WO2020166426A1 - Supercharger casing and supercharger provided with same - Google Patents

Supercharger casing and supercharger provided with same Download PDF

Info

Publication number
WO2020166426A1
WO2020166426A1 PCT/JP2020/004046 JP2020004046W WO2020166426A1 WO 2020166426 A1 WO2020166426 A1 WO 2020166426A1 JP 2020004046 W JP2020004046 W JP 2020004046W WO 2020166426 A1 WO2020166426 A1 WO 2020166426A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
casing
supercharger
passage
flow path
Prior art date
Application number
PCT/JP2020/004046
Other languages
French (fr)
Japanese (ja)
Inventor
嘉久 小野
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Priority to CN202080013533.7A priority Critical patent/CN113412364B/en
Priority to KR1020217024043A priority patent/KR102632033B1/en
Publication of WO2020166426A1 publication Critical patent/WO2020166426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a casing of a supercharger and a supercharger including the casing.
  • bypass pipe of the supercharger disclosed in Patent Document 2 may increase the time and cost required for manufacturing due to its structure.
  • the present disclosure has been made in view of such circumstances, and can be applied to a small supercharger having a restricted layout, and includes a casing of a supercharger including a pyvas pipe having a simple structure and a casing thereof.
  • the purpose is to provide a supercharger.
  • the casing of the supercharger of the present disclosure and the supercharger including the casing adopt the following means. That is, the casing of the supercharger according to an aspect of the present disclosure forms an exhaust gas passage through which exhaust gas discharged from an internal combustion engine flows, and a turbine driven by the exhaust gas flowing through the exhaust gas passage.
  • the bypass pipe is provided with only one bent portion (only the bent portion of the elbow pipe), and therefore the bent portion can be made smaller than in the conventional structure. It can be applied to small turbochargers with limited layout.
  • the bypass pipe since the bypass pipe has a simple structure composed of two members (straight pipe and elbow pipe), the time and cost required for manufacturing can be suppressed.
  • the elbow pipe has a substantially circular cross-section along the axis, and a connection that connects the connecting portion with the elbow pipe and the exhaust gas flow passage.
  • the shape of the flow passage is changed from the above-mentioned substantially circular shape to a flat shape while keeping the flow passage area substantially constant.
  • connection flow passage has its flow passage shape changed from a substantially circular shape conforming to the elbow pipe to a flat shape while keeping the flow passage area substantially constant.
  • connection flow passage is formed by casting.
  • connection flow path having a complicated shape.
  • the bypass pipe includes an opening/closing valve whose opening/closing is controlled by a signal from the outside.
  • the open/close state of the on-off valve provided in the bypass pipe is controlled by, for example, a signal transmitted from the control unit of the internal combustion engine in which the supercharger is mounted.
  • the flow rate of the exhaust gas flowing through the bypass pipe can be controlled in accordance with the specifications and state of the internal combustion engine.
  • the straight pipe is arranged such that an axial direction thereof and an inflow direction of the exhaust gas flowing from the exhaust gas inlet are substantially coincident with each other.
  • the exhaust gas flowing in from the exhaust gas inlet is guided to the bypass pipe without being diverted. Therefore, the pressure loss of the exhaust gas guided to the bypass pipe can be suppressed.
  • the straight pipe includes an expansion/contraction part that expands/contracts in the axial direction.
  • the straight pipe can be expanded and contracted in the axial direction, it is possible to absorb thermal expansion and thermal contraction that occur in the bypass pipe due to the flow of exhaust gas.
  • the bypass pipe is provided with an on-off valve, it is preferable that the expansion/contraction section is installed downstream of the on-off valve in the exhaust gas flow direction.
  • the casing of the supercharger forms an exhaust gas passage through which the exhaust gas discharged from the internal combustion engine flows, and is driven by the exhaust gas flowing through the exhaust gas passage.
  • a casing of a supercharger in which a turbine is housed comprising a bypass pipe for communicating the exhaust gas passage on the exhaust gas inlet side and the exhaust gas passage on the exhaust gas outlet side without going through the turbine, and the bypass.
  • the pipe has a substantially circular cross-sectional area along the axis
  • the connection flow passage that connects the connection portion with the bypass pipe and the exhaust gas flow passage has a flow passage shape that is substantially circular from the substantially circular shape. It keeps constant and changes to a flat shape.
  • connection flow passage that connects the connection portion with the bypass pipe and the exhaust gas flow passage through which the exhaust gas flows, the flow passage while maintaining the flow passage area substantially constant.
  • the shape has changed from a substantially circular shape that matches the bypass pipe to a flat shape.
  • a supercharger according to one aspect of the present disclosure includes the casing of the above-described supercharger and the turbine driven by exhaust gas discharged from an internal combustion engine.
  • a casing of a supercharger including a pyvas pipe having a simple structure which can be applied to a small supercharger having a layout restriction, and a supercharger including the casing.
  • FIG. 1 is a vertical cross-sectional view of a casing of a supercharger and a supercharger including the casing according to an embodiment of the present disclosure. It is a partial enlarged view of the A section shown in FIG. 1, and is a perspective view showing the shape of the outlet side connection flow path.
  • FIGS. 1 and 2 a casing of a supercharger according to an embodiment of the present disclosure and a supercharger including the casing will be described with reference to FIGS. 1 and 2.
  • the supercharger 1 forcibly compresses combustion air supplied to an internal combustion engine mounted on a ship or the like to force high density air into the combustion chamber of the internal combustion engine. It is configured to be sent.
  • the casing 10 according to the present embodiment is particularly suitable for being used in a small supercharger.
  • the supercharger 1 includes a turbine 30 driven by exhaust gas discharged from an internal combustion engine (not shown), a rotor shaft 33 rotatably driven by the turbine 30 around an axis X, and an exhaust gas. And a casing 10 that forms a flow path (exhaust gas flow path 12).
  • the turbine 30 is an axial turbine including a turbine disk 31 to which a moving blade 32 is attached and a nozzle ring 34 to which a guide vane 34a is attached.
  • the rotor blade 32 is arranged in the exhaust gas flow path 12 so as to be close to a downstream end of a guide vane 34 a (described later) along the axis X direction, and is provided at one end of the rotor shaft 33 of the disk-shaped turbine disk 31. A plurality of sheets are attached to the peripheral portion.
  • the exhaust gas passage 12 upstream of the moving blade 32 in the flow direction of the exhaust gas is indicated by reference numeral 12a, and the exhaust gas passage 12 downstream of the moving blade 32 is indicated by reference numeral 12b.
  • the nozzle ring 34 includes a cylindrical outer peripheral side ring 34c extending in the direction of the axis X, an inner peripheral side ring 34b having a smaller diameter than the outer peripheral side ring 34c, and an outer peripheral side ring 34c and an inner peripheral side ring 34b. And the attached guide vanes 34a.
  • the nozzle ring 34 is attached to the casing 10 such that the outer peripheral ring 34c and the inner peripheral ring 34b are part of the wall portion that forms the exhaust gas passage 12a along the axis X direction. At this time, the casing 10 is divided before and after the nozzle ring 34 along the direction of the axis X.
  • a plurality of guide vanes 34a are attached in the circumferential direction of the axis X between the inner peripheral wall of the outer peripheral ring 34c and the outer peripheral wall of the inner peripheral ring 34b.
  • the guide vanes 34a are blade-shaped members for appropriately guiding the exhaust gas toward the moving blade 32 by adjusting the flow velocity and the direction of the exhaust gas flowing toward the moving blade 32 side in the exhaust gas passage 12a. It
  • the high temperature exhaust gas passing through the guide vanes 34a passes through the moving blades 32 and expands, so that the turbine disk 31 and the rotor shaft 33 rotate.
  • An impeller (not shown) of a compressor (not shown) is provided at the other end of the rotor shaft 33. When the rotor shaft 33 is rotationally driven, the impeller is rotationally driven to generate air. Compressed.
  • the casing 10 has a gas inlet (exhaust gas inlet) 12A formed in the lower part and opened downward, and a gas outlet (exhaust gas outlet) 12B formed in the upper part and opened upward,
  • An exhaust gas passage 12 (12a, 12b, 12c) that connects the gas inlet 12A and the gas outlet 12B through 30 is formed, and the casing 10 surrounds a part of the turbine 30 and the rotor shaft 33. Housed in.
  • the casing 10 forms a bypass pipe 50 that forms a flow path (bypass flow path 51) that connects the exhaust gas flow path 12a on the gas inlet 12A side and the exhaust gas flow path 12c on the gas outlet 12B side without the turbine 30. Equipped with.
  • the bypass pipe 50 is a straight pipe having an L-shaped flow path (straight flow path 53) with an axial line that is straight when viewed from the side as shown in FIG. 1 and extending from the gas inlet 12A side toward the gas outlet 12B side.
  • 52 and one elbow pipe 54 having a flow path (bending flow path 55) whose axis is bent substantially at a right angle. Accordingly, since the bent portion provided in the bypass pipe 50 can be provided at one place, it can be applied to the small-sized supercharger 1 having a layout restriction.
  • the bypass pipe 50 may have a simple structure composed of two members (straight pipe 52 and elbow pipe 54).
  • the straight tube 52 and the elbow tube 54 preferably have a substantially circular flow path shape along the axis.
  • the straight pipe 52 is connected to the casing 10 forming the exhaust gas passage 12a on the gas inlet 12A side.
  • An inlet-side connection flow channel 16 that connects the exhaust gas flow channel 12a and the outside of the casing 10 is formed in the portion of the casing 10 to which the straight pipe 52 is connected.
  • the inlet-side connection flow path 16 has an axis in the inflow direction of the exhaust gas (arrow Gi in the figure) flowing in from the gas inlet 12A.
  • the straight pipe 52 is arranged with respect to the casing 10 such that the axis of the linear flow passage 53 is located on an extension of the axis of the inlet side connection flow passage 16. That is, the axial direction of the straight flow path 53 coincides with the inflow direction of the exhaust gas flowing in from the gas inlet 12A.
  • the exhaust gas flowing in from the gas inlet 12A is guided to the bypass passage 51 without being diverted.
  • One end of the elbow pipe 54 is connected to the other end of the straight pipe 52 (an end portion different from the end portion connected to the casing 10 ).
  • the other end of the elbow pipe 54 is connected to the casing 10 forming the exhaust gas passage 12c on the gas outlet 12B side.
  • An outlet-side connection flow channel (connection flow channel) 18 that connects the outside of the casing 10 and the exhaust gas flow channel 12c is formed in the portion of the casing 10 to which the elbow pipe 54 is connected.
  • the shape of the outlet-side connection flow path 18 is a substantially circular shape that matches the flow path shape of the elbow pipe 54 at the connection portion 14 with the elbow pipe 54. Further, the shape of the outlet-side connection flow channel 18 is changed to a flat shape in which the width direction is enlarged and the height direction is reduced as it goes from the connection portion 14 side to the exhaust gas flow channel 12c side. At this time, the shape is changed from the side of the connecting portion 14 toward the side of the exhaust gas channel 12c so that the channel area of the outlet side connecting channel 18 is maintained substantially constant.
  • the flow path can be reduced to a flat shape that becomes thinner in the height direction.
  • the area can be secured.
  • the casing 10 of the portion forming the outlet-side connection flow path 18 may be manufactured by casting. This makes it possible to easily form the outlet-side connection flow path 18 having a complicated shape.
  • an opening/closing valve 60 capable of controlling the opening is attached to the straight pipe 52 described above.
  • the opening/closing valve 60 has its opening controlled by a signal from a control unit (not shown) that controls the internal combustion engine in which the supercharger 1 is mounted, for example. Thereby, the flow rate of the exhaust gas flowing through the bypass passage 51 can be adjusted.
  • the mounting position of the on-off valve 60 can be changed as appropriate, and may be mounted on the elbow pipe 54, for example.
  • the straight tube 52 described above may be provided with an expansion (expansion/contraction portion) 62 that expands and contracts in the axial direction.
  • the expansion 62 can absorb the expansion and contraction of the straight tube 52 in the axial direction. This makes it possible to absorb thermal expansion and thermal contraction that occur in the bypass pipe 50.
  • the expansion 62 is preferably attached to the straight pipe 52 on the downstream side of the opening/closing valve 60 (outlet side connection flow path 18 side). Thereby, the opening/closing valve 60 can be easily attached to the casing 10.
  • the mounting position of the expansion 62 can be changed as appropriate, and the expansion 62 may be mounted on the straight pipe 52 on the upstream side of the on-off valve 60.
  • the on-off valve When the on-off valve is open, in order to improve the performance of the supercharger even when the internal combustion engine in which the supercharger 1 is mounted operates at a low load, for example, a nozzle (a nozzle that can obtain a high supercharging pressure even at a low load) ( A nozzle smaller than the usual design may be selected. However, when such an internal combustion engine operates at a high load, the supercharging pressure of the supercharger 1 becomes too high. Therefore, at the time of high load, the opening/closing valve 60 is opened so that the exhaust gas flows through the bypass passage 51 in order to intentionally reduce the output of the turbine 30.
  • the “open state” mentioned here includes not only a state where the opening degree is 100% (fully opened state) but also a state where the opening degree is larger than 0% and smaller than 100.
  • the other exhaust gas is guided from the exhaust gas flow path 12a to the straight flow path 53 (bypass flow path 51) via the inlet side connection flow path 16 (arrow Bi in the figure).
  • the exhaust gas guided to the straight flow path 53 reaches the bent flow path 55, is deflected, and then is guided to the outlet side connection flow path 18.
  • the exhaust gas guided to the outlet side connection flow path 18 passes through the space S1 formed by the outer peripheral wall of the outer peripheral side ring 34c and the casing 10 and is guided to the exhaust gas flow path 12c on the gas outlet 12B side ( Arrow Bo in the figure).
  • the on-off valve 60 When the on-off valve 60 is operated from the open state to the closed state, if the on-off valve 60 is suddenly operated, the flow rate of the exhaust gas flowing into the turbine 30 is rapidly increased, and accordingly, the output of the turbine 30 is increased. Will increase rapidly. At the same time, the rotation speed of the impeller (not shown) of the compressor rapidly increases. Then, surging may occur in the compressor. For this reason, it is preferable to gradually close the on-off valve 60 in order to avoid surging in the compressor. For example, when operating the open/close valve 60 from the fully open state to the fully closed state, it is preferable to operate it for 5 seconds or more. Needless to say, the operating time of the on-off valve 60 can be changed as appropriate according to the specifications of each device. However, the time for operating the on-off valve 60 from the open state to the closed state is preferably longer than the time for operating the on-off valve 60 from the closed state to the open state.
  • bypass pipe 50 provided in the casing 10 has only one bent portion in the elbow pipe 54, it can be applied to the small-sized supercharger 1 having a layout restriction. Further, for example, compared with the case where there are two bent portions, the pressure loss caused by the bent portions can be suppressed. Furthermore, since the bypass pipe 50 has a simple structure composed of two members (straight pipe 52 and elbow pipe 54), the time and cost required for manufacturing can be suppressed.
  • the outlet-side connection flow passage 18 has its flow passage shape changed from a substantially circular shape adapted to the elbow pipe 54 to a flat shape while keeping the flow passage area substantially constant.
  • the flattened shape that thins in the predetermined direction reduces the flow passage area. Can be secured.
  • the open/close state of the open/close valve 60 provided in the bypass pipe 50 is controlled by a signal transmitted from, for example, a control unit of an internal combustion engine in which the supercharger 1 is mounted. This makes it possible to control the flow rate of the exhaust gas flowing through the bypass passage 51 in accordance with the specifications and state of the internal combustion engine.
  • the axial direction of the linear flow path 53 coincides with the inflow direction of the exhaust gas flowing from the gas inlet 12A.
  • the straight pipe 52 is provided with an expansion 62 that expands and contracts in the axial direction. This makes it possible to absorb the thermal expansion and thermal contraction that occur in the bypass pipe 50 due to the flow of the exhaust gas.
  • the shape of the bypass pipe 50 is not limited to that of the above-described embodiment, and may be arbitrarily changed according to the specifications of the internal combustion engine or the supercharger and the layout of each device (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

