied for transmission power control, and parameters for spatial relationship information applied for PUSCH transmission.
  • the transport block is repeatedly received N times in N slots, the value of N is included in the aggregation transmission parameter, and the path loss reference is included.
  • a parameter of a reference signal is included in a parameter applied to the transmission power control, a parameter of one or more spatial relationship information is included in a parameter of spatial relationship information applied to the PUSCH transmission, and the N times of repetition are repeated.
  • the first spatial relationship information specified by the parameter of the one or more spatial relationship information is applied to the n-th reception of the reception.
  • a terminal device is a terminal device, and receives a higher layer setting including an aggregation transmission parameter, a parameter applied to transmission power control, and a parameter of spatial relationship information applied to PUSCH transmission.
  • a transmission unit that repeatedly transmits a transport block N times in N slots when the aggregation transmission parameter is set, the value of N being included in the aggregation transmission parameter,
  • the parameter of the path loss reference reference signal is included in the parameter applied to the transmission power control
  • the parameter of one or more spatial relationship information is included in the parameter of the spatial relationship information applied to the PUSCH transmission
  • the first spatial relationship information specified by the parameter of the one or more spatial relationship information is applied to the n-th PUSCH transmission among the repeated transmissions.
  • a base station device is a base station device, and an upper layer including aggregation transmission parameters for a terminal device, parameters applied for transmission power control, and parameters for spatial relationship information applied for PUSCH transmission.
  • a transmission unit configured to transmit a setting
  • a reception unit configured to repeatedly receive a transport block N times in N slots when the aggregation transmission parameter is set, wherein the value of N is the aggregation transmission.
  • the parameter of the path loss reference signal is included in the parameter applied to the transmission power control, the parameter of one or more spatial relationship information is included in the parameter of the spatial relationship information applied to the PUSCH transmission Then, the first spatial relationship information specified by the parameter of the one or more spatial relationship information is applied to the nth reception of the N times of repeated reception.
  • An integrated circuit is an integrated circuit installed in a terminal device, and includes an upper layer including aggregation transmission parameters, parameters applied to transmission power control, and parameters of spatial relationship information applied to PUSCH transmission.
  • the method further comprises: a receiving unit that receives a layer setting, and a transmitting unit that repeatedly transmits a transport block N times in N slots when the aggregation transmission parameter is set, and the value of N is the aggregation.
  • the parameter of the path loss reference signal is included in the parameter applied to the transmission power control, one or more parameters of the spatial relationship information, to the parameter of the spatial relationship information applied to the PUSCH transmission.
  • the first spatial relation information included and applied to the n-th transmission among the N-times repeated transmissions is specified by the parameter of the one or more spatial relation information.
  • a communication method is an integrated circuit installed in a base station device, which includes an aggregation transmission parameter for a terminal device, a parameter applied for transmission power control, and spatial relation information applied for PUSCH transmission.
  • a transmission unit configured to transmit an upper layer setting including a parameter; and a reception unit configured to repeatedly receive a transport block N times in N slots when the aggregation transmission parameter is set, the value of the N Is included in the aggregation transmission parameter, the parameter of the path loss reference reference signal is included in the parameter applied to the transmission power control, the parameter of one or more spatial relationship information, the spatial relationship applied to the PUSCH transmission
  • the first spatial relationship information included in the information parameters and specified by the one or more spatial relationship information parameters is applied to the n-th reception of the N times of repeated reception.
  • the base station device and the terminal device can efficiently communicate with each other.
  • FIG. 6 is a diagram showing a relationship in the time domain of subframes, slots, and minislots according to the embodiment of the present invention. It is a figure which shows an example of the slot or sub-frame which concerns on embodiment of this invention. It is a figure showing an example of beamforming concerning an embodiment of the present invention. It is the figure which showed an example of the spatial relationship information set setting which concerns on embodiment of this invention.
  • FIG. 1 is a conceptual diagram of a wireless communication system according to this embodiment.
  • the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3.
  • the terminal device 1A and the terminal device 1B are also referred to as the terminal device 1.
  • the terminal device 1 is also called a user terminal, mobile station device, communication terminal, mobile device, terminal, UE (User Equipment), MS (Mobile Station).
  • the base station device 3 includes a radio base station device, a base station, a radio base station, a fixed station, an NB (Node B), an eNB (evolved Node B), a BTS (Base Transceiver Station), a BS (Base Station), and an NR NB ( Also referred to as NR Node B), NNB, TRP (Transmission and Reception Point), and gNB.
  • the base station device 3 may include a core network device.
  • the base station device 3 may include one or more transmission/reception points 4 (transmission reception point).
  • the base station device 3 may serve the terminal device 1 with the communicable range (communication area) controlled by the base station device 3 as one or a plurality of cells.
  • the base station device 3 may serve the terminal device 1 with the communicable range (communication area) controlled by the one or more transmission/reception points 4 as one or more cells.
  • one cell may be divided into a plurality of partial areas (Beamed area), and the terminal device 1 may be served in each partial area.
  • the partial region may be identified based on a beam index used in beam forming or a precoding index.
  • a wireless communication link from the base station device 3 to the terminal device 1 is called a downlink.
  • a wireless communication link from the terminal device 1 to the base station device 3 is called an uplink.
  • orthogonal frequency division multiplexing Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix
  • SC- FDM Single-Carrier Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • MC-CDM Multi-Carrier Code Division Division Multiplexing
  • a universal filter multi-carrier (UFMC), a filter OFDM (F-OFDM: Filtered OFDM), and a window function are used.
  • Multiplied OFDM (Windowed OFDM) and filter bank multi-carrier (FBMC: Filter-Bank Multi-Carrier) may be used.
  • the OFDM symbol is used as the transmission method for explanation, but the case of using the other transmission method described above is also included in the present invention.
  • the CP in the wireless communication between the terminal device 1 and the base station device 3, the CP may not be used, or the above-mentioned transmission method with zero padding may be used instead of the CP. Also, CP and zero padding may be added to both the front and the rear.
  • One aspect of this embodiment may be operated in carrier aggregation or dual connectivity with a radio access technology (RAT: Radio Access Technology) such as LTE or LTE-A/LTE-A Pro.
  • RAT Radio Access Technology
  • some or all cells or cell groups, carriers or carrier groups for example, primary cell (PCell: Primary cell), secondary cell (SCell: Secondary cell), primary secondary cell (PSCell), MCG (Master cell group) ), SCG (Secondary Cell Group), etc.
  • PCell Primary cell
  • SCell Secondary cell
  • PSCell primary secondary cell
  • MCG Master cell group
  • SCG Secondary Cell Group
  • the SpCell (Special Cell) is a PCell of the MCG or a PSCell of the SCG, depending on whether the MAC (MAC: Medium Access Control) entity is associated with the MCG or the SCG, respectively. Called. Unless it is a dual connectivity operation, SpCell (Special Cell) is called PCell. SpCell (Special Cell) supports PUCCH transmission and contention-based random access.
  • MAC Medium Access Control
  • one or more serving cells may be set for the terminal device 1.
  • the plurality of configured serving cells may include one primary cell and one or more secondary cells.
  • the primary cell may be a serving cell that has undergone the initial connection establishment procedure, a serving cell that has initiated the connection re-establishment procedure, or a cell designated as the primary cell in the handover procedure. Good.
  • One or a plurality of secondary cells may be set when or after the RRC (Radio Resource Control) connection is established.
  • the plurality of configured serving cells may include one primary secondary cell.
  • the primary secondary cell may be a secondary cell capable of transmitting control information in the uplink among one or a plurality of secondary cells in which the terminal device 1 is set.
  • the master cell group may include one primary cell and zero or more secondary cells.
  • the secondary cell group may include one primary secondary cell and zero or more secondary cells.
  • the TDD (Time Division Duplex) and/or the FDD (Frequency Division Duplex) may be applied to the wireless communication system of the present embodiment.
  • the TDD (Time Division Duplex) method or the FDD (Frequency Division Duplex) method may be applied to all of the plurality of cells. Also, cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • the carrier corresponding to the serving cell is called the downlink component carrier (or downlink carrier).
  • a carrier corresponding to a serving cell is called an uplink component carrier (or an uplink carrier).
  • the carrier corresponding to the serving cell is called a side link component carrier (or side link carrier).
  • the downlink component carrier, the uplink component carrier, and/or the side link component carrier are collectively referred to as a component carrier (or carrier).
  • the following physical channels are used in the wireless communication between the terminal device 1 and the base station device 3.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH is used to notify an important information block (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) including important system information required by the terminal device 1.
  • MIB Master Information Block
  • EIB Essential Information Block
  • BCH Broadcast Channel
  • the PBCH (also referred to as a physical broadcast channel) may be used to broadcast a time index within a cycle of a block of a synchronization signal (also referred to as an SS/PBCH block).
  • the time index is information indicating the index of the synchronization signal and PBCH in the cell.
  • the SS/PBCH block is set within a predetermined cycle or set. It may indicate the time order within the cycle. Further, the terminal device may recognize the difference in the time index as the difference in the transmission beams.
  • the block of the synchronization signal may include a primary synchronization signal, a secondary synchronization signal, a physical broadcast channel, and a reference signal for demodulating the physical broadcast channel.
  • the primary synchronization signal, the secondary synchronization signal, and the reference signal for demodulating the physical broadcast channel will be described later.
  • the PDCCH is used for transmitting (or carrying) downlink control information (DCI) in downlink wireless communication (wireless communication from the base station device 3 to the terminal device 1).
  • DCI downlink control information
  • one or more DCIs (may be referred to as DCI formats) are defined for transmission of downlink control information. That is, the field for downlink control information is defined as DCI and is mapped to information bits.
  • DCI format 0_0 ⁇ DCI format 0_1 ⁇ DCI format 1_0 ⁇ DCI format 1_1 ⁇ DCI format 2_0 ⁇ DCI format 2_1 ⁇ DCI format 2_2 ⁇ DCI format 2_3
  • DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • DCI format 0_1 refers to information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP: BandWidth Part), channel state information (CSI: Channel State Information) request, and sounding reference.
  • BWP BandWidth Part
  • CSI Channel State Information
  • a signal (SRS: Sounding Reference Signal) request and information about the antenna port may be included.
  • DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • the DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating a band portion (BWP), transmission setting instruction (TCI: Transmission Configuration Indication), and information related to antenna ports. Good.
  • DCI format 2_0 is used to notify the slot format of one or more slots.
  • the slot format is defined as one in which each OFDM symbol in the slot is classified as downlink, flexible, or uplink.
  • the slot format is 28
  • the DDDDDDDDDDDDFU is applied to the 14-symbol OFDM symbols in the slot in which the slot format 28 is designated.
  • D is a downlink symbol
  • F is a flexible symbol
  • U is an uplink symbol.
  • the slots will be described later.
  • the DCI format 2_1 is used to notify the terminal device 1 of a physical resource block and an OFDM symbol that may be assumed not to be transmitted. Note that this information may be referred to as a preemption instruction (intermittent transmission instruction).
  • DCI format 2_2 is used for transmitting the transmission power control (TPC: Transmit Power Control) command for PUSCH and PUSCH.
  • TPC Transmit Power Control
  • DCI format 2_3 is used to transmit a group of TPC commands for transmitting a sounding reference signal (SRS) by one or more terminal devices 1. Further, the SRS request may be transmitted together with the TPC command. Further, in the DCI format 2_3, the SRS request and the TPC command may be defined for the uplink without PUSCH and PUCCH, or for the uplink in which the transmission power control of SRS is not tied to the transmission power control of PUSCH.
  • SRS sounding reference signal
  • the DCI for the downlink is also referred to as downlink grant or downlink assignment.
  • the DCI for the uplink is also referred to as an uplink grant or an uplink assignment.
  • the CRC (Cyclic Redundancy Check) parity bit added to the DCI format transmitted by one PDCCH is SI-RNTI (System Information-Radio Network Temporary Identifier), P-RNTI (Paging-Radio Network Temporary Identifier), C- RNTI (Cell-Radio Network Temporary Identifier), CS-RNTI (Configured Scheduling-Radio Network Temporary Identifier), RA-RNTI (Random Access-Radio Temporary Identity), or Temporary C-RNTI To be done.
  • SI-RNTI System Information-Radio Network Temporary Identifier
  • P-RNTI Paging-Radio Network Temporary Identifier
  • C- RNTI Cell-Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling-Radio Network Temporary Identifier
  • SI-RNTI may be an identifier used for broadcasting system information.
  • the P-RNTI may be an identifier used for notification of paging and system information change.
  • C-RNTI, MCS-C-RNTI, and CS-RNTI are identifiers for identifying a terminal device in a cell.
  • the Temporary C-RNTI is an identifier for identifying the terminal device 1 that has transmitted the random access preamble during the contention based random access procedure.
  • C-RNTI terminal device identifier (identification information)) is used to control the PDSCH or PUSCH in one or more slots.
  • the CS-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • MCS-C-RNTI is used to indicate the use of a given MCS table for grant-based transmission.
  • Temporary C-RNTI (TC-RNTI) is used to control PDSCH transmission or PUSCH transmission in one or more slots.
  • the Temporary C-RNTI is used to schedule the retransmission of the random access message 3 and the transmission of the random access message 4.
  • RA-RNTI is determined according to frequency and time position information of the physical random access channel that transmitted the random access preamble.
  • the PUCCH is used to transmit uplink control information (Uplink Control Information: UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3).
  • the uplink control information may include channel state information (CSI: Channel State Information) used to indicate the state of the downlink channel.
  • the uplink control information may include a scheduling request (SR: Scheduling Request) used to request the UL-SCH resource.
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement).
  • HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • PDSCH is used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the medium access (MAC: Medium Access Control) layer.
  • DL-SCH Downlink Shared CHannel
  • MAC Medium Access Control
  • SI System Information
  • RAR Random Access Response
  • PUSCH may be used to transmit HARQ-ACK and/or CSI together with uplink data (UL-SCH: Uplink Shared CHannel) from the MAC layer or uplink data. It may also be used to send CSI only or HARQ-ACK and CSI only. That is, it may be used to transmit only UCI.
  • UL-SCH Uplink Shared CHannel
  • the base station device 3 and the terminal device 1 exchange (transmit/receive) signals in an upper layer (upper layer: higher layer).
  • the base station device 3 and the terminal device 1 transmit and receive RRC signaling (RRC message: Radio Resource Control message, also called RRC information: Radio Resource Control information) in the radio resource control (RRC:Radio Resource Control) layer.
  • RRC Radio Resource Control
  • the base station device 3 and the terminal device 1 may transmit and receive a MAC control element in a MAC (Medium Access Control) layer.
  • the RRC signaling and/or the MAC control element is also referred to as an upper layer signal (upper layer signal: higher layer signaling).
  • the upper layer here means an upper layer viewed from the physical layer, and thus may include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like.
  • the upper layer may include one or more of the RRC layer, the RLC layer, the PDCP layer, the NAS layer, and the like.
  • PDSCH or PUSCH may be used for transmitting RRC signaling and MAC control elements.
  • the RRC signaling transmitted from the base station apparatus 3 may be common signaling to the plurality of terminal apparatuses 1 in the cell.
  • the RRC signaling transmitted from the base station device 3 may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device 1. That is, the terminal device specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling.
  • PUSCH may be used for transmission of UE capability (UE Capability) in the uplink.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting the information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • RS Reference Signal
  • the synchronization signal may include a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • the cell ID may be detected using PSS and SSS.
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal may be used by the terminal device 1 for precoding by the base station device 3 or for precoding or beam selection in beamforming.
  • the beam may also be called a transmission or reception filter setting, or a spatial domain transmission filter or a spatial domain reception filter.
  • the reference signal is used by the terminal device 1 to perform propagation path compensation on the physical channel.
  • the reference signal may also be used by the terminal device 1 to calculate the downlink CSI.
  • the reference signal may be used for fine synchronization so that numerology such as radio parameters and subcarrier intervals and window synchronization of FFT can be performed.
  • one or more of the following downlink reference signals are used.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • TRS Tracking Reference Signal
  • DMRS is used to demodulate the modulated signal.
  • Two types of reference signals for demodulating PBCH and PDSCH may be defined for DMRS, or both may be referred to as DMRS.
  • the CSI-RS is used for measuring channel state information (CSI: Channel State Information) and beam management, and a transmission method of a periodic or semi-persistent or aperiodic CSI reference signal is applied.
  • the CSI-RS may be defined as a non-zero power (NZP) CSI-RS and a zero power (ZP: Zero Power) CSI-RS that has zero transmission power (or reception power).
  • NZP non-zero power
  • ZP Zero Power
  • ZP CSI-RS may be defined as CSI-RS resource with zero transmission power or not transmitted.
  • PTRS is for tracking the phase on the time axis for the purpose of guaranteeing frequency offset due to phase noise.
  • the TRS is used to guarantee the Doppler shift when moving at a high speed, and the TRS may be used as one setting of the CSI-RS, for example, one-port CSI-RS is used as the TRS. Radio resources may be configured.
  • any one or more of the following uplink reference signals are used.
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is used to demodulate the modulated signal.
  • Two types of reference signals for demodulating PUCCH and reference signals for demodulating PUSCH may be defined in DMRS, or both may be referred to as DMRS.
  • SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management.
  • the PTRS is used to track the phase on the time axis in order to guarantee the frequency offset due to the phase noise.
  • the downlink physical channel and/or the downlink physical signal are collectively referred to as the downlink signal.
  • the uplink physical channel and/or the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and/or the uplink physical channel are generically called a physical channel.
  • the downlink physical signal and/or the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (MAC) layer is called a transport channel.
  • the unit of the transport channel used in the MAC layer is also called a transport block (TB) and/or a MAC PDU (Protocol Data Unit).
  • HARQ Hybrid Automatic Repeat reQuest
  • the transport block is a unit of data delivered by the MAC layer to the physical layer. In the physical layer, transport blocks are mapped to codewords, and an encoding process is performed for each codeword.
  • FIG. 2 is a diagram showing an example of an SS/PBCH block (also referred to as a synchronization signal block, an SS block, an SSB) and an SS burst set (also referred to as a synchronization signal burst set) according to the present embodiment.
  • FIG. 2 shows an example in which two SS/PBCH blocks are included in an SS burst set that is periodically transmitted, and the SS/PBCH block is composed of 4 OFDM symbols.
  • the SS/PBCH block is a unit block including at least a synchronization signal (PSS, SSS) and/or PBCH. Transmitting the signal/channel included in the SS/PBCH block is expressed as transmitting the SS/PBCH block.
  • the base station device 3 transmits a synchronization signal and/or a PBCH using one or more SS/PBCH blocks in the SS burst set, the base station device 3 may use an independent downlink transmission beam for each SS/PBCH block. Good.
  • PSS, SSS, and PBCH are time/frequency multiplexed in one SS/PBCH block.
  • the order in which PSS, SSS, and/or PBCH are multiplexed in the time domain may be different from the example shown in FIG.
  • SS burst set may be sent periodically.
  • a cycle to be used for initial access and a cycle set for the connected (Connected or RRC_Connected) terminal device may be defined.
  • the cycle set for the connected (Connected or RRC_Connected) terminal device may be set in the RRC layer.
  • the period set for the connected (Connected or RRC_Connected) terminal is the period of the radio resources in the time domain that may potentially be transmitted, and whether the base station device 3 actually transmits You may decide.
  • the cycle used for initial access may be defined in advance in a specification or the like.
  • the SS burst set may be determined based on the system frame number (SFN: System Frame Number). Further, the start position (boundary) of the SS burst set may be determined based on the SFN and the cycle.
  • SFN System Frame Number
  • An SS/PBCH block is assigned an SSB index (may be referred to as SSB/PBCH block index) according to the temporal position in the SS burst set.
  • the terminal device 1 calculates the SSB index based on the information of the PBCH included in the detected SS/PBCH block and/or the information of the reference signal.
  • -SS/PBCH blocks with the same relative time in each SS burst set in multiple SS burst sets are assigned the same SSB index.
  • SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmit beam applied).
  • antenna ports in SS/PBCH blocks with the same relative time in each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
  • SS/PBCH blocks to which the same SSB index is assigned may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, and spatial correlation.
  • the settings corresponding to one or more SS/PBCH blocks that are QCLs (or may be reference signals) may be referred to as QCL settings.
  • the number of SS/PBCH blocks (which may be referred to as the number of SS blocks or the number of SSBs) is, for example, the number of SS/PBCH blocks in the SS burst or SS burst set, or in the cycle of SS/PBCH blocks. May be defined. Further, the number of SS/PBCH blocks may indicate the number of beam groups for cell selection in the SS burst, the SS burst set, or the cycle of the SS/PBCH block. Here, the beam group may be defined as the number of different SS/PBCH blocks or the number of different beams included in the SS burst, or the set of SS bursts, or the period of the SS/PBCH block.
  • the reference signals described in this embodiment are downlink reference signals, synchronization signals, SS/PBCH blocks, downlink DM-RSs, CSI-RSs, uplink reference signals, SRSs, and/or uplink DM-. Including RS.
  • the downlink reference signal, the synchronization signal and/or the SS/PBCH block may be referred to as a reference signal.
  • Reference signals used in the downlink include downlink reference signals, synchronization signals, SS/PBCH blocks, downlink DM-RSs, CSI-RSs, and the like.
  • the reference signal used in the uplink includes an uplink reference signal, SRS, and/or uplink DM-RS.
  • the reference signal may be used for radio resource measurement (RRM). Further, the reference signal may be used for beam management.
  • RRM radio resource measurement
  • the reference signal may be used for beam management.
  • Beam management includes analog and/or digital beams in a transmitting device (the base station device 3 in the case of downlink and the terminal device 1 in the case of uplink) and a receiving device (the terminal device 1 in the case of downlink).
  • a transmitting device the base station device 3 in the case of downlink and the terminal device 1 in the case of uplink
  • a receiving device the terminal device 1 in the case of downlink
  • the uplink it is the procedure of the base station apparatus 3 and/or the terminal apparatus 1 for adjusting the directivity of the analog and/or digital beams in the base station apparatus 3 to obtain the beam gain.
  • the procedure for configuring, setting or establishing the beam pair link may include the following procedure. ⁇ Beam selection ⁇ Beam refinement ⁇ Beam recovery
  • the beam selection may be a procedure for selecting a beam in communication between the base station device 3 and the terminal device 1.
  • the beam improvement may be a procedure of selecting a beam having a higher gain or changing the beam between the base station device 3 and the terminal device 1 optimally by moving the terminal device 1.
  • the beam recovery may be a procedure for reselecting a beam when the quality of the communication link is deteriorated due to a blockage caused by a blocking object or a person passing in the communication between the base station device 3 and the terminal device 1.
  • Beam management may include beam selection and beam refinement.
  • Beam recovery may include the following procedures. ⁇ Detection of beam failure ⁇ Finding a new beam ⁇ Sending beam recovery request ⁇ Monitoring response to beam recovery request
  • RSRP Reference Signal Received Power
  • CSI-RS resource index CRI: CSI-RS Resource Index
  • DMRS reference signal
  • the base station apparatus 3 instructs the CRI or SS/PBCH time index when instructing the beam to the terminal apparatus 1, and the terminal apparatus 1 receives based on the instructed CRI or SS/PBCH time index.
  • the terminal device 1 may set and receive the spatial filter based on the instructed CRI or the time index of the SS/PBCH.
  • the terminal device 1 may receive by using the assumption of a pseudo co-location (QCL).
  • a signal (antenna port, sync signal, reference signal, etc.) is "QCL" with another signal (antenna port, sync signal, reference signal, etc.), or "the assumption of QCL is used" means that a signal is Can be interpreted as being associated with another signal.
  • Two antenna ports are said to be QCL if the Long Term Property of the channel on which one symbol on one antenna port is carried can be inferred from the channel on which one symbol on the other antenna port is carried. ..
  • Long-term characteristics of the channel include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay. For example, when the antenna port 1 and the antenna port 2 are QCL with respect to the average delay, it means that the reception timing of the antenna port 2 can be inferred from the reception timing of the antenna port 1.
  • the QCL extended to the space may be newly defined.
  • the arrival angle AoA (Angle of Arrival), ZoA (Zenith angle of Arrival), etc.
  • Angle Spread for example ASA (Angle Spread Arrival) and ZSA (Zenith angle Spread ofArrival)
  • sending angle AoD, ZoD, etc.
  • Angle Spread for example ASD (Angle Spread of Departure) and ZSD ( ZenithangleSpread Departure)
  • spatial correlation SpatialCorrelation
  • reception spatial parameters reception spatial parameters.
  • the reception beam (reception spatial filter) that receives the signal from the antenna port 1 receives the signal from the antenna port 2 from the reception beam. It means that the beam can be inferred.
  • QCL type a combination of long-term characteristics that may be considered to be QCL may be defined.
  • the following types may be defined.
  • -Type A Doppler shift, Doppler spread, average delay
  • delay spread-Type B Doppler shift
  • Doppler spread-Type C Average delay
  • Doppler shift-Type D Reception spatial parameter
  • the above-mentioned QCL type sets the assumption of QCL of one or two reference signals and PDCCH or PDSCH DMRS in the RRC and/or MAC layer and/or DCI as a transmission configuration indication (TCI) and/or You may instruct.
  • TCI transmission configuration indication
  • the terminal device 1 determines that the PDCCH DMRS
  • the Doppler shift, Doppler spread, average delay, delay spread, the reception spatial parameter and the long-term characteristics of the channel are regarded as the DMRS of the PDCCH to receive the synchronization and the propagation path. You may make an estimate.
  • the reference signal (SS/PBCH block in the above example) designated by the TCI is the source reference signal, and the reference is influenced by the long-term characteristic inferred from the long-term characteristic of the channel when the source reference signal is received.
  • the signal (PDCCH DMRS in the above example) may be referred to as the target reference signal.
  • a combination of a source reference signal and a QCL type may be set for a plurality of TCI states and each state in RRC, and may be instructed to the terminal device 1 by the MAC layer or DCI.
  • the spatial relation information may be set in the uplink physical channel and/or the sounding reference signal.
  • the spatial relationship information is information for applying the separately applied reception or transmission filter setting to the transmission filter of the sounding reference signal to obtain the beam gain.
  • any one of the block of the synchronization signal, the CSI reference signal, and the sounding reference signal is set as the signal to be received or transmitted.
  • subframe Although referred to as a subframe in this embodiment, it may be referred to as a resource unit, a radio frame, a time section, a time interval, or the like.
  • FIG. 3 is a diagram showing an example of a schematic configuration of uplink and downlink slots according to the first embodiment of the present invention.
  • Each radio frame is 10 ms long.
  • Each radio frame is composed of 10 subframes and W slots.
  • one slot is composed of X OFDM symbols. That is, the length of one subframe is 1 ms.
  • NCP Normal Cyclic Prefix
  • the uplink slot is similarly defined, and the downlink slot and the uplink slot may be defined separately.
  • the bandwidth of the cell in FIG. 3 may be defined as a part of the bandwidth (BWP: BandWidth Part).
  • the slot may be defined as a transmission time interval (TTI: Transmission Time Interval). Slots may not be defined as TTIs.
  • the TTI may be a transport block transmission period.
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • the resource grid is defined by multiple subcarriers and multiple OFDM symbols. The number of subcarriers forming one slot depends on the downlink and uplink bandwidths of the cell.
  • Each of the elements in the resource grid is called a resource element. Resource elements may be identified using subcarrier numbers and OFDM symbol numbers.
  • ECP Extended CP
  • Common resource blocks, physical resource blocks, and virtual resource blocks are defined as resource blocks.
  • One resource block is defined as 12 consecutive subcarriers in the frequency domain.
  • Subcarrier index 0 in common resource block index 0 may be referred to as a reference point (may be referred to as point A).
  • the common resource block is a resource block numbered in ascending order from 0 in each subcarrier interval setting ⁇ from the reference point A.
  • the resource grid described above is defined by this common resource block.
  • the physical resource blocks are resource blocks numbered in ascending order from 0 included in the band part (BWP) described later, and the physical resource blocks are in ascending order from 0 included in the band part (BWP). It is a numbered resource block.
  • a physical uplink channel is first mapped to a virtual resource block.
  • the virtual resource block is then mapped to the physical resource block.
  • the subcarrier interval setting ⁇ As mentioned above, NR supports multiple OFDM numerologies.
  • slots are counted in ascending order from 0 to N ⁇ subframe, ⁇ _ ⁇ slot ⁇ -1 within a subframe, and 0 to N ⁇ frame, ⁇ _ ⁇ slot within a frame.
  • ⁇ -1 are counted in ascending order.
  • N ⁇ slot ⁇ _ ⁇ symb ⁇ consecutive OFDM symbols in the slot based on the slot settings and the cyclic prefix.
  • N ⁇ slot ⁇ _ ⁇ symb ⁇ is 14.
  • the start of slot n ⁇ _ ⁇ s ⁇ in a subframe is the start and time of the n ⁇ _ ⁇ s ⁇ N ⁇ slot ⁇ _ ⁇ symb ⁇ th OFDM symbol in the same subframe. It is aligned.
  • FIG. 4 is a diagram showing the relationship between subframes, slots, and minislots in the time domain. As shown in the figure, three types of time units are defined.
  • the subframe is 1 ms regardless of the subcarrier interval, the number of OFDM symbols included in the slot is 7 or 14, and the slot length differs depending on the subcarrier interval.
