WO2020166574A1 - Embedded-magnet-type rotor - Google Patents

Embedded-magnet-type rotor Download PDF

Info

Publication number
WO2020166574A1
WO2020166574A1 PCT/JP2020/005206 JP2020005206W WO2020166574A1 WO 2020166574 A1 WO2020166574 A1 WO 2020166574A1 JP 2020005206 W JP2020005206 W JP 2020005206W WO 2020166574 A1 WO2020166574 A1 WO 2020166574A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnet
circumferential
insertion hole
salient pole
Prior art date
Application number
PCT/JP2020/005206
Other languages
French (fr)
Japanese (ja)
Inventor
駿 竹内
勝也 藤崎
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020166574A1 publication Critical patent/WO2020166574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present disclosure relates to an embedded magnet type rotor.
  • an embedded magnet type rotor in which a permanent magnet is provided in the magnet insertion hole of the rotor core, and the permanent magnet is pressed by an elastic member against the wall surface on the radially outer side of the magnet insertion hole to be fixed.
  • an elastic material insertion groove is provided at a radially inner corner portion of the magnet insertion hole, and the permanent magnet is urged radially outward by the elastic material inserted into the elastic material insertion groove.
  • Patent Document 1 the permanent magnet is pressed against the wall surface on the radially outer side of the magnet insertion hole with an elastic material to be fixed, whereby the permanent magnet moves in the circumferential direction at the start of rotation of the embedded magnet type rotor, and The generation of abnormal noise due to collision with the wall surface is suppressed.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide an embedded magnet type rotor capable of reducing the load applied to the bridge portion while suppressing abnormal noise at the start of rotation. ..
  • An embedded magnet rotor of the present disclosure includes a rotor core having a magnet insertion hole, a permanent magnet provided in the magnet insertion hole, having a rectangular cross section, and having a thickness direction extending along a radial direction of the rotor core. And an elastic member that is provided in the magnet insertion hole and presses the permanent magnet against the wall surface of the magnet insertion hole.
  • the rotor core is located radially inward of the magnet insertion hole, and radially outward of the magnet insertion hole.
  • the rotor core is radially inward from the circumscribed circle of the rotor core as the magnetic pole center is circumferentially separated. It has a salient pole portion formed so as to be separated from each other, and a bridge portion extending from both sides in the circumferential direction of the salient pole portion to the inner magnetic portion side.
  • the permanent magnet is in contact with the inner magnetic portion and is not in contact with the salient pole portion. Circumferential gaps are formed on both sides of the permanent magnet in the circumferential direction so that the radial outside of the permanent magnet and the bridge portion are not in contact with each other.
  • the elastic member is disposed in at least one of the two circumferential gaps on both sides of the permanent magnet, and biases and fixes the permanent magnet in the circumferential direction.
  • the permanent magnet is magnetically stable in the inner magnetic part (that is, the side where the magnetic resistance is smaller), so the radial fixing force of the permanent magnet is not required so much. Further, since there is a gap between the permanent magnet and the salient pole portion, the magnetic force and centrifugal force of the permanent magnet acting on the salient pole portion can be suppressed. Therefore, the load applied to the bridge portion can be reduced, and the rotation speed can be easily increased.
  • the insertability of the permanent magnet into the magnet insertion hole is good.
  • the permanent magnet is arranged inside the magnet insertion hole in the radial direction, the inertia of the embedded magnet type rotor can be reduced.
  • the permanent magnets are fixed in the circumferential direction by the elastic member, generation of abnormal noise at the start of rotation of the embedded magnet type rotor is suppressed.
  • the torque ripple and the induced voltage distortion generated by the rotor core can be reduced.
  • the bridge portions on both sides in the circumferential direction of the salient pole portion, it is possible to suppress the short-circuit magnetic flux between the adjacent magnetic poles and increase the torque. Further, by making the cross-sectional shape of the permanent magnet a simple shape such as a rectangle, the processing cost of the permanent magnet can be suppressed.
  • FIG. 1 is a sectional view of a rotary electric machine to which an embedded magnet type rotor according to the first embodiment is applied
  • 2 is a front view of the embedded magnet rotor of FIG.
  • FIG. 3 is an enlarged view of part III of FIG. 4 is a sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a partially enlarged view of the embedded magnet type rotor according to the second embodiment and is a view corresponding to FIG. 3 of the first embodiment.
  • the embedded magnet type rotor (hereinafter, rotor) according to the first embodiment is applied to the rotary electric machine 10 shown in FIG. 1.
  • the rotary electric machine 10 includes a housing 11, a motor shaft 12, a stator 13, and a rotor 14.
  • the motor shaft 12 is rotatably supported by the housing 11 via a bearing 15.
  • the stator 13 has a stator core 21 fixed to the housing 11 and a winding wire 22 assembled to the stator core 21.
  • the rotor 14 is made of a magnetic material, and has a rotor core 23 fitted and fixed to the motor shaft 12, and a plurality of permanent magnets provided in magnet insertion holes 24 of the rotor core 23. 25 and.
  • the radial direction of the rotor 14 will be simply referred to as “radial direction”, and the circumferential direction (that is, the rotational direction) of the rotor 14 will be simply referred to as “circumferential direction” or “rotational direction”.
  • the direction is simply referred to as an “axial direction”, and the cross section of the rotor 14 is simply referred to as a “cross section”.
  • the rotor core 23 is located radially inside the magnet insertion hole 24, and radially outside the magnet insertion hole 24.
  • the rotor core 23 has a salient pole portion 27 formed to be radially inward from the circumscribed circle of the rotor core 23, and a bridge portion 28 extending from both circumferential sides of the salient pole portion 27 toward the inner magnetic portion 26. ing.
  • the radius of curvature of the salient pole portion 27 is smaller than the radius of curvature of the circumscribed circle.
  • the permanent magnet 25 has a rectangular cross section and is arranged so that the thickness direction thereof is along the radial direction.
  • the rotor 14 is magnetically attracted or repelled by a rotating magnetic field generated by energization of the winding wire 22 to rotate.
  • the electromagnetic force in the circumferential direction from the stator 13 acts on the permanent magnet 25.
  • the permanent magnet 25 is not fixed to the rotor core 23, the permanent magnet 25 moves in the circumferential direction within the magnet insertion hole 24, collides with the wall surface of the magnet insertion hole 24, and abnormal noise is generated.
  • the permanent magnet 25 is in contact with the inner magnetic portion 26 and is not in contact with the salient pole portion 27.
  • Circumferential gaps 31 are formed on both sides of the permanent magnet 25 in the circumferential direction so that the radially outer side of the permanent magnet 25 and the bridge portion 28 are not in contact with each other.