The purpose of the present invention is to provide a supercharger casing that can be applied to a small supercharger of which the layout is restricted and that is provided with a bypass pipe having a simple structure, and a supercharger provided with said casing. A casing (10) of a supercharger (1) has formed therein an exhaust gas flow path (12) through which exhaust gas discharged from an internal combustion engine flows, and accommodates therein a turbine (30) driven by the exhaust gas flowing through the exhaust gas flow path (12). The casing (10) is provided with a bypass pipe (50) that allows communication between the exhaust gas flow path (12) on the side of an exhaust gas inlet (12A) and the exhaust gas flow path (12) on the side of an exhaust gas outlet (12B), the communication not being by way of the turbine (30). The bypass pipe (50) is configured from a straight pipe (52) that is connected to the exhaust gas inlet (12A) side and that has a straight linear flow path, and an elbow pipe (54) that is connected to the straight pipe (52) and the exhaust gas outlet (12B) side and that has a bent flow path.

Description

過給機のケーシング及びそれを備えた過給機Supercharger casing and supercharger including the same
 本開示は、過給機のケーシング及びそれを備えた過給機に関する。 The present disclosure relates to a casing of a supercharger and a supercharger including the casing.
 舶用内燃機関や発電用内燃機関等(例えばディーゼル機関)には、低負荷で動作する際の性能を改善することが求められている。低負荷で動作する際の性能を改善するためには、内燃機関に搭載された過給機の過給圧を高めに設定するのが望ましいが、内燃機関が高負荷で動作する際には過給圧が高くなりすぎてしまう。そこで、内燃機関が高負荷で動作して排気ガスの量が多い場合には、排気ガスが過給機のタービンをバイパスするようにして過給圧の上がりすぎを抑える、いわゆる排気ガスバイパスシステムが実用化されている。 ◇For internal combustion engines for ships, internal combustion engines for power generation, etc. (for example, diesel engines), it is required to improve the performance when operating at low load. In order to improve the performance when operating at low load, it is desirable to set the supercharging pressure of the supercharger installed in the internal combustion engine to a high value, but when the internal combustion engine operates at high load The supply pressure becomes too high. Therefore, when the internal combustion engine operates at a high load and the amount of exhaust gas is large, a so-called exhaust gas bypass system that suppresses an excessive rise in boost pressure by allowing the exhaust gas to bypass the turbine of the supercharger is provided. It has been put to practical use.
 排気ガスバイパスシステムが採用されている過給機としては、例えば特許文献1に開示されている過給機がある。この過給機によれば、開閉弁が設けられたU字状のバイパス管によって排気ガスがタービンをバイパスするよう構成されている。 As a supercharger adopting the exhaust gas bypass system, there is a supercharger disclosed in Patent Document 1, for example. According to this supercharger, the exhaust gas bypasses the turbine by a U-shaped bypass pipe provided with an opening/closing valve.
 また、排気ガスバイパスシステムが採用されている過給機の他の例としては、例えば特許文献2に開示されている過給機がある。この過給機によれば、角度をもって切断されたパイプをつなぎ合わせることで全体として円弧形状とされた管(いわゆるエビ管)によって排気ガスがタービンをバイパスするよう構成されている。 Further, as another example of the supercharger in which the exhaust gas bypass system is adopted, there is a supercharger disclosed in Patent Document 2, for example. According to this supercharger, exhaust gas bypasses the turbine by a pipe (so-called shrimp pipe) having an arc shape as a whole by connecting pipes cut at an angle.
特許第6165564号公報Japanese Patent No. 6165564 特開2013-124626号公報JP, 2013-124626, A
 しかし、特許文献1に開示されている過給機のU字状のバイパス管においては、2箇所の曲げ部を形成するために所定のスペースを確保しなければならず、レイアウトに制約のある小型の過給機に適用することが難しい。また、仮に小型の過給機に適用したとしても、ケーシングの形状や他の部品との関係でバイパス管の出口端とケーシングとの接続部分の流路面積を確保することが困難な場合がある。 However, in the U-shaped bypass pipe of the supercharger disclosed in Patent Document 1, it is necessary to secure a predetermined space in order to form the two bent portions, and thus the layout is small and compact. Difficult to apply to the turbocharger. Further, even if it is applied to a small supercharger, it may be difficult to secure the flow passage area of the connecting portion between the outlet end of the bypass pipe and the casing due to the shape of the casing and the relationship with other parts. ..
 また、特許文献2に開示されている過給機のバイパス管においては、その構造上、製作に要する時間やコストが増大する可能性がある。 In addition, the bypass pipe of the supercharger disclosed in Patent Document 2 may increase the time and cost required for manufacturing due to its structure.
 本開示はこのような事情に鑑みてなされたものであって、レイアウトに制約がある小型の過給機に適用でき、簡便な構造とされたパイバス管を備える過給機のケーシング及びそれを備えた過給機を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and can be applied to a small supercharger having a restricted layout, and includes a casing of a supercharger including a pyvas pipe having a simple structure and a casing thereof. The purpose is to provide a supercharger.
 上記課題を解決するために、本開示の過給機のケーシング及びそれを備えた過給機は以下の手段を採用する。
 すなわち、本開示の一態様に係る過給機のケーシングは、内燃機関から排出された排気ガスが流通する排ガス流路を形成するとともに、該排ガス流路を流通する前記排気ガスによって駆動されるタービンが収容される過給機のケーシングであって、前記タービンを介さずに排気ガス入口側の前記排ガス流路と排気ガス出口側の前記排ガス流路とを連通させるバイパス管を備え、前記バイパス管は、前記排気ガス入口側に接続され、直線状の流路を有するストレート管と、該ストレート管及び前記排気ガス出口側に接続され、屈曲する流路を有するエルボ管とから構成されている。
In order to solve the above problems, the casing of the supercharger of the present disclosure and the supercharger including the casing adopt the following means.
That is, the casing of the supercharger according to an aspect of the present disclosure forms an exhaust gas passage through which exhaust gas discharged from an internal combustion engine flows, and a turbine driven by the exhaust gas flowing through the exhaust gas passage. Is a casing of a supercharger containing therein a bypass pipe for communicating the exhaust gas flow path on the exhaust gas inlet side and the exhaust gas flow path on the exhaust gas outlet side without going through the turbine, and the bypass pipe. Is composed of a straight pipe connected to the exhaust gas inlet side and having a straight flow passage, and an elbow pipe connected to the straight pipe and the exhaust gas outlet side and having a bent flow passage.
 本態様に係る過給機のケーシングによれば、バイパス管に設けられた曲げ部は1箇所(エルボ管の曲げ部のみ)とされるので、従来の構造よりも曲げ部を少なくすることができ、レイアウトに制約がある小型の過給機に適用できる。
 また、バイパス管は2つの部材(ストレート管及びエルボ管)によって構成された簡便な構造とされているので、製作に要する時間やコストを抑制できる。
In the casing of the supercharger according to this aspect, the bypass pipe is provided with only one bent portion (only the bent portion of the elbow pipe), and therefore the bent portion can be made smaller than in the conventional structure. It can be applied to small turbochargers with limited layout.
In addition, since the bypass pipe has a simple structure composed of two members (straight pipe and elbow pipe), the time and cost required for manufacturing can be suppressed.
 また、本開示の一態様に係る過給機のケーシングにおいて、前記エルボ管は、軸線に沿った断面が略円形状とされ、前記エルボ管との接続部と前記排ガス流路とを連通させる接続流路の形状は、前記略円形状から流路面積を略一定に保ちつつ扁平形状に変化している。 Further, in the casing of the supercharger according to an aspect of the present disclosure, the elbow pipe has a substantially circular cross-section along the axis, and a connection that connects the connecting portion with the elbow pipe and the exhaust gas flow passage. The shape of the flow passage is changed from the above-mentioned substantially circular shape to a flat shape while keeping the flow passage area substantially constant.