  • the subcarrier interval is 15 kHz, one subframe includes 14 OFDM symbols.
  • the downlink slot may be referred to as PDSCH mapping type A.
  • the uplink slot may be referred to as PUSCH mapping type A.
  • a minislot (may be referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in the slot.
  • the figure shows the case where the minislot is composed of two OFDM symbols as an example.
  • the OFDM symbols in a minislot may match the OFDM symbol timing that makes up the slot.
  • the minimum unit of scheduling may be a slot or a minislot.
  • assigning minislots may be referred to as non-slot based scheduling.
  • scheduling a minislot may be expressed as scheduling a resource in which a relative time position between a reference signal and a start position of data is fixed.
  • the downlink minislot may be referred to as PDSCH mapping type B.
  • the uplink minislot may be referred to as PUSCH mapping type B.
  • FIG. 5 is a diagram showing an example of the slot format.
  • the slot length is 1 ms at a subcarrier interval of 15 kHz is shown as an example.
  • D indicates the downlink and U indicates the uplink.
  • U indicates the uplink.
  • a certain time period for example, the minimum time period that must be assigned to one UE in the system
  • It may include one or more of a downlink symbol, a flexible symbol, and an uplink symbol. Note that these ratios may be predetermined as a slot format. Further, it may be defined by the number of downlink OFDM symbols included in the slot or the start position and end position in the slot.
  • scheduling a slot may be expressed as scheduling a resource in which the relative time position between the reference signal and the slot boundary is fixed.
  • the terminal device 1 may receive a downlink signal or a downlink channel with a downlink symbol or a flexible symbol.
  • the terminal device 1 may transmit an uplink signal or a downlink channel with an uplink symbol or a flexible symbol.
  • 5A may also be referred to as a certain time section (for example, a minimum unit of time resources that can be assigned to one UE, a time unit, or the like. Further, a plurality of minimum units of time resources are bundled and referred to as a time unit.
  • 5B is an example in which uplink scheduling is performed via the PDCCH in the first time resource, and the processing delay of the PDCCH and the downlink are used.
  • the uplink signal is transmitted via the flexible symbol including the uplink switching time and the generation of the transmission signal.
  • the uplink signal may be used for transmitting HARQ-ACK and/or CSI, that is, UCI.
  • FIG. 5(d) is used for transmission of PDCCH and/or PDSCH in the first time resource, and has processing delay, downlink to uplink switching time, and uplink PUSCH and/or via a gap for generation of a transmission signal.
  • the uplink signal may be used for transmitting uplink data, that is, UL-SCH.
  • FIG. 5E is an example in which all are used for uplink transmission (PUSCH or PUCCH).
  • the downlink part and the uplink part described above may be composed of a plurality of OFDM symbols as in LTE.
  • FIG. 6 is a diagram showing an example of beamforming.
  • a plurality of antenna elements are connected to one transmission unit (TXRU: Transceiver unit) 50, the phase is controlled by the phase shifter 51 for each antenna element, and by transmitting from the antenna element 52, the transmission signal can be transmitted in any direction.
  • the beam can be aimed.
  • TXRU may be defined as an antenna port, and in the terminal device 1, only the antenna port may be defined.
  • directivity can be directed in an arbitrary direction, so that the base station device 3 can communicate with the terminal device 1 using a beam having a high gain.
  • BWP bandwidth part
  • BWP is also referred to as carrier BWP.
  • BWP may be set for each of the downlink and the uplink.
  • BWP is defined as a set of contiguous physical resources selected from a contiguous subset of common resource blocks.
  • the terminal device 1 can set up to four BWPs in which one downlink carrier BWP is activated at a certain time.
  • the terminal device 1 can set up to four BWPs in which one uplink carrier BWP is activated at a certain time.
  • BWP may be set in each serving cell. At this time, setting one BWP in a certain serving cell may be expressed as not setting BWP. Further, the setting of two or more BWPs may be expressed as the BWP being set.
  • BWP switching for a serving cell is used to activate an inactive (deactivated) BWP and deactivate an active (activated) BWP. To be done.
  • BWP switching for a serving cell is controlled by PDCCH indicating downlink allocation or uplink grant.
  • BWP switching for a serving cell may also be controlled by the BWP inactivity timer or the MAC entity itself at the start of the random access procedure.
  • SpCell PCell or PSCell
  • SCell SpCell
  • one BWP is initially active without receiving PDCCH indicating downlink allocation or uplink grant.
  • the initially active BWP may be specified in the RRC message sent from the base station device 3 to the terminal device 1.
  • the active BWP for a certain serving cell is designated by the RRC or PDCCH sent from the base station device 3 to the terminal device 1.
  • DL BWP and UL BWP are paired, and BWP switching is common to UL and DL.
  • the MAC entity of the terminal device 1 applies the normal process. Normal processing includes transmitting UL-SCH, transmitting RACH, monitoring PDCCH, transmitting PUCCH, transmitting SRS, and receiving DL-SCH.
  • the MAC entity of the terminal device 1 does not transmit the UL-SCH, does not transmit the RACH, does not monitor the PDCCH, does not transmit the PUCCH, Does not send SRS and does not receive DL-SCH. If a serving cell is deactivated, no active BWP may be present (eg, active BWP is deactivated).
  • the BWP information element (IE) included in the RRC message (system information notified or information sent by the dedicated RRC message) is used to set the BWP.
  • the RRC message transmitted from the base station device 3 is received by the terminal device 1.
  • the network (such as the base station device 3) has at least one downlink BWP and one (if the serving cell is configured for uplink) or two (supplementary uplink in the Appendix). Is set to the terminal device 1, at least an initial BWP (initial BWP) including an uplink BWP (for example, is used).
  • the network may configure additional uplink BWP or downlink BWP for certain serving cells.
  • the BWP setting is divided into an uplink parameter and a downlink parameter.
  • the BWP setting is divided into a common parameter and a dedicated parameter.
  • Common parameters (such as BWP uplink common IE and BWP downlink common IE) are cell-specific.
  • the common parameters of the initial BWP of the primary cell are also provided in the system information.
  • the network provides common parameters on dedicated signals.
  • the BWP is identified by the BWP ID.
  • the initial BWP has a BWP ID of 0.
  • the BWP IDs of other BWPs take values from 1 to 4.
  • Uplink BWP dedicated parameters include SRS settings.
  • the uplink BWP corresponding to the dedicated parameter of the uplink BWP is associated with one or more SRSs corresponding to the SRS setting included in the dedicated parameter of the uplink BWP.
  • the terminal device 1 may be configured with one primary cell and up to 15 secondary cells.
  • Random access procedures are classified into two procedures: contention-based (CB: Contention Based) and non-contention-based (non-CB) (may be referred to as CF: Contention Free).
  • CB Contention Based
  • non-CB non-contention-based
  • CFRA Contention Free
  • the contention-based random access procedure is initiated by PDCCH order, MAC entity, notification of beam failure from lower layers, or RRC.
  • the beam failure notification is provided to the MAC entity of the terminal device 1 from the physical layer of the terminal device 1
  • the MAC entity of the terminal device 1 starts the random access procedure.
  • the procedure of determining whether a certain condition is satisfied and starting the random access procedure is called a beam failure recovery procedure. May be.
  • This random access procedure is a random access procedure for beam failure recovery request.
  • the random access procedure initiated by the MAC entity includes the random access procedure initiated by the scheduling request procedure.
  • the random access procedure for beam failure recovery request may or may not be considered a random access procedure initiated by a MAC entity.
  • the random access procedure for the beam failure recovery request and the scheduling request procedure are different from each other because the random access procedure started by the scheduling request procedure may perform different procedures. You may do it.
  • the random access procedure for the beam failure recovery request and the scheduling request procedure may be a random access procedure initiated by a MAC entity.
  • a random access procedure initiated by a scheduling request procedure is referred to as a MAC entity initiated random access procedure
  • a random access procedure for a beam failure recovery request is a random access by beam failure notification from a lower layer. You may call it a procedure.
  • the start of the random access procedure when receiving the beam failure notification from the lower layer may mean the start of the random access procedure for the beam failure recovery request.
  • the terminal device 1 is in the state of not being connected (communicating) with the base station device 3 at the time of initial access, and/or is being connected to the base station device 3, but is capable of transmitting uplink data or transmission to the terminal device 1.
  • a contention-based random access procedure is performed at the time of scheduling request when possible sidelink data is generated.
  • the occurrence of the transmittable uplink data in the terminal device 1 may include that the buffer status report corresponding to the transmittable uplink data is triggered.
  • the occurrence of uplink data that can be transmitted to the terminal device 1 may include that a scheduling request triggered based on the occurrence of uplink data that can be transmitted is pending.
  • the occurrence of the sidelink data that can be transmitted to the terminal device 1 may include that the buffer status report corresponding to the sidelink data that can be transmitted is triggered.
  • Generation of sidelink data that can be transmitted to the terminal device 1 may include that a scheduling request triggered based on generation of sidelink data that can be transmitted is pending.
  • the non-contention based random access procedure may be started when the terminal device 1 receives the information instructing the start of the random access procedure from the base station device 3.
  • the non-contention based random access procedure may be started when the MAC layer of the terminal device 1 receives a beam failure notification from the lower layer.
  • the non-contention-based random access allows the base station device 3 and the terminal device 1 to be quickly connected between the terminal device 1 and the base station device 3 when the handover or the transmission timing of the mobile station device is not effective. May be used to establish the uplink synchronization of.
  • Non-contention based random access may be used to transmit a beam failure recovery request when a beam failure occurs in the terminal device 1.
  • the use of non-contention based random access is not limited to these.
  • the information for instructing the start of the random access procedure is message 0, Msg. 0, NR-PDCCH order, PDCCH order, etc.
  • the terminal device 1 determines the preamble available to the terminal device 1.
  • a contention-based random access procedure of randomly selecting and transmitting one from the set may be performed.
  • the terminal device 1 receives the random access setting information via the upper layer before initiating the random access procedure.
  • the random access setting information includes resources available for preamble transmission, various parameters of preamble transmission (transmission count and power setting), information of associated SS/PBCH blocks, or information for determining/setting those information. May be included.
  • the random access setting information may include common information within the cell, or may include dedicated information that is different for each terminal.
  • a part of the random access setting information may be associated with all SS/PBCH blocks in the SS burst set.
  • a part of the random access setting information may be associated with all of the set one or more CSI-RSs.
  • a part of the random access setting information may be associated with one downlink transmission beam (or beam index).
  • a part of the random access setting information may be associated with one SS/PBCH block in the SS burst set. However, a part of the random access setting information may be associated with one of the set one or more CSI-RSs. However, a part of the random access setting information may be associated with one downlink transmission beam (or beam index). However, the information associated with one SS/PBCH block, one CSI-RS, and/or one downlink transmit beam may correspond to one SS/PBCH block, one CSI-RS, and/or Index information for identifying one downlink transmission beam (which may be, for example, an SSB index, a beam index, or a QCL setting index) may be included.
  • random access setting information may be set for each SS/PBCH block in the SS burst set, or one random access setting information common to all SS/PBCH blocks in the SS burst set may be set.
  • the terminal device 1 receives one or more random access setting information by downlink signals, and each of the one or more random access setting information is SS/PBCH block (CSI-RS or downlink transmission beam). May be associated with).
  • the terminal device 1 selects one of one or more received SS/PBCH blocks (which may be CSI-RS or downlink transmit beams) and is associated with the selected SS/PBCH block.
  • a random access procedure may be performed using the random access setting information.
  • the random access procedure when the terminal device 1 receives the message 0 from the base station device 3 is realized by transmitting and receiving a plurality of messages between the terminal device 1 and the base station device 3.
  • the base station apparatus 3 allocates one or more non-contention-based random access preambles to the terminal apparatus 1 by downlink dedicated signaling (also referred to as message 0 or Msg0).
  • the non-contention based random access preamble may be a random access preamble that is not included in the set notified by broadcast signaling.
  • the base station device 3 allocates a plurality of non-contention-based random access preambles corresponding to at least some of the plurality of reference signals to the terminal device 1. Good.
  • the message 0 may be instruction information for instructing the start of the random access procedure from the base station device 3 to the terminal device 1.
  • Message 0 may be a handover (HO) command generated by the target base station apparatus 3 and transmitted by the source base station apparatus 3 for handover.
  • the message 0 may be an SCG change command transmitted by the base station device 3 for changing the secondary cell group.
  • the handover command and the SCG change command are also called synchronization resetting.
  • This synchronization reconfiguration (such as reconfiguration with sync) is sent in an RRC message.
  • the synchronization resetting is used for RRC resetting (such as a handover command) with synchronization to the PCell and RRC resetting (such as an SCG change command) with synchronization to the PSCell.
  • Message 0 may be sent on the RRC signal and/or the PDCCH.
  • Message 0 sent on the PDCCH may be referred to as the PDCCH order.
  • the PDCCH order may be sent in DCI in some DCI format.
  • Message 0 may include information that assigns a non-contention based random access preamble.
  • the bit information notified by the message 0 includes preamble index information, SSB index information, mask index information (may be referred to as RACH opportunity index), SUL (Supplemental UpLink) information, BWP index information, SRI (SRS Resource Indicator).
  • the preamble index information is information indicating one or more preamble indexes used for generating the random access preamble. However, when the preamble index information has a predetermined value, the terminal device 1 may randomly select one from one or a plurality of random access preambles that can be used in the contention-based random access procedure.
  • the SSB index information is information indicating the SSB index corresponding to any one of one or a plurality of SS/PBCH blocks transmitted by the base station device 3.
  • the terminal device 1 that has received the message 0 identifies the group of PRACH opportunities to which the SSB index indicated by the SSB index information is mapped.
  • the SSB index mapped to each PRACH opportunity is determined by the PRACH configuration index, the upper layer parameter SB-perRACH-Occlusion, and the upper layer parameter cb-preamblePerSSB.
  • the mask index information is information indicating an index of PRACH opportunities that can be used for transmitting the random access preamble.
  • the PRACH opportunity indicated by the mask index information may be one specific PRACH opportunity, may indicate a plurality of selectable PRACH opportunities, or different indexes may be selected as one PRACH opportunity. Each of the possible multiple PRACH opportunities may be indicated.
  • the mask index information may be information indicating a part of PRACH opportunities of a group of one or a plurality of PRACH opportunities defined by the prac-ConfigurationIndex. However, the mask index information may be information indicating some PRACH opportunities in the group of PRACH opportunities to which the specific SSB index specified by the SSB index information is mapped. ⁇ Message 1> The terminal device 1 that has received the message 0 transmits the allocated non-contention based random access preamble via the physical random access channel.
  • This transmitted random access preamble may be referred to as message 1 or Msg1.
  • the random access preamble is configured to notify the base station device 3 of information by a plurality of sequences. For example, when 64 types of sequences are prepared, 6-bit information (which may be a ra-PreambleIndex or a preamble index) can be shown to the base station apparatus 3. This information is indicated as a random access preamble identifier, and the terminal device 1 monitors the random access response (message 2) corresponding to this information, so that the message from the base station device 3 addressed to itself is transmitted. 2 can be specified.
  • the preamble sequence is selected from the preamble sequence set using the preamble index.
  • the terminal device 1 sets a value to the preamble index (may be referred to as PREAMBLE_INDEX) of the random access preamble to be transmitted by the following procedure.
  • the random access procedure is started by the beam failure notification from the lower layer, and (2) the beam associated with the SS/PBCH block (also referred to as SSB) or the CSI-RS with the RRC parameter.
  • Random access resources (which may be PRACH opportunities) for non-contention based random access for failure recovery requests are provided, and (3) RSRP of one or more SS/PBCH blocks or CSI-RS.
  • RSRP selects SS/PBCH blocks or CSI-RSs above the predetermined threshold and preambles the ra-PreambleIndex associated with the selected SS/PBCH block.
  • the terminal device 1 is provided with (1) ra-PreambleIndex by PDCCH or RRC, (2) the value of the ra-PreambleIndex is not a value (eg, 0b000000) indicating the contention-based random access procedure, and (3) RRC.
  • 0bxxxxxxx means a bit string arranged in a 6-bit information field.
  • the SS/PBCH block is associated with the random access resource for non-contention based random access by RRC, and (2) the RSRP of the associated SS/PBCH block is a predetermined threshold value. More than one SS/PBCH block is available, RSRP selects one of the SS/PBCH blocks whose RSRP exceeds the predetermined threshold and is associated with the selected SS/PBCH block.
  • Set ra-PreambleIndex to the preamble index.
  • the terminal device 1 (1) the CSI-RS and the random access resource for non-contention based random access are associated with the RRC, and (2) the RSRP of the associated CSI-RS exceeds a predetermined threshold.
  • RSRP selects one of the CSI-RSs exceeding the predetermined threshold and preambles the ra-PreambleIndex associated with the selected CSI-RS. Set to index.
  • the terminal device 1 performs the contention-based random access procedure. In the contention-based random access procedure, the terminal device 1 selects the SS/PBCH block having the RSRP of the SS/PBCH block exceeding the set threshold value, and selects the preamble group.
  • the terminal device 1 randomly selects one or more random access preambles associated with the selected SS/PBCH block and the selected preamble group.
  • Ra-PreambleIndex is selected for and the selected ra-PreambleIndex is set as the preamble index.
  • the terminal device 1 may perform the contention-based random access procedure when the ra-PreambleIndex indicated by the message 0 has a predetermined value (for example, 0b000000).
  • the terminal device 1 randomly selects one from one or more random access preamble indexes that can be used in contention-based random access. May be selected.
  • the base station apparatus 3 may transmit the resource setting for each SS/PBCH block and/or the resource setting for each CSI-RS to the terminal apparatus 1 by an RRC message.
  • the terminal device 1 receives the resource setting for each SS/PBCH block and/or the resource setting for each CSI-RS by the RRC message from the base station device 3.
  • the base station device 3 may transmit the mask index information and/or the SSB index information to the terminal device 1 in the message 0.
  • the terminal device 1 uses message 0 to acquire the mask index information and/or the SSB index information from the base station device 3.
  • the terminal device 1 may select the reference signal (SS/PBCH block or CSI-RS) based on a certain condition.
  • the terminal device 1 determines the next available PRACH opportunity based on the mask index information, the SSB index information, the resource setting set by the RRC parameter, and the selected reference signal (SS/PBCH block or CSI-RS). May be specified.
  • the MAC entity of the terminal device 1 may instruct the physical layer to transmit the random access preamble using the selected PRACH opportunity.
  • the terminal device 1 selects the antenna port and/or the uplink transmission beam corresponding to the one or more SRS transmission resources indicated in the SRI setting information. To transmit one or more random access preambles.
  • the base station device 3 that has received the message 1 generates a random access response including an uplink grant for instructing the terminal device 1 to transmit, and transmits the generated random access response to the terminal device 1 by DL-SCH.
  • the random access response may be referred to as Message 2 or Msg2.
  • the base station device 3 calculates a transmission timing shift between the terminal device 1 and the base station device 3 from the received random access preamble, and transmits transmission timing adjustment information (Timing Advance Command) for adjusting the shift. ) Is included in message 2.
  • the base station device 3 includes a random access preamble identifier corresponding to the received random access preamble in the message 2.
  • the base station apparatus 3 transmits RA-RNTI for indicating a random access response addressed to the terminal apparatus 1 that has transmitted the random access preamble, on the downlink PDCCH.
  • RA-RNTI is determined according to frequency and time position information of the physical random access channel that transmitted the random access preamble.
  • the message 2 (downlink PSCH) may include the index of the uplink transmission beam used for transmitting the random access preamble. Further, information for determining the uplink transmission beam used for transmitting the message 3 may be transmitted using the downlink PDCCH and/or the message 2 (downlink PSCH).
  • the information for determining the uplink transmission beam used for transmitting the message 3 includes information indicating the difference (adjustment, correction) from the precoding index used for transmitting the random access preamble.
  • the random access response may include a transmission power control command (TPC command) indicating a correction value for the power control adjustment value used for the transmission power of the message 3.
  • TPC command transmission power control command
  • the terminal device 1 can synchronize with the base station device 3 and perform uplink data transmission to the base station device 3.
  • slot aggregation transmission slot aggregation transmission, multi-slot transmission
  • the upper layer parameter push-AggregationFactor is used to indicate the number of times of repeated transmission of data (transport block).
  • the upper layer parameter pushch-AggregationFactor has a value of 2, 4, or 8.
  • the base station device 3 may transmit an upper layer parameter push-AggregationFactor indicating the number of times of data transmission repetition to the terminal device 1.
  • the base station device 3 can use the pushch-AggregationFactor to cause the terminal device 1 to repeat the transmission of the transport block a predetermined number of times.
  • the terminal device 1 may receive the upper layer parameter push-AggregationFactor from the base station device 3 and repeat the transmission of the transport block using the number of repetitions indicated by the push-AggregationFactor.
  • the terminal device 1 when the terminal device 1 does not receive the pushch-AggregationFactor from the base station device, the number of repeated transmissions of the transport block may be regarded as one. That is, in this case, the terminal device 1 may transmit the transport block scheduled by the PDCCH only once. That is, if the terminal device 1 does not receive the pushch-AggregationFactor from the base station device, the terminal device 1 does not have to perform slot aggregation transmission (multi-slot transmission) for the transport block scheduled by the PDCCH.
  • the terminal device 1 receives the PDCCH including the DCI format to which the CRC scrambled by the C-RNTI and the MCS-C-RNTI is added and transmits the PUSCH scheduled by the PDCCH. Good.
  • the terminal device 1 may transmit the PUSCH N times in N consecutive slots from the slot in which the PUSCH is transmitted first.
  • PUSCH transmission transport block transmission
  • PUSCH transmission may be performed once for each slot. That is, transmission of the same transport block (repeated transmission) is performed only once within one slot.
  • the value of N is shown from pushch-AggregationFactor. If push-AggregationFactor is not set in the terminal device 1, the value of N may be 1.
  • the slot in which the PUSCH is transmitted first may be given by the slot in which the PDCCH is detected or the like.
  • (Formula 1) Floor(n*2 ⁇ PUSCH /2 ⁇ PDCCH )+K 2 may be given.
  • the function Floor(A) outputs the largest integer that does not exceed A.
  • n is a slot in which the PDCCH that schedules the PUSCH is detected
  • ⁇ PUSCH is the subcarrier interval setting for the PUSCH
  • ⁇ PDCCH is the subcarrier interval setting for the PDCCH.
  • K 2 is either j, j+1, j+2, or j+3.
  • the value of j is a value specified for the PUSCH subcarrier spacing.
  • the value of j may be 1 slot. For example, if the subcarrier spacing to which PUSCH is applied is 60 kHz, the value of j may be 2 slots. For example, if the subcarrier spacing to which PUSCH is applied is 120 kHz, the value of j may be 3 slots.
  • the terminal device 1 may receive the setting and/or the instruction regarding the PUSCH time domain resource allocation.
  • the settings and/or indications for PUSCH time domain resource allocation may be an index giving a valid combination of the PUSCH start symbol S and the number of consecutively allocated symbols L, the start and length indicators SLIV(start). and length indicator).
  • the PUSCH time domain resource allocation given based on the PDCCH scheduling the PUSCH may be applied to N consecutive slots. That is, the same symbol allocation (the same start symbol S and the same number of consecutively allocated symbols L) may be applied to N consecutive slots.
  • the terminal device 1 may repeatedly transmit the transport block over N consecutive slots from the slot in which the PUSCH is transmitted first.
  • the terminal device 1 may repeatedly transmit the transport block by using the same symbol allocation (symbol allocation) in each slot.
  • the slot aggregation transmission performed by the terminal device 1 when the upper layer parameter push-AggregationFactor is set may be referred to as first slot aggregation transmission. That is, the upper layer parameter pushch-AggregationFactor is used to indicate the number of repetition transmissions (repetition transmission) for the first slot aggregation transmission.
  • the upper layer parameter pushch-AggregationFactor is also referred to as a first aggregation transmission parameter.
  • the Ceiling function may be used in place of the Floor function in the calculation formula that specifies the slot.
  • the function Ceiling(A) outputs the smallest integer not less than A.
  • the first transmission occasion (0th transmission occasion, transmission opportunity) may be in the slot in which the PUSCH is transmitted first.
  • the transmission occasion may be referred to as an uplink section (UL period).
  • the second transmission occasion (1st transmission occasion) may be in the slot next to the slot in which the PUSCH is first transmitted.
  • the Nth transmission occasion ((N-1)th transmission occasion) may be in the Nth slot from the slot in which the PUSCH is first transmitted.
  • the redundancy version applied to the transmission of the transport block is indicated by the rv indicated by the nth transmission occasion ((n-1)th transmission occasion) of the transport block and the DCI scheduling the PUSCH. It may be determined based on the id .
  • the redundant version sequence is ⁇ 0,2,3,1 ⁇ .
  • the variable rv id is an index into the sequence of redundant versions.
  • the variable is updated modulo by 4.
  • the redundant version is used for coding (rate matching) of transport blocks transmitted on PUSCH.
  • the redundant version may be incremented in the order 0, 2, 3, 1.
  • the repeated transmission of the transport block may be performed in the order of the redundancy version (Redundancy Version).
  • the terminal device 1 When at least one symbol in the symbol allocation for a certain transmission occasion is indicated in the downlink symbol from the parameter of the higher layer, the terminal device 1 does not have to transmit the transport block in the slot in the transmission occasion. ..
  • the base station device 3 may send the upper layer parameter pushch-AggregationFactor-r16 to the terminal device 1.
  • the upper layer parameter pushch-AggregationFactor-r16 may be used to indicate the number of times of repeated transmission of data (transport block).
  • the upper layer parameter push-AggregationFactor-r16 may be used to indicate the number of repeated transmissions for slot aggregation transmissions and/or minislot aggregation transmissions. The slot aggregation transmission and the minislot aggregation transmission will be described later.
  • pushch-AggregationFactor-r16 is set to any one of n1, n2, and n3, for example.
  • the values of n1, n2 and n3 may be 2, 4 and 8 or may be other values.
  • n1, n2, and n3 indicate the number of repeated transmissions of the transport block. That is, pushch-AggregationFactor-r16 may indicate the value of the number of times of one repeat transmission.
  • the number of repeated transmissions of the transport block may be the number of repeated transmissions within a slot (N rep, etc.), the number of repeated transmissions within a slot and between slots (N total, etc.), or between slots.
  • the number of repeated transmissions (N total etc.) may be used.
  • the base station device 3 may transmit the pushch-AggregationFactor-r16 including more than one element to the terminal device 1 so that the number of repeated transmissions can be set to the terminal device 1 more flexibly.
  • the element (information element, entry) may be used to indicate the number of repeated transmissions of the transport block. That is, pushch-AggregationFactor-r16 may indicate the number of repeated transmissions more than one.
  • the slot aggregation transmission performed by the terminal device 1 when the upper layer parameter pushch-AggregationFactor-r16 is set may be referred to as second aggregation transmission.
  • the upper layer parameter pushch-AggregationFactor-r16 may be used to indicate at least the number of repetition transmissions (repetition transmissions) for the second aggregation transmission.
  • the upper layer parameter pushch-AggregationFactor-r16 is also referred to as a second aggregation transmission parameter.
  • the base station device 3 may indicate any element via a field included in the DCI that schedules the transport block, and notify the terminal device 1 of the number of times of repeated transmission of the transport block. The specific procedure will be described later. Further, the base station device 3 may indicate any element via a MAC CE (MAC Control Element) and notify the terminal device 1 of the number of times of repeated transmission of the transport block.
  • MAC CE MAC Control Element
  • the base station apparatus 3 may indicate any element via the field included in the DCI and/or the MAC CE, and dynamically notify the terminal apparatus 1 of the number of times of repeated transmission.
  • the application of the function of the dynamic repetition number to the terminal device 1 may mean that the terminal device 1 is dynamically notified of the number of repeated transmissions from the base station device 3.
  • the base station device 3 does not have to transmit the pushch-AggregationFactor and pushch-AggregationFactor-r16 to the terminal device 1. That is, the push-AggregationFactor and push-AggregationFactor-r16 may not be set in the terminal device 1.
  • the terminal device 1 may receive from the base station device 3 an RRC message that does not include (does not set) push-AggregationFactor and pushch-AggregationFactor-r16.
  • the terminal device 1 may transmit the PUSCH in the slot given by (Equation 1) as described above.
  • the number of repeated transmissions of the transport block may be one. That is, the terminal device 1 does not have to perform the slot aggregation transmission and/or the minislot aggregation transmission.
  • the base station device 3 may transmit pushch-AggregationFactor to the terminal device 1 and may not transmit pushch-AggregationFactor-r16. That is, push-AggregationFactor may be set in the terminal device 1 and push-AggregationFactor-r16 may not be set.
  • the terminal device 1 may receive from the base station device 3 an RRC message that includes (sets) push-AggregationFactor and does not (do not set) push-AggregationFactor-r16.
  • the terminal device 1 may transmit the PUSCH N times in N consecutive slots from the slots given by (Equation 1) as described above.
  • the number of repeated transmissions of the transport block may be N indicated by pushch-AggregationFactor.
  • the terminal device 1 may perform the first aggregation transmission with respect to the PUSCH scheduled by DCI.
  • the same symbol allocation may be applied to N consecutive slots.
  • the base station device 3 may transmit pushch-AggregationFactor-r16 to the terminal device 1 without transmitting pushch-AggregationFactor-r16. That is, the push-AggregationFactor may not be set in the terminal device 1, but the push-AggregationFactor-r16 may be set.
