WO2020166520A1 - Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method - Google Patents

Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method Download PDF

Info

Publication number
WO2020166520A1
WO2020166520A1 PCT/JP2020/004914 JP2020004914W WO2020166520A1 WO 2020166520 A1 WO2020166520 A1 WO 2020166520A1 JP 2020004914 W JP2020004914 W JP 2020004914W WO 2020166520 A1 WO2020166520 A1 WO 2020166520A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasmon resonance
electrode
sensor chip
surface plasmon
Prior art date
Application number
PCT/JP2020/004914
Other languages
French (fr)
Japanese (ja)
Inventor
アムリタ サナ
雅紀 佐々木
博紀 鈴木
ジャイルズ アリソン
Original Assignee
イムラ・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イムラ・ジャパン株式会社 filed Critical イムラ・ジャパン株式会社
Priority to JP2020572226A priority Critical patent/JPWO2020166520A1/en
Publication of WO2020166520A1 publication Critical patent/WO2020166520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the present invention relates to an electrical measurement type surface plasmon resonance sensor, an electrical measurement type surface plasmon resonance sensor chip, and a surface plasmon polariton change detection method, and more specifically, an electrical measurement type surface plasmon resonance sensor and an electrical measurement type surface plasmon resonance used therefor.
  • the present invention relates to a sensor chip and a surface plasmon polariton change detection method using the same.
  • SPR Surface Plasmon Resonance
  • Propagation type surface plasmon resonance (PSPR: Propagating) propagating on a metal surface.
  • PSPR Propagating
  • LSPR Localized Surface Plasmon Resonance
  • Propagation type surface plasmon resonance is a state in which resonance occurs due to interaction between an electric field generated around plasma-oscillating free electrons and incident light, and the plasma oscillation and electromagnetic waves traveling along the interface are coupled.
  • Electron compression waves surface plasmon polaritons, SPP: Surface Plasmon Polaritons
  • the localized surface plasmon resonance is a state in which the metal nanostructure such as the metal nanoparticles is polarized/induced by the plasma vibration and electric dipoles are generated.
  • the surface plasmon resonance is used for a sensor such as an affinity sensor that detects the presence or absence of adsorption of a target substance and the strength of the interaction, and is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2011-141265 (Patent Document 1).
  • a sensor chip including a base material having a portion and a diffraction grating that is formed on the flat portion and has a surface formed of a metal and that includes a specific protrusion on which a target substance is arranged.
  • the device becomes expensive because it is necessary to detect the change in the surface plasmon resonance angle due to the change in the concentration of the target substance existing on the metal surface with the optical system.
  • There is a problem that there is a tendency to increase the size and that it is difficult to integrate and to increase the throughput for processing a large number of samples at the same time.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-356587 includes a substrate and metal fine particles fixed on the surface of the substrate as a single film separated from each other without being aggregated.
  • a localized plasmon resonance sensor having a sensor unit is described.
  • the change in the refractive index of the medium in the vicinity of the surface of the metal fine particles due to the adsorption or deposition of the target substance on the metal fine particles is measured by measuring the absorbance of light transmitted between the metal fine particles. Since it is detected by measuring, it is necessary to strictly control the size and arrangement of the metal fine particles, and it is difficult to sufficiently enhance the intensity of the detection signal because it is the absorbance, which is a problem. Was there.
  • JP 2012-38541 A discloses a transparent substrate, a transparent electrode layer, Plasmon resonance photoelectric conversion provided with an anode electrode in which a metal fine particle layer, a semiconductor thin film made of an n-type semiconductor, and an adsorption layer of a dye are sequentially laminated, and a cathode electrode arranged on the anode electrode via an electrolyte containing a redox species. The elements are described.
  • An international application was filed on August 9, 2018 (PCT/JP2018/29979) for an electric measurement type surface plasmon resonance sensor provided with an electric measuring device for directly measuring a current value or a voltage value from the plasmon resonance membrane electrode.
  • an electric measurement type surface plasmon resonance sensor downsizing and high throughput can be easily achieved, and an electric measurement type surface plasmon resonance sensor chip having sufficient sensor accuracy and an electric measurement type surface plasmon resonance sensor chip used therefor can be provided. It becomes possible to provide.
  • the present invention has been made in view of the above problems of the prior art, is easy to miniaturize and high throughput, and an electric measurement type surface plasmon resonance sensor having sufficient sensor sensitivity and an electric measurement used therefor.
  • EN Provided are a surface plasmon resonance sensor chip and a surface plasmon polariton change detection method using the same.
  • the present inventors have combined a prism, a transparent electrode, an n-type transparent semiconductor film, and a plasmon resonance film electrode in a chip, and further combined a reflection resonance film in this order.
  • the arriving light is converted into surface plasmon polaritons propagating through the plasmon resonance film electrode by arriving at the plasmon resonance film electrode with incident light incident from the prism side at an incident angle within a specific range. It was found that this can be directly detected as an electric signal from the transparent electrode and the plasmon resonance film electrode.
  • the magnitude of the detected electric signal changes with high accuracy in accordance with the refractive index of the sample in the vicinity of the plasmon resonance film electrode, and by combining the reflection resonance film, the sensor sensitivity is further improved. Has been achieved. Furthermore, since the refractive index of the sample corresponds to the concentration and state of the sample, the chip having the above configuration is used as a sensor chip capable of measuring the concentration change and state change of the sample by detecting the surface plasmon polariton change. It has been found that this is possible, and the present invention has been completed.
  • the electrical measurement type surface plasmon resonance sensor of the present invention A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon.
  • the electric measurement type surface plasmon resonance sensor of the present invention is Plasmon resonance membrane electrode capable of converting incident light into surface plasmon polaritons,
  • the plasmon resonance film electrode is disposed on the incident light side, transmits the incident light, and the transmitted incident light is emitted from the plasmon resonance film electrode by interacting with the plasmon resonance film electrode.
  • N-type transparent semiconductor film capable of receiving hot electrons A reflection resonance film, which is disposed on the opposite side of the plasmon resonance film electrode from the n-type transparent semiconductor film and is capable of internally resonating an electric field change due to surface plasmon resonance generated by the plasmon resonance film electrode; as well as, A transparent electrode capable of taking out hot electrons transferred from the n-type transparent semiconductor film as an electric signal, A sensor chip including A prism capable of controlling the angle of the incident light so that the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film; And a plasmon polariton enhanced sensor chip including: An electrical measuring device capable of directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode, It is characterized by including.
  • the thickness of the reflection resonance film is expressed by the following formula (1): ⁇ 2° ⁇ (1) [In the formula (1), ⁇ is a current value measured by making light incident on the sensor chip within a range in which the incident angle ( ⁇ ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°.
  • the current with respect to the energy of the incident light is Angle obtained by subtracting the incident angle ( ⁇ CAmin ) at which the output current ratio is the minimum value (CA min ) from the incident angle ( ⁇ CAmax ) at which the output current ratio (CA) that is the ratio of the values is at the maximum value (CA max ). Indicates the amount of change. ] It is preferable that the thickness satisfies the condition shown by.
  • a combination of the n-type transparent semiconductor film and the plasmon resonance film electrode is a combination that forms a Schottky barrier. Is preferred.
  • the thickness of the plasmon resonance membrane electrode is preferably 200 nm or less (however, not including 0), and in the sensor chip, it is also preferable that the reflection resonance film is a film made of at least one selected from the group consisting of metal oxides, semiconductors, and organic substances.
  • the n-type transparent semiconductor film is TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , TaON, WO. 3 and In 2 O 3 is preferably a film made of at least one n-type semiconductor selected from the group consisting of.
  • the sensor chip further comprises a molecular bonding film on the side opposite to the plasmon resonance film of the reflection resonance film, and It is also preferable that the sensor chip further includes an oxide film between the plasmon resonance film electrode and the reflection resonance film.
  • the electric measurement type surface plasmon resonance sensor chip of the present invention is a sensor chip used in the above-mentioned electric measurement type surface plasmon resonance sensor, and includes a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film. It is characterized in that they are arranged in this order.
  • a sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, a prism, the prism, the transparent A plasmon polariton enhanced sensor chip in which an electrode, the n-type transparent semiconductor film, the plasmon resonance film electrode, and the reflection resonance film are arranged in this order;
  • An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode, A method for detecting a change in surface plasmon polaritons using an electric measurement type surface plasmon resonance sensor having Irradiating light from the prism side, and totally reflecting the light passing through the prism, the transparent electrode, and the n-type transparent semiconductor film between the plasmon resonance film electrode and the n-type transparent semiconductor film.
  • Hot electrons generated by the surface plasmon polaritons and transferred to the n-type transparent semiconductor film are taken out from the transparent electrode as an electric signal, Detecting a change in surface plasmon polaritons by measuring a change in current value or voltage value between the transparent electrode and the plasmon resonance film electrode by the electrical measuring device, It is a method characterized by that.
  • the present inventors speculate as follows. That is, the electric measurement type surface plasmon resonance sensor chip of the present invention (hereinafter, simply referred to as “sensor chip” in some cases) and the electric measurement type surface plasmon resonance sensor using the prism and the prism in combination (hereinafter, sometimes, simply (Hereinafter referred to as “sensor”), when the plasmon resonance film electrode is irradiated with light from the prism side and the light passing through the prism is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film, Energy bleeding (evanescent wave) occurs on the back side of the reflected surface.
  • total reflection angle a critical angle
  • the evanescent wave generated at the place of total reflection interacts with the plasmon resonance film in contact with the back side. Then, the above surface plasmon polaritons are excited. At this time, since the incident angle of the incident light can be controlled by the prism so as to be the above-mentioned angle of total reflection, the generated surface plasmon polaritons are sufficiently enhanced.
  • the surface plasmon polaritons sufficiently polarize the plasmon resonance film electrode to release hot electrons and form hot holes.
  • the released hot electrons form the Schottky barrier with the plasmon resonance film electrode. It is possible to smoothly move to the opposite transparent electrode via the n-type transparent semiconductor film. Therefore, in the sensor chip of the present invention and the sensor using the same and the prism, the present inventors can sufficiently detect the surface plasmon polariton from the plasmon resonance film electrode and the transparent electrode as an electric signal. Guess.
  • a reflection resonance film is further provided so that the electric field change inside the reflection resonance film is caused by the surface plasmon resonance generated by the plasmon resonance film electrode.
  • the induced electric field change is propagated and reflected at the interface of the reflection resonance film on the side opposite to the plasmon resonance film electrode, so that resonance of the electric field change occurs inside the reflection resonance film.
  • the present inventors infer that this causes the generated surface plasmon resonance to be amplified and the electric signal (current) extracted from the transparent electrode to become more sensitive.
  • the change in the refractive index in the vicinity of the plasmon resonance film electrode causes the above-mentioned total reflection, that is, the incident that causes the surface plasmon polaritons.
  • the range of the angle (incident angle of light incident from the prism side) and the strength of the generated surface plasmon polaritons are changed.
  • the electric field generated in the plasmon resonance film electrode by the incidence of light is enhanced by the surface plasmon polaritons, the amount of current that changes according to the change in the electric field changes depending on the strength of the surface plasmon polaritons.
  • the present inventors presume that the change in the refractive index of the sample near the plasmon resonance film electrode can be measured with sufficient accuracy. Therefore, according to the sensor chip of the present invention and the sensor using this and the prism, by detecting the change of the surface plasmon polariton, it is possible to monitor the concentration change and the state change of the sample with high accuracy, and The present inventors presume that since the detection signal is an electric signal, the intensity thereof can be electrically increased easily and can be easily measured as a current.
  • an electric measurement type surface plasmon resonance sensor which is easy to be miniaturized and has high throughput and has sufficient sensor sensitivity, and an electric measurement type surface plasmon resonance sensor chip used therefor. Become.
  • 1 is a schematic vertical sectional view showing a preferred embodiment 1 of a plasmon polariton enhanced sensor chip.
  • 1 is a schematic vertical sectional view showing a preferred first embodiment of an electric measurement type surface plasmon resonance sensor.
  • 6 is a graph showing a relationship between an incident angle and an output current ratio when light is incident on a sensor chip and a current value is measured. It is a schematic diagram which shows the incident angle ((theta) degree) of the light which injects from the prism side.
  • It is a schematic longitudinal cross-sectional view showing a second preferred embodiment of the plasmon polariton enhanced sensor chip.
  • It is a schematic longitudinal cross-sectional view showing a preferred embodiment 3 of the plasmon polariton enhanced sensor chip.
  • 5 is a graph showing the results of measuring each sample solution using the chip with prism obtained in Example 3.
  • 7 is a graph showing the relationship between the refractive index of each sample solution and the normalized current value when each sample solution was measured using the chips with prisms obtained in Comparative Example 1 and Examples 1 and 2.
  • 9 is a graph showing the relationship between the incident angle of light, the current value, and the output current ratio in the chip with prism and chip 1 obtained in Comparative Example 1.
  • 6 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 2.
  • 9 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 3.
  • 6 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 4.
  • the electric measurement type surface plasmon resonance sensor of the present invention is A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon.
  • the electrical measurement type surface plasmon resonance sensor of the present invention Plasmon resonance film electrode capable of converting incident light into surface plasmon polaritons,
  • the plasmon resonance film electrode is disposed on the incident light side, transmits the incident light, and the transmitted incident light is emitted from the plasmon resonance film electrode by interacting with the plasmon resonance film electrode.
  • N-type transparent semiconductor film capable of receiving hot electrons A reflection resonance film, which is arranged on the opposite side of the plasmon resonance film electrode from the n-type transparent semiconductor film and is capable of internally resonating an electric field change due to surface plasmon resonance generated by the plasmon resonance film electrode; as well as, A transparent electrode capable of taking out hot electrons transferred from the n-type transparent semiconductor film as an electric signal, A sensor chip including A prism capable of controlling the angle of the incident light so that the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film; And a plasmon polariton enhanced sensor chip including: An electrical measuring device capable of directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode, It is also equipped with.
  • the electric measurement type surface plasmon resonance sensor chip of the present invention is a sensor chip used in the electric measurement type surface plasmon resonance sensor of the present invention, and includes a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and The reflection resonance film is arranged in this order.
  • an electric measurement type surface plasmon resonance sensor hereinafter, “sensor”
  • a plasmon polariton enhanced sensor chip hereinafter, “enhanced sensor chip”
  • an electrical measurement type surface plasmon resonance sensor chip hereinafter, " A more specific description will be given by taking a preferred form of the "sensor chip” as an example, but the present invention is not limited thereto.
  • the same or corresponding elements will be denoted by the same reference symbols, without redundant description.
  • FIG. 1A shows a first preferred form of the enhanced sensor chip (preferred embodiment 1; enhanced sensor chip 110).
  • the enhancement sensor chip 110 includes a transparent electrode (hereinafter, “transparent electrode 2”), an n-type transparent semiconductor film (, on a prism (hereinafter, “prism 1”).
  • a sensor chip photoelectric conversion unit including a "n-type transparent semiconductor film 3", a plasmon resonance film electrode (hereinafter, “plasmon resonance film electrode 4"), and a reflection resonance film (hereinafter, “reflection resonance film 5")
  • the sensor chip 11 is laminated so that the prism 1, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are laminated in this order.
  • FIG. 1B shows a first preferable form of the sensor (preferred embodiment 1; sensor 510).
  • a sensor 510 includes an enhanced sensor chip 110 including a prism 1 and a sensor chip 11, a transparent electrode 2 and a plasmon resonance film electrode 4 of the sensor chip 11 and an external circuit (external).
  • An electrical measuring device electrically connected through the circuits 31 and 31').
  • the prism 1 has a function of totally reflecting incident light between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4. That is, in the embodiment of the present disclosure, the prism 1 controls the angle of incident light so that the total reflection condition between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 is satisfied.
  • the incident light whose angle is controlled by the prism 1 is totally reflected between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4, that is, at the interface between the plasmon resonance film electrode 4 and the n-type transparent semiconductor film 3. To do.
  • the incident light whose angle is controlled by the prism 1 is an interface between the plasmon resonance film electrode 4 and the adhesive layer or an interface between the adhesive layer and the n-type transparent semiconductor film 3. Is totally reflected at. Further, when the following adhesive layer is composed of two or more layers, the incident light whose angle is controlled by the prism 1 is the interface between the plasmon resonance film electrode 4 and the adhesive layer, or the adhesive layer and the n-type transparent semiconductor film 3. Total reflection occurs at the interface with or, or the interface between two adjacent layers.
  • a triangular prism in the shape of a triangular prism (a right-angle prism (a right-angled isosceles triangle having an angle of 45°, a right-angled triangle having angles of 60° and 30°), an equilateral triangular prism, etc.); a trapezoidal prism shape Trapezoidal prism; a cylindrical prism in which one side surface of a cylinder is flat (the length (side) between the plane (rectangle) and the top and bottom of the cylinder is shorter than the diameter of the circle of the top and bottom)
  • a spherical prism in which one side surface of the sphere is in the shape of a plane (the diameter of the plane (circle) may be smaller than the diameter of the sphere); and a pentagonal prism in the shape of a pentagon.
  • a prism or a spherical prism preferably a right-angled prism; a semi-cylindrical prism whose short side length is equal to the diameter of the circles of the top and bottom surfaces; or a hemisphere where the diameter of the plane circle is equal to the diameter of the sphere More preferably, it is a prism.
  • one prism 1 may be arranged for one sensor chip (photoelectric conversion unit), or two or more prisms 1 may be arranged in an array, or two or more prisms may be arranged.
  • One prism 1 may be arranged for a plurality of photoelectric conversion units.
  • the size of the prism 1 is not particularly limited, and is the longest side when the surface in contact with the sensor chip is a polygon, or otherwise the diameter of the circumscribed circle of the surface in contact with the sensor chip. Is preferably 10 nm to 10 cm, more preferably 50 nm to 5 cm, and even more preferably 100 nm to 3 cm. It should be noted that nanometer- to micrometer-sized prisms can be molded using patterning techniques such as laser ablation, electron beam lithography, nanoimprint lithography, and optical interference lithography. It can be obtained by performing optical polishing after cutting. If the size of the prism 1 is less than the lower limit, the manufacturing difficulty increases and the performance as a prism decreases, so that the performance as a sensor tends to decrease. On the other hand, if the size exceeds the upper limit, the prism 1 becomes a sensor. It tends to be difficult to downsize.
  • the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are arranged on the side surface of the triangular prism. It is preferable that the light is incident on the surface other than the side surface.
  • the prism 1 is a trapezoidal prism
  • the transparent electrode 2, the n-type transparent semiconductor film 3, and the plasmon resonance film are formed on the surface of the trapezoidal pillar that forms the lower base of the trapezoid (lower bottom surface). It is preferable that the electrode 4 and the reflection resonance film 5 are arranged, and that light is incident from the surface forming the hypotenuse of the trapezoid.
  • the angle formed by the surface of each prism on which the incident light enters and the surface in contact with the sensor chip is 5 to 85°. Is more preferable, 15 to 75° is more preferable, and 25 to 65° is still more preferable.
  • the prism 1 is a cylindrical prism or a spherical prism
  • the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are arranged on the planes of the prisms.
  • the light is incident on the curved surface.
  • the diameter of the cylinder when the diameter of the cylinder is 1, when the plane is the bottom surface, the intersection of the arc from the center of the bottom surface at the intersection of a straight line extending in the vertical direction from the center of the bottom surface and the arc.
  • the ratio of the distance hereinafter referred to as “prism height”) to the diameter of the cylinder (prism height/cylinder diameter) is preferably less than 1 (not including 0), and is 0.2 or more. It is more preferably less than 0.8, and further preferably 0.4 or more and less than 0.6.
  • the ratio of the height from the center of the bottom surface (hereinafter, referred to as “prism height”) to the diameter of the sphere.
  • the (prism height/sphere diameter) is preferably less than 1 (not including 0), more preferably 0.2 or more and less than 0.8, and 0.4 or more and less than 0.6. Is more preferable.
  • the angle or the prism height is less than the lower limit or exceeds the upper limit, light can be incident at an incident light angle that can excite surface plasmon polaritons. There is a tendency that it becomes difficult and that the sensitivity and accuracy of the sensor decrease due to the light being reflected multiple times inside the prism.
  • the transparent electrode 2 When the prism 1 is a pentaprism, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are provided on one of the side surfaces of the pentagonal prism. It is preferable that the light beams are arranged and light is incident from any one of the remaining four faces.
  • the material of the prism 1 is not particularly limited and includes, for example, glass, polymer (polymethylmethacrylate, polystyrene, polyethylene, epoxy, polyester, etc.), sulfur, ruby, sapphire, diamond, zinc selenide (ZnSe), Zinc sulfide (ZnS), germanium (Ge), silicon (Si), cesium iodide (CsI), potassium bromide (KBr), thallium bromoiodide, calcium carbonate (CaCO 3 ), barium fluoride (BaF 2 ), Examples thereof include magnesium fluoride (MgF 2 ) and lithium fluoride (LiF).
  • the material of the prism 1 may be liquid, water, oil, glycerol, diiodomethane, ⁇ -bromonaphthalene, toluene, isooctane, cyclohexane, 2,4-dichlorotoluene, ethylbenzene, dibenzyl ether, aniline, Examples thereof include styrene, an organic compound solution (sucrose solution, etc.), and an inorganic compound solution (potassium chloride solution, sulfur-containing solution), and one of these may be used alone or two or more thereof may be used in combination. ..
  • a light source for incident light may be disposed inside the prism 1 regardless of the shape and material of the prism 1.
  • the transparent electrode 2 has a function of taking out hot electrons (electrons), which are emitted along with the surface plasmon polaritons generated in the plasmon resonance film electrode 4 and have moved in the n-type transparent semiconductor film 3 as an electric signal, It functions as a counter electrode of the resonance membrane electrode 4, and the plasmon resonance membrane electrode 4, the electrical measuring device (the electrical measuring device 21 in the preferred embodiment 1) and, if necessary, an external circuit (lead wire, ammeter, etc.); In the first embodiment, they are electrically connected via the external circuits 31 and 31'). Moreover, the transparent electrode 2 needs to be able to transmit light.
  • the phrase “a film, an electrode, a layer, a substrate, and the like can transmit light” means that at least one of wavelengths of 400 to 1500 nm with respect to one surface of the film, the electrode, the layer, the substrate, or the like. It means that the light transmittance when light of a wavelength is vertically incident is 40% or more, and the light transmittance is preferably 50% or more, more preferably 60% or more.
  • the material of the transparent electrode 2 can be appropriately selected and used from materials conventionally used as transparent electrodes in the semiconductor field, and examples thereof include copper (Cu), gold (Au), silver (Ag), and platinum. (Pt), zinc (Zn), chromium (Cr), aluminum (Al), titanium (Ti), titanium nitride (TiN), ITO (Indium tin oxide), FTO (Fluorine-doped tin oxide), and other elements ( Examples thereof include transparent conductive materials such as metal oxides such as ZnO doped with aluminum and gallium), and thin films and net-like shapes made of a laminate of these materials. Further, examples of the material of the transparent electrode 2 include an n-type semiconductor forming the following n-type transparent semiconductor film. In the sensor chip, the transparent electrode 2 and the n-type transparent semiconductor film 3 are made of the same material. It may be a layer. In this case, the n-type transparent semiconductor film 3 also serves as the transparent electrode 2.
  • the thickness of the transparent electrode 2 (excluding the case where the n-type transparent semiconductor film 3 also serves as the transparent electrode 2) is usually 1 to 1000 nm.
  • the thickness and boundaries of films, electrodes, layers, substrates, etc. are measured and confirmed by observation with a scanning electron microscope (SEM) or transmission electron microscope (TEM), Rutherford backscattering analysis (RBS). can do.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • RBS Rutherford backscattering analysis
  • the n-type transparent semiconductor film 3 has a function of receiving hot electrons emitted when the plasmon resonance film electrode 4 is sufficiently polarized by the surface plasmon resonance film polariton excited by the plasmon resonance film electrode 4.
  • the film is a semiconductor film.
  • the n-type transparent semiconductor film 3 needs to be able to transmit light.
  • Examples of the n-type semiconductor include an inorganic oxide semiconductor, and one of these may be a single material or a composite material of two or more materials.
  • Examples of the inorganic oxide semiconductor include titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), gallium nitride (GaN), gallium oxide (GaO), strontium titanate oxide (SrTiO 3 ), and oxide.
  • Examples thereof include iron (Fe 2 O 3 ), tantalum oxynitride (TaON), tungsten oxide (WO 3 ), indium oxide (In 2 O 3 ), and their composite oxides.
  • the n-type semiconductor is composed of TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , TaON, WO 3 and In 2 O 3 from the viewpoint of high transparency and high conductivity. It is preferably at least one semiconductor selected from the group, and is at least one semiconductor selected from the group consisting of TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 and In 2 O 3. Is more preferable.
  • the thickness of the n-type transparent semiconductor film 3 is preferably 1 to 1000 nm, more preferably 5 to 500 nm, and more preferably 10 to More preferably, it is 300 nm. If the thickness is less than the lower limit, the n-type transparent semiconductor cannot exist as a film and tends to fail to function sufficiently as a semiconductor. On the other hand, when the amount exceeds the upper limit, the light transmittance tends to decrease, or the resistance tends to increase, which makes it difficult for current to flow.
  • the plasmon resonance film electrode 4 has a function of converting incident light (incident light) into surface plasmon polaritons, and is a film made of a plasmonic material capable of generating surface plasmon polaritons by interaction with light. .. Further, it has a function of extracting the surface plasmon polariton as an electric signal, functions as a counter electrode of the transparent electrode 2, the transparent electrode 2, the electrical measuring device (the electrical measuring device 21 in the preferred embodiment 1), and If necessary, they are electrically connected via an external circuit (conductor, ammeter, etc.; in the preferred embodiment 1, the external circuits 31 and 31').
  • the plasmonic material examples include metals, metal nitrides, and metal oxides, and one of these may be a single material or a composite material of two or more materials.
  • the metal is gold (Au), silver (Ag), aluminum (Al), copper (Cu), platinum (Pt), palladium (Pd), zinc (Zn). , And sodium (Na).
  • the metal nitride is titanium nitride (TiN), and the metal oxide is ITO (Indium tin oxide), FTO (Fluorine-doped tin oxide), and other elements. Examples thereof include ZnO doped with (aluminum, gallium, etc.).
  • the plasmonic material is preferably at least one selected from the group consisting of Au, Ag, Al, Cu, Pt, Pd, and TiN, and is composed of Au, Ag, Al, Cu, and Pt. More preferably, it is at least one selected from the group.
  • the thickness of the plasmon resonance film electrode 4 is preferably 200 nm or less (not including 0), more preferably 1 to 150 nm, further preferably 5 to 100 nm, and more preferably 10 to 60 nm. It is even more preferred to be present.
  • the thickness is less than the lower limit, the plasmon resonance film electrode tends to be unable to exist as a film, and when the thickness exceeds the upper limit, an evanescent wave reaching a surface opposite to a surface on which light is incident. becomes weak, and sufficient surface plasmon polaritons cannot be excited.
  • the thickness of the plasmon resonance film electrode 4 tends to allow a wider range of refractive indices (preferably 1.33 to 1.40) to be measured as the refractive index of the sample to be measured. Is particularly preferably 10 to 34 nm, and particularly preferably 35 to 60 nm from the viewpoint of increasing the rate of change of the current value with respect to the change of the refractive index.
  • the reflection resonance film 5 has a function of internally resonating the electric field change due to the surface plasmon resonance generated by the plasmon resonance film electrode 4, and more specifically, by the surface plasmon resonance generated by the plasmon resonance film electrode 4. , An electric field change is caused inside, and the electric field change is propagated and reflected at the interface on the side opposite to the plasmon resonance film electrode 4, thereby causing resonance of the electric field change inside the reflection resonance film, Has a function of amplifying the generated surface plasmon resonance.
  • Examples of the material of the reflection resonance film 5 include metal oxides (for example, titanium dioxide (TiO 2 ), iron oxide (II) (FeO), iron oxide (III) (Fe 2 O 3 ), and silicon dioxide (SiO 2 ). ) Etc.), semiconductors other than the above metal oxides (for example, silicon (Si), germanium (Ge), and doped materials thereof), organic substances (for example, polyethylene (PE), dimethylpolysiloxane (PDMS), polymethacryl). Examples thereof include synthetic resins such as methyl acidate (PMMA, acrylic resin); polymer polymers such as cellulose and ethylene glycol, and one of these may be a single material or a composite material of two or more materials. ..
  • metal oxides for example, titanium dioxide (TiO 2 ), iron oxide (II) (FeO), iron oxide (III) (Fe 2 O 3 ), and silicon dioxide (SiO 2 ).
  • semiconductors other than the above metal oxides for example, silicon (Si), german
  • the material of the reflection resonance film 5 is a metal oxide such as TiO 2 or SiO 2 , and Si. It is preferably at least one selected from the group consisting of semiconductors such as, and more preferably at least one selected from the group consisting of metal oxides such as TiO 2 and semiconductors such as Si.
  • the thickness of the reflection resonance film 5 is expressed by the following formula (1) from the viewpoint of achieving particularly sufficient improvement in sensor sensitivity: ⁇ 2° ⁇ (1) It is preferable that the thickness satisfies the condition shown by.
  • is a value obtained when light is incident on the sensor chip within a range in which the incident angle ( ⁇ ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°.
  • the current value with respect to the energy of the incident light is Change in angle obtained by subtracting the incident angle ( ⁇ CAmin ) at which the output current ratio becomes the minimum value (CA min ) from the incident angle ( ⁇ CAmax ) at which the output current ratio (CA), which is the ratio, becomes the maximum value (CA max ). Indicates the amount.
  • FIG. 4 when light is incident on the sensor chip and the current value is measured within a range in which the incident angle ( ⁇ ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°, FIG. As shown in FIG. 4, the change of the current value within the range of ⁇ 25° of the incident angle ( ⁇ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film (Fig. In 2) is observed as a peak. At this time, the sharper the peak is, that is, the steeper the peak is, the higher the sensor sensitivity is, and the peak can be made sharper by providing the reflection resonance film.
  • ⁇ in the formula (1) is ⁇ 25 of an incident angle ( ⁇ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film.
  • the output current ratio is the minimum value (CA) from the incident angle ( ⁇ CAmax ) where the output current ratio (CA), which is the ratio of the current value to the energy of the incident light, is the maximum value (CA max ). min ), the incident angle ( ⁇ CAmin ) can be reduced to obtain the angle change amount, and
  • is preferably 2° or less, more preferably 1.5° or less, and further preferably 1° or less, as in the above formula (1).
  • the sensor sensitivity is the maximum value (CA max) become incident angle (theta CAmax) the output current ratio is the minimum value from the (CA min) become incident angle (theta Camin) Absolute value (
  • [%]) of each can be obtained and expressed as the ratio (
  • the light emitted from the prism 1 side goes straight (incident light 400) when, for example, as shown in FIG. As shown in (b), when the light is incident at an angle other than vertical, it is refracted by the prism 1 (incident light 400). Therefore, in the present invention, as shown in (a) and (b) of FIG. 3, the incident angle ( ⁇ °) of the light incident from the prism side is set to the photoelectric conversion unit (FIG. 3 is defined as the incident angle with respect to the surface of the sensor chip 16) which is in contact with the prism 1. The same applies when the light source of the incident light is inside the prism.
  • FIG. 4 shows a second preferred form of the enhanced sensor chip (preferred embodiment 2).
  • the sensor chip constituting the enhanced sensor chip may further include another layer as long as the effect of the present invention is not impaired.
  • the reflection resonance film 5 may be a semiconductor or organic substance other than the metal oxide.
  • the reflection resonance film 5 is formed of the sensor chip (photoelectric conversion unit) 12 shown in FIG. 4, the reflection resonance film 5 is directly laminated on the plasmon resonance film electrode 4 between the plasmon resonance film electrode 4 and the reflection resonance film 5.
  • the oxide film 6 may be further provided mainly for the purpose of preventing a decrease in current value caused by the above (enhanced sensor chip 120).
  • the material of the oxide film 6 examples include titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), nickel oxide (NiO). ), and one of these may be used alone or two or more kinds of composite materials may be used.
  • the material of the oxide film 6 is preferably at least one selected from the group consisting of TiO 2 , SiO 2 , and Cr 2 O 3 , and TiO 2 and More preferably, it is at least one selected from the group consisting of SiO 2 .
  • the oxide film 6 may be a single layer containing at least one of these or a multi-layer in which two or more such single layers are laminated.
  • the thickness thereof is preferably 300 nm or less, and 200 nm or less from the viewpoint that the intensity of the surface plasmon resonance generated by the plasmon resonance film electrode 4 tends to decrease as the thickness increases. It is more preferably not more than 100 nm, further preferably not more than 100 nm, still more preferably not more than 50 nm.
  • FIG. 5 shows a third preferred form of the enhanced sensor chip (preferred embodiment 3).
  • the sensor chip constituting the enhanced sensor chip for example, as in the sensor chip (photoelectric conversion unit) 13 shown in FIG. 5, the sensor chip 13 is mainly supported between the prism 1 and the transparent electrode 2. For the purpose, it may further comprise a transparent substrate 7 (enhanced sensor chip 130).
  • the material of the transparent substrate 7 is not particularly limited as long as it can transmit light, and examples thereof include high molecular weight organic compounds such as glass and plastics and films, and the transparent substrate 7 includes at least one of them. It may be a single layer containing a seed or a multi-layer in which two or more such single layers are laminated. When the transparent substrate 7 is further provided, the thickness thereof is usually 0.01 to 2 mm.
  • an intermediate layer (not shown) may be further provided between the prism 1 and the transparent substrate 7 mainly for the purpose of closely adhering the transparent substrate 7.
  • the material of the intermediate layer is not particularly limited as long as it can transmit light, and examples thereof include glycerol, water, polymer (polymethylmethacrylate, polystyrene, polyethylene, epoxy, polyester, etc.), oil, diiodomethane, ⁇ -bromonaphthalene, toluene, isooctane, cyclohexane, 2,4-dichlorotoluene, organic compound solution (sucrose solution, etc.), inorganic compound solution (potassium chloride solution, sulfur-containing solution), ethylbenzene, dibenzyl ether, aniline, styrene Among these, one kind may be used alone or two or more kinds may be used in combination.
  • FIG. 6 shows a fourth preferred form of the enhanced sensor chip (preferred embodiment 4).
  • the sensor chip constituting the enhanced sensor chip particularly when the plasmon resonance film electrode 4 is made of the above metal, the n-type transparent semiconductor film 3 and the plasmon can be used like the sensor chip (photoelectric conversion part) 14 shown in FIG.
  • An adhesive layer 8 may be further provided mainly for the purpose of more firmly fixing the plasmon resonance film electrode 4 to the resonance film electrode 4 (enhanced sensor chip 140).
  • the material of the adhesive layer 8 examples include titanium (Ti), chromium (Cr), nickel (Ni), and titanium nitride (TiN), and the adhesive layer includes a single layer containing at least one of them. It may be a layer or a multi-layer in which two or more such single layers are laminated. Further, the adhesive layer 8 may not cover the entire boundary surface between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4. However, since the evanescent wave reaching the surface opposite to the surface on which the light is incident becomes weak and the surface plasmon polaritons of sufficient strength cannot be excited, the n-type transparent semiconductor film is used in the sensor chip.
  • the distance between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 is preferably 25 nm or less, preferably 1 to 10 nm. More preferably. Therefore, when the adhesive layer 8 is further provided, the thickness thereof is preferably 25 nm or less, more preferably 1 to 10 nm.
  • FIG. 7 shows a fifth preferred form of the enhanced sensor chip (preferred embodiment 5).
  • the reflection resonance film 5 on the side opposite to the plasmon resonance film 4 is mainly intended to facilitate binding of biomolecules and the like.
  • a molecular bond film 9 made of a material different from the material of the reflection resonance film 5 may be further provided on the surface (enhanced sensor chip 150).
  • Examples of the material of the molecular bonding film 9 include gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and silicon dioxide (SiO 2 ). ), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ), and one of these may be a single material or a composite material of two or more materials.
  • the material of the molecular bonding film 9 is selected from the group consisting of Au, Ag, Cu and Pt from the viewpoint of more efficiently reflecting the electric field change generated by the plasmon resonance film electrode 4 in the reflection resonance film 5.
  • the molecular bonding film 9 may be a single layer containing at least one of these or a multi-layer in which two or more such single layers are laminated.
  • the thickness thereof is preferably 1 to 100 nm from the viewpoint that the intensity of the surface plasmon resonance generated by the plasmon resonance film electrode 4 tends to decrease as the thickness increases. It is more preferably 1 to 50 nm, further preferably 1 to 25 nm.
  • FIG. 8 shows a sixth preferred form of the enhanced sensor chip (preferred embodiment 6).
  • the enhanced sensor chip as shown in FIG. 8, on the surface of the reflection resonance film 5 opposite to the plasmon resonance film 4, or on the molecular bonding film described above, mainly for holding a sample to be measured.
  • 9 may further comprise a sample layer 10 (enhanced sensor chip 160).
  • the sample layer 10 even if the sample layer is arranged so as to be supplied at an arbitrary flow rate, it is divided into cells so as to be contained in a constant volume. It may be.
  • the combination of the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 forms a Schottky barrier.
  • the sensor chip forming the Schottky barrier means that the transparent electrode 2 of the sensor chip is connected to the working electrode of the voltage applying means such as a semiconductor analyzer, and the plasmon resonance film electrode 4 is connected to the counter electrode and the reference electrode of the voltage applying means. Then, it can be confirmed by measuring the current value when a voltage is applied to the working electrode in the range of -1.5 to +1.5V.
  • the maximum value of the absolute values of the current value between 0V and +1.5V is 1/5 or less of the maximum value of the absolute value of the current value between -1.5V and less than 0V. Is more preferable, it is more preferably 1/10 or less, further preferably 1/20 or less. If this ratio exceeds the upper limit value, the rectification characteristics are weakened, and noise during measurement increases, which tends to reduce the sensitivity and accuracy of the sensor.
  • the combination for forming such a Schottky barrier has the following formula: ⁇ S ⁇ This is a combination that satisfies the condition represented by ⁇ M.
  • the value of the work function of each material is known, and as the work function ( ⁇ S) of the n-type transparent semiconductor film 3, for example, (I) Akihito Imanishi et al. Phys. Chem. C, 2007, 111(5), p. 2128-2132; (II) Min Wei et al., Energy Procedure, 2012, Volume 16, Part A, p. 76-80; (III) David Ginley et al., "Handbook of Transparent Conductors,"2011; (IV)L. F. Zagonel et al. Phys. : Condens. Matter, 2009, 21, 31; (V)E. R. Batasta et al. Phys. Chem.
  • a combination satisfying the above conditions is selected from these work functions ( ⁇ S, ⁇ M). Can be selected and adopted appropriately.
  • ⁇ S, ⁇ M work functions
  • any one of TiO 2 and Au, Ag, Al, Cu, Pt, Pd, or TiN is used as the combination of the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 (or the adhesive layer 8).
  • a combination with one of these, a combination of In 2 O 3 with any one of Pt and Pd is preferable, a combination of TiO 2 with one of Au, Ag, Cu, Pt and Pd, a combination with ZnO.
  • the enhanced sensor chip and the sensor chip of the present invention are not limited to Embodiments 1 to 6 (enhanced sensor chips 110 to 160, sensor chips 11 to 15) of the enhanced sensor chip described above.
  • the enhanced sensor chip of the present invention one may be used alone, or a plurality may be arranged and arranged in a row or a plane.
  • the sensor of the present disclosure includes the prism 1 and the enhanced sensor chip (eg, the enhanced sensor chip 110 in the preferred embodiment 1) including the sensor chip (eg, the sensor chip 11 in the preferred embodiment 1), and the sensor chip.
  • Electrical measuring device (for example, electrical measuring device 21 in the preferred embodiment 1) that directly measures a current value or a voltage value from the transparent electrode 2 and the plasmon resonance film electrode 4 of FIG.
  • the transparent electrode 2, the plasmon resonance film electrode 4, and the electrical measuring device are connected via an external circuit (for example, the external circuits 31 and 31' in the preferred embodiment 1).
  • the material of the external circuit is not particularly limited, and any known material for the conductive wire can be appropriately used, and examples thereof include metals such as platinum, gold, palladium, iron, copper, and aluminum.
  • the electrical measuring device is not particularly limited as long as it can measure a voltage value or a current value, and examples thereof include a semiconductor device analyzer, a current measuring device, and a voltage measuring device.
  • the surface plasmon polariton change detection method of the present invention is a method of detecting a change in surface plasmon polariton using the above electrical measurement type surface plasmon resonance sensor (sensor), Irradiating light from the prism side, and totally reflecting the light passing through the prism, the transparent electrode, and the n-type transparent semiconductor film between the plasmon resonance film electrode and the n-type transparent semiconductor film.
  • Hot electrons generated by the surface plasmon polaritons and transferred to the n-type transparent semiconductor film are taken out from the transparent electrode as an electric signal, Detecting a change in surface plasmon polaritons by measuring a change in current value or voltage value between the transparent electrode and the plasmon resonance film electrode by the electrical measuring device, Is the way.
  • the transparent electrode 2 and the n-type transparent semiconductor film 3 are incident on the plasmon resonance film electrodes 4 and n.
  • the surface plasmon polariton is generated by interacting with the plasmon resonance film electrode 4. More specifically, the light that has passed through the n-type transparent semiconductor film 3 adheres to the plasmon resonance film electrode 4 at the interface between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4, or when the adhesion layer 8 is provided.
  • Total reflection is performed at the interface between the layer 8 and the n-type transparent semiconductor film 3 or at the interface between two adjacent layers in the adhesive layer 8, and the evanescent wave generated by the total reflection interacts with the plasmon resonance film electrode 4 and the surface thereof. Plasmon polaritons occur.
  • the generated surface plasmon polaritons sufficiently polarize the plasmon resonance film electrode 4 to generate hot electrons, which move to the n-type transparent semiconductor film 3 and are extracted from the transparent electrode 2 as an electric signal.
  • the transparent electrode 2 is electrically connected to the plasmon resonance membrane electrode 4 through the external circuit, and a change in current between the transparent electrode 2 and the plasmon resonance membrane electrode 4 is measured by the electrical measuring device to obtain a surface. Changes in plasmon polaritons can be detected.
  • the hot electrons thus observed as an electric signal are considered to be the hot electrons generated in the vicinity of the interface inside the plasmon resonance film electrode 4, and thus the hot electrons observable as an electric signal are plasmon resonance. It is presumed that the hot electrons are generated in a region where the thickness of the plasmon resonance film electrode 4 is about 20% away from the n-type transparent semiconductor film 3 inside the film electrode 4.
  • the light to be incident on the prism 1 is not particularly limited according to the purpose, but may be light in the visible light wavelength region or near-infrared light wavelength region, which is 400 to 1500 nm.
  • the wavelength is preferable, the wavelength of 500 to 1000 nm is more preferable, and the wavelength of 600 to 900 nm is further preferable.
  • the intensity of the light incident on the prism 1 is not particularly limited according to the purpose, but is preferably 0.01 to 500 mW, more preferably 0.1 to 50 mW, and 0.1 More preferably, it is ⁇ 5 mW. If the intensity of the light is less than the lower limit, the amount of current generated by the surface plasmon polaritons tends to be too small to obtain sufficient sensor accuracy, while if it exceeds the upper limit, the plasmon resonance membrane electrode 4 In the above, there is a tendency that heat is generated and the measurement sensitivity is lowered.
  • the refractive index of the sample Since the change in the surface plasmon polaritons due to the change (change in concentration, change in state) can be detected as an electric signal, the change in state of the sample can be monitored by measuring the electric signal. Further, the concentration or state of the sample can be determined by comparing with the electric signal measured in the sample having a known concentration or state in advance.
  • the sensor accuracy can be further improved.
  • the target substance is not particularly limited, and includes small molecule compounds such as antibodies, nucleic acids (DNA, RNA, etc.), proteins, bacteria, drugs, etc.; ions; small molecule compounds in a gaseous state, volatile substances, etc.
  • the medium includes a solution and a gas, the solution is water; a buffer solution, an electrolyte solution such as a strong electrolyte solution, and the gas is an inert gas such as nitrogen gas or helium gas.
  • the method of manufacturing the sensor of the present disclosure and the enhanced sensor chip including the prism 1 and the sensor chip is not particularly limited, but preferably, the transparent electrode 2, the n-type transparent semiconductor film 3, and the plasmon resonance film electrode are preferably provided on the prism 1. 4 and the reflection resonance film 5 are preferably sequentially formed in this order and laminated.
  • the method for forming the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 is not particularly limited, but examples thereof include a sputtering method and an ion method.
  • Examples thereof include a plating method, an electron beam evaporation method, a vacuum evaporation method, a chemical vapor deposition method, a spin coating method, an atomic layer deposition method (ALD), and a plating method.
  • the sputtering method when the n-type transparent semiconductor film 3 made of a metal oxide is formed, the film may be formed while being oxidized by using a metal as a target (reactive sputtering). Further, when the oxide film 6 is provided, the oxide film may be formed by the above method, and the oxide film 6 is formed by forming a film made of a metal forming the oxide film 6 and then exposing the film to the atmosphere or oxygen. May be formed.
  • the method of electrically connecting the transparent electrode 2 and the plasmon resonance film electrode 4 of the sensor chip to the electrical measuring device through an external circuit is not particularly limited, and a conventionally known method may be appropriately used. Can be adopted and connected.
  • an ITO substrate (glass substrate: S-TIH11, glass substrate thickness: 1.1 mm, area: 19 ⁇ 19 mm) in which a transparent electrode made of an ITO film (indium tin oxide) was formed on one surface of the glass substrate , ITO film: highly durable transparent conductive film 5 ⁇ , manufactured by Geomatec Co., Ltd.) was prepared. Then, using a sputtering apparatus 1 (QAM-4-ST, manufactured by ULVAC Kyushu Co., Ltd.) and TiO 2 (Titanium Dioxide, 99.9%, manufactured by Furuuchi Chemical Co., Ltd.) as a target, TiO 2 was formed on the ITO film.
  • a sputtering apparatus 1 QAM-4-ST, manufactured by ULVAC Kyushu Co., Ltd.
  • TiO 2 TiO 2 was formed on the ITO film.
  • a 200 nm thick film (n-type transparent semiconductor film (TiO 2 film)) was formed. Then, using the sputtering apparatus 1 and using Au (99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target, a film (Plasmon resonance film) made of Au and having a thickness of 30 nm was formed on the TiO 2 film.
  • a chip photoelectric conversion part (sensor chip) in which an electrode (Au film) is formed and a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) are laminated in this order. ) Got.
  • diiodomethane (first-class, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was applied to the surface of the obtained chip opposite to the ITO film on the glass substrate, and a right-angle prism (S-TIH11, manufactured by Tokiwa Optical Co., Ltd., A chip (with a prism) in which a prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) are laminated in this order by closely adhering the slopes with a refractive index of 1.77) Chips).
  • S-TIH11 manufactured by Tokiwa Optical Co., Ltd.
  • Example 1 A chip in which a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) were laminated in this order was obtained in the same manner as in Comparative Example 1. Then, using the sputtering apparatus 1, TiO 2 as a target (Titanium Dioxide, 99.9%, Furuuchi Chemical Co., Ltd.) using, in the plasmon resonance layer on the electrode, a thickness of 5nm consisting TiO 2 as a protective film A film (oxide film) was formed.
  • a thickness of Si formed on the protective film using a sputtering apparatus 2 (SH-250, manufactured by ULVAC, Inc.) and Si (99.999%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target, a thickness of Si formed on the protective film.
  • a film having a thickness of 70 nm (reflection resonance film (Si film)) is formed, and a glass substrate, ITO film, n-type transparent semiconductor film (TiO 2 film), plasmon resonance film electrode (Au film), oxide film, reflection resonance film ( A chip (photoelectric conversion part (sensor chip)) in which the Si film) was laminated in this order was obtained.
  • a prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, and a reflection film were formed in the same manner as in Comparative Example 1 except that this was used as a chip.
  • a chip (chip with prism) in which a resonance film (Si film) was laminated in this order was obtained.
  • Example 2 In the same manner as in Example 1, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, and a reflection resonance film (Si film) were laminated in this order. Got a chip. Then, using the sputtering apparatus 1, Au (99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target was used, and a 10 nm-thick film (molecular bonding film) made of Au was formed on the reflection resonance film.
  • Au 99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • a chip photoelectric conversion portion (sensor chip)) in which Au films were laminated in this order was obtained.
  • a prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, a reflection film were formed in the same manner as in Example 1 except that this was used as a chip.
  • Example 3 A chip in which a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) were laminated in this order was obtained in the same manner as in Comparative Example 1. Then, using the sputtering apparatus 1, using TiO 2 (Titanium Dioxide, 99.9%, manufactured by Furuuchi Chemical Co., Ltd.) as a target, a 122 nm-thick film (reflection film) made of TiO 2 was formed on the plasmon resonance film electrode.
  • TiO 2 TiO 2
  • a 122 nm-thick film (reflection film) made of TiO 2 was formed on the plasmon resonance film electrode.
  • a resonance film (TiO 2 film) is formed, and a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), and a reflection resonance film (TiO 2 film) are laminated in this order. I got the chips. Further, in the same manner as in Example 2, a film (molecular bonding film (Au film)) made of Au and having a thickness of 10 nm was formed on the reflection resonance film (TiO 2 film), and the glass substrate, the ITO film, and the n film were formed.
  • ⁇ Test Example 1> The surface of the plasmon resonance film electrode of the prism-equipped chip obtained in Comparative Example 1 (the surface opposite to the n-type transparent semiconductor film) and the surface of the reflection resonance film of the prism-equipped chip obtained in Example 1 (the surface opposite to the oxide film) Surface), the sample layer is disposed so as to be in contact with each other on the surface (the surface opposite to the reflection resonance film) of the molecular binding film of the chip with prism obtained in Examples 2 to 3, and the sample is placed in the sample layer. Ultrapure water was filled as a solution. The sample layer was arranged so that the sample solution was in direct contact with the surface of each chip.
  • the ITO film of the prism-equipped chip obtained in Comparative Example 1 and Examples 1 to 3 and the working electrode of the current measuring device were used as plasmon resonance film electrodes.
  • the counter electrode and the reference electrode of the current measuring device were electrically connected to each other via a conductive wire.
  • a 670 nm laser light (light source: CPS670F, manufactured by Thorlabs) was converted into p-polarized laser light through a polarizer (CMM1-PBS251/M, manufactured by Thorlabs), and this intensity was measured with a power meter (Model 843-R, Newport). (Manufactured by Mitsui Chemicals Co., Ltd.) and adjusted to be 4.0 mW.
  • p-polarized laser light (4.0 mW) was irradiated from the prism side of the photoelectric conversion part (sensor chip 17) of the chip.
  • the incident angle ( ⁇ [°]) of the p-polarized laser light (incident light) with respect to the glass substrate surface was changed between 40° and 80°, and the current value between the ITO film and the plasmon resonance film electrode at each incident angle [ ⁇ A] was measured. Further, as the sample solution, 10%, 20%, 30%, 40%, 50%; 2%, 4%, 6%, 8%, 10% instead of the ultrapure water (glycerol 0%). Or 1%, 2%, 3%, 4%, 5%, 6% glycerol (Glycerol) solution was used respectively, in the same manner as above, for each sample solution, the ITO film-plasmon at each incident angle. The current value [ ⁇ A] between the resonance membrane electrodes was measured.
  • the refractive index of each sample solution at 22.1° C. and the normalized current value between the ITO film and the plasmon resonance film electrode [a. u. 14] is shown in FIG.
  • the normalized current was calculated from the graph showing the relationship between the incident angle and the current value between the ITO film and the plasmon resonance film electrode in Comparative Example 1 and Examples 1 and 2 obtained above.
  • the current value (a) at each incident angle is obtained when the value is set to 1, and then from the same graph, the incident angle at which the current value becomes highest when the 0% glycerol solution is measured (Comparative Example 1: 68.
  • Example 1 53.7°
  • Example 2 53.0°
  • the current value at the incident angle (b) at the time of measuring the glycerol solution of each concentration assuming that the current value is 1.
  • the refractive index of the glycerol solution at each concentration at 22.1°C is shown in Table 1 below.
  • the incident angle of the laser light incident on the prism falls within a specific range. In that case (for example, 45 to 65° in FIG. 11), it was confirmed that the current value changed. This is because when the laser light is passed through the prism, the incident light is totally reflected at the interface with the plasmon resonance film electrode of the n-type transparent semiconductor film at a specific incident angle or more to generate an evanescent wave. This is because the electric current generated by the electric field change at the plasmon resonance film electrode arranged in the vicinity of the n-type transparent semiconductor film is changed by the surface plasmon polaritons excited by the. It is presumed that it was changed by.
  • the current value changed according to the refractive index of the solution.
  • the strength of the surface plasmon polaritons which causes a change in the amount of current generated by a change in the electric field at the plasmon resonance film electrode arranged near the n-type transparent semiconductor film, changes depending on the refractive index of the solution.
  • the inventors speculate. Therefore, it was confirmed that the change in the refractive index of the sample near the plasmon resonance film electrode can be measured with sufficient accuracy by using the chip including the prism.
  • the provision of the reflection resonance film makes the change in the current value steep and significantly improves the sensitivity of the sensor. confirmed. Further, even if a molecular bonding film capable of immobilizing biomolecules or the like is further laminated (for example, Examples 2 to 3), or a TiO 2 film is used as a reflection resonance film (for example, Example 3). It was confirmed that the current value became steep and the excellent sensor sensitivity was maintained.
  • the electromagnetic field simulation is performed by a chip 1 in which a glass substrate, an n-type transparent semiconductor film (TiO 2 film) and a plasmon resonance film electrode (Au film) are laminated in this order; a glass substrate, an n-type transparent semiconductor film (TiO 2 film), Chip 2 in which a plasmon resonance film electrode (Au film), a reflection resonance film (Si film), and a molecular bonding film (Au film) are laminated in this order; the reflection resonance film of chip 2 is replaced with a Si film, and a TiO 2 film is used. Chip 3; each of the chips 4 was replaced with the Si film as the reflection resonance film of the chip 2 and changed to the SiO 2 film.
  • the light source was assumed to be inside the glass substrate.
  • n Refractive index of each layer
  • n refractive index
  • k extinction coefficient
  • d Thickness of each layer
  • the thickness of each layer is as shown in Table 2 below.
  • the reflection resonance film is a Si film or a TiO 2 film
  • the thickness is 0 to 500 nm
  • the reflection resonance film is SiO 2.
  • the thickness in the case of a film was varied between 0 and 1200 nm.
  • the absorption amount of p-polarized light in the region of 20% thickness (10 nm) from the surface of the plasmon resonance film electrode (Au film) on the n-type transparent semiconductor film (TiO 2 film) side was calculated. Also, regarding the reflected light, only the p-polarized component was acquired.
  • the incident angle ( ⁇ [°]) of light obtained by simulation and the output current ratio [%] which is the ratio of the current value (output current energy) to the energy of the incident light.
  • the relationship between the incident angle ( ⁇ ) of light, the current value (A), and the output current ratio (CA) is similar between the measured value (solid line) and the simulated value (dotted line). It was confirmed that the simulation can be performed with high accuracy.
  • the thickness and the sensitivity of the reflection resonance film are the absolute value (
  • was 2° or less.
  • the electrical measurement type surface plasmon resonance sensor of the present disclosure As described above, according to the electrical measurement type surface plasmon resonance sensor of the present disclosure and the sensor chip used for the same, it is possible to provide the electrical measurement type surface plasmon resonance sensor having excellent sensor sensitivity and the sensor chip used for the same. Become. Further, since the sensor and the sensor chip of the present disclosure can detect surface plasmon polaritons as an electric signal, it is easy to reduce the size and increase the throughput.
  • the sensor and the sensor chip of the present disclosure it is possible to further stack a molecular binding film capable of binding biomolecules and the like, and since it does not affect the sample, more accurate measurement is possible. .. Therefore, the sensor and sensor chip of the present disclosure are very useful in future development of medical treatment, food, and environmental technology.
  • SYMBOLS 1 Prism, 2... Transparent electrode, 3... N-type transparent semiconductor film, 4... Plasmon resonance film electrode, 5... Reflection resonance film, 6... Oxide film, 7... Transparent substrate, 8... Adhesive layer, 9... Molecular bonding film 10... Sample layer, 11-17... Sensor chip (photoelectric conversion part), 21... Electrical measuring device, 31, 31'... External circuit, 110-160... Enhanced sensor chip, 200... Light source, 300... Polarizer, 400... Incident light, 510... Sensor.
  • Sensor chip photoelectric conversion part