 本態様に係る過給機のケーシングによれば、接続流路は、その流路面積を略一定に保ちつつ流路の形状がエルボ管に合わせた略円形状から扁平形状に変化している。これによって、例えば排気ガス出口側のケーシング形状や他の部品との関係で所定方向における寸法に制約がある場合であっても、所定方向に薄くなる扁平形状とすることで流路面積を確保することができる。 With the casing of the supercharger according to this aspect, the connection flow passage has its flow passage shape changed from a substantially circular shape conforming to the elbow pipe to a flat shape while keeping the flow passage area substantially constant. As a result, even if there is a restriction in the dimension in the predetermined direction due to the shape of the casing on the exhaust gas outlet side or other parts, the flow passage area is secured by making the flat shape thin in the predetermined direction. be able to.
 また、本開示の一態様に係る過給機のケーシングにおいて、前記接続流路は、鋳造によって形成されている。 Further, in the casing of the supercharger according to an aspect of the present disclosure, the connection flow passage is formed by casting.
 本態様に係る過給機のケーシングによれば、複雑な形状とされた接続流路を容易に形成できる。 According to the casing of the supercharger according to this aspect, it is possible to easily form the connection flow path having a complicated shape.
 また、本開示の一態様に係る過給機のケーシングにおいて、前記バイパス管は、外部からの信号によって弁の開閉が制御される開閉弁を備えている。 Further, in the casing of the supercharger according to the aspect of the present disclosure, the bypass pipe includes an opening/closing valve whose opening/closing is controlled by a signal from the outside.
 本態様に係る過給機のケーシングによれば、バイパス管に設けられた開閉弁は、例えば過給機が搭載されている内燃機関の制御部から送信された信号によって開閉状態が制御される。これによって、内燃機関の仕様や状態に適宜対応させてバイパス管を流れる排気ガスの流量を制御できる。 According to the supercharger casing of this aspect, the open/close state of the on-off valve provided in the bypass pipe is controlled by, for example, a signal transmitted from the control unit of the internal combustion engine in which the supercharger is mounted. As a result, the flow rate of the exhaust gas flowing through the bypass pipe can be controlled in accordance with the specifications and state of the internal combustion engine.
 また、本開示の一態様に係る過給機のケーシングにおいて、前記ストレート管は、軸線方向と前記排気ガス入口から流入する前記排気ガスの流入方向とが略一致するように配置されている。 Further, in the casing of the supercharger according to the aspect of the present disclosure, the straight pipe is arranged such that an axial direction thereof and an inflow direction of the exhaust gas flowing from the exhaust gas inlet are substantially coincident with each other.
 本態様に係る過給機のケーシングによれば、排気ガス入口から流入した排気ガスは転向されることなくバイパス管に導かれる。このため、バイパス管に導かれた排気ガスの圧力損失を抑制できる。 According to the casing of the supercharger according to this aspect, the exhaust gas flowing in from the exhaust gas inlet is guided to the bypass pipe without being diverted. Therefore, the pressure loss of the exhaust gas guided to the bypass pipe can be suppressed.
 また、本開示の一態様に係る過給機のケーシングにおいて、前記ストレート管は、軸線方向に伸縮する伸縮部を備えている。 Further, in the casing of the supercharger according to an aspect of the present disclosure, the straight pipe includes an expansion/contraction part that expands/contracts in the axial direction.
 本態様に係る過給機のケーシングによれば、ストレート管が軸線方向に伸縮可能とされているので、排気ガスの流通によってバイパス管に生じる熱伸びや熱収縮を吸収できる。
 なお、バイパス管に開閉弁が設けられている場合、伸縮部は排気ガスの流れ方向において開閉弁の下流側に設置されることが好ましい。
With the casing of the supercharger according to this aspect, since the straight pipe can be expanded and contracted in the axial direction, it is possible to absorb thermal expansion and thermal contraction that occur in the bypass pipe due to the flow of exhaust gas.
When the bypass pipe is provided with an on-off valve, it is preferable that the expansion/contraction section is installed downstream of the on-off valve in the exhaust gas flow direction.
 また、本開示の一態様に係る過給機のケーシングは、内燃機関から排出された前記排気ガスが流通する排ガス流路を形成するとともに、該排ガス流路を流通する前記排気ガスによって駆動されるタービンが収容される過給機のケーシングであって、前記タービンを介さずに排気ガス入口側の前記排ガス流路と排気ガス出口側の前記排ガス流路とを連通させるバイパス管を備え、前記バイパス管は、軸線に沿った断面積が略円形状とされ、前記バイパス管との接続部と前記排ガス流路とを連通させる接続流路は、流路形状が前記略円形状から断面積を略一定に保ちつつ扁平形状に変化している。 Further, the casing of the supercharger according to an aspect of the present disclosure forms an exhaust gas passage through which the exhaust gas discharged from the internal combustion engine flows, and is driven by the exhaust gas flowing through the exhaust gas passage. A casing of a supercharger in which a turbine is housed, comprising a bypass pipe for communicating the exhaust gas passage on the exhaust gas inlet side and the exhaust gas passage on the exhaust gas outlet side without going through the turbine, and the bypass. The pipe has a substantially circular cross-sectional area along the axis, and the connection flow passage that connects the connection portion with the bypass pipe and the exhaust gas flow passage has a flow passage shape that is substantially circular from the substantially circular shape. It keeps constant and changes to a flat shape.
 本態様に係る過給機のケーシングによれば、バイパス管との接続部と排気ガスが流通する排ガス流路とを連通させる接続流路は、その流路面積を略一定に保ちつつ流路の形状がバイパス管に合わせた略円形状から扁平形状に変化している。これによって、例えば排気ガス出口側のケーシング形状や他の部品との関係で所定方向における寸法に制約がある場合であっても、所定方向に薄くなる扁平形状とすることで流路面積を確保することができる。 According to the casing of the supercharger according to the present aspect, the connection flow passage that connects the connection portion with the bypass pipe and the exhaust gas flow passage through which the exhaust gas flows, the flow passage while maintaining the flow passage area substantially constant. The shape has changed from a substantially circular shape that matches the bypass pipe to a flat shape. As a result, even if there is a restriction in the dimension in the predetermined direction due to the shape of the casing on the exhaust gas outlet side or other parts, the flow passage area is secured by making the flat shape thin in the predetermined direction. be able to.
 また、本開示の一態様に係る過給機は、前述の過給機のケーシングと、内燃機関から排出された排気ガスによって駆動される前記タービンとを備えている。 A supercharger according to one aspect of the present disclosure includes the casing of the above-described supercharger and the turbine driven by exhaust gas discharged from an internal combustion engine.
 本開示によれば、レイアウトに制約がある小型の過給機に適用でき、簡便な構造とされたパイバス管を備える過給機のケーシング及びそれを備えた過給機を提供できる。 According to the present disclosure, it is possible to provide a casing of a supercharger including a pyvas pipe having a simple structure, which can be applied to a small supercharger having a layout restriction, and a supercharger including the casing.
本開示の一実施形態に係る過給機のケーシング及びそれを備えた過給機の縦断面図である。1 is a vertical cross-sectional view of a casing of a supercharger and a supercharger including the casing according to an embodiment of the present disclosure. 図1に示すA部の部分拡大図であって、出口側接続流路の形状を示した斜視図である。It is a partial enlarged view of the A section shown in FIG. 1, and is a perspective view showing the shape of the outlet side connection flow path.
 以下、本開示の一実施形態に係る過給機のケーシング及びそれを備える過給機について図1及び図2を用いて説明する。 Hereinafter, a casing of a supercharger according to an embodiment of the present disclosure and a supercharger including the casing will be described with reference to FIGS. 1 and 2.
 まず、ケーシング10及びケーシング10を備えている過給機1の構成について説明する。
 図1に示すように、過給機1は、例えば、船舶等に搭載される内燃機関に供給される燃焼用空気を圧縮することで、密度の高い空気を内燃機関の燃焼室内へ強制的に送り込むように構成されたものである。本実施形態に係るケーシング10は、特に小型の過給機に採用されて好適である。
First, the configuration of the casing 10 and the supercharger 1 including the casing 10 will be described.
As shown in FIG. 1, the supercharger 1 forcibly compresses combustion air supplied to an internal combustion engine mounted on a ship or the like to force high density air into the combustion chamber of the internal combustion engine. It is configured to be sent. The casing 10 according to the present embodiment is particularly suitable for being used in a small supercharger.