  • the terminal device 1 may receive from the base station device 3 an RRC message that does not include (sets) push-AggregationFactor but does (does not set) push-AggregationFactor-r16. In this case, the terminal device 1 may transmit the PUSCH M times in one or more slots from the slots given by (Equation 1) as described above.
  • the plurality of slots may be continuous or non-continuous. That is, the number M of repeated transmissions of the transport block may be indicated by pushch-AggregationFactor-r16.
  • the same symbol allocation may not apply to multiple slots. That is, the PUSCH time domain resource allocation (symbol allocation) applied to the first repeated transmission of the transport block may be given based on the DCI that schedules the transport block. However, the PUSCH symbol allocation applied to the second and/or subsequent repeated transmission of the transport block may be different from the symbol allocation given based on the PDCCH (such as DCI) that schedules the PUSCH. This is called symbol allocation extension.
  • the start symbol S applied to the second and/or subsequent repeated transmission of the transport block may be different from the start symbol S given based on the PDCCH (start symbol extension). ..
  • the start symbol S applied to the second and/or subsequent repeated transmission of the transport block may be the 0th symbol at the beginning of the slot.
  • the start symbol S applied to the second and/or subsequent repeated transmission of the transport block may be the same as the start symbol S given based on the PDCCH.
  • the start symbol S applied to the second and/or subsequent repeated transmissions of the transport block may be the first available symbol after the beginning of the slot.
  • the number L of consecutively assigned symbols of PUSCH applied to the second and/or subsequent repeated transmission of transport blocks is different from the number L of consecutively assigned symbols given based on the PDCCH. May be (extended number of symbols). Also, the number L of continuously allocated symbols of PUSCH applied to the second and/or subsequent repeated transmission of transport blocks is the same as the number L of continuously allocated symbols given based on the PDCCH. But it's okay.
  • the base station device 3 may transmit pushch-AggregationFactor and pushch-AggregationFactor-r16 to the terminal device 1. That is, push-AggregationFactor and push-AggregationFactor-r16 may be set in the terminal device 1.
  • the terminal device 1 may receive from the base station device 3 an RRC message including (setting) push-AggregationFactor and push-AggregationFactor-r16.
  • the operation when the pushch-AggregationFactor-r16 described as the third example is set symbol allocation extension (start symbol extension and/or symbol number extension), the number of dynamic repetitions, and/or Alternatively, the function of minislot aggregation transmission is applied.
  • the terminal device 1 may repeatedly transmit the transport block N times in N consecutive slots.
  • the value of N may be given by pushch-AggregationFactor.
  • the same symbol allocation may be applied to N slots.
  • the function when push-AggregationFactor-r16 is set is not applied, if push-AggregationFactor is not set, PUSCH transmission scheduled by the DCI may be performed once. That is, the terminal device 1 may transmit the transport block once.
  • one uplink grant may schedule two or more PUSCH repeated transmissions.
  • Each repetitive transmission takes place in each successive slot (or each available slot). That is, in slot aggregation, the maximum number of times of repeated transmission of the same transport block is one within one slot (one available slot).
  • the available slot may be a slot in which the transport block is actually repeatedly transmitted.
  • one uplink grant may schedule two or more PUSCH repeated transmissions. Repeated transmissions may occur within the same slot or over consecutive available slots. For the scheduled PUSCH repeat transmission, the number of repeat transmissions performed in each slot may be different based on the symbols available for PUSCH repeat transmission in a slot (available slot). That is, in minislot aggregation transmission, the number of repeated transmissions of the same transport block may be one or more than one in one slot (one available slot). That is, in the minislot aggregation transmission, the terminal device 1 can transmit one or more repeated transmissions of the same transport block to the base station device 3 in one slot.
  • minislot aggregation transmission means a mode that supports intra-slot aggregation.
  • the symbol allocation extension (start symbol extension and/or symbol number extension) and/or the number of dynamic repetitions described above may be applied to the minislot aggregation transmission.
  • the terminal device 1 performs aggregation transmission on PUSCH transmission in which the uplink grant is scheduled based on at least (I) upper layer parameters and/or (II) fields included in the uplink grant. May be applied or if any aggregation transmission type is applied.
  • the type of aggregation transmission may include a first aggregation transmission and a second aggregation transmission.
  • the type of the second aggregation transmission may be divided into slot aggregation transmission and minislot aggregation transmission.
  • the type of aggregation transmission may include the first slot aggregation transmission (first aggregation transmission), the second slot aggregation transmission (slot aggregation in the second aggregation transmission), and the minislot aggregation transmission.
  • the base station device 3 may notify the terminal device 1 of which of the slot aggregation transmission and the minislot aggregation transmission is to be set, by the upper layer parameter. Which of the slot aggregation transmission and the minislot aggregation transmission is set may mean which of the slot aggregation transmission and the minislot aggregation transmission is applied.
  • push-AggregationFactor may be used to indicate the number of repeated transmissions of the first aggregation transmission (first slot aggregation transmission).
  • pusch-AggregationFactor-r16 may be used to indicate the number of repeated transmissions of the second slot aggregation transmission and/or the minislot aggregation transmission.
  • pusch-AggregationFactor-r16 may be a common parameter for the second slot aggregation transmission and/or the minislot aggregation transmission.
  • the upper layer parameter repTxWithinSlot-r16 may be used to indicate minislot aggregation transmissions.
  • the terminal device 1 may regard that the minislot aggregation transmission is applied to the transport block transmission, and may perform the minislot aggregation transmission. That is, when push-AggregationFactor-r16 is set in the terminal device 1 and repTxWithinSlot-r16 is set (enabled), the terminal device 1 applies the mini-slot aggregation transmission. You may regard it.
  • the number of repeated transmissions for minislot aggregation transmissions may be indicated by pushch-AggregationFactor-r16.
  • the terminal device 1 may be considered to apply the second slot aggregation transmission.
  • the number of repeated transmissions for the second slot aggregation transmission may be indicated by pushch-AggregationFactor-r16.
  • the terminal device 1 may be considered to apply the first slot aggregation transmission.
  • the terminal device 1 when pushch-AggregationFactor and pushch-AggregationFactor-r16 are not set in the terminal device 1, the terminal device 1 considers that the aggregation transmission is not applied, and may transmit the PUSCH in which the uplink grant is scheduled once. ..
  • setting the parameter of the upper layer may mean that the parameter of the upper layer (for example, repTxWithinSlot-r16) is effectively set. It may mean that a layer parameter (for example, repTxWithinSlot-r16) is transmitted from the base station device 3.
  • the fact that the upper layer parameter (for example, repTxWithinSlot-r16) is not set may mean that the upper layer parameter (for example, repTxWithinSlot-r16) is set to be invalid, or the upper layer It may mean that the parameter (for example, repTxWithinSlot-r16) is not transmitted from the base station device 3.
  • the base station device 3 may notify the terminal device 1 of which of the slot aggregation transmission and the minislot aggregation transmission is to be set, by a higher layer parameter.
  • pusch-AggregationFactor may be used to indicate the number of repeated transmissions of the first slot aggregation transmission.
  • pusch-AggregationFactor-r16 may be used to indicate the number of repeated transmissions of the second slot aggregation transmission and/or the minislot aggregation transmission.
  • pusch-AggregationFactor-r16 may be a common parameter for the second slot aggregation transmission and/or the minislot aggregation transmission.
  • pushch-AggregationFactor-r16 When pushch-AggregationFactor-r16 is set in the terminal device 1, the second slot aggregation transmission and/or the minislot aggregation transmission may be applied to the terminal device 1.
  • the terminal device 1 determines which of the slot aggregation transmission and the minislot aggregation transmission is further applied based on the field included in the uplink grant that schedules the PUSCH transmission (PUSCH repetitive transmission). Good.
  • a certain field included in the uplink grant may be used to indicate whether slot aggregation transmission or minislot aggregation transmission is applied.
  • the field may be 1 bit.
  • the terminal device 1 may determine which of the slot aggregation transmission and the minislot aggregation transmission is applied, based on the field included in the uplink grant transmitted from the base station device 3.
  • the terminal device 1 may determine that the slot aggregation transmission is applied when the field indicates 0, and may determine that the minislot aggregation transmission is applied when the field indicates 1. ..
  • the terminal device 1 applies either slot aggregation transmission or minislot aggregation transmission based on the'Time domain resource assignment' field included in the uplink grant transmitted from the base station apparatus 3. May be determined.
  • the'Time domain resource assignment' field is used to indicate the PUSCH time domain resource assignment.
  • the terminal device 1 determines whether the slot aggregation transmission or the minislot aggregation transmission is performed based on whether or not the number of consecutively assigned symbols L obtained based on the'Time domain resource assignment' field exceeds a predetermined value. It may be determined whether it applies.
  • the terminal device 1 may determine that the slot aggregation transmission is applied when the number of symbols L exceeds a predetermined value.
  • the terminal device 1 may determine that the minislot aggregation transmission is applied when the number of symbols L does not exceed a predetermined value.
  • the predetermined value may be a value indicated by the upper layer parameter.
  • the predetermined value may be a value defined in advance in a specification or the like. For example, the predetermined value may be 7 symbols.
  • the terminal device 1 may determine N total .
  • N total is the total number of times the same transport block scheduled in one uplink grant is repeatedly transmitted (total number of PUSCH repeatedly transmitted). In other words, N total is the number of one or more PUSCHs scheduled in one uplink grant.
  • the terminal device 1 may determine N rep .
  • N rep is the number of times the same transport block is repeatedly transmitted in the slot (the number of PUSCHs that are repeatedly transmitted). In other words, N rep is the number of one or more PUSCHs arranged in a slot that is for one or more PUSCHs scheduled in one uplink grant.
  • the terminal device 1 may determine N slots .
  • N slots is the number of slots in which the same transport block scheduled in one uplink grant is repeatedly transmitted.
  • N slots is the number of slots used for one or more PUSCH scheduled in one uplink grant.
  • the terminal device 1 may derive N total from N rep and N slots .
  • the terminal device 1 may derive N rep from N total and N slots .
  • the terminal device 1 may derive N slots from N rep and N total .
  • N slots may be 1 or 2.
  • N rep may have different values between slots.
  • N rep may have the same value between slots.
  • the upper layer parameter frequencyHopping may be set (provided) in the terminal device 1.
  • the upper layer parameter frequencyHopping may be set to either'intraSlot' or'interSlot'.
  • frequencyHopping is set to'intraSlot'
  • the terminal device 1 may perform PUSCH transmission with intra-slot frequency hopping. That is, in-slot frequency hopping is set in the terminal device 1, frequencyHopping is set to'intraSlot', and the value of the'Frequency hopping flag' field included in the DCI that schedules the PUSCH is set to 1. May mean that When frequencyHopping is set to'interSlot', the terminal device 1 may perform PUSCH transmission with inter-slot frequency hopping.
  • frequencyHopping is set to'interSlot', and the value of the'Frequency hopping flag' field included in the DCI that schedules the PUSCH is set to 1.
  • the terminal device 1 may execute PUSCH transmission without frequency hopping. That is, the fact that frequency hopping is not set in the terminal device 1 may include that frequency hopping is not transmitted. Further, the fact that frequency hopping is not set in the terminal device 1 may include that the value of the'Frequency hopping flag' field included in the DCI that schedules the PUSCH is set to 0 even if frequency Hopping is transmitted. ..
  • usable symbols are symbols that are indicated as flexible and/or uplink by at least upper layer parameters TDD-UL-DL-ConfigurationCommon and/or TDD-UL-DL-ConfigDedicated. May be. That is, the available symbols are not the symbols indicated as downlink by the upper layer parameters TDD-UL-DL-ConfigurationCommon and/or TDD-UL-DL-ConfigDedicated.
  • the upper layer parameters TDD-UL-DL-ConfigurationCommon and/or TDD-UL-DL-ConfigDedicated are used to determine the uplink/downlink TDD configuration.
  • the available symbols are not at least the symbols indicated by the upper layer parameter ssb-PositionsInBurst.
  • ssb-PositionsInBurst is used to indicate the time domain position of the SS/PBCH block transmitted to the base station device 3. That is, the terminal device 1 knows the position of the symbol in which the SS/PBCH block is transmitted by ssb-PositionsInBurst.
  • the symbols in which SS/PBCH blocks are transmitted may be referred to as SS/PBCH block symbols. That is, the available symbols are not SS/PBCH block symbols. However, the available symbols are not at least the symbols indicated by pdcch-ConfigSIB1. That is, the available symbols are not the symbols indicated by pdcch-ConfigSIB1 for CORESET of the Type 0 PDCCH common search space set.
  • pdcch-ConfigSIB1 may be included in MIB or ServingCellConfigCommon.
  • the terminal device 1 may receive from the base station device 3 the setting and/or the instruction regarding the spatial relationship information applied to the PUSCH transmission (PUSCH repetitive transmission). A more specific description will be given below.
  • the terminal device 1 uses the upper parameter of the setting and/or the instruction related to the one or more spatial relation information received from the base station device, and when receiving the uplink grant including the SRI field,
  • the spatial relationship information applied to the repeated transmission of the n-th transport block may be determined as the spatial relationship information set in the SRS resource defined as (SRI d + n) mod N srs .
  • the function (A) mod (B) divides A and B and outputs the undivisible remainder.
  • SRI d represents the SRI notified in the uplink grant
  • N srs represents the total number of SRS resources set in the terminal device 1.
  • the terminal device 1 does not receive the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and the upper layer parameter including the SRI field (srs-ResourceIndicator)
  • the ConfiguredGrantConfig is received from the base station device, the spatial relationship information applied to the repeated transmission of the nth transport block is set to the SRS resource defined as (SRI d + n) mod N srs. You may decide as information.
  • the terminal device 1 when the terminal device 1 receives an uplink grant that does not include an SRI field by using the upper parameter of the setting and/or instruction related to one or more spatial relationship information received from the base station device, May determine the spatial relationship information applied to the repeated transmission of the n-th transport block as spatial relationship information (PUCCH-SpatialRelationInfo) defined as (PUCCH spatialrelation + n) mod N spatialrelation .
  • PUCCH Spatialrelation shows the spatial relationship information associated with the minimum ID of the resource among the one or more PUCCH resource set from the base station apparatus 3, N spatialrelation was set in the terminal apparatus 1 PUCCH- Indicates the total number of SpatialRelationInfo.
  • the terminal device 1 receives the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and/or includes the SRI field (srs-ResourceIndicator) free upper layer parameters ConfiguredGrantConfig when received from the base station apparatus, the spatial relationship information that applies to repeat transmission of the n times of the transport block, (PUCCH spatialrelation + n) spatial relationship information defined as mod n spatialrelation ( PUCCH-SpatialRelationInfo).
  • the terminal device 1 uses the upper parameter of the setting and/or instruction related to the one or more spatial relation information received from the base station device, and uses the upper parameter to repeatedly transmit the n-th transport block.
  • the spatial relationship information that is applied to the repeated transmission of the nth transport block is set in the SRS Resource Indicator Set information. It may be determined as the spatial relationship information set in the SRS resource defined by The SRS Resource Indicator Set setting may be set as a table of the total number of SRI resources and the size of pushch-AggregationFactor, as shown in SRS Resource Indicator Set setting example A in FIG.
  • the terminal device includes the SRI field.
  • the spatial relationship information to be applied to the nth transport block repeat transmission is calculated from the table by the value indicated by the predetermined SRI field and the transport block repeat transmission count n. It may be determined as the spatial relationship information set in the SRS resource determined from the combination.
  • the terminal device 1 receives the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and/or includes the SRI field (srs-ResourceIndicator)
  • the upper layer parameter ConfiguredGrantConfig which is not present, is received from the base station device, as spatial relation information set in the SRS resource determined from the combination of the value indicated by the predetermined SRI field and the number n of repeated transmissions of the transport block from the table. You may decide.
  • the value indicated by the predetermined SRI field may be a value predetermined by the specifications, or may be a value received by the terminal device 1 from the base station device as an upper parameter.
  • the terminal device 1 uses the upper parameter of the setting and/or instruction related to the one or more spatial relation information received from the base station device, and uses the upper parameter for repeated transmission of the n-th transport block.
  • the spatial relationship information to be applied to the repeated transmission of the nth transport block is set in the SRS Resource Indicator Set. It may be determined as spatial relation information (PUCCH-SpatialRelationInfo) defined from the information.
  • the SRS Resource Indicator Set setting may be set as a table of the total number of PUCCH-SpatialRelationInfo and the size of pushch-AggregationFactor, as shown in SRS Resource Indicator Set setting example B of FIG. 7, and the terminal device sets the SRI field.
  • the spatial relationship information to be applied to the nth repeated transmission of the transport block is calculated from the table as a value indicated by a predetermined SRI field and the number n of repeated transmissions of the transport block. It may be determined as the spatial relation information (PUCCH-SpatialRelationInfo) defined from the combination of.
  • the terminal device 1 receives the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and/or includes the SRI field (srs-ResourceIndicator)
  • the upper layer parameter ConfiguredGrantConfig which is not present, is received from the base station device, as spatial relation information set in the SRS resource determined from the combination of the value indicated by the predetermined SRI field and the number n of repeated transmissions of the transport block from the table. You may decide.
  • the value indicated by the predetermined SRI field may be a value predetermined by the specifications, or may be a value received by the terminal device 1 from the base station device as an upper parameter.
  • the terminal device 1 can perform uplink data transmission to the base station device 3.
  • TPC accumulation applying the power adjustment control value obtained by accumulating and calculating the correction values obtained from the TPC command received by the terminal device 1 to the transmission power
  • TPC absolute it may be referred to as TPC absolute that the terminal device 1 does not cumulatively calculate the correction value obtained from the TPC command and uses one correction value received immediately before as the power control adjustment value for the transmission power. ..
  • the downlink path loss is based on the transmission power of the (downlink) path loss reference (for example, SS/PBCH block or CSI-RS) (transmission power of the base station device 3) and RSRP (measurement result of the path loss reference in the terminal device 1). It may be calculated by the terminal device 1.
  • the path loss reference is a downlink reference signal (for example, SS block or CSI-RS) used as an RSRP measurement object used in the path loss calculation in the terminal device 1 set by the base station device 3. It may be.
  • the terminal device 1 and the base station device 3 may communicate with each other while the dedicated upper layer setting is not transmitted from the base station device 3 to the terminal device 1.
  • the dedicated higher layer configuration is a set of reference signals to be used for PUSCH path loss estimation, a set of reference signals to be used for PUCCH path loss estimation, and a set of reference signals to be used for SRS path loss estimation, zero, one, Alternatively, a plurality may be included.
  • the base station device 3 may transmit an upper layer setting called pathlossReferenceRSToAddModList to the terminal device 1.
  • pathlossReferenceRSToAddModList indicates a set of reference signals to be used for PUSCH path loss estimation. This parameter corresponds to the path loss reference applied to the following PUSCH transmissions.
  • the terminal device 1 may receive an upper layer setting called pathlossReferenceRSToAddModList from the base station device 3.
  • the base station apparatus 3 may include an upper layer setting called pathlossReferenceRS in the PUCCH setting information and transmit the PUCCH setting information to the terminal apparatus 1.
  • the pathlossReferenceRS included in the PUCCH setting information indicates a set of reference signals to be used for PUCCH pathloss estimation. This parameter corresponds to the path loss reference applied to the following PUCCH transmissions.
  • the terminal device 1 may receive an upper layer setting called pathlossReferenceRS included in the PUCCH setting information from the base station device 3.
  • the base station device 3 may include an upper layer setting called pathlossReferenceRS in the setting information of the SRS and transmit it to the terminal device 1.
  • the pathlossReferenceRS included in the SRS setting information indicates a set of reference signals to be used for SRS pathloss estimation. This parameter corresponds to the path loss reference applied to the following SRS transmission.
  • the terminal device 1 may receive an upper layer setting called pathlossReferenceRS included in the SRS setting information from the base station device 3.
  • the base station device 3 instructs the setting of a plurality of SS blocks and/or the setting of CSI-RS by an upper layer signal (RRC message and/or MAC CE).
  • the information indicating the path loss reference is information indicating the path loss reference associated with the SRS transmission resource indicated by the SRI information instructed by the terminal device 1 from the base station device 3 in the uplink grant.
  • the ID may be set to zero among the settings of a plurality of SS blocks instructed by the base station device 3 in the upper layer signal and/or the settings of the CSI-RS.
  • It may be information indicating a path loss reference associated with a resource having the smallest ID among one or a plurality of PUCCH resources set by the base station apparatus 3, or information indicating a path loss reference included in a random access response.
  • the reference signal applied as the path loss reference when the terminal device 1 transmits the message 1 may be used.
  • the information indicating the path loss reference is randomly transmitted by the terminal device 1.
  • the reference signal (SS block and/or CSI-RS) specified through the access procedure may be used.
  • the random access procedure may be initiated by a specific factor.
  • the terminal device 1 has resources of the reference signal from the SS/PBCH block selected by the terminal device 1 through the recently generated random access procedure that is not started in the PDCCH order that triggers the contention-based random access procedure. May be used to calculate the downlink path loss estimate.
  • the above process is performed by the terminal device 1 when the downlink path loss estimate used for transmission power control applied to the transmission of the PUSCH is set by the upper layer to calculate using the downlink reference signal of the activated BWP. May be.
  • the base station device 3 may perform power control based on the assumption that the terminal device 1 is performing the above process. Further, the base station device 3 may transmit the upper layer setting so that the terminal device 1 performs the above process.
  • the base station device 3 instructs the setting of a plurality of SS blocks and/or the setting of CSI-RS by an upper layer signal (RRC message and/or MAC CE).
  • the information indicating the path loss reference may be the information indicating the path loss reference associated with the PUCCH resource by the base station device 3 by the terminal device 1, or may be the upper layer signal from the base station device 3.
  • the ID may be set to zero among the settings of the plurality of SS blocks and/or the settings of the CSI-RS indicated by the above, or the base station apparatus 3 may associate the path loss reference with the upper layer signal.
  • the information indicating the path loss reference associated with the resource with the smallest ID among the one or more PUCCH resources for the configured cell may be used.
  • the information indicating the path loss reference is randomly transmitted by the terminal device 1.
  • the reference signal (SS block and/or CSI-RS) specified through the access procedure may be used.
  • the random access procedure may be initiated by a specific factor. For example, when the terminal device 1 is not provided with the path loss reference applied to PUCCH transmission from the base station device 3, or before the terminal device 1 is provided with the dedicated upper layer configuration from the base station device 3.
  • the terminal device 1 has resources of the reference signal from the SS/PBCH block selected by the terminal device 1 through the recently generated random access procedure that is not started in the PDCCH order that triggers the contention-based random access procedure. May be used to calculate the downlink path loss estimate.
  • the above process is performed by the terminal device 1 when the downlink path loss estimate used for transmission power control applied to the transmission of the PUCCH is set by the upper layer so as to be calculated using the downlink reference signal of the activated BWP. May be.
  • the base station device 3 may perform power control based on the assumption that the terminal device 1 is performing the above process. Further, the base station device 3 may transmit the upper layer setting so that the terminal device 1 performs the above process.
  • the base station device 3 instructs the setting of a plurality of SS blocks and/or the setting of the CSI-RS by an upper layer signal (RRC message and/or MAC CE).
  • the information indicating the path loss reference may be information indicating the path loss reference in which the terminal device 1 is associated with the SRS transmission resource by the base station device 3, or higher than the base station device 3. It may be information indicating the path loss reference of the cell in which the path loss reference association is associated with the SRS transmission resource in the layer signal.
  • the information indicating the path loss reference is randomly transmitted by the terminal device 1.
  • the reference signal (SS block and/or CSI-RS) specified through the access procedure may be used.
  • the random access procedure may be initiated by a specific factor. For example, when the terminal device 1 is not provided with the path loss reference applied to the SRS transmission from the base station device 3, or before the terminal device 1 is provided with the dedicated upper layer setting from the base station device 3. , The terminal device 1 has resources of the reference signal from the SS/PBCH block selected by the terminal device 1 through the recently generated random access procedure that is not started in the PDCCH order that triggers the contention-based random access procedure.
  • the above process is performed by the terminal device 1 when the downlink path loss estimate used for transmission power control applied to the transmission of the SRS is set by the upper layer to be calculated using the downlink reference signal of the activated BWP. May be.
  • the base station device 3 may perform power control based on the assumption that the terminal device 1 is performing the above process. Further, the base station device 3 may transmit the upper layer setting so that the terminal device 1 performs the above process.
  • the transmission powers of the PUSCH and the message 3 used by the terminal device 1 include the subcarrier interval setting ⁇ , the bandwidth (the number of resource blocks) allocated to the PUSCH, the PUSCH reference power, the PUSCH terminal device specific power, and the PUSCH modulation method. It is set based on the power offset, the downlink path loss compensation coefficient, the downlink path loss, and the correction value of the PUSCH TPC command.
  • the subcarrier interval setting ⁇ , the PUSCH reference power, the PUSCH terminal device specific power, and the downlink path loss compensation coefficient are set by the base station device 3 as upper layer settings. Also, these higher layer settings may be set for the terminal device 1 by the base station device 3 for each type of uplink grant, for each cell, and for each uplink subframe set.
  • the transmission power of the PUCCH used by the terminal device 1 is the subcarrier interval setting ⁇ , the bandwidth (the number of resource blocks) allocated to the PUCCH, the PUCCH reference power, the PUCCH terminal device specific power, and the downlink path loss compensation coefficient. , PUCCH format based power offset, downlink path loss, PUCCH TPC command correction value.
  • the subcarrier interval setting ⁇ , the PUCCH reference power, the PUCCH terminal device specific power, the power offset based on the PUCCH format, and the downlink path loss compensation coefficient are set by the base station device 3 as upper layer settings. Further, these higher layer settings may be set for the terminal device 1 from the base station device 3 for each cell group.
  • the transmission power of the SRS used by the terminal device 1 is the subcarrier interval setting ⁇ , the bandwidth (the number of resource blocks) allocated to the SRS, the reference power of the SRS, and the downlink path loss compensation coefficient, the downlink path loss, and the SRS. It is set based on the correction value of the TPC command.
  • the subcarrier interval setting ⁇ , the SRS reference power, and the downlink path loss compensation coefficient are set by the base station apparatus 3 as upper layer settings. Also, these higher layer settings may be set for the terminal device 1 by the base station device 3 for each type of uplink grant, for each cell, and for each uplink subframe set.
  • the terminal device 1 may receive from the base station device 3 the setting and/or the instruction regarding the path loss reference applied to the PUSCH repeated transmission. A more specific description will be given below.
  • the terminal device 1 uses the upper parameter of the setting and/or instruction regarding the path loss reference received from the base station device, and when receiving the uplink grant including the field of SRI, the n-th transport
  • the path loss reference to be applied to the repeated transmission of the block may be determined as the path loss reference defined as (q d,sri + n) mod N qd .
  • q d,sri represents the PUSCH-PathlossReferenceRs-Id set in association with the SRI notified in the uplink grant
  • N qd represents the total number of PUSCH-PathlossReferenceRs set in the terminal device 1.
  • the terminal device 1 does not receive the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and the upper layer parameter including the SRI field (srs-ResourceIndicator)
  • ConfiguredGrantConfig is received from the base station device, even if the path loss reference to be applied to the repeated transmission of the nth transport block is determined as the path loss reference defined as (q d,sri + n) mod N qd Good.
  • the path loss reference applied to the transport block repeatedly transmitted N times is determined as q d,sri regardless of n. Good.
  • the value of n may be the same between slots within the same slot, and the value of n is increased during repeated transmission before and after a slot boundary. It may be that.
  • the terminal device 1 uses the upper parameter of the setting and/or instruction related to the path loss reference received from the base station device, when receiving the uplink grant not including the SRI field, and/or SRI and PUSCH. If the setting information SRI-PUSCH-PowerControl regarding the transmission power of the is not set by the base station apparatus and/or the spatial relation information PUCCH-SpatialRelationInfo of the PUCCH is not set, the n-th transport block The path loss reference applied to the repeated transmission may be determined as the path loss reference defined by PUSCH-PathlossReferenceRs-Id as n mod N qd .
  • the path loss reference applied to the repeated transmission of the nth transport block may be determined as the path loss reference defined as n mod N qd .
  • the setting information SRI-PUSCH-PowerControl regarding the transmission power of SRI and PUSCH when the uplink grant not including the field of SRI is received is not set by the base station device.
  • PUSCH-PathlossReferenceRs-Id is determined as zero regardless of n as the path loss reference applied to the transport block repeatedly transmitted N times. May be.
  • the value of n may be the same between slots within the same slot, and the value of n is increased during repeated transmission before and after a slot boundary. It may be that.
  • the terminal device 1 uses the upper parameter of the setting and/or instruction regarding the path loss reference received from the base station device, when receiving the uplink grant not including the SRI field, and/or the PUCCH space.
  • the relation information PUCCH-SpatialRelationInfo is set, the path loss reference applied to the repeated transmission of the nth transport block is set to PUCCH-SpatialRelationInfo defined as (PUCCH spatialrelation + n) mod N spatialrelation. It may be determined as a path loss reference.
  • the path loss reference applied to the repeated transmission of the nth transport block is set to PUCCH-SpatialRelationInfo defined as (PUCCH spatialrelation + n) mod N spatialrelation. It may be determined as the established path loss reference.