Abstract

Provided is an electrical measurement-type surface plasmon resonance sensor provided with: a sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are disposed in this order; a plasmon polariton enhanced sensor chip in which a prism is disposed in the order of the prism, the transparent electrode, the n-type transparent semiconductor film, the plasmon resonance film electrode, and the reflection resonance film; and an electrical measurement device which directly measures a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode.

Description

電気測定型表面プラズモン共鳴センサ、電気測定型表面プラズモン共鳴センサチップ、及び表面プラズモンポラリトン変化検出方法Electric measurement type surface plasmon resonance sensor, electric measurement type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method
 本発明は、電気測定型表面プラズモン共鳴センサ、電気測定型表面プラズモン共鳴センサチップ、及び表面プラズモンポラリトン変化検出方法に関し、より詳しくは、電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップ、並びに、これらを用いた表面プラズモンポラリトン変化検出方法に関する。 The present invention relates to an electrical measurement type surface plasmon resonance sensor, an electrical measurement type surface plasmon resonance sensor chip, and a surface plasmon polariton change detection method, and more specifically, an electrical measurement type surface plasmon resonance sensor and an electrical measurement type surface plasmon resonance used therefor. The present invention relates to a sensor chip and a surface plasmon polariton change detection method using the same.
 表面プラズモン共鳴(SPR:Surface Plasmon Resonance)とは、金属の表面で自由電子が集団的振動運動(プラズマ振動)を起こしている状態であり、金属表面を伝搬する伝搬型表面プラズモン共鳴(PSPR:Propagating Surface Plasmon Resonance)と、ナノメートルサイズの金属構造に局在する局在型表面プラズモン共鳴(LSPR:Localized Surface Plasmon Resonance)とがある。伝搬型表面プラズモン共鳴は、プラズマ振動を起こした自由電子の周囲に発生した電場と入射した光との相互作用による共鳴が発生した状態であり、前記プラズマ振動と界面に沿って進む電磁波とが結合した電子疎密波(表面プラズモンポラリトン、SPP:Surface Plasmon Polariton)が金属表面に沿って伝搬する。他方、局在型表面プラズモン共鳴は、前記プラズマ振動によって前記金属ナノ粒子等の金属ナノ構造が分極・誘起されて電気双極子が生成した状態のことである。 Surface plasmon resonance (SPR: Surface Plasmon Resonance) is a state in which free electrons are causing collective vibrational motion (plasma vibration) on the surface of a metal. Propagation type surface plasmon resonance (PSPR: Propagating) propagating on a metal surface. Surface Plasmon Resonance) and localized surface plasmon resonance (LSPR: Localized Surface Plasmon Resonance). Propagation type surface plasmon resonance is a state in which resonance occurs due to interaction between an electric field generated around plasma-oscillating free electrons and incident light, and the plasma oscillation and electromagnetic waves traveling along the interface are coupled. Electron compression waves (surface plasmon polaritons, SPP: Surface Plasmon Polaritons) propagate along the metal surface. On the other hand, the localized surface plasmon resonance is a state in which the metal nanostructure such as the metal nanoparticles is polarized/induced by the plasma vibration and electric dipoles are generated.
 表面プラズモン共鳴は、標的物質の吸着の有無や前記相互作用の強さを検出するアフィニティセンサ等のセンサに利用されており、例えば、特開2011-141265号公報(特許文献1)には、平面部を有する基材と、前記平面部上に形成され、金属で形成された表面を有し、標的物質が配置される特定の突起を含む回折格子とを備えるセンサチップが記載されている。しかしながら、特許文献1に記載されているようなセンサチップでは、金属表面に存在する標的物質の濃度変化による表面プラズモン共鳴角の変化を光学系で検出する必要があるために装置が高額になったり大型化したりする傾向にあり、また、集積化や同時に多数のサンプルを処理するハイスループット化が困難であるといった問題を有していた。 The surface plasmon resonance is used for a sensor such as an affinity sensor that detects the presence or absence of adsorption of a target substance and the strength of the interaction, and is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2011-141265 (Patent Document 1). There is described a sensor chip including a base material having a portion and a diffraction grating that is formed on the flat portion and has a surface formed of a metal and that includes a specific protrusion on which a target substance is arranged. However, in the sensor chip as described in Patent Document 1, the device becomes expensive because it is necessary to detect the change in the surface plasmon resonance angle due to the change in the concentration of the target substance existing on the metal surface with the optical system. There is a problem that there is a tendency to increase the size and that it is difficult to integrate and to increase the throughput for processing a large number of samples at the same time.
 さらに、特開2000-356587号公報(特許文献2)には、基板と、前記基板の表面に凝集させずに互いに離隔した状態にある単膜として固定された金属微粒子とを有して構成されるセンサユニットを有する局在プラズモン共鳴センサが記載されている。しかしながら、特許文献2に記載の局在プラズモン共鳴センサは、前記金属微粒子への標的物質の吸着や堆積による該金属微粒子表面近傍の媒質の屈折率変化を前記金属微粒子間を透過した光の吸光度を測定することによって検出するため、前記金属微粒子のサイズや配列を厳密に制御する必要がある、検出信号が吸光度であるためにその強度を十分に増強させることが困難である、といった問題を有していた。 Further, Japanese Patent Application Laid-Open No. 2000-356587 (Patent Document 2) includes a substrate and metal fine particles fixed on the surface of the substrate as a single film separated from each other without being aggregated. A localized plasmon resonance sensor having a sensor unit is described. However, in the localized plasmon resonance sensor described in Patent Document 2, the change in the refractive index of the medium in the vicinity of the surface of the metal fine particles due to the adsorption or deposition of the target substance on the metal fine particles is measured by measuring the absorbance of light transmitted between the metal fine particles. Since it is detected by measuring, it is necessary to strictly control the size and arrangement of the metal fine particles, and it is difficult to sufficiently enhance the intensity of the detection signal because it is the absorbance, which is a problem. Was there.
 また、表面プラズモン共鳴は、光電変換素子において、光電変換効率を向上させるためにも利用されており、例えば、特開2012-38541号公報(特許文献3)には、透明基板、透明電極層、金属微粒子層、n型半導体からなる半導体薄膜、色素の吸着層が順に積層されたアノード電極と、これに酸化還元種を含む電解質を介して配置されたカソード電極と、を備えるプラズモン共鳴型光電変換素子が記載されている。 Surface plasmon resonance is also used to improve photoelectric conversion efficiency in a photoelectric conversion element. For example, JP 2012-38541 A (Patent Document 3) discloses a transparent substrate, a transparent electrode layer, Plasmon resonance photoelectric conversion provided with an anode electrode in which a metal fine particle layer, a semiconductor thin film made of an n-type semiconductor, and an adsorption layer of a dye are sequentially laminated, and a cathode electrode arranged on the anode electrode via an electrolyte containing a redox species. The elements are described.
 また、本件出願人は、透明電極、n型透明半導体膜、及びプラズモン共鳴膜電極がこの順で配置されているセンサチップと、プリズムとが配置されたプラズモンポラリトン増強センサチップと、前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、を備える電気測定型表面プラズモン共鳴センサについて、2018年8月9日付で国際出願した(PCT/JP2018/29979)。かかる電気測定型表面プラズモン共鳴センサによれば、小型化やハイスループット化が容易であり、かつ、十分なセンサ精度を有する電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップを提供することが可能となる。 Further, the applicant of the present application has found that a sensor chip in which a transparent electrode, an n-type transparent semiconductor film, and a plasmon resonance film electrode are arranged in this order, a plasmon polariton enhanced sensor chip in which a prism is arranged, the transparent electrode, and An international application was filed on August 9, 2018 (PCT/JP2018/29979) for an electric measurement type surface plasmon resonance sensor provided with an electric measuring device for directly measuring a current value or a voltage value from the plasmon resonance membrane electrode. According to such an electric measurement type surface plasmon resonance sensor, downsizing and high throughput can be easily achieved, and an electric measurement type surface plasmon resonance sensor chip having sufficient sensor accuracy and an electric measurement type surface plasmon resonance sensor chip used therefor can be provided. It becomes possible to provide.
特開2011-141265号公報JP, 2011-141265, A 特開2000-356587号公報JP, 2000-356587, A 特開2012-38541号公報JP 2012-38541 A
 しかしながら、本発明者らは、特許文献3に記載されているような光電変換素子をセンサに応用した場合には、金属微粒子の制御が必要であり、センサ感度を向上させることが困難であることに加えて、電解質の酸化・還元反応を介するため、測定対象であるサンプル自体を酸化還元してしまい、センサ精度に影響を与えてしまうという問題があることを見い出した。 However, when the photoelectric conversion element as described in Patent Document 3 is applied to a sensor, the present inventors need to control metal fine particles, and it is difficult to improve the sensor sensitivity. In addition, it has been found that there is a problem in that the sample itself, which is the measurement target, is redox-reduced due to the oxidation/reduction reaction of the electrolyte, which affects the accuracy of the sensor.
 さらに、本発明者らがさらなる検討をおこなったところ、プラズモンポラリトン増強センサチップと電気的測定装置とを備える電気測定型表面プラズモン共鳴センサチップにおいては、さらに高水準の感度が要求される場合があることを見い出した。 Furthermore, as a result of further studies by the present inventors, in the electric measurement type surface plasmon resonance sensor chip including the plasmon polariton enhanced sensor chip and the electric measurement device, a higher level of sensitivity may be required. I found a thing.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、小型化やハイスループット化が容易であり、かつ、十分なセンサ感度を有する電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップ、並びに、これらを用いた表面プラズモンポラリトン変化検出方法を提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, is easy to miniaturize and high throughput, and an electric measurement type surface plasmon resonance sensor having sufficient sensor sensitivity and an electric measurement used therefor. (EN) Provided are a surface plasmon resonance sensor chip and a surface plasmon polariton change detection method using the same.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、チップにおいて、プリズム、透明電極、n型透明半導体膜、及びプラズモン共鳴膜電極を組み合わせ、さらに反射共鳴膜を組み合わせてこの順で配置させて、プリズムの側から特定の範囲内の入射角度で入射させた入射光をプラズモン共鳴膜電極に到達させることにより、到達した光が前記プラズモン共鳴膜電極を伝搬する表面プラズモンポラリトンに変換され、これを前記透明電極及び前記プラズモン共鳴膜電極から電気信号として直接検出できることを見い出した。また、検出される電気信号の大きさは、前記プラズモン共鳴膜電極近傍のサンプルの屈折率に応じて高い精度で変化することに加えて、前記反射共鳴膜を組み合わせることにより、さらに優れたセンサ感度が達成されることを見い出した。さらに、前記サンプルの屈折率は該サンプルの濃度や状態に相当するため、前記構成のチップは、表面プラズモンポラリトン変化を検出することによって前記サンプルの濃度変化や状態変化を測定可能なセンサチップとして用いることが可能であることを見い出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have combined a prism, a transparent electrode, an n-type transparent semiconductor film, and a plasmon resonance film electrode in a chip, and further combined a reflection resonance film in this order. The arriving light is converted into surface plasmon polaritons propagating through the plasmon resonance film electrode by arriving at the plasmon resonance film electrode with incident light incident from the prism side at an incident angle within a specific range. It was found that this can be directly detected as an electric signal from the transparent electrode and the plasmon resonance film electrode. Further, the magnitude of the detected electric signal changes with high accuracy in accordance with the refractive index of the sample in the vicinity of the plasmon resonance film electrode, and by combining the reflection resonance film, the sensor sensitivity is further improved. Has been achieved. Furthermore, since the refractive index of the sample corresponds to the concentration and state of the sample, the chip having the above configuration is used as a sensor chip capable of measuring the concentration change and state change of the sample by detecting the surface plasmon polariton change. It has been found that this is possible, and the present invention has been completed.
 すなわち、本発明の電気測定型表面プラズモン共鳴センサは、
 透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているセンサチップと、プリズムとが、前記プリズム、前記透明電極、前記n型透明半導体膜、前記プラズモン共鳴膜電極、及び前記反射共鳴膜の順で配置されたプラズモンポラリトン増強センサチップと、
 前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、
を備えることを特徴とするものである。
That is, the electrical measurement type surface plasmon resonance sensor of the present invention,
A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon. A resonance membrane electrode, and a plasmon polariton enhanced sensor chip arranged in the order of the reflection resonance membrane;
An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
It is characterized by including.
 また、本発明の電気測定型表面プラズモン共鳴センサは、
 入射光を表面プラズモンポラリトンに変換可能なプラズモン共鳴膜電極、
 前記プラズモン共鳴膜電極の前記入射光側に配置されており、前記入射光を透過し、かつ、該透過した入射光が前記プラズモン共鳴膜電極と相互作用することにより前記プラズモン共鳴膜電極から放出されるホットエレクトロンを受け取り可能なn型透明半導体膜、
 前記プラズモン共鳴膜電極の前記n型透明半導体膜と反対側に配置されており、前記プラズモン共鳴膜電極により生じた表面プラズモン共鳴による電場変化を内部で共鳴させることが可能な反射共鳴膜、
及び、
 前記n型透明半導体膜から移動したホットエレクトロンを電気信号として取り出し可能な透明電極、
を備えるセンサチップと、
 前記プラズモン共鳴膜電極と前記n型透明半導体膜との間において前記入射光が全反射されるように前記入射光の角度を制御することが可能なプリズムと、
を備えるプラズモンポラリトン増強センサチップ、並びに、
 前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定可能な電気的測定装置、
を備えることを特徴とするものである。
Further, the electric measurement type surface plasmon resonance sensor of the present invention is
Plasmon resonance membrane electrode capable of converting incident light into surface plasmon polaritons,
The plasmon resonance film electrode is disposed on the incident light side, transmits the incident light, and the transmitted incident light is emitted from the plasmon resonance film electrode by interacting with the plasmon resonance film electrode. N-type transparent semiconductor film capable of receiving hot electrons,
A reflection resonance film, which is disposed on the opposite side of the plasmon resonance film electrode from the n-type transparent semiconductor film and is capable of internally resonating an electric field change due to surface plasmon resonance generated by the plasmon resonance film electrode;
as well as,
A transparent electrode capable of taking out hot electrons transferred from the n-type transparent semiconductor film as an electric signal,
A sensor chip including
A prism capable of controlling the angle of the incident light so that the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film;
And a plasmon polariton enhanced sensor chip including:
An electrical measuring device capable of directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
It is characterized by including.
 上記の電気測定型表面プラズモン共鳴センサの好ましい一形態としては、前記センサチップにおいて、前記反射共鳴膜の厚さが、次式(1):
  |Δθ|≦2°・・・(1)
[前記式(1)中、Δθは、前記センサチップの前記プリズムと接する面に対する入射角度(θ)が0~90°となる範囲内で前記センサチップに光を入射して電流値を測定したときに、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で入射光が全反射するときの入射角度(θcp)の±25°の範囲内で、前記入射光のエネルギーに対する前記電流値の割合である出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減じた角度変化量を示す。]
で示される条件を満たす厚さであることが好ましい。
As a preferred mode of the above electric measurement type surface plasmon resonance sensor, in the sensor chip, the thickness of the reflection resonance film is expressed by the following formula (1):
│Δθ│≦2°・・・(1)
[In the formula (1), Δθ is a current value measured by making light incident on the sensor chip within a range in which the incident angle (θ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°. At this time, within the range of ±25° of the incident angle (θ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film, the current with respect to the energy of the incident light is Angle obtained by subtracting the incident angle (θ CAmin ) at which the output current ratio is the minimum value (CA min ) from the incident angle (θ CAmax ) at which the output current ratio (CA) that is the ratio of the values is at the maximum value (CA max ). Indicates the amount of change. ]
It is preferable that the thickness satisfies the condition shown by.
 また、上記の電気測定型表面プラズモン共鳴センサの好ましい一形態としては、前記センサチップにおいて、前記n型透明半導体膜と前記プラズモン共鳴膜電極との組み合わせが、ショットキー障壁を形成する組み合わせであることが好ましい。 Further, as a preferable mode of the electric measurement type surface plasmon resonance sensor, in the sensor chip, a combination of the n-type transparent semiconductor film and the plasmon resonance film electrode is a combination that forms a Schottky barrier. Is preferred.
 さらに、上記の電気測定型表面プラズモン共鳴センサの好ましい一形態としては、前記センサチップにおいて、前記プラズモン共鳴膜電極の厚さが200nm以下(ただし0を含まない)であることが好ましく、また、前記センサチップにおいて、前記反射共鳴膜が、金属酸化物、半導体、及び有機物からなる群から選択される少なくとも1種からなる膜であることも好ましい。 Further, as a preferable mode of the electric measurement type surface plasmon resonance sensor, in the sensor chip, the thickness of the plasmon resonance membrane electrode is preferably 200 nm or less (however, not including 0), and In the sensor chip, it is also preferable that the reflection resonance film is a film made of at least one selected from the group consisting of metal oxides, semiconductors, and organic substances.
 また、上記の電気測定型表面プラズモン共鳴センサの好ましい一形態としては、前記センサチップにおいて、前記n型透明半導体膜が、TiO、ZnO、SnO、SrTiO、Fe、TaON、WO、及びInからなる群から選択される少なくとも1種のn型半導体からなる膜であることが好ましい。 Further, as a preferable mode of the electric measurement type surface plasmon resonance sensor, in the sensor chip, the n-type transparent semiconductor film is TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , TaON, WO. 3 and In 2 O 3 is preferably a film made of at least one n-type semiconductor selected from the group consisting of.
 さらに、上記の電気測定型表面プラズモン共鳴センサの好ましい一形態としては、前記センサチップが、前記反射共鳴膜の前記プラズモン共鳴膜と反対側に分子結合膜をさらに備えていることが好ましく、また、前記センサチップが、前記プラズモン共鳴膜電極と前記反射共鳴膜との間に酸化膜をさらに備えていることも好ましい。 Furthermore, as a preferred form of the electric measurement type surface plasmon resonance sensor, it is preferable that the sensor chip further comprises a molecular bonding film on the side opposite to the plasmon resonance film of the reflection resonance film, and It is also preferable that the sensor chip further includes an oxide film between the plasmon resonance film electrode and the reflection resonance film.
 本発明の電気測定型表面プラズモン共鳴センサチップは、上記の電気測定型表面プラズモン共鳴センサに用いるセンサチップであり、かつ、透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されていることを特徴とするものである。 The electric measurement type surface plasmon resonance sensor chip of the present invention is a sensor chip used in the above-mentioned electric measurement type surface plasmon resonance sensor, and includes a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film. It is characterized in that they are arranged in this order.
 本発明の表面プラズモンポラリトン変化検出方法は、透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているセンサチップと、プリズムとが、前記プリズム、前記透明電極、前記n型透明半導体膜、前記プラズモン共鳴膜電極、及び前記反射共鳴膜の順で配置されたプラズモンポラリトン増強センサチップと、
 前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、
を備える電気測定型表面プラズモン共鳴センサを用いて表面プラズモンポラリトンの変化を検出する方法であり、
 前記プリズムの側から光を照射し、前記プリズム、前記透明電極、及び前記n型透明半導体膜を通過した光を、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で全反射させることで前記プラズモン共鳴膜電極と相互作用させて表面プラズモンポラリトンを発生せしめ、
 前記表面プラズモンポラリトンによって生じ、前記n型透明半導体膜に移動したホットエレクトロンを前記透明電極から電気信号として取り出し、
 前記透明電極と前記プラズモン共鳴膜電極との間の電流値又は電圧値の変化を前記電気的測定装置によって測定することで表面プラズモンポラリトンの変化を検出する、
ことを特徴とする方法である。
In the surface plasmon polariton change detection method of the present invention, a sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, a prism, the prism, the transparent A plasmon polariton enhanced sensor chip in which an electrode, the n-type transparent semiconductor film, the plasmon resonance film electrode, and the reflection resonance film are arranged in this order;
An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
A method for detecting a change in surface plasmon polaritons using an electric measurement type surface plasmon resonance sensor having
Irradiating light from the prism side, and totally reflecting the light passing through the prism, the transparent electrode, and the n-type transparent semiconductor film between the plasmon resonance film electrode and the n-type transparent semiconductor film. And interact with the plasmon resonance membrane electrode to generate surface plasmon polaritons,
Hot electrons generated by the surface plasmon polaritons and transferred to the n-type transparent semiconductor film are taken out from the transparent electrode as an electric signal,
Detecting a change in surface plasmon polaritons by measuring a change in current value or voltage value between the transparent electrode and the plasmon resonance film electrode by the electrical measuring device,
It is a method characterized by that.
 なお、本発明の構成によって前記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の電気測定型表面プラズモン共鳴センサチップ(以下、場合により、単に「センサチップ」という)及びこれとプリズムとを組み合わせて用いた電気測定型表面プラズモン共鳴センサ(以下、場合により、単に「センサ」という)においては、プリズムの側からプラズモン共鳴膜電極に光を照射し、プリズムを通過した光が、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間において全反射すると、全反射した面の裏側にエネルギーの染み出し(エバネッセント波)が生じる。そのため、光の前記界面に対する入射角度が臨界角(以下、「全反射角度」という)以上であると、全反射した場所において生じたエバネッセント波と、この裏側に接する前記プラズモン共鳴膜とが相互作用して上記の表面プラズモンポラリトンが励起される。このとき、プリズムによって、入射する光の入射角度を上記の全反射をする角度となるように制御することができるため、発生する表面プラズモンポラリトンが十分に増強される。 The reason why the above object is achieved by the configuration of the present invention is not always clear, but the present inventors speculate as follows. That is, the electric measurement type surface plasmon resonance sensor chip of the present invention (hereinafter, simply referred to as “sensor chip” in some cases) and the electric measurement type surface plasmon resonance sensor using the prism and the prism in combination (hereinafter, sometimes, simply (Hereinafter referred to as “sensor”), when the plasmon resonance film electrode is irradiated with light from the prism side and the light passing through the prism is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film, Energy bleeding (evanescent wave) occurs on the back side of the reflected surface. Therefore, when the incident angle of light with respect to the interface is a critical angle (hereinafter, referred to as “total reflection angle”) or more, the evanescent wave generated at the place of total reflection interacts with the plasmon resonance film in contact with the back side. Then, the above surface plasmon polaritons are excited. At this time, since the incident angle of the incident light can be controlled by the prism so as to be the above-mentioned angle of total reflection, the generated surface plasmon polaritons are sufficiently enhanced.
 次いで、この表面プラズモンポラリトンによって前記プラズモン共鳴膜電極が十分に分極することでホットエレクトロンが放出され、ホットホールが形成されるが、放出されたホットエレクトロンは前記プラズモン共鳴膜電極とショットキー障壁が形成されるn型透明半導体膜を経て対極である透明電極へとスムーズに移動することができる。そのため、本発明のセンサチップ及びこれとプリズムとを用いたセンサにおいては、前記表面プラズモンポラリトンを前記プラズモン共鳴膜電極及び前記透明電極から電気信号として十分に検出することができるものと本発明者らは推察する。 Then, the surface plasmon polaritons sufficiently polarize the plasmon resonance film electrode to release hot electrons and form hot holes. The released hot electrons form the Schottky barrier with the plasmon resonance film electrode. It is possible to smoothly move to the opposite transparent electrode via the n-type transparent semiconductor film. Therefore, in the sensor chip of the present invention and the sensor using the same and the prism, the present inventors can sufficiently detect the surface plasmon polariton from the plasmon resonance film electrode and the transparent electrode as an electric signal. Guess.
 さらに、本発明のセンサチップ及びこれとプリズムとを用いたセンサにおいては、反射共鳴膜をさらに備えることにより、前記プラズモン共鳴膜電極により発生した表面プラズモン共鳴によって、該反射共鳴膜内部で電場変化が引き起こされ、かつ、この電場変化が伝搬されて、前記反射共鳴膜の前記プラズモン共鳴膜電極とは反対側の界面において反射されることにより、該反射共鳴膜内部で電場変化の共鳴が起こる。これにより、発生した表面プラズモン共鳴が増幅されて、前記透明電極から取り出される電気信号(電流)がさらに鋭敏となるものと本発明者らは推察する。 Further, in the sensor chip of the present invention and the sensor using the sensor chip and the prism, a reflection resonance film is further provided so that the electric field change inside the reflection resonance film is caused by the surface plasmon resonance generated by the plasmon resonance film electrode. The induced electric field change is propagated and reflected at the interface of the reflection resonance film on the side opposite to the plasmon resonance film electrode, so that resonance of the electric field change occurs inside the reflection resonance film. The present inventors infer that this causes the generated surface plasmon resonance to be amplified and the electric signal (current) extracted from the transparent electrode to become more sensitive.