 過給機1は、内燃機関(図示せず)から排出された排気ガスによって駆動されるタービン30と、タービン30によって軸線X周りに回転駆動されるロータ軸33と、これらを収容するとともに排気ガスの流路(排ガス流路12)を形成するケーシング10と、を備えている。 The supercharger 1 includes a turbine 30 driven by exhaust gas discharged from an internal combustion engine (not shown), a rotor shaft 33 rotatably driven by the turbine 30 around an axis X, and an exhaust gas. And a casing 10 that forms a flow path (exhaust gas flow path 12).
 タービン30は、動翼32が取り付けられたタービンディスク31と、ガイドベーン34aが取り付けられたノズルリング34とを備えている軸流タービンとされる。 The turbine 30 is an axial turbine including a turbine disk 31 to which a moving blade 32 is attached and a nozzle ring 34 to which a guide vane 34a is attached.
 動翼32は、排ガス流路12において、軸線X方向に沿ったガイドベーン34a(後述)の下流端に近接するように配置され、ロータ軸33の一端に設けられた円盤形状のタービンディスク31の周縁部に複数枚取り付けられている。
 なお、排気ガスの流れ方向において動翼32よりも上流側の排ガス流路12は符号12aで示され、動翼32よりも下流側の排ガス流路12は符号12bで示されている。
The rotor blade 32 is arranged in the exhaust gas flow path 12 so as to be close to a downstream end of a guide vane 34 a (described later) along the axis X direction, and is provided at one end of the rotor shaft 33 of the disk-shaped turbine disk 31. A plurality of sheets are attached to the peripheral portion.
The exhaust gas passage 12 upstream of the moving blade 32 in the flow direction of the exhaust gas is indicated by reference numeral 12a, and the exhaust gas passage 12 downstream of the moving blade 32 is indicated by reference numeral 12b.
 ノズルリング34は、軸線X方向に延びる円筒状の外周側リング34cと、外周側リング34cよりも小径とされた内周側リング34bと、外周側リング34cと内周側リング34bとの間に取り付けられたガイドベーン34aとを備えている。 The nozzle ring 34 includes a cylindrical outer peripheral side ring 34c extending in the direction of the axis X, an inner peripheral side ring 34b having a smaller diameter than the outer peripheral side ring 34c, and an outer peripheral side ring 34c and an inner peripheral side ring 34b. And the attached guide vanes 34a.
 ノズルリング34は、外周側リング34c及び内周側リング34bが、軸線X方向に沿った排ガス流路12aを形成する壁部の一部となるようにケーシング10に取り付けられている。このとき、ケーシング10は、軸線X方向に沿って、ノズルリング34の前後で分割されている。 The nozzle ring 34 is attached to the casing 10 such that the outer peripheral ring 34c and the inner peripheral ring 34b are part of the wall portion that forms the exhaust gas passage 12a along the axis X direction. At this time, the casing 10 is divided before and after the nozzle ring 34 along the direction of the axis X.
 ガイドベーン34aは、外周側リング34cの内周壁と内周側リング34bの外周壁との間において、軸線Xの周方向に複数枚取り付けられている。
 ガイドベーン34aは、排ガス流路12aにおいて、動翼32側に向かって流通する排気ガスの流速や方向を調節することで、動翼32に向けて適切に排気ガスを導くための翼状部材とされる。
A plurality of guide vanes 34a are attached in the circumferential direction of the axis X between the inner peripheral wall of the outer peripheral ring 34c and the outer peripheral wall of the inner peripheral ring 34b.
The guide vanes 34a are blade-shaped members for appropriately guiding the exhaust gas toward the moving blade 32 by adjusting the flow velocity and the direction of the exhaust gas flowing toward the moving blade 32 side in the exhaust gas passage 12a. It
 タービン30は、ガイドベーン34aを通過した高温の排気ガスが動翼32を通過して膨張することにより、タービンディスク31及びロータ軸33が回転するようになっている。また、ロータ軸33の他端には圧縮機(図示せず)の翼車(図示せず)が設けられており、ロータ軸33が回転駆動されることによって翼車が回転駆動されて空気が圧縮される。 In the turbine 30, the high temperature exhaust gas passing through the guide vanes 34a passes through the moving blades 32 and expands, so that the turbine disk 31 and the rotor shaft 33 rotate. An impeller (not shown) of a compressor (not shown) is provided at the other end of the rotor shaft 33. When the rotor shaft 33 is rotationally driven, the impeller is rotationally driven to generate air. Compressed.
 ケーシング10は、下部に形成され下方に向かって開口されたガス入口(排気ガス入口)12Aと、上部に形成され上方に向かって開口されたガス出口(排気ガス出口)12Bとを有し、タービン30を介してガス入口12Aとガス出口12Bとを連通させる排ガス流路12(12a,12b,12c)を形成している、また、ケーシング10は、タービン30及びロータ軸33の一部を取り囲むように収容している。 The casing 10 has a gas inlet (exhaust gas inlet) 12A formed in the lower part and opened downward, and a gas outlet (exhaust gas outlet) 12B formed in the upper part and opened upward, An exhaust gas passage 12 (12a, 12b, 12c) that connects the gas inlet 12A and the gas outlet 12B through 30 is formed, and the casing 10 surrounds a part of the turbine 30 and the rotor shaft 33. Housed in.
 更に、ケーシング10は、タービン30を介さないで、ガス入口12A側の排ガス流路12aとガス出口12B側の排ガス流路12cとを連通させる流路(バイパス流路51)を形成するバイパス管50を備えている。 Furthermore, the casing 10 forms a bypass pipe 50 that forms a flow path (bypass flow path 51) that connects the exhaust gas flow path 12a on the gas inlet 12A side and the exhaust gas flow path 12c on the gas outlet 12B side without the turbine 30. Equipped with.
 バイパス管50は、図1のように側面視したとき、ガス入口12A側からガス出口12B側に向かったL字形状とされ、軸線が直線状の流路(直線流路53)を有するストレート管52と、軸線が略直角に屈曲した流路(屈曲流路55)を有する1本のエルボ管54とを備えている。これによって、バイパス管50に設けられた曲げ部を1箇所とすることができるので、レイアウトに制約がある小型の過給機1に適用できる。また、バイパス管50は2つの部材(ストレート管52及びエルボ管54)によって構成された簡便な構造とすることができる。
 ストレート管52及びエルボ管54は、軸線に沿った流路形状が略円形状とされていることが好ましい。
The bypass pipe 50 is a straight pipe having an L-shaped flow path (straight flow path 53) with an axial line that is straight when viewed from the side as shown in FIG. 1 and extending from the gas inlet 12A side toward the gas outlet 12B side. 52 and one elbow pipe 54 having a flow path (bending flow path 55) whose axis is bent substantially at a right angle. Accordingly, since the bent portion provided in the bypass pipe 50 can be provided at one place, it can be applied to the small-sized supercharger 1 having a layout restriction. Further, the bypass pipe 50 may have a simple structure composed of two members (straight pipe 52 and elbow pipe 54).
The straight tube 52 and the elbow tube 54 preferably have a substantially circular flow path shape along the axis.
 ストレート管52は、一端がガス入口12A側の排ガス流路12aを形成しているケーシング10に接続されている。
 ストレート管52が接続されている部分のケーシング10には、排ガス流路12aとケーシング10の外部とを連通する入口側接続流路16が形成されている。入口側接続流路16は、ガス入口12Aから流入する排気ガス(図中の矢印Gi)の流入方向に軸線を有する。
 ストレート管52は、入口側接続流路16の軸線の延長線上に直線流路53の軸線が位置するようにケーシング10に対して配置される。すなわち、直線流路53の軸線方向は、ガス入口12Aから流入する排気ガスの流入方向に一致している。これによって、ガス入口12Aから流入した排気ガスは転向されることなくバイパス流路51に導かれる。
One end of the straight pipe 52 is connected to the casing 10 forming the exhaust gas passage 12a on the gas inlet 12A side.
An inlet-side connection flow channel 16 that connects the exhaust gas flow channel 12a and the outside of the casing 10 is formed in the portion of the casing 10 to which the straight pipe 52 is connected. The inlet-side connection flow path 16 has an axis in the inflow direction of the exhaust gas (arrow Gi in the figure) flowing in from the gas inlet 12A.
The straight pipe 52 is arranged with respect to the casing 10 such that the axis of the linear flow passage 53 is located on an extension of the axis of the inlet side connection flow passage 16. That is, the axial direction of the straight flow path 53 coincides with the inflow direction of the exhaust gas flowing in from the gas inlet 12A. As a result, the exhaust gas flowing in from the gas inlet 12A is guided to the bypass passage 51 without being diverted.
 エルボ管54は、一端がストレート管52の他端(ケーシング10に接続されている端部とは異なる端部)に接続されている。また、エルボ管54は、他端がガス出口12B側の排ガス流路12cを形成しているケーシング10に接続されている。
 エルボ管54が接続される部分のケーシング10には、ケーシング10の外部と排ガス流路12cとを連通する出口側接続流路(接続流路)18が形成されている。
 エルボ管54は、前述の通り、軸線が滑らかに略直角に屈曲しているので、出口側接続流路18の軸線方向と直線流路53の軸線方向とは略直交することになる。
One end of the elbow pipe 54 is connected to the other end of the straight pipe 52 (an end portion different from the end portion connected to the casing 10 ). The other end of the elbow pipe 54 is connected to the casing 10 forming the exhaust gas passage 12c on the gas outlet 12B side.