  • An elastic member 32 is arranged in one of the two circumferential gaps 31 on both sides of the permanent magnet 25. The elastic member 32 biases and fixes the permanent magnet 25 in the circumferential direction.
  • the permanent magnet 25 is pressed against the protrusion 33 formed on the wall portion of the magnet insertion hole 24.
  • the protrusion 33 is formed so as to protrude from the radially inner portion of the wall portions on both sides in the rotation direction that define the magnet insertion hole 24 toward the permanent magnet 25 side.
  • the tip surface 34 of the protrusion 33 is flat.
  • the rotor core 23 is a laminated body made of a plurality of electromagnetic steel plates (not shown). 2 and 4, the rotor core 23 is illustrated as one member in order to avoid complication.
  • the bridge portion 28 has a circumferential bridge portion 35 extending in the circumferential direction from the salient pole portion 27 and a radial bridge portion 36 extending inward in the radial direction from the circumferential bridge portion 35. doing.
  • the thickness of the electromagnetic steel sheet is t [mm]
  • the width of the circumferential bridge portion 35 is x [mm]
  • the width of the radial bridge portion 36 is w [mm]
  • the permanent magnet 25 is magnetically stable in the inner magnetic portion 26 (that is, the side having a smaller magnetic resistance) on the radially inner side of the magnet insertion hole 24.
  • a gap (hereinafter referred to as a radially outward gap 37) is formed between the salient pole portion 27 and the permanent magnet 25.
  • the magnet insertion hole 24 includes a void 38 that connects the circumferential void 31 and the radially outward void 37.
  • the void 38 is a relief portion for avoiding interference with the corner portion of the permanent magnet 25.
  • the corner portion 41 between the circumferential bridge portion 28 and the salient pole portion 27, the inside of the circumferential bridge portion 35, and the corner portion 42 between the circumferential bridge portion 35 and the radial bridge portion 36 have a round shape.
  • the round shape is a shape whose cross-sectional shape is a concave curve.
  • the elastic member 32 is a spring pin made of a non-ferrous metal such as stainless steel or a non-magnetic material such as resin.
  • the elastic member 32 has a tapered end portion in the axial direction.
  • the axial length of the elastic member 32 is 1 ⁇ 3 or more of the axial length of the permanent magnet 25.
  • the embedded magnet type rotor 14 is provided in the rotor core 25 having the magnet insertion hole 26 and the magnet insertion hole 24, has a rectangular cross section, and has a rotor core in the thickness direction.
  • the permanent magnet 27 is arranged along the radial direction of 23, and the elastic member 32 is provided in the magnet insertion hole 24 and presses the permanent magnet 25 against the wall surface of the magnet insertion hole 24.
  • the rotor core 23 is located radially inward of the magnet insertion hole 24, and radially outward of the magnet insertion hole 24.
  • the rotor core 23 is circumscribed from the magnetic pole center in the circumferential direction. It has a salient pole portion 27 formed so as to be separated inward in the radial direction, and a bridge portion 28 extending from both circumferential sides of the salient pole portion 27 toward the inner magnetic portion 26.
  • the permanent magnet 25 is in contact with the inner magnetic portion 26 and is not in contact with the salient pole portion 27.
  • Circumferential gaps 31 are formed on both sides of the permanent magnet 25 in the circumferential direction so that the radially outer side of the permanent magnet 25 and the bridge portion 28 are not in contact with each other.
  • the elastic member 32 is arranged in at least one of the two circumferential gaps 31 on both sides of the permanent magnet 25, and biases and fixes the permanent magnet 25 in the circumferential direction.
  • the permanent magnet 25 is magnetically stabilized at the inner magnetic portion 26 (that is, the side on which the magnetic resistance is smaller), so the radial fixing force of the permanent magnet 25 is not required so much. Further, since there is the radially outer gap 37 between the permanent magnet 25 and the salient pole portion 27, the magnetic force or centrifugal force of the permanent magnet 25 acting on the salient pole portion 27 can be suppressed. Therefore, the load applied to the bridge portion 28 can be reduced, and the rotation speed can be easily increased.
  • the insertability of the permanent magnet 25 into the magnet insertion hole 24 is good.
  • the permanent magnet 25 is arranged inside the magnet insertion hole 24 in the radial direction, the inertia of the embedded magnet type rotor 14 can be reduced.
  • the permanent magnets 25 are fixed in the circumferential direction by the elastic member 32, generation of abnormal noise at the start of rotation of the embedded magnet type rotor 14 is suppressed.
  • the salient pole portion 27 on the magnetic pole it is possible to reduce torque ripple and induced voltage distortion generated by the rotor core 23.
  • the bridge portions 28 on both sides of the salient pole portion 27 in the circumferential direction, it is possible to suppress short-circuit magnetic flux between adjacent magnetic poles and increase torque. Further, by making the cross-sectional shape of the permanent magnet 25 a simple shape such as a rectangle, the processing cost of the permanent magnet 25 can be suppressed.
  • the rotor core 23 is a laminated body made of a plurality of electromagnetic steel plates.
  • the bridge portion 28 has a circumferential bridge portion 35 extending in the circumferential direction from the salient pole portion 27, and a radial bridge portion 36 extending inward in the radial direction from the circumferential bridge portion 35.
  • the circumferential bridge portion 35 and the radial bridge portion 36 are formed so as to satisfy the relationship of the above expression (1). Since the width x is smaller than the thickness t and the width w in this way, the short-circuit magnetic flux path is narrowed, so that the motor torque can be improved.
  • the magnet insertion hole 24 includes a void 38 that connects the circumferential void portion 31 and the radially outward void 37. This makes it possible to avoid contact between the corners of the permanent magnet 25 and the rotor core 23. Therefore, even if the corners of the permanent magnet 25 are sharp, it is possible to prevent chipping during insertion. Therefore, it is not necessary to process the corners of the permanent magnet 25 into a round shape, and the processing cost of the permanent magnet 25 can be suppressed.
  • the radius of curvature R of the corner 41 between the circumferential bridge portion 35 and the salient pole portion 27 satisfies the relationship of the above expression (2).
  • the elastic member 32 is a spring pin made of a non-magnetic material. As a result, the permanent magnet 25 can be fixed without being affected by the magnetic force. Further, the elastic member 32 has a tapered end portion in the axial direction. As a result, the elastic member 32 is easy to press fit.
  • the elastic members 32 are arranged in both of the two circumferential gaps 31 on both sides of the permanent magnet 25.
  • the permanent magnet 25 can be arranged at the center of the magnetic pole, and the magnetic difference between the left and right with respect to the center of the magnetic pole can be eliminated.
  • the elastic member is not limited to the spring pin, and may be a spring having another shape or an elastic body such as rubber. Further, a plurality of elastic members may be provided in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