 また、本発明のセンサチップ及びこれとプリズムとを組み合わせて用いたセンサにおいては、前記プラズモン共鳴膜電極近傍における屈折率の変化が、上記の全反射する箇所、すなわち、表面プラズモンポラリトンを生じさせる入射角度(プリズムの側から入射する光の入射角度)の範囲、及び生じる表面プラズモンポラリトンの強さを変化させる。さらに、光の入射により前記プラズモン共鳴膜電極に生じる電場は前記表面プラズモンポラリトンによって増強されるため、その電場変化に応じて変化する電流量は、表面プラズモンポラリトンの強さによって変化する。したがって、前記プラズモン共鳴膜電極近傍のサンプルの屈折率変化を十分な精度で測定することができるものと本発明者らは推察する。そのため、本発明のセンサチップ及びこれとプリズムとを用いたセンサによれば、表面プラズモンポラリトンの変化を検出することによって、前記サンプルの濃度変化や状態変化を高精度でモニタすることができ、また、検出信号が電気信号であるため、その強度を電気的に容易に増強することや電流として容易に測定することが可能となるものと本発明者らは推察する。 Further, in the sensor chip of the present invention and the sensor using the prism in combination with the sensor chip, the change in the refractive index in the vicinity of the plasmon resonance film electrode causes the above-mentioned total reflection, that is, the incident that causes the surface plasmon polaritons. The range of the angle (incident angle of light incident from the prism side) and the strength of the generated surface plasmon polaritons are changed. Furthermore, since the electric field generated in the plasmon resonance film electrode by the incidence of light is enhanced by the surface plasmon polaritons, the amount of current that changes according to the change in the electric field changes depending on the strength of the surface plasmon polaritons. Therefore, the present inventors presume that the change in the refractive index of the sample near the plasmon resonance film electrode can be measured with sufficient accuracy. Therefore, according to the sensor chip of the present invention and the sensor using this and the prism, by detecting the change of the surface plasmon polariton, it is possible to monitor the concentration change and the state change of the sample with high accuracy, and The present inventors presume that since the detection signal is an electric signal, the intensity thereof can be electrically increased easily and can be easily measured as a current.
 本発明によれば、小型化やハイスループット化が容易であり、かつ、十分なセンサ感度を有する電気測定型表面プラズモン共鳴センサ及びそれに用いる電気測定型表面プラズモン共鳴センサチップを提供することが可能となる。 According to the present invention, it is possible to provide an electric measurement type surface plasmon resonance sensor which is easy to be miniaturized and has high throughput and has sufficient sensor sensitivity, and an electric measurement type surface plasmon resonance sensor chip used therefor. Become.
プラズモンポラリトン増強センサチップの好適な実施形態1を示す概略縦断面図である。1 is a schematic vertical sectional view showing a preferred embodiment 1 of a plasmon polariton enhanced sensor chip. 電気測定型表面プラズモン共鳴センサの好適な実施形態1を示す概略縦断面図である。1 is a schematic vertical sectional view showing a preferred first embodiment of an electric measurement type surface plasmon resonance sensor. センサチップに光を入射して電流値を測定したときの入射角度と出力電流割合との関係を示すグラフである。6 is a graph showing a relationship between an incident angle and an output current ratio when light is incident on a sensor chip and a current value is measured. プリズムの側から入射する光の入射角度(θ°)を示す模式図である。It is a schematic diagram which shows the incident angle ((theta) degree) of the light which injects from the prism side. プラズモンポラリトン増強センサチップの好適な実施形態2を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view showing a second preferred embodiment of the plasmon polariton enhanced sensor chip. プラズモンポラリトン増強センサチップの好適な実施形態3を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view showing a preferred embodiment 3 of the plasmon polariton enhanced sensor chip. プラズモンポラリトン増強センサチップの好適な実施形態4を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view showing a preferred embodiment 4 of the plasmon polariton enhanced sensor chip. プラズモンポラリトン増強センサチップの好適な実施形態5を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view showing a preferred embodiment 5 of the plasmon polariton enhanced sensor chip. プラズモンポラリトン増強センサチップの好適な実施形態6を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view showing a preferred embodiment 6 of the plasmon polariton enhanced sensor chip. 試験例1及び試験例2の電流値測定方法を示す模式図である。It is a schematic diagram which shows the electric current value measuring method of Test Example 1 and Test Example 2. 比較例1で得られたプリズム付きチップを用いて各サンプル溶液を測定した結果を示すグラフである。5 is a graph showing the results of measuring each sample solution using the chip with prism obtained in Comparative Example 1. 実施例1で得られたプリズム付きチップを用いて各サンプル溶液を測定した結果を示すグラフである。3 is a graph showing the results of measuring each sample solution using the chip with prism obtained in Example 1. 実施例2で得られたプリズム付きチップを用いて各サンプル溶液を測定した結果を示すグラフである。5 is a graph showing the results of measuring each sample solution using the chip with prism obtained in Example 2. 実施例3で得られたプリズム付きチップを用いて各サンプル溶液を測定した結果を示すグラフである。5 is a graph showing the results of measuring each sample solution using the chip with prism obtained in Example 3. 比較例1、実施例1~2で得られたプリズム付きチップを用いて各サンプル溶液を測定したときの各サンプル溶液の屈折率と正規化電流値との関係を示すグラフである。7 is a graph showing the relationship between the refractive index of each sample solution and the normalized current value when each sample solution was measured using the chips with prisms obtained in Comparative Example 1 and Examples 1 and 2. 比較例1で得られたプリズム付きチップ及びチップ1における、光の入射角度と電流値及び出力電流割合との関係を示すグラフである。9 is a graph showing the relationship between the incident angle of light, the current value, and the output current ratio in the chip with prism and chip 1 obtained in Comparative Example 1. チップ2における、反射共鳴膜の厚さと角度変化量の絶対値及び感度との関係を示すグラフである。6 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 2. チップ3における、反射共鳴膜の厚さと角度変化量の絶対値及び感度との関係を示すグラフである。9 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 3. チップ4における、反射共鳴膜の厚さと角度変化量の絶対値及び感度との関係を示すグラフである。6 is a graph showing the relationship between the thickness of the reflection resonance film, the absolute value of the angle change amount, and the sensitivity in the chip 4.
 以下、本発明をその好適な実施形態に即して詳細に説明する。本発明の電気測定型表面プラズモン共鳴センサは、
 透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているセンサチップと、プリズムとが、前記プリズム、前記透明電極、前記n型透明半導体膜、前記プラズモン共鳴膜電極、及び前記反射共鳴膜の順で配置されたプラズモンポラリトン増強センサチップと、
 前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、
を備えるものである。
Hereinafter, the present invention will be described in detail with reference to its preferred embodiments. The electric measurement type surface plasmon resonance sensor of the present invention is
A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon. A resonance membrane electrode, and a plasmon polariton enhanced sensor chip arranged in the order of the reflection resonance membrane;
An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
It is equipped with.
 また、本発明の電気測定型表面プラズモン共鳴センサは、
 入射光を表面プラズモンポラリトンに変換可能なプラズモン共鳴膜電極、
 前記プラズモン共鳴膜電極の前記入射光側に配置されており、前記入射光を透過し、かつ、該透過した入射光が前記プラズモン共鳴膜電極と相互作用することにより前記プラズモン共鳴膜電極から放出されるホットエレクトロンを受け取り可能なn型透明半導体膜、
 前記プラズモン共鳴膜電極の前記n型透明半導体膜と反対側に配置されており、前記プラズモン共鳴膜電極により生じた表面プラズモン共鳴による電場変化を内部で共鳴させることが可能な反射共鳴膜、
及び、
 前記n型透明半導体膜から移動したホットエレクトロンを電気信号として取り出し可能な透明電極、
を備えるセンサチップと、
 前記プラズモン共鳴膜電極と前記n型透明半導体膜との間において前記入射光が全反射されるように前記入射光の角度を制御することが可能なプリズムと、
を備えるプラズモンポラリトン増強センサチップ、並びに、
 前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定可能な電気的測定装置、
を備えるものでもある。
Further, the electrical measurement type surface plasmon resonance sensor of the present invention,
Plasmon resonance film electrode capable of converting incident light into surface plasmon polaritons,
The plasmon resonance film electrode is disposed on the incident light side, transmits the incident light, and the transmitted incident light is emitted from the plasmon resonance film electrode by interacting with the plasmon resonance film electrode. N-type transparent semiconductor film capable of receiving hot electrons,
A reflection resonance film, which is arranged on the opposite side of the plasmon resonance film electrode from the n-type transparent semiconductor film and is capable of internally resonating an electric field change due to surface plasmon resonance generated by the plasmon resonance film electrode;
as well as,
A transparent electrode capable of taking out hot electrons transferred from the n-type transparent semiconductor film as an electric signal,
A sensor chip including
A prism capable of controlling the angle of the incident light so that the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film;
And a plasmon polariton enhanced sensor chip including:
An electrical measuring device capable of directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
It is also equipped with.
 さらに、本発明の電気測定型表面プラズモン共鳴センサチップは、上記本発明の電気測定型表面プラズモン共鳴センサに用いるセンサチップであり、かつ、透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているものである。 Further, the electric measurement type surface plasmon resonance sensor chip of the present invention is a sensor chip used in the electric measurement type surface plasmon resonance sensor of the present invention, and includes a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and The reflection resonance film is arranged in this order.
 以下、図面を参照しながら電気測定型表面プラズモン共鳴センサ(以下、「センサ」)、プラズモンポラリトン増強センサチップ(以下、「増強センサチップ」)、及び電気測定型表面プラズモン共鳴センサチップ(以下、「センサチップ」)の好ましい形態を例に挙げてより具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, with reference to the drawings, an electric measurement type surface plasmon resonance sensor (hereinafter, "sensor"), a plasmon polariton enhanced sensor chip (hereinafter, "enhanced sensor chip"), and an electrical measurement type surface plasmon resonance sensor chip (hereinafter, " A more specific description will be given by taking a preferred form of the "sensor chip") as an example, but the present invention is not limited thereto. In the following description and drawings, the same or corresponding elements will be denoted by the same reference symbols, without redundant description.
 図1Aには、増強センサチップの第1の好ましい形態(好適な実施形態1;増強センサチップ110)を示す。図1Aに示すように、好適な実施形態1において、増強センサチップ110は、プリズム(以下、「プリズム1」)上に、透明電極(以下、「透明電極2」)、n型透明半導体膜(以下、「n型透明半導体膜3」)、プラズモン共鳴膜電極(以下、「プラズモン共鳴膜電極4」)、及び反射共鳴膜(以下、「反射共鳴膜5」)からなるセンサチップ(光電変換部;好適な実施形態1ではセンサチップ11)が、プリズム1、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、反射共鳴膜5の順になるように積層されたものである。 FIG. 1A shows a first preferred form of the enhanced sensor chip (preferred embodiment 1; enhanced sensor chip 110). As shown in FIG. 1A, in the preferred embodiment 1, the enhancement sensor chip 110 includes a transparent electrode (hereinafter, “transparent electrode 2”), an n-type transparent semiconductor film (, on a prism (hereinafter, “prism 1”). Hereinafter, a sensor chip (photoelectric conversion unit) including a "n-type transparent semiconductor film 3"), a plasmon resonance film electrode (hereinafter, "plasmon resonance film electrode 4"), and a reflection resonance film (hereinafter, "reflection resonance film 5") In the preferred embodiment 1, the sensor chip 11) is laminated so that the prism 1, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are laminated in this order.
 また、図1Bには、センサの第1の好ましい形態(好適な実施形態1;センサ510)を示す。図1Bに示すように、好適な実施形態1において、センサ510は、プリズム1及びセンサチップ11を備える増強センサチップ110と、センサチップ11の透明電極2及びプラズモン共鳴膜電極4と外部回路(外部回路31及び31’)を通じて電気的に接続された電気的測定装置(電気的測定装置21)と、を備える。 Further, FIG. 1B shows a first preferable form of the sensor (preferred embodiment 1; sensor 510). As shown in FIG. 1B, in the preferred embodiment 1, a sensor 510 includes an enhanced sensor chip 110 including a prism 1 and a sensor chip 11, a transparent electrode 2 and a plasmon resonance film electrode 4 of the sensor chip 11 and an external circuit (external). An electrical measuring device (electrical measuring device 21) electrically connected through the circuits 31 and 31').
 (プリズム)
 プリズム1は、n型透明半導体膜3とプラズモン共鳴膜電極4との間において入射光を全反射させる機能を有するものである。すなわち、本開示の実施形態においてプリズム1は、n型透明半導体膜3とプラズモン共鳴膜電極4との間における全反射条件を満たすように、入射光の角度を制御する。そして、プリズム1により角度が制御された入射光は、n型透明半導体膜3とプラズモン共鳴膜電極4との間、すなわち、プラズモン共鳴膜電極4とn型透明半導体膜3との界面において全反射する。なお、下記の接着層をさらに備える場合には、プリズム1により角度が制御された入射光は、プラズモン共鳴膜電極4と接着層との界面、又は接着層とn型透明半導体膜3との界面において全反射する。さらに、下記の接着層が2層以上からなる場合には、プリズム1により角度が制御された入射光は、プラズモン共鳴膜電極4と接着層との界面、又は接着層とn型透明半導体膜3との界面、又は隣接する2つの層間の界面において全反射する。
(prism)
The prism 1 has a function of totally reflecting incident light between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4. That is, in the embodiment of the present disclosure, the prism 1 controls the angle of incident light so that the total reflection condition between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 is satisfied. The incident light whose angle is controlled by the prism 1 is totally reflected between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4, that is, at the interface between the plasmon resonance film electrode 4 and the n-type transparent semiconductor film 3. To do. When the following adhesive layer is further provided, the incident light whose angle is controlled by the prism 1 is an interface between the plasmon resonance film electrode 4 and the adhesive layer or an interface between the adhesive layer and the n-type transparent semiconductor film 3. Is totally reflected at. Further, when the following adhesive layer is composed of two or more layers, the incident light whose angle is controlled by the prism 1 is the interface between the plasmon resonance film electrode 4 and the adhesive layer, or the adhesive layer and the n-type transparent semiconductor film 3. Total reflection occurs at the interface with or, or the interface between two adjacent layers.
 プリズム1としては、三角柱の形状をした三角プリズム(直角プリズム(45°の角を持つ直角二等辺三角形、60°及び30°の角を持つ直角三角形)、正三角形プリズム等);台形柱の形状をした台形プリズム;円柱の1側面が平面の形状をした円筒プリズム(前記平面(長方形)と円柱の上面及び底面とのなす辺(短辺)の長さは前記上面及び底面の円の直径未満であってよい);球体の1側面が平面の形状をした球プリズム(前記平面(円)の直径は前記球体の直径未満であってもよい);五角柱の形状をしたペンタプリズム等が挙げられる。これらの中でも、プリズム1としては、プリズムに入射した入射光がより効率よくプラズモン共鳴膜電極4に到達する傾向にあるという観点から、図1Aに示すような三角プリズムの他、台形プリズム、前記円筒プリズム又は前記球プリズムであることが好ましく、直角プリズム;前記短辺の長さが前記上面及び底面の円の直径に等しい半円筒プリズム;又は前記平面の円の直径が前記球体の直径に等しい半球プリズムであることがより好ましい。 As the prism 1, a triangular prism in the shape of a triangular prism (a right-angle prism (a right-angled isosceles triangle having an angle of 45°, a right-angled triangle having angles of 60° and 30°), an equilateral triangular prism, etc.); a trapezoidal prism shape Trapezoidal prism; a cylindrical prism in which one side surface of a cylinder is flat (the length (side) between the plane (rectangle) and the top and bottom of the cylinder is shorter than the diameter of the circle of the top and bottom) A spherical prism in which one side surface of the sphere is in the shape of a plane (the diameter of the plane (circle) may be smaller than the diameter of the sphere); and a pentagonal prism in the shape of a pentagon. To be Among these, as the prism 1, from the viewpoint that the incident light entering the prism tends to reach the plasmon resonance film electrode 4 more efficiently, in addition to the triangular prism as shown in FIG. A prism or a spherical prism, preferably a right-angled prism; a semi-cylindrical prism whose short side length is equal to the diameter of the circles of the top and bottom surfaces; or a hemisphere where the diameter of the plane circle is equal to the diameter of the sphere More preferably, it is a prism.
 センサとしては、1つのセンサチップ(光電変換部)に対して、1つのプリズム1が配置されていても2以上の複数のプリズム1がアレイ状に配置されていてもよく、また、2以上の複数の光電変換部に対して、1つのプリズム1が配置されていてもよい。 As a sensor, one prism 1 may be arranged for one sensor chip (photoelectric conversion unit), or two or more prisms 1 may be arranged in an array, or two or more prisms may be arranged. One prism 1 may be arranged for a plurality of photoelectric conversion units.
 プリズム1の大きさとしては、特に制限されず、センサチップに接する面が多角形である場合には最も長い辺、又は、それ以外の場合にはセンサチップに接する面の外接円の直径の長さが、10nm~10cmであることが好ましく、50nm~5cmであることがより好ましく、100nm~3cmであることがさらに好ましい。なお、ナノメートルサイズ~マイクロメートルサイズのプリズムは、レーザーアブレーション、電子ビームリソグラフィ、ナノインプリントリソグラフィ、光学干渉リソグラフィ等のパターニング技術を利用して成形することが可能であり、マイクロメートル以上のサイズのプリズムは、切削の後に光学研磨をすることで得ることが可能である。プリズム1の大きさが前記下限未満であると、製造困難性が増してプリズムとしての性能が低下することにより、センサとしての性能が低下する傾向にあり、他方、前記上限を超えると、センサとしての小型化が困難となる傾向にある。 The size of the prism 1 is not particularly limited, and is the longest side when the surface in contact with the sensor chip is a polygon, or otherwise the diameter of the circumscribed circle of the surface in contact with the sensor chip. Is preferably 10 nm to 10 cm, more preferably 50 nm to 5 cm, and even more preferably 100 nm to 3 cm. It should be noted that nanometer- to micrometer-sized prisms can be molded using patterning techniques such as laser ablation, electron beam lithography, nanoimprint lithography, and optical interference lithography. It can be obtained by performing optical polishing after cutting. If the size of the prism 1 is less than the lower limit, the manufacturing difficulty increases and the performance as a prism decreases, so that the performance as a sensor tends to decrease. On the other hand, if the size exceeds the upper limit, the prism 1 becomes a sensor. It tends to be difficult to downsize.
 プリズム1が三角プリズムである場合には、図1Aに示すように、前記三角柱の側面上に、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5が配置されることが好ましく、光は前記側面以外の面から入射されることが好ましい。また、プリズム1が台形プリズムである場合には、台形柱の側面のうち、台形の下底辺をなす面(下底面)の面上に、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5が配置されることが好ましく、光は台形の斜辺をなす面から入射されることが好ましい。 When the prism 1 is a triangular prism, as shown in FIG. 1A, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are arranged on the side surface of the triangular prism. It is preferable that the light is incident on the surface other than the side surface. When the prism 1 is a trapezoidal prism, the transparent electrode 2, the n-type transparent semiconductor film 3, and the plasmon resonance film are formed on the surface of the trapezoidal pillar that forms the lower base of the trapezoid (lower bottom surface). It is preferable that the electrode 4 and the reflection resonance film 5 are arranged, and that light is incident from the surface forming the hypotenuse of the trapezoid.
 前記三角プリズム及び前記台形プリズムとしては、各プリズムの入射光が入射する面と、センサチップ(好適な実施形態1ではセンサチップ11)と接する面とがなす角度が、5~85°であることが好ましく、15~75°であることがより好ましく、25~65°であることがさらに好ましい。 As for the triangular prism and the trapezoidal prism, the angle formed by the surface of each prism on which the incident light enters and the surface in contact with the sensor chip (the sensor chip 11 in the preferred embodiment 1) is 5 to 85°. Is more preferable, 15 to 75° is more preferable, and 25 to 65° is still more preferable.
 さらに、プリズム1が円筒プリズム又は球プリズムである場合には、これらの有する前記平面上に、それぞれ、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5が配置されることが好ましく、光は曲面から入射されることが好ましい。 Further, when the prism 1 is a cylindrical prism or a spherical prism, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are arranged on the planes of the prisms. Preferably, the light is incident on the curved surface.
 前記円筒プリズムとしては、円筒の直径を1とした場合において、前記平面を底面としたとき、該底面の中心から垂直方向に伸ばした直線と円弧との交点における前記底面の中心から前記円弧の交点までの距離(以下、「プリズム高さ」という)と前記円筒の直径との比率(プリズム高さ/円筒の直径)が、1未満(0を含まない)であることが好ましく、0.2以上0.8未満であることがより好ましく、0.4以上0.6未満であることがさらに好ましい。 As the cylindrical prism, when the diameter of the cylinder is 1, when the plane is the bottom surface, the intersection of the arc from the center of the bottom surface at the intersection of a straight line extending in the vertical direction from the center of the bottom surface and the arc. The ratio of the distance (hereinafter referred to as “prism height”) to the diameter of the cylinder (prism height/cylinder diameter) is preferably less than 1 (not including 0), and is 0.2 or more. It is more preferably less than 0.8, and further preferably 0.4 or more and less than 0.6.
 前記球プリズムとしては、球の直径を1とした場合において、前記平面を底面としたとき、該底面の中心からの高さ(以下、「プリズム高さ」という)と前記球の直径との比率(プリズム高さ/球の直径)が、1未満(0を含まない)であることが好ましく、0.2以上0.8未満であることがより好ましく、0.4以上0.6未満であることがさらに好ましい。 As the spherical prism, when the diameter of the sphere is 1, when the plane is the bottom surface, the ratio of the height from the center of the bottom surface (hereinafter, referred to as “prism height”) to the diameter of the sphere. The (prism height/sphere diameter) is preferably less than 1 (not including 0), more preferably 0.2 or more and less than 0.8, and 0.4 or more and less than 0.6. Is more preferable.
 前記三角プリズム、前記円筒プリズム、前記球プリズムにおいて、前記角度若しくは前記プリズム高さが前記下限未満、又は、前記上限を超えると、表面プラズモンポラリトンを励起し得る入射光角度で光を入射させることが困難となったり、プリズム内部で光が複数回反射することによってセンサの感度や精度が低下したりする傾向にある。 In the triangular prism, the cylindrical prism, and the spherical prism, when the angle or the prism height is less than the lower limit or exceeds the upper limit, light can be incident at an incident light angle that can excite surface plasmon polaritons. There is a tendency that it becomes difficult and that the sensitivity and accuracy of the sensor decrease due to the light being reflected multiple times inside the prism.
 また、プリズム1がペンタプリズムである場合には、五角柱の側面のうち、いずれかの側面上に、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5が配置されることが好ましく、光は残りの4面のうちのいずれかの面から入射されることが好ましい。 When the prism 1 is a pentaprism, the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 are provided on one of the side surfaces of the pentagonal prism. It is preferable that the light beams are arranged and light is incident from any one of the remaining four faces.
 プリズム1の材質としては、特に制限されず、例えば、ガラス、高分子ポリマ(ポリメタクリル酸メチル、ポリスチレン、ポリエチレン、エポキシ、ポリエステル等)、硫黄、ルビー、サファイア、ダイヤモンド、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)、ゲルマニウム(Ge)、ケイ素(Si)、ヨウ化セシウム(CsI)、臭化カリウム(KBr)、臭沃化タリウム、炭酸カルシウム(CaCO)、フッ化バリウム(BaF)、フッ化マグネシウム(MgF)、フッ化リチウム(LiF)が挙げられる。また、プリズム1の材質としては、液体であってもよく、水、オイル、グリセロール、ジヨードメタン、α-ブロモナフタレン、トルエン、イソオクタン、シクロヘキサン、2,4-ジクロロトルエン、エチルベンゼン、ジベンジルエーテル、アニリン、スチレン、有機化合物溶液(ショ糖溶液等)、無機化合物溶液(塩化カリウム溶液、硫黄含有溶液)が挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。 The material of the prism 1 is not particularly limited and includes, for example, glass, polymer (polymethylmethacrylate, polystyrene, polyethylene, epoxy, polyester, etc.), sulfur, ruby, sapphire, diamond, zinc selenide (ZnSe), Zinc sulfide (ZnS), germanium (Ge), silicon (Si), cesium iodide (CsI), potassium bromide (KBr), thallium bromoiodide, calcium carbonate (CaCO 3 ), barium fluoride (BaF 2 ), Examples thereof include magnesium fluoride (MgF 2 ) and lithium fluoride (LiF). The material of the prism 1 may be liquid, water, oil, glycerol, diiodomethane, α-bromonaphthalene, toluene, isooctane, cyclohexane, 2,4-dichlorotoluene, ethylbenzene, dibenzyl ether, aniline, Examples thereof include styrene, an organic compound solution (sucrose solution, etc.), and an inorganic compound solution (potassium chloride solution, sulfur-containing solution), and one of these may be used alone or two or more thereof may be used in combination. ..
 なお、プリズム1の形状、材質に関わらず、プリズム1の内部に入射光の光源が配置されていてもよい。 A light source for incident light may be disposed inside the prism 1 regardless of the shape and material of the prism 1.
 (透明電極)
 透明電極2は、プラズモン共鳴膜電極4で生じた表面プラズモンポラリトンに伴って放出され、n型透明半導体膜3を移動してきたホットエレクトロン(電子)を電気信号として取り出す機能を有するものであり、プラズモン共鳴膜電極4の対極として機能し、プラズモン共鳴膜電極4と、電気的測定装置(好適な実施形態1では電気的測定装置21)及び必要に応じて外部回路(導線、電流計等;好適な実施形態1では外部回路31及び31’)を介して電気的に接続される。また、透明電極2は、光を透過できることが必要である。なお、本発明において、膜、電極、層及び基板などが「光を透過できる」とは、膜、電極、層又は基板などの一方の面に対して波長400~1500nmのうちの少なくともいずれかの波長の光を垂直に入射させたときの光透過率が40%以上であることをいい、前記光透過率は50%以上であることが好ましく、60%以上であることがさらに好ましい。
(Transparent electrode)
The transparent electrode 2 has a function of taking out hot electrons (electrons), which are emitted along with the surface plasmon polaritons generated in the plasmon resonance film electrode 4 and have moved in the n-type transparent semiconductor film 3 as an electric signal, It functions as a counter electrode of the resonance membrane electrode 4, and the plasmon resonance membrane electrode 4, the electrical measuring device (the electrical measuring device 21 in the preferred embodiment 1) and, if necessary, an external circuit (lead wire, ammeter, etc.); In the first embodiment, they are electrically connected via the external circuits 31 and 31'). Moreover, the transparent electrode 2 needs to be able to transmit light. In the present invention, the phrase “a film, an electrode, a layer, a substrate, and the like can transmit light” means that at least one of wavelengths of 400 to 1500 nm with respect to one surface of the film, the electrode, the layer, the substrate, or the like. It means that the light transmittance when light of a wavelength is vertically incident is 40% or more, and the light transmittance is preferably 50% or more, more preferably 60% or more.
 透明電極2の材質としては、半導体分野において透明電極として従来から用いられているものの中から適宜選択して用いることができ、例えば、銅(Cu)、金(Au)、銀(Ag)、白金(Pt)、亜鉛(Zn)、クロム(Cr)、アルミ(Al)、チタン(Ti)、窒化チタン(TiN)、ITO(Indium tin oxide)、FTO(Fluorine-doped tin oxide)、及び他元素(アルミニウムやガリウム等)をドープしたZnO等の金属酸化物などの透明導電性材料、及びこれらの積層体からなる薄膜や網状の形状が挙げられる。また、透明電極2の材質としては、下記のn型透明半導体膜を構成するn型半導体も挙げられ、センサチップにおいて、透明電極2とn型透明半導体膜3とは、互いに同一の材質からなる層であってもよい。この場合、n型透明半導体膜3は透明電極2を兼ねる。 The material of the transparent electrode 2 can be appropriately selected and used from materials conventionally used as transparent electrodes in the semiconductor field, and examples thereof include copper (Cu), gold (Au), silver (Ag), and platinum. (Pt), zinc (Zn), chromium (Cr), aluminum (Al), titanium (Ti), titanium nitride (TiN), ITO (Indium tin oxide), FTO (Fluorine-doped tin oxide), and other elements ( Examples thereof include transparent conductive materials such as metal oxides such as ZnO doped with aluminum and gallium), and thin films and net-like shapes made of a laminate of these materials. Further, examples of the material of the transparent electrode 2 include an n-type semiconductor forming the following n-type transparent semiconductor film. In the sensor chip, the transparent electrode 2 and the n-type transparent semiconductor film 3 are made of the same material. It may be a layer. In this case, the n-type transparent semiconductor film 3 also serves as the transparent electrode 2.
