WO2020166344A1 - Motor device - Google Patents

Motor device Download PDF

Info

Publication number
WO2020166344A1
WO2020166344A1 PCT/JP2020/003312 JP2020003312W WO2020166344A1 WO 2020166344 A1 WO2020166344 A1 WO 2020166344A1 JP 2020003312 W JP2020003312 W JP 2020003312W WO 2020166344 A1 WO2020166344 A1 WO 2020166344A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
power
rotating shaft
detection element
magnetic detection
Prior art date
Application number
PCT/JP2020/003312
Other languages
French (fr)
Japanese (ja)
Inventor
裕人 佐藤
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Publication of WO2020166344A1 publication Critical patent/WO2020166344A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports

Definitions

  • the present disclosure relates to a motor device.
  • a motor device that includes a motor and a control device that controls the motor.
  • the control device has a power board and a control board.
  • the power board is provided with a power element that controls the current supplied to the motor.
  • the control board is provided with a microcomputer that controls driving of the power element.
  • the motor device has a rotation angle sensor for detecting the rotation angle of the rotation shaft of the motor.
  • the rotation angle sensor has a sensor magnet provided at the tip of the rotation shaft of the motor and a magnetic detection element that generates an electric signal according to a change in the magnetic field.
  • the magnetic detection element is provided on the control board.
  • the microcomputer calculates the rotation angle of the rotation shaft of the motor based on the electric signal generated by the magnetic detection element.
  • the microcomputer controls energization to the motor coil by controlling on/off of the power element based on the rotation angle.
  • a magnetic flux source in addition to the sensor magnet.
  • a power substrate can be cited. Since a large current flows through the power board when the motor coil is energized, the magnetic field generated due to the current flow tends to become large.
  • the rotation angle of the motor rotation axis calculated based on the electrical signal generated by the magnetic detection element and the actual rotation. There is concern that the error between the corners will increase.
  • a motor device includes a motor having a rotation shaft, a control device configured to control operation of the motor, and a rotation angle configured to detect a rotation angle of the rotation shaft. And a sensor.
  • the control device includes a power board provided with a power element configured to control a current supplied to the motor, and a microcomputer configured to control driving of the power element. And a control board.
  • the power board and the control board are arranged side by side in the axial direction of the rotation axis with respect to the rotation axis, and the power board is arranged in the axial direction of the rotation axis such that one end of the rotation axis and the control board. It is located between.
  • the rotation angle sensor includes a sensor magnet and a magnetic detection element configured to generate an electric signal according to an applied magnetic field.
  • the sensor magnet is provided at the one end of the rotary shaft, and the magnetic detection element is provided at the surface of the power substrate facing the one end of the rotary shaft so as to face the sensor magnet. There is.
  • FIG. 6 is a schematic cross-sectional view showing a peripheral structure of a magnetic detection element in a motor device of a comparative example.
  • FIG. 2 is a schematic cross-sectional view showing a peripheral structure of a magnetic detection element in the motor device of FIG. 1.
  • the motor device 1 includes a motor 2 having a rotating shaft 41 and a control device 3 for controlling the operation of the motor 2.
  • a plurality of electronic components are mounted on the control device 3.
  • the control device 3 has a power board 4 and a control board 5.
  • the motor device 1 also includes an external connection portion 6 for connecting to an external device, a cylindrical motor housing 7 that houses the motor 2, and a cover 8. The cover 8 is attached to one end of the motor housing 7.
  • the side where the cover 8 is located with respect to the motor 2 is the axial first side
  • the side where the motor 2 is located with respect to the cover 8 is the axial second side.
  • the axial direction X is a direction in which the rotating shaft 41 extends.
  • the rotating shaft 41 has a first end on the first axial side and a second end on the second axial side.
  • the motor device 1 is mounted on, for example, an electric power steering device of a vehicle.
  • the motor 2 includes a stator 11 fixed in the motor housing 7 and a rotor 12 rotatably arranged with respect to the stator 11.
  • the motor housing 7 has a tubular housing body 21 having an open end 21a and a closed end, and a flat end plate 22.
  • the end plate 22 is attached to the opening end 21a so as to close the opening of the housing body 21.
  • the end plate 22 functions as a heat sink for radiating the heat generated by the motor device 1 to the outside.
  • a first insertion hole 23 penetrating in the axial direction X is formed in the center of the end wall existing at the closed end of the housing body 21.
  • a second insertion hole 24 is formed at the center of the end plate 22 so as to penetrate in the axial direction X.
  • the second insertion hole 24 has a first hole 24a, a second hole 24b, and a third hole 24c in order from the second axial side toward the first axial side.
  • the inner diameter of the first hole 24a and the inner diameter of the third hole 24c are larger than the inner diameter of the second hole 24b.
  • the open end 21a of the housing body 21 has a substantially circular shape.
  • a plurality of engaging projections 25 are formed on the outer peripheral surface of the opening end 21a.
  • the end plate 22 is formed with a plurality of support portions 26 that protrude toward the first side in the axial direction.
  • the stator 11 includes a cylindrical stator core 31 and a motor coil 32 wound around the stator core 31.
  • the stator core 31 is fixed inside the peripheral wall of the housing body 21.
  • the connection terminal 32 a of the motor coil 32 is connected to the bus bar 33.
  • the bus bar 33 extends in the axial direction X from the external connection portion 6 to the motor coil 32.
  • the rotor 12 includes a cylindrical rotor core 42 and a plurality of permanent magnets 43 fixed to the outer circumference of the rotor core 42.
  • the rotor core 42 is fixed to the rotating shaft 41 so as to rotate integrally with the rotating shaft 41.
  • the permanent magnets 43 are arranged so that the N poles and the S poles are alternated in the circumferential direction of the rotor core 42.
  • a first bearing 44 is provided in the first insertion hole 23.
  • the first bearing 44 rotatably supports the second end of the rotating shaft 41.
  • a second bearing 45 is provided in the first hole 24a of the second insertion hole 24.
  • the second bearing 45 rotatably supports the first end of the rotating shaft 41.
  • the rotary shaft 41 is rotatably supported by the inner surface of the motor housing 7 via the first bearing 44 and the second bearing 45.
  • the first end of the rotary shaft 41 that is, the end facing the power board 4 does not protrude from the second insertion hole 24 beyond the motor housing 7 (specifically, the end plate 22) to the first axial side.
  • the motor device 1 has a rotation angle sensor 70 for detecting the rotation angle of the rotation shaft 41.
  • the rotation angle sensor 70 has a sensor magnet 71 and a magnetic detection element 72.
  • the sensor magnet 71 is provided in a portion of the rotating shaft 41 closer to the power board 4 than a portion to which the rotor core 42 is fixed.
  • the sensor magnet 71 is provided on the end surface of the first end portion of the rotating shaft 41, that is, the end surface facing the power board 4.
  • As the sensor magnet 71 for example, a columnar two-pole magnet is adopted.
  • the outer diameter of the sensor magnet 71 is set to be larger than the outer diameter of the first end portion of the rotating shaft 41.
  • the outer diameter of the sensor magnet 71 is set smaller than the inner diameter of the third hole 24c.
  • the sensor magnet 71 is arranged at the same position as the third hole 24c in the axial direction X, that is, located in the third hole 24c.
  • the magnetic detection element 72 is provided on the power board 4.
  • the power board 4 and the control board 5 will be described.
  • the power board 4 and the control board 5 are arranged side by side in the axial direction X with respect to the rotating shaft 41.
  • the power board 4 and the control board 5 are arranged side by side in the order closer to the rotating shaft 41. That is, in the axial direction X of the rotary shaft 41, the power board 4 is arranged between the first end portion of the rotary shaft 41 and the control board 5.
  • the power board 4 and the control board 5 are each formed in a substantially disc shape corresponding to the shape of the cover 8.
  • the power board 4 and the control board 5 are arranged so that the thickness directions of the power board 4 and the control board 5 coincide with the axial direction X, respectively.
  • the power board 4 is provided with electronic components 100 such as a power element 101 and a magnetic detection element 72.
  • a power element 101 for example, a FET (field effect transistor) is adopted.
  • the power element 101 is connected to the connection terminal 32 a of the motor coil 32 via the bus bar 33.
  • the power element 101 controls the current supplied to the motor coil 32 via the bus bar 33.
  • the magnetic detection element 72 is provided on the surface of the power substrate 4 that faces the first end of the rotating shaft 41.
  • the magnetic detection element 72 faces the sensor magnet 71 in the axial direction X.
  • the magnetic detection element 72 is provided at a portion of the power board 4 that intersects with the axis of the rotating shaft 41.
  • a Hall element is adopted as the magnetic detection element 72.
  • the magnetic detection element 72 detects a component of the applied magnetic field in a direction orthogonal to the axial direction X.
  • the magnetic detection element 72 generates an electric signal according to the applied magnetic field.
  • Other electronic components such as the power element 101 are provided in a portion other than a portion of the power board 4 that intersects with the axis of the rotating shaft 41, for example, in a peripheral portion of the power board 4.
  • a plurality of terminal holes 102 are formed in the peripheral portion of the power board 4.
  • the control board 5 is provided with an electronic component 110 such as a microcomputer 111 that controls driving of the power element 101.
  • the microcomputer 111 is provided on the surface of the control board 5 opposite to the rotary shaft 41.
  • the microcomputer 111 is provided in a portion of the control board 5 that intersects with the axis of the rotating shaft 41.
  • a plurality of terminal holes 112 are formed in the peripheral portion of the control board 5.
  • a connector 120 that connects the control board 5 and the power board 4 to each other is provided on the surface of the control board 5 that faces the power board 4.
  • the connector 120 has a first connection line 121 and a second connection line 122.
  • the first connection line 121 connects the power element 101 and the microcomputer 111 to each other.