In the present invention, a rotor core (23) has: an inside magnetic part (26) located on the radially inner side relative to a magnet insertion hole (24); a salient pole part (27) located on the radially outer side relative to the magnet insertion hole (24), the salient pole part (27) being formed so as to diverge radially inwards from the circumscribed circle of the rotor core (23) commensurately with increasing circumferential-direction distance from the magnetic pole center; and bridge parts (28) extending towards the inside-magnetic-part (26) side from both circumferential sides of the salient pole part (27). A permanent magnet (25) is in contact with the inside magnetic part (26) and is not in contact with the salient pole part (27). A circumferential-direction gap (31) is formed on both circumferential sides of the permanent magnet (25) so that the radially outer side of the permanent magnet (25) and the bridge parts (28) are not in contact. An elastic member (32) is installed in at least one of the circumferential-direction gaps (31) on the two sides of the permanent magnet (25). The elastic member (32) urges the permanent magnet (25) in the circumferential direction and secures the permanent magnet (25).

Description

埋込磁石型ロータEmbedded magnet type rotor 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年2月15日に出願された特許出願番号2019-25804号に基づくものであり、ここにその記載内容を援用する。 This application is based on the patent application No. 2019-25804 filed on February 15, 2019, and the contents of the description are incorporated herein.
 本開示は、埋込磁石型ロータに関する。 The present disclosure relates to an embedded magnet type rotor.
 従来、ロータコアの磁石挿入孔に永久磁石を設けるとともに、その永久磁石を弾性部材により磁石挿入孔の径方向外側の壁面に押しつけて固定する埋込磁石型ロータが知られている。特許文献1では、磁石挿入孔の径方向内側の角部に弾性材挿入溝を設け、その弾性材挿入溝に挿入した弾性材により永久磁石を径方向外側に付勢している。 Conventionally, an embedded magnet type rotor is known in which a permanent magnet is provided in the magnet insertion hole of the rotor core, and the permanent magnet is pressed by an elastic member against the wall surface on the radially outer side of the magnet insertion hole to be fixed. In Patent Document 1, an elastic material insertion groove is provided at a radially inner corner portion of the magnet insertion hole, and the permanent magnet is urged radially outward by the elastic material inserted into the elastic material insertion groove.
特許第2000-341920号公報Patent No. 2000-341920
 特許文献1では、永久磁石を弾性材により磁石挿入孔の径方向外側の壁面に押しつけて固定することで、埋込磁石型ロータの回転開始に永久磁石が周方向へ移動して磁石挿入孔の壁面に衝突することによる異音発生を抑制している。 In Patent Document 1, the permanent magnet is pressed against the wall surface on the radially outer side of the magnet insertion hole with an elastic material to be fixed, whereby the permanent magnet moves in the circumferential direction at the start of rotation of the embedded magnet type rotor, and The generation of abnormal noise due to collision with the wall surface is suppressed.
 ところが、突極部の周方向両側にブリッジ部を形成するロータコアにおいて上述のような磁石固定方法を採用した場合、弾性材による押付け力に加えて、永久磁石の磁力や遠心力が突極部に強く作用する。そのため、ブリッジ部に負荷がかかり、高回転化が困難であるという問題があった。 However, when the magnet fixing method as described above is adopted in the rotor core in which the bridge portions are formed on both sides in the circumferential direction of the salient pole portion, in addition to the pressing force by the elastic material, the magnetic force or centrifugal force of the permanent magnet is applied to the salient pole portion. It works strongly. Therefore, there is a problem that a load is applied to the bridge portion and it is difficult to achieve high rotation.
 本開示は、上述の点に鑑みてなされたものであり、その目的は、回転開始時の異音を抑制しつつブリッジ部にかかる負荷を低減可能な埋込磁石型ロータを提供することである。 The present disclosure has been made in view of the above points, and an object thereof is to provide an embedded magnet type rotor capable of reducing the load applied to the bridge portion while suppressing abnormal noise at the start of rotation. ..
 本開示の埋込磁石型ロータは、磁石挿入孔を有するロータコアと、磁石挿入孔に設けられ、横断面形状が長方形であり、厚み方向がロータコアの径方向に沿うように配置されている永久磁石と、磁石挿入孔に設けられ、永久磁石を磁石挿入孔の壁面に押しつけている弾性部材と、を備えている。 An embedded magnet rotor of the present disclosure includes a rotor core having a magnet insertion hole, a permanent magnet provided in the magnet insertion hole, having a rectangular cross section, and having a thickness direction extending along a radial direction of the rotor core. And an elastic member that is provided in the magnet insertion hole and presses the permanent magnet against the wall surface of the magnet insertion hole.
 ロータコアは、磁石挿入孔に対して径方向内側に位置する内側磁性部と、磁石挿入孔に対して径方向外側に位置し、磁極中心から周方向に離れるに従ってロータコアの外接円から径方向内側に離れるように形成された突極部と、突極部の周方向両側から内側磁性部側に延出しているブリッジ部と、を有している。永久磁石は、内側磁性部に接触するとともに突極部に非接触である。永久磁石に対して周方向両側には、永久磁石の径方向外側とブリッジ部とが非接触になるように、周方向空隙部が形成されている。弾性部材は、永久磁石の両側にある2つの周方向空隙部のうち少なくとも一方に配置され、永久磁石を周方向に付勢して固定している。 The rotor core is located radially inward of the magnet insertion hole, and radially outward of the magnet insertion hole. The rotor core is radially inward from the circumscribed circle of the rotor core as the magnetic pole center is circumferentially separated. It has a salient pole portion formed so as to be separated from each other, and a bridge portion extending from both sides in the circumferential direction of the salient pole portion to the inner magnetic portion side. The permanent magnet is in contact with the inner magnetic portion and is not in contact with the salient pole portion. Circumferential gaps are formed on both sides of the permanent magnet in the circumferential direction so that the radial outside of the permanent magnet and the bridge portion are not in contact with each other. The elastic member is disposed in at least one of the two circumferential gaps on both sides of the permanent magnet, and biases and fixes the permanent magnet in the circumferential direction.
 これにより、永久磁石が内側磁性部(すなわち、磁気抵抗がより小さい側)で磁気的に安定するので、永久磁石の径方向の固定力はあまり必要ない。また、永久磁石と突極部との間に空隙があるので、突極部に作用する永久磁石の磁力や遠心力が抑えられる。そのため、ブリッジ部にかかる負荷を低減することができ、高回転化しやすくなる。 Due to this, the permanent magnet is magnetically stable in the inner magnetic part (that is, the side where the magnetic resistance is smaller), so the radial fixing force of the permanent magnet is not required so much. Further, since there is a gap between the permanent magnet and the salient pole portion, the magnetic force and centrifugal force of the permanent magnet acting on the salient pole portion can be suppressed. Therefore, the load applied to the bridge portion can be reduced, and the rotation speed can be easily increased.