 透明電極2の厚さ(n型透明半導体膜3が透明電極2を兼ねる場合を除く)としては、通常、1~1000nmである。 The thickness of the transparent electrode 2 (excluding the case where the n-type transparent semiconductor film 3 also serves as the transparent electrode 2) is usually 1 to 1000 nm.
 なお、本発明において、膜、電極、層及び基板などの厚さや境界は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)、ラザフォード後方散乱分析法(RBS)による観察で測定、確認することができる。 In the present invention, the thickness and boundaries of films, electrodes, layers, substrates, etc. are measured and confirmed by observation with a scanning electron microscope (SEM) or transmission electron microscope (TEM), Rutherford backscattering analysis (RBS). can do.
 (n型透明半導体膜)
 n型透明半導体膜3は、プラズモン共鳴膜電極4で励起された表面プラズモンポラリトンによって該プラズモン共鳴膜電極4が十分に分極されることで放出されるホットエレクトロンを受け取る機能を有するものであり、n型半導体からなる膜である。また、n型透明半導体膜3は、光を透過できることが必要である。
(N-type transparent semiconductor film)
The n-type transparent semiconductor film 3 has a function of receiving hot electrons emitted when the plasmon resonance film electrode 4 is sufficiently polarized by the surface plasmon resonance film polariton excited by the plasmon resonance film electrode 4. The film is a semiconductor film. The n-type transparent semiconductor film 3 needs to be able to transmit light.
 前記n型半導体としては、例えば、無機酸化物半導体が挙げられ、これらのうちの1種を単独であっても2種以上の複合材料であってもよい。前記無機酸化物半導体としては、二酸化チタン(TiO)、酸化亜鉛(ZnO)、二酸化スズ(SnO)、窒化ガリウム(GaN)、酸化ガリウム(GaO)、酸化チタン酸ストロンチウム(SrTiO)、酸化鉄(Fe)、酸窒化タンタル(TaON)、酸化タングステン(WO)、酸化インジウム(In)及びこれらの複合酸化物等が挙げられる。中でも、前記n型半導体としては、透明性が高く、導電率が高いという観点からは、TiO、ZnO、SnO、SrTiO、Fe、TaON、WO及びInからなる群から選択される少なくとも1種の半導体であることが好ましく、TiO、ZnO、SnO、SrTiO、Fe及びInからなる群から選択される少なくとも1種の半導体であることがより好ましい。 Examples of the n-type semiconductor include an inorganic oxide semiconductor, and one of these may be a single material or a composite material of two or more materials. Examples of the inorganic oxide semiconductor include titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), gallium nitride (GaN), gallium oxide (GaO), strontium titanate oxide (SrTiO 3 ), and oxide. Examples thereof include iron (Fe 2 O 3 ), tantalum oxynitride (TaON), tungsten oxide (WO 3 ), indium oxide (In 2 O 3 ), and their composite oxides. Among them, the n-type semiconductor is composed of TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , TaON, WO 3 and In 2 O 3 from the viewpoint of high transparency and high conductivity. It is preferably at least one semiconductor selected from the group, and is at least one semiconductor selected from the group consisting of TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 and In 2 O 3. Is more preferable.
 n型透明半導体膜3の厚さ(n型透明半導体膜3が透明電極2を兼ねる場合を含む)としては、1~1000nmであることが好ましく、5~500nmであることがより好ましく、10~300nmであることがさらに好ましい。前記厚さが前記下限未満であると、前記n型透明半導体が膜として存在できず、半導体としての十分な機能を果たせなくなる傾向にある。他方、前記上限を超えると、光透過率が減少したり、抵抗が増大して電流が流れにくくなる傾向にある。 The thickness of the n-type transparent semiconductor film 3 (including the case where the n-type transparent semiconductor film 3 also serves as the transparent electrode 2) is preferably 1 to 1000 nm, more preferably 5 to 500 nm, and more preferably 10 to More preferably, it is 300 nm. If the thickness is less than the lower limit, the n-type transparent semiconductor cannot exist as a film and tends to fail to function sufficiently as a semiconductor. On the other hand, when the amount exceeds the upper limit, the light transmittance tends to decrease, or the resistance tends to increase, which makes it difficult for current to flow.
 (プラズモン共鳴膜電極)
 プラズモン共鳴膜電極4は、入射してきた光(入射光)を表面プラズモンポラリトンに変換する機能を有するものであり、光との相互作用によって表面プラズモンポラリトンを発生可能なプラズモニック材料からなる膜である。また、前記表面プラズモンポラリトンを電気信号として取り出す機能を有するものであり、透明電極2の対極として機能し、透明電極2と、電気的測定装置(好適な実施形態1では電気的測定装置21)及び必要に応じて外部回路(導線、電流計等;好適な実施形態1では外部回路31及び31’)を介して電気的に接続される。
(Plasmon resonance membrane electrode)
The plasmon resonance film electrode 4 has a function of converting incident light (incident light) into surface plasmon polaritons, and is a film made of a plasmonic material capable of generating surface plasmon polaritons by interaction with light. .. Further, it has a function of extracting the surface plasmon polariton as an electric signal, functions as a counter electrode of the transparent electrode 2, the transparent electrode 2, the electrical measuring device (the electrical measuring device 21 in the preferred embodiment 1), and If necessary, they are electrically connected via an external circuit (conductor, ammeter, etc.; in the preferred embodiment 1, the external circuits 31 and 31').
 前記プラズモニック材料としては、例えば、金属、金属窒化物、及び金属酸化物が挙げられ、これらのうちの1種を単独であっても2種以上の複合材料であってもよい。中でも、前記プラズモニック材料として好ましいものとしては、前記金属としては金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、白金(Pt)、パラジウム(Pd)、亜鉛(Zn)、及びナトリウム(Na)を挙げることができ、前記金属窒化物としては窒化チタン(TiN)を、前記金属酸化物としてはITO(Indium tin oxide)、FTO(Fluorine-doped tin oxide)、及び他元素(アルミニウムやガリウム等)をドープしたZnOを、それぞれ挙げることができる。中でも、前記プラズモニック材料としては、Au、Ag、Al、Cu、Pt、Pd、及びTiNからなる群から選択される少なくとも1種であることが好ましく、Au、Ag、Al、Cu及びPtからなる群から選択される少なくとも1種であることがより好ましい。 Examples of the plasmonic material include metals, metal nitrides, and metal oxides, and one of these may be a single material or a composite material of two or more materials. Above all, as the preferable plasmonic material, the metal is gold (Au), silver (Ag), aluminum (Al), copper (Cu), platinum (Pt), palladium (Pd), zinc (Zn). , And sodium (Na). The metal nitride is titanium nitride (TiN), and the metal oxide is ITO (Indium tin oxide), FTO (Fluorine-doped tin oxide), and other elements. Examples thereof include ZnO doped with (aluminum, gallium, etc.). Among them, the plasmonic material is preferably at least one selected from the group consisting of Au, Ag, Al, Cu, Pt, Pd, and TiN, and is composed of Au, Ag, Al, Cu, and Pt. More preferably, it is at least one selected from the group.
 プラズモン共鳴膜電極4の厚さとしては、200nm以下(ただし0を含まない)であることが好ましく、1~150nmであることがより好ましく、5~100nmであることがさらに好ましく、10~60nmであることがさらにより好ましい。前記厚さが前記下限未満であると、前記プラズモン共鳴膜電極が膜として存在できなくなる傾向にあり、他方、前記上限を超えると、光が入射してきた面の反対側の面に到達するエバネッセント波が弱くなり、十分な表面プラズモンポラリトンを励起できなくなる傾向にある。また、プラズモン共鳴膜電極4の厚さとしては、測定対象であるサンプルの屈折率としてより広範囲の屈折率(好ましくは、1.33~1.40)を測定可能となる傾向にあるという観点からは、10~34nmであることが特に好ましく、屈折率の変化に対して電流値の変化率を大きくするという観点からは、35~60nmであることが特に好ましい。 The thickness of the plasmon resonance film electrode 4 is preferably 200 nm or less (not including 0), more preferably 1 to 150 nm, further preferably 5 to 100 nm, and more preferably 10 to 60 nm. It is even more preferred to be present. When the thickness is less than the lower limit, the plasmon resonance film electrode tends to be unable to exist as a film, and when the thickness exceeds the upper limit, an evanescent wave reaching a surface opposite to a surface on which light is incident. Becomes weak, and sufficient surface plasmon polaritons cannot be excited. In addition, the thickness of the plasmon resonance film electrode 4 tends to allow a wider range of refractive indices (preferably 1.33 to 1.40) to be measured as the refractive index of the sample to be measured. Is particularly preferably 10 to 34 nm, and particularly preferably 35 to 60 nm from the viewpoint of increasing the rate of change of the current value with respect to the change of the refractive index.
 (反射共鳴膜)
 反射共鳴膜5は、プラズモン共鳴膜電極4により生じた表面プラズモン共鳴による電場変化を内部で共鳴させる機能を有するものであり、より具体的には、プラズモン共鳴膜電極4により生じた表面プラズモン共鳴によって、内部で電場変化が引き起こされ、かつ、この電場変化が伝搬されてプラズモン共鳴膜電極4とは反対側の界面で反射することにより、該反射共鳴膜内部で該電場変化の共鳴を起こし、これにより、生じた表面プラズモン共鳴を増幅させる機能を有するものである。
(Reflection resonance film)
The reflection resonance film 5 has a function of internally resonating the electric field change due to the surface plasmon resonance generated by the plasmon resonance film electrode 4, and more specifically, by the surface plasmon resonance generated by the plasmon resonance film electrode 4. , An electric field change is caused inside, and the electric field change is propagated and reflected at the interface on the side opposite to the plasmon resonance film electrode 4, thereby causing resonance of the electric field change inside the reflection resonance film, Has a function of amplifying the generated surface plasmon resonance.
 反射共鳴膜5の材質としては、例えば、金属酸化物(例えば、二酸化チタン(TiO)、酸化鉄(II)(FeO)、酸化鉄(III)(Fe);二酸化ケイ素(SiO)等のガラス)、前記金属酸化物以外の半導体(例えば、ケイ素(Si)、ゲルマニウム(Ge)、及びそのドープ体)、有機物(例えば、ポリエチレン(PE)、ジメチルポリシロキサン(PDMS)、ポリメタクリル酸メチル(PMMA、アクリル樹脂)等の合成樹脂;セルロース、エチレングリコール等の高分子ポリマ)が挙げられ、これらのうちの1種を単独であっても2種以上の複合材料であってもよい。中でも、反射共鳴膜5の屈折率が高い程その厚さを薄くすることができる傾向にあるという観点から、反射共鳴膜5の材質としては、TiO、SiO等の金属酸化物、及びSi等の半導体からなる群から選択される少なくとも1種であることが好ましく、TiO等の金属酸化物、及びSi等の半導体からなる群から選択される少なくとも1種であることがより好ましい。 Examples of the material of the reflection resonance film 5 include metal oxides (for example, titanium dioxide (TiO 2 ), iron oxide (II) (FeO), iron oxide (III) (Fe 2 O 3 ), and silicon dioxide (SiO 2 ). ) Etc.), semiconductors other than the above metal oxides (for example, silicon (Si), germanium (Ge), and doped materials thereof), organic substances (for example, polyethylene (PE), dimethylpolysiloxane (PDMS), polymethacryl). Examples thereof include synthetic resins such as methyl acidate (PMMA, acrylic resin); polymer polymers such as cellulose and ethylene glycol, and one of these may be a single material or a composite material of two or more materials. .. Above all, from the viewpoint that the higher the refractive index of the reflection resonance film 5 is, the thinner the thickness tends to be, the material of the reflection resonance film 5 is a metal oxide such as TiO 2 or SiO 2 , and Si. It is preferably at least one selected from the group consisting of semiconductors such as, and more preferably at least one selected from the group consisting of metal oxides such as TiO 2 and semiconductors such as Si.
 反射共鳴膜5の厚さとしては、特に十分なセンサ感度の向上が達成れる観点から、次式(1):
  |Δθ|≦2°・・・(1)
で示される条件を満たす厚さであることが好ましい。
The thickness of the reflection resonance film 5 is expressed by the following formula (1) from the viewpoint of achieving particularly sufficient improvement in sensor sensitivity:
│Δθ│≦2°・・・(1)
It is preferable that the thickness satisfies the condition shown by.
 前記式(1)中、Δθは、前記センサチップの前記プリズムと接する面に対する入射角度(θ)が0~90°となる範囲内で前記センサチップに光を入射して電流値を測定したときに、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で入射光が全反射するときの入射角度(θcp)の±25°の範囲内で、前記入射光のエネルギーに対する前記電流値の割合である出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減じた角度変化量を示す。 In the formula (1), Δθ is a value obtained when light is incident on the sensor chip within a range in which the incident angle (θ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°. In the range of ±25° of the incident angle (θ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film, the current value with respect to the energy of the incident light is Change in angle obtained by subtracting the incident angle (θ CAmin ) at which the output current ratio becomes the minimum value (CA min ) from the incident angle (θ CAmax ) at which the output current ratio (CA), which is the ratio, becomes the maximum value (CA max ). Indicates the amount.
 例えば、前記センサチップの前記プリズムと接する面に対する入射角度(θ)が0~90°となる範囲内で前記センサチップに光を入射して電流値を測定した場合には、図2に模式的に示すように、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で入射光が全反射するときの入射角度(θcp)の±25°の範囲内で、電流値の変化(図2では出力電流割合(CA))がピークとして観察される。このとき、前記ピークがシャープ、すなわちピークの傾斜が急である程、センサ感度が高いことを示し、反射共鳴膜を備えることにより、該ピークをよりシャープにすることが可能となる。 For example, when light is incident on the sensor chip and the current value is measured within a range in which the incident angle (θ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°, FIG. As shown in FIG. 4, the change of the current value within the range of ±25° of the incident angle (θ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film (Fig. In 2, the output current ratio (CA) is observed as a peak. At this time, the sharper the peak is, that is, the steeper the peak is, the higher the sensor sensitivity is, and the peak can be made sharper by providing the reflection resonance film.
 前記式(1)中のΔθは、図2に示すように、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で入射光が全反射するときの入射角度(θcp)の±25°の範囲内で、前記入射光のエネルギーに対する前記電流値の割合である出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減ずることで、角度変化量として求めることができ、|Δθ|はその絶対値である。かかる|Δθ|としては、前記式(1)のように2°以下であることが好ましく、1.5°以下であることがより好ましく、1°以下であることがさらに好ましい。 As shown in FIG. 2, Δθ in the formula (1) is ±25 of an incident angle (θ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film. Within the range of °, the output current ratio is the minimum value (CA) from the incident angle (θ CAmax ) where the output current ratio (CA), which is the ratio of the current value to the energy of the incident light, is the maximum value (CA max ). min ), the incident angle (θ CAmin ) can be reduced to obtain the angle change amount, and |Δθ| is an absolute value thereof. The value of |Δθ| is preferably 2° or less, more preferably 1.5° or less, and further preferably 1° or less, as in the above formula (1).
 本発明において、センサ感度は、前記出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減じた上記の角度変化量(Δθ)の絶対値(|Δθ|[°])、並びに、前記出力電流割合の最大値(CAmax)から最小値(CAmin)を減じた値(ΔI)の絶対値(|ΔI|[%])をそれぞれ求め、これらの比(|ΔI|/|Δθ|[%])として表すことができる。前記センサ感度(|ΔI|/|Δθ|[%])の値が大きい程、センサ感度に優れることを示す。 In the present invention, the sensor sensitivity, the output current ratio (CA) is the maximum value (CA max) become incident angle (theta CAmax) the output current ratio is the minimum value from the (CA min) become incident angle (theta Camin) Absolute value (|Δθ|[°]) of the above-mentioned amount of change in angle (Δθ), and a value (ΔI) obtained by subtracting the minimum value (CA min ) from the maximum value (CA max ) of the output current ratio. The absolute value (|ΔI|[%]) of each can be obtained and expressed as the ratio (|ΔI|/|Δθ|[%]). The larger the value of the sensor sensitivity (|ΔI|/|Δθ|[%]), the better the sensor sensitivity.
 なお、プリズム1の側から照射された光は、例えば、図3の(a)に示すようにプリズム1の面に対して垂直に入射した場合には直進する(入射光400)が、図3の(b)に示すように、垂直以外の角度で入射した場合にはプリズム1によって屈折する(入射光400)。そのため、本発明においては、図3の(a)、(b)に示すように、プリズムの側から入射する光の入射角度(θ°)を、プリズム1が無い場合の、光電変換部(図3ではセンサチップ16)のプリズム1と接する面に対する入射角度として定義する。入射光の光源が前記プリズム内にある場合も同様である。 It should be noted that the light emitted from the prism 1 side goes straight (incident light 400) when, for example, as shown in FIG. As shown in (b), when the light is incident at an angle other than vertical, it is refracted by the prism 1 (incident light 400). Therefore, in the present invention, as shown in (a) and (b) of FIG. 3, the incident angle (θ°) of the light incident from the prism side is set to the photoelectric conversion unit (FIG. 3 is defined as the incident angle with respect to the surface of the sensor chip 16) which is in contact with the prism 1. The same applies when the light source of the incident light is inside the prism.
 (酸化膜)
 図4には、増強センサチップの第2の好ましい形態(好適な実施形態2)を示す。増強センサチップを構成するセンサチップとしては、本発明の効果を阻害しない範囲において、さらに別の層を備えていてもよく、例えば、特に反射共鳴膜5が前記金属酸化物以外の半導体や前記有機物からなる場合には、図4に示すセンサチップ(光電変換部)12のように、プラズモン共鳴膜電極4と反射共鳴膜5との間に、反射共鳴膜5をプラズモン共鳴膜電極4に直接積層することによって生じる電流値低下を防止することを主な目的として、酸化膜6をさらに備えていてもよい(増強センサチップ120)。
(Oxide film)
FIG. 4 shows a second preferred form of the enhanced sensor chip (preferred embodiment 2). The sensor chip constituting the enhanced sensor chip may further include another layer as long as the effect of the present invention is not impaired. For example, the reflection resonance film 5 may be a semiconductor or organic substance other than the metal oxide. In the case where the reflection resonance film 5 is formed of the sensor chip (photoelectric conversion unit) 12 shown in FIG. 4, the reflection resonance film 5 is directly laminated on the plasmon resonance film electrode 4 between the plasmon resonance film electrode 4 and the reflection resonance film 5. The oxide film 6 may be further provided mainly for the purpose of preventing a decrease in current value caused by the above (enhanced sensor chip 120).
 酸化膜6の材質としては、例えば、二酸化チタン(TiO)、二酸化ケイ素(SiO)、酸化クロム(Cr)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)が挙げられ、これらのうちの1種を単独であっても2種以上の複合材料であってもよい。中でも、酸化膜としての安定性の観点から、酸化膜6の材質としては、TiO、SiO、及びCrからなる群から選択される少なくとも1種であることが好ましく、TiO及びSiOからなる群から選択される少なくとも1種であることがより好ましい。また、酸化膜6としては、これらのうちの少なくとも1種を含む単層であってもかかる単層が2種以上積層された複層であってもよい。 Examples of the material of the oxide film 6 include titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ), chromium oxide (Cr 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), nickel oxide (NiO). ), and one of these may be used alone or two or more kinds of composite materials may be used. Among them, from the viewpoint of stability as an oxide film, the material of the oxide film 6 is preferably at least one selected from the group consisting of TiO 2 , SiO 2 , and Cr 2 O 3 , and TiO 2 and More preferably, it is at least one selected from the group consisting of SiO 2 . Further, the oxide film 6 may be a single layer containing at least one of these or a multi-layer in which two or more such single layers are laminated.
 酸化膜6をさらに備える場合、その厚さとしては、厚くなるにしたがってプラズモン共鳴膜電極4により生じる表面プラズモン共鳴の強度が減少する傾向にあるという観点からは、300nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下であることがさらに好ましく、50nm以下であることがさらにより好ましい。 When the oxide film 6 is further provided, the thickness thereof is preferably 300 nm or less, and 200 nm or less from the viewpoint that the intensity of the surface plasmon resonance generated by the plasmon resonance film electrode 4 tends to decrease as the thickness increases. It is more preferably not more than 100 nm, further preferably not more than 100 nm, still more preferably not more than 50 nm.
 (透明基板)
 図5には、増強センサチップの第3の好ましい形態(好適な実施形態3)を示す。増強センサチップを構成するセンサチップとしては、例えば、図5に示すセンサチップ(光電変換部)13のように、プリズム1と透明電極2との間に、センサチップ13を支持することを主な目的として、透明基板7をさらに備えていてもよい(増強センサチップ130)。
(Transparent substrate)
FIG. 5 shows a third preferred form of the enhanced sensor chip (preferred embodiment 3). As the sensor chip constituting the enhanced sensor chip, for example, as in the sensor chip (photoelectric conversion unit) 13 shown in FIG. 5, the sensor chip 13 is mainly supported between the prism 1 and the transparent electrode 2. For the purpose, it may further comprise a transparent substrate 7 (enhanced sensor chip 130).
 透明基板7の材質としては、光を透過できるものであれば特に制限されず、例えば、ガラス;プラスチックやフィルム等の高分子有機化合物が挙げられ、透明基板7としては、これらのうちの少なくとも1種を含む単層であってもかかる単層が2種以上積層された複層であってもよい。透明基板7をさらに備える場合、その厚さとしては、通常、0.01~2mmである。 The material of the transparent substrate 7 is not particularly limited as long as it can transmit light, and examples thereof include high molecular weight organic compounds such as glass and plastics and films, and the transparent substrate 7 includes at least one of them. It may be a single layer containing a seed or a multi-layer in which two or more such single layers are laminated. When the transparent substrate 7 is further provided, the thickness thereof is usually 0.01 to 2 mm.
 また、透明基板7をさらに備える場合、プリズム1と透明基板7との間には、透明基板7を密着させることを主な目的として、中間層(図示せず)をさらに備えていてもよい。前記中間層の材質としては、光を透過できるものであれば特に制限されず、例えば、グリセロール、水、高分子ポリマ(ポリメタクリル酸メチル、ポリスチレン、ポリエチレン、エポキシ、ポリエステル等)、オイル、ジヨードメタン、α-ブロモナフタレン、トルエン、イソオクタン、シクロヘキサン、2,4-ジクロロトルエン、有機化合物溶液(ショ糖溶液等)、無機化合物溶液(塩化カリウム溶液、硫黄含有溶液)、エチルベンゼン、ジベンジルエーテル、アニリン、スチレンが挙げられ、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよい。 Further, when the transparent substrate 7 is further provided, an intermediate layer (not shown) may be further provided between the prism 1 and the transparent substrate 7 mainly for the purpose of closely adhering the transparent substrate 7. The material of the intermediate layer is not particularly limited as long as it can transmit light, and examples thereof include glycerol, water, polymer (polymethylmethacrylate, polystyrene, polyethylene, epoxy, polyester, etc.), oil, diiodomethane, α-bromonaphthalene, toluene, isooctane, cyclohexane, 2,4-dichlorotoluene, organic compound solution (sucrose solution, etc.), inorganic compound solution (potassium chloride solution, sulfur-containing solution), ethylbenzene, dibenzyl ether, aniline, styrene Among these, one kind may be used alone or two or more kinds may be used in combination.
 (接着層)
 図6には、増強センサチップの第4の好ましい形態(好適な実施形態4)を示す。増強センサチップを構成するセンサチップとしては、特にプラズモン共鳴膜電極4が前記金属からなる場合には、図6に示すセンサチップ(光電変換部)14のように、n型透明半導体膜3とプラズモン共鳴膜電極4との間に、プラズモン共鳴膜電極4をより強固に固定することを主な目的として、接着層8をさらに備えていてもよい(増強センサチップ140)。
(Adhesive layer)
FIG. 6 shows a fourth preferred form of the enhanced sensor chip (preferred embodiment 4). As the sensor chip constituting the enhanced sensor chip, particularly when the plasmon resonance film electrode 4 is made of the above metal, the n-type transparent semiconductor film 3 and the plasmon can be used like the sensor chip (photoelectric conversion part) 14 shown in FIG. An adhesive layer 8 may be further provided mainly for the purpose of more firmly fixing the plasmon resonance film electrode 4 to the resonance film electrode 4 (enhanced sensor chip 140).
 接着層8の材質としては、例えば、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、窒化チタン(TiN)が挙げられ、前記接着層としては、これらのうちの少なくとも1種を含む単層であってもかかる単層が2種以上積層された複層であってもよい。また、接着層8は、n型透明半導体膜3とプラズモン共鳴膜電極4との境界面を全て覆っていなくともよい。ただし、光が入射してきた面の反対側の面に到達するエバネッセント波が弱くなり、十分な強さの表面プラズモンポラリトンを励起できなくなる傾向にあることから、センサチップにおいては、n型透明半導体膜3とプラズモン共鳴膜電極4とが互いに近傍に配置されていることが好ましく、n型透明半導体膜3とプラズモン共鳴膜電極4との間の距離が25nm以下であることが好ましく、1~10nmであることがより好ましい。したがって、接着層8をさらに備える場合、その厚さとしては、25nm以下であることが好ましく、1~10nmであることがより好ましい。 Examples of the material of the adhesive layer 8 include titanium (Ti), chromium (Cr), nickel (Ni), and titanium nitride (TiN), and the adhesive layer includes a single layer containing at least one of them. It may be a layer or a multi-layer in which two or more such single layers are laminated. Further, the adhesive layer 8 may not cover the entire boundary surface between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4. However, since the evanescent wave reaching the surface opposite to the surface on which the light is incident becomes weak and the surface plasmon polaritons of sufficient strength cannot be excited, the n-type transparent semiconductor film is used in the sensor chip. 3 and the plasmon resonance film electrode 4 are preferably arranged close to each other, and the distance between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 is preferably 25 nm or less, preferably 1 to 10 nm. More preferably. Therefore, when the adhesive layer 8 is further provided, the thickness thereof is preferably 25 nm or less, more preferably 1 to 10 nm.
 (分子結合膜)
 図7には、増強センサチップの第5の好ましい形態(好適な実施形態5)を示す。増強センサチップにおいては、図7に示すセンサチップ(光電変換部)15のように、バイオ分子等を結合しやすくすることを主な目的として、反射共鳴膜5のプラズモン共鳴膜4と反対側の面上に、反射共鳴膜5の材質とは異なる材質からなる分子結合膜9をさらに備えていてもよい(増強センサチップ150)。
(Molecular bonding film)
FIG. 7 shows a fifth preferred form of the enhanced sensor chip (preferred embodiment 5). In the enhanced sensor chip, like the sensor chip (photoelectric conversion unit) 15 shown in FIG. 7, the reflection resonance film 5 on the side opposite to the plasmon resonance film 4 is mainly intended to facilitate binding of biomolecules and the like. A molecular bond film 9 made of a material different from the material of the reflection resonance film 5 may be further provided on the surface (enhanced sensor chip 150).
 分子結合膜9の材質としては、例えば、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、二酸化ケイ素(SiO)、酸化亜鉛(ZnO)、酸化アルミニウム(Al)が挙げられ、これらのうちの1種を単独であっても2種以上の複合材料であってもよい。中でも、反射共鳴膜5においてプラズモン共鳴膜電極4により生じた電場変化をより効率的に反射させるという観点から、分子結合膜9の材質としては、Au、Ag、Cu、及びPtからなる群から選択される少なくとも1種であることが好ましく、大気や溶液に接した際の安定性がより高いという観点からは、Au及びPtからなる群から選択される少なくとも1種であることがより好ましい。また、分子結合膜9としては、これらのうちの少なくとも1種を含む単層であってもかかる単層が2種以上積層された複層であってもよい。 Examples of the material of the molecular bonding film 9 include gold (Au), silver (Ag), copper (Cu), platinum (Pt), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and silicon dioxide (SiO 2 ). ), zinc oxide (ZnO), and aluminum oxide (Al 2 O 3 ), and one of these may be a single material or a composite material of two or more materials. Among them, the material of the molecular bonding film 9 is selected from the group consisting of Au, Ag, Cu and Pt from the viewpoint of more efficiently reflecting the electric field change generated by the plasmon resonance film electrode 4 in the reflection resonance film 5. At least one selected from the group consisting of Au and Pt is more preferred from the viewpoint of higher stability when exposed to the atmosphere or a solution. Further, the molecular bonding film 9 may be a single layer containing at least one of these or a multi-layer in which two or more such single layers are laminated.