  • the second connection line 122 connects the magnetic detection element 72 and the microcomputer 111 to each other.
  • the ends of the first connecting line 121 and the second connecting line 122 on the first side in the axial direction are soldered to the control board 5 while being inserted into the terminal holes 112 of the control board 5.
  • the ends of the first connecting line 121 and the second connecting line 122 on the second side in the axial direction are soldered to the power board 4 while being inserted into the terminal holes 102 of the power board 4.
  • the control board 5 and the power board 4 are connected to each other.
  • the microcomputer 111 acquires the electric signal generated by the magnetic detection element 72 via the second connection line 122.
  • the microcomputer 111 calculates the rotation angle of the rotation shaft 41 of the motor 2 based on the electric signal.
  • the microcomputer 111 generates a control signal for controlling the operation of the motor 2 based on the calculated rotation angle.
  • the microcomputer 111 outputs the control signal to the power element 101 via the first connection line 121.
  • the power element 101 is turned on/off based on the control signal.
  • the microcomputer 111 controls the current supplied to the motor coil 32 via the bus bar 33 by turning on/off the power element 101. As a result, a rotating magnetic field is generated in the stator 11, and the rotor 12 rotates based on the rotating magnetic field.
  • the external connection portion 6 has a main body portion 51 and a plurality of protruding portions 52 that protrude from the main body portion 51 in the first axial direction.
  • the main body 51 is formed in a substantially disc shape when viewed in the axial direction X.
  • Each protrusion 52 is formed in a substantially rectangular tube shape. Wirings extending from devices outside the motor device 1 can be connected to the respective protrusions 52.
  • the main body 51 is fixed to the control board 5. With the external connection portion 6 fixed to the control board 5, the connection terminals arranged in the protruding portion 52 are connected to predetermined positions on the power board 4 and the control board 5.
  • the cover 8 has a shape corresponding to the shape of the open end 21a of the housing body 21, and is attached to the open end 21a.
  • the cover 8 houses the power board 4 and the control board 5.
  • the cover 8 has a cylindrical peripheral wall 61 and an end wall 62.
  • plate-shaped mounting portions 63 that project to the second side in the axial direction are formed at a plurality of locations.
  • An engaging hole 64 is formed in each mounting portion 63 so as to penetrate the mounting portion 63 in the plate thickness direction.
  • the end wall 62 is formed with a through hole 65 penetrating the end wall 62 in the axial direction X.
  • the cover 8 is mounted on the motor housing 7 by engaging the engagement protrusion 25 with the engagement hole 64 of the mounting portion 63 in a state where the protrusion 52 protrudes from the cover 8 through the through hole 65. There is.
  • the magnetic field generated by the power substrate 4 may be applied to the magnetic detection element 72. Since a large current flows through the power board 4 when the motor coil 32 is energized, the magnetic field generated in the power board 4 tends to increase due to the current flow.
  • the magnetic field applied from the power substrate 4 to the magnetic detection element 72 is a magnetic field generated by a large current flowing through the power substrate 4, and is not a magnetic field that the magnetic detection element 72 should originally detect.
  • a magnetic detection element 72 is provided on the control board 5, and a sensor magnet 71 is provided at the end of the rotary shaft 41. Then, the rotating shaft 41 is inserted into the through hole formed in the power substrate 4, so that the magnetic detection element 72 and the sensor magnet 71 are opposed to each other.
  • a magnetic field is formed around the wiring P as a center.
  • the direction of the magnetic field near the magnetic detection element 72 and the direction in which the surface of the power substrate 4 extends form an angle ⁇ 1.
  • the vicinity of the magnetic detection element 72 is, for example, a specific point P2 in a portion of the magnetic detection element 72 that contacts the control substrate 5.
  • the angle ⁇ 1 is an angle formed by the tangential direction at the point P2 of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 and the direction in which the surface of the control substrate 5 extends.
  • the absolute value of the angle ⁇ 1 becomes smaller as the power substrate 4 as the magnetic field generation source and the magnetic detection element 72 are separated from each other in the axial direction X of the rotation shaft 41. That is, the component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 in the direction orthogonal to the axial direction X tends to increase as the power substrate 4 and the magnetic detection element 72 move away from each other in the axial direction X.
  • the magnetic detection element 72 when the magnetic detection element 72 is provided on the control board 5 which is arranged apart from the power board 4 in the axial direction X, the magnetic detection element 72 is provided between the power board 4 and the control board 5 in the axial direction X. It is separated from the power board 4 by a distance therebetween. Therefore, the detection amount of the magnetic field from the power board 4 detected by the magnetic detection element 72 must be correspondingly large.
  • the magnetic detection element 72 is provided on the power board 4.
  • the strength of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 is different between the case of this embodiment and the case of the comparative example. And the same.
  • the direction of the magnetic field in the vicinity of the magnetic detection element 72 and the direction in which the surface of the power board 4 extends have an absolute value larger than the angle ⁇ 1. It forms an angle ⁇ 2.
  • the angle ⁇ 2 is an angle formed by the tangential direction at the point P2 of the magnetic field applied from the power board 4 to the magnetic detection element 72 and the direction in which the surface of the power board 4 extends. Therefore, the component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 in the direction orthogonal to the axial direction X is smaller than that in the comparative example. This is because the angle ⁇ 2 is an angle whose absolute value is larger than the angle ⁇ 1. Therefore, the cosine component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 is larger in the case of this embodiment than in the case of the comparative example. This is because it becomes smaller.
  • the detection amount of the magnetic field from the power board 4 detected by the magnetic detection element 72 is set as a comparative example. It can be smaller than the case. Thereby, it is possible to suppress the influence of the magnetic field from the power substrate 4 from being included in the electric signal generated by the magnetic detection element 72. From this, it is possible to suppress an increase in the error between the rotation angle of the rotation shaft 41 calculated by the magnetic detection element 72 and the actual rotation angle, and to improve the detection accuracy of the rotation angle of the rotation shaft 41. ..
  • the same connector 120 has a first connection line 121 and a second connection line 122 that connect the power board 4 and the control board 5 to each other. Therefore, the number of connectors can be reduced as compared with the case where separate connectors have the first connection line 121 and the second connection line 122. Accordingly, the connector that connects the power board 4 and the control board 5 can be simply configured.
  • the rotating shaft 41 is rotatably supported by the first bearing 44 and the second bearing 45 with respect to the inner surface of the motor housing 7.
  • the rotary shaft 41 swings in a direction orthogonal to the axial direction X as the first end of the rotary shaft 41 moves away from the second bearing 45, in other words, as the first end of the rotary shaft 41 projects from the second bearing 45. Easier to do.
  • the sensor magnet 71 provided at the first end also swings, so that the magnetic field applied from the sensor magnet 71 to the magnetic detection element 72 changes. Will end up. According to this embodiment, the first end of the rotary shaft 41 does not project beyond the motor housing 7.
  • the first end and the sensor magnet 71 provided at the first end may swing. Can be suppressed. Thereby, the magnetic field applied to the magnetic detection element 72 can be stabilized. Therefore, it is possible to suppress an increase in error between the rotation angle of the rotation shaft 41 calculated through the magnetic detection element 72 and the actual rotation angle, and it is possible to further improve the detection accuracy of the rotation angle of the rotation shaft 41.
  • the microcomputer 111 can be arranged at the portion of the control board 5 that intersects the axis of the rotating shaft 41.
  • the magnetic detection element 72 may be a magnetoresistive effect element instead of the hall element.
  • the microcomputer 111 may not be provided in a portion of the control board 5 that intersects with the axis of the rotating shaft 41.
  • the first end of the rotary shaft 41 of the motor 2 may protrude from the second insertion hole 24 of the motor housing 7 beyond the motor housing 7.
  • One connector 120 has the first connection line 121 and the second connection line 122, but different connectors may have the first connection line 121 and the second connection line 122, respectively.
  • the connector having the first connection line 121 and the connector having the second connection line may be separate connectors.
  • the external connection part 6 may have the function of the cover 8 without providing the cover 8. That is, the external connection portion 6 is assembled to one end portion of the motor housing 7 (open end 21 a of the housing body 21 ), and the power board 4 and the control board 5 are provided in the internal space formed by the external connection portion 6 and the motor housing 7. May be accommodated.
  • the motor 2 and the control device 3 may be redundantly provided. That is, two systems of the magnetic detection element 72 are provided on the power board 4, and two systems of the electronic component 100 such as the power element 101 are provided. Further, the control board 5 is provided with two systems of the electronic component 110 such as the microcomputer 111, and two systems of the first connection line 121 and the second connection line 122 of the connector 120 are also provided. As described above, even when the motor 2, the control device 3, and the magnetic detection element 72 are redundantly provided, the magnetic detection can be performed by providing the two-system magnetic detection elements 72 on the power board 4 that is a magnetic flux generation source. The detection amount of the magnetic field from the power board 4 detected by the element 72 can be reduced.
  • the shapes of the power board 4 and the control board 5 are substantially disk-shaped, these shapes can be changed as appropriate.
  • the motor device 1 is not limited to being mounted on the electric power steering device of the vehicle, but may be mounted on, for example, a driving device that drives the wheels of the vehicle.