 また、径方向において永久磁石と磁石挿入孔との間には隙間があるので、永久磁石の磁石挿入孔への挿入性が良好である。また、永久磁石が磁石挿入孔の径方向内側に配置されるので、埋込磁石型ロータのイナーシャを小さくすることができる。また、永久磁石が弾性部材により周方向に固定されているので、埋込磁石型ロータの回転開始における異音発生が抑制される。また、磁極に突極部を設けることで、ロータコアによって発生するトルクリプルと誘起電圧歪を小さくすることができる。また、突極部の周方向両側にブリッジ部を設けることで、隣接する磁極間での短絡磁束を抑制し、高トルク化が可能となる。また、永久磁石の横断面形状を長方形のような単純形状にすることで、永久磁石の加工費を抑えることができる。 Also, since there is a gap between the permanent magnet and the magnet insertion hole in the radial direction, the insertability of the permanent magnet into the magnet insertion hole is good. Further, since the permanent magnet is arranged inside the magnet insertion hole in the radial direction, the inertia of the embedded magnet type rotor can be reduced. Further, since the permanent magnets are fixed in the circumferential direction by the elastic member, generation of abnormal noise at the start of rotation of the embedded magnet type rotor is suppressed. Further, by providing the salient pole portions on the magnetic poles, the torque ripple and the induced voltage distortion generated by the rotor core can be reduced. Further, by providing the bridge portions on both sides in the circumferential direction of the salient pole portion, it is possible to suppress the short-circuit magnetic flux between the adjacent magnetic poles and increase the torque. Further, by making the cross-sectional shape of the permanent magnet a simple shape such as a rectangle, the processing cost of the permanent magnet can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による埋込磁石型ロータが適用された回転電機の断面図であり、 図2は、図1の埋込磁石型ロータの正面図であり、 図3は、図2のIII部拡大図であり、 図4は、図3のIV-IV線断面図であり、 図5は、第2実施形態による埋込磁石型ロータの部分拡大図であって、第1実施形態の図3に対応する図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a sectional view of a rotary electric machine to which an embedded magnet type rotor according to the first embodiment is applied, 2 is a front view of the embedded magnet rotor of FIG. FIG. 3 is an enlarged view of part III of FIG. 4 is a sectional view taken along line IV-IV of FIG. FIG. 5 is a partially enlarged view of the embedded magnet type rotor according to the second embodiment and is a view corresponding to FIG. 3 of the first embodiment.
 以下、埋込磁石型ロータの複数の実施形態を図面に基づき説明する。実施形態同士で実質的に同一の構成には同一の符号を付して説明を省略する。 A plurality of embodiments of the embedded magnet type rotor will be described below with reference to the drawings. The configurations that are substantially the same between the embodiments are given the same reference numerals, and description thereof will be omitted.
 [第1実施形態]
 第1実施形態による埋込磁石型ロータ(以下、ロータ)は、図1に示す回転電機10に適用されている。回転電機10は、ハウジング11、モータ軸12、ステータ13、およびロータ14を備えている。
[First Embodiment]
The embedded magnet type rotor (hereinafter, rotor) according to the first embodiment is applied to the rotary electric machine 10 shown in FIG. 1. The rotary electric machine 10 includes a housing 11, a motor shaft 12, a stator 13, and a rotor 14.
 モータ軸12は、軸受15を介してハウジング11により回転可能に支持されている。ステータ13は、ハウジング11に固定されているステータコア21と、ステータコア21に組み付けられている巻線22とを有している。 The motor shaft 12 is rotatably supported by the housing 11 via a bearing 15. The stator 13 has a stator core 21 fixed to the housing 11 and a winding wire 22 assembled to the stator core 21.
 図1、図2に示すように、ロータ14は、磁性体からなり、モータ軸12に嵌合して固定されているロータコア23と、ロータコア23の磁石挿入孔24に設けられた複数の永久磁石25とを有している。 As shown in FIGS. 1 and 2, the rotor 14 is made of a magnetic material, and has a rotor core 23 fitted and fixed to the motor shaft 12, and a plurality of permanent magnets provided in magnet insertion holes 24 of the rotor core 23. 25 and.
 以下、ロータ14の径方向のことを単に「径方向」と記載し、ロータ14の周方向(すなわち回転方向)のことを単に「周方向」または「回転方向」と記載し、ロータ14の軸方向のことを単に「軸方向」と記載し、ロータ14の横断面のことを単に「横断面」と記載する。 Hereinafter, the radial direction of the rotor 14 will be simply referred to as “radial direction”, and the circumferential direction (that is, the rotational direction) of the rotor 14 will be simply referred to as “circumferential direction” or “rotational direction”. The direction is simply referred to as an “axial direction”, and the cross section of the rotor 14 is simply referred to as a “cross section”.
 図3に示すように、ロータコア23は、磁石挿入孔24に対して径方向内側に位置する内側磁性部26と、磁石挿入孔24に対して径方向外側に位置し、磁極中心から周方向に離れるに従ってロータコア23の外接円から径方向内側に離れるように形成された突極部27と、突極部27の周方向両側から内側磁性部26側に延出しているブリッジ部28とを有している。突極部27の曲率半径は、上記外接円の曲率半径よりも小さい。永久磁石25は、横断面形状が長方形であり、厚み方向が径方向に沿うように配置されている。 As shown in FIG. 3, the rotor core 23 is located radially inside the magnet insertion hole 24, and radially outside the magnet insertion hole 24. The rotor core 23 has a salient pole portion 27 formed to be radially inward from the circumscribed circle of the rotor core 23, and a bridge portion 28 extending from both circumferential sides of the salient pole portion 27 toward the inner magnetic portion 26. ing. The radius of curvature of the salient pole portion 27 is smaller than the radius of curvature of the circumscribed circle. The permanent magnet 25 has a rectangular cross section and is arranged so that the thickness direction thereof is along the radial direction.
 ロータ14は、巻線22の通電により生じる回転磁界に磁気的に吸引され又は反発して回転する。このようにしてロータ14が回転開始するとき、永久磁石25にはステータ13からの周方向の電磁力が作用する。このとき、永久磁石25がロータコア23に固定されていないと、永久磁石25が磁石挿入孔24内で周方向へ移動し、磁石挿入孔24の壁面に衝突して異音が発生する。 The rotor 14 is magnetically attracted or repelled by a rotating magnetic field generated by energization of the winding wire 22 to rotate. When the rotor 14 starts rotating in this manner, the electromagnetic force in the circumferential direction from the stator 13 acts on the permanent magnet 25. At this time, if the permanent magnet 25 is not fixed to the rotor core 23, the permanent magnet 25 moves in the circumferential direction within the magnet insertion hole 24, collides with the wall surface of the magnet insertion hole 24, and abnormal noise is generated.
 上述のような異音の発生を防止するため、従来では、永久磁石を弾性材により磁石挿入孔の径方向外側の壁面に押しつけて固定していた。ところが、突極部27の周方向両側にブリッジ部28を形成するロータコア23において従来のような磁石固定方法を採用した場合、弾性材による押付け力に加えて、永久磁石25の磁力や遠心力が突極部27に強く作用する。そのため、ブリッジ部28に負荷がかかり、高回転化が困難になる。 In the past, in order to prevent the occurrence of abnormal noise as described above, a permanent magnet was conventionally pressed against an outer wall surface of the magnet insertion hole in the radial direction by an elastic material and fixed. However, when the conventional magnet fixing method is adopted in the rotor core 23 forming the bridge portions 28 on both sides in the circumferential direction of the salient pole portion 27, in addition to the pressing force by the elastic material, the magnetic force and the centrifugal force of the permanent magnet 25 are generated. It strongly acts on the salient pole portion 27. Therefore, a load is applied to the bridge portion 28, and it becomes difficult to achieve high rotation.