 分子結合膜9をさらに備える場合、その厚さとしては、厚くなるにしたがってプラズモン共鳴膜電極4により生じる表面プラズモン共鳴の強度が減少する傾向にあるという観点からは、1~100nmであることが好ましく、1~50nmであることがより好ましく、1~25nmであることがさらに好ましい。 When the molecular bonding film 9 is further provided, the thickness thereof is preferably 1 to 100 nm from the viewpoint that the intensity of the surface plasmon resonance generated by the plasmon resonance film electrode 4 tends to decrease as the thickness increases. It is more preferably 1 to 50 nm, further preferably 1 to 25 nm.
 (サンプル層)
 図8には、増強センサチップの第6の好ましい形態(好適な実施形態6)を示す。増強センサチップにおいては、図8に示すように、測定対象であるサンプルを保持することを主な目的として、反射共鳴膜5のプラズモン共鳴膜4と反対側の面上、又は上記の分子結合膜9(図8では示さず)上に、サンプル層10をさらに備えていてもよい(増強センサチップ160)。なお、サンプル層10としては、前記サンプルが任意の流速で供給されるように配置されたものであっても、前記サンプルが一定容積で含まれるようにセル状に区分して配置されたものであってもよい。
(Sample layer)
FIG. 8 shows a sixth preferred form of the enhanced sensor chip (preferred embodiment 6). In the enhanced sensor chip, as shown in FIG. 8, on the surface of the reflection resonance film 5 opposite to the plasmon resonance film 4, or on the molecular bonding film described above, mainly for holding a sample to be measured. 9 (not shown in FIG. 8) may further comprise a sample layer 10 (enhanced sensor chip 160). As the sample layer 10, even if the sample layer is arranged so as to be supplied at an arbitrary flow rate, it is divided into cells so as to be contained in a constant volume. It may be.
 増強センサチップを構成するセンサチップにおいては、n型透明半導体膜3とプラズモン共鳴膜電極4(接着層8をさらに備える場合には該接着層8)との組み合わせが、ショットキー障壁を形成する組み合わせであることが好ましい。センサチップがショットキー障壁を形成することは、センサチップの透明電極2を半導体アナライザ等の電圧印加手段の作用極に、プラズモン共鳴膜電極4を前記電圧印加手段の対極及び参照電極に、それぞれ接続して、作用極に-1.5~+1.5Vの範囲で電圧を印加したときの電流値を測定することにより確認することができる。その電流値としては、0V以上+1.5V以下における電流値の絶対値のうちの最大値が-1.5V以上0V未満における電流値の絶対値のうちの最大値に対して5分の1以下であることが好ましく、10分の1以下であることがより好ましく、20分の1以下であることがさらに好ましい。この比率が前記上限値を超えると、整流特性が減弱するため、測定時のノイズが大きくなり、センサの感度や精度が減少する傾向にある。 In the sensor chip constituting the enhanced sensor chip, the combination of the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 (adhesive layer 8 if the adhesive layer 8 is further provided) forms a Schottky barrier. Is preferred. The sensor chip forming the Schottky barrier means that the transparent electrode 2 of the sensor chip is connected to the working electrode of the voltage applying means such as a semiconductor analyzer, and the plasmon resonance film electrode 4 is connected to the counter electrode and the reference electrode of the voltage applying means. Then, it can be confirmed by measuring the current value when a voltage is applied to the working electrode in the range of -1.5 to +1.5V. As the current value, the maximum value of the absolute values of the current value between 0V and +1.5V is 1/5 or less of the maximum value of the absolute value of the current value between -1.5V and less than 0V. Is more preferable, it is more preferably 1/10 or less, further preferably 1/20 or less. If this ratio exceeds the upper limit value, the rectification characteristics are weakened, and noise during measurement increases, which tends to reduce the sensitivity and accuracy of the sensor.
 このようなショットキー障壁を形成する組み合わせは、n型透明半導体膜3の仕事関数をφS、プラズモン共鳴膜電極4(又は接着層8)の仕事関数をφMとしたときに、次式:φS<φMで示される条件を満たす組み合わせである。 When the work function of the n-type transparent semiconductor film 3 is φS and the work function of the plasmon resonance film electrode 4 (or the adhesive layer 8) is φM, the combination for forming such a Schottky barrier has the following formula: φS< This is a combination that satisfies the condition represented by φM.
 各材質における仕事関数の値は公知であり、n型透明半導体膜3の仕事関数(φS)としては、例えば、(I)Akihito Imanishiら、J.Phys.Chem.C、2007年、111(5)、p.2128-2132;(II)Min Weiら、Energy Procedia、2012年、Volume 16、Part A、p.76-80;(III)David Ginleyら、「Handbook of Transparent Conductors」、2011年;(IV)L.F.Zagonelら、J.Phys.:Condens.Matter、2009年、21、31;(V)E.R.Batistaら、J.Phys.Chem.B、2002年、106(33)、p.8136-8141;(VI)Gy.Vidaら、2003年、Microsc.Microanal.、9(4)、p.337-342;(VII)W.J.Chuら、J.Phys.Chem.B、2003年、107(8)、p.1798-1803において、それぞれ、二酸化チタン(TiO):4.0~4.2(I)、酸化亜鉛(ZnO):4.71~5.08(II)、二酸化スズ(SnO):5.1(III)、チタン酸ストロンチウム(SrTiO):4.2(IV)、三酸化二鉄(Fe):5.6(V)、酸化タングステン(WO):5.7(VI)、酸窒化タンタル(TaON):4.4(VII)、酸化インジウム(In):4.3~5.4(III)であることが記載されている。 The value of the work function of each material is known, and as the work function (φS) of the n-type transparent semiconductor film 3, for example, (I) Akihito Imanishi et al. Phys. Chem. C, 2007, 111(5), p. 2128-2132; (II) Min Wei et al., Energy Procedure, 2012, Volume 16, Part A, p. 76-80; (III) David Ginley et al., "Handbook of Transparent Conductors,"2011; (IV)L. F. Zagonel et al. Phys. : Condens. Matter, 2009, 21, 31; (V)E. R. Batasta et al. Phys. Chem. B, 2002, 106(33), p. 8136-8141; (VI) Gy. Vida et al., 2003, Microsc. Microanal. , 9(4), p. 337-342; (VII)W. J. Chu et al. Phys. Chem. B, 2003, 107(8), p. 1798-1803, titanium dioxide (TiO 2 ): 4.0 to 4.2 (I), zinc oxide (ZnO): 4.71 to 5.08 (II), tin dioxide (SnO 2 ): 5 respectively. .1(III), strontium titanate (SrTiO 3 ):4.2(IV), diiron trioxide (Fe 2 O 3 ):5.6(V), tungsten oxide (WO 3 ):5.7( VI), tantalum oxynitride (TaON): 4.4 (VII), and indium oxide (In 2 O 3 ): 4.3 to 5.4 (III).
 また、プラズモン共鳴膜電極4(又は接着層8)の仕事関数(φM)としては、例えば、(VIII)日本化学会編、「化学便覧 基礎編 改訂4版」、II-489において、それぞれ、金(Au):5.1~5.47、銀(Ag):4.26~4.74、アルミニウム(Al):4.06~4.41、銅(Cu):4.48~4.94、白金(Pt):5.64~5.93、パラジウム(Pd):5.55であることが記載されており、また、(IX)Takashi Matsukawaら、Jpn.J.Appl.Phys.、2014年、53、04EC11において、窒化チタン(TiN):4.4~4.6であることが記載されている。 As the work function (φM) of the plasmon resonance membrane electrode 4 (or the adhesive layer 8), for example, in (VIII) The Chemical Society of Japan, “Chemical Handbook, Basic Edition, Revised 4th Edition”, II-489, respectively. (Au): 5.1 to 5.47, silver (Ag): 4.26 to 4.74, aluminum (Al): 4.06 to 4.41, copper (Cu): 4.48 to 4.94 , Platinum (Pt): 5.64 to 5.93, Palladium (Pd): 5.55, and (IX) Takashi Matsukawa et al., Jpn. J. Appl. Phys. , 2014, 53, 04EC11, it is described that titanium nitride (TiN): 4.4 to 4.6.
 したがって、ショットキー障壁を形成するn型透明半導体膜3とプラズモン共鳴膜電極4(又は接着層8)との組み合わせとしては、これらの仕事関数(φS、φM)の中から、上記条件を満たす組み合わせを選択して適宜採用することができる。これらの中でも、n型透明半導体膜3とプラズモン共鳴膜電極4(又は接着層8)との組み合わせとしては、TiOとAu、Ag、Al、Cu、Pt、Pd、TiNのうちのいずれか一つとの組み合わせ、ZnOとAu、Pt、Pdのうちのいずれか一つとの組み合わせ、SnOとAu、Pt、Pdのうちのいずれか一つとの組み合わせ、SrTiOとAu、Ag、Al、Cu、Pt、Pd、TiNのうちのいずれか一つとの組み合わせ、FeとPtとの組み合わせ、WOとPdとの組み合わせ、TaONとAu、Ag、Cu、Pt、Pd、TiNのうちのいずれか一つとの組み合わせ、InとPt、Pdのうちのいずれか一つとの組み合わせが好ましく、TiOとAu、Ag、Cu、Pt、Pdのうちのいずれか一つとの組み合わせ、ZnOとPtとの組み合わせ、SnOとPtとの組み合わせ、SrTiOとAu、Ag、Cu、Pt、Pdのうちのいずれか一つとの組み合わせ、TaONとAu、Cu、Pt、Pdのうちのいずれか一つとの組み合わせ、InとPtとの組み合わせがより好ましい。 Therefore, as a combination of the n-type transparent semiconductor film 3 forming the Schottky barrier and the plasmon resonance film electrode 4 (or the adhesive layer 8), a combination satisfying the above conditions is selected from these work functions (φS, φM). Can be selected and adopted appropriately. Among these, as the combination of the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4 (or the adhesive layer 8), any one of TiO 2 and Au, Ag, Al, Cu, Pt, Pd, or TiN is used. , ZnO and any one of Au, Pt, and Pd, SnO 2 and one of Au, Pt, and Pd, SrTiO 3 and Au, Ag, Al, Cu, Any one of Pt, Pd, and TiN, a combination of Fe 2 O 3 and Pt, a combination of WO 3 and Pd, TaON and Au, Ag, Cu, Pt, Pd, and TiN. A combination with one of these, a combination of In 2 O 3 with any one of Pt and Pd is preferable, a combination of TiO 2 with one of Au, Ag, Cu, Pt and Pd, a combination with ZnO. A combination with Pt, a combination with SnO 2 and Pt, a combination with SrTiO 3 and any one of Au, Ag, Cu, Pt and Pd, and a combination of TaON and Au, Cu, Pt and Pd. More preferred is a combination with In, and a combination of In 2 O 3 and Pt.
 本発明の増強センサチップ及びセンサチップとしては、上記増強センサチップの実施形態1~6(増強センサチップ110~160、センサチップ11~15)に制限されるものではなく、例えば、透明基板7及びサンプル層10をいずれも備えるなど、これらの任意の組み合わせであってもよい(図示せず)。さらに、本発明の増強センサチップとしては、1つを単独で用いても、複数個を列又は平面に並べて配置して用いてもよい。 The enhanced sensor chip and the sensor chip of the present invention are not limited to Embodiments 1 to 6 (enhanced sensor chips 110 to 160, sensor chips 11 to 15) of the enhanced sensor chip described above. For example, the transparent substrate 7 and Any combination of these, such as including any sample layer 10 (not shown). Further, as the enhanced sensor chip of the present invention, one may be used alone, or a plurality may be arranged and arranged in a row or a plane.
 (電気的測定装置(電気的測定手段))
 本開示のセンサは、プリズム1及び前記センサチップ(例えば、好適な実施形態1ではセンサチップ11)を備える前記増強センサチップ(例えば、好適な実施形態1では増強センサチップ110)と、前記センサチップの透明電極2及びプラズモン共鳴膜電極4から電流値又は電圧値を直接測定する電気的測定装置(例えば、好適な実施形態1では電気的測定装置21)と、を備える。透明電極2及びプラズモン共鳴膜電極4と前記電気的測定装置とは、外部回路(例えば、好適な実施形態1では外部回路31及び31’)を通じて接続される。
(Electrical measuring device (electrical measuring means))
The sensor of the present disclosure includes the prism 1 and the enhanced sensor chip (eg, the enhanced sensor chip 110 in the preferred embodiment 1) including the sensor chip (eg, the sensor chip 11 in the preferred embodiment 1), and the sensor chip. Electrical measuring device (for example, electrical measuring device 21 in the preferred embodiment 1) that directly measures a current value or a voltage value from the transparent electrode 2 and the plasmon resonance film electrode 4 of FIG. The transparent electrode 2, the plasmon resonance film electrode 4, and the electrical measuring device are connected via an external circuit (for example, the external circuits 31 and 31' in the preferred embodiment 1).
 前記外部回路の材質としては、特に限定されず、導線の材質として公知のものを適宜利用することができ、例えば、白金、金、パラジウム、鉄、銅、アルミニウム等の金属が挙げられる。また、前記電気的測定装置としても、電圧値又は電流値を測定できるものであれば特に制限されず、例えば、半導体デバイス・アナライザ、電流測定器、電圧測定器が挙げられる。 The material of the external circuit is not particularly limited, and any known material for the conductive wire can be appropriately used, and examples thereof include metals such as platinum, gold, palladium, iron, copper, and aluminum. The electrical measuring device is not particularly limited as long as it can measure a voltage value or a current value, and examples thereof include a semiconductor device analyzer, a current measuring device, and a voltage measuring device.
 (表面プラズモンポラリトン変化検出方法)
 本発明の表面プラズモンポラリトン変化検出方法は、上記の電気測定型表面プラズモン共鳴センサ(センサ)を用いて表面プラズモンポラリトンの変化を検出する方法であり、
 前記プリズムの側から光を照射し、前記プリズム、前記透明電極、及び前記n型透明半導体膜を通過した光を、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で全反射させることで前記プラズモン共鳴膜電極と相互作用させて表面プラズモンポラリトンを発生せしめ、
 前記表面プラズモンポラリトンによって生じ、前記n型透明半導体膜に移動したホットエレクトロンを前記透明電極から電気信号として取り出し、
 前記透明電極と前記プラズモン共鳴膜電極との間の電流値又は電圧値の変化を前記電気的測定装置によって測定することで表面プラズモンポラリトンの変化を検出する、
方法である。
(Surface plasmon polariton change detection method)
The surface plasmon polariton change detection method of the present invention is a method of detecting a change in surface plasmon polariton using the above electrical measurement type surface plasmon resonance sensor (sensor),
Irradiating light from the prism side, and totally reflecting the light passing through the prism, the transparent electrode, and the n-type transparent semiconductor film between the plasmon resonance film electrode and the n-type transparent semiconductor film. And interact with the plasmon resonance membrane electrode to generate surface plasmon polaritons,
Hot electrons generated by the surface plasmon polaritons and transferred to the n-type transparent semiconductor film are taken out from the transparent electrode as an electric signal,
Detecting a change in surface plasmon polaritons by measuring a change in current value or voltage value between the transparent electrode and the plasmon resonance film electrode by the electrical measuring device,
Is the way.
 本開示のセンサにおいては、プリズム1の側から光が照射され、プリズム1、並びに、透明電極2及びn型透明半導体膜3を通過した光(入射光)が、前記プラズモン共鳴膜電極4とn型透明半導体膜3との間において全反射することにより、プラズモン共鳴膜電極4と相互作用して表面プラズモンポラリトンを発生する。より具体的には、n型透明半導体膜3を通過した光が、n型透明半導体膜3とプラズモン共鳴膜電極4との界面、又は接着層8を備える場合にはプラズモン共鳴膜電極4と接着層8との界面、若しくは接着層8とn型透明半導体膜3との界面、又は接着層8が2層以上からなる場合には、プラズモン共鳴膜電極4と接着層8との界面、若しくは接着層8とn型透明半導体膜3との界面、若しくは接着層8における隣接する2つの層間の界面で全反射し、当該全反射により生じたエバネッセント波がプラズモン共鳴膜電極4と相互作用して表面プラズモンポラリトンが発生する。 In the sensor of the present disclosure, light (incident light) that has been irradiated with light from the prism 1 side and has passed through the prism 1, the transparent electrode 2 and the n-type transparent semiconductor film 3 is incident on the plasmon resonance film electrodes 4 and n. By performing total reflection with the transparent semiconductor film 3, the surface plasmon polariton is generated by interacting with the plasmon resonance film electrode 4. More specifically, the light that has passed through the n-type transparent semiconductor film 3 adheres to the plasmon resonance film electrode 4 at the interface between the n-type transparent semiconductor film 3 and the plasmon resonance film electrode 4, or when the adhesion layer 8 is provided. The interface with the layer 8, the interface between the adhesive layer 8 and the n-type transparent semiconductor film 3, or the interface between the plasmon resonance film electrode 4 and the adhesive layer 8 when the adhesive layer 8 is composed of two or more layers, or the adhesive. Total reflection is performed at the interface between the layer 8 and the n-type transparent semiconductor film 3 or at the interface between two adjacent layers in the adhesive layer 8, and the evanescent wave generated by the total reflection interacts with the plasmon resonance film electrode 4 and the surface thereof. Plasmon polaritons occur.
 発生した表面プラズモンポラリトンによってプラズモン共鳴膜電極4が十分に分極されることでホットエレクトロンが生じ、該ホットエレクトロンはn型透明半導体膜3に移動し、透明電極2から電気信号として取り出される。このとき、透明電極2は前記外部回路を通じてプラズモン共鳴膜電極4と電気的に接続され、透明電極2とプラズモン共鳴膜電極4との間の電流変化を前記電気的測定装置によって測定することで表面プラズモンポラリトンの変化を検出することができる。このように電気信号として観測されるホットエレクトロンは、プラズモン共鳴膜電極4内部の前記界面近傍で生じたホットエレクトロンであると考えられ、このようにして電気信号として観測可能なホットエレクトロンは、プラズモン共鳴膜電極4内部におけるn型透明半導体膜3から距離にしてプラズモン共鳴膜電極4の厚さ20%程度の領域で生じたホットエレクトロンであると推察される。 The generated surface plasmon polaritons sufficiently polarize the plasmon resonance film electrode 4 to generate hot electrons, which move to the n-type transparent semiconductor film 3 and are extracted from the transparent electrode 2 as an electric signal. At this time, the transparent electrode 2 is electrically connected to the plasmon resonance membrane electrode 4 through the external circuit, and a change in current between the transparent electrode 2 and the plasmon resonance membrane electrode 4 is measured by the electrical measuring device to obtain a surface. Changes in plasmon polaritons can be detected. The hot electrons thus observed as an electric signal are considered to be the hot electrons generated in the vicinity of the interface inside the plasmon resonance film electrode 4, and thus the hot electrons observable as an electric signal are plasmon resonance. It is presumed that the hot electrons are generated in a region where the thickness of the plasmon resonance film electrode 4 is about 20% away from the n-type transparent semiconductor film 3 inside the film electrode 4.
 プリズム1の側から入射する光の波長が長くなると、表面プラズモンポラリトンを生じさせる入射光の入射角度の範囲がより狭くなり、他方、生じる表面プラズモンポラリトンの強さが増強される。そのため、プリズム1に入射させる光(照射する光)としては、目的に応じて特に限定されないが、可視光の波長領域の光又は近赤外光の波長領域の光が挙げられ、400~1500nmの波長であることが好ましく、500~1000nmの波長であることがより好ましく、600~900nmの波長であることがさらに好ましい。 When the wavelength of the light incident from the prism 1 side becomes longer, the range of the incident angle of the incident light that causes the surface plasmon polaritons becomes narrower, while the strength of the generated surface plasmon polaritons is increased. Therefore, the light to be incident on the prism 1 (irradiated light) is not particularly limited according to the purpose, but may be light in the visible light wavelength region or near-infrared light wavelength region, which is 400 to 1500 nm. The wavelength is preferable, the wavelength of 500 to 1000 nm is more preferable, and the wavelength of 600 to 900 nm is further preferable.
 また、プリズム1の側から入射する光の強さが強くなると、表面プラズモンポラリトンにより生じる電流量が増大する。そのため、プリズム1に入射させる前記光の強さとしては、目的に応じて特に限定されないが、0.01~500mWであることが好ましく、0.1~50mWであることがより好ましく、0.1~5mWであることがさらに好ましい。前記光の強さが前記下限未満であると、表面プラズモンポラリトンにより生じる電流量が少なくなりすぎて十分なセンサ精度が得られなくなる傾向にあり、他方、前記上限を超えると、プラズモン共鳴膜電極4において熱が発生して測定感度を低下させる恐れが生じる傾向にある。 Also, when the intensity of light incident from the prism 1 side increases, the amount of current generated by the surface plasmon polaritons increases. Therefore, the intensity of the light incident on the prism 1 is not particularly limited according to the purpose, but is preferably 0.01 to 500 mW, more preferably 0.1 to 50 mW, and 0.1 More preferably, it is ˜5 mW. If the intensity of the light is less than the lower limit, the amount of current generated by the surface plasmon polaritons tends to be too small to obtain sufficient sensor accuracy, while if it exceeds the upper limit, the plasmon resonance membrane electrode 4 In the above, there is a tendency that heat is generated and the measurement sensitivity is lowered.
 本開示のセンサにおいては、プラズモン共鳴膜電極の近傍(好ましくはプラズモン共鳴膜電極の表面から300nm以内、例えば、サンプル層10内)に測定対象となるサンプルを配置することにより、前記サンプルの屈折率変化(濃度変化、状態変化)による表面プラズモンポラリトンの変化を電気信号として検出することができるため、前記電気信号を測定することで、サンプルの状態変化をモニタすることができる。また、予め既知の濃度又は状態にあるサンプルにおいて測定される前記電気信号と比較することで、サンプルの濃度又は状態を判定することができる。 In the sensor of the present disclosure, by disposing the sample to be measured in the vicinity of the plasmon resonance film electrode (preferably within 300 nm from the surface of the plasmon resonance film electrode, for example, in the sample layer 10), the refractive index of the sample Since the change in the surface plasmon polaritons due to the change (change in concentration, change in state) can be detected as an electric signal, the change in state of the sample can be monitored by measuring the electric signal. Further, the concentration or state of the sample can be determined by comparing with the electric signal measured in the sample having a known concentration or state in advance.
 また、測定するサンプルに応じて前記プリズムの側から入射する光の入射角度を変えることで、センサ精度をさらに十分に向上させることができる。 Also, by changing the incident angle of the light incident from the prism side according to the sample to be measured, the sensor accuracy can be further improved.
 例えば、反射共鳴膜5のプラズモン共鳴膜4と反対側の面上、又は分子結合膜9上、好ましくは、サンプル層10内に保持された、標的物質及び媒体を含むサンプルについて、前記標的物質の濃度変化や状態変化による表面プラズモンポラリトンの変化を電気信号として検出することができる。この場合、前記標的物質としては、特に制限されず、抗体、核酸(DNA、RNA等)、タンパク質、細菌、薬剤などの小分子化合物;イオン;気体状態にある小分子化合物や揮発性物質等が挙げられる。また、前記媒体としては、溶液及びガスが挙げられ、前記溶液としては水;緩衝液、強電解質溶液等の電解質溶液が、前記ガスとしては窒素ガスやヘリウムガス等の不活性ガスが、それぞれ挙げられる。 For example, with respect to the sample containing the target substance and the medium, which is held on the surface of the reflection resonance film 5 opposite to the plasmon resonance film 4 or on the molecular bonding film 9, preferably in the sample layer 10, Changes in surface plasmon polaritons due to changes in concentration and changes in state can be detected as electrical signals. In this case, the target substance is not particularly limited, and includes small molecule compounds such as antibodies, nucleic acids (DNA, RNA, etc.), proteins, bacteria, drugs, etc.; ions; small molecule compounds in a gaseous state, volatile substances, etc. Can be mentioned. The medium includes a solution and a gas, the solution is water; a buffer solution, an electrolyte solution such as a strong electrolyte solution, and the gas is an inert gas such as nitrogen gas or helium gas. To be
 (電気測定型表面プラズモン共鳴センサ及びプラズモンポラリトン増強センサチップの製造方法)
 本開示のセンサ、並びに、プリズム1及びセンサチップを備える前記増強センサチップの製造方法は特に制限されないが、好ましくは、プリズム1上に、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5を、この順で順次形成して積層する方法が好ましい。前記形成方法としては、特に制限されないが、透明電極2、n型透明半導体膜3、プラズモン共鳴膜電極4、及び反射共鳴膜5を形成する方法としては、例えば、それぞれ独立に、スパッタリング法、イオンプレーティング法、電子ビーム蒸着法、真空蒸着法、化学蒸着法、スピンコーティング法、原子層堆積法(ALD)、及びメッキ法が挙げられる。スパッタリング法を用いる場合において、金属酸化物からなるn型透明半導体膜3を形成する場合には、金属をターゲットとして、酸化させながら成膜してもよい(リアクティブスパッタ)。また、酸化膜6を備える場合には、酸化膜を上記方法で形成してもよく、酸化膜6を構成する金属からなる膜を成膜してから大気や酸素に暴露することによって酸化膜6を形成してもよい。
(Method for manufacturing electric measurement type surface plasmon resonance sensor and plasmon polariton enhanced sensor chip)
The method of manufacturing the sensor of the present disclosure and the enhanced sensor chip including the prism 1 and the sensor chip is not particularly limited, but preferably, the transparent electrode 2, the n-type transparent semiconductor film 3, and the plasmon resonance film electrode are preferably provided on the prism 1. 4 and the reflection resonance film 5 are preferably sequentially formed in this order and laminated. The method for forming the transparent electrode 2, the n-type transparent semiconductor film 3, the plasmon resonance film electrode 4, and the reflection resonance film 5 is not particularly limited, but examples thereof include a sputtering method and an ion method. Examples thereof include a plating method, an electron beam evaporation method, a vacuum evaporation method, a chemical vapor deposition method, a spin coating method, an atomic layer deposition method (ALD), and a plating method. In the case of using the sputtering method, when the n-type transparent semiconductor film 3 made of a metal oxide is formed, the film may be formed while being oxidized by using a metal as a target (reactive sputtering). Further, when the oxide film 6 is provided, the oxide film may be formed by the above method, and the oxide film 6 is formed by forming a film made of a metal forming the oxide film 6 and then exposing the film to the atmosphere or oxygen. May be formed.
 また、センサの製造方法において、センサチップの透明電極2及びプラズモン共鳴膜電極4と前記電気的測定装置とを外部回路を通じて電気的に接続する方法としても特に制限されず、従来公知の方法を適宜採用して接続することができる。 Further, in the method of manufacturing the sensor, the method of electrically connecting the transparent electrode 2 and the plasmon resonance film electrode 4 of the sensor chip to the electrical measuring device through an external circuit is not particularly limited, and a conventionally known method may be appropriately used. Can be adopted and connected.
 以下、実施例をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Examples will be described below more specifically, but the present invention is not limited to the following examples.
 (比較例1)
 先ず、ガラス基板の一方の面上にITO膜(酸化インジウム・スズ)からなる透明電極が形成されたITO基板(ガラス基板:S-TIH11、ガラス基板厚さ:1.1mm、面積:19×19mm、ITO膜:高耐久透明導電膜 5Ω、ジオマテック株式会社製)を準備した。次いで、スパッタリング装置1(QAM-4-ST、アルバック九州株式会社製)を用い、ターゲットとしてTiO(Titanium Dioxide、99.9%、フルウチ化学株式会社製)を用いて、前記ITO膜上にTiOからなる厚さ200nmの膜(n型透明半導体膜(TiO膜))を形成した。次いで、前記スパッタリング装置1を用い、ターゲットとしてAu(99.99%、株式会社高純度化学研究所製)を用いて、前記TiO膜上に、Auからなる厚さ30nmの膜(プラズモン共鳴膜電極(Au膜))を形成し、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)がこの順に積層されたチップ(光電変換部(センサチップ))を得た。
(Comparative Example 1)
First, an ITO substrate (glass substrate: S-TIH11, glass substrate thickness: 1.1 mm, area: 19×19 mm) in which a transparent electrode made of an ITO film (indium tin oxide) was formed on one surface of the glass substrate , ITO film: highly durable transparent conductive film 5Ω, manufactured by Geomatec Co., Ltd.) was prepared. Then, using a sputtering apparatus 1 (QAM-4-ST, manufactured by ULVAC Kyushu Co., Ltd.) and TiO 2 (Titanium Dioxide, 99.9%, manufactured by Furuuchi Chemical Co., Ltd.) as a target, TiO 2 was formed on the ITO film. A 200 nm thick film (n-type transparent semiconductor film (TiO 2 film)) was formed. Then, using the sputtering apparatus 1 and using Au (99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target, a film (Plasmon resonance film) made of Au and having a thickness of 30 nm was formed on the TiO 2 film. A chip (photoelectric conversion part (sensor chip)) in which an electrode (Au film) is formed and a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) are laminated in this order. ) Got.
 次いで、得られたチップの前記ガラス基板のITO膜と反対の面上にジヨードメタン(一級、富士フィルム和光純薬株式会社製)を塗布し、直角プリズム(S-TIH11、株式会社ときわ光学社製、屈折率:1.77)の斜面を密着させ、プリズム、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)がこの順に積層されたチップ(プリズム付きチップ)を得た。 Then, diiodomethane (first-class, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was applied to the surface of the obtained chip opposite to the ITO film on the glass substrate, and a right-angle prism (S-TIH11, manufactured by Tokiwa Optical Co., Ltd., A chip (with a prism) in which a prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) are laminated in this order by closely adhering the slopes with a refractive index of 1.77) Chips).