  • the transport block is repeatedly transmitted N times.
  • the path loss reference to be applied may be determined as PUCCH spatial relation regardless of n.
  • the value of n may be the same between slots within the same slot, and the value of n is increased during repeated transmission before and after a slot boundary. It may be that.
  • the terminal device 1 uses the upper parameter of the setting and/or the instruction regarding the path loss reference received from the base station device, and the upper parameter is Pathloss Reference Set corresponding to the repeated transmission of the n-th transport block.
  • the path loss reference to be applied to the repeated transmission of the nth transport block is determined as the path loss reference determined from the setting information of Path loss Reference Set. Good.
  • the Pathloss Reference Set setting may be set as a table of the total number of SRI resources and the size of push-AggregationFactor, as shown in Pathloss Reference Set Setting Example A in FIG. 8, and the terminal device does not include the SRI field in the uplink.
  • the path loss reference to be applied to the nth repeated transmission of the transport block is determined from the combination of the value indicated by the predetermined SRI field and the repeated transmission number n of the transport block from the table. It may be determined as the path loss reference to be applied.
  • the terminal device 1 receives the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and/or includes the SRI field (srs-ResourceIndicator)
  • the upper layer parameter ConfiguredGrantConfig which is not present, is received from the base station apparatus, it may be determined as a path loss reference determined from a combination of a value indicated by a predetermined SRI field and the number n of repeated transmissions of transport blocks from the table.
  • the value indicated by the predetermined SRI field may be a value predetermined by the specifications, or may be a value received by the terminal device 1 as an upper parameter from the base station device.
  • the terminal device 1 uses the upper parameter of the setting and/or the instruction regarding the path loss reference received from the base station device, and the upper parameter is Pathloss Reference Set corresponding to the repeated transmission of the n-th transport block.
  • Spatial relation information (PUCCH-SpatialRelationInfo) from the setting information of Pathloss Reference Sets the pathloss reference to be applied to the repeated transmission of the nth transport block when receiving an uplink grant that does not include the SRI field. It may be determined as the path loss reference set to.
  • the PathlossReferenceSet setting may be set as a table of the total number of PUCCH-SpatialRelationInfo and the size of pushch-AggregationFactor as shown in SRSResourceIndicatorSet setting example B of FIG. 8, and the terminal device includes the SRI field.
  • the spatial relationship information to be applied to the nth transport block repeat transmission is calculated from the value of the predetermined SRI field in the table and the transport block repeat transmission count n. It may be decided as the path loss reference set in the spatial relation information (PUCCH-SpatialRelationInfo) determined from the combination.
  • the terminal device 1 receives the setting of the upper layer parameter rrc-ConfiguredUplinkGrant and/or includes the SRI field (srs-ResourceIndicator)
  • the upper layer parameter ConfiguredGrantConfig which is not present, is received from the base station apparatus, it may be determined as a path loss reference determined from a combination of a value indicated by a predetermined SRI field and the number n of repeated transmissions of transport blocks from the table.
  • the value indicated by the predetermined SRI field may be a value predetermined by the specifications, or may be a value received by the terminal device 1 as an upper parameter from the base station device.
  • the information regarding the path loss reference may be information indicating the path loss reference of the cell, or may be the path loss reference of the cell in which the path loss reference association associated with the upper layer signal from the base station device 3 is set. It may be information indicating.
  • the power of PUSCH, PUCCH, and SRS is adjusted in the terminal device 1 based on the TPC command corresponding to each physical channel. Whether or not the TPC accumulation is performed for each cell, each physical channel, each subframe set, and each SRS resource set may be set by the base station device 3 to the terminal device 1. Further, as the TPC accumulation of SRS, the TPC accumulation of PUSCH may be diverted in the terminal device 1.
  • the terminal device 1 can appropriately set the uplink transmission power based on the path loss reference.
  • the terminal device 1 when one or more PUSCH-PathlossReferenceRs is set, it may be possible to apply the average value of the path loss calculated using the set Rs, the minimum or maximum path loss. May be applied.
  • FIG. 9 is a schematic block diagram showing the configuration of the terminal device 1 of this embodiment.
  • the terminal device 1 is configured to include a wireless transmission/reception unit 10 and an upper layer processing unit 14.
  • the wireless transmission/reception unit 10 includes an antenna unit 11, an RF (Radio Frequency) unit 12, and a baseband unit 13.
  • the upper layer processing unit 14 includes a medium access control layer processing unit 15 and a radio resource control layer processing unit 16.
  • the wireless transmission/reception unit 10 is also referred to as a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit.
  • the upper layer processing unit 14 is also referred to as a measurement unit, a selection unit or a control unit.
  • the upper layer processing unit 14 outputs the uplink data (which may be referred to as a transport block) generated by a user operation or the like to the wireless transmission/reception unit 10.
  • the upper layer processing unit 14 is a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). (Resource Control: RRC) Performs some or all of the layers.
  • the upper layer processing unit 14 may have a function of determining whether or not to repeatedly transmit the transport block, based on the upper layer signal received from the base station device 3.
  • the upper layer processing unit 14 may determine whether to perform the first aggregation transmission and/or the second aggregation transmission based on the upper layer signal received from the base station device 3.
  • the upper layer processing unit 14 performs symbol allocation extension (start symbol extension and/or symbol number extension) for aggregation transmission (second aggregation transmission) based on the upper layer signal received from the base station device 3, It may have the ability to control the number of dynamic repetitions and/or minislot aggregation transmissions.
  • the upper layer processing unit 14 may determine whether to perform the frequency hopping transmission of the transport block based on the upper layer signal received from the base station device 3.
  • the upper layer processing unit 14 may output the frequency hopping information, the aggregation transmission information, and the like to the wireless transmission/reception unit 10.
  • the upper layer processing unit 14 may have a function of selecting one reference signal from one or a plurality of reference signals based on the measurement value of each reference signal.
  • the upper layer processing unit 14 may have a function of selecting a PRACH opportunity associated with one selected reference signal from one or a plurality of PRACH opportunities.
  • the upper layer processing unit 14 sets 1 set in the upper layer (for example, the RRC layer) when the bit information included in the information for instructing the start of the random access procedure received by the wireless transmission/reception unit 10 has a predetermined value. It may have a function of specifying one index from one or a plurality of indexes and setting it as a preamble index.
  • the upper layer processing unit 14 may have a function of identifying an index associated with the selected reference signal from among one or more indexes set by RRC and setting it as a preamble index.
  • the upper layer processing unit 14 may have a function of determining the next available PRACH opportunity based on the received information (eg, SSB index information and/or mask index information).
  • the upper layer processing unit 14 may have a function of selecting an SS/PBCH block based on the received information (eg, SSB index information).
  • the upper layer processing unit is information indicating a path loss reference indicated by an upper layer signal, and/or SRI information indicated by an uplink grant (for example, information indicating a path loss reference associated with an SRS transmission resource), and Information on one or a plurality of PUCCH resources that have been set (for example, information indicating a path loss reference associated with the resource having the smallest ID), and/or information on a reference signal applied as a path loss reference when transmitting message 1 , And/or the reference number information identified through the random access procedure is used to identify the downlink path loss reference used for the transmission power of the uplink physical channel (PUSCH, PUCCH) and/or the sounding reference signal. You may do it.
  • the upper layer processing unit, the subcarrier interval setting ⁇ set in the upper layer signal, the reference power of the uplink physical channel (PUSCH, PUCCH) and / or sounding reference signal, the uplink physical channel (PUSCH, PUCCH) and / or It may have a function of specifying the terminal device specific power of the sounding reference signal and the downlink path loss compensation coefficient.
  • the upper layer processing unit 14 may have a function of controlling the second number based on an upper layer signal including the first number of repeated transmissions and/or a DCI field including the first number.
  • the first number may be the number of repeated transmissions of the same transport block including within and between slots.
  • the second number may be the number of repeated transmissions of the same transport block within the slot.
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs processing of the MAC layer (medium access control layer).
  • the medium access control layer processing unit 15 controls transmission of the scheduling request based on various setting information/parameters managed by the radio resource control layer processing unit 16.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs processing of the RRC layer (radio resource control layer).
  • the radio resource control layer processing unit 16 manages various setting information/parameters of its own device.
  • the radio resource control layer processing unit 16 sets various setting information/parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various setting information/parameters based on the information indicating various setting information/parameters received from the base station device 3.
  • the wireless transmission/reception unit 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmission/reception unit 10 separates, demodulates, and decodes the signal received from the base station device 3, and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmission/reception unit 10 generates a transmission signal by modulating and encoding data and transmits the transmission signal to the base station device 3.
  • the wireless transmission/reception unit 10 outputs the upper layer signal (RRC message), DCI, etc. received from the base station device 3 to the upper layer processing unit 14. Further, the wireless transmission/reception unit 10 generates and transmits an uplink signal based on an instruction from the upper layer processing unit 14.
  • the wireless transmission/reception unit 10 may have a function of repeatedly transmitting a transport block to the base station device 3 based on an instruction from the upper layer processing unit 14.
  • the wireless transmission/reception unit 10 may repeatedly transmit the same transport block when the repeated transmission of the transport block is set.
  • the number of repeated transmissions may be given based on an instruction from the upper layer processing unit 14.
  • the wireless transmission/reception unit 10 is characterized by transmitting the PUSCH by aggregation transmission based on the information about the first number of repetitions, the first number, and the second number instructed by the upper layer processing unit 14.
  • the wireless transmission/reception unit 10 may have a function of controlling aggregation transmission based on a predetermined condition.
  • the radio transmitter/receiver unit 10 applies the same symbol allocation in each slot to continuously transport blocks. It may be possible to have a function of repeatedly transmitting N times in N slots and transmitting the transport block once when the second aggregation transmission parameter is not set. Here, the value of N is indicated in the second aggregation transmission parameter. Further, when the second condition is satisfied, the wireless transmission/reception unit 10 may have a function of applying minislot aggregation transmission and transmitting a transport block.
  • the first condition includes at least that the PUSCH mapping type is indicated by type A in the DCI received from the base station device 3.
  • the second condition includes at least that the PUSCH mapping type is indicated by type B in the DCI received from the base station device 3.
  • the wireless transmission/reception unit 10 may have a function of receiving one or more reference signals in a certain cell.
  • the wireless transceiver 10 may have a function of receiving information (for example, SSB index information and/or mask index information) that identifies one or more PRACH opportunities.
  • the wireless transmission/reception unit 10 may have a function of receiving a signal including instruction information for instructing the start of the random access procedure.
  • the wireless transmission/reception unit 10 may have a function of receiving information that receives information that specifies a predetermined index.
  • the wireless transmission/reception unit 10 may have a function of receiving information specifying the index of random access printing.
  • the wireless transmission/reception unit 10 may have a function of transmitting the random access preamble at the PRACH opportunity determined by the upper layer processing unit 14.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by quadrature demodulation (down conversion: downcovert) and removes unnecessary frequency components.
  • the RF unit 12 outputs the processed analog signal to the baseband unit.
  • the baseband unit 13 converts the analog signal input from the RF unit 12 into an analog signal into a digital signal.
  • the baseband unit 13 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, performs a fast Fourier transform (FFT) on the signal from which the CP is removed, and outputs a signal in the frequency domain. Extract.
  • CP Cyclic Prefix
  • FFT fast Fourier transform
  • the baseband unit 13 performs an Inverse Fast Fourier Transform (IFFT) on the data to generate an OFDM symbol, adds CP to the generated OFDM symbol, and generates a baseband digital signal to generate a baseband signal. Converts band digital signals to analog signals. The baseband unit 13 outputs the converted analog signal to the RF unit 12.
  • IFFT Inverse Fast Fourier Transform
  • the RF unit 12 uses a low-pass filter to remove excess frequency components from the analog signal input from the baseband unit 13, upconverts the analog signal to a carrier frequency, and transmits it via the antenna unit 11. To do. Further, the RF unit 12 amplifies the power. Further, the RF unit 12 may have a function of determining the transmission power of an uplink physical channel (PUSCH, PUCCH) and/or a sounding reference signal transmitted in a serving cell.
  • PUSCH uplink physical channel
  • PUCCH physical channel
  • the RF unit 12 is also referred to as a transmission power control unit.
  • the transmission power control unit is a TPC command and/or a parameter (subcarrier interval setting ⁇ , uplink physical channel (PUSCH, PUCCH) and/or parameter set by the path loss reference and/or upper layer signal specified by the upper layer processing unit. Or a function for adjusting the transmission power of the uplink signal using the reference power of the sounding reference signal, the terminal device specific power of the uplink physical channel (PUSCH, PUCCH), and/or the compensation coefficient of the downlink path loss May be.
  • FIG. 10 is a schematic block diagram showing the configuration of the base station device 3 of this embodiment.
  • the base station device 3 is configured to include a wireless transmission/reception unit 30 and an upper layer processing unit 34.
  • the wireless transmission/reception unit 30 includes an antenna unit 31, an RF unit 32, and a baseband unit 33.
  • the upper layer processing unit 34 includes a medium access control layer processing unit 35 and a radio resource control layer processing unit 36.
  • the wireless transmission/reception unit 30 is also referred to as a transmission unit, a reception unit, a monitor unit, or a physical layer processing unit.
  • a control unit that controls the operation of each unit based on various conditions may be separately provided.
  • the upper layer processing unit 34 is also referred to as a terminal control unit.
  • the upper layer processing unit 34 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control (Radio). (Resource Control: RRC) Performs some or all of the layers.
  • the upper layer processing unit 34 may have a function of determining whether or not to repeatedly transmit the transport block, based on the upper layer signal transmitted to the terminal device 1.
  • the upper layer processing unit 34 may determine whether to perform the first aggregation transmission and/or the second aggregation transmission based on the upper layer signal transmitted to the terminal device 1.
  • the upper layer processing unit 34 performs symbol allocation extension (start symbol extension and/or symbol number extension) for the aggregation transmission (second aggregation transmission) based on the signal of the upper layer transmitted to the terminal device 1, It may have a function of controlling the number of target repetitions and/or the minislot aggregation transmission.
  • the upper layer processing unit 34 may determine whether to perform the frequency hopping transmission of the transport block based on the upper layer signal transmitted to the terminal device 1.
  • the upper layer processing unit 34 may have a function of controlling the second number based on the upper layer signal including the first number of repeated transmissions and/or the DCI field including the first number.
  • the first number may be the number of repeated transmissions of the same transport block including within and between slots.
  • the second number may be the number of repeated transmissions of the same transport block within the slot. It may have a function of specifying one reference signal from one or more reference signals based on the random access preamble received by the wireless transmission/reception unit 30.
  • the upper layer processing unit 34 may specify the PRACH opportunity to monitor the random access preamble from at least the SSB index information and the mask index information.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs processing of the MAC layer.
  • the medium access control layer processing unit 35 performs processing relating to a scheduling request based on various setting information/parameters managed by the wireless resource control layer processing unit 36.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs processing of the RRC layer.
  • the radio resource control layer processing unit 36 generates downlink data (transport block) arranged in the physical downlink shared channel, system information, RRC message, MAC CE (Control Element), or the like, or obtains it from the upper node. , To the wireless transmission/reception unit 30. Further, the radio resource control layer processing unit 36 manages various setting information/parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information/parameters for each terminal device 1 via a signal of an upper layer. That is, the radio resource control layer processing unit 36 transmits/notifies information indicating various setting information/parameters.
  • the radio resource control layer processing unit 36 may transmit/notify information for specifying the settings of a plurality of reference signals in a certain cell.
  • the base station device 3 When the base station device 3 transmits an RRC message, MAC CE, and/or PDCCH to the terminal device 1 and the terminal device 1 performs processing based on the reception, the base station device 3 performs the processing.
  • the processing (control of the terminal device 1 and the system) is performed assuming that the operation is being performed. That is, the base station device 3 sends to the terminal device 1 an RRC message, a MAC CE, and/or a PDCCH that causes the terminal device to perform processing based on the reception.
  • the wireless transmission/reception unit 30 transmits an upper layer signal (RRC message), DCI, etc. to the terminal device 1. Further, the wireless transmission/reception unit 30 receives the uplink signal transmitted from the terminal device 1 based on the instruction from the upper layer processing unit 34.
  • the wireless transmission/reception unit 30 may have a function of receiving repeated transmission of transport blocks from the terminal device 1 based on an instruction from the upper layer processing unit 34. When the repeated transmission of the transport block is set, the wireless transmission/reception unit 30 receives the repeated transmission of the same transport block. The number of repeated transmissions may be given based on an instruction from the upper layer processing unit 34.
  • the wireless transmission/reception unit 30 is characterized by receiving the PUSCH by aggregation transmission based on the information about the first number of repetitions, the first number, and the second number instructed by the upper layer processing unit 34.
  • the wireless transmission/reception unit 30 may have a function of controlling aggregation transmission based on a predetermined condition. Specifically, when the first condition is satisfied and the second aggregation transmission parameter is set, the radio transmitter/receiver unit 30 applies the same symbol allocation in each slot to continuously transport blocks. When the second aggregation transmission parameter is not set, the transport block is received once when the second aggregation transmission parameter is not set. Here, the value of N is indicated in the second aggregation transmission parameter.
  • the wireless transmission/reception unit 30 may have a function of applying minislot aggregation transmission and receiving a transport block.
  • the first condition includes at least that the PUSCH mapping type is indicated by type A in the DCI transmitted to the terminal device 1.
  • the second condition includes at least that the PUSCH mapping type is indicated by type B in the DCI transmitted to the terminal device 1.
  • the wireless transmission/reception unit 30 has a function of transmitting one or more reference signals. Further, the wireless transmission/reception unit 30 may have a function of receiving a signal including the beam failure recovery request transmitted from the terminal device 1.
  • the wireless transmission/reception unit 30 may have a function of transmitting information (for example, SSB index information and/or mask index information) identifying one or more PRACH opportunities to the terminal device 1.
  • the wireless transmission/reception unit 30 may have a function of transmitting information specifying a predetermined index.
  • the wireless transmission/reception unit 30 may have a function of transmitting information specifying the index of the random access preamble.
  • the wireless transmission/reception unit 30 may have a function of monitoring the random access preamble at the PRACH opportunity specified by the upper layer processing unit 34.
  • a part of the function of the wireless transmission/reception unit 30 is the same as that of the wireless transmission/reception unit 10, and the description thereof is omitted.
  • the upper layer processing unit 34 transmits (transfers) a control message or user data between the base station devices 3 or between a higher-level network device (MME, S-GW (Serving-GW)) and the base station device 3. ) Or receive.
  • MME mobile phone
  • S-GW Serving-GW
  • receive receives
  • other components of the base station device 3 and transmission paths of data (control information) between the components are omitted, but other functions necessary for operating as the base station device 3 are omitted. It is clear that it has a plurality of blocks that it has as a component.
  • the upper layer processing unit 34 includes a radio resource management (Radio Resource Management) layer processing unit and an application layer processing unit.
  • the upper layer processing unit 34 may have a function of setting a plurality of scheduling request resources corresponding to each of a plurality of reference signals transmitted from the wireless transmission/reception unit 30.
  • parts in the figure are elements that realize the functions and procedures of the terminal device 1 and the base station device 3, which are also expressed by terms such as sections, circuits, constituent devices, devices, and units.
  • Each of the units 10 to 16 provided in the terminal device 1 may be configured as a circuit.
  • Each of the units denoted by reference numerals 30 to 36 included in the base station device 3 may be configured as a circuit.
  • the communication method according to the first aspect of the present invention is a communication method for a terminal device, and is an aggregation transmission parameter, a parameter applied to transmission power control, and spatial relationship information applied to PUSCH transmission.
  • the transport block is repeatedly transmitted N times in N slots, the value of N is included in the aggregation transmission parameter.
  • the parameter of the path loss reference reference signal is included in the parameter applied to the transmission power control
  • the parameter of one or more spatial relation information is included in the parameter of the spatial relation information applied to PUSCH transmission
  • the PUSCH is transmitted by applying the spatial relationship information specified by one or more parameters of the spatial relationship information to the PUSCH transmission.
  • the spatial related information is a spatial relation associated with a PUCCH resource having a minimum ID among spatial relation information associated with one or more PUCCH resources. It is specified as the remainder of the sum of the information and n divided by the total number of spatial relationship information associated with the PUCCH resource.
  • a communication method is a communication method of a base station apparatus, which is an aggregation transmission parameter for a terminal apparatus, a parameter applied for transmission power control, and a parameter for spatial relation information applied for PUSCH transmission.
  • the aggregation transmission parameter is set, the transport block is repeatedly transmitted N times in N slots, the value of N is included in the aggregation transmission parameter, and the path loss is included.
  • the parameter of the reference reference signal is included in the parameter applied to the transmission power control, the parameter of one or more spatial relation information is included in the parameter of the spatial relation information applied to PUSCH transmission, and the n-th PUSCH transmission is performed.
  • the PUSCH transmitted by applying the spatial relationship information specified by one or more parameters of the spatial relationship information is received.
  • a terminal device includes a reception unit that receives an aggregation transmission parameter, a parameter applied to transmission power control, and an upper layer setting including a parameter of spatial relation information applied to PUSCH transmission,
  • the aggregation transmission parameter is set, the transport block is repeatedly transmitted N times in N slots, the value of N is included in the aggregation transmission parameter, the parameter of the path loss reference signal, transmission power control
  • a transmitter for transmitting the PUSCH by applying the spatial relationship information specified by the information parameter is transmitted.
  • the base station apparatus transmits, to the terminal apparatus, an upper layer setting including aggregation transmission parameters, parameters applied to transmission power control, and parameters of spatial relationship information applied to PUSCH transmission.
  • the transmission unit and the aggregation transmission parameter is set, the transport block is repeatedly transmitted N times in N slots, the value of N is included in the aggregation transmission parameter, the parameter of the path loss reference signal is ,
  • One or more parameters of spatial relationship information included in parameters applied to transmission power control are included in parameters of spatial relationship information applied to PUSCH transmission, and one or more parameters for the n-th PUSCH transmission.
  • a receiving unit that receives the PUSCH transmitted by applying the spatial relationship information specified by the parameters of the plurality of spatial relationship information.
  • An integrated circuit is an integrated circuit installed in a terminal device, and includes an aggregation transmission parameter, a parameter applied to transmission power control, and a parameter of spatial relation information applied to PUSCH transmission.
  • the parameter of the path loss reference reference signal is included in the parameter applied to the transmission power control
  • the parameter of one or more spatial relation information is included in the parameter of the spatial relation information applied to PUSCH transmission
  • An integrated circuit according to a seventh aspect of the present invention is an integrated circuit implemented in a base station device, wherein the terminal device has an aggregation transmission parameter, a parameter applied to transmission power control, and a spatial relationship applied to PUSCH transmission.
  • the parameter of the path loss reference signal is included in the parameter applied to the transmission power control
  • the parameter of one or more spatial relationship information is included in the parameter of the spatial relationship information applied to PUSCH transmission
  • the program that operates on the device related to the present invention may be a program that controls a Central Processing Unit (CPU) or the like to cause a computer to function so as to realize the functions of the embodiments related to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as Random Access Memory (RAM) or a non-volatile memory such as flash memory, a Hard Disk Drive (HDD), or another storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the program for realizing the functions of the embodiments related to the present invention may be recorded in a computer-readable recording medium. It may be realized by causing a computer system to read and execute the program recorded in this recording medium.
  • the “computer system” here is a computer system built in the apparatus and includes an operating system and hardware such as peripheral devices.
  • the “computer-readable recording medium” is a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or another computer-readable recording medium. Is also good.
  • each functional block or various features of the device used in the above-described embodiment may be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or others. Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general-purpose processor may be a microprocessor, conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit. Further, in the event that an integrated circuit technology that replaces the current integrated circuit has emerged due to the progress of semiconductor technology, one or more aspects of the present invention can use a new integrated circuit according to the technology.
  • the present invention is not limited to the above embodiment. Although an example of the apparatus has been described in the embodiment, the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning/laundry equipment, air conditioning equipment, office equipment, vending machines, and other household appliances.