 これに対して第1実施形態では、図3に示すように、永久磁石25は、内側磁性部26に接触するとともに突極部27に非接触である。永久磁石25に対して周方向両側には、永久磁石25の径方向外側とブリッジ部28とが非接触になるように、周方向空隙部31が形成されている。永久磁石25の両側にある2つの周方向空隙部31のうち一方には、弾性部材32が配置されている。弾性部材32は、永久磁石25を周方向に付勢して固定している。 On the other hand, in the first embodiment, as shown in FIG. 3, the permanent magnet 25 is in contact with the inner magnetic portion 26 and is not in contact with the salient pole portion 27. Circumferential gaps 31 are formed on both sides of the permanent magnet 25 in the circumferential direction so that the radially outer side of the permanent magnet 25 and the bridge portion 28 are not in contact with each other. An elastic member 32 is arranged in one of the two circumferential gaps 31 on both sides of the permanent magnet 25. The elastic member 32 biases and fixes the permanent magnet 25 in the circumferential direction.
 第1実施形態では、永久磁石25は、磁石挿入孔24の壁部に形成された突起33に押しつけられている。突起33は、磁石挿入孔24を区画する回転方向両側の壁部のうち、径方向内側部分から永久磁石25側に突き出すように形成されている。突起33の先端面34は平面になっている。 In the first embodiment, the permanent magnet 25 is pressed against the protrusion 33 formed on the wall portion of the magnet insertion hole 24. The protrusion 33 is formed so as to protrude from the radially inner portion of the wall portions on both sides in the rotation direction that define the magnet insertion hole 24 toward the permanent magnet 25 side. The tip surface 34 of the protrusion 33 is flat.
 ロータコア23は、図示しない複数の電磁鋼板からなる積層体である。図2、図4では、煩雑になることを避けるため、ロータコア23を1つの部材として図示している。図3に戻って、ブリッジ部28は、突極部27から周方向へ延出する周方向ブリッジ部35と、周方向ブリッジ部35から径方向内側へ延出する径方向ブリッジ部36とを有している。電磁鋼板の厚みをt[mm]とし、周方向ブリッジ部35の幅をx[mm]とし、径方向ブリッジ部36の幅をw[mm]とすると、式(1)の関係が成り立つ。
 0.3<x<t=w<2・・・(1)
The rotor core 23 is a laminated body made of a plurality of electromagnetic steel plates (not shown). 2 and 4, the rotor core 23 is illustrated as one member in order to avoid complication. Returning to FIG. 3, the bridge portion 28 has a circumferential bridge portion 35 extending in the circumferential direction from the salient pole portion 27 and a radial bridge portion 36 extending inward in the radial direction from the circumferential bridge portion 35. doing. When the thickness of the electromagnetic steel sheet is t [mm], the width of the circumferential bridge portion 35 is x [mm], and the width of the radial bridge portion 36 is w [mm], the relationship of the expression (1) is established.
0.3<x<t=w<2 (1)
 永久磁石25は、磁石挿入孔24のうち径方向内側の内側磁性部26(すなわち、磁気抵抗がより小さい側)で磁力的に安定する。これにより、突極部27と永久磁石25との間には空隙(以下、径外方向空隙37)が形成される。磁石挿入孔24は、周方向空隙部31と径外方向空隙37とをつなぐ空隙38を含んでいる。空隙38は、永久磁石25の角部との干渉を避けるための逃がし部である。 The permanent magnet 25 is magnetically stable in the inner magnetic portion 26 (that is, the side having a smaller magnetic resistance) on the radially inner side of the magnet insertion hole 24. As a result, a gap (hereinafter referred to as a radially outward gap 37) is formed between the salient pole portion 27 and the permanent magnet 25. The magnet insertion hole 24 includes a void 38 that connects the circumferential void 31 and the radially outward void 37. The void 38 is a relief portion for avoiding interference with the corner portion of the permanent magnet 25.
 周方向ブリッジ部28と突極部27との隅部41、周方向ブリッジ部35の内側、および、周方向ブリッジ部35と径方向ブリッジ部36との隅部42は、ラウンド形状である。ラウンド形状とは、横断面形状が凹曲線になる形状である。隅部41の曲率半径をR[mm]とすると、式(2)の関係が成り立つ。
 0.15<R<0.4・・・(2)
The corner portion 41 between the circumferential bridge portion 28 and the salient pole portion 27, the inside of the circumferential bridge portion 35, and the corner portion 42 between the circumferential bridge portion 35 and the radial bridge portion 36 have a round shape. The round shape is a shape whose cross-sectional shape is a concave curve. When the radius of curvature of the corner portion 41 is R [mm], the relationship of Expression (2) is established.
0.15<R<0.4...(2)
 図3、図4に示すように、弾性部材32は、例えばステンレス等の非鉄金属あるいは樹脂などの非磁性材料からなるスプリングピンである。弾性部材32は、軸方向端部が先細り形状になっている。弾性部材32の軸方向長さは、永久磁石25の軸方向長さの1/3以上である。 As shown in FIGS. 3 and 4, the elastic member 32 is a spring pin made of a non-ferrous metal such as stainless steel or a non-magnetic material such as resin. The elastic member 32 has a tapered end portion in the axial direction. The axial length of the elastic member 32 is ⅓ or more of the axial length of the permanent magnet 25.
 (効果)
 以上説明したように、第1実施形態では、埋込磁石型ロータ14は、磁石挿入孔26を有するロータコア25と、磁石挿入孔24に設けられ、横断面形状が長方形であり、厚み方向がロータコア23の径方向に沿うように配置されている永久磁石27と、磁石挿入孔24に設けられ、永久磁石25を磁石挿入孔24の壁面に押しつけている弾性部材32とを備えている。
(effect)
As described above, in the first embodiment, the embedded magnet type rotor 14 is provided in the rotor core 25 having the magnet insertion hole 26 and the magnet insertion hole 24, has a rectangular cross section, and has a rotor core in the thickness direction. The permanent magnet 27 is arranged along the radial direction of 23, and the elastic member 32 is provided in the magnet insertion hole 24 and presses the permanent magnet 25 against the wall surface of the magnet insertion hole 24.
 ロータコア23は、磁石挿入孔24に対して径方向内側に位置する内側磁性部26と、磁石挿入孔24に対して径方向外側に位置し、磁極中心から周方向に離れるに従ってロータコア23の外接円から径方向内側に離れるように形成された突極部27と、突極部27の周方向両側から内側磁性部26側に延出しているブリッジ部28とを有している。永久磁石25は、内側磁性部26に接触するとともに突極部27に非接触である。永久磁石25に対して周方向両側には、永久磁石25の径方向外側とブリッジ部28とが非接触になるように、周方向空隙部31が形成されている。弾性部材32は、永久磁石25の両側にある2つの周方向空隙部31のうち少なくとも一方に配置され、永久磁石25を周方向に付勢して固定している。 The rotor core 23 is located radially inward of the magnet insertion hole 24, and radially outward of the magnet insertion hole 24. The rotor core 23 is circumscribed from the magnetic pole center in the circumferential direction. It has a salient pole portion 27 formed so as to be separated inward in the radial direction, and a bridge portion 28 extending from both circumferential sides of the salient pole portion 27 toward the inner magnetic portion 26. The permanent magnet 25 is in contact with the inner magnetic portion 26 and is not in contact with the salient pole portion 27. Circumferential gaps 31 are formed on both sides of the permanent magnet 25 in the circumferential direction so that the radially outer side of the permanent magnet 25 and the bridge portion 28 are not in contact with each other. The elastic member 32 is arranged in at least one of the two circumferential gaps 31 on both sides of the permanent magnet 25, and biases and fixes the permanent magnet 25 in the circumferential direction.