Abstract

A motor device is provided with: a motor having a rotating shaft; a control device configured so as to control operation of the motor; and a rotation angle sensor configured so as to detect the rotation angle of the rotating shaft. The control device comprises a power substrate and a control substrate. The power substrate and the control substrate are arranged side by side in the axial direction of the rotating shaft, and the power substrate is arranged between the control substrate and one end of the rotating shaft in the axial direction of the rotating shaft. The rotation angle sensor comprises a sensor magnet provided to the one end of the rotating shaft and a magnetic detection element provided to the power substrate so as to face the sensor magnet.

Description

モータ装置Motor device
 本開示は、モータ装置に関する。 The present disclosure relates to a motor device.
 特許文献1に記載されるように、モータと、モータを制御する制御装置とを備えるモータ装置がある。制御装置は、パワー基板と、制御基板とを有している。パワー基板には、モータへ供給する電流を制御するパワー素子が設けられている。制御基板には、パワー素子の駆動を制御するマイクロコンピュータが設けられている。モータ装置は、モータの回転軸の回転角を検出するための回転角センサを有している。回転角センサは、モータの回転軸の先端部に設けられたセンサマグネットと、磁界の変化に応じた電気信号を生成する磁気検出素子とを有している。磁気検出素子は、制御基板に設けられている。マイクロコンピュータは、磁気検出素子により生成される電気信号に基づいて、モータの回転軸の回転角を演算する。マイクロコンピュータは、当該回転角に基づいて、パワー素子のオンオフを制御することによって、モータコイルに対する通電を制御する。 As described in Patent Document 1, there is a motor device that includes a motor and a control device that controls the motor. The control device has a power board and a control board. The power board is provided with a power element that controls the current supplied to the motor. The control board is provided with a microcomputer that controls driving of the power element. The motor device has a rotation angle sensor for detecting the rotation angle of the rotation shaft of the motor. The rotation angle sensor has a sensor magnet provided at the tip of the rotation shaft of the motor and a magnetic detection element that generates an electric signal according to a change in the magnetic field. The magnetic detection element is provided on the control board. The microcomputer calculates the rotation angle of the rotation shaft of the motor based on the electric signal generated by the magnetic detection element. The microcomputer controls energization to the motor coil by controlling on/off of the power element based on the rotation angle.
特開2011-177001号公報JP, 2011-177001, A
 制御装置が内蔵されるモータ装置においては、センサマグネット以外にも磁束源が存在する。この磁束源としては、例えばパワー基板が挙げられる。パワー基板には、モータコイルに対する通電に際して大電流が流れるため、電流が流れることに起因して発生する磁界が大きくなりがちである。センサマグネットで発生する磁界以外にパワー基板で発生する磁界が磁気検出素子に印加される場合、磁気検出素子により生成される電気信号に基づいて演算されるモータの回転軸の回転角と実際の回転角との間の誤差が大きくなることが懸念される。 In a motor device with a built-in control device, there is a magnetic flux source in addition to the sensor magnet. As the magnetic flux source, for example, a power substrate can be cited. Since a large current flows through the power board when the motor coil is energized, the magnetic field generated due to the current flow tends to become large. When a magnetic field generated by the power board is applied to the magnetic detection element in addition to the magnetic field generated by the sensor magnet, the rotation angle of the motor rotation axis calculated based on the electrical signal generated by the magnetic detection element and the actual rotation. There is concern that the error between the corners will increase.
 本開示の一態様に係るモータ装置は、回転軸を有するモータと、前記モータの作動を制御するように構成された制御装置と、前記回転軸の回転角を検出するように構成された回転角センサとを備える。前記制御装置は、前記モータへ供給する電流を制御するように構成されたパワー素子が設けられているパワー基板と、前記パワー素子の駆動を制御するように構成されたマイクロコンピュータが設けられている制御基板と、を有する。前記パワー基板及び前記制御基板は、前記回転軸に対して該回転軸の軸方向に並んで配置され、前記回転軸の軸方向において、前記パワー基板は前記回転軸の一端部と前記制御基板との間に配置されている。前記回転角センサは、センサマグネットと、印加される磁界に応じた電気信号を生成するように構成された磁気検出素子と、を有する。前記回転軸の前記一端部には、前記センサマグネットが設けられ、前記パワー基板における前記回転軸の前記一端部に対向する面には、前記磁気検出素子が前記センサマグネットに対向して設けられている。 A motor device according to an aspect of the present disclosure includes a motor having a rotation shaft, a control device configured to control operation of the motor, and a rotation angle configured to detect a rotation angle of the rotation shaft. And a sensor. The control device includes a power board provided with a power element configured to control a current supplied to the motor, and a microcomputer configured to control driving of the power element. And a control board. The power board and the control board are arranged side by side in the axial direction of the rotation axis with respect to the rotation axis, and the power board is arranged in the axial direction of the rotation axis such that one end of the rotation axis and the control board. It is located between. The rotation angle sensor includes a sensor magnet and a magnetic detection element configured to generate an electric signal according to an applied magnetic field. The sensor magnet is provided at the one end of the rotary shaft, and the magnetic detection element is provided at the surface of the power substrate facing the one end of the rotary shaft so as to face the sensor magnet. There is.
本実施形態のモータ装置の斜視図。The perspective view of the motor device of this embodiment. 図1のモータ装置の分解斜視図。The disassembled perspective view of the motor apparatus of FIG. 図1のモータ装置の断面図。Sectional drawing of the motor apparatus of FIG. 比較例のモータ装置における磁気検出素子の周辺構造を示す模式的な断面図。FIG. 6 is a schematic cross-sectional view showing a peripheral structure of a magnetic detection element in a motor device of a comparative example. 図1のモータ装置における磁気検出素子の周辺構造を示す模式的な断面図。FIG. 2 is a schematic cross-sectional view showing a peripheral structure of a magnetic detection element in the motor device of FIG. 1.
 モータ装置の一実施形態を図面に従って説明する。 An embodiment of a motor device will be described with reference to the drawings.
 図1及び図2に示すように、モータ装置1は、回転軸41を有するモータ2と、モータ2の作動を制御する制御装置3とを備えている。制御装置3には、複数の電子部品が実装されている。制御装置3は、パワー基板4と、制御基板5とを有している。また、モータ装置1は、外部の機器と接続するための外部接続部6と、モータ2を収容する筒状のモータハウジング7と、カバー8とを備えている。カバー8は、モータハウジング7の一端部に取り付けられている。 As shown in FIGS. 1 and 2, the motor device 1 includes a motor 2 having a rotating shaft 41 and a control device 3 for controlling the operation of the motor 2. A plurality of electronic components are mounted on the control device 3. The control device 3 has a power board 4 and a control board 5. The motor device 1 also includes an external connection portion 6 for connecting to an external device, a cylindrical motor housing 7 that houses the motor 2, and a cover 8. The cover 8 is attached to one end of the motor housing 7.
 以下では、説明の便宜上、回転軸41の軸方向Xにおいて、モータ2に対してカバー8が位置する側を軸方向第一側、カバー8に対してモータ2が位置する側を軸方向第二側という。軸方向Xは、回転軸41の延びる方向である。回転軸41は、軸方向第一側に第一端部を有し、軸方向第二側に第二端部を有する。モータ装置1は、例えば車両の電動パワーステアリング装置に搭載されている。 Hereinafter, for convenience of explanation, in the axial direction X of the rotary shaft 41, the side where the cover 8 is located with respect to the motor 2 is the axial first side, and the side where the motor 2 is located with respect to the cover 8 is the axial second side. Side. The axial direction X is a direction in which the rotating shaft 41 extends. The rotating shaft 41 has a first end on the first axial side and a second end on the second axial side. The motor device 1 is mounted on, for example, an electric power steering device of a vehicle.
 モータ2及びモータハウジング7の構成について説明する。 The configuration of the motor 2 and the motor housing 7 will be described.
 図3に示すように、モータ2は、モータハウジング7内に固定されたステータ11と、ステータ11に対して回転可能に配置されたロータ12とを備えている。 As shown in FIG. 3, the motor 2 includes a stator 11 fixed in the motor housing 7 and a rotor 12 rotatably arranged with respect to the stator 11.
 図2及び図3に示すように、モータハウジング7は、開口端21aと閉塞端とを有する筒状のハウジング本体21と、平板状の端板22とを有している。端板22は、ハウジング本体21の開口を閉塞するように開口端21aに取り付けられている。端板22は、モータ装置1で発生した熱を外部に放熱するためのヒートシンクとして機能する。 As shown in FIGS. 2 and 3, the motor housing 7 has a tubular housing body 21 having an open end 21a and a closed end, and a flat end plate 22. The end plate 22 is attached to the opening end 21a so as to close the opening of the housing body 21. The end plate 22 functions as a heat sink for radiating the heat generated by the motor device 1 to the outside.
 ハウジング本体21の閉塞端に存在する端壁の中央には、軸方向Xに貫通した第1挿通孔23が形成されている。端板22の中央には、軸方向Xに貫通した第2挿通孔24が形成されている。第2挿通孔24は、軸方向第二側から軸方向第一側に向かう順に、第1孔24a、第2孔24b、及び第3孔24cを有している。第1孔24aの内径及び第3孔24cの内径は、第2孔24bの内径よりもそれぞれ大きい。ハウジング本体21の開口端21aは、略円形状をなしている。開口端21aの外周面には、複数の係合突部25が形成されている。端板22には、軸方向第一側に突出した複数の支持部26が形成されている。 A first insertion hole 23 penetrating in the axial direction X is formed in the center of the end wall existing at the closed end of the housing body 21. A second insertion hole 24 is formed at the center of the end plate 22 so as to penetrate in the axial direction X. The second insertion hole 24 has a first hole 24a, a second hole 24b, and a third hole 24c in order from the second axial side toward the first axial side. The inner diameter of the first hole 24a and the inner diameter of the third hole 24c are larger than the inner diameter of the second hole 24b. The open end 21a of the housing body 21 has a substantially circular shape. A plurality of engaging projections 25 are formed on the outer peripheral surface of the opening end 21a. The end plate 22 is formed with a plurality of support portions 26 that protrude toward the first side in the axial direction.