  • a stationary or non-movable electronic device installed indoors or outdoors, for example, an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning/laundry equipment, air conditioning equipment, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置の通信方法であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信し、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し送信のうち第n回目の送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。

Description

通信方法、端末装置、基地局装置、および、集積回路
 本発明は、通信方法、端末装置、基地局装置、および、集積回路に関する。本願は、2019年2月14日に日本に出願された特願2019-24509号に基づき優先権を主張し、その内容をここに援用する。
 現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced Mobile BroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。
RP-161214, NTT DOCOMO, "Revision of SI: Study on New Radio Access Technology", 2016年6月
 本発明の一態様の目的は、上記のような無線通信システムにおいて、効率的な通信を可能とする通信方法、端末装置、基地局装置、および、集積回路を提供することを目的とする。
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の一態様における通信方法は、端末装置の通信方法であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信し、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し送信のうち第n回目の送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 (2)本発明の一態様における通信方法は、基地局装置の通信方法であって、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信し、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信し、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 (3)本発明の一態様における端末装置は、端末装置であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信する受信部と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信する送信部と、を備え、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し送信のうち第n回目のPUSCH送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 (4)本発明の一態様における基地局装置は、基地局装置であって、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信する送信部と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信する受信部と、を備え、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 (5)本発明の一態様における集積回路は、端末装置に実装される集積回路であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信する受信手段と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信する送信手段と、を備え、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し送信のうち第n回目の送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 (6)本発明の一態様における通信方法は、基地局装置に実装される集積回路であって、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信する送信手段と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信する受信手段と、を備え、前記Nの値は、前記アグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する。
 この発明の一態様によれば、基地局装置と端末装置が、効率的に通信することができる。
本発明の実施形態に係る無線通信システムの概念を示す図である。 本発明の実施形態に係るSS/PBCHブロックおよびSSバーストセットの例を示す図である。 本発明の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。 本発明の実施形態に係るサブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。 本発明の実施形態に係るスロットまたはサブフレームの一例を示す図である。 本発明の実施形態に係るビームフォーミングの一例を示した図である。 本発明の実施形態に係る空間関係情報セット設定の一例を示した図である。 本発明の実施形態に係るパスロスリファレンスセット設定の一例を示した図である。 本発明の実施形態に係る端末装置1の構成を示す概略ブロック図である。 本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態における無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、および基地局装置3を具備する。以下、端末装置1A、および、端末装置1Bを、端末装置1とも称する。
 端末装置1は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR Node B)、NNB、TRP(Transmission and Reception Point)、gNBとも称される。基地局装置3は、コアネットワーク装置を含んでも良い。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point)を具備しても良い。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。
 基地局装置3から端末装置1への無線通信リンクを下りリンクと称する。端末装置1から基地局装置3への無線通信リンクを上りリンクと称する。
 図1において、端末装置1と基地局装置3の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)、マルチキャリア符号分割多重(MC-CDM: Multi-Carrier Code Division Multiplexing)が用いられてもよい。
 また、図1において、端末装置1と基地局装置3の間の無線通信では、ユニバーサルフィルタマルチキャリア(UFMC: Universal-Filtered Multi-Carrier)、フィルタOFDM(F-OFDM: Filtered OFDM)、窓関数が乗算されたOFDM(Windowed OFDM)、フィルタバンクマルチキャリア(FBMC: Filter-Bank Multi-Carrier)が用いられてもよい。
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明に含まれる。
 また、図1において、端末装置1と基地局装置3の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。
 本実施形態の一態様は、LTEやLTE-A/LTE-A Proといった無線アクセス技術(RAT: Radio Access Technology)とのキャリアアグリゲーションまたはデュアルコネクティビティにおいてオペレーションされてもよい。このとき、一部またはすべてのセルまたはセルグループ、キャリアまたはキャリアグループ(例えば、プライマリセル(PCell: Primary Cell)、セカンダリセル(SCell: Secondary Cell)、プライマリセカンダリセル(PSCell)、MCG(Master Cell Group)、SCG(Secondary Cell Group)など)で用いられてもよい。また、単独でオペレーションするスタンドアローンで用いられてもよい。デュアルコネクティビティオペレーションにおいては、SpCell(Special Cell)は、MAC(MAC: Medium Access Control)エンティティがMCGに関連付けられているか、SCGに関連付けられているかに応じて、それぞれ、MCGのPCellまたは、SCGのPSCellと称する。デュアルコネクティビティオペレーションでなければ、SpCell(Special Cell)は、PCellと称する。SpCell(Special Cell)は、PUCCH送信と、競合ベースランダムアクセスをサポートする。
 本実施形態では、端末装置1に対して1つまたは複数のサービングセルが設定されてもよい。設定された複数のサービングセルは、1つのプライマリセルと1つまたは複数のセカンダリセルとを含んでもよい。プライマリセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルであってもよい。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、1つまたは複数のセカンダリセルが設定されてもよい。ただし、設定された複数のサービングセルは、1つのプライマリセカンダリセルを含んでもよい。プライマリセカンダリセルは、端末装置1が設定された1つまたは複数のセカンダリセルのうち、上りリンクにおいて制御情報を送信可能なセカンダリセルであってもよい。また、端末装置1に対して、マスターセルグループとセカンダリセルグループの2種類のサービングセルのサブセットが設定されてもよい。マスターセルグループは1つのプライマリセルと0個以上のセカンダリセルで構成されてもよい。セカンダリセルグループは1つのプライマリセカンダリセルと0個以上のセカンダリセルで構成されてもよい。
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてよい。複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリア(あるいは下りリンクキャリア)と称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリア(あるいは上りリンクキャリア)と称する。サイドリンクにおいて、サービングセルに対応するキャリアをサイドリンクコンポーネントキャリア(あるいはサイドリンクキャリア)と称する。下りリンクコンポーネントキャリア、上りリンクコンポーネントキャリア、および/またはサイドリンクコンポーネントキャリアを総称してコンポーネントキャリア(あるいはキャリア)と称する。
 本実施形態の物理チャネルおよび物理信号について説明する。
 図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられる。
・PBCH(Physical Broadcast CHannel)
・PDCCH(Physical Downlink Control CHannel)
・PDSCH(Physical Downlink Shared CHannel)
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: Master Information Block、EIB: Essential Information Block、BCH:Broadcast Channel)を報知するために用いられる。
 また、PBCH(物理報知チャネルとも称する)は、同期信号のブロック(SS/PBCHブロックとも称する)の周期内の時間インデックスを報知するために用いられてよい。ここで、時間インデックスは、セル内の同期信号およびPBCHのインデックスを示す情報である。例えば、3つの送信ビーム(送信フィルタ設定、受信空間パラメータに関する擬似同位置(QCL:Quasi Co-Location))の想定を用いてSS/PBCHブロックを送信する場合、予め定められた周期内または設定された周期内の時間順を示してよい。また、端末装置は、時間インデックスの違いを送信ビームの違いと認識してもよい。同期信号のブロックには、プライマリ同期信号とセカンダリ同期信号、物理報知チャネル、物理報知チャネルを復調するための参照信号、を含んでよい。プライマリ同期信号およびセカンダリ同期信号、物理報知チャネルを復調するための参照信号については後述する。
 PDCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)において、下りリンク制御情報(Downlink Control Information: DCI)を送信する(または運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称してもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドがDCIとして定義され、情報ビットへマップされる。
 例えば、以下のDCIフォーマットが定義されてよい。
 ・DCIフォーマット0_0
 ・DCIフォーマット0_1
 ・DCIフォーマット1_0
 ・DCIフォーマット1_1
 ・DCIフォーマット2_0
 ・DCIフォーマット2_1
 ・DCIフォーマット2_2
 ・DCIフォーマット2_3
 DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
 DCIフォーマット0_1は、PUSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP:BandWidth Part)を示す情報、チャネル状態情報(CSI:Channel State Information)リクエスト、サウンディング参照信号(SRS:Sounding Reference Signal)リクエスト、アンテナポートに関する情報を含んでよい。
 DCIフォーマット1_0は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報を含んでよい。
 DCIフォーマット1_1は、PDSCHのスケジューリング情報(周波数領域リソース割当及び時間領域リソース割当)を示す情報、帯域部分(BWP)を示す情報、送信設定指示(TCI:Transmission Configuration Indication)、アンテナポートに関する情報を含んでよい。
 DCIフォーマット2_0は、1つまたは複数のスロットのスロットフォーマットを通知するために用いられる。スロットフォーマットは、スロット内の各OFDMシンボルが下りリンク、フレキシブル、上りリンクのいずれかに分類されたものとして定義される。例えば、スロットフォーマットが28の場合、スロットフォーマット28が指示されたスロット内の14シンボルのOFDMシンボルに対してDDDDDDDDDDDDFUが適用される。ここで、Dが下りリンクシンボル、Fがフレキシブルシンボル、Uが上りリンクシンボルである。なお、スロットについては後述する。
 DCIフォーマット2_1は、端末装置1に対して、送信がないと想定してよい物理リソースブロックとOFDMシンボルを通知するために用いられる。なお、この情報はプリエンプション指示(間欠送信指示)と称してよい。
 DCIフォーマット2_2は、PUSCHおよびPUSCHのための送信電力制御(TPC:Transmit Power Control)コマンドの送信のために用いられる。
 DCIフォーマット2_3は、1または複数の端末装置1によるサウンディング参照信号(SRS)送信のためのTPCコマンドのグループを送信するために用いられる。また、TPCコマンドとともに、SRSリクエストが送信されてもよい。また、DCIフォーマット2_3に、PUSCHおよびPUCCHのない上りリンク、またはSRSの送信電力制御がPUSCHの送信電力制御と紐付いていない上りリンクのために、SRSリクエストとTPCコマンドが定義されてよい。
 下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。1つのPDCCHで送信されるDCIフォーマットに付加されるCRC(Cyclic Redundancy Check)パリティビットは、SI-RNTI(System Information- Radio Network Temporary Identifier)、P-RNTI(Paging-Radio Network Temporary Identifier)、C-RNTI(Cell-Radio Network Temporary Identifier)、CS-RNTI(Configured Scheduling-Radio Network Temporary Identifier)、RA-RNTI(Random Access-Radio Network Temporary Identity:ランダムアクセス応答識別情報)、または、Temporary C-RNTIでスクランブルされる。SI-RNTIはシステム情報のブロードキャストに使用される識別子であってもよい。P-RNTIは、ページングおよびシステム情報変更の通知に使用される識別子であってもよい。C-RNTI、MCS-C-RNTI、および、CS-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、競合ベースのランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置1を識別するための識別子である。C-RNTI(端末装置の識別子(識別情報))は、1つまたは複数のスロットにおけるPDSCHまたはPUSCHを制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。MCS-C-RNTIは、グラントベース送信(grant-based transmission)に対して所定のMCSテーブルの使用を示すために用いられる。Temporary C-RNTI(TC-RNTI)は、1つまたは複数のスロットにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。Temporary C-RNTIは、ランダムアクセスメッセージ3の再送信、およびランダムアクセスメッセージ4の送信をスケジュールするために用いられる。RA-RNTIは、ランダムアクセスプリアンブルを送信した物理ランダムアクセスチャネルの周波数および時間の位置情報に応じて決定される。
 PUCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。
 PDSCHは、媒介アクセス(MAC: Medium Access Control)層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、下りリンクの場合にはシステム情報(SI: System Information)やランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、UCIのみを送信するために用いられてもよい。
 ここで、基地局装置3と端末装置1は、上位層(上位レイヤ:higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCシグナリング(RRC message: Radio Resource Control message、RRC information: Radio Resource Control informationとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。ここで、RRCシグナリング、および/または、MACコントロールエレメントを、上位層の信号(上位レイヤ信号:higher layer signaling)とも称する。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの一つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの一つまたは複数を含んでもよい。
 PDSCHまたはPUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。ここで、PDSCHにおいて、基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
 同期信号は、プライマリ同期信号(PSS:Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。
 参照信号は、端末装置1が物理チャネルの伝搬路補償を行うために用いられる。ここで、参照信号は、端末装置1が下りリンクのCSIを算出するためにも用いられてよい。また、参照信号は、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。
 本実施形態において、以下の下りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・CSI-RS(Channel State Information Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・TRS(Tracking Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI-RSは、チャネル状態情報(CSI:Channel State Information)の測定およびビームマネジメントに使用され、周期的またはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。CSI-RSには、ノンゼロパワー(NZP:Non-Zero Power)CSI-RSと、送信電力(または受信電力)がゼロである(ゼロパワー(ZP:Zero Power)CSI-RSが定義されてよい。ここで、ZP CSI-RSは送信電力がゼロまたは送信されないCSI-RSリソースと定義されてよい。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI-RSの1つの設定として用いられてよい。例えば、1ポートのCSI-RSがTRSとして無線リソースが設定されてもよい。
 本実施形態において、以下の上りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・SRS(Sounding Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。
 下りリンク物理チャネルおよび/または下りリンク物理シグナルを総称して、下りリンク信号と称する。上りリンク物理チャネルおよび/または上りリンク物理シグナルを総称して、上りリンク信号と称する。下りリンク物理チャネルおよび/または上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび/または上りリンク物理シグナルを総称して、物理シグナルと称する。
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行われる。
 図2は、本実施形態に係るSS/PBCHブロック(同期信号ブロック、SSブロック、SSBとも称される)およびSSバーストセット(同期信号バーストセットとも称される)の例を示す図である。図2は、周期的に送信されるSSバーストセット内に2つのSS/PBCHブロックが含まれ、SS/PBCHブロックは、4OFDMシンボルで構成される例を示している。
 SS/PBCHブロックは、少なくとも同期信号(PSS、SSS)、および/またはPBCHを含む単位ブロックである。SS/PBCHブロックに含まれる信号/チャネルを送信することを、SS/PBCHブロックを送信すると表現する。基地局装置3はSSバーストセット内の1つまたは複数のSS/PBCHブロックを用いて同期信号および/またはPBCHを送信する場合に、SS/PBCHブロック毎に独立した下りリンク送信ビームを用いてもよい。
 図2において、1つのSS/PBCHブロックにはPSS、SSS、PBCHが時間/周波数多重されている。ただし、PSS、SSSおよび/またはPBCHが時間領域で多重される順番は図2に示す例と異なってもよい。
 SSバーストセットは、周期的に送信されてよい。例えば、初期アクセスに使用されるための周期と、接続されている(ConnectedまたはRRC_Connected)端末装置のために設定する周期が定義されてもよい。また、接続されている(ConnectedまたはRRC_Connected)端末装置のために設定する周期はRRC層で設定されてよい。また、接続されている(ConnectedまたはRRC_Connected)端末のために設定する周期は潜在的に送信する可能性がある時間領域の無線リソースの周期であって、実際には基地局装置3が送信するかどうかを決めてもよい。また、初期アクセスに使用されるための周期は、仕様書などに予め定義されてよい。
 SSバーストセットは、システムフレーム番号(SFN:System Frame Number)に基づいて決定されてよい。また、SSバーストセットの開始位置(バウンダリ)は、SFNと周期に基づいて決定されてよい。
 SS/PBCHブロックは、SSバーストセット内の時間的な位置に応じてSSBインデックス(SSB/PBCHブロックインデックスと称されてもよい)が割り当てられる。端末装置1は、検出したSS/PBCHブロックに含まれるPBCHの情報および/または参照信号の情報に基づいてSSBインデックスを算出する。
 複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、同じSSBインデックスが割り当てられる。複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、QCLである(あるいは同じ下りリンク送信ビームが適用されている)と想定されてもよい。また、複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックにおけるアンテナポートは、平均遅延、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。
 あるSSバーストセットの周期内で、同じSSBインデックスが割り当てられているSS/PBCHブロックは、平均遅延、平均ゲイン、ドップラースプレッド、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。QCLである1つまたは複数のSS/PBCHブロック(あるいは参照信号であってもよい)に対応する設定をQCL設定と称してもよい。
 SS/PBCHブロック数(SSブロック数あるいはSSB数と称されてもよい)は、例えばSSバースト、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のSS/PBCHブロック数(個数)として定義されてよい。また、SS/PBCHブロック数は、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のセル選択のためのビームグループの数を示してもよい。ここで、ビームグループは、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期の中に含まれる異なるSS/PBCHブロックの数または異なるビームの数として定義されてよい。
 以下、本実施形態で説明する参照信号は、下りリンク参照信号、同期信号、SS/PBCHブロック、下りリンクDM-RS、CSI-RS、上りリンク参照信号、SRS、および/または、上りリンクDM-RSを含む。例えば、下りリンク参照信号、同期信号および/またはSS/PBCHブロックを参照信号と称してもよい。下りリンクで使用される参照信号は、下りリンク参照信号、同期信号、SS/PBCHブロック、下りリンクDM-RS、CSI-RSなどを含む。上りリンクで使用される参照信号は、上りリンク参照信号、SRS、および/または、上りリンクDM-RSなどを含む。
 また、参照信号は、無線リソース測定(RRM:Radio Resource Measurement)に用いられてよい。また、参照信号は、ビームマネジメントに用いられてよい。
 ビームマネジメントは、送信装置(下りリンクの場合は基地局装置3であり、上りリンクの場合は端末装置1である)におけるアナログおよび/またはディジタルビームと、受信装置(下りリンクの場合は端末装置1、上りリンクの場合は基地局装置3である)におけるアナログおよび/またはディジタルビームの指向性を合わせ、ビーム利得を獲得するための基地局装置3および/または端末装置1の手続きであってよい。
 なお、ビームペアリンクを構成、設定または確立する手続きとして、下記の手続きを含んでよい。
・ビーム選択(Beam selection)
・ビーム改善(Beam refinement)
・ビームリカバリ(Beam recovery)
 例えば、ビーム選択は、基地局装置3と端末装置1の間の通信においてビームを選択する手続きであってよい。また、ビーム改善は、さらに利得の高いビームの選択、あるいは端末装置1の移動によって最適な基地局装置3と端末装置1の間のビームの変更をする手続きであってよい。ビームリカバリは、基地局装置3と端末装置1の間の通信において遮蔽物や人の通過などにより生じるブロッケージにより通信リンクの品質が低下した際にビームを再選択する手続きであってよい。
 ビームマネジメントには、ビーム選択、ビーム改善が含まれてよい。ビームリカバリには、下記の手続きを含んでよい。
・ビーム失敗(beam failure)の検出
・新しいビームの発見
・ビームリカバリリクエストの送信
・ビームリカバリリクエストに対する応答のモニタ
 例えば、端末装置1における基地局装置3の送信ビームを選択する際にCSI-RSまたはSS/PBCHブロックに含まれるSSSのRSRP(Reference Signal Received Power)を用いてもよいし、CSIを用いてもよい。また、基地局装置3への報告としてCSI-RSリソースインデックス(CRI:CSI-RS Resource Index)を用いてもよいし、SS/PBCHブロックに含まれるPBCHおよび/またはPBCHの復調に用いられる復調用参照信号(DMRS)の系列で指示されるインデックスを用いてもよい。
 また、基地局装置3は、端末装置1へビームを指示する際にCRIまたはSS/PBCHの時間インデックスを指示し、端末装置1は、指示されたCRIまたはSS/PBCHの時間インデックスに基づいて受信する。このとき、端末装置1は指示されたCRIまたはSS/PBCHの時間インデックスに基づいて空間フィルタを設定し、受信してよい。また、端末装置1は、疑似同位置(QCL:Quasi Co-Location)の想定を用いて受信してもよい。ある信号(アンテナポート、同期信号、参照信号など)が別の信号(アンテナポート、同期信号、参照信号など)と「QCLである」または、「QCLの想定が用いられる」とは、ある信号が別の信号と関連付けられていると解釈できる。
 もしあるアンテナポートにおけるあるシンボルが搬送されるチャネルの長区間特性(Long Term Property)が他方のアンテナポートにおけるあるシンボルが搬送されるチャネルから推論されうるなら、2つのアンテナポートはQCLであるといわれる。チャネルの長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得、及び平均遅延の1つまたは複数を含む。例えば、アンテナポート1とアンテナポート2が平均遅延に関してQCLである場合、アンテナポート1の受信タイミングからアンテナポート2の受信タイミングが推論されうることを意味する。
 このQCLは、ビームマネジメントにも拡張されうる。そのために、空間に拡張したQCLが新たに定義されてもよい。例えば、空間ドメインのQCLの想定におけるチャネルの長区間特性(Long term property)として、無線リンクあるいはチャネルにおける到来角(AoA(Angle of Arrival), ZoA(Zenith angle of Arrival)など)および/または角度広がり(Angle Spread、例えばASA(Angle Spread of Arrival)やZSA(Zenith angle Spread of Arrival))、送出角(AoD, ZoDなど)やその角度広がり(Angle Spread、例えばASD(Angle Spread of Departure)やZSD(Zenith angle Spread of Departure))、空間相関(Spatial Correlation)、受信空間パラメータであってもよい。
 例えば、アンテナポート1とアンテナポート2の間で受信空間パラメータに関してQCLであるとみなせる場合、アンテナポート1からの信号を受信する受信ビーム(受信空間フィルタ)からアンテナポート2からの信号を受信する受信ビームが推論されうることを意味する。
 QCLタイプとして、QCLであるとみなしてよい長区間特性の組み合わせが定義されてよい。例えば、以下のタイプが定義されてよい。
 ・タイプA:ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド
 ・タイプB:ドップラーシフト、ドップラースプレッド
 ・タイプC:平均遅延、ドップラーシフト
 ・タイプD:受信空間パラメータ
 上述のQCLタイプは、RRCおよび/またはMAC層および/またはDCIで1つまたは2つの参照信号とPDCCHやPDSCH DMRSとのQCLの想定を送信設定指示(TCI:Transmission Configuration Indication)として設定および/または指示してもよい。例えば、端末装置1がPDCCHを受信する際のTCIの1つの状態として、SS/PBCHブロックのインデックス#2とQCLタイプA+QCLタイプDが設定および/または指示された場合、端末装置1は、PDCCH DMRSを受信する際、SS/PBCHブロックインデックス#2の受信におけるドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッド、受信空間パラメータとチャネルの長区間特性とみなしてPDCCHのDMRSを受信して同期や伝搬路推定をしてもよい。このとき、TCIにより指示される参照信号(上述の例ではSS/PBCHブロック)をソース参照信号、ソース参照信号を受信する際のチャネルの長区間特性から推論される長区間特性の影響を受ける参照信号(上述の例ではPDCCH DMRS)をターゲット参照信号と称してよい。また、TCIは、RRCで複数のTCI状態と各状態に対してソース参照信号とQCLタイプの組み合わせが設定され、MAC層またはDCIにより端末装置1に指示されてよい。
 この方法により、ビームマネジメントおよびビーム指示/報告として、空間ドメインのQCLの想定と無線リソース(時間および/または周波数)によりビームマネジメントと等価な基地局装置3、端末装置1の動作が定義されてもよい。
 同様に、上りリンクのQCL想定に関する設定として、上りリンク物理チャネルおよび/またはサウンディング参照信号は、空間関係情報(SpatialRelationInfo)を設定されてもよい。空間関係情報は、別途適用した受信または送信フィルタ設定を、サウンディング参照信号の送信フィルタに適用し、ビーム利得を獲得するための情報である。別途適用した受信または送信フィルタ設定の特定のため、受信または送信する信号として同期信号のブロック、CSI参照信号、サウンディング参照信号、のいずれかを設定する。この方法により、上りリンク物理チャネルおよび/またはサウンディング参照信号に対し、ビーム利得を獲得することができる。
 以下、サブフレームについて説明する。本実施形態ではサブフレームと称するが、リソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。
 図3は、本発明の第1の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびW個のスロットから構成される。また、1スロットは、X個のOFDMシンボルで構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。また、例えば、X=14の場合、サブキャリア間隔が15kHzの場合はW=10であり、サブキャリア間隔が60kHzの場合はW=40である。図3は、X=7の場合を一例として示している。なお、X=14の場合にも同様に拡張できる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。また、図3のセルの帯域幅は帯域の一部(BWP:BandWidth Part)として定義されてもよい。また、スロットは、送信時間間隔(TTI:Transmission Time Interval)と定義されてもよい。スロットは、TTIとして定義されなくてもよい。TTIは、トランスポートブロックの送信期間であってもよい。
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。
 リソースグリッドは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。例えば、サブキャリア間隔が15kHzの場合、サブフレームに含まれるOFDMシンボル数X=14で、NCPの場合には、1つの物理リソースブロックは、時間領域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロックの最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のリソースエレメントから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされ、1つの物理リソースブロックは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のリソースエレメントから構成される。
 リソースブロックとして、共通リソースブロック、物理リソースブロック、仮想リソースブロックが定義される。1リソースブロックは、周波数領域で連続する12サブキャリアとして定義される。共通リソースブロックインデックス0におけるサブキャリアインデックス0は、参照ポイントと称されてよい(ポイントAと称されてもよい)。共通リソースブロックは、参照ポイントAから各サブキャリア間隔設定μにおいて0から昇順で番号が付されるリソースブロックである。上述のリソースグリッドはこの共通リソースブロックにより定義される。物理リソースブロックは、後述する帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックであり、物理リソースブロックは、帯域部分(BWP)の中に含まれる0から昇順で番号が付されたリソースブロックである。ある物理上りリンクチャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。
 次に、サブキャリア間隔設定μについて説明する。上述のようにNRでは、複数のOFDMヌメロロジーがサポートされる。あるBWPにおいて、サブキャリア間隔設定μ(μ=0,1,...,5)と、サイクリックプレフィックス長は、下りリンクのBWPに対して上位レイヤ(上位層)で与えられ、上りリンクのBWPにおいて上位レイヤで与えられる。ここで、μが与えられると、サブキャリア間隔Δfは、Δf=2^μ・15(kHz)で与えられる。
 サブキャリア間隔設定μにおいて、スロットは、サブフレーム内で0からN^{subframe,μ}_{slot}-1に昇順に数えられ、フレーム内で0からN^{frame,μ}_{slot}-1に昇順に数えられる。スロット設定およびサイクリックプレフィックスに基づいてN^{slot}_{symb}の連続するOFDMシンボルがスロット内にある。N^{slot}_{symb}は14である。サブフレーム内のスロットn^{μ}_{s}のスタートは、同じサブフレーム内のn^{μ}_{s} N^{slot}_{symb}番目のOFDMシンボルのスタートと時間でアラインされている。
 次に、サブフレーム、スロット、ミニスロットについて説明する。図4は、サブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボル含まれる。下りリンクスロットはPDSCHマッピングタイプAと称されてよい。上りリンクスロットはPUSCHマッピングタイプAと称されてよい。