An outlet-side connection flow channel (connection flow channel) 18 that connects the outside of the casing 10 and the exhaust gas flow channel 12c is formed in the portion of the casing 10 to which the elbow pipe 54 is connected.
As described above, since the axis of the elbow pipe 54 is smoothly bent at a substantially right angle, the axial direction of the outlet-side connection flow path 18 and the axial direction of the straight flow path 53 are substantially orthogonal to each other.
 図1及び図2に示すように、出口側接続流路18の形状は、エルボ管54との接続部14において、エルボ管54の流路形状に合わせた略円形状とされている。また、出口側接続流路18の形状は、接続部14側から排ガス流路12c側に向かうに伴って、幅方向が拡大されるとともに高さ方向が縮小された扁平形状に変化している。
 このとき、接続部14側から排ガス流路12c側に向かって、出口側接続流路18の流路面積が略一定に保たれるように形状を変化させる。これによって、例えばガス出口12B側のケーシング10の形状や他の部品との関係で高さ方向における寸法に制約がある場合であっても、高さ方向に薄くなる扁平形状とすることで流路面積を確保することができる。
 なお、出口側接続流路18を形成する部分のケーシング10は、鋳造によって製作されてもよい。これによって、複雑な形状とされた出口側接続流路18を容易に形成できる。
As shown in FIGS. 1 and 2, the shape of the outlet-side connection flow path 18 is a substantially circular shape that matches the flow path shape of the elbow pipe 54 at the connection portion 14 with the elbow pipe 54. Further, the shape of the outlet-side connection flow channel 18 is changed to a flat shape in which the width direction is enlarged and the height direction is reduced as it goes from the connection portion 14 side to the exhaust gas flow channel 12c side.
At this time, the shape is changed from the side of the connecting portion 14 toward the side of the exhaust gas channel 12c so that the channel area of the outlet side connecting channel 18 is maintained substantially constant. Accordingly, even if the dimension in the height direction is restricted due to the shape of the casing 10 on the gas outlet 12B side or the relationship with other components, the flow path can be reduced to a flat shape that becomes thinner in the height direction. The area can be secured.
The casing 10 of the portion forming the outlet-side connection flow path 18 may be manufactured by casting. This makes it possible to easily form the outlet-side connection flow path 18 having a complicated shape.
 図1に示すように、前述のストレート管52には、開度の制御が可能な開閉弁60が取り付けられている。
 開閉弁60は、例えば過給機1が搭載されている内燃機関を制御する制御部(図示せず)からの信号によって開度が制御される。これによって、バイパス流路51を流通する排気ガスの流量を調節できる。
 なお、開閉弁60の取付位置は適宜変更できるものとされ、例えばエルボ管54に取り付けてもよい。
As shown in FIG. 1, an opening/closing valve 60 capable of controlling the opening is attached to the straight pipe 52 described above.
The opening/closing valve 60 has its opening controlled by a signal from a control unit (not shown) that controls the internal combustion engine in which the supercharger 1 is mounted, for example. Thereby, the flow rate of the exhaust gas flowing through the bypass passage 51 can be adjusted.
The mounting position of the on-off valve 60 can be changed as appropriate, and may be mounted on the elbow pipe 54, for example.
 また、前述のストレート管52は、軸線方向に伸縮するエキスパンション(伸縮部)62を設けてもよい。エキスパンション62は、ストレート管52の軸線方向の伸縮を吸収できる。これによって、バイパス管50に生じる熱伸びや熱収縮を吸収できる。
 ストレート管52に開閉弁60が取り付けられている場合、エキスパンション62は、開閉弁60の下流側(出口側接続流路18側)のストレート管52に取り付けることが好ましい。これによって、開閉弁60をケーシング10に容易に取り付けることができる。なお、エキスパンション62の取付位置は適宜変更できるものとされ、開閉弁60の上流側のストレート管52に取り付けてもよい。
Further, the straight tube 52 described above may be provided with an expansion (expansion/contraction portion) 62 that expands and contracts in the axial direction. The expansion 62 can absorb the expansion and contraction of the straight tube 52 in the axial direction. This makes it possible to absorb thermal expansion and thermal contraction that occur in the bypass pipe 50.
When the opening/closing valve 60 is attached to the straight pipe 52, the expansion 62 is preferably attached to the straight pipe 52 on the downstream side of the opening/closing valve 60 (outlet side connection flow path 18 side). Thereby, the opening/closing valve 60 can be easily attached to the casing 10. The mounting position of the expansion 62 can be changed as appropriate, and the expansion 62 may be mounted on the straight pipe 52 on the upstream side of the on-off valve 60.
 次に、排気ガスの流れについて説明する。
〔開閉弁が閉状態の場合〕
 過給機1が搭載される内燃機関が低負荷で動作するときであっても過給機の性能を向上させるために、例えば、低負荷時においても高い過給圧が得られるようなノズル(通常の設計よりも小さいノズル)を選定することがある。このような低負荷時において、バイパス管50によって排気ガスの一部をバイパスさせてしまうと、バイパスされた排気ガスの分だけタービン30の出力が落ちてしまい所望の過給圧を得られない。このため、低負荷時においては、バイパス流路51に排気ガスが流通しないように、開閉弁60を閉状態とする。
Next, the flow of exhaust gas will be described.
[When the on-off valve is closed]
In order to improve the performance of the supercharger even when the internal combustion engine in which the supercharger 1 is mounted operates at a low load, for example, a nozzle (a nozzle that can obtain a high supercharging pressure even at a low load) ( A nozzle smaller than the usual design may be selected. If a part of the exhaust gas is bypassed by the bypass pipe 50 at such a low load, the output of the turbine 30 is reduced by the amount of the bypassed exhaust gas, and the desired boost pressure cannot be obtained. Therefore, when the load is low, the on-off valve 60 is closed so that the exhaust gas does not flow through the bypass passage 51.
 開閉弁60が閉状態の場合、ガス入口12Aから流入したすべての排気ガスは、排ガス流路12a、排ガス流路12bを流通しつつタービン30を駆動させて、排ガス流路12cを流通してガス出口12Bから流出する(図中の矢印Go)。 When the on-off valve 60 is in the closed state, all the exhaust gas flowing from the gas inlet 12A drives the turbine 30 while flowing through the exhaust gas passage 12a and the exhaust gas passage 12b, and flows through the exhaust gas passage 12c. It flows out from the outlet 12B (arrow Go in the figure).
〔開閉弁が開状態の場合〕
 過給機1が搭載される内燃機関が低負荷で動作するときであっても過給機の性能を向上させるために、例えば、低負荷時においても高い過給圧が得られるようなノズル(通常の設計よりも小さいノズル)を選定することがある。しかし、このような内燃機関が高負荷で動作する場合、過給機1の過給圧が高くなりすぎてしまう。このため、高負荷時においては、敢えてタービン30の出力を落とすために、バイパス流路51に排気ガスが流通するように、開閉弁60を開状態とする。ここで言う「開状態」とは、開度が100%の状態(全開状態)のみならず、開度が0%よりも大きく100よりも小さい状態を含む。
[When the on-off valve is open]
In order to improve the performance of the supercharger even when the internal combustion engine in which the supercharger 1 is mounted operates at a low load, for example, a nozzle (a nozzle that can obtain a high supercharging pressure even at a low load) ( A nozzle smaller than the usual design may be selected. However, when such an internal combustion engine operates at a high load, the supercharging pressure of the supercharger 1 becomes too high. Therefore, at the time of high load, the opening/closing valve 60 is opened so that the exhaust gas flows through the bypass passage 51 in order to intentionally reduce the output of the turbine 30. The “open state” mentioned here includes not only a state where the opening degree is 100% (fully opened state) but also a state where the opening degree is larger than 0% and smaller than 100.
 開閉弁60が開状態の場合、ガス入口12Aから流入した排気ガスの一部は、排ガス流路12a、排ガス流路12bを流通しつつタービン30を駆動させて、排ガス流路12cを流通してガス出口12Bから流出する。 When the on-off valve 60 is in the open state, a part of the exhaust gas flowing from the gas inlet 12A drives the turbine 30 while flowing through the exhaust gas passage 12a and the exhaust gas passage 12b, and flows through the exhaust gas passage 12c. It flows out from the gas outlet 12B.