 ステータ11は、円筒状のステータコア31、及びステータコア31に巻回されたモータコイル32を備えている。ステータコア31は、ハウジング本体21の周壁の内側に固定されている。モータコイル32の接続端子32aは、バスバー33に接続されている。バスバー33は、外部接続部6からモータコイル32まで軸方向Xに延びている。 The stator 11 includes a cylindrical stator core 31 and a motor coil 32 wound around the stator core 31. The stator core 31 is fixed inside the peripheral wall of the housing body 21. The connection terminal 32 a of the motor coil 32 is connected to the bus bar 33. The bus bar 33 extends in the axial direction X from the external connection portion 6 to the motor coil 32.
 ロータ12は、円筒状のロータコア42、及びロータコア42の外周に固定された複数の永久磁石43を備えている。ロータコア42は、回転軸41と一体回転可能なように回転軸41に固定されている。永久磁石43は、ロータコア42の周方向において、N極及びS極が交互に入れ替わるように配置されている。第1挿通孔23には、第1軸受44が設けられている。第1軸受44は、回転軸41の第二端部を回転可能に支持する。第2挿通孔24の第1孔24aには、第2軸受45が設けられている。第2軸受45は、回転軸41の第一端部を回転可能に支持する。これにより、回転軸41は、第1軸受44及び第2軸受45を介してモータハウジング7の内側面に対して回転可能に支持されている。回転軸41の第一端部、すなわちパワー基板4に対向する端部は、第2挿通孔24からモータハウジング7(詳細には端板22)を超えて軸方向第一側へ突出していない。 The rotor 12 includes a cylindrical rotor core 42 and a plurality of permanent magnets 43 fixed to the outer circumference of the rotor core 42. The rotor core 42 is fixed to the rotating shaft 41 so as to rotate integrally with the rotating shaft 41. The permanent magnets 43 are arranged so that the N poles and the S poles are alternated in the circumferential direction of the rotor core 42. A first bearing 44 is provided in the first insertion hole 23. The first bearing 44 rotatably supports the second end of the rotating shaft 41. A second bearing 45 is provided in the first hole 24a of the second insertion hole 24. The second bearing 45 rotatably supports the first end of the rotating shaft 41. As a result, the rotary shaft 41 is rotatably supported by the inner surface of the motor housing 7 via the first bearing 44 and the second bearing 45. The first end of the rotary shaft 41, that is, the end facing the power board 4 does not protrude from the second insertion hole 24 beyond the motor housing 7 (specifically, the end plate 22) to the first axial side.
 モータ装置1は、回転軸41の回転角を検出するための回転角センサ70を有している。回転角センサ70は、センサマグネット71と、磁気検出素子72とを有している。センサマグネット71は、回転軸41のうち、ロータコア42が固定されている部分よりもパワー基板4に近い側の部分に設けられている。本実施形態では、センサマグネット71は、回転軸41の第一端部の端面、すなわちパワー基板4に対向する端面に設けられている。センサマグネット71には、例えば円柱状の2極磁石が採用されている。センサマグネット71の外径は、回転軸41の第一端部の外径よりも大きく設定されている。センサマグネット71の外径は、第3孔24cの内径よりも小さく設定されている。センサマグネット71は、軸方向Xにおいて第3孔24cと同じ位置に配置されている、すなわち第3孔24c内に位置している。磁気検出素子72は、パワー基板4に設けられている。 The motor device 1 has a rotation angle sensor 70 for detecting the rotation angle of the rotation shaft 41. The rotation angle sensor 70 has a sensor magnet 71 and a magnetic detection element 72. The sensor magnet 71 is provided in a portion of the rotating shaft 41 closer to the power board 4 than a portion to which the rotor core 42 is fixed. In the present embodiment, the sensor magnet 71 is provided on the end surface of the first end portion of the rotating shaft 41, that is, the end surface facing the power board 4. As the sensor magnet 71, for example, a columnar two-pole magnet is adopted. The outer diameter of the sensor magnet 71 is set to be larger than the outer diameter of the first end portion of the rotating shaft 41. The outer diameter of the sensor magnet 71 is set smaller than the inner diameter of the third hole 24c. The sensor magnet 71 is arranged at the same position as the third hole 24c in the axial direction X, that is, located in the third hole 24c. The magnetic detection element 72 is provided on the power board 4.
 パワー基板4及び制御基板5について説明する。 The power board 4 and the control board 5 will be described.
 パワー基板4及び制御基板5は、回転軸41に対して軸方向Xに並んで配置されている。回転軸41の軸方向Xにおいて、回転軸41に近い順にパワー基板4及び制御基板5が並んで配置されている。すなわち、回転軸41の軸方向Xにおいて、パワー基板4は回転軸41の第一端部と制御基板5との間に配置されている。パワー基板4及び制御基板5は、カバー8の形状に対応した略円板状にそれぞれ形成されている。パワー基板4及び制御基板5の板厚方向が軸方向Xとそれぞれ一致するように、パワー基板4及び制御基板5は配置されている。 The power board 4 and the control board 5 are arranged side by side in the axial direction X with respect to the rotating shaft 41. In the axial direction X of the rotating shaft 41, the power board 4 and the control board 5 are arranged side by side in the order closer to the rotating shaft 41. That is, in the axial direction X of the rotary shaft 41, the power board 4 is arranged between the first end portion of the rotary shaft 41 and the control board 5. The power board 4 and the control board 5 are each formed in a substantially disc shape corresponding to the shape of the cover 8. The power board 4 and the control board 5 are arranged so that the thickness directions of the power board 4 and the control board 5 coincide with the axial direction X, respectively.
 パワー基板4には、パワー素子101や磁気検出素子72等の電子部品100が設けられている。パワー素子101には、例えばFET(電界効果型トランジスタ)が採用されている。パワー素子101は、バスバー33を介してモータコイル32の接続端子32aに接続されている。パワー素子101は、バスバー33を介してモータコイル32へ供給される電流を制御する。 The power board 4 is provided with electronic components 100 such as a power element 101 and a magnetic detection element 72. For the power element 101, for example, a FET (field effect transistor) is adopted. The power element 101 is connected to the connection terminal 32 a of the motor coil 32 via the bus bar 33. The power element 101 controls the current supplied to the motor coil 32 via the bus bar 33.
 磁気検出素子72は、パワー基板4における回転軸41の第一端部に対向する面に設けられている。磁気検出素子72は、軸方向Xにおいて、センサマグネット71と対向している。磁気検出素子72は、パワー基板4における回転軸41の軸線と交差する部分に設けられている。磁気検出素子72には、例えばホール素子が採用されている。磁気検出素子72は、印加される磁界のうち軸方向Xと直交する方向の成分を検出する。磁気検出素子72は、印加される磁界に応じた電気信号を生成する。 The magnetic detection element 72 is provided on the surface of the power substrate 4 that faces the first end of the rotating shaft 41. The magnetic detection element 72 faces the sensor magnet 71 in the axial direction X. The magnetic detection element 72 is provided at a portion of the power board 4 that intersects with the axis of the rotating shaft 41. For example, a Hall element is adopted as the magnetic detection element 72. The magnetic detection element 72 detects a component of the applied magnetic field in a direction orthogonal to the axial direction X. The magnetic detection element 72 generates an electric signal according to the applied magnetic field.
 パワー素子101等の他の電子部品は、パワー基板4における回転軸41の軸線と交差する部分以外の部分、例えばパワー基板4の周縁部分に設けられている。パワー基板4の周縁部分には、複数の端子孔102が形成されている。 Other electronic components such as the power element 101 are provided in a portion other than a portion of the power board 4 that intersects with the axis of the rotating shaft 41, for example, in a peripheral portion of the power board 4. A plurality of terminal holes 102 are formed in the peripheral portion of the power board 4.
 制御基板5には、パワー素子101の駆動を制御するマイクロコンピュータ111等の電子部品110が設けられている。マイクロコンピュータ111は、制御基板5における回転軸41と反対側の面に設けられている。マイクロコンピュータ111は、制御基板5における回転軸41の軸線と交差する部分に設けられている。制御基板5の周縁部分には、複数の端子孔112が形成されている。 The control board 5 is provided with an electronic component 110 such as a microcomputer 111 that controls driving of the power element 101. The microcomputer 111 is provided on the surface of the control board 5 opposite to the rotary shaft 41. The microcomputer 111 is provided in a portion of the control board 5 that intersects with the axis of the rotating shaft 41. A plurality of terminal holes 112 are formed in the peripheral portion of the control board 5.
 制御基板5におけるパワー基板4に対向する面には、制御基板5とパワー基板4とを互いに連結するコネクタ120が設けられている。コネクタ120は、第1接続線121及び第2接続線122を有している。第1接続線121は、パワー素子101とマイクロコンピュータ111とを互いに接続している。第2接続線122は、磁気検出素子72とマイクロコンピュータ111とを互いに接続している。 A connector 120 that connects the control board 5 and the power board 4 to each other is provided on the surface of the control board 5 that faces the power board 4. The connector 120 has a first connection line 121 and a second connection line 122. The first connection line 121 connects the power element 101 and the microcomputer 111 to each other. The second connection line 122 connects the magnetic detection element 72 and the microcomputer 111 to each other.