 (実施例1)
 比較例1と同様にして、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)がこの順に積層されたチップを得た。次いで、スパッタリング装置1を用い、ターゲットとしてTiO(Titanium Dioxide、99.9%、フルウチ化学株式会社製)を用いて、前記プラズモン共鳴膜電極上に、保護膜としてTiOからなる厚さ5nmの膜(酸化膜)を形成した。次いで、スパッタリング装置2(SH-250、株式会社アルバック製)を用い、ターゲットとしてSi(99.999%、株式会社高純度化学研究所製)を用いて、前記保護膜上に、Siからなる厚さ70nmの膜(反射共鳴膜(Si膜))を形成し、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、酸化膜、反射共鳴膜(Si膜)がこの順に積層されたチップ(光電変換部(センサチップ))を得た。チップとしてこれを用いたこと以外は、比較例1と同様にして、プリズム、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、酸化膜、反射共鳴膜(Si膜)がこの順に積層されたチップ(プリズム付きチップ)を得た。
(Example 1)
A chip in which a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) were laminated in this order was obtained in the same manner as in Comparative Example 1. Then, using the sputtering apparatus 1, TiO 2 as a target (Titanium Dioxide, 99.9%, Furuuchi Chemical Co., Ltd.) using, in the plasmon resonance layer on the electrode, a thickness of 5nm consisting TiO 2 as a protective film A film (oxide film) was formed. Then, using a sputtering apparatus 2 (SH-250, manufactured by ULVAC, Inc.) and Si (99.999%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target, a thickness of Si formed on the protective film. A film having a thickness of 70 nm (reflection resonance film (Si film)) is formed, and a glass substrate, ITO film, n-type transparent semiconductor film (TiO 2 film), plasmon resonance film electrode (Au film), oxide film, reflection resonance film ( A chip (photoelectric conversion part (sensor chip)) in which the Si film) was laminated in this order was obtained. A prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, and a reflection film were formed in the same manner as in Comparative Example 1 except that this was used as a chip. A chip (chip with prism) in which a resonance film (Si film) was laminated in this order was obtained.
 (実施例2)
 実施例1と同様にして、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、酸化膜、反射共鳴膜(Si膜)がこの順に積層されたチップを得た。次いで、前記スパッタリング装置1を用い、ターゲットとしてAu(99.99%、株式会社高純度化学研究所製)を用いて、前記反射共鳴膜上に、Auからなる厚さ10nmの膜(分子結合膜(Au膜))を形成し、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、酸化膜、反射共鳴膜(Si膜)、分子結合膜(Au膜)がこの順に積層されたチップ(光電変換部(センサチップ))を得た。チップとしてこれを用いたこと以外は、実施例1と同様にして、プリズム、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、酸化膜、反射共鳴膜(Si膜)、分子結合膜(Au膜)がこの順に積層されたチップ(プリズム付きチップ)を得た。
(Example 2)
In the same manner as in Example 1, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, and a reflection resonance film (Si film) were laminated in this order. Got a chip. Then, using the sputtering apparatus 1, Au (99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) as a target was used, and a 10 nm-thick film (molecular bonding film) made of Au was formed on the reflection resonance film. (Au film)), and a glass substrate, ITO film, n-type transparent semiconductor film (TiO 2 film), plasmon resonance film electrode (Au film), oxide film, reflection resonance film (Si film), molecular bonding film ( A chip (photoelectric conversion portion (sensor chip)) in which Au films were laminated in this order was obtained. A prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), an oxide film, a reflection film were formed in the same manner as in Example 1 except that this was used as a chip. A chip (chip with prism) in which a resonance film (Si film) and a molecular bonding film (Au film) were laminated in this order was obtained.
 (実施例3)
 比較例1と同様にして、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)がこの順に積層されたチップを得た。次いで、スパッタリング装置1を用い、ターゲットとしてTiO(Titanium Dioxide、99.9%、フルウチ化学株式会社製)を用いて、前記プラズモン共鳴膜電極上に、TiOからなる厚さ122nmの膜(反射共鳴膜(TiO膜))を形成し、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、反射共鳴膜(TiO膜)がこの順に積層されたチップを得た。さらに、実施例2と同様にして、前記反射共鳴膜(TiO膜)上に、Auからなる厚さ10nmの膜(分子結合膜(Au膜))を形成し、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、反射共鳴膜(TiO膜)、分子結合膜(Au膜)がこの順に積層されたチップ(光電変換部(センサチップ))を得た。チップとしてこれを用いたこと以外は、実施例1と同様にして、プリズム、ガラス基板、ITO膜、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、反射共鳴膜(TiO膜)、分子結合膜(Au膜)がこの順に積層されたチップ(プリズム付きチップ)を得た。
(Example 3)
A chip in which a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), and a plasmon resonance film electrode (Au film) were laminated in this order was obtained in the same manner as in Comparative Example 1. Then, using the sputtering apparatus 1, using TiO 2 (Titanium Dioxide, 99.9%, manufactured by Furuuchi Chemical Co., Ltd.) as a target, a 122 nm-thick film (reflection film) made of TiO 2 was formed on the plasmon resonance film electrode. A resonance film (TiO 2 film) is formed, and a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), and a reflection resonance film (TiO 2 film) are laminated in this order. I got the chips. Further, in the same manner as in Example 2, a film (molecular bonding film (Au film)) made of Au and having a thickness of 10 nm was formed on the reflection resonance film (TiO 2 film), and the glass substrate, the ITO film, and the n film were formed. -Type transparent semiconductor film (TiO 2 film), plasmon resonance film electrode (Au film), reflection resonance film (TiO 2 film), molecular bonding film (Au film) laminated in this order (photoelectric conversion part (sensor chip)) ) Got. A prism, a glass substrate, an ITO film, an n-type transparent semiconductor film (TiO 2 film), a plasmon resonance film electrode (Au film), a reflection resonance film (in the same manner as in Example 1 except that this was used as a chip. A chip (chip with prism) in which a TiO 2 film) and a molecular bonding film (Au film) were laminated in this order was obtained.
 <試験例1>
 比較例1で得られたプリズム付きチップのプラズモン共鳴膜電極の表面(n型透明半導体膜と反対の面)、実施例1で得られたプリズム付きチップの反射共鳴膜の表面(酸化膜と反対の面)、実施例2~3で得られたプリズム付きチップの分子結合膜の表面(反射共鳴膜と反対の面)に、それぞれ接するようにサンプル層を配置し、前記サンプル層の中にサンプル溶液として超純水を満たした。なお、サンプル溶液と各チップの表面とは直接接するように前記サンプル層を配置した。
<Test Example 1>
The surface of the plasmon resonance film electrode of the prism-equipped chip obtained in Comparative Example 1 (the surface opposite to the n-type transparent semiconductor film) and the surface of the reflection resonance film of the prism-equipped chip obtained in Example 1 (the surface opposite to the oxide film) Surface), the sample layer is disposed so as to be in contact with each other on the surface (the surface opposite to the reflection resonance film) of the molecular binding film of the chip with prism obtained in Examples 2 to 3, and the sample is placed in the sample layer. Ultrapure water was filled as a solution. The sample layer was arranged so that the sample solution was in direct contact with the surface of each chip.
 また、比較例1及び実施例1~3で得られたプリズム付きチップのITO膜と電流測定器(Electrochemical Analyzer Model 802D、ALS/CH Instruments Inc.製)の作用極とを、プラズモン共鳴膜電極と前記電流測定器の対極及び参照極とを、それぞれ、導線を介して電気的に接続した。 Further, the ITO film of the prism-equipped chip obtained in Comparative Example 1 and Examples 1 to 3 and the working electrode of the current measuring device (Electrochemical Analyzer Model 802D, manufactured by ALS/CH Instruments Inc.) were used as plasmon resonance film electrodes. The counter electrode and the reference electrode of the current measuring device were electrically connected to each other via a conductive wire.
 次いで、670nmのレーザー光(光源:CPS670F、Thorlabs社製)を、偏光子(CMM1-PBS251/M、Thorlabs社製)を通してp偏光のレーザー光とし、この強度をパワーメータ(Model843-R、Newport社製)で測定して4.0mWとなるように調整した。次いで、図9に示すように、p偏光のレーザー光(4.0mW)を得られたチップの光電変換部(センサチップ17)のプリズムの側からそれぞれ照射した。p偏光のレーザー光(入射光)のガラス基板表面に対する入射角度(θ[°])を40°~80°の間で変化させ、各入射角度におけるITO膜-プラズモン共鳴膜電極間の電流値[μA]を測定した。また、前記サンプル溶液として、前記超純水(グリセロール 0%)に代えて、10%、20%、30%、40%、50%;2%、4%、6%、8%、10%;又は1%、2%、3%、4%、5%、6%のグリセロール(Glycerol)溶液をそれぞれ用いたこと以外は上記と同様にして、各サンプル溶液について、各入射角度におけるITO膜-プラズモン共鳴膜電極間の電流値[μA]を測定した。 Then, a 670 nm laser light (light source: CPS670F, manufactured by Thorlabs) was converted into p-polarized laser light through a polarizer (CMM1-PBS251/M, manufactured by Thorlabs), and this intensity was measured with a power meter (Model 843-R, Newport). (Manufactured by Mitsui Chemicals Co., Ltd.) and adjusted to be 4.0 mW. Next, as shown in FIG. 9, p-polarized laser light (4.0 mW) was irradiated from the prism side of the photoelectric conversion part (sensor chip 17) of the chip. The incident angle (θ[°]) of the p-polarized laser light (incident light) with respect to the glass substrate surface was changed between 40° and 80°, and the current value between the ITO film and the plasmon resonance film electrode at each incident angle [ μA] was measured. Further, as the sample solution, 10%, 20%, 30%, 40%, 50%; 2%, 4%, 6%, 8%, 10% instead of the ultrapure water (glycerol 0%). Or 1%, 2%, 3%, 4%, 5%, 6% glycerol (Glycerol) solution was used respectively, in the same manner as above, for each sample solution, the ITO film-plasmon at each incident angle. The current value [μA] between the resonance membrane electrodes was measured.
 比較例1及び実施例1~3で得られたプリズム付きチップを用いて各サンプル溶液を測定した結果(入射角度(θ[°])とITO膜-プラズモン共鳴膜電極間の電流値[μA]との関係を示すグラフ)を図10(比較例1)、図11(実施例1)、図12(実施例2)、及び図13(実施例3)に、それぞれ示す。 Each sample solution was measured using the chips with prisms obtained in Comparative Example 1 and Examples 1 to 3 (incident angle (θ [°]) and current value [μA] between ITO film and plasmon resonance film electrode). 10 (Comparative Example 1), FIG. 11 (Example 1), FIG. 12 (Example 2), and FIG. 13 (Example 3), respectively.
 また、比較例1、実施例1~2で得られた結果について、各サンプル溶液の22.1℃における屈折率と、ITO膜―プラズモン共鳴膜電極間の正規化電流値[a.u.]との関係を図14に示す。正規化電流は、先ず、上記で得られた比較例1及び実施例1~2における入射角度とITO膜―プラズモン共鳴膜電極間の電流値との関係を示すグラフより、入射角度45°における電流値を1としたときの、各入射角度における電流値(a)を求め、次いで、同グラフより、0%グリセロール溶液を測定した際に最も電流値が高くなる入射角度(比較例1:68.6°、実施例1:53.7°、実施例2:53.0°)における電流値を1としたときの、各濃度のグリセロール溶液を測定した際の該入射角度における電流値(b)を求め、これらの電流値の比率(a/b)を算出し、正規化電流値とした。なお、各濃度のグリセロール溶液の22.1℃における屈折率は下記の表1のとおりである。 Regarding the results obtained in Comparative Example 1 and Examples 1 and 2, the refractive index of each sample solution at 22.1° C. and the normalized current value between the ITO film and the plasmon resonance film electrode [a. u. 14] is shown in FIG. First, the normalized current was calculated from the graph showing the relationship between the incident angle and the current value between the ITO film and the plasmon resonance film electrode in Comparative Example 1 and Examples 1 and 2 obtained above. The current value (a) at each incident angle is obtained when the value is set to 1, and then from the same graph, the incident angle at which the current value becomes highest when the 0% glycerol solution is measured (Comparative Example 1: 68. 6°, Example 1: 53.7°, Example 2: 53.0°), the current value at the incident angle (b) at the time of measuring the glycerol solution of each concentration, assuming that the current value is 1. Was calculated, and the ratio (a/b) of these current values was calculated and used as the normalized current value. The refractive index of the glycerol solution at each concentration at 22.1°C is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図10~図14に示した結果から明らかなように、プリズムを備えるチップ(例えば、比較例1、実施例1~3)においては、プリズムに入射するレーザー光の入射角度が特定の範囲内にあると(例えば、図11では45~65°)、電流値が変化することが確認された。これは、レーザー光をプリズムに通過させたことにより、特定の入射角度以上において入射光がn型透明半導体膜のプラズモン共鳴膜電極との間の界面において全反射してエバネッセント波を発生させ、これによって励起された表面プラズモンポラリトンによってn型透明半導体膜の近傍に配置されるプラズモン共鳴膜電極で電場変化により発生する電流が変化したためであり、この変化をもたらす表面プラズモンポラリトンの強さが前記入射角度によって変化したためと推察される。 As is clear from the results shown in FIGS. 10 to 14, in the chip including the prism (for example, Comparative Example 1 and Examples 1 to 3), the incident angle of the laser light incident on the prism falls within a specific range. In that case (for example, 45 to 65° in FIG. 11), it was confirmed that the current value changed. This is because when the laser light is passed through the prism, the incident light is totally reflected at the interface with the plasmon resonance film electrode of the n-type transparent semiconductor film at a specific incident angle or more to generate an evanescent wave. This is because the electric current generated by the electric field change at the plasmon resonance film electrode arranged in the vicinity of the n-type transparent semiconductor film is changed by the surface plasmon polaritons excited by the. It is presumed that it was changed by.
 また、図10~図14に示した結果から明らかなように、前記電流値は、前記溶液の屈折率に応じて変化した。これは、n型透明半導体膜の近傍に配置されるプラズモン共鳴膜電極で電場変化によって発生する電流量の変化をもたらす表面プラズモンポラリトンの強さが前記溶液の屈折率によって変化するためであると本発明者らは推察する。したがって、前記プリズムを備えるチップを用いることにより、プラズモン共鳴膜電極近傍のサンプルの屈折率変化を十分な精度で測定することができることが確認された。 Also, as is clear from the results shown in FIGS. 10 to 14, the current value changed according to the refractive index of the solution. This is because the strength of the surface plasmon polaritons, which causes a change in the amount of current generated by a change in the electric field at the plasmon resonance film electrode arranged near the n-type transparent semiconductor film, changes depending on the refractive index of the solution. The inventors speculate. Therefore, it was confirmed that the change in the refractive index of the sample near the plasmon resonance film electrode can be measured with sufficient accuracy by using the chip including the prism.
 さらに、図11~14に示した結果から明らかなように、反射共鳴膜を備えることによって(例えば、実施例1~3)、電流値変化が急峻になり、センサの感度が著しく向上することが確認された。また、バイオ分子等を固定化することが可能な分子結合膜をさらに 積層しても(例えば、実施例2~3)、反射共鳴膜としてTiO膜を用いても(例えば、実施例3)、電流値変化が急峻となり、優れたセンサ感度が維持されることが確認された。 Further, as is clear from the results shown in FIGS. 11 to 14, the provision of the reflection resonance film (for example, Examples 1 to 3) makes the change in the current value steep and significantly improves the sensitivity of the sensor. confirmed. Further, even if a molecular bonding film capable of immobilizing biomolecules or the like is further laminated (for example, Examples 2 to 3), or a TiO 2 film is used as a reflection resonance film (for example, Example 3). It was confirmed that the current value became steep and the excellent sensor sensitivity was maintained.
 <試験例2>
 反射共鳴膜の好適な膜厚を確認するために、不連続ガレルキン時間領域法(DGTD:Discontinuous Galerkin Time Domain)により、ソフトウェア(「DEVICE」、Lumerical Inc.https://www.lumerical.com/jp/)を用い、その中の「stackfieldコマンド」により、下記の条件で電磁界シミュレーションを実施した。
<Test Example 2>
In order to confirm the suitable film thickness of the reflection resonance film, the software (“DEVICE”, Lumerical. /) was used, and the electromagnetic field simulation was performed under the following conditions by the "stackfield command" therein.
 〔チップの構成〕
 電磁界シミュレーションは、ガラス基板、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)がこの順に積層されたチップ1;ガラス基板、n型透明半導体膜(TiO膜)、プラズモン共鳴膜電極(Au膜)、反射共鳴膜(Si膜)、分子結合膜(Au膜)がこの順に積層されたチップ2;チップ2の反射共鳴膜をSi膜に代えてTiO膜としたチップ3;チップ2の反射共鳴膜をSi膜に代えてSiO膜としたチップ4についてそれぞれ行った。なお、当該電磁界シミュレーションにおいて、光源は、ガラス基板内にあるものとして行った。
[Chip configuration]
The electromagnetic field simulation is performed by a chip 1 in which a glass substrate, an n-type transparent semiconductor film (TiO 2 film) and a plasmon resonance film electrode (Au film) are laminated in this order; a glass substrate, an n-type transparent semiconductor film (TiO 2 film), Chip 2 in which a plasmon resonance film electrode (Au film), a reflection resonance film (Si film), and a molecular bonding film (Au film) are laminated in this order; the reflection resonance film of chip 2 is replaced with a Si film, and a TiO 2 film is used. Chip 3; each of the chips 4 was replaced with the Si film as the reflection resonance film of the chip 2 and changed to the SiO 2 film. In the electromagnetic field simulation, the light source was assumed to be inside the glass substrate.
 〔パラメータ〕
 stackfieldコマンドにより要求される各パラメータそれぞれは以下のとおりとした。
n:各層の屈折率
 各層の屈折率としては、各層を構成する材質の屈折率より、それぞれ、下記の表2に示す複素屈折率(n:屈折率、k:消衰係数)を用いた。
d:各層の厚さ
 各層の厚さは、それぞれ、下記の表2に示す厚さとし、反射共鳴膜がSi膜又はTiO膜である場合の厚さを0~500nm、反射共鳴膜がSiO膜である場合の厚さを0~1200nmの間で変化させた。
f:入射光の周波数
 波長l=670nmとし、周波数f=c/l(c:光の速度(2.99×10m/s)により算出した。
theta:光の入射角度(θ)
 0~90°の範囲とした。
res:分解能
 stackfieldコマンドでは分解能はシミュレーション範囲の分割数に等しいため、各層の厚さを変化させた場合、各計算セルのサイズが変化する可能性がある。そのため、分解能res=(1+各層の厚さの総計)/計算セルサイズ(四捨五入、計算セルサイズ=0.01nm)とした。
[Parameter]
The parameters required by the stackfield command are as follows.
n: Refractive index of each layer As the refractive index of each layer, the complex refractive index (n: refractive index, k: extinction coefficient) shown in Table 2 below was used from the refractive index of the material forming each layer.
d: Thickness of each layer The thickness of each layer is as shown in Table 2 below. When the reflection resonance film is a Si film or a TiO 2 film, the thickness is 0 to 500 nm, and the reflection resonance film is SiO 2. The thickness in the case of a film was varied between 0 and 1200 nm.
f: frequency of incident light Wavelength 1=670 nm, and frequency f=c/l (c: speed of light (2.99×10 8 m/s).
theta: incident angle of light (θ)
The range was 0 to 90°.
res: Resolution Since the resolution of the stackfield command is equal to the number of divisions of the simulation range, the size of each calculation cell may change when the thickness of each layer is changed. Therefore, resolution res=(1+total thickness of each layer)/calculated cell size (rounded off, calculated cell size=0.01 nm 3 ).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 シミュレーションを行った後、プラズモン共鳴膜電極(Au膜)における、n型透明半導体膜(TiO膜)側の表面から厚さ20%(10nm)の領域のp偏光の吸収量を算出した。また、反射光に関しても、p偏光の成分のみを取得した。 After performing the simulation, the absorption amount of p-polarized light in the region of 20% thickness (10 nm) from the surface of the plasmon resonance film electrode (Au film) on the n-type transparent semiconductor film (TiO 2 film) side was calculated. Also, regarding the reflected light, only the p-polarized component was acquired.
 〔シミュレーションの確認〕
 比較例1で得られたプリズム付きチップのITO膜と電流測定器(Electrochemical Analyzer Model 802D、ALS/CH Instruments Inc.製)の作用極とを、プラズモン共鳴膜電極と前記電流測定器の対極及び参照極とを、それぞれ、導線を介して電気的に接続した。次いで、670nmのレーザー光(光源:CPS670F、Thorlabs社製)を、偏光子(CMM1-PBS251/M、Thorlabs社製)を通してp偏光のレーザー光とし、この強度をパワーメータ(Model843-R、Newport社製)で測定して4.0mWとなるように調整した。次いで、図9に示すように、p偏光のレーザー光(4.0mW)を得られたチップの光電変換部(センサチップ17)のプリズムの側から照射した。p偏光のレーザー光(入射光)のガラス基板表面に対する入射角度(θ[°])を23°~37°の間で変化させ、各入射角度におけるITO膜-プラズモン共鳴膜電極間の電流値[μA]を測定した。得られた光の入射角度(θ[°])と電流値[μA](左軸)との関係を図15に示す(実線、実測値)。他方、チップ1について、シミュレーションにより得られた光の入射角度(θ[°])と、入射光のエネルギーに対する前記電流値(出力電流エネルギー)の割合である出力電流割合[%](右軸)との関係も図15に併せて示す(点線、シミュレーション)。
[Confirmation of simulation]
The ITO film of the prism-equipped chip obtained in Comparative Example 1 and the working electrode of a current measuring device (Electrochemical Analyzer Model 802D, manufactured by ALS/CH Instruments Inc.), the plasmon resonance film electrode and the counter electrode of the current measuring device, and a reference The poles and the poles are electrically connected to each other via a conductor wire. Then, a 670 nm laser light (light source: CPS670F, manufactured by Thorlabs) was converted into p-polarized laser light through a polarizer (CMM1-PBS251/M, manufactured by Thorlabs), and this intensity was measured with a power meter (Model 843-R, Newport). (Manufactured by Mitsui Chemicals Co., Ltd.) and adjusted to be 4.0 mW. Then, as shown in FIG. 9, p-polarized laser light (4.0 mW) was irradiated from the prism side of the photoelectric conversion part (sensor chip 17) of the chip. The incident angle (θ[°]) of the p-polarized laser light (incident light) with respect to the glass substrate surface was changed between 23° and 37°, and the current value between the ITO film and the plasmon resonance film electrode at each incident angle [ μA] was measured. The relationship between the incident angle (θ [°]) of the obtained light and the current value [μA] (left axis) is shown in FIG. 15 (solid line, measured value). On the other hand, for the chip 1, the incident angle (θ[°]) of light obtained by simulation and the output current ratio [%] (right axis), which is the ratio of the current value (output current energy) to the energy of the incident light. The relationship with and is also shown in FIG. 15 (dotted line, simulation).
 図15に示したように、実測値(実線)とシミュレーション値(点線)との間で、光の入射角度(θ)と電流値(A)及び出力電流割合(CA)との関係は類似しており、高い精度でシミュレーションを実施できることが確認された。 As shown in FIG. 15, the relationship between the incident angle (θ) of light, the current value (A), and the output current ratio (CA) is similar between the measured value (solid line) and the simulated value (dotted line). It was confirmed that the simulation can be performed with high accuracy.
 〔反射共鳴膜の厚さ〕
 チップ2~4について、シミュレーションにより得られた光の入射角度(θ[°])と出力電流割合[%]との関係をプロットし、出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減じた角度変化量(Δθ[°])及び出力電流割合の最大値(CAmax)から最小値(CAmin)を減じた値(ΔI[%])をそれぞれ求め、それらの絶対値の比として感度(|ΔI|/|Δθ|[%])を算出した。次いで、反射共鳴膜の厚さ(thickness、[nm])と角度変化量の絶対値(Angle difference、|Δθ|[°]、左軸)及び感度(Sensitivity、|ΔI|/|Δθ|[%]、右軸)との関係をプロットした。得られた結果を、図16(チップ2)、図17(チップ3)、図18(チップ4)に、それぞれ示す。
[Thickness of reflection resonance film]
For chips 2 to 4, the relationship between the incident angle of light (θ[°]) and the output current ratio [%] obtained by simulation is plotted, and the output current ratio (CA) becomes the maximum value (CA max ). from the incident angle (theta CAmax) the output current ratio is the minimum value from the (CA min) become incident angle (theta Camin) angle variation by subtracting the (Δθ [°]) and the output current maximum percentage (CA max) The values (ΔI[%]) obtained by subtracting the minimum value (CA min ) were obtained, and the sensitivity (|ΔI|/|Δθ|[%]) was calculated as the ratio of their absolute values. Next, the thickness (thickness, [nm]) of the reflection resonance film and the absolute value (angle difference, |Δθ|[°], left axis) and the sensitivity (Sensitivity, |ΔI|/|Δθ|[% ], the right axis). The obtained results are shown in FIG. 16 (chip 2), FIG. 17 (chip 3), and FIG. 18 (chip 4), respectively.
 図16~18に示したように、反射共鳴膜の厚さと感度とは、感度が最高値となるときの反射共鳴膜の厚さにおいて、角度変化量(Δθ)の絶対値(|Δθ|)が最小となる関係にあることが確認された。また、反射共鳴膜の厚さが、|Δθ|が2°以下になる厚さであることにより、優れた感度が達成されることが確認された。 As shown in FIGS. 16 to 18, the thickness and the sensitivity of the reflection resonance film are the absolute value (|Δθ|) of the angle change amount (Δθ) in the thickness of the reflection resonance film when the sensitivity reaches the maximum value. Was confirmed to be the minimum. Moreover, it was confirmed that excellent sensitivity was achieved when the thickness of the reflection resonance film was such that |Δθ| was 2° or less.
 以上説明したように、本開示の電気測定型表面プラズモン共鳴センサ及びそれに用いるセンサチップによれば、優れたセンサ感度を有する電気測定型表面プラズモン共鳴センサ及びそれに用いるセンサチップを提供することが可能となる。また、本開示のセンサ及びセンサチップは表面プラズモンポラリトンを電気信号として検出することができるため、小型化やハイスループット化が容易である。 As described above, according to the electrical measurement type surface plasmon resonance sensor of the present disclosure and the sensor chip used for the same, it is possible to provide the electrical measurement type surface plasmon resonance sensor having excellent sensor sensitivity and the sensor chip used for the same. Become. Further, since the sensor and the sensor chip of the present disclosure can detect surface plasmon polaritons as an electric signal, it is easy to reduce the size and increase the throughput.
 さらに、本開示のセンサ及びセンサチップにおいては、バイオ分子等を結合可能な分子結合膜をさらに積層することも可能であり、また、サンプルに影響を与えないため、より正確な測定が可能となる。したがって、本開示のセンサ及びセンサチップは今後の医療や食品、環境技術の発展において非常に有用である。 Furthermore, in the sensor and the sensor chip of the present disclosure, it is possible to further stack a molecular binding film capable of binding biomolecules and the like, and since it does not affect the sample, more accurate measurement is possible. .. Therefore, the sensor and sensor chip of the present disclosure are very useful in future development of medical treatment, food, and environmental technology.
 1…プリズム、2…透明電極、3…n型透明半導体膜、4…プラズモン共鳴膜電極、5…反射共鳴膜、6…酸化膜、7…透明基板、8…接着層、9…分子結合膜、10…サンプル層、11~17…センサチップ(光電変換部)、21…電気的測定装置、31、31’…外部回路、110~160…増強センサチップ、200…光源、300…偏光子、400…入射光、510…センサ。 DESCRIPTION OF SYMBOLS 1... Prism, 2... Transparent electrode, 3... N-type transparent semiconductor film, 4... Plasmon resonance film electrode, 5... Reflection resonance film, 6... Oxide film, 7... Transparent substrate, 8... Adhesive layer, 9... Molecular bonding film 10... Sample layer, 11-17... Sensor chip (photoelectric conversion part), 21... Electrical measuring device, 31, 31'... External circuit, 110-160... Enhanced sensor chip, 200... Light source, 300... Polarizer, 400... Incident light, 510... Sensor.