 一方、他の排気ガスは、排ガス流路12aから入口側接続流路16を介して直線流路53(バイパス流路51)に導かれる(図中の矢印Bi)。 On the other hand, the other exhaust gas is guided from the exhaust gas flow path 12a to the straight flow path 53 (bypass flow path 51) via the inlet side connection flow path 16 (arrow Bi in the figure).
 直線流路53に導かれた排気ガスは、屈曲流路55に到達して偏向された後に、出口側接続流路18に導かれる。 The exhaust gas guided to the straight flow path 53 reaches the bent flow path 55, is deflected, and then is guided to the outlet side connection flow path 18.
 出口側接続流路18に導かれた排気ガスは、外周側リング34cの外周壁とケーシング10とによって形成されている空間S1を通過して、ガス出口12B側の排ガス流路12cに導かれる(図中の矢印Bo)。 The exhaust gas guided to the outlet side connection flow path 18 passes through the space S1 formed by the outer peripheral wall of the outer peripheral side ring 34c and the casing 10 and is guided to the exhaust gas flow path 12c on the gas outlet 12B side ( Arrow Bo in the figure).
 その後、タービン30を駆動させた排気ガスと合流して、ガス出口12Bから流出する(図中の矢印Go)。 After that, it merges with the exhaust gas that has driven the turbine 30 and flows out from the gas outlet 12B (arrow Go in the figure).
 なお、開閉弁60を開状態から閉状態に動作させるとき、急激に開閉弁60を動作させてしまうと、タービン30に流れ込む排気ガスの流量が急激に増加して、それに伴ってタービン30の出力が急激に増加してしまう。同時に、圧縮機の翼車(図示せず)の回転数が急激に増加することになる。そうすると、圧縮機にてサージングが発生する可能性がある。
 このため、圧縮機でのサージングを回避するために、開閉弁60は徐々に閉じることが好ましい。例えば、開閉弁60を全開状態から全閉状態に動作させるとき、5秒以上かけて動作させることが好ましい。
 なお、開閉弁60の動作時間は各機器の仕様に応じて適宜変更できることは言うまでもない。ただし、開閉弁60を開状態から閉状態に動作させる時間は、開閉弁60を閉状態から開状態に動作させる時間よりも長いことが好ましい。
When the on-off valve 60 is operated from the open state to the closed state, if the on-off valve 60 is suddenly operated, the flow rate of the exhaust gas flowing into the turbine 30 is rapidly increased, and accordingly, the output of the turbine 30 is increased. Will increase rapidly. At the same time, the rotation speed of the impeller (not shown) of the compressor rapidly increases. Then, surging may occur in the compressor.
For this reason, it is preferable to gradually close the on-off valve 60 in order to avoid surging in the compressor. For example, when operating the open/close valve 60 from the fully open state to the fully closed state, it is preferable to operate it for 5 seconds or more.
Needless to say, the operating time of the on-off valve 60 can be changed as appropriate according to the specifications of each device. However, the time for operating the on-off valve 60 from the open state to the closed state is preferably longer than the time for operating the on-off valve 60 from the closed state to the open state.
 また、仮に過給機1の可動部(タービン30、ロータ軸33、圧縮機(図示せず)等)が故障した場合であっても、内燃機関は運転させておく必要があるので排ガス流路12に供給される排気ガスを遮断することはできない。このため、可動部の更なる損傷を回避するために、可動部をロックする機構を設けてもよい。本実施形態の場合、バイパス管50がタービン30側に設置されているので、作業員によるアクセスの容易性に考慮して、圧縮機側にロック機構を設けることが好ましい。 Further, even if the moving parts (the turbine 30, the rotor shaft 33, the compressor (not shown), etc.) of the supercharger 1 fail, the internal combustion engine needs to be operated, so the exhaust gas passage The exhaust gas supplied to 12 cannot be interrupted. Therefore, a mechanism for locking the movable part may be provided in order to avoid further damage to the movable part. In the case of this embodiment, since the bypass pipe 50 is installed on the turbine 30 side, it is preferable to provide a lock mechanism on the compressor side in consideration of the ease of access by an operator.
 本実施形態においては、以下の効果を奏する。
 ケーシング10が備えているバイパス管50に設けられた曲げ部は、エルボ管54の1箇所のみとされるので、レイアウトに制約がある小型の過給機1に適用できる。また、例えば2箇所の曲げ部ある場合と比べて、曲げ部によって生じる圧力損失を抑制できる。更に、バイパス管50は2つの部材(ストレート管52及びエルボ管54)によって構成された簡便な構造とされているので、製作に要する時間やコストを抑制できる。
This embodiment has the following effects.
Since the bypass pipe 50 provided in the casing 10 has only one bent portion in the elbow pipe 54, it can be applied to the small-sized supercharger 1 having a layout restriction. Further, for example, compared with the case where there are two bent portions, the pressure loss caused by the bent portions can be suppressed. Furthermore, since the bypass pipe 50 has a simple structure composed of two members (straight pipe 52 and elbow pipe 54), the time and cost required for manufacturing can be suppressed.
 また、出口側接続流路18は、その流路面積を略一定に保ちつつ流路の形状がエルボ管54に合わせた略円形状から扁平形状に変化している。これによって、例えばガス出口12B側のケーシング10の形状や他の部品との関係で所定方向における寸法に制約がある場合であっても、所定方向に薄くなる扁平形状とすることで流路面積を確保することができる。 Further, the outlet-side connection flow passage 18 has its flow passage shape changed from a substantially circular shape adapted to the elbow pipe 54 to a flat shape while keeping the flow passage area substantially constant. Thus, for example, even if the shape of the casing 10 on the gas outlet 12B side or the size of the casing 10 in the predetermined direction is restricted due to the relationship with other components, the flattened shape that thins in the predetermined direction reduces the flow passage area. Can be secured.
 また、バイパス管50に設けられた開閉弁60は、例えば過給機1が搭載されている内燃機関の制御部から送信された信号によって開閉状態が制御される。これによって、内燃機関の仕様や状態に適宜対応させてバイパス流路51を流通する排気ガスの流量を制御できる。 The open/close state of the open/close valve 60 provided in the bypass pipe 50 is controlled by a signal transmitted from, for example, a control unit of an internal combustion engine in which the supercharger 1 is mounted. This makes it possible to control the flow rate of the exhaust gas flowing through the bypass passage 51 in accordance with the specifications and state of the internal combustion engine.
 また、直線流路53の軸線方向は、ガス入口12Aから流入する排気ガスの流入方向に一致している。これによって、ガス入口12Aから流入した排気ガスは転向されることなくバイパス流路51に導かれる。このため、バイパス配管に導かれた排気ガスの圧力損失を抑制できる。 Moreover, the axial direction of the linear flow path 53 coincides with the inflow direction of the exhaust gas flowing from the gas inlet 12A. As a result, the exhaust gas flowing in from the gas inlet 12A is guided to the bypass passage 51 without being diverted. Therefore, the pressure loss of the exhaust gas guided to the bypass pipe can be suppressed.
 また、ストレート管52には、軸線方向に伸縮するエキスパンション62が備えられている。これによって、排気ガスの流通によってバイパス管50に生じる熱伸びや熱収縮を吸収できる。 Also, the straight pipe 52 is provided with an expansion 62 that expands and contracts in the axial direction. This makes it possible to absorb the thermal expansion and thermal contraction that occur in the bypass pipe 50 due to the flow of the exhaust gas.
 なお、バイパス管50の形状は、前述の実施形態のものに限らず、内燃機関や過給機の仕様、図示しない各機器のレイアウトによって任意に変更してもよい。 The shape of the bypass pipe 50 is not limited to that of the above-described embodiment, and may be arbitrarily changed according to the specifications of the internal combustion engine or the supercharger and the layout of each device (not shown).
 また、前述の実施形態においては軸流タービンを用いて説明したが、パワータービン等の回転機械にも適用可能である。 Further, although the above embodiment has been described using the axial flow turbine, it can be applied to a rotating machine such as a power turbine.
1 過給機
10  ケーシング
12(12a,12b,12c) 排ガス流路
12A ガス入口
12B ガス出口
14 接続部
16 入口側接続流路
18 出口側接続流路
30 タービン
31 タービンディスク
32 動翼
33 ロータ軸
34 ノズルリング
34a ガイドベーン
34b 内周側リング
34c 外周側リング
50 バイパス管
51 バイパス流路
52 ストレート管
53 直線流路
54 エルボ管
55 屈曲流路
60 開閉弁
62 エキスパンション
DESCRIPTION OF SYMBOLS 1 Supercharger 10 Casing 12 (12a, 12b, 12c) Exhaust gas flow path 12A Gas inlet 12B Gas outlet 14 Connection part 16 Entrance side connection flow path 18 Exit side connection flow path 30 Turbine 31 Turbine disk 32 Moving blade 33 Rotor shaft 34 Nozzle ring 34a Guide vane 34b Inner peripheral side ring 34c Outer peripheral side ring 50 Bypass pipe 51 Bypass flow path 52 Straight pipe 53 Straight flow path 54 Elbow pipe 55 Bending flow path 60 Open/close valve 62 Expansion