 第1接続線121及び第2接続線122の軸方向第一側の端部は、制御基板5の端子孔112に挿通された状態で制御基板5に半田付けされている。また、第1接続線121及び第2接続線122の軸方向第二側の端部は、パワー基板4の端子孔102に挿通された状態でパワー基板4に半田付けされている。これにより、制御基板5とパワー基板4とが互いに連結されている。 The ends of the first connecting line 121 and the second connecting line 122 on the first side in the axial direction are soldered to the control board 5 while being inserted into the terminal holes 112 of the control board 5. The ends of the first connecting line 121 and the second connecting line 122 on the second side in the axial direction are soldered to the power board 4 while being inserted into the terminal holes 102 of the power board 4. As a result, the control board 5 and the power board 4 are connected to each other.
 マイクロコンピュータ111は、第2接続線122を介して、磁気検出素子72が生成した電気信号を取得する。マイクロコンピュータ111は、当該電気信号に基づいて、モータ2の回転軸41の回転角を演算する。マイクロコンピュータ111は、当該演算された回転角に基づいて、モータ2の作動を制御するための制御信号を生成する。マイクロコンピュータ111は、第1接続線121を介して当該制御信号をパワー素子101に出力する。パワー素子101は、当該制御信号に基づいてオンオフする。マイクロコンピュータ111は、パワー素子101をオンオフすることにより、バスバー33を介してモータコイル32へ供給される電流を制御する。これにより、ステータ11に回転磁界が発生し、当該回転磁界に基づいてロータ12が回転する。 The microcomputer 111 acquires the electric signal generated by the magnetic detection element 72 via the second connection line 122. The microcomputer 111 calculates the rotation angle of the rotation shaft 41 of the motor 2 based on the electric signal. The microcomputer 111 generates a control signal for controlling the operation of the motor 2 based on the calculated rotation angle. The microcomputer 111 outputs the control signal to the power element 101 via the first connection line 121. The power element 101 is turned on/off based on the control signal. The microcomputer 111 controls the current supplied to the motor coil 32 via the bus bar 33 by turning on/off the power element 101. As a result, a rotating magnetic field is generated in the stator 11, and the rotor 12 rotates based on the rotating magnetic field.
 外部接続部6は、本体部51と、本体部51から軸方向第一側に突出した複数の突出部52とを有している。本体部51は、軸方向Xから見たとき、略円板状に形成されている。各突出部52は、略四角筒状に形成されている。各突出部52は、モータ装置1の外部の機器から延びる配線が接続可能に形成されている。本体部51は制御基板5に固定されている。外部接続部6が制御基板5に固定された状態で、突出部52内に配置された接続端子は、パワー基板4及び制御基板5における所定位置に接続されている。 The external connection portion 6 has a main body portion 51 and a plurality of protruding portions 52 that protrude from the main body portion 51 in the first axial direction. The main body 51 is formed in a substantially disc shape when viewed in the axial direction X. Each protrusion 52 is formed in a substantially rectangular tube shape. Wirings extending from devices outside the motor device 1 can be connected to the respective protrusions 52. The main body 51 is fixed to the control board 5. With the external connection portion 6 fixed to the control board 5, the connection terminals arranged in the protruding portion 52 are connected to predetermined positions on the power board 4 and the control board 5.
 カバー8の構成について説明する。 Explain the structure of the cover 8.
 カバー8は、ハウジング本体21の開口端21aの形状に対応した形状を有し、開口端21aに取り付けられている。カバー8は、パワー基板4及び制御基板5を収容している。カバー8は、筒状の周壁61及び端壁62を有している。周壁61には、軸方向第二側に突出した板状の取付部63が複数箇所に形成されている。各取付部63には、各取付部63の板厚方向に貫通した係合孔64が形成されている。 The cover 8 has a shape corresponding to the shape of the open end 21a of the housing body 21, and is attached to the open end 21a. The cover 8 houses the power board 4 and the control board 5. The cover 8 has a cylindrical peripheral wall 61 and an end wall 62. On the peripheral wall 61, plate-shaped mounting portions 63 that project to the second side in the axial direction are formed at a plurality of locations. An engaging hole 64 is formed in each mounting portion 63 so as to penetrate the mounting portion 63 in the plate thickness direction.
 端壁62には、端壁62を軸方向Xに貫通する貫通孔65が形成されている。カバー8は、貫通孔65を介して突出部52がカバー8から突出した状態で、取付部63の係合孔64に係合突部25が係合することにより、モータハウジング7に装着されている。 The end wall 62 is formed with a through hole 65 penetrating the end wall 62 in the axial direction X. The cover 8 is mounted on the motor housing 7 by engaging the engagement protrusion 25 with the engagement hole 64 of the mounting portion 63 in a state where the protrusion 52 protrudes from the cover 8 through the through hole 65. There is.
 本実施形態の作用及び効果を説明する。 The operation and effect of this embodiment will be described.
 (1)磁気検出素子72には、センサマグネット71で発生する磁界以外にパワー基板4で発生する磁界が印加されることがある。パワー基板4にはモータコイル32に対する通電に際して大電流が流れるため、電流が流れることに起因してパワー基板4に発生する磁界が大きくなりがちである。パワー基板4から磁気検出素子72に印加される磁界は、パワー基板4に大電流が流れることによって発生した磁界であって、磁気検出素子72が本来検出するべき磁界ではない。 (1) In addition to the magnetic field generated by the sensor magnet 71, the magnetic field generated by the power substrate 4 may be applied to the magnetic detection element 72. Since a large current flows through the power board 4 when the motor coil 32 is energized, the magnetic field generated in the power board 4 tends to increase due to the current flow. The magnetic field applied from the power substrate 4 to the magnetic detection element 72 is a magnetic field generated by a large current flowing through the power substrate 4, and is not a magnetic field that the magnetic detection element 72 should originally detect.
 例えば、比較例として図4に示す構成を考える。この比較例では、制御基板5に磁気検出素子72を設けるとともに、回転軸41の端部にセンサマグネット71を設ける。そして、回転軸41がパワー基板4に形成された貫通孔に挿入されることによって、磁気検出素子72とセンサマグネット71とを対向させている。 For example, consider the configuration shown in FIG. 4 as a comparative example. In this comparative example, a magnetic detection element 72 is provided on the control board 5, and a sensor magnet 71 is provided at the end of the rotary shaft 41. Then, the rotating shaft 41 is inserted into the through hole formed in the power substrate 4, so that the magnetic detection element 72 and the sensor magnet 71 are opposed to each other.
 パワー基板4の面に沿った配線Pに大電流が流れた場合、その配線Pを中心として、周囲に磁界が形成される。パワー基板4から磁気検出素子72に印加される磁界のうち、磁気検出素子72近傍の磁界の方向とパワー基板4の面が延在する方向とは、角度θ1をなしている。磁気検出素子72近傍とは、例えば磁気検出素子72における制御基板5と接する部位の中の特定の点P2のことである。 When a large current flows through the wiring P along the surface of the power board 4, a magnetic field is formed around the wiring P as a center. Among the magnetic fields applied from the power substrate 4 to the magnetic detection element 72, the direction of the magnetic field near the magnetic detection element 72 and the direction in which the surface of the power substrate 4 extends form an angle θ1. The vicinity of the magnetic detection element 72 is, for example, a specific point P2 in a portion of the magnetic detection element 72 that contacts the control substrate 5.
 一例としては、角度θ1は、パワー基板4から磁気検出素子72に印加される磁界の点P2における接線方向と制御基板5の面が延在する方向とがなす角度である。この角度θ1は、磁界の発生源であるパワー基板4と磁気検出素子72とが回転軸41の軸方向Xにおいて離れるほど、その絶対値が小さくなる。つまり、パワー基板4から磁気検出素子72に印加される磁界のうち軸方向Xと直交する方向の成分は、パワー基板4と磁気検出素子72とが軸方向Xにおいて離れるほど大きくなりがちである。 As an example, the angle θ1 is an angle formed by the tangential direction at the point P2 of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 and the direction in which the surface of the control substrate 5 extends. The absolute value of the angle θ1 becomes smaller as the power substrate 4 as the magnetic field generation source and the magnetic detection element 72 are separated from each other in the axial direction X of the rotation shaft 41. That is, the component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 in the direction orthogonal to the axial direction X tends to increase as the power substrate 4 and the magnetic detection element 72 move away from each other in the axial direction X.
 比較例のように、パワー基板4と軸方向Xにおいて離れて配置されている制御基板5に磁気検出素子72を設ける場合、磁気検出素子72は軸方向Xにおいてパワー基板4と制御基板5との間の距離だけパワー基板4から離間している。したがって、磁気検出素子72が検出するパワー基板4からの磁界の検出量は相応に大きくならざるを得ない。 As in the comparative example, when the magnetic detection element 72 is provided on the control board 5 which is arranged apart from the power board 4 in the axial direction X, the magnetic detection element 72 is provided between the power board 4 and the control board 5 in the axial direction X. It is separated from the power board 4 by a distance therebetween. Therefore, the detection amount of the magnetic field from the power board 4 detected by the magnetic detection element 72 must be correspondingly large.
 本実施形態では、図5に示すように、磁気検出素子72をパワー基板4に設けている。ここで、パワー基板4の面に沿った配線Pに大電流が流れた場合、パワー基板4から磁気検出素子72に印加される磁界の強さは、本実施形態の場合と比較例の場合とで同じであるとする。パワー基板4から磁気検出素子72に印加される磁界のうち、磁気検出素子72近傍の磁界の方向とパワー基板4の面が延在する方向とは、角度θ1よりも絶対値が大きい角度である角度θ2をなしている。 In the present embodiment, as shown in FIG. 5, the magnetic detection element 72 is provided on the power board 4. Here, when a large current flows in the wiring P along the surface of the power substrate 4, the strength of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 is different between the case of this embodiment and the case of the comparative example. And the same. Among the magnetic fields applied from the power board 4 to the magnetic detection element 72, the direction of the magnetic field in the vicinity of the magnetic detection element 72 and the direction in which the surface of the power board 4 extends have an absolute value larger than the angle θ1. It forms an angle θ2.