 ミニスロット(サブスロットと称されてもよい)は、スロットに含まれるOFDMシンボル数よりも少ないOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。
 図5は、スロットフォーマットの一例を示す図である。ここでは、サブキャリア間隔15kHzにおいてスロット長が1msの場合を例として示している。同図において、Dは下りリンク、Uは上りリンクを示している。同図に示されるように、ある時間区間内(例えば、システムにおいて1つのUEに対して割り当てなければならない最小の時間区間)においては、
・下りリンクシンボル
・フレキシブルシンボル
・上りリンクシンボル
のうち1つまたは複数を含んでよい。なお、これらの割合はスロットフォーマットとして予め定められてもよい。また、スロット内に含まれる下りリンクのOFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてもよい。また、スロット内に含まれる上りリンクのOFDMシンボルまたはDFT-S-OFDMシンボル数またはスロット内のスタート位置および終了位置で定義されてよい。なお、スロットをスケジューリングされることを参照信号とスロット境界の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。
 端末装置1は、下りリンクシンボルまたはフレキシブルシンボルで下りリンク信号または下りリンクチャネルを受信してよい。端末装置1は、上りリンクシンボルまたはフレキシブルシンボルで上りリンク信号または下りリンクチャネルを送信してよい。
 図5(a)は、ある時間区間(例えば、1UEに割当可能な時間リソースの最小単位、またはタイムユニットなどとも称されてよい。また、時間リソースの最小単位を複数束ねてタイムユニットと称されてもよい。)で、全て下りリンク送信に用いられている例であり、図5(b)は、最初の時間リソースで例えばPDCCHを介して上りリンクのスケジューリングを行い、PDCCHの処理遅延及び下りから上りの切り替え時間、送信信号の生成を含むフレキシブルシンボルを介して上りリンク信号を送信する。図5(c)は、最初の時間リソースでPDCCHおよび/または下りリンクのPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介してPUSCHまたはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号はHARQ-ACKおよび/またはCSI、すなわちUCIの送信に用いられてよい。図5(d)は、最初の時間リソースでPDCCHおよび/またはPDSCHの送信に用いられ、処理遅延及び下りから上りの切り替え時間、送信信号の生成のためのギャップを介して上りリンクのPUSCHおよび/またはPUCCHの送信に用いられる。ここで、一例としては、上りリンク信号は上りリンクデータ、すなわちUL-SCHの送信に用いられてもよい。図5(e)は、全て上りリンク送信(PUSCHまたはPUCCH)に用いられている例である。
 上述の下りリンクパート、上りリンクパートは、LTEと同様に複数のOFDMシンボルで構成されてよい。
 図6は、ビームフォーミングの一例を示した図である。複数のアンテナエレメントは1つの送信ユニット(TXRU: Transceiver unit)50に接続され、アンテナエレメント毎の位相シフタ51によって位相を制御し、アンテナエレメント52から送信することで送信信号に対して任意の方向にビームを向けることができる。典型的には、TXRUがアンテナポートとして定義されてよく、端末装置1においてはアンテナポートのみが定義されてよい。位相シフタ51を制御することで任意の方向に指向性を向けることができるため、基地局装置3は端末装置1に対して利得の高いビームを用いて通信することができる。
 以下、帯域部分(BWP)について説明する。BWPは、キャリアBWPとも称される。BWPは、下りリンクと上りリンクのそれぞれに設定されてよい。BWPは、共通リソースブロックの連続するサブセットから選択された連続する物理リソースの集合として定義される。端末装置1は、ある時間に1つの下りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。端末装置1は、ある時間に1つの上りリンクキャリアBWPが活性化される4つまでのBWPを設定されうる。キャリアアグリゲーションの場合には、BWPは各サービングセルで設定されてもよい。このとき、あるサービングセルにおいてBWPが1つ設定されていることを、BWPが設定されていないと表現されてもよい。また、BWPが2つ以上設定されていることをBWPが設定されていると表現されてもよい。
<MAC entity動作>
 活性化されたサービングセルにおいて、常に一つのアクティブな(活性化された)BWPがある。あるサービングセルに対するBWP切り替え(BWP switching)は、インアクティブな(非活性化された)BWPを活性化(activate)し、アクティブな(活性化された)BWPを非活性化(deactivate)するために使用される。あるサービングセルに対するBWP切り替え(BWP switching)は、下りリンク割り当てまたは上りリンクグラントを示すPDCCHによって制御される。あるサービングセルに対するBWP切り替え(BWP switching)は、さらに、BWPインアクティブタイマー(BWP inactivity timer)や、ランダムアクセスプロシージャの開始時にMACエンティティ自身によって制御されてもよい。SpCell(PCellまたはPSCell)の追加または、SCellの活性化において、一つのBWPが、下りリンク割り当てまたは上りリンクグラントを示すPDCCHを受信することなしに初期的にアクティブである。初期的にアクティブなBWPは、基地局装置3から端末装置1に送られるRRCメッセージで指定されるかもしれない。あるサービングセルに対するアクティブなBWPは、基地局装置3から端末装置1に送られるRRCまたはPDCCHで指定される。アンペアードスペクトラム(Unpaired spectrum)(TDDバンドなど)では、DL BWPとUL BWPはペアされていて、BWP切り替えは、ULとDLに対して共通である。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、アクティブなBWPにおいて、端末装置1のMACエンティティは、ノーマル処理を適用する。ノーマル処理には、UL-SCHを送信する、RACHを送信する、PDCCHをモニタする、PUCCHを送信する、SRSを送信する、およびDL-SCHを受信することを含む。BWPが設定されているアクティベートされたサービングセルのそれぞれに対する、インアクティブなBWPにおいて、端末装置1のMACエンティティは、UL-SCHを送信しない、RACHを送信しない、PDCCHをモニタしない、PUCCHを送信しない、SRSを送信しない、およびDL-SCHを受信しない。あるサービングセルが非活性化された場合、アクティブなBWPは、存在しないようにしてもよい(例えば、アクティブなBWPは非活性化される)。
<RRC動作>
 RRCメッセージ(報知されるシステム情報や、専用RRCメッセージで送られる情報)に含まれるBWPインフォメーションエレメント(IE)は、BWPを設定するために使われる。基地局装置3から送信されたRRCメッセージは、端末装置1によって受信される。それぞれのサービングセルに対して、ネットワーク(基地局装置3など)は、少なくとも下りリンクのBWPと1つ(もしサービングセルが上りリンクの設定された場合など)または2つ(付録のアップリンク(supplementary uplink)が使われる場合など)の上りリンクBWPを含む少なくとも初期BWP(initial BWP)を、端末装置1に対して、設定する。さらに、ネットワークは、追加の上りリンクBWPや下りリンクBWPをあるサービングセルに対して設定するかもしれない。BWP設定は、上りリンクパラメータと下りリンクパラメータに分けられる。また、BWP設定は、共通(common)パラメータと専用(dedicated)パラメータに分けられる。共通パラメータ(BWP上りリンク共通IEやBWP下りリンク共通IEなど)は、セル特有である。プライマリセルの初期BWPの共通パラメータは、システム情報でも提供される。他のすべてのサービングセルに対しては、ネットワークは専用信号で共通パラメータを提供する。BWPは、BWP IDで識別される。初期BWPは、BWP IDが0である。他のBWPのBWP IDは、1から4までの値を取る。
 上りリンクBWPの専用パラメータは、SRS設定を含む。上りリンクBWPの専用パラメータに対応する上りリンクBWPが、その上りリンクBWPの専用パラメータに含まれるSRS設定に対応する一つまたは複数のSRSに関連付けられる。
 端末装置1は、1つのプライマリセルと15までのセカンダリセルが設定されてよい。
 以下、ランダムアクセス手順(Random Access procedure)について説明する。ランダムアクセス手順は、競合ベース(CB:Contention Based)と非競合ベース(non-CB)(CF:Contention Freeと称してもよい)の2つの手順に分類される。競合ベースランダムアクセスはCBRA、非競合ベースランダムアクセスはCFRAとも称される。ランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。
 競合ベースのランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たした場合、端末装置1のMACエンティティは、ランダムアクセス手順を開始する。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たしたかどうかを判断し、ランダムアクセス手順を開始する手続きを、ビーム失敗リカバリ手順と称してもよい。このランダムアクセス手順は、ビーム失敗リカバリ要求のためのランダムアクセス手順である。MACエンティティによって開始されるランダムアクセス手順は、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順を含む。ビーム失敗リカバリ要求のためのランダムアクセス手順は、MACエンティティによって開始されるランダムアクセス手順と考えられるかもしれないし、考えられないかもしれない。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きによって開始されるランダムアクセス手順で、異なる手続きを行う場合があるため、ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、区別するようにしてもよい。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、MACエンティティによって開始されるランダムアクセス手順としてもよい。ある実施形態では、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順をMACエンティティによって開始されるランダムアクセス手順と称し、ビーム失敗リカバリ要求のためのランダムアクセス手順を下位レイヤからのビーム失敗の通知によるランダムアクセス手順と称するようにしてもよい。以下、下位レイヤからのビーム失敗の通知を受けた場合のランダムアクセス手順の開始は、ビーム失敗リカバリ要求のためのランダムアクセス手順の開始を意味してもよい。
 端末装置1は、基地局装置3と接続(通信)していない状態からの初期アクセス時、および/または、基地局装置3と接続中であるが端末装置1に送信可能な上りリンクデータあるいは送信可能なサイドリンクデータが発生した場合のスケジューリングリクエスト時などにおいて競合ベースのランダムアクセス手順を行なう。ただし、競合ベースのランダムアクセスの用途はこれらに限定されない。端末装置1に送信可能な上りリンクデータが発生していることは、送信可能な上りリンクデータに対応するバッファステータスレポートがトリガーされていることを含んでもよい。端末装置1に送信可能な上りリンクデータが発生していることは、送信可能な上りリンクデータの発生に基づいてトリガーされたスケジューリングリクエストがペンディングされていることを含んでもよい。端末装置1に送信可能なサイドリンクデータが発生していることは、送信可能なサイドリンクデータに対応するバッファステータスレポートがトリガーされていることを含んでもよい。端末装置1に送信可能なサイドリンクデータが発生していることは、送信可能なサイドリンクデータの発生に基づいてトリガーされたスケジューリングリクエストがペンディングされていることを含んでもよい。
 非競合ベースのランダムアクセス手順は、端末装置1が基地局装置3からランダムアクセス手順の開始を指示する情報を受けた場合に開始されてもよい。非競合ベースランダムアクセス手順は、端末装置1のMACレイヤが、下位レイヤからビーム失敗の通知を受けた場合に開始されてもよい。非競合ベースのランダムアクセスは、基地局装置3と端末装置1とが接続中であるがハンドオーバや移動局装置の送信タイミングが有効でない場合に、迅速に端末装置1と基地局装置3との間の上りリンク同期をとるために用いられてよい。非競合ベースランダムアクセスは、端末装置1においてビーム失敗が発生した場合にビーム失敗リカバリ要求を送信するために用いられてよい。ただし、非競合ベースのランダムアクセスの用途はこれらに限定されない。ただし、該ランダムアクセス手順の開始を指示する情報はメッセージ0、Msg.0、NR-PDCCHオーダー、PDCCHオーダーなどと称されてもよい。ただし、端末装置1は、メッセージ0で指示されたランダムアクセスプリアンブルインデックスが所定の値(例えば、インデックスを示すビットが全て0である場合)であった場合に、端末装置1が利用可能なプリアンブルのセットの中からランダムに1つを選択して送信する競合ベースのランダムアクセス手順を行なってもよい。
 端末装置1は、ランダムアクセス手順を開始する(initiate)前に上位層を介してランダムアクセス設定情報を受信する。該ランダムアクセス設定情報には、プリアンブル送信に利用可能なリソースやプリアンブル送信の各種パラメータ(送信回数や電力設定)、関連付けられるSS/PBCHブロックの情報またはそれらの情報を決定/設定するための情報が含まれてよい。ただし、ランダムアクセス設定情報には、セル内で共通の情報が含まれてもよく、端末毎に異なる専用(dedicated)の情報が含まれてもよい。ただし、ランダムアクセス設定情報の一部は、SSバーストセット内の全てのSS/PBCHブロックに関連付けられていてもよい。ただし、ランダムアクセス設定情報の一部は設定された1つまたは複数のCSI-RSの全てに関連付けられてもよい。ただし、ランダムアクセス設定情報の一部は1つの下りリンク送信ビーム(あるいはビームインデックス)に関連付けられていてもよい。ただし、ランダムアクセス設定情報の一部はSSバーストセット内の1つのSS/PBCHブロックに関連付けられていてもよい。ただし、ランダムアクセス設定情報の一部は設定された1つまたは複数のCSI-RSのうちの1つに関連付けられてもよい。ただし、ランダムアクセス設定情報の一部は1つの下りリンク送信ビーム(あるいはビームインデックス)に関連付けられていてもよい。ただし、1つのSS/PBCHブロック、1つのCSI-RS、および/または1つの下りリンク送信ビームに関連付けられた情報には、対応する1つのSS/PBCHブロック、1つのCSI-RS、および/または1つの下りリンク送信ビームを特定するためのインデックス情報(例えば、SSBインデックス、ビームインデックス、あるいはQCL設定インデックスであってよい)が含まれてもよい。ただし、SSバーストセット内のSS/PBCHブロック毎にランダムアクセス設定情報が設定されてもよいし、SSバーストセット内の全てのSS/PBCHブロックで共通の1つのランダムアクセス設定情報が設定されてもよい。端末装置1は、下りリンク信号によって1つまたは複数のランダムアクセス設定情報を受信し、該1つまたは複数のランダムアクセス設定情報のそれぞれがSS/PBCHブロック(CSI-RSまたは下りリンク送信ビームであってもよい)に関連付けられていてもよい。端末装置1は、受信した1つまたは複数のSS/PBCHブロック(CSI-RSまたは下りリンク送信ビームであってもよい)のうちの1つを選択し、選択したSS/PBCHブロックに関連付けられたランダムアクセス設定情報を用いてランダムアクセス手順を行なってもよい。
 端末装置1が基地局装置3からメッセージ0を受信した場合のランダムアクセス手順は、端末装置1と基地局装置3との間の複数のメッセージの送受信により実現される。
 <メッセージ0>
 基地局装置3は、端末装置1に対して、下りリンクの専用シグナリング(dedicated signalling)(メッセージ0あるいはMsg0とも称される)によって、1つまたは複数の非競合ベースランダムアクセスプリアンブルを割り当てる。ただし、非競合ベースランダムアクセスプリアンブルは、ブロードキャストシグナリングによって通知されたセットに含まれていないランダムアクセスプリアンブルのことであってもよい。基地局装置3は、複数の参照信号を送信している場合に、端末装置1に対して、該複数の参照信号の少なくとも一部のそれぞれに対応する複数の非競合ベースランダムアクセスプリアンブルを割り当ててもよい。メッセージ0は、基地局装置3から端末装置1へランダムアクセス手順の開始を指示する指示情報であってもよい。メッセージ0は、ハンドオーバのために、ターゲットの基地局装置3によって生成され、元の(source)基地局装置3によって送信されたハンドオーバ(HO)コマンドであってもよい。メッセージ0は、セカンダリセルグループの変更のために、基地局装置3によって送信されたSCG変更コマンドあってもよい。ハンドオーバコマンドやSCG変更コマンドは、同期再設定とも称される。この同期再設定(reconfiguration with syncなど)は、RRCメッセージで送信される。同期再設定は、PCellへの同期をともなうRRC再設定(ハンドオーバコマンドなど)やPSCellへの同期をともなうRRC再設定(SCG変更コマンドなど)に使用される。メッセージ0は、RRC信号および/またはPDCCHで送信されてもよい。PDCCHで送信されるメッセージ0は、PDCCHオーダーと称されてもよい。PDCCHオーダーは、あるDCIフォーマットのDCIで送信されてよい。メッセージ0は、非競合ベースランダムアクセスプリアンブルを割り当てる情報を含んでいてもよい。メッセージ0で通知されるビット情報には、プリアンブルインデックス情報、SSBインデックス情報、マスクインデックス情報(RACH機会インデックスと称されてもよい)、SUL(Supplemental UpLink)情報、BWPインデックス情報、SRI(SRS Resource Indicator)情報、参照信号選択指示情報(Reference Signal Selection Indicator)、ランダムアクセス設定選択指示情報(Random Access Configuration Selection Indicator)、RSタイプ選択指示情報、単一/複数メッセージ1送信識別情報(Single/Multiple Msg.1 Transmission Indicator)、および/または、TCIが含まれてもよい。プリアンブルインデックス情報は、ランダムアクセスプリアンブルの生成に用いられる1つまたは複数のプリアンブルインデックスを示す情報である。ただし、プリアンブルインデックス情報が所定の値である場合に、端末装置1は、競合ベースのランダムアクセス手順で利用可能な1つまたは複数のランダムアクセスプリアンブルから1つをランダムに選択してもよい。SSBインデックス情報は、基地局装置3が送信する1つまたは複数のSS/PBCHブロックのいずれかひとつに対応するSSBインデックスを示す情報である。メッセージ0を受信した端末装置1は、SSBインデックス情報で示されるSSBインデックスがマップされたPRACH機会のグループを特定する。各PRACH機会にマップされるSSBインデックスは、PRACH設定インデックスと上位レイヤパラメータSB-perRACH-Occasion、および上位レイヤパラメータcb-preamblePerSSBによって決まる。マスクインデックス情報は、ランダムアクセスプリアンブルの送信に利用可能なPRACH機会のインデックスを示す情報である。ただし、マスクインデックス情報により示されるPRACH機会は1つの特定のPRACH機会であってもよいし、選択可能な複数のPRACH機会を示すものであってもよいし、異なるインデックスが1つのPRACH機会と選択可能な複数のPRACH機会のそれぞれを示してもよい。マスクインデックス情報は、prach-ConfigurationIndexで定められる1つまたは複数のPRACH機会のグループの一部のPRACH機会を示す情報であってもよい。ただし、マスクインデックス情報は、SSBインデックス情報で特定される特定のSSBインデックスがマップされたPRACH機会のグループ内の一部のPRACH機会を示す情報であってもよい。
 <メッセージ1>
 メッセージ0を受信した端末装置1は、割り当てられた非競合ベースランダムアクセスプリアンブルを、物理ランダムアクセスチャネルを介して送信する。この送信されるランダムアクセスプリアンブルをメッセージ1またはMsg1と称してもよい。ランダムアクセスプリアンブルは、複数のシーケンスによって基地局装置3へ情報を通知するように構成される。例えば、64種類のシーケンスが用意されている場合、6ビットの情報(ra-PreambleIndexまたはプリアンブルインデックスであってよい)を基地局装置3へ示すことができる。この情報は、ランダムアクセスプリアンブル識別子(Random Access preamble Identifier)として示され、端末装置1はこの情報に対応するランダムアクセス応答(メッセージ2)をモニタすることで、基地局装置3から自装置宛てのメッセージ2を特定することができる。プリアンブルシーケンスは、プリアンブルインデックスを用いるプリアンブルシーケンスセットの中から選択される。端末装置1のMACレイヤにおけるランダムアクセスリソース(時間/周波数リソースおよび/またはプリアンブルインデックスを含む)の選択手順について説明する。端末装置1は、送信するランダムアクセスプリアンブルのプリアンブルインデックス(PREAMBLE_INDEXと称されてもよい)に対して下記の手順で値をセットする。端末装置1は、(1)下位レイヤからのビーム失敗の通知によってランダムアクセス手順が開始され、(2)RRCパラメータでSS/PBCHブロック(SSBとも称される)またはCSI-RSに関連付けられたビーム失敗リカバリ要求のための非競合ベースランダムアクセスのためのランダムアクセスリソース(PRACH機会であってもよい)が提供されており、かつ(3)一つ以上のSS/PBCHブロックまたはCSI-RSのRSRPが所定の閾値を超えている場合に、RSRPが前記所定の閾値を超えているSS/PBCHブロックまたはCSI-RSを選択し、該選択されたSS/PBCHブロックに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。端末装置1は、(1)PDCCHまたはRRCでra-PreambleIndexが提供され、(2)該ra-PreambleIndexの値が競合ベースランダムアクセス手順を指示する値(例えば0b000000)ではなく、かつ(3)RRCでSS/PBCHブロックまたはCSI-RSと非競合ベースランダムアクセスのためのランダムアクセスリソースが関連付けられていない場合に、シグナルされたra-PreambleIndexをプリアンブルインデックスにセットする。0bxxxxxxは、6ビットの情報フィールドに配置されているビット列を意味している。端末装置1は、(1)RRCでSS/PBCHブロックと非競合ベースランダムアクセスのためのランダムアクセスリソースが関連付けられており、かつ(2)関連付けられたSS/PBCHブロックのうちRSRPが所定の閾値を超えるSS/PBCHブロックが1つ以上利用可能である場合に、RSRPが前記所定の閾値を超えているSS/PBCHブロックの1つを選択し、該選択されたSS/PBCHブロックに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。
 端末装置1は、(1)RRCでCSI-RSと非競合ベースランダムアクセスのためのランダムアクセスリソースが関連付けられており、かつ(2)関連付けられたCSI-RSのうちRSRPが所定の閾値を超えるCSI-RSが1つ以上利用可能である場合に、RSRPが前記所定の閾値を超えているCSI-RSの1つを選択し、該選択されたCSI-RSに関連付けられたra-PreambleIndexをプリアンブルインデックスにセットする。端末装置1は、上記条件のいずれの条件も満たさない場合、競合ベースランダムアクセス手順を行なう。競合ベースランダムアクセス手順においては、端末装置1は、設定された閾値を超えるSS/PBCHブロックのRSRPを持つSS/PBCHブロックを選択し、プリアンブルグループの選択を行う。SS/PBCHブロックとランダムアクセスプリアンブルの関係が設定されている場合は、端末装置1は、選択されたSS/PBCHブロックと選択されたプリアンブルグループに関連付けられた1つまたは複数のランダムアクセスプリアンブルからランダムにra-PreambleIndexを選択し、選択されたra-PreambleIndexをプリアンブルインデックスにセットする。ただし、端末装置1は、メッセージ0によって示されるra-PreambleIndexが所定の値(例えば、0b000000)である場合に競合ベースランダムアクセス手順を行なってもよい。ただし、端末装置1は、メッセージ0によって示されるra-PreambleIndexが所定の値(例えば、0b000000)である場合に競合ベースランダムアクセスで利用可能な1つまたは複数のランダムアクセスプリアンブルインデックスからランダムに1つを選択してもよい。基地局装置3は、RRCメッセージで、SS/PBCHブロック毎のリソース設定および/またはCSI-RS毎のリソース設定を、端末装置1に送信してもよい。端末装置1は、RRCメッセージで、SS/PBCHブロック毎のリソース設定および/またはCSI-RS毎のリソース設定を、基地局装置3から受信する。基地局装置3は、メッセージ0で、マスクインデックス情報および/またはSSBインデックス情報を端末装置1に送信してもよい。端末装置1は、メッセージ0で、マスクインデックス情報および/またはSSBインデックス情報を、基地局装置3から取得する。端末装置1は、ある条件に基づいて、参照信号(SS/PBCHブロックまたはCSI-RS)を選択してもよい。端末装置1は、次に利用可能なPRACH機会を、マスクインデックス情報、SSBインデックス情報、RRCパラメータで設定されるリソース設定、および選択された参照信号(SS/PBCHブロックまたはCSI-RS)に基づいて特定してもよい。端末装置1のMACエンティティは、選択されたPRACH機会を使用してランダムアクセスプリアンブルを送信するように物理レイヤに指示してもよい。ただし、メッセージ0によってSRI設定情報が示されている場合、端末装置1は、SRI設定情報に示されている1つまたは複数のSRS送信用リソースに対応するアンテナポートおよび/または上りリンク送信ビームを用いて1つまたは複数のランダムアクセスプリアンブルを送信する。
 <メッセージ2>
 メッセージ1を受信した基地局装置3は、端末装置1に送信を指示するための上りリンクグラントを含むランダムアクセス応答を生成し、生成したランダムアクセス応答をDL-SCHで端末装置1へ送信する。ランダムアクセス応答を、メッセージ2またはMsg2と称してもよい。また、基地局装置3は、受信したランダムアクセスプリアンブルから端末装置1と基地局装置3との間の送信タイミングのずれを算出し、当該のずれを調整するための送信タイミング調整情報(Timing Advance Command)をメッセージ2に含める。また、基地局装置3は、受信したランダムアクセスプリアンブルに対応したランダムアクセスプリアンブル識別子をメッセージ2に含める。また、基地局装置3は、ランダムアクセスプリアンブルを送信した端末装置1宛てのランダムアクセス応答を示すためのRA-RNTIを、下りリンクのPDCCHで送信する。RA-RNTIは、ランダムアクセスプリアンブルを送信した物理ランダムアクセスチャネルの周波数および時間の位置情報に応じて決定される。ここで、メッセージ2(下りリンクのPSCH)には、ランダムアクセスプリアンブルの送信に使用された上りリンク送信ビームのインデックスが含まれてもよい。また、下りリンクのPDCCHおよび/またはメッセージ2(下りリンクのPSCH)を用いてメッセージ3の送信に使用される上りリンク送信ビームを決定するための情報が送信されてもよい。ここで、メッセージ3の送信に使用される上りリンク送信ビームを決定するための情報には、ランダムアクセスプリアンブルの送信に使用されたプリコーディングのインデックスからの差分(調整、補正)を示す情報が含まれてもよい。また、ランダムアクセス応答には、メッセージ3の送信電力に用いられる電力制御調整値に対する補正値を示す送信電力制御コマンド(TPCコマンド)が含まれてもよい。
 以上の複数のメッセージの送受信により、端末装置1は基地局装置3との同期をとり、基地局装置3に対する上りリンクデータ送信を行なうことができる。
 以下、本実施形態におけるスロットアグリゲーション送信(slot aggregation transmission、multi-slot transmission)について説明する。
 上位層のパラメータpusch-AggregationFactorは、データ(トランスポートブロック)の繰り返し送信(repetition transmission)の回数を示すために用いられる。上位層のパラメータpusch-AggregationFactorは2、4、8の内いずれかの値を示す。基地局装置3は、データ送信の繰り返しの回数を示す上位層のパラメータpusch-AggregationFactorを端末装置1に送信してもよい。基地局装置3は、pusch-AggregationFactorを用いて、端末装置1にトランスポートブロックの送信を所定の回数に繰り返させることができる。端末装置1は、基地局装置3から上位層のパラメータpusch-AggregationFactorを受信し、該pusch-AggregationFactorに示される繰り返しの回数を用いて、トランスポートブロックの送信を繰り返してもよい。ただし、端末装置1は、基地局装置からpusch-AggregationFactorを受信しない場合に、トランスポートブロックの繰り返し送信の回数が1とみなしてもよい。つまり、この場合に、端末装置1は、PDCCHがスケジュールするそのトランスポートブロックを1回のみ送信してもよい。つまり、端末装置1は、基地局装置からpusch-AggregationFactorを受信しない場合に、PDCCHがスケジュールするそのトランスポートブロックに対して、スロットアグリゲーション送信(マルチスロット送信)を行わなくてもよい。
 具体的に言うと、端末装置1は、C-RNTI、MCS-C-RNTIでスクランブルされたCRCが付加されるDCIフォーマットを含むPDCCHを受信し、該PDCCHによってスケジュールされるPUSCHを送信してもよい。端末装置1にはpusch-AggregationFactorが設定されている場合、端末装置1は、PUSCHが最初に送信されるスロットからの連続的なN個のスロットでPUSCHをN回に送信してもよい。スロットごとで一回のPUSCH送信(トランスポートブロックの送信)が行われてもよい。つまり、同じトランスポートブロックの送信(繰り返し送信)は1スロット内で1回しか行われない。Nの値はpusch-AggregationFactorから示される。端末装置1にpusch-AggregationFactorが設定されていない場合、Nの値は1であってもよい。PUSCHが最初に送信されるスロットは、PDCCHが検出されるスロット等によって与えられてもよい。一例として、(式1)Floor(n*2μPUSCH/2μPDCCH)+Kとして与えてもよい。関数Floor(A)は、Aを上回らない最大の整数を出力する。ここでnは、PUSCHをスケジュールするPDCCHが検出されるスロットであり、μPUSCHはPUSCHに対するサブキャリア間隔設定、μPDCCHはPDCCHに対するサブキャリア間隔設定であるとする。またKの値はj、j+1、j+2、または、j+3の内、何れかである。jの値は、PUSCHのサブキャリア間隔に対して特定される値である。例えば、PUSCHが適用されるサブキャリア間隔が15kHzまたは30kHzである場合、jの値は1スロットであってもよい。例えば、PUSCHが適用されるサブキャリア間隔が60kHzである場合、jの値は2スロットであってもよい。例えば、PUSCHが適用されるサブキャリア間隔が120kHzである場合、jの値は3スロットであってもよい。
 さらに端末装置1は、PUSCH時間領域リソース割り当てに関する設定および/または指示を受信してもよい。PUSCH時間領域リソース割り当てに関する設定および/または指示は、PUSCHのスタートシンボルS、および、連続的な割り当てられるシンボル数Lの有効な組み合わせを与えるインデックスであってもよく、スタートと長さインジケータSLIV(start and length indicator)と称してもよい。またPUSCHをスケジュールするPDCCHに基づき与えられたPUSCH時間領域リソース割り当ては連続的なN個のスロットに適用されてもよい。つまり、同じシンボル割り当て(同じスタートシンボルSと同じ連続的に割り当てられるシンボル数L)が連続的なN個のスロットに適用されてもよい。端末装置1は、PUSCHが最初に送信されるスロットからの連続的なN個のスロットにわたってトランスポートブロックを繰り返して送信してもよい。端末装置1は、各スロットにおいて同じシンボル割り当て(シンボルアロゲーション)を用いてトランスポートブロックを繰り返して送信してもよい。上位層のパラメータpusch-AggregationFactorが設定されている場合に端末装置1が行うスロットアグリゲーション送信は、第1のスロットアグリゲーション送信と称してもよい。つまり、上位層のパラメータpusch-AggregationFactorは、第1のスロットアグリゲーション送信のための繰り返し送信(repetition transmission)の回数を示すために用いられる。上位層のパラメータpusch-AggregationFactorは、第1のアグリゲーション送信パラメータとも呼ぶ。ここで、スロットを特定する計算式に置いて、Floor関数の代わりにCeiling関数を利用してもよい。関数Ceiling(A)は、Aを下回らない最小の整数を出力する。
 第1のアグリゲーション送信では、第1回のトランスミッションオケージョン(0th transmission occasion、送信機会)がPUSCHが最初に送信されるスロットにあってもよい。ここで、トランスミッションオケージョンは上りリンク区間(UL period)と称してもよい。第2回のトランスミッションオケージョン(1st transmission occasion)がPUSCHが最初に送信されるスロットの次のスロットにあってもよい。第N回のトランスミッションオケージョン((N-1)th transmission occasion)がPUSCHが最初に送信されるスロットからN番目のスロットにあってもよい。トランスポートブロックの送信に適用される冗長バージョン(Redundancy Version)は、そのトランスポートブロックの第n回のトランスミッションオケージョン((n-1)th transmission occasion)、および、PUSCHをスケジュールするDCIから示されるrvidに基づいて決定されてもよい。冗長バージョンのシーケンスは{0、2,3,1}である。変数rvidは、冗長バージョンのシーケンスへのインデックスである。該変数は4でモジュロして更新されている。冗長バージョンは、PUSCHで送信されるトランスポートブロックの符号化(レートマッチング)のために用いられる。冗長バージョンは、0、2、3、1の順にインクリメントされてもよい。トランスポートブロックの繰り返しの送信は、冗長バージョン(Redundancy Version)の順に行われてもよい。
 あるトランスミッションオケージョンに対するシンボル割り当て内の少なくとも1つのシンボルが上位層のパラメータから下りリンクシンボルに示された場合、端末装置1は、該トランスミッションオケージョンにあるスロットにおいて、トランスポートブロックを送信しなくてもよい。
 本実施形態において、基地局装置3は、端末装置1に対して上位層のパラメータpusch-AggregationFactor-r16を送信してもよい。上位層のパラメータpusch-AggregationFactor-r16は、データ(トランスポートブロック)の繰り返し送信(repetition transmission)の回数を示すために用いられてもよい。上位層のパラメータpusch-AggregationFactor-r16は、スロットアグリゲーション送信、および/または、ミニスロットアグリゲーション送信のための繰り返し送信の回数を示すために用いられてもよい。スロットアグリゲーション送信とミニスロットアグリゲーション送信は後述する。
 本実施形態において、pusch-AggregationFactor-r16は、例えば、n1, n2, n3の内何れかの値に設定される。n1, n2, n3それぞれの値は、2、4、8であってもよいし、他の値であってもよい。n1, n2, n3は、トランスポートブロックの繰り返し送信の回数を示す。つまり、pusch-AggregationFactor-r16は、1つの繰り返し送信の回数の値を示してもよい。トランスポートブロックの繰り返し送信の回数は、スロット内の繰り返し送信回数(Nrepなど)でもよいし、スロット内およびスロット間を含めた繰り返し送信回数(Ntotalなど)であってもよいし、スロット間の繰り返し送信回数(Ntotalなど)でもよい。または、基地局装置3は、端末装置1に繰り返し送信の回数をさらに柔軟に設定できるよう、1つより多いエレメントを含むpusch-AggregationFactor-r16を端末装置1に送信してもよい。エレメント(インフォメーションエレメント、エントリ)は、トランスポートブロックの繰り返し送信の回数を示すために用いられてもよい。つまり、pusch-AggregationFactor-r16は、1つより多い複数の繰り返し送信の回数を示してもよい。本実施形態において、上位層のパラメータpusch-AggregationFactor-r16が設定されている場合に端末装置1が行うスロットアグリゲーション送信は、第2のアグリゲーション送信と称してもよい。つまり、上位層のパラメータpusch-AggregationFactor-r16は、少なくとも第2のアグリゲーション送信のための繰り返し送信(repetition transmission)の回数を示すために用いられてもよい。上位層のパラメータpusch-AggregationFactor-r16は、第2のアグリゲーション送信パラメータとも呼ぶ。そして、基地局装置3は、トランスポートブロックをスケジュールするDCIに含まれるフィールドを介して、何れかのエレメントを示し、そのトランスポートブロックの繰り返し送信の回数を端末装置1に通知してもよい。具体的手順は後述する。また、基地局装置3は、MAC CE(MAC Control Element)を介して、何れかのエレメントを示し、そのトランスポートブロックの繰り返し送信の回数を端末装置1に通知してもよい。即ち、基地局装置3は、そのDCIに含まれるフィールドおよび/またはMAC CEを介して、何れかのエレメントを示し、動的に繰り返し送信の回数を端末装置1に通知してもよい。端末装置1に動的繰り返し回数の機能が適用されることは、端末装置1が動的に繰り返し送信の回数を基地局装置3から通知されることを意味してもよい。
 第1の例として、基地局装置3は、端末装置1に対してpusch-AggregationFactorとpusch-AggregationFactor-r16を送信しなくてもよい。つまり、端末装置1にはpusch-AggregationFactorとpusch-AggregationFactor-r16が設定されなくてもよい。別の言い方で言えば、端末装置1はpusch-AggregationFactorとpusch-AggregationFactor-r16を含まない(を設定しない)RRCメッセージを基地局装置3から受信してもよい。この場合に、端末装置1は、前述のような(式1)によって与えられるスロットでPUSCHを送信してもよい。別の言い方で言うと、トランスポートブロックの繰り返し送信の回数は1であってもよい。つまり、端末装置1は、スロットアグリゲーション送信および/またはミニスロットアグリゲーション送信を行わなくてもよい。