Claims (8)

  1.  内燃機関から排出された排気ガスが流通する排ガス流路を形成するとともに、該排ガス流路を流通する前記排気ガスによって駆動されるタービンが収容される過給機のケーシングであって、
     前記タービンを介さずに排気ガス入口側の前記排ガス流路と排気ガス出口側の前記排ガス流路とを連通させるバイパス管を備え、
     前記バイパス管は、前記排気ガス入口側に接続され、直線状の流路を有するストレート管と、該ストレート管及び前記排気ガス出口側に接続され、屈曲する流路を有するエルボ管と、から構成されている過給機のケーシング。
    A casing of a supercharger that forms an exhaust gas passage through which exhaust gas discharged from an internal combustion engine flows, and that accommodates a turbine driven by the exhaust gas flowing through the exhaust gas passage,
    A bypass pipe that connects the exhaust gas passage on the exhaust gas inlet side and the exhaust gas passage on the exhaust gas outlet side without going through the turbine,
    The bypass pipe is composed of a straight pipe connected to the exhaust gas inlet side and having a linear flow passage, and an elbow pipe connected to the straight pipe and the exhaust gas outlet side and having a bent flow passage. The casing of the turbocharger.
  2.  前記エルボ管は、軸線に沿った断面が略円形状とされ、
     前記エルボ管との接続部と前記排ガス流路とを連通させる接続流路の形状は、前記略円形状から流路面積を略一定に保ちつつ扁平形状に変化している請求項1に記載の過給機のケーシング。
    The elbow tube has a substantially circular cross section along the axis,
    The shape of the connection flow path that connects the connection portion with the elbow pipe and the exhaust gas flow path is changed from the substantially circular shape to a flat shape while keeping the flow path area substantially constant. Supercharger casing.
  3.  前記接続流路は、鋳造によって形成されている請求項2に記載の過給機のケーシング。 The casing of the supercharger according to claim 2, wherein the connection channel is formed by casting.
  4.  前記バイパス管は、外部からの信号によって弁の開閉が制御される開閉弁を備えている請求項1に記載の過給機のケーシング。 The casing of the supercharger according to claim 1, wherein the bypass pipe includes an opening/closing valve whose opening/closing is controlled by a signal from the outside.
  5.  前記ストレート管は、軸線方向と前記排気ガス入口から流入する前記排気ガスの流入方向とが略一致するように配置されている請求項1に記載の過給機のケーシング。 The casing of the supercharger according to claim 1, wherein the straight pipe is arranged so that an axial direction thereof and an inflow direction of the exhaust gas flowing from the exhaust gas inlet substantially coincide with each other.
  6.  前記ストレート管は、軸線方向に伸縮する伸縮部を備えている請求項1から5のいずれかに記載の過給機のケーシング。 The casing of the turbocharger according to any one of claims 1 to 5, wherein the straight pipe includes an expansion/contraction part that expands/contracts in the axial direction.
  7.  内燃機関から排出された排気ガスが流通する排ガス流路を形成するとともに、該排ガス流路を流通する前記排気ガスによって駆動されるタービンが収容される過給機のケーシングであって、
     前記タービンを介さずに排気ガス入口側の前記排ガス流路と排気ガス出口側の前記排ガス流路とを連通させるバイパス管を備え、
     前記バイパス管は、軸線に沿った断面積が略円形状とされ、
     前記バイパス管との接続部と前記排ガス流路とを連通させる接続流路は、流路形状が前記略円形状から断面積を略一定に保ちつつ扁平形状に変化している過給機のケーシング。
    A casing of a supercharger that forms an exhaust gas passage through which exhaust gas discharged from an internal combustion engine flows, and that accommodates a turbine driven by the exhaust gas flowing through the exhaust gas passage,
    A bypass pipe that connects the exhaust gas passage on the exhaust gas inlet side and the exhaust gas passage on the exhaust gas outlet side without going through the turbine,
    The bypass pipe has a substantially circular cross-sectional area along the axis,
    The connection flow passage that connects the connection portion with the bypass pipe and the exhaust gas flow passage has a flow passage shape that changes from the substantially circular shape to a flat shape while maintaining a substantially constant cross-sectional area. ..
  8.  請求項1又は7に記載の過給機のケーシングと、
     前記排気ガスによって駆動される前記タービンと、
    を備えている過給機。
    A casing of the supercharger according to claim 1 or 7,
    The turbine driven by the exhaust gas;
    Equipped with a supercharger.
PCT/JP2020/004046 2019-02-13 2020-02-04 Supercharger casing and supercharger provided with same WO2020166426A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080013533.7A CN113412364B (en) 2019-02-13 2020-02-04 Supercharger housing and supercharger provided with same
KR1020217024043A KR102632033B1 (en) 2019-02-13 2020-02-04 Supercharger casing and supercharger provided therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019023847A JP7143234B2 (en) 2019-02-13 2019-02-13 Supercharger casing and supercharger provided with the same
JP2019-023847 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020166426A1 true WO2020166426A1 (en) 2020-08-20