 一例としては、角度θ2は、パワー基板4から磁気検出素子72に印加される磁界の点P2における接線方向とパワー基板4の面が延在する方向とがなす角度である。このため、パワー基板4から磁気検出素子72に印加される磁界のうち軸方向Xと直交する方向の成分は、比較例の場合よりも小さくなる。これは、角度θ2は角度θ1よりも絶対値が大きい角度であることから、パワー基板4から磁気検出素子72に印加される磁界の余弦成分は、比較例の場合よりも本実施形態の場合の方が小さくなるためである。 As an example, the angle θ2 is an angle formed by the tangential direction at the point P2 of the magnetic field applied from the power board 4 to the magnetic detection element 72 and the direction in which the surface of the power board 4 extends. Therefore, the component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 in the direction orthogonal to the axial direction X is smaller than that in the comparative example. This is because the angle θ2 is an angle whose absolute value is larger than the angle θ1. Therefore, the cosine component of the magnetic field applied from the power substrate 4 to the magnetic detection element 72 is larger in the case of this embodiment than in the case of the comparative example. This is because it becomes smaller.
 このように、本実施形態では、パワー基板4と磁気検出素子72とが軸方向Xにおいて互いから離間しないことから、磁気検出素子72が検出するパワー基板4からの磁界の検出量を、比較例の場合よりも小さくすることができる。これにより、磁気検出素子72によって生成された電気信号に、パワー基板4からの磁界の影響が含まれることを抑制できる。このことから、磁気検出素子72を通じて演算される回転軸41の回転角と実際の回転角との間の誤差が大きくなることが抑制され、回転軸41の回転角の検出精度を高めることができる。 As described above, in the present embodiment, since the power board 4 and the magnetic detection element 72 are not separated from each other in the axial direction X, the detection amount of the magnetic field from the power board 4 detected by the magnetic detection element 72 is set as a comparative example. It can be smaller than the case. Thereby, it is possible to suppress the influence of the magnetic field from the power substrate 4 from being included in the electric signal generated by the magnetic detection element 72. From this, it is possible to suppress an increase in the error between the rotation angle of the rotation shaft 41 calculated by the magnetic detection element 72 and the actual rotation angle, and to improve the detection accuracy of the rotation angle of the rotation shaft 41. ..
 (2)パワー基板4と制御基板5とを互いに接続する第1接続線121及び第2接続線122を同一のコネクタ120が有している。そのため、第1接続線121及び第2接続線122を別々のコネクタが有している場合と比べて、コネクタの数を減らすことができる。これにより、パワー基板4と制御基板5とを連結するコネクタを簡素に構成することができる。 (2) The same connector 120 has a first connection line 121 and a second connection line 122 that connect the power board 4 and the control board 5 to each other. Therefore, the number of connectors can be reduced as compared with the case where separate connectors have the first connection line 121 and the second connection line 122. Accordingly, the connector that connects the power board 4 and the control board 5 can be simply configured.
 (3)回転軸41は、第1軸受44及び第2軸受45によってモータハウジング7の内側面に対して回転可能に支持されている。回転軸41は、回転軸41の第一端部が第2軸受45から離れるほど、言い換えると当該第一端部が第2軸受45から突出しているほど、軸方向Xと直交する方向に揺動しやすくなる。回転軸41の第一端部が揺動すると、当該第一端部に設けられているセンサマグネット71もともに揺動することから、センサマグネット71から磁気検出素子72に印加される磁界が変化してしまう。本実施形態によれば、回転軸41の第一端部がモータハウジング7を超えて突出していない。すなわち、回転軸41の第一端部が第2軸受45から突出する量を抑制しているため、当該第一端部及び当該第一端部に設けられているセンサマグネット71が揺動することを抑制することができる。これにより、磁気検出素子72に印加される磁界を安定させることができる。そのため、磁気検出素子72を通じて演算される回転軸41の回転角と実際の回転角との間で誤差が大きくなることが抑制され、回転軸41の回転角の検出精度をさらに高めることができる。 (3) The rotating shaft 41 is rotatably supported by the first bearing 44 and the second bearing 45 with respect to the inner surface of the motor housing 7. The rotary shaft 41 swings in a direction orthogonal to the axial direction X as the first end of the rotary shaft 41 moves away from the second bearing 45, in other words, as the first end of the rotary shaft 41 projects from the second bearing 45. Easier to do. When the first end of the rotating shaft 41 swings, the sensor magnet 71 provided at the first end also swings, so that the magnetic field applied from the sensor magnet 71 to the magnetic detection element 72 changes. Will end up. According to this embodiment, the first end of the rotary shaft 41 does not project beyond the motor housing 7. That is, since the amount of the first end of the rotary shaft 41 protruding from the second bearing 45 is suppressed, the first end and the sensor magnet 71 provided at the first end may swing. Can be suppressed. Thereby, the magnetic field applied to the magnetic detection element 72 can be stabilized. Therefore, it is possible to suppress an increase in error between the rotation angle of the rotation shaft 41 calculated through the magnetic detection element 72 and the actual rotation angle, and it is possible to further improve the detection accuracy of the rotation angle of the rotation shaft 41.
 (4)本実施形態によれば、制御基板5に磁気検出素子72を配置するためのスペースを確保しなくてよい分、マイクロコンピュータ111等の電子部品110の制御基板5への配置の自由度を高めることができる。このことから、制御基板5における回転軸41の軸線と交差する部分にマイクロコンピュータ111を配置できる。 (4) According to the present embodiment, since it is not necessary to secure a space for disposing the magnetic detection element 72 on the control board 5, the degree of freedom in disposing the electronic component 110 such as the microcomputer 111 on the control board 5. Can be increased. Therefore, the microcomputer 111 can be arranged at the portion of the control board 5 that intersects the axis of the rotating shaft 41.
 なお、本実施形態は次のように変更してもよい。また、以下の他の実施形態は、技術的に矛盾しない範囲において、互いに組み合わせることができる。 Note that this embodiment may be modified as follows. Further, the following other embodiments can be combined with each other within a technically consistent range.
 ・磁気検出素子72は、ホール素子に代えて、磁気抵抗効果素子であってもよい。 The magnetic detection element 72 may be a magnetoresistive effect element instead of the hall element.
 ・マイクロコンピュータ111は、制御基板5における回転軸41の軸線と交差する部分に設けないようにしてもよい。 The microcomputer 111 may not be provided in a portion of the control board 5 that intersects with the axis of the rotating shaft 41.
 ・モータ2の回転軸41の第一端部は、モータハウジング7の第2挿通孔24からモータハウジング7を超えて突出していてもよい。 The first end of the rotary shaft 41 of the motor 2 may protrude from the second insertion hole 24 of the motor housing 7 beyond the motor housing 7.
 ・一つのコネクタ120が第1接続線121及び第2接続線122を有していたが、別々のコネクタが第1接続線121及び第2接続線122をそれぞれ有していてもよい。例えば、第1接続線121を有するコネクタと、第2接続線を有するコネクタとを別々のコネクタとしてもよい。 -One connector 120 has the first connection line 121 and the second connection line 122, but different connectors may have the first connection line 121 and the second connection line 122, respectively. For example, the connector having the first connection line 121 and the connector having the second connection line may be separate connectors.
 ・カバー8を設けずに、外部接続部6がカバー8の機能を有するようにしてもよい。すなわち、外部接続部6がモータハウジング7の一端部(ハウジング本体21の開口端21a)に組み付けられて、外部接続部6とモータハウジング7とによって形成される内部空間にパワー基板4及び制御基板5を収容するようにしてもよい。 -The external connection part 6 may have the function of the cover 8 without providing the cover 8. That is, the external connection portion 6 is assembled to one end portion of the motor housing 7 (open end 21 a of the housing body 21 ), and the power board 4 and the control board 5 are provided in the internal space formed by the external connection portion 6 and the motor housing 7. May be accommodated.
 ・モータ2及び制御装置3を冗長的に設けてもよい。すなわち、パワー基板4に、磁気検出素子72を2系統設けるとともに、パワー素子101等の電子部品100を2系統設ける。また、制御基板5に、マイクロコンピュータ111等の電子部品110を2系統設けるとともに、コネクタ120が有する第1接続線121及び第2接続線122も2系統設ける。このように、モータ2、制御装置3、及び磁気検出素子72を冗長的に設けた場合においても、2系統の磁気検出素子72を磁束の発生源であるパワー基板4に設けることにより、磁気検出素子72が検出するパワー基板4からの磁界の検出量を小さくすることができる。 The motor 2 and the control device 3 may be redundantly provided. That is, two systems of the magnetic detection element 72 are provided on the power board 4, and two systems of the electronic component 100 such as the power element 101 are provided. Further, the control board 5 is provided with two systems of the electronic component 110 such as the microcomputer 111, and two systems of the first connection line 121 and the second connection line 122 of the connector 120 are also provided. As described above, even when the motor 2, the control device 3, and the magnetic detection element 72 are redundantly provided, the magnetic detection can be performed by providing the two-system magnetic detection elements 72 on the power board 4 that is a magnetic flux generation source. The detection amount of the magnetic field from the power board 4 detected by the element 72 can be reduced.
 ・パワー基板4及び制御基板5の形状を略円板状としたが、この形状は適宜変更可能である。 -Although the shapes of the power board 4 and the control board 5 are substantially disk-shaped, these shapes can be changed as appropriate.
 ・モータ装置1は、車両の電動パワーステアリング装置に搭載されるものに限らず、例えば車両の車輪を駆動させる駆動装置に搭載されるものであってもよい。 The motor device 1 is not limited to being mounted on the electric power steering device of the vehicle, but may be mounted on, for example, a driving device that drives the wheels of the vehicle.