 また、第2の例として、基地局装置3は、端末装置1に対してpusch-AggregationFactorを送信し、pusch-AggregationFactor-r16を送信しなくてもよい。つまり、端末装置1にはpusch-AggregationFactorが設定され、pusch-AggregationFactor-r16が設定されなくてもよい。別の言い方で言えば、端末装置1はpusch-AggregationFactorを含み(を設定し)、pusch-AggregationFactor-r16を含まない(を設定しない)RRCメッセージを基地局装置3から受信してもよい。この場合に、端末装置1は、前述のような(式1)によって与えられるスロットからの連続的なN個のスロットでPUSCHをN回送信してもよい。つまり、トランスポートブロックの繰り返し送信の回数は、pusch-AggregationFactorによって示されるNであってもよい。端末装置1は、DCIがスケジュールするPUSCHに対して、第1のアグリゲーション送信を行ってもよい。同じシンボル割り当てが連続的なN個のスロットに適用されてもよい。
 また、第3の例として、基地局装置3は、端末装置1に対してpusch-AggregationFactorを送信しなく、pusch-AggregationFactor-r16を送信してもよい。つまり、端末装置1にはpusch-AggregationFactorが設定されなく、pusch-AggregationFactor-r16が設定されてもよい。別の言い方で言えば、端末装置1はpusch-AggregationFactorを含まず(を設定せず)、pusch-AggregationFactor-r16を含む(を設定する)RRCメッセージを基地局装置3から受信してもよい。この場合に、端末装置1は、前述のような(式1)によって与えられるスロットからの1つまたは複数のスロットでPUSCHをM回送信してもよい。第1のアグリゲーション送信と異なって、複数のスロットが連続してもよいし、非連続になってもよい。つまり、トランスポートブロックの繰り返し送信の回数Mは、pusch-AggregationFactor-r16によって示されてもよい。同じシンボル割り当てが複数のスロットに適用されなくてもよい。つまり、第1回のトランスポートブロックの繰り返し送信に適用されるPUSCH時間領域リソース割り当て(シンボル割り当て)は、そのトランスポートブロックをスケジュールするDCIに基づいて与えられてもよい。ただし、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるPUSCHシンボル割り当ては、PUSCHをスケジュールするPDCCH(DCIなど)に基づいて与えられるシンボル割り当てと異なってもよい。これをシンボル割り当て拡張と呼ぶ。具体的に言うと、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるスタートシンボルSは、そのPDCCHに基づいて与えられるスタートシンボルSと異なってもよい(スタートシンボル拡張)。例えば、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるスタートシンボルSは、スロットの先頭である0番目のシンボルであってよい。また、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるスタートシンボルSは、PDCCHに基づいて与えられるスタートシンボルSと同じであってもよい。例えば、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるスタートシンボルSは、スロットの先頭より後で最初の利用可能なシンボルであってよい。また、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるPUSCHの連続的な割り当てられるシンボル数Lは、そのPDCCHに基づいて与えられる連続的な割り当てられるシンボル数Lと異なってもよい(シンボル数拡張)。また、第2回および/またはそれ以降のトランスポートブロックの繰り返し送信に適用されるPUSCHの連続的な割り当てられるシンボル数Lは、そのPDCCHに基づいて与えられる連続的な割り当てられるシンボル数Lと同じでもよい。
 また、第4の例として、基地局装置3は、端末装置1に対してpusch-AggregationFactorとpusch-AggregationFactor-r16を送信してもよい。つまり、端末装置1にはpusch-AggregationFactorとpusch-AggregationFactor-r16が設定されてもよい。別の言い方で言えば、端末装置1はpusch-AggregationFactorと、pusch-AggregationFactor-r16を含む(を設定する)RRCメッセージを基地局装置3から受信してもよい。基本的には、第3の例として説明したpusch-AggregationFactor-r16が設定されている際の動作である、シンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、動的繰り返し回数、および/またはミニスロットアグリゲーション送信の機能が適用される。
 上述のように、pusch-AggregationFactor-r16が設定されている際の機能が適用されない場合では、もしpusch-AggregationFactorが設定されている場合に、そのDCIでスケジュールされるPUSCH送信では第1のアグリゲーション送信が行われてもよい。つまり、端末装置1は、トランスポートブロックを連続的なN個のスロットでN回繰り返し送信してもよい。Nの値はpusch-AggregationFactorによって与えられてもよい。N個のスロットでは同じシンボルアロケーションが適用されてもよい。また、pusch-AggregationFactor-r16が設定されている際の機能が適用されない場合では、もしpusch-AggregationFactorが設定されていない場合に、そのDCIでスケジュールされるPUSCH送信が1回行われてもよい。つまり、端末装置1は、トランスポートブロックを1回送信してもよい。
 前述のように、スロットアグリゲーション送信(第1のアグリゲーション送信と第2のアグリゲーション送信におけるスロットアグリゲーション送信)では、1つの上りリンクグラントが2回または2回より多いPUSCH繰り返し送信をスケジュールしてもよい。各繰り返し送信は各連続的なスロット(または、各利用可能なスロット)で行わる。つまり、スロットアグリゲーションでは、1つのスロット(1つの利用可能なスロット)内で同じトランスポートブロックの繰り返し送信の回数が最大1回のみである。利用可能なスロットは、実際にトランスポートブロックの繰り返し送信が行われるスロットであってもよい。
 ミニスロットアグリゲーション送信では、1つの上りリンクグラントが2回または2回より多いPUSCH繰り返し送信をスケジュールしてもよい。繰り返し送信は同じスロット内で行われてもよいし、連続的な利用可能なスロットにわたって行われてもよい。該スケジュールされるPUSCH繰り返し送信には、スロット(利用可能なスロット)内のPUSCH繰り返し送信に利用可能なシンボルに基づいて、各スロット内で行われる繰り返し送信の回数は異なってもよい。つまり、ミニスロットアグリゲーション送信では、1つのスロット(1つの利用可能なスロット)内で同じトランスポートブロックの繰り返し送信の回数が1回または1回より多くてもよい。つまり、ミニスロットアグリゲーション送信では、端末装置1は、1つのスロット内で同じトランスポートブロックの1回以上の繰り返し送信を基地局装置3に送信することができる。つまり、ミニスロットアグリゲーション送信は、スロット内アグリゲーションをサポートするモードのことを意味するとも言える。ミニスロットアグリゲーション送信に、上記で説明したシンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、および/または動的繰り返し回数、が適用されてもよい。
 本実施形態において、端末装置1は、(I)上位層のパラメータ、および/または、(II)上りリンクグラントに含まれるフィールドに少なくとも基づいて、その上りリンクグラントがスケジュールされるPUSCH送信にアグリゲーション送信が適用されるかどうか、または、何れかのアグリゲーション送信タイプが適用されるかどうかを決定してもよい。アグリゲーション送信のタイプは第1のアグリゲーション送信、第2のアグリゲーション送信を含んでもよい。別の例として、第2のアグリゲーション送信を、スロットアグリゲーション送信とミニスロットアグリゲーション送信にタイプを分けてもよい。つまり、アグリゲーション送信のタイプは第1のスロットアグリゲーション送信(第1のアグリゲーション送信)、第2のスロットアグリゲーション送信(第2のアグリゲーション送信におけるスロットアグリゲーション)、および、ミニスロットアグリゲーション送信を含んでもよい。
 本実施形態の態様Aにおいて、基地局装置3は、スロットアグリゲーション送信とミニスロットアグリゲーション送信の内何れを設定するかを上位層のパラメータによって端末装置1に通知してもよい。スロットアグリゲーション送信とミニスロットアグリゲーション送信の内何れが設定されるかは、スロットアグリゲーション送信とミニスロットアグリゲーション送信の内何れが適用されるかを意味してもよい。例えば、pusch-AggregationFactorは第1のアグリゲーション送信(第1のスロットアグリゲーション送信)の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信に対して、共通のパラメータであってもよい。上位層のパラメータrepTxWithinSlot-r16はミニスロットアグリゲーション送信を示すために用いられてもよい。上位層のパラメータrepTxWithinSlot-r16が有効にセットされる場合、端末装置1は、トランスポートブロック送信にミニスロットアグリゲーション送信が適用されることとみなし、ミニスロットアグリゲーション送信を実行してもよい。つまり、端末装置1にpusch-AggregationFactor-r16が設定され、且つ、repTxWithinSlot-r16が設定されている(有効にセットされている)場合、端末装置1は、ミニスロットアグリゲーション送信が適用されることとみなしてもよい。ミニスロットアグリゲーション送信のための繰り返し送信の回数は、pusch-AggregationFactor-r16によって示されてもよい。また、端末装置1にpusch-AggregationFactor-r16が設定され、且つ、repTxWithinSlot-r16が設定されない場合、端末装置1は、第2のスロットアグリゲーション送信が適用されることとみなしてもよい。第2のスロットアグリゲーション送信のための繰り返し送信の回数は、pusch-AggregationFactor-r16によって示されてもよい。また、端末装置1にpusch-AggregationFactorが設定され、且つ、pusch-AggregationFactor-r16が設定されない場合、端末装置1は、第1のスロットアグリゲーション送信が適用されることとみなしてもよい。また、端末装置1にpusch-AggregationFactorとpusch-AggregationFactor-r16が設定されない場合、端末装置1は、アグリゲーション送信が適用されないものとみなし、上りリンクグラントがスケジュールされるPUSCHを1回送信してもよい。本実施形態において、上位層のパラメータ(例えば、repTxWithinSlot-r16)が設定されることは、上位層のパラメータ(例えば、repTxWithinSlot-r16)が有効にセットされることを意味してもよいし、上位層のパラメータ(例えば、repTxWithinSlot-r16)が基地局装置3から送信されることを意味してもよい。本実施形態において、上位層のパラメータ(例えば、repTxWithinSlot-r16)が設定されないことは、上位層のパラメータ(例えば、repTxWithinSlot-r16)が無効に設定されることを意味してもよいし、上位層のパラメータ(例えば、repTxWithinSlot-r16)が基地局装置3から送信されないことを意味してもよい。
 本実施形態の態様Bにおいて、基地局装置3は、スロットアグリゲーション送信とミニスロットアグリゲーション送信の内何れを設定するかを上位層のパラメータによって端末装置1に通知してもよい。pusch-AggregationFactorは第1のスロットアグリゲーション送信の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信の繰り返し送信の回数を示すために用いられてもよい。pusch-AggregationFactor-r16は、第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信に対して、共通のパラメータであってもよい。端末装置1にpusch-AggregationFactor-r16が設定されている場合、端末装置1に対して第2のスロットアグリゲーション送信および/またはミニスロットアグリゲーション送信が適用されてもよい。
 続いて、端末装置1は、PUSCH送信(PUSCH繰り返し送信)をスケジュールする上りリンクグラントに含まれるフィールドに基づいて、さらにスロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。一例として、上りリンクグラントに含まれるあるフィールドは、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを示すために用いられてもよい。そのフィールドが1ビットであってもよい。また、端末装置1は、基地局装置3から送信された上りリンクグラントに含まれる該フィールドに基づいて、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。端末装置1は、該フィールドが0を示した場合にスロットアグリゲーション送信が適用されることを決定し、該フィールドが1を示した場合にミニスロットアグリゲーション送信が適用されることを決定してもよい。
 また、一例として、端末装置1は、基地局装置3から送信された上りリンクグラントに含まれる‘Time domain resource assignment’フィールドに基づいて、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。前述のように、‘Time domain resource assignment’フィールドはPUSCH時間領域リソース割り当てを示すために用いられる。端末装置1は、‘Time domain resource assignment’フィールドに基づき得られた連続的な割り当てられるシンボル数Lが所定の値を超えているかどうかに基づいて、スロットアグリゲーション送信またはミニスロットアグリゲーション送信の内何れが適用されるかを決定してもよい。端末装置1は、シンボル数Lが所定の値を超えている場合に、スロットアグリゲーション送信が適用されることを決定してもよい。また、端末装置1は、シンボル数Lが所定の値を超えていない場合に、ミニスロットアグリゲーション送信が適用されることを決定してもよい。所定の値は、上位層のパラメータから示された値であってもよい。所定の値は、仕様書などで事前に定義された値であってもよい。例えば、所定の値は7シンボルであってもよい。
 端末装置1は、Ntotalを確定してもよい。Ntotalは1つの上りリンクグラントでスケジュールされる同じトランスポートブロックが繰り返し送信されるトータル回数(繰り返し送信されるトータルPUSCH数)である。別の言い方で、Ntotalは、1つの上りリンクグラントでスケジュールされる1つまたは複数のPUSCH数である。端末装置1は、Nrepを確定してもよい。Nrepは、スロット内で同じトランスポートブロックが繰り返し送信される回数(繰り返し送信されるPUSCH数)である。別の言い方で、Nrepは、1つの上りリンクグラントでスケジュールされる1つまたは複数のPUSCHに対して有るスロット内に配置される1つまたは複数のPUSCH数である。端末装置1は、Nslotsを確定してもよい。Nslotsは、1つの上りリンクグラントでスケジュールされる同じトランスポートブロックが繰り返し送信されるスロット数である。別の言い方で、Nslotsは、1つの上りリンクグラントでスケジュールされる1つまたは複数のPUSCHに対して使われるスロット数である。端末装置1は、NtotalをNrepとNslotsから導出してもよい。端末装置1は、NrepをNtotalとNslotsから導出してもよい。端末装置1は、NslotsをNrepとNtotalから導出してもよい。Nslotsは、1または2であってもよい。Nrepは、スロット間で異なる値でもよい。Nrepは、スロット間で同じ値としてもよい。
 端末装置1には上位層のパラメータfrequencyHoppingが設定(提供)されてもよい。上位層のパラメータfrequencyHoppingは、‘intraSlot’と‘interSlot’の内何れかにセットされてもよい。frequencyHoppingが‘intraSlot’にセットされている場合、端末装置1は、スロット内周波数ホッピングを伴うPUSCH送信を実行してもよい。すなわち、端末装置1にスロット内周波数ホッピングが設定されることは、frequencyHoppingが‘intraSlot’にセットされ、且つ、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が1にセットされることを意味してもよい。frequencyHoppingが‘interSlot’にセットされている場合、端末装置1は、スロット間周波数ホッピングを伴うPUSCH送信を実行してもよい。すなわち、端末装置1にスロット間周波数ホッピングが設定されることは、frequencyHoppingが‘interSlot’にセットされ、且つ、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が1にセットされることを意味してもよい。また、基地局装置3がfrequencyHoppingを端末装置1に送信しない場合、端末装置1は周波数ホッピングなしPUSCH送信を実行してもよい。すなわち、端末装置1には周波数ホッピングが設定されないことは、frequencyHoppingが送信されないことを含んでもよい。また、端末装置1には周波数ホッピングが設定されないことは、frequencyHoppingが送信されても、そのPUSCHをスケジュールするDCIに含まれる‘Frequency hopping flag’フィールドの値が0にセットされることを含んでもよい。
 本実施形態の上りリンク送信において、利用可能なシンボルは、少なくとも上位層のパラメータTDD-UL-DL-ConfigurationCommonおよび/またはTDD-UL-DL-ConfigDedicatedによってフレキシブルおよび/または上りリンクとして示されるシンボルであってもよい。すなわち、利用可能なシンボルは、上位層のパラメータTDD-UL-DL-ConfigurationCommonおよび/またはTDD-UL-DL-ConfigDedicatedによってフ下りリンクとして示されるシンボルではない。上位層のパラメータTDD-UL-DL-ConfigurationCommonおよび/またはTDD-UL-DL-ConfigDedicatedは、上りリンク/下りリンクTDDコンフィギュレーションを確定するために用いられる。ただし、利用可能なシンボルは、少なくとも上位層のパラメータssb-PositionsInBurstによって示されるシンボルではない。ssb-PositionsInBurstは、基地局装置3に送信されるSS/PBCHブロックの時間領域位置を示すために用いられる。すなわち、端末装置1は、ssb-PositionsInBurstによってSS/PBCHブロックが送信されるシンボルの位置を知る。SS/PBCHブロックが送信されるシンボルは、SS/PBCHブロックシンボルと称してもよい。すなわち、利用可能なシンボルは、SS/PBCHブロックシンボルではない。ただし、利用可能なシンボルは、少なくともpdcch-ConfigSIB1によって示されるシンボルではない。すなわち、利用可能なシンボルは、タイプ0PDCCHコモンサーチスペースセットのCORESETのためのpdcch-ConfigSIB1によって示されるシンボルではない。pdcch-ConfigSIB1はMIBまたはServingCellConfigCommonに含まれてもよい。
 端末装置1は、PUSCH送信(PUSCH繰り返し送信)に適用する空間関係情報に関する設定および/または指示を基地局装置3から受信してもよい。より具体的な説明を以下に示す。
 第1の例として端末装置1は、基地局装置より受信した一つまたは複数の空間関係情報に関する設定および/または指示の上位パラメータを用い、SRIのフィールドを含む上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、(SRId + n) mod Nsrsとして定められるSRSリソースに設定された空間関係情報として決定してもよい。関数(A) mod (B)は、AとBの割り算をし、割り切れない余りの数字を出力する。ここで、SRIdは上りグラントにて通知されたSRIを示し、Nsrsは端末装置1に設定されたSRSリソースの総数を示す。また、SRIのフィールドを含む上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信しておらずSRIのフィールド(srs-ResourceIndicator)を含む上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、(SRId + n) mod Nsrsとして定められるSRSリソースに設定された空間関係情報として決定してもよい。
 第2の例として端末装置1は、基地局装置より受信した一つまたは複数の空間関係情報に関する設定および/または指示の上位パラメータを用い、SRIのフィールドを含まない上りリンクグラントを受信した際には、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、(PUCCHspatialrelation + n) mod Nspatialrelationとして定められる空間関係情報(PUCCH-SpatialRelationInfo)として決定してもよい。ここで、PUCCHspatialrelationは基地局装置3から設定された一つまたは複数のPUCCHリソースのうち最小のIDのリソースに関連付けられた空間関係情報を示し、Nspatialrelationは端末装置1に設定されたPUCCH-SpatialRelationInfoの総数を示す。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、(PUCCHspatialrelation + n) mod Nspatialrelationとして定められる空間関係情報(PUCCH-SpatialRelationInfo)として決定してもよい。
 第3の例として端末装置1は、基地局装置より受信した一つまたは複数の空間関係情報に関する設定および/または指示の上位パラメータを用い、上位パラメータに第n回のトランスポートブロックの繰り返し送信に対応したSRS Resource Indicator Setを含み、SRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、SRS Resource Indicator Setの設定情報から定められるSRSリソースに設定された空間関係情報として決定してもよい。また、SRS Resource Indicator Set設定は図7のSRS Resource Indicator Set設定例Aに示すように、SRIリソースの総数とpusch-AggregationFactorのサイズのテーブルとして設定されてもよく、端末装置がSRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるSRSリソースに設定された空間関係情報として決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるSRSリソースに設定された空間関係情報として決定してもよい。ここで所定のSRIフィールドの示す値は、仕様で予め定められた値としてもよく、端末装置1が基地局装置より上位パラメータとして受信した値としても良い。
 第4の例として端末装置1は、基地局装置より受信した一つまたは複数の空間関係情報に関する設定および/または指示の上位パラメータを用い、上位パラメータに第n回のトランスポートブロックの繰り返し送信に対応したSRS Resource Indicator Setを含み、SRIのフィールドを含まない上りリンクグラントを受信した際には、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、SRS Resource Indicator Setの設定情報から定められる空間関係情報(PUCCH-SpatialRelationInfo)として決定してもよい。また、SRS Resource Indicator Set設定は図7のSRS Resource Indicator Set設定例Bに示すように、PUCCH-SpatialRelationInfoの総数とpusch-AggregationFactorのサイズのテーブルとして設定されてもよく、端末装置がSRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められる空間関係情報(PUCCH-SpatialRelationInfo)として決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるSRSリソースに設定された空間関係情報として決定してもよい。ここで所定のSRIフィールドの示す値は、仕様で予め定められた値としてもよく、端末装置1が基地局装置より上位パラメータとして受信した値としても良い。
 これにより、端末装置1は、基地局装置3に対する上りリンクデータ送信を行なうことができる。
 次に、本実施形態に係る上りリンク物理チャネルおよび/またはサウンディング参照信号の送信電力に用いられる下りリンクパスロスのリファレンスについて説明する。
 なお、端末装置1が受信したTPCコマンドから得られた補正値を累積して算出することによって得られる電力調整制御値を、送信電力に適用することをTPCアキュムレーションと称してもよい。また、端末装置1がTPCコマンドから得られた補正値を累積して算出することなく、直前に受信した1つの補正値を電力制御調整値として送信電力に用いることをTPCアブソリュートと称してもよい。
 下りリンクパスロスは、(下りリンク)パスロスリファレンス(例えば、SS/PBCHブロックやCSI-RS)の送信電力(基地局装置3の送信電力)とRSRP(端末装置1におけるパスロスリファレンスの測定結果)に基づいて端末装置1が算出してもよい。ここで、パスロスリファレンスとは、基地局装置3が設定する端末装置1にてパスロスの算出に用いられるRSRPの測定オブジェクトとして用いられる下りリンク参照信号(例えば、SSブロックやCSI-RS)のことであってもよい。
 専用上位レイヤ設定が、基地局装置3から端末装置1に送信されていない状態で、端末装置1と基地局装置3が通信を行ってもよい。専用上位レイヤ設定は、PUSCHパスロス見積もりに使われるべき参照信号のセットPUCCHパスロス見積もりに使われるべき参照信号のセット、およびSRSパスロス見積もりに使われるべき参照信号のセットの内の、ゼロ、1つ、または複数を含んでもよい。
 基地局装置3は、pathlossReferenceRSToAddModListという上位レイヤ設定を端末装置1へ送信してもよい。pathlossReferenceRSToAddModListは、PUSCHパスロス見積もりに使われるべき参照信号のセットをしめす。このパラメータは、以下のPUSCHの送信に適用するパスロスリファレンスに対応する。端末装置1は、pathlossReferenceRSToAddModListという上位レイヤ設定を基地局装置3から受信してもよい。
 基地局装置3は、pathlossReferenceRSという上位レイヤ設定をPUCCHの設定情報に含めて、端末装置1へ送信してもよい。PUCCHの設定情報に含められたpathlossReferenceRSは、PUCCHパスロス見積もりに使われるべき参照信号のセットをしめす。このパラメータは、以下のPUCCHの送信に適用するパスロスリファレンスに対応する。端末装置1は、PUCCHの設定情報に含められたpathlossReferenceRSという上位レイヤ設定を基地局装置3から受信してもよい。
 基地局装置3は、pathlossReferenceRSという上位レイヤ設定をSRSの設定情報に含めて、端末装置1へ送信してもよい。SRSの設定情報に含められたpathlossReferenceRSは、SRSパスロス見積もりに使われるべき参照信号のセットをしめす。このパラメータは、以下のSRSの送信に適用するパスロスリファレンスに対応する。端末装置1は、SRSの設定情報に含められたpathlossReferenceRSという上位レイヤ設定を基地局装置3から受信してもよい。
 端末装置1がPUSCHの送信に適用するパスロスリファレンスについて、複数のSSブロックの設定、および/または、CSI-RSの設定を上位レイヤ信号(RRCメッセージおよび/またはMAC CE)で基地局装置3から指示される場合には、当該のパスロスリファレンスを示す情報は、端末装置1が上りリンクグラントで基地局装置3から指示されたSRI情報が示すSRS送信用リソースに関連付けられたパスロスリファレンスを示す情報であってもよいし、基地局装置3から上位レイヤ信号で指示された複数のSSブロックの設定、および/または、CSI-RSの設定のうちIDをゼロと設定されたものであってもよいし、基地局装置3から設定された一つまたは複数のPUCCHリソースのうち最小のIDのリソースに関連付けられたパスロスリファレンスを示す情報であってもよいし、ランダムアクセス応答に含まれたパスロスリファレンスを示す情報(例えば、端末装置1にてメッセージ1の送信時にパスロスリファレンスとして適用した参照信号)であってもよい。また、端末装置1がSSブロックの設定、および/または、CSI-RSの設定を基地局装置3より上位レイヤ信号で指示されない場合には、当該のパスロスリファレンスを示す情報は、端末装置1がランダムアクセス手順を通じ特定した参照信号(SSブロック、および/または、CSI-RS)としてもよい。ここで、前記ランダムアクセス手順は、特定の要因で開始されたものであってもよい。例えば、端末装置1が、PUSCHの送信に適用するパスロスリファレンスを基地局装置3より提供されていない場合、または、端末装置1が、基地局装置3より専用上位レイヤ設定を提供される前には、端末装置1は、非競合ベースのランダムアクセス手順をトリガーするPDCCHオーダーで開始されていない、最近に生じたランダムアクセス手順を通じて端末装置1にて選択されたSS/PBCHブロックからの参照信号のリソースを使って、下りリンクパスロス見積もりを算出してもよい。上記処理は、PUSCHの送信に適用する送信電力制御に用いられる下りリンクパスロス見積もりを、活性化されたBWPの下り参照信号を用い算出するよう上位レイヤより設定される場合に、端末装置1が行ってもよい。基地局装置3は、上記処理を端末装置1が行っている想定に基づいて、電力制御をおこなってもよい。また、基地局装置3は、上記処理を端末装置1が行うように上位レイヤ設定の送信を行ってもよい。
 端末装置1がPUCCHの送信に適用するパスロスリファレンスについて、複数のSSブロックの設定、および/または、CSI-RSの設定を上位レイヤ信号(RRCメッセージおよび/またはMAC CE)で基地局装置3から指示される場合には、当該のパスロスリファレンスを示す情報は、端末装置1が基地局装置3によりPUCCHリソースに関連づけられたパスロスリファレンスを示す情報であってもよいし、基地局装置3から上位レイヤ信号で指示された複数のSSブロックの設定、および/または、CSI-RSの設定のうちIDをゼロと設定されたものであってもよいし、基地局装置3より上位レイヤ信号でパスロスリファレンス対応付けの設定されたセルに対し、一つまたは複数のPUCCHリソースのうち最小のIDのリソースに関連付けられたパスロスリファレンスを示す情報であってもよい。また、端末装置1がSSブロックの設定、および/または、CSI-RSの設定を基地局装置3より上位レイヤ信号で指示されない場合には、当該のパスロスリファレンスを示す情報は、端末装置1がランダムアクセス手順を通じ特定した参照信号(SSブロック、および/または、CSI-RS)としてもよい。ここで、前記ランダムアクセス手順は、特定の要因で開始されたものであってもよい。例えば、端末装置1が、PUCCHの送信に適用するパスロスリファレンスを基地局装置3より提供されていない場合、または、端末装置1が、基地局装置3より専用上位レイヤ設定を提供される前には、端末装置1は、非競合ベースのランダムアクセス手順をトリガーするPDCCHオーダーで開始されていない、最近に生じたランダムアクセス手順を通じて端末装置1にて選択されたSS/PBCHブロックからの参照信号のリソースを使って、下りリンクパスロス見積もりを算出してもよい。上記処理は、PUCCHの送信に適用する送信電力制御に用いられる下りリンクパスロス見積もりを、活性化されたBWPの下り参照信号を用い算出するよう上位レイヤより設定される場合に、端末装置1が行ってもよい。基地局装置3は、上記処理を端末装置1が行っている想定に基づいて、電力制御をおこなってもよい。また、基地局装置3は、上記処理を端末装置1が行うように上位レイヤ設定の送信を行ってもよい。
 端末装置1がSRSの送信に適用するパスロスリファレンスについて、複数のSSブロックの設定、および/または、CSI-RSの設定を上位レイヤ信号(RRCメッセージおよび/またはMAC CE)で基地局装置3から指示される場合には、当該のパスロスリファレンスを示す情報は、端末装置1が基地局装置3によりSRS送信用リソースに関連付けられたパスロスリファレンスを示す情報であってもよいし、基地局装置3から上位レイヤ信号でSRS送信用リソースに関連付けられたパスロスリファレンス対応付けの設定されたセルのパスロスリファレンスを示す情報であってもよい。また、端末装置1がSSブロックの設定、および/または、CSI-RSの設定を基地局装置3より上位レイヤ信号で指示されない場合には、当該のパスロスリファレンスを示す情報は、端末装置1がランダムアクセス手順を通じ特定した参照信号(SSブロック、および/または、CSI-RS)としてもよい。ここで、前記ランダムアクセス手順は、特定の要因で開始されたものであってもよい。例えば、端末装置1が、SRSの送信に適用するパスロスリファレンスを基地局装置3より提供されていない場合、または、端末装置1が、基地局装置3より専用上位レイヤ設定を提供される前には、端末装置1は、非競合ベースのランダムアクセス手順をトリガーするPDCCHオーダーで開始されていない、最近に生じたランダムアクセス手順を通じて端末装置1にて選択されたSS/PBCHブロックからの参照信号のリソースを使って、下りリンクパスロス見積もりを算出してもよい。上記処理は、SRSの送信に適用する送信電力制御に用いられる下りリンクパスロス見積もりを、活性化されたBWPの下り参照信号を用い算出するよう上位レイヤより設定される場合に、端末装置1が行ってもよい。基地局装置3は、上記処理を端末装置1が行っている想定に基づいて、電力制御をおこなってもよい。また、基地局装置3は、上記処理を端末装置1が行うように上位レイヤ設定の送信を行ってもよい。
 端末装置1の用いるPUSCHおよびメッセージ3の送信電力は、サブキャリア間隔設定μ、PUSCHに割り当てられた帯域幅(リソースブロック数)、PUSCHの基準電力、PUSCHの端末装置固有電力、PUSCHの変調方式に基づく電力オフセット、および、下りリンクパスロスの補償係数、下りリンクパスロス、PUSCHのTPCコマンドの補正値に基づいてセットされる。なお、サブキャリア間隔設定μ、PUSCHの基準電力、PUSCHの端末装置固有電力、および、下りリンクパスロスの補償係数は、上位レイヤ設定として基地局装置3より設定される。また、これらの上位レイヤ設定は、上りリンクグラントの種類毎、セル毎、上りリンクサブフレームセット毎に基地局装置3より端末装置1に対し設定されてもよい。
 端末装置1の用いるPUCCHの送信電力は、サブキャリア間隔設定μ、PUCCHに割り当てられた帯域幅(リソースブロック数)、PUCCHの基準電力、PUCCHの端末装置固有電力、および、下りリンクパスロスの補償係数、PUCCHフォーマットに基づく電力オフセット、下りリンクパスロス、PUCCHのTPCコマンドの補正値に基づいてセットされる。なお、サブキャリア間隔設定μ、PUCCHの基準電力、PUCCHの端末装置固有電力、PUCCHフォーマットに基づく電力オフセット、および、下りリンクパスロスの補償係数は、上位レイヤ設定として基地局装置3より設定される。また、これらの上位レイヤ設定は、セルグループ毎に基地局装置3より端末装置1に対し設定されてもよい。
 端末装置1の用いるSRSの送信電力は、サブキャリア間隔設定μ、SRSに割り当てられた帯域幅(リソースブロック数)、SRSの基準電力、および、下りリンクパスロスの補償係数、下りリンクパスロス、SRSのTPCコマンドの補正値に基づいてセットされる。なお、サブキャリア間隔設定μ、SRSの基準電力、および、下りリンクパスロスの補償係数は、上位レイヤ設定として基地局装置3より設定される。また、これらの上位レイヤ設定は、上りリンクグラントの種類毎、セル毎、上りリンクサブフレームセット毎に基地局装置3より端末装置1に対し設定されてもよい。
 端末装置1は、PUSCH繰り返し送信に適用するパスロスリファレンスに関する設定および/または指示を基地局装置3から受信してもよい。より具体的な説明を以下に示す。
 第1の例として端末装置1は、基地局装置より受信したパスロスリファレンスに関する設定および/または指示の上位パラメータを用い、SRIのフィールドを含む上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、(qd,sri + n) mod Nqdとして定められるパスロスリファレンスとして決定してもよい。ここで、qd,sriは上りグラントにて通知されたSRIに関連付け設定されたPUSCH-PathlossReferenceRs-Idを示し、Nqdは端末装置1に設定されたPUSCH-PathlossReferenceRsの総数を示す。また、SRIのフィールドを含む上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信しておらずSRIのフィールド(srs-ResourceIndicator)を含む上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、(qd,sri + n) mod Nqdとして定められるパスロスリファレンスとして決定してもよい。また第1の例の変形例として、SRIのフィールドを含む上りリンクグラントを受信した際に、N回繰り返し送信するトランスポートブロックに適用するパスロスリファレンスをnによらずqd,sriとして決定してもよい。また別の変形例として、ミニスロットアグリゲーション送信を適用する際、nの値は同一スロット内のスロット間で同一の値としてもよく、スロット境界を前後する繰り返し送信の際にnの値を増加することとしてもよい。
 第2の例として端末装置1は、基地局装置より受信したパスロスリファレンスに関する設定および/または指示の上位パラメータを用い、SRIのフィールドを含まない上りリンクグラントを受信した際、および/またはSRIとPUSCHの送信電力に関する設定情報SRI-PUSCH-PowerControlを基地局装置より設定されていない場合、および/またはPUCCHの空間関係情報PUCCH-SpatialRelationInfoを設定されていない場合には、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、PUSCH-PathlossReferenceRs-Id をn mod Nqdとして定められるパスロスリファレンスとして決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、n mod Nqdとして定められるパスロスリファレンスとして決定してもよい。また第2の例の変形例として、SRIのフィールドを含まない上りリンクグラントを受信した際、および/またはSRIとPUSCHの送信電力に関する設定情報SRI-PUSCH-PowerControlを基地局装置より設定されていない場合、および/またはPUCCHの空間関係情報PUCCH-SpatialRelationInfoを設定されていない場合には、N回繰り返し送信するトランスポートブロックに適用するパスロスリファレンスをnによらずPUSCH-PathlossReferenceRs-Idがゼロとして決定してもよい。また別の変形例として、ミニスロットアグリゲーション送信を適用する際、nの値は同一スロット内のスロット間で同一の値としてもよく、スロット境界を前後する繰り返し送信の際にnの値を増加することとしてもよい。