Family

ID=72044893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004046 WO2020166426A1 (en) 2019-02-13 2020-02-04 Supercharger casing and supercharger provided with same

Country Status (4)

Country Link
JP (1) JP7143234B2 (en)
KR (1) KR102632033B1 (en)
CN (1) CN113412364B (en)
WO (1) WO2020166426A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121833U (en) * 1984-07-13 1986-02-08 トヨタ自動車株式会社 Twin entry type turbocharger
JPS63128242U (en) * 1987-02-17 1988-08-22
JP2010025104A (en) * 2008-07-16 2010-02-04 Borgwarner Inc Thermally operated bypass valve for controlling passive warm up of after-treatment device
JP2018119510A (en) * 2017-01-27 2018-08-02 株式会社 Acr Turbocharging system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165564U (en) 1984-10-04 1986-05-06
JP2013124626A (en) 2011-12-15 2013-06-24 Mitsubishi Heavy Ind Ltd Exhaust gas inlet casing of turbocharger
US9316146B2 (en) * 2013-01-29 2016-04-19 Eaton Corporation Supercharger air flow diverter
JP6121833B2 (en) 2013-07-29 2017-04-26 京セラ株式会社 Electronic device and its control method
DE102015201805B4 (en) * 2015-02-03 2024-05-29 Borgwarner Inc. Exhaust turbocharger
CN107709726B (en) * 2015-11-09 2020-12-22 三菱重工发动机和增压器株式会社 Pipe connecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121833U (en) * 1984-07-13 1986-02-08 トヨタ自動車株式会社 Twin entry type turbocharger
JPS63128242U (en) * 1987-02-17 1988-08-22
JP2010025104A (en) * 2008-07-16 2010-02-04 Borgwarner Inc Thermally operated bypass valve for controlling passive warm up of after-treatment device
JP2018119510A (en) * 2017-01-27 2018-08-02 株式会社 Acr Turbocharging system

Also Published As

Publication number Publication date
JP2020133422A (en) 2020-08-31
CN113412364A (en) 2021-09-17
JP7143234B2 (en) 2022-09-28
KR20210104151A (en) 2021-08-24
KR102632033B1 (en) 2024-01-31
CN113412364B (en) 2024-04-09

Similar Documents

Publication Publication Date Title
US7461507B2 (en) High response compact turbocharger
JP4909405B2 (en) Centrifugal compressor
US4512714A (en) Variable flow turbine
US20200208651A1 (en) Radial compressor having an iris mechanism for a supercharging device of an internal combustion engine, supercharging device and blade for the iris mechanism
JPH0519013B2 (en)
WO2010095534A1 (en) Turbo supercharger
US20110131976A1 (en) Exhaust gas turbocharger for an internal combustion engine
JP2008544126A (en) Exhaust turbocharger exhaust turbine
JPS6285127A (en) Improvement of variable inlet for radial turbine
GB2391265A (en) Compressor inlet with swirl vanes, inner sleeve and shut-off valve
EP3301277B1 (en) Turbocharger with ported turbine shroud
WO2018151267A1 (en) Supercharger
JP2007192129A (en) Turbocharger and turbine wheel
WO2020166426A1 (en) Supercharger casing and supercharger provided with same
US6834500B2 (en) Turbine for an exhaust gas turbocharger
JP2010071140A (en) Variable displacement turbocharger
JP5148425B2 (en) Centrifugal compressor
JP2004300966A (en) Variable displacement turbocharger
JP2007192180A (en) Turbine for turbocharger
JP2010013972A (en) Variable capacity type turbocharger
JP4407262B2 (en) Supercharger compressor with surge suppression means
JP2008169767A (en) Variable displacement supercharger
JP7357848B2 (en) turbo charger
WO2024009407A1 (en) Casing of centrifugal compressor, centrifugal compressor, and turbocharger
US11603859B2 (en) Variable geometry turbine and supercharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217024043

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756449

Country of ref document: EP

Kind code of ref document: A1