 これにより、永久磁石25が内側磁性部26(すなわち、磁気抵抗がより小さい側)で磁気的に安定するので、永久磁石25の径方向の固定力はあまり必要ない。また、永久磁石25と突極部27との間に径外方向空隙37があるので、突極部27に作用する永久磁石25の磁力や遠心力が抑えられる。そのため、ブリッジ部28にかかる負荷を低減することができ、高回転化しやすくなる。 Due to this, the permanent magnet 25 is magnetically stabilized at the inner magnetic portion 26 (that is, the side on which the magnetic resistance is smaller), so the radial fixing force of the permanent magnet 25 is not required so much. Further, since there is the radially outer gap 37 between the permanent magnet 25 and the salient pole portion 27, the magnetic force or centrifugal force of the permanent magnet 25 acting on the salient pole portion 27 can be suppressed. Therefore, the load applied to the bridge portion 28 can be reduced, and the rotation speed can be easily increased.
 また、径方向において永久磁石25と磁石挿入孔24との間には隙間があるので、永久磁石25の磁石挿入孔24への挿入性が良好である。また、永久磁石25が磁石挿入孔24の径方向内側に配置されるので、埋込磁石型ロータ14のイナーシャを小さくすることができる。また、永久磁石25が弾性部材32により周方向に固定されているので、埋込磁石型ロータ14の回転開始における異音発生が抑制される。また、磁極に突極部27を設けることで、ロータコア23によって発生するトルクリプルと誘起電圧歪を小さくすることができる。また、突極部27の周方向両側にブリッジ部28を設けることで、隣接する磁極間での短絡磁束を抑制し、高トルク化が可能となる。また、永久磁石25の横断面形状を長方形のような単純形状にすることで、永久磁石25の加工費を抑えることができる。 Moreover, since there is a gap between the permanent magnet 25 and the magnet insertion hole 24 in the radial direction, the insertability of the permanent magnet 25 into the magnet insertion hole 24 is good. Further, since the permanent magnet 25 is arranged inside the magnet insertion hole 24 in the radial direction, the inertia of the embedded magnet type rotor 14 can be reduced. Further, since the permanent magnets 25 are fixed in the circumferential direction by the elastic member 32, generation of abnormal noise at the start of rotation of the embedded magnet type rotor 14 is suppressed. Further, by providing the salient pole portion 27 on the magnetic pole, it is possible to reduce torque ripple and induced voltage distortion generated by the rotor core 23. Further, by providing the bridge portions 28 on both sides of the salient pole portion 27 in the circumferential direction, it is possible to suppress short-circuit magnetic flux between adjacent magnetic poles and increase torque. Further, by making the cross-sectional shape of the permanent magnet 25 a simple shape such as a rectangle, the processing cost of the permanent magnet 25 can be suppressed.
 また、第1実施形態では、ロータコア23は、複数の電磁鋼板からなる積層体である。ブリッジ部28は、突極部27から周方向へ延出する周方向ブリッジ部35と、周方向ブリッジ部35から径方向内側へ延出する径方向ブリッジ部36とを有している。周方向ブリッジ部35および径方向ブリッジ部36は、前記式(1)の関係を満たすように形成される。このように幅xが厚みtおよび幅wよりも小さいことにより、短絡磁束経路が狭くなるので、モータトルクを向上させることができる。 Further, in the first embodiment, the rotor core 23 is a laminated body made of a plurality of electromagnetic steel plates. The bridge portion 28 has a circumferential bridge portion 35 extending in the circumferential direction from the salient pole portion 27, and a radial bridge portion 36 extending inward in the radial direction from the circumferential bridge portion 35. The circumferential bridge portion 35 and the radial bridge portion 36 are formed so as to satisfy the relationship of the above expression (1). Since the width x is smaller than the thickness t and the width w in this way, the short-circuit magnetic flux path is narrowed, so that the motor torque can be improved.
 また、第1実施形態では、磁石挿入孔24は、周方向空隙部31と径外方向空隙37とをつなぐ空隙38を含む。これにより、永久磁石25の角とロータコア23との接触を避けることができる。そのため、永久磁石25の角が鋭利な形状であったとしても、挿入時の欠けを防止することができる。したがって、永久磁石25の角をラウンド形状にする加工が不要になり、永久磁石25の加工費を抑えることができる。 In addition, in the first embodiment, the magnet insertion hole 24 includes a void 38 that connects the circumferential void portion 31 and the radially outward void 37. This makes it possible to avoid contact between the corners of the permanent magnet 25 and the rotor core 23. Therefore, even if the corners of the permanent magnet 25 are sharp, it is possible to prevent chipping during insertion. Therefore, it is not necessary to process the corners of the permanent magnet 25 into a round shape, and the processing cost of the permanent magnet 25 can be suppressed.
 また、第1実施形態では、周方向ブリッジ部35と突極部27との隅部41の曲率半径Rは、前記式(2)の関係を満たす。このように寸法設定することで、永久磁石25を磁石挿入孔24に挿入しやすくなる。 Further, in the first embodiment, the radius of curvature R of the corner 41 between the circumferential bridge portion 35 and the salient pole portion 27 satisfies the relationship of the above expression (2). By setting the dimensions in this way, it becomes easy to insert the permanent magnet 25 into the magnet insertion hole 24.
 また、第1実施形態では、弾性部材32は非磁性材料からなるスプリングピンである。これにより、磁力の影響を受けずに永久磁石25を固定することができる。また、弾性部材32は、軸方向端部が先細り形状になっている。これにより、弾性部材32が圧入しやすい。 Also, in the first embodiment, the elastic member 32 is a spring pin made of a non-magnetic material. As a result, the permanent magnet 25 can be fixed without being affected by the magnetic force. Further, the elastic member 32 has a tapered end portion in the axial direction. As a result, the elastic member 32 is easy to press fit.
 [第2実施形態]
 第2実施形態では、図5に示すように、弾性部材32は、永久磁石25の両側にある2つの周方向空隙部31の両方に配置されている。これにより、永久磁石25を磁極中心に配置し、磁極中心に対する左右の磁気的な差をなくすことができる。
[Second Embodiment]
In the second embodiment, as shown in FIG. 5, the elastic members 32 are arranged in both of the two circumferential gaps 31 on both sides of the permanent magnet 25. As a result, the permanent magnet 25 can be arranged at the center of the magnetic pole, and the magnetic difference between the left and right with respect to the center of the magnetic pole can be eliminated.
 [他の実施形態]
 他の実施形態では、弾性部材は、スプリングピンに限らず、他の形成のスプリングであってもよいし、ゴム等の弾性体であってもよい。また、弾性部材は、軸方向において複数設けられてもよい。
[Other Embodiments]
In another embodiment, the elastic member is not limited to the spring pin, and may be a spring having another shape or an elastic body such as rubber. Further, a plurality of elastic members may be provided in the axial direction.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 The present disclosure has been described based on the embodiments. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within an equivalent range. Further, various combinations and forms, and other combinations and forms including only one element, more, or less than those are also within the scope and spirit of the present disclosure.