Claims (4)

  1.  回転軸を有するモータと、前記モータの作動を制御するように構成された制御装置と、前記回転軸の回転角を検出するように構成された回転角センサとを備えるモータ装置であって、
     前記制御装置は、
      前記モータへ供給する電流を制御するように構成されたパワー素子が設けられているパワー基板と、
      前記パワー素子の駆動を制御するように構成されたマイクロコンピュータが設けられている制御基板と、を有し、
     前記パワー基板及び前記制御基板は、前記回転軸に対して該回転軸の軸方向に並んで配置され、
     前記回転軸の軸方向において、前記パワー基板は前記回転軸の一端部と前記制御基板との間に配置されており、
     前記回転角センサは、
      センサマグネットと、
      印加される磁界に応じた電気信号を生成するように構成された磁気検出素子と、を有し、
     前記回転軸の前記一端部には、前記センサマグネットが設けられ、
     前記パワー基板における前記回転軸の前記一端部に対向する面には、前記磁気検出素子が前記センサマグネットに対向して設けられているモータ装置。
    A motor device comprising a motor having a rotation shaft, a control device configured to control operation of the motor, and a rotation angle sensor configured to detect a rotation angle of the rotation shaft,
    The control device is
    A power board provided with a power element configured to control a current supplied to the motor;
    A control board provided with a microcomputer configured to control the drive of the power element,
    The power board and the control board are arranged side by side in the axial direction of the rotating shaft with respect to the rotating shaft,
    In the axial direction of the rotating shaft, the power board is arranged between one end of the rotating shaft and the control board,
    The rotation angle sensor is
    A sensor magnet,
    A magnetic detection element configured to generate an electric signal in response to an applied magnetic field,
    The sensor magnet is provided at the one end of the rotary shaft,
    A motor device in which the magnetic detection element is provided to face the sensor magnet on a surface of the power substrate that faces the one end of the rotary shaft.
  2.  前記パワー基板と前記制御基板とを互いに連結するコネクタをさらに備え、
     前記コネクタは、
     前記パワー素子と前記マイクロコンピュータとを互いに接続している第1接続線と、
     前記磁気検出素子と前記マイクロコンピュータとを互いに接続している第2接続線と、を有している請求項1に記載のモータ装置。
    Further comprising a connector connecting the power board and the control board to each other,
    The connector is
    A first connection line connecting the power element and the microcomputer to each other;
    The motor device according to claim 1, further comprising a second connection line that connects the magnetic detection element and the microcomputer to each other.
  3.  前記モータを収容する筒状のモータハウジングと、
     前記回転軸の軸方向における前記モータハウジングの一端部に取り付けられているとともに前記パワー基板及び前記制御基板を収容するカバーと、
     前記モータハウジングに設けられていて前記モータハウジングの内側面に対して前記回転軸を回転可能に支持する軸受と、をさらに備え、
     前記回転軸の前記一端部は、前記モータハウジングの前記一端部を超えて突出していない請求項1または請求項2に記載のモータ装置。
    A cylindrical motor housing that houses the motor;
    A cover that is attached to one end of the motor housing in the axial direction of the rotating shaft and that houses the power board and the control board;
    A bearing that is provided in the motor housing and rotatably supports the rotating shaft with respect to an inner surface of the motor housing,
    The motor device according to claim 1 or 2, wherein the one end of the rotation shaft does not protrude beyond the one end of the motor housing.
  4.  前記マイクロコンピュータは、前記制御基板における前記回転軸の軸線と交差する部分に設けられている請求項1~3のいずれか一項に記載のモータ装置。 The motor device according to any one of claims 1 to 3, wherein the microcomputer is provided in a portion of the control board that intersects an axis of the rotation shaft.
PCT/JP2020/003312 2019-02-14 2020-01-30 Motor device WO2020166344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-024579 2019-02-14
JP2019024579 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166344A1 true WO2020166344A1 (en) 2020-08-20