Claims (12)

  1.  透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているセンサチップと、プリズムとが、前記プリズム、前記透明電極、前記n型透明半導体膜、前記プラズモン共鳴膜電極、及び前記反射共鳴膜の順で配置されたプラズモンポラリトン増強センサチップと、
     前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、
    を備える電気測定型表面プラズモン共鳴センサ。
    A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon. A resonance membrane electrode, and a plasmon polariton enhanced sensor chip arranged in the order of the reflection resonance membrane;
    An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
    An electric measurement type surface plasmon resonance sensor having:
  2.  前記センサチップにおいて、前記反射共鳴膜の厚さが、次式(1):
      |Δθ|≦2°・・・(1)
    [前記式(1)中、Δθは、前記センサチップの前記プリズムと接する面に対する入射角度(θ)が0~90°となる範囲内で前記センサチップに光を入射して電流値を測定したときに、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で入射光が全反射するときの入射角度(θcp)の±25°の範囲内で、前記入射光のエネルギーに対する前記電流値の割合である出力電流割合(CA)が最大値(CAmax)となる入射角度(θCAmax)から前記出力電流割合が最小値(CAmin)となる入射角度(θCAmin)を減じた角度変化量を示す。]
    で示される条件を満たす厚さである、請求項1に記載の電気測定型表面プラズモン共鳴センサ。
    In the sensor chip, the thickness of the reflection resonance film is expressed by the following formula (1):
    │Δθ│≦2°・・・(1)
    [In the formula (1), Δθ is a current value measured by making light incident on the sensor chip within a range in which the incident angle (θ) with respect to the surface of the sensor chip in contact with the prism is 0 to 90°. At this time, within the range of ±25° of the incident angle (θ cp ) when the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film, the current with respect to the energy of the incident light is Angle obtained by subtracting the incident angle (θ CAmin ) at which the output current ratio is the minimum value (CA min ) from the incident angle (θ CAmax ) at which the output current ratio (CA) that is the ratio of the values is at the maximum value (CA max ). Indicates the amount of change. ]
    The electrical measurement type surface plasmon resonance sensor according to claim 1, which has a thickness satisfying the condition (1).
  3.  前記センサチップにおいて、前記n型透明半導体膜と前記プラズモン共鳴膜電極との組み合わせが、ショットキー障壁を形成する組み合わせである、請求項1又は2に記載の電気測定型表面プラズモン共鳴センサ。 The electrical measurement type surface plasmon resonance sensor according to claim 1 or 2, wherein in the sensor chip, the combination of the n-type transparent semiconductor film and the plasmon resonance film electrode is a combination that forms a Schottky barrier.
  4.  前記センサチップにおいて、前記プラズモン共鳴膜電極の厚さが200nm以下(ただし0を含まない)である、請求項1~3のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサ。 The electrical measurement type surface plasmon resonance sensor according to any one of claims 1 to 3, wherein in the sensor chip, the thickness of the plasmon resonance film electrode is 200 nm or less (not including 0).
  5.  前記センサチップにおいて、前記反射共鳴膜が、金属酸化物、半導体、及び有機物からなる群から選択される少なくとも1種からなる膜である、請求項1~4のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサ。 5. The sensor chip according to claim 1, wherein the reflection resonance film is a film made of at least one selected from the group consisting of metal oxides, semiconductors, and organic substances. Electrical measurement type surface plasmon resonance sensor.
  6.  前記センサチップにおいて、前記n型透明半導体膜が、TiO、ZnO、SnO、SrTiO、Fe、TaON、WO、及びInからなる群から選択される少なくとも1種のn型半導体からなる膜である、請求項1~5のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサ。 In the sensor chip, the n-type transparent semiconductor film is at least one selected from the group consisting of TiO 2 , ZnO, SnO 2 , SrTiO 3 , Fe 2 O 3 , TaON, WO 3 and In 2 O 3 . The electrical measurement type surface plasmon resonance sensor according to any one of claims 1 to 5, which is a film made of an n-type semiconductor.
  7.  前記センサチップが、前記反射共鳴膜の前記プラズモン共鳴膜と反対側に分子結合膜をさらに備えている、請求項1~6のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサ。 The electrical measurement type surface plasmon resonance sensor according to any one of claims 1 to 6, wherein the sensor chip further comprises a molecular bonding film on a side of the reflection resonance film opposite to the plasmon resonance film.
  8.  前記センサチップが、前記プラズモン共鳴膜電極と前記反射共鳴膜との間に酸化膜をさらに備えている、請求項1~7のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサ。 The electrical measurement type surface plasmon resonance sensor according to any one of claims 1 to 7, wherein the sensor chip further includes an oxide film between the plasmon resonance film electrode and the reflection resonance film.
  9.  請求項1~8のうちのいずれか一項に記載の電気測定型表面プラズモン共鳴センサに用いるセンサチップであり、かつ、透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されている、電気測定型表面プラズモン共鳴センサチップ。 A sensor chip used in the electrical measurement type surface plasmon resonance sensor according to any one of claims 1 to 8, wherein a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are provided. An electric measurement type surface plasmon resonance sensor chip arranged in this order.
  10.  入射光を表面プラズモンポラリトンに変換可能なプラズモン共鳴膜電極、
     前記プラズモン共鳴膜電極の前記入射光側に配置されており、前記入射光を透過し、かつ、該透過した入射光が前記プラズモン共鳴膜電極と相互作用することにより前記プラズモン共鳴膜電極から放出されるホットエレクトロンを受け取り可能なn型透明半導体膜、
     前記プラズモン共鳴膜電極の前記n型透明半導体膜と反対側に配置されており、前記プラズモン共鳴膜電極により生じた表面プラズモン共鳴による電場変化を内部で共鳴させることが可能な反射共鳴膜、
    及び、
     前記n型透明半導体膜から移動したホットエレクトロンを電気信号として取り出し可能な透明電極、
    を備えるセンサチップと、
     前記プラズモン共鳴膜電極と前記n型透明半導体膜との間において前記入射光が全反射されるように前記入射光の角度を制御することが可能なプリズムと、
    を備えるプラズモンポラリトン増強センサチップ、並びに、
     前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定可能な電気的測定装置、
    を備える、電気測定型表面プラズモン共鳴センサ。
    Plasmon resonance film electrode capable of converting incident light into surface plasmon polaritons,
    The plasmon resonance film electrode is disposed on the incident light side, transmits the incident light, and the transmitted incident light is emitted from the plasmon resonance film electrode by interacting with the plasmon resonance film electrode. N-type transparent semiconductor film capable of receiving hot electrons,
    A reflection resonance film, which is arranged on the opposite side of the plasmon resonance film electrode from the n-type transparent semiconductor film and is capable of internally resonating an electric field change due to surface plasmon resonance generated by the plasmon resonance film electrode;
    as well as,
    A transparent electrode capable of taking out hot electrons transferred from the n-type transparent semiconductor film as an electric signal,
    A sensor chip including
    A prism capable of controlling the angle of the incident light so that the incident light is totally reflected between the plasmon resonance film electrode and the n-type transparent semiconductor film;
    And a plasmon polariton enhanced sensor chip including:
    An electrical measuring device capable of directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
    An electric measurement type surface plasmon resonance sensor comprising:
  11.  請求項10に記載の電気測定型表面プラズモン共鳴センサに用いるセンサチップであり、かつ、透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されている、電気測定型表面プラズモン共鳴センサチップ。 It is a sensor chip used for the electric measurement type surface plasmon resonance sensor of Claim 10, Comprising: A transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order. Measurement type surface plasmon resonance sensor chip.
  12.  透明電極、n型透明半導体膜、プラズモン共鳴膜電極、及び反射共鳴膜がこの順で配置されているセンサチップと、プリズムとが、前記プリズム、前記透明電極、前記n型透明半導体膜、前記プラズモン共鳴膜電極、及び前記反射共鳴膜の順で配置されたプラズモンポラリトン増強センサチップと、
     前記透明電極及び前記プラズモン共鳴膜電極から電流値又は電圧値を直接測定する電気的測定装置と、
    を備える電気測定型表面プラズモン共鳴センサを用いて表面プラズモンポラリトンの変化を検出する方法であり、
     前記プリズムの側から光を照射し、前記プリズム、前記透明電極、及び前記n型透明半導体膜を通過した光を、前記プラズモン共鳴膜電極と前記n型透明半導体膜との間で全反射させることで前記プラズモン共鳴膜電極と相互作用させて表面プラズモンポラリトンを発生せしめ、
     前記表面プラズモンポラリトンによって生じ、前記n型透明半導体膜に移動したホットエレクトロンを前記透明電極から電気信号として取り出し、
     前記透明電極と前記プラズモン共鳴膜電極との間の電流値又は電圧値の変化を前記電気的測定装置によって測定することで表面プラズモンポラリトンの変化を検出する、
    表面プラズモンポラリトン変化検出方法。
    A sensor chip in which a transparent electrode, an n-type transparent semiconductor film, a plasmon resonance film electrode, and a reflection resonance film are arranged in this order, and a prism are the prism, the transparent electrode, the n-type transparent semiconductor film, and the plasmon. A resonance membrane electrode, and a plasmon polariton enhanced sensor chip arranged in the order of the reflection resonance membrane;
    An electrical measuring device for directly measuring a current value or a voltage value from the transparent electrode and the plasmon resonance film electrode,
    A method for detecting a change in surface plasmon polaritons using an electric measurement type surface plasmon resonance sensor having
    Irradiating light from the prism side, and totally reflecting the light passing through the prism, the transparent electrode, and the n-type transparent semiconductor film between the plasmon resonance film electrode and the n-type transparent semiconductor film. And interact with the plasmon resonance membrane electrode to generate surface plasmon polaritons,
    Hot electrons generated by the surface plasmon polaritons and transferred to the n-type transparent semiconductor film are taken out from the transparent electrode as an electric signal,
    Detecting a change in surface plasmon polaritons by measuring a change in current value or voltage value between the transparent electrode and the plasmon resonance film electrode by the electrical measuring device,
    Surface plasmon polariton change detection method.
PCT/JP2020/004914 2019-02-12 2020-02-07 Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method WO2020166520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572226A JPWO2020166520A1 (en) 2019-02-12 2020-02-07 Electrical measurement type surface plasmon resonance sensor, electric measurement type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-022762 2019-02-12
JP2019022762 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020166520A1 true WO2020166520A1 (en) 2020-08-20

Family

ID=72043856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004914 WO2020166520A1 (en) 2019-02-12 2020-02-07 Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method

Country Status (2)

Country Link
JP (1) JPWO2020166520A1 (en)
WO (1) WO2020166520A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328671A1 (en) * 2007-11-27 2010-12-30 Baldo Marc A Near field detector for integrated surface plasmon resonance biosensor applications
US20130299933A1 (en) * 2010-11-12 2013-11-14 William Marsh Rice University Plasmon induced hot carrier device, method for using the same, and method for manufacturing the same
CN108767073A (en) * 2018-06-20 2018-11-06 西安交通大学 A kind of surface phasmon enhancing semiconductor active device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328671A1 (en) * 2007-11-27 2010-12-30 Baldo Marc A Near field detector for integrated surface plasmon resonance biosensor applications
US20130299933A1 (en) * 2010-11-12 2013-11-14 William Marsh Rice University Plasmon induced hot carrier device, method for using the same, and method for manufacturing the same
CN108767073A (en) * 2018-06-20 2018-11-06 西安交通大学 A kind of surface phasmon enhancing semiconductor active device and its manufacturing method

Also Published As

Publication number Publication date
JPWO2020166520A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP7178664B2 (en) Electrical measurement type surface plasmon resonance sensor and electrical measurement type surface plasmon resonance sensor chip used therefor
US6417925B1 (en) Surface plasmon sensor for analyzing liquid sample or humid atmosphere
KR101592241B1 (en) Method of fabricating a device having an array of nano particles, surface plasmon based sensor, and method of assaying substances using the sensor
US7349598B2 (en) Surface plasmon resonance device
KR100860701B1 (en) Long range surface plasmon optical waveguide sensors having double metal layers
JP6035768B2 (en) Interference filters, optical modules, and electronics
JP7172693B2 (en) Electrical measurement type surface plasmon resonance sensor, electrical measurement type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method
Oliveira et al. Surface plasmon resonance sensing characteristics of thin aluminum films in aqueous solution
Saini et al. Lossy mode resonance-based refractive index sensor for sucrose concentration measurement
EP2793016A2 (en) Analysis device, analysis method, optical element and electronic apparatus for analysis device and analysis method, and method of designing optical element
WO2021075529A1 (en) Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and method for detecting change in surface plasmon resonance
US20150233835A1 (en) Analysis apparatus and electronic device
WO2020166520A1 (en) Electrical measurement-type surface plasmon resonance sensor, electrical measurement-type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method
US20190323963A1 (en) Memristor-reconstructed near-infrared SPR biosensor with adjustable penetration depth and preparation method thereof
Ma et al. Voltage-modulated surface plasmon resonance biosensors integrated with gold nanohole arrays
Lee et al. Parametric study on the bimetallic waveguide coupled surface plasmon resonance sensors in comparison with other configurations
JP2007071615A (en) Surface plasmon resonance angle spectrum measuring device
JP2020134132A (en) Electric measurement type surface plasmon resonance sensor, electric measurement type surface plasmon resonance sensor chip, and surface plasmon polariton change detection method
JP5388046B2 (en) Photodetector
JPH1019769A (en) Surface plasmon sensor
JP6703729B2 (en) Near-field enhancement chip and target substance detection device
KR100856090B1 (en) Measuring device for surface plasmon resonance angle
JP2006258641A (en) Optical measuring method
EP3327794A1 (en) Photoelectric conversion element and wavelength sensor
Kaji et al. Enhanced photocurrent generation from bacteriorhodopsin photocells using grating-structured transparent conductive oxide electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755805

Country of ref document: EP

Kind code of ref document: A1