Claims (6)

  1.  磁石挿入孔(24)を有するロータコア(23)と、
     前記磁石挿入孔に設けられ、横断面形状が長方形であり、厚み方向が前記ロータコアの径方向に沿うように配置されている永久磁石(25)と、
     前記磁石挿入孔に設けられ、前記永久磁石を前記磁石挿入孔の壁面に押しつけている弾性部材(32)と、
     を備え、
     前記ロータコアは、前記磁石挿入孔に対して径方向内側に位置する内側磁性部(26)と、前記磁石挿入孔に対して径方向外側に位置し、磁極中心から周方向に離れるに従って前記ロータコアの外接円から径方向内側に離れるように形成された突極部(27)と、前記突極部の周方向両側から前記内側磁性部側に延出しているブリッジ部(28)と、を有し、
     前記永久磁石は、前記内側磁性部に接触するとともに前記突極部に非接触であり、
     前記永久磁石に対して周方向両側には、前記永久磁石の径方向外側と前記ブリッジ部とが非接触になるように、周方向空隙部(31)が形成され、
     前記弾性部材は、前記永久磁石の両側にある2つの前記周方向空隙部のうち少なくとも一方に配置され、前記永久磁石を周方向に付勢して固定している埋込磁石型ロータ。
    A rotor core (23) having a magnet insertion hole (24);
    A permanent magnet (25) provided in the magnet insertion hole, having a rectangular cross section, and having a thickness direction extending along the radial direction of the rotor core;
    An elastic member (32) provided in the magnet insertion hole and pressing the permanent magnet against the wall surface of the magnet insertion hole;
    Equipped with
    The rotor core is located on the inner side in the radial direction with respect to the magnet insertion hole, and is located on the outer side in the radial direction with respect to the magnet insertion hole. A salient pole portion (27) formed so as to separate from the circumscribed circle inward in the radial direction; ,
    The permanent magnet is in contact with the inner magnetic portion and is not in contact with the salient pole portion,
    Circumferential gaps (31) are formed on both sides of the permanent magnet in the circumferential direction so that the radially outer side of the permanent magnet and the bridge portion are not in contact with each other.
    The embedded magnet type rotor, wherein the elastic member is disposed in at least one of the two circumferential gaps on both sides of the permanent magnet, and biases and fixes the permanent magnet in the circumferential direction.
  2.  前記ロータコアは、複数の電磁鋼板からなる積層体であり、
     前記ブリッジ部は、前記突極部から周方向へ延出する周方向ブリッジ部(35)と、前記周方向ブリッジ部から径方向内側へ延出する径方向ブリッジ部(36)とを有し、
     前記電磁鋼板の厚みをt[mm]とし、前記周方向ブリッジ部の幅をx[mm]とし、前記径方向ブリッジ部の幅をw[mm]とすると、
     0.3<x<t=w<2
     である請求項1の埋込磁石型ロータ。
    The rotor core is a laminated body made of a plurality of electromagnetic steel plates,
    The bridge portion includes a circumferential bridge portion (35) extending in the circumferential direction from the salient pole portion, and a radial bridge portion (36) extending inward in the radial direction from the circumferential bridge portion,
    When the thickness of the electromagnetic steel plate is t [mm], the width of the circumferential bridge portion is x [mm], and the width of the radial bridge portion is w [mm],
    0.3<x<t=w<2
    2. The embedded magnet type rotor according to claim 1.
  3.  前記突極部と前記永久磁石との間の空隙を径外方向空隙(37)とすると、
     前記磁石挿入孔は、前記周方向空隙部と前記径外方向空隙とをつなぐ空隙(38)を含む請求項2に記載の埋込磁石型ロータ。
    When the gap between the salient pole portion and the permanent magnet is a radial gap (37),
    The embedded magnet type rotor according to claim 2, wherein the magnet insertion hole includes a space (38) connecting the circumferential space and the radially outer space.
  4.  前記周方向ブリッジ部と前記突極部との隅部(41)の曲率半径をR[mm]とすると、
     0.15<R<0.4
     である請求項2または3に記載の埋込磁石型ロータ。
    When the radius of curvature of the corner portion (41) between the circumferential bridge portion and the salient pole portion is R [mm],
    0.15<R<0.4
    The embedded magnet type rotor according to claim 2 or 3.
  5.  前記弾性部材は非磁性材料からなるスプリングピンである請求項1~4のいずれか一項に記載の埋込磁石型ロータ。 The embedded magnet type rotor according to any one of claims 1 to 4, wherein the elastic member is a spring pin made of a non-magnetic material.
  6.  前記弾性部材は、前記永久磁石の両側にある2つの前記周方向空隙部の両方に配置されている請求項1~5のいずれか一項に記載の埋込磁石型ロータ。 The embedded magnet rotor according to any one of claims 1 to 5, wherein the elastic member is arranged in both of the two circumferential gaps on both sides of the permanent magnet.
PCT/JP2020/005206 2019-02-15 2020-02-11 Embedded-magnet-type rotor WO2020166574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-025804 2019-02-15
JP2019025804A JP7024745B2 (en) 2019-02-15 2019-02-15 Embedded magnet type rotor

Publications (1)

Publication Number Publication Date
WO2020166574A1 true WO2020166574A1 (en) 2020-08-20

Family

ID=72045596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005206 WO2020166574A1 (en) 2019-02-15 2020-02-11 Embedded-magnet-type rotor

Country Status (2)

Country Link
JP (1) JP7024745B2 (en)
WO (1) WO2020166574A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545364A (en) * 2005-06-30 2008-12-11 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ Rotor for electric machine
JP2010161896A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotor of permanent-magnet-type rotary electric machine
JP2010183772A (en) * 2009-02-06 2010-08-19 Toyo Electric Mfg Co Ltd Method for fixing permanent magnet of vehicular main motor
JP2010233413A (en) * 2009-03-30 2010-10-14 Aisin Seiki Co Ltd Electric motor
US20150357872A1 (en) * 2013-04-11 2015-12-10 Bühler Motor GmbH Permanent magnet rotor for an electrinically commutated dc motor
DE102014225260A1 (en) * 2014-12-09 2016-06-09 Em-Motive Gmbh Cooling optimized laminated core for a permanent magnetic rotor of an electrical machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545364A (en) * 2005-06-30 2008-12-11 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ Rotor for electric machine
JP2010161896A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotor of permanent-magnet-type rotary electric machine
JP2010183772A (en) * 2009-02-06 2010-08-19 Toyo Electric Mfg Co Ltd Method for fixing permanent magnet of vehicular main motor
JP2010233413A (en) * 2009-03-30 2010-10-14 Aisin Seiki Co Ltd Electric motor
US20150357872A1 (en) * 2013-04-11 2015-12-10 Bühler Motor GmbH Permanent magnet rotor for an electrinically commutated dc motor
DE102014225260A1 (en) * 2014-12-09 2016-06-09 Em-Motive Gmbh Cooling optimized laminated core for a permanent magnetic rotor of an electrical machine

Also Published As

Publication number Publication date
JP7024745B2 (en) 2022-02-24
JP2020137208A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5480176B2 (en) Rotating machine rotor
JP4709132B2 (en) Rotor of permanent magnet embedded motor, motor for blower and motor for compressor
JP6640621B2 (en) Motor rotor and brushless motor
CN106877536B (en) Permanent magnet rotor for electric motor
JP6801282B2 (en) Rotating electric rotor
CN111684688B (en) Rotor of rotating electric machine and rotating electric machine
JP6832746B2 (en) Manufacturing method of rotary electric machine, slot insulating paper, stator of rotary electric machine, and manufacturing method of slot insulating paper
KR102120312B1 (en) Stator core and motor including stator core
WO2020166574A1 (en) Embedded-magnet-type rotor
JPH05219668A (en) Permanent magnet type rotor
JP2020010539A (en) Rotor and brushless motor
CN112640258A (en) Rotating electrical machine
JP2020010553A (en) Stator core
JP2012125111A (en) Rotor of outer rotor type rotary machine
WO2021205890A1 (en) Stator core
CN111384802A (en) Rotor of rotating electric machine
JP2007097276A (en) Iron core of rotating electric machine and iron core of linear motor
WO2020166573A1 (en) Embedded magnet-type rotor
JP2015220950A (en) Rotating electrical machine
JP7103132B2 (en) Rotating electric machine
KR102167732B1 (en) Stator core and motor including stator core
KR102220049B1 (en) Stator core and motor including stator core
US12009699B2 (en) Rotor and brushless motor
US10873225B2 (en) Rotor for rotary electric machine having a gap for alleviating stress during rotation
CN110797998B (en) Rotor and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756661

Country of ref document: EP

Kind code of ref document: A1