 第3の例として端末装置1は、基地局装置より受信したパスロスリファレンスに関する設定および/または指示の上位パラメータを用い、SRIのフィールドを含まない上りリンクグラントを受信した際、および/またはPUCCHの空間関係情報PUCCH-SpatialRelationInfoを設定されている場合には、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、(PUCCHspatialrelation + n) mod Nspatialrelationとして定められるPUCCH-SpatialRelationInfoに設定されたパスロスリファレンスとして決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、(PUCCHspatialrelation + n) mod Nspatialrelationとして定められるPUCCH-SpatialRelationInfoに設定されたパスロスリファレンスとして決定してもよい。また第3の例の変形例として、SRIのフィールドを含まない上りリンクグラントを受信した際、PUCCHの空間関係情報PUCCH-SpatialRelationInfoを設定されている場合には、N回繰り返し送信するトランスポートブロックに適用するパスロスリファレンスをnによらずPUCCHspatialrelationとして決定してもよい。また別の変形例として、ミニスロットアグリゲーション送信を適用する際、nの値は同一スロット内のスロット間で同一の値としてもよく、スロット境界を前後する繰り返し送信の際にnの値を増加することとしてもよい。
 第4の例として端末装置1は、基地局装置より受信したパスロスリファレンスに関する設定および/または指示の上位パラメータを用い、上位パラメータに第n回のトランスポートブロックの繰り返し送信に対応したPathloss Reference Setを含み、SRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、Pathloss Reference Set の設定情報から定められるパスロスリファレンスとして決定してもよい。また、Pathloss Reference Set設定は図8のPathloss Reference Set設定例Aに示すように、SRIリソースの総数とpusch-AggregationFactorのサイズのテーブルとして設定されてもよく、端末装置がSRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるパスロスリファレンスとして決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるパスロスリファレンスとして決定してもよい。ここで所定のSRIフィールドの示す値は、仕様で予め定められた値としてもよく、端末装置1が基地局装置より上位パラメータとして受信した値としても良い。
 第5の例として端末装置1は、基地局装置より受信したパスロスリファレンスに関する設定および/または指示の上位パラメータを用い、上位パラメータに第n回のトランスポートブロックの繰り返し送信に対応したPathloss Reference Setを含み、SRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用するパスロスリファレンスを、Pathloss Reference Setの設定情報から空間関係情報(PUCCH-SpatialRelationInfo)に設定されたパスロスリファレンスとして決定してもよい。また、Pathloss Reference Set設定は図8のSRS Resource Indicator Set設定例Bに示すように、PUCCH-SpatialRelationInfoの総数とpusch-AggregationFactorのサイズのテーブルとして設定されてもよく、端末装置がSRIのフィールドを含まない上りリンクグラントを受信した際に、第n回のトランスポートブロックの繰り返し送信に対し適用する空間関係情報を、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められる空間関係情報(PUCCH-SpatialRelationInfo)に設定されたパスロスリファレンスとして決定してもよい。また、SRIのフィールドを含まない上りリンクグラントを受信する場合に限らず、端末装置1が上位層のパラメータrrc-ConfiguredUplinkGrantの設定を受信した場合、および/またはSRIのフィールド(srs-ResourceIndicator)を含まない上位層パラメータConfiguredGrantConfigを基地局装置より受信した場合に、当該テーブルより所定のSRIフィールドの示す値とトランスポートブロックの繰り返し送信回数nとの組み合わせから定められるパスロスリファレンスとして決定してもよい。ここで所定のSRIフィールドの示す値は、仕様で予め定められた値としてもよく、端末装置1が基地局装置より上位パラメータとして受信した値としても良い。
 なお、当該のパスロスリファレンスに関する情報は、当該セルのパスロスリファレンスを示す情報であってもよいし、基地局装置3から上位レイヤ信号で関連付けられたパスロスリファレンス対応付けの設定されたセルのパスロスリファレンスを示す情報であってもよい。
 PUSCH、PUCCHおよびSRSは、端末装置1にてそれぞれの物理チャネルに対応するTPCコマンドに基づいて電力が調整される。
 TPCアキュムレーションは、セル毎、物理チャネル毎、サブフレームセット毎、SRSリソースセット毎に行なうかどうかが基地局装置3より端末装置1に対し設定されてもよい。また、SRSのTPCアキュムレーションは、端末装置1にてPUSCHのTPCアキュムレーションを流用しても良い。
 このように、端末装置1は、パスロスリファレンスに基づいて、上りリンクの送信電力を適切にセットすることができる。また別の変形例としては、一つまたは複数のPUSCH-PathlossReferenceRsが設定されている場合に、設定されたRsを用い算出したパスロスの平均値を適用することとしてもよいし、最小または最大のパスロスを適用することとしてもよい。
 以下、本実施形態における装置の構成について説明する。
 図9は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部、受信部、モニタ部、または、物理層処理部とも称する。上位層処理部14を測定部、選択部または制御部とも称する。
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロックと称されてもよい)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部14は、基地局装置3から受信した上位層の信号に基づいて、トランスポートブロックの繰り返し送信を行うか否かを判断する機能を有してもよい。上位層処理部14は、基地局装置3から受信した上位層の信号に基づいて、第1のアグリゲーション送信および/または第2のアグリゲーション送信の何れを行うか否かを判断してもよい。上位層処理部14は、基地局装置3から受信した上位層の信号に基づいて、アグリゲーション送信(第2のアグリゲーション送信)に対して、シンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、動的繰り返し回数、および/またはミニスロットアグリゲーション送信を制御する機能を有してもよい。上位層処理部14は、基地局装置3から受信した上位層の信号に基づいて、トランスポートブロックの周波数ホッピング送信を行うか否かを判断してもよい。上位層処理部14は、周波数ホッピング情報やアグリゲーション送信情報などを無線送受信部10に出力してもよい。上位層処理部14は、1つまたは複数の参照信号から、それぞれの参照信号の測定値に基づいて1つの参照信号を選択する機能を有してもよい。上位層処理部14は、1つまたは複数のPRACH機会から、選択した1つの参照信号に関連付けられたPRACH機会を選択する機能を有してもよい。上位層処理部14は、無線送受信部10で受信したランダムアクセス手順の開始を指示する情報に含まれるビット情報が所定の値であった場合に、上位レイヤ(例えばRRCレイヤ)で設定された1つまたは複数のインデックスから1つのインデックスを特定し、プリアンブルインデックスにセットする機能を有してもよい。上位層処理部14は、RRCで設定された1つまたは複数のインデックスのうち、選択した参照信号に関連付けられたインデックスを特定し、プリアンブルインデックスにセットする機能を有してもよい。上位層処理部14は、受信した情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)に基づいて、次に利用可能なPRACH機会を決定する機能を有してもよい。上位層処理部14は、受信した情報(例えば、SSBインデックス情報)に基づいて、SS/PBCHブロックを選択する機能を有してもよい。上位層処理部は、上位レイヤ信号で指示されるパスロスリファレンスを示す情報、および/または上りリンクグラントで指示されたSRI情報(例えば、SRS送信用リソースに関連付けられたパスロスリファレンスを示す情報)、および/または設定された一つまたは複数のPUCCHリソースの情報(例えば、最小のIDのリソースに関連付けられたパスロスリファレンスを示す情報)、および/またはメッセージ1の送信時にパスロスリファレンスとして適用した参照信号の情報、および/またはランダムアクセス手順を通じ特定した参照番号の情報を用いて、上りリンク物理チャネル(PUSCH、PUCCH)および/またはサウンディング参照信号の送信電力に用いられる下りリンクパスロスのリファレンスを特定する機能を有しても良い。上位層処理部は、上位レイヤ信号で設定されるサブキャリア間隔設定μ、上りリンク物理チャネル(PUSCH、PUCCH)および/またはサウンディング参照信号の基準電力、上りリンク物理チャネル(PUSCH、PUCCH)および/またはサウンディング参照信号の端末装置固有電力、および、下りリンクパスロスの補償係数を特定する機能を有しても良い。上位層処理部14は、第1の繰り返し送信回数を含む上位層の信号および/または第1の数を含むDCIフィールドに基づいて、第2の数を制御する機能を有してもよい。第1の数は、スロット内およびスロット間を含めた同じトランスポートブロックの繰り返し送信回数であってもよい。第2の数は、スロット内での同じトランスポートブロックの繰り返し送信回数であってもよい。
 上位層処理部14が備える媒体アクセス制御層処理部15は、MACレイヤ(媒体アクセス制御層)の処理を行なう。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、スケジューリング要求の伝送の制御を行う。
 上位層処理部14が備える無線リソース制御層処理部16は、RRCレイヤ(無線リソース制御層)の処理を行なう。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3に送信する。無線送受信部10は、基地局装置3から受信した上位層の信号(RRCメッセージ)、DCIなどを上位層処理部14に出力する。また、無線送受信部10は、上位層処理部14からの指示に基づいて、上りリンク信号を生成して送信する。無線送受信部10は、上位層処理部14からの指示に基づいて、基地局装置3にトランスポートブロックを繰り返し送信する機能を有してもよい。無線送受信部10は、トランスポートブロックの繰り返し送信が設定されている場合、同じトランスポートブロックを繰り返し送信してもよい。繰り返し送信の回数については、上位層処理部14からの指示に基づいて与えられてもよい。無線送受信部10は、上位層処理部14から指示した第1の繰り返し回数に関する情報、第1の数、および、第2の数に基づいて、アグリゲーション送信でPUSCHを送信することを特徴とする。無線送受信部10は、所定の条件に基づいて、アグリゲーション送信を制御する機能を有してもよい。具体的に、無線送受信部10は、第1の条件を満たす場合、第2のアグリゲーション送信パラメータが設定されている場合に、それぞれのスロットでは同じシンボルアロケーションを適用して、トランスポートブロックを連続的なN個のスロットでN回繰り返し送信し、第2のアグリゲーション送信パラメータが設定されていない場合に、トランスポートブロックを1回送信する機能を有してもよい。ここで、Nの値は第2のアグリゲーション送信パラメータに示される。また、無線送受信部10は、第2の条件を満たす場合、ミニスロットアグリゲーション送信を適用してトランスポートブロックを送信する機能を有してもよい。第1の条件は、基地局装置3から受信したDCIで、PUSCHマッピングタイプがタイプAに示されることを少なくとも含む。第2の条件は、基地局装置3から受信したDCIで、PUSCHマッピングタイプがタイプBに示されることを少なくとも含む。無線送受信部10は、あるセルにおける1つまたは複数の参照信号を受信する機能を有してもよい。無線送受信部10は、1つまたは複数のPRACH機会を特定する情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)を受信する機能を有してもよい。無線送受信部10は、ランダムアクセス手順の開始を指示する指示情報を含む信号を受信する機能を有してもよい。無線送受信部10は、所定のインデックスを特定する情報を受信する情報を受信する機能を有してもよい。無線送受信部10は、ランダムアクセスプリンブルのインデックスを特定する情報を受信する機能を有してもよい。無線送受信部10は、上位層処理部14で決定したPRACH機会でランダムアクセスプリアンブルを送信する機能を有してもよい。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をデジタル信号に変換する。ベースバンド部13は、変換したデジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は在圏セルにおいて送信する上り物理チャネル(PUSCH、PUCCH)および/またはサウンディング参照信号の送信電力を決定する機能を備えてもよい。RF部12を送信電力制御部とも称する。送信電力制御部は、TPCコマンドおよび/または、上位層処理部で特定したパスロスリファレンスおよび/または上位レイヤ信号で設定されるパラメータ(サブキャリア間隔設定μ、上りリンク物理チャネル(PUSCH、PUCCH)および/またはサウンディング参照信号の基準電力、上りリンク物理チャネル(PUSCH、PUCCH)の端末装置固有電力)、および/または、下りリンクパスロスの補償係数を用いて、上りリンク信号の送信電力を調整する機能を備えても良い。
 図10は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、モニタ部、または、物理層処理部とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。上位層処理部34を、端末制御部とも称する。
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部34は、端末装置1に送信した上位層の信号に基づいて、トランスポートブロックの繰り返し送信を行うか否かを判断する機能を有してもよい。上位層処理部34は、端末装置1に送信した上位層の信号に基づいて、第1のアグリゲーション送信および/または第2のアグリゲーション送信の何れを行うか否かを判断してもよい。上位層処理部34は、端末装置1に送信した上位層の信号に基づいて、アグリゲーション送信(第2のアグリゲーション送信)に対して、シンボル割り当て拡張(スタートシンボル拡張および/またはシンボル数拡張)、動的繰り返し回数、および/またはミニスロットアグリゲーション送信を制御する機能を有してもよい。上位層処理部34は、端末装置1に送信した上位層の信号に基づいて、トランスポートブロックの周波数ホッピング送信を行うか否かを判断してもよい。上位層処理部34は、第1の繰り返し送信回数を含む上位層の信号および/または第1の数を含むDCIフィールドに基づいて、第2の数を制御する機能を有してもよい。第1の数は、スロット内およびスロット間を含めた同じトランスポートブロックの繰り返し送信回数であってもよい。第2の数は、スロット内での同じトランスポートブロックの繰り返し送信回数であってもよい。無線送受信部30で受信したランダムアクセスプリアンブルに基づいて、1つまたは複数の参照信号から1つの参照信号を特定する機能を有してもよい。上位層処理部34は、少なくともSSBインデックス情報とマスクインデックス情報とからランダムアクセスプリアンブルをモニタするPRACH機会を特定してもよい。
 上位層処理部34が備える媒体アクセス制御層処理部35は、MACレイヤの処理を行なう。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストに関する処理を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、RRCレイヤの処理を行なう。無線リソース制御層処理部36は、物理下りリンク共用チャネルに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。無線リソース制御層処理部36は、あるセルにおける複数の参照信号の設定を特定するための情報を送信/報知してもよい。
 基地局装置3から端末装置1にRRCメッセージ、MAC CE、および/またはPDCCHを送信し、端末装置1がその受信に基づいて処理を行う場合、基地局装置3は、端末装置が、その処理を行っていることを想定して処理(端末装置1やシステムの制御)を行う。すなわち、基地局装置3は、端末装置にその受信に基づく処理を行わせるようにするRRCメッセージ、MAC CE、および/またはPDCCHを端末装置1に送っている。
 無線送受信部30は、端末装置1に上位層の信号(RRCメッセージ)、DCIなどを送信する。また、無線送受信部30は、上位層処理部34からの指示に基づいて、端末装置1から送信した上りリンク信号を受信する。無線送受信部30は、上位層処理部34からの指示に基づいて、端末装置1からのトランスポートブロックの繰り返し送信を受信する機能を有してもよい。無線送受信部30は、トランスポートブロックの繰り返し送信が設定されている場合、同じトランスポートブロックの繰り返し送信を受信する。繰り返し送信の回数については、上位層処理部34からの指示に基づいて与えられてもよい。無線送受信部30は、上位層処理部34から指示した第1の繰り返し回数に関する情報、第1の数、および、第2の数に基づいて、アグリゲーション送信でPUSCHを受信することを特徴とする。無線送受信部30は、所定の条件に基づいて、アグリゲーション送信を制御する機能を有してもよい。具体的には、無線送受信部30は、第1の条件を満たす場合、第2のアグリゲーション送信パラメータが設定されている場合に、それぞれのスロットでは同じシンボルアロケーションを適用して、トランスポートブロックを連続的なN個のスロットでN回繰り返し受信し、第2のアグリゲーション送信パラメータが設定されていない場合に、トランスポートブロックを1回受信する機能を有する。ここで、Nの値は第2のアグリゲーション送信パラメータに示される。また、無線送受信部30は、第2の条件を満たす場合、ミニスロットアグリゲーション送信を適用してトランスポートブロックを受信する機能を有してもよい。第1の条件は、端末装置1に送信したDCIで、PUSCHマッピングタイプがタイプAに示されることを少なくとも含む。第2の条件は、端末装置1に送信したDCIで、PUSCHマッピングタイプがタイプBに示されることを少なくとも含む。無線送受信部30は、1つまたは複数の参照信号を送信する機能を有する。また、無線送受信部30は、端末装置1から送信されたビーム失敗リカバリ要求を含む信号を受信する機能を有してもよい。無線送受信部30は、端末装置1に1つまたは複数のPRACH機会を特定する情報(例えば、SSBインデックス情報および/またはマスクインデックス情報)を送信する機能を有してもよい。無線送受信部30は、所定のインデックスを特定する情報を送信する機能を有してもよい。無線送受信部30は、ランダムアクセスプリアンブルのインデックスを特定する情報を送信する機能を有してもよい。無線送受信部30は、上位層処理部34で特定されたPRACH機会でランダムアクセスプリアンブルをモニタする機能を有してもよい。その他、無線送受信部30の一部の機能は、無線送受信部10と同様であるため説明を省略する。なお、基地局装置3が1つまたは複数の送受信点4と接続している場合、無線送受信部30の機能の一部あるいは全部が、各送受信点4に含まれてもよい。
 また、上位層処理部34は、基地局装置3間あるいは上位のネットワーク装置(MME、S-GW(Serving-GW))と基地局装置3との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図10において、その他の基地局装置3の構成要素や、構成要素間のデータ(制御情報)の伝送経路については省略してあるが、基地局装置3として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。例えば、上位層処理部34には、無線リソース管理(Radio Resource Management)層処理部や、アプリケーション層処理部が存在している。また上位層処理部34は、無線送受信部30から送信する複数の参照信号のそれぞれに対応する複数のスケジューリング要求リソースを設定する機能を有してもよい。
 なお、図中の「部」とは、セクション、回路、構成装置、デバイス、ユニットなど用語によっても表現される、端末装置1および基地局装置3の機能および各手順を実現する要素である。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。
 (1)より具体的には、本発明の第1の態様における通信方法は、端末装置の通信方法であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを受信し、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用してPUSCHを送信する。
 (2)本発明の第2の態様における通信方法は、前記空間関連情報は、一つまたは複数のPUCCHリソースに関連付けられた空間関係情報のうち、最小のIDのPUCCHリソースに関連付けられた空間関係情報とnとの和をPUCCHリソースに関連付けられた空間関係情報の総数で割った余りとして特定される。
 (3)本発明の第3の態様における通信方法は、基地局装置の通信方法であって、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを送信し、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用して送信されるPUSCHを受信する。
 (4)本発明の第4の態様における端末装置は、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを受信する受信部と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用してPUSCHを送信する送信部と、を備える。
 (5)本発明の第5の態様における基地局装置は、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを送信する送信部と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用して送信されるPUSCHを受信する受信部と、を備える。
 (6)本発明の第6の態様における集積回路は、端末装置に実装される集積回路であって、アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを受信する受信手段と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用してPUSCHを送信する送信手段と、を備える。
 (7)本発明の第7の態様における集積回路は、基地局装置に実装される集積回路であって、端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定とを送信する送信手段と、前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信し、前記Nの値はアグリゲーション送信パラメータに含まれ、パスロスリファレンス参照信号のパラメータが、送信電力制御に適用するパラメータに含まれ、一つまたは複数の空間関係情報のパラメータが、PUSCH送信に適用する空間関係情報のパラメータに含まれ、第n回目のPUSCH送信に対し、一つまたは複数の空間関係情報のパラメータにより特定される空間関係情報を適用して送信されるPUSCHを受信する受信手段と、を備える。
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。
 なお、本発明に関わる実施形態では、基地局装置と端末装置で構成される通信システムに適用される例を記載したが、D2D(Device to Device)のような、端末同士が通信を行うシステムにおいても適用可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。

Claims (7)

  1.  端末装置の通信方法であって、
     アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信し、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信し、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し送信のうち第n回目の送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     通信方法。
  2.  前記第1の空間関連情報を、
     それぞれがPUCCHリソースに関連付けられた一つまたは複数の空間関係情報のうち、インデックスの値が最小のPUCCHリソースに関連付けられた第2の空間関係情報インデックスの値と前記nの値の和を前記一つまたは複数の空間関係情報の総数で割った余りで特定する、
     請求項1に記載の通信方法。
  3.  基地局装置の通信方法であって、
     端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信し、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信し、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     通信方法。
  4.  端末装置であって、
     アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信する受信部と、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信する送信部と、を備え、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し送信のうち第n回目のPUSCH送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     端末装置。
  5.  基地局装置であって、
     端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信する送信部と、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信する受信部と、を備え、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     基地局装置。
  6.  端末装置に実装される集積回路であって、
     アグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を受信する受信手段と、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し送信する送信手段と、を備え、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し送信のうち第n回目の送信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     集積回路。
  7.  基地局装置に実装される集積回路であって、
     端末装置にアグリゲーション送信パラメータと送信電力制御に適用するパラメータとPUSCH送信に適用する空間関係情報のパラメータを含む上位レイヤ設定を送信する送信手段と、
     前記アグリゲーション送信パラメータが設定されている場合に、トランスポートブロックをN個のスロットでN回繰り返し受信する受信手段と、を備え、
     前記Nの値は、前記アグリゲーション送信パラメータに含まれ、
     パスロスリファレンス参照信号のパラメータが、前記送信電力制御に適用するパラメータに含まれ、
     一つまたは複数の空間関係情報のパラメータが、前記PUSCH送信に適用する空間関係情報のパラメータに含まれ、
     前記N回の繰り返し受信のうち第n回目の受信に対し、前記一つまたは複数の空間関係情報のパラメータにより特定される第1の空間関係情報を適用する、
     集積回路。
PCT/JP2020/005400 2019-02-14 2020-02-12 通信方法、端末装置、基地局装置、および、集積回路 WO2020166625A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/428,656 US20220124633A1 (en) 2019-02-14 2020-02-12 Communication method, terminal apparatus, base station apparatus, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019024509A JP2020136761A (ja) 2019-02-14 2019-02-14 基地局装置、端末装置、通信方法、および、集積回路
JP2019-024509 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166625A1 true WO2020166625A1 (ja) 2020-08-20

Family

ID=72044503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005400 WO2020166625A1 (ja) 2019-02-14 2020-02-12 通信方法、端末装置、基地局装置、および、集積回路

Country Status (3)

Country Link
US (1) US20220124633A1 (ja)
JP (1) JP2020136761A (ja)
WO (1) WO2020166625A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218971B2 (en) * 2019-01-07 2022-01-04 Shanghai Langbo Communication Technology Company Limited Method and device in node for wireless communication
WO2022236672A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Power control parameters for multi-trp pusch repetition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456831B2 (en) * 2019-03-22 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for CSI-RS enhancement for NR unlicensed spectrum
WO2020202517A1 (ja) * 2019-04-03 2020-10-08 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10980067B2 (en) * 2019-05-02 2021-04-13 Qualcomm Incorporated Reference signal transmission techniques for random access messages
US12113591B2 (en) * 2019-05-31 2024-10-08 Ntt Docomo, Inc. User equipment and communication method
US20220278776A1 (en) * 2019-07-22 2022-09-01 Lenovo (Beijing) Limited Apparatus and method of pucch repetition using multiple beams
US11589394B2 (en) * 2020-02-13 2023-02-21 Qualcomm Incorporated Managing beam failure recovery random access
US12004142B2 (en) * 2020-03-30 2024-06-04 Qualcomm Incorporated Uplink timing associated with uplink transmission configuration indication (TCI) state
CN113973347B (zh) * 2020-07-24 2024-04-05 华硕电脑股份有限公司 无线通信系统中用于移动性程序的方法和设备
JP2023535940A (ja) * 2020-07-24 2023-08-22 コムキャスト ケーブル コミュニケーションズ, エルエルシー 無線通信のための伝送反復
US12048016B2 (en) * 2021-07-02 2024-07-23 Qualcomm Incorporated Techniques for managing discontinuous operation for wireless communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162699B1 (ja) * 2011-10-04 2013-03-13 シャープ株式会社 移動局装置、基地局装置、無線通信方法、無線通信システムおよび集積回路
JP2013187819A (ja) * 2012-03-09 2013-09-19 Sharp Corp 基地局、端末、通信方法および集積回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Remaining issues on PUSCH power control", 3GPP TSG RAN WG1 #94 RI-1809295, 10 August 2018 (2018-08-10), XP051516659 *
NTT DOCOMO: "Offline summary for UL data transmission procedure", 3GPP TSG RAN WG1 #94 RL-1809767, 22 August 2018 (2018-08-22), XP051517128 *
SHARP: "Views on potential enhancements to PUSCH for eURLLC", 3GPP TSC RANWG1 AH 1901 RL-1900834, 11 January 2019 (2019-01-11), XP051576372 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218971B2 (en) * 2019-01-07 2022-01-04 Shanghai Langbo Communication Technology Company Limited Method and device in node for wireless communication
US20220086764A1 (en) * 2019-01-07 2022-03-17 Shanghai Langbo Communication Technology Company Limited Method and device in node for wireless communication
US11716690B2 (en) * 2019-01-07 2023-08-01 Dido Wireless Innovations Llc Method and device in node for wireless communication
WO2022236672A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Power control parameters for multi-trp pusch repetition
US11671925B2 (en) 2021-05-11 2023-06-06 Qualcomm Incorporated Power control parameters for multi-TRP PUSCH repetition

Also Published As

Publication number Publication date
US20220124633A1 (en) 2022-04-21
JP2020136761A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
WO2020166625A1 (ja) 通信方法、端末装置、基地局装置、および、集積回路
WO2020166624A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020017434A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019216341A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020017525A1 (ja) 基地局装置、端末装置、および、通信方法
WO2020166696A1 (ja) 基地局装置、端末装置、および通信方法
WO2020017391A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020059721A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020145368A1 (ja) 基地局装置、端末装置、および、通信方法
WO2020129783A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020166695A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
JP7240843B2 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020145372A1 (ja) 基地局装置、端末装置、および通信方法
WO2020170972A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020166672A1 (ja) 基地局装置、端末装置および通信方法
JP7390112B2 (ja) 端末装置、および、通信方法
WO2020129784A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020031588A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020066854A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020195531A1 (ja) 基地局装置、端末装置、および、通信方法
WO2020075775A1 (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020091046A1 (ja) 基地局装置、端末装置、および、通信方法
WO2019244861A1 (ja) 端末装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755447

Country of ref document: EP

Kind code of ref document: A1