Family

ID=72043974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003312 WO2020166344A1 (en) 2019-02-14 2020-01-30 Motor device

Country Status (1)

Country Link
WO (1) WO2020166344A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613454A (en) * 2021-11-11 2023-06-07 Snap On Incorporated Motor controller for a tool
WO2023199463A1 (en) * 2022-04-14 2023-10-19 三菱電機株式会社 Drive device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192832A (en) * 2015-03-30 2016-11-10 日本電産株式会社 motor
JP2017163809A (en) * 2016-03-11 2017-09-14 オムロンオートモーティブエレクトロニクス株式会社 Electric motor control device
JP2017189033A (en) * 2016-04-06 2017-10-12 株式会社デンソー Drive device, and electric power steering apparatus using the same
WO2018123879A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Motor and electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192832A (en) * 2015-03-30 2016-11-10 日本電産株式会社 motor
JP2017163809A (en) * 2016-03-11 2017-09-14 オムロンオートモーティブエレクトロニクス株式会社 Electric motor control device
JP2017189033A (en) * 2016-04-06 2017-10-12 株式会社デンソー Drive device, and electric power steering apparatus using the same
WO2018123879A1 (en) * 2016-12-28 2018-07-05 日本電産株式会社 Motor and electric power steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613454A (en) * 2021-11-11 2023-06-07 Snap On Incorporated Motor controller for a tool
GB2623205A (en) * 2021-11-11 2024-04-10 Snap On Incorporated Motor controller for a tool
GB2613454B (en) * 2021-11-11 2024-04-17 Snap On Incorporated Motor controller for a tool
WO2023199463A1 (en) * 2022-04-14 2023-10-19 三菱電機株式会社 Drive device

Similar Documents

Publication Publication Date Title
JP4468033B2 (en) Electric motor for variable valve timing device of vehicle engine
US10263499B2 (en) Motor
US10749415B2 (en) Motor device
US10530222B2 (en) Method and apparatus for detecting the position of a rotor in an electric machine
JP2007221976A (en) Brushless motor
JP2015106970A (en) Drive device
JP2010263728A (en) Motor
WO2020166344A1 (en) Motor device
US10958138B2 (en) Motor
JP2015106972A (en) Drive unit
JP2007221977A (en) Brushless motor
JPWO2019038849A1 (en) Electric drive
JP5112321B2 (en) Brushless motor
CN109687649B (en) Motor device
JP2010124519A (en) Electric motor
JP2014168361A (en) Motor
JP4702593B2 (en) motor
US10396643B2 (en) Motor
US11699938B2 (en) Guiding element for an electric motor
JP2017221071A (en) motor
JP5293256B2 (en) Rotating electric machine and electric power steering apparatus using the same
US10008901B2 (en) Step motor
JP7281641B2 (en) Motor unit and electric oil pump
JP2004015911A (en) Sensor driving brushless motor
JP2007020266A (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP