WO2020166111A1 - Mass spectrometer - Google Patents

Mass spectrometer Download PDF

Info

Publication number
WO2020166111A1
WO2020166111A1 PCT/JP2019/030136 JP2019030136W WO2020166111A1 WO 2020166111 A1 WO2020166111 A1 WO 2020166111A1 JP 2019030136 W JP2019030136 W JP 2019030136W WO 2020166111 A1 WO2020166111 A1 WO 2020166111A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
voltage
rectangular wave
charge ratio
voltage amplitude
Prior art date
Application number
PCT/JP2019/030136
Other languages
French (fr)
Japanese (ja)
Inventor
一 狭間
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020572073A priority Critical patent/JP7074214B2/en
Publication of WO2020166111A1 publication Critical patent/WO2020166111A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Definitions

  • the present invention relates to a mass spectrometer equipped with an ion trap that captures ions by the action of a high-frequency electric field.
  • an ion trap captures and confine ions by the action of a high-frequency electric field, selects ions having a specific mass-to-charge ratio m/z, and further dissociates the selected ions.
  • a high-frequency electric field selects ions having a specific mass-to-charge ratio m/z.
  • the ion trap one ring electrode whose inner surface has a rotating one-lobed hyperboloid shape and a pair of end cap electrodes whose inner surfaces are opposed to each other with the ring electrode sandwiched therebetween have a rotating two-lobed hyperboloid shape
  • the three-dimensional quadrupole type ion trap and the linear type ion trap composed of four substantially cylindrical rod electrodes arranged in parallel with each other are well known. In this specification, for convenience, the ion trap will be described by taking a “three-dimensional quadrupole ion trap” as an example.
  • a sinusoidal high-frequency voltage is usually applied to the ring electrode to form a high-frequency electric field for trapping ions in the space surrounded by the ring electrode and the end cap electrode, and the high-frequency electric field generates ions. Confine while vibrating.
  • an ion trap that traps ions by applying a rectangular wave voltage to the ring electrode instead of the sinusoidal high frequency voltage has been developed (see Patent Document 1, Non-Patent Document 1, etc.).
  • Non-Patent Document 1 a rectangular wave voltage having a predetermined frequency according to the mass-to-charge ratio range of ions to be trapped is applied to a ring electrode as a trapping high-frequency voltage. To confine ions in the mass-to-charge ratio range. When the ions thus trapped are sequentially ejected from the ion emission port according to the mass-to-charge ratio and detected by a detector provided outside the ion emission port, the resonance excitation phenomenon of the ions is used.
  • a rectangular wave low voltage (usually, the voltage amplitude is several times), which is obtained by dividing a rectangular wave high voltage (usually, the voltage amplitude is several hundreds V or more) applied to the ring electrode by a predetermined division ratio (for example, 1/4 division).
  • V which is significantly smaller than the above-mentioned rectangular wave high voltage, is referred to as “low voltage”) and is applied to the end cap electrodes, and the rectangular wave high voltage and the rectangular wave low voltage are maintained while the voltage amplitude of the rectangular wave voltage is kept constant.
  • Scan frequencies synchronously.
  • the ions trapped in the ion trap are resonantly excited in the order of mass-to-charge ratio and vibrate greatly, and are ejected to the outside of the ion trap through the ion emission port.
  • detecting the ejected ions with a detector it is possible to create a mass spectrum over a predetermined mass-charge ratio range.
  • Non-Patent Document 1 Although the relationship between the frequency of the rectangular wave high voltage in resonant excitation and ejection and the mass-to-charge ratio of ejected (resonance excited) ions is theoretically determined, it is actually Due to various factors such as the shape of the electrodes that make up the ion trap, the limit of assembly accuracy, etc., there is a difference between the mass-to-charge ratio of ions that should be theoretically ejected and the mass-to-charge ratio of ions that are actually ejected. Occurs.
  • the difference between the theoretical mass-to-charge ratio value and the measured mass-to-charge ratio value is obtained for a plurality of species (usually two species) of which the precise mass-to-charge ratio is known, and based on the plurality of difference values.
  • a calibration formula is calculated by using the calibration formula, and mass calibration (calibration) is performed to calibrate a measured mass-to-charge ratio using the calibration formula (see Patent Document 1 and the like).
  • the calibration formula is a linear formula based on the difference value between two kinds of ions.
  • the mass error may not be sufficiently reduced partially in the mass-to-charge ratio range. May be low.
  • the present invention has been made to solve the above-mentioned problems, and in a mass spectrometer that uses a digital ion trap and selectively ejects ions from the ion trap by resonance excitation ejection to detect, the target mass charge Its main purpose is to improve the mass accuracy of the mass spectrum over the entire ratio range.
  • One embodiment of the present invention made to solve the above problem has an ion trap for trapping ions in a space surrounded by three or more electrodes, and at least one electrode is provided with a rectangular wave voltage for trapping ions.
  • ions having a specific mass-to-charge ratio are selectively ejected from the ion trap by resonance excitation.
  • the mass spectrometer to detect by A voltage generation unit that generates a rectangular wave voltage for ion trapping and a rectangular wave voltage for resonance excitation, Targeting a plurality of calibration samples whose precise mass-to-charge ratio values are known, while adjusting the voltage amplitude of the rectangular wave high voltage for ion trapping, the ion trapping is performed so as to scan the mass-to-charge ratio of the ions to be detected. And based on the result of the mass analysis in which the frequency of the rectangular wave voltage for resonance excitation is synchronously scanned, the voltage amplitude adjustment in which the mass error in the mass-to-charge ratio corresponding to each of the plurality of calibration samples falls within the allowable range.
  • a voltage amplitude adjustment information acquisition unit that acquires information, At the time of performing mass analysis over a predetermined mass-to-charge ratio range for the target sample, based on the voltage amplitude adjustment information, a rectangular wave high voltage for ion trapping accompanying the frequency scanning of the rectangular wave voltage for ion trapping and resonance excitation.
  • a control unit that controls the voltage generation unit to change the voltage amplitude of It is equipped with.
  • the mass spectrometer of the present invention when the frequency of the rectangular wave voltage is scanned for the mass scanning over the predetermined mass-to-charge ratio range, the mass error is reduced as the frequency changes.
  • the amplitude of the rectangular wave voltage is adjusted appropriately.
  • the mass error within the target mass-to-charge ratio range, especially the mass error that partially increases within the mass-to-charge ratio range, is reduced. It is possible to obtain a mass spectrum with high mass accuracy as a whole.
  • 9 is a flowchart of a characteristic processing operation in the DIT-MS of the present embodiment.
  • the schematic diagram which shows an example of the change of the voltage amplitude with the frequency change of the rectangular wave high voltage at the time of mass scanning in DIT-MS of this embodiment.
  • FIG. 6 is a timing chart showing an example of a rectangular wave voltage waveform at the time of resonance excitation discharge in DIT-MS.
  • the ion trap used in the mass spectrometer according to the present invention is usually a three-dimensional quadrupole ion trap or a linear ion trap.
  • the ion trap is usually composed of an annular ring electrode and a pair of end cap electrodes that are arranged to face each other with the ring electrode interposed therebetween.
  • a rectangular wave voltage and a rectangular wave voltage for resonance excitation are applied to the pair of end cap electrodes.
  • the ion trap is usually composed of four rod electrodes arranged in parallel with each other so as to surround the central axis, and the two rod electrodes facing each other with the central axis interposed therebetween are as described above. It replaces the ring electrode, and another two rod electrodes replace the pair of end cap electrodes.
  • FIG. 1 is a configuration diagram of a main part of a DIT-MS according to this embodiment.
  • the DIT-MS includes an ionization unit 1 that ionizes a target sample, a three-dimensional quadrupole ion trap 2 that separates ions according to a mass-to-charge ratio, and a detection unit 3 that detects ions.
  • the ionization unit 1 uses a matrix-assisted laser desorption/ionization (MALDI) method, and includes a laser irradiation unit 11 that emits a pulsed laser beam, a sample plate 12 to which a sample 13 containing a sample component is attached, and a laser beam. And an ion electrode 15 that guides the extracted ions.
  • MALDI matrix-assisted laser desorption/ionization
  • the type of ionization method in the ionization unit 1 is not limited to the MALDI method, and other laser ionization methods or ionization methods that do not use laser light may be used.
  • the ion trap 2 includes one ring-shaped ring electrode 21 and an inlet-side end cap electrode 22 and an outlet-side end cap electrode 24, which are arranged to face each other so as to sandwich the ring-shaped ring electrode 21.
  • a part of the space surrounded by the electrodes 21, 22, and 24 serves as an ion trapping region.
  • An ion entrance port 23 is formed in the center of the entrance-side end cap electrode 22, and the ions emitted from the ionization section 1 pass through the ion entrance port 23 and are introduced into the ion trap 2.
  • an ion emission port 25 is formed substantially at the center of the outlet side end cap electrode 24, and the ions ejected from the ion trap 2 through the ion emission port 25 reach the detection unit 3 and are detected.
  • the detection unit 3 includes a conversion dynode 31 that converts ions into electrons, and a secondary electron multiplier 32 that multiplies and detects electrons coming from the conversion dynode 31, and detects according to the amount of incident ions.
  • a signal is generated and sent to the data processing unit 8.
  • the data processing unit 8 has a function of creating a mass spectrum based on a detection signal obtained by the detection unit 3 with respect to ions that are sequentially ejected while being mass-separated in the ion trap 2.
  • the data processing unit 8 creates a calibration formula based on the difference between the theoretical value of the mass-to-charge ratio of the calibrant (calibration sample) and the actual measurement value of the mass-to-charge ratio, and the mass calibration unit 81 that performs mass calibration using this calibration formula. Is included as a functional block.
  • the main power supply unit 4 applies a rectangular wave high voltage to the ring electrode 21 of the ion trap 2, and generates a first voltage source 41 that generates a positive first voltage V H and a negative second voltage V L.
  • a second voltage source 42, and a first switching element 43 and a second switching element 44 connected in series between the output terminal of the first voltage source 41 and the output terminal of the second voltage source 42.
  • the auxiliary power supply unit 5 applies different rectangular wave low voltages to the end cap electrodes 22 and 24 of the ion trap 2.
  • the timing signal generator 6 is a hardware logic circuit, and under the control of the controller 7, the first switching element 43 and the second switching element 44 are turned on alternately (however, they are not turned on at the same time. As described above, a drive pulse having a predetermined frequency is generated and supplied to each of the switching elements 43 and 44.
  • the first voltage V H is output when the first switching element 43 is turned on
  • the second voltage V L is output when the second switching element 44 is turned on. Therefore, ideally, as shown in FIG. 4A, the output voltage V OUT of the main power supply unit 4 is a rectangular wave of a predetermined frequency f (cycle t) in which the high level is V H and the low level is V L. It becomes a voltage.
  • V H and V L are high voltages whose absolute values are almost the same and their polarities are opposite to each other. For example, their absolute values are several hundreds V to 1 kV.
  • the frequency f is usually in the range of several tens kHz to several MHz.
  • V H and V L may have the same polarity depending on the reference potential of the system.
  • the timing signal generator 6 gives a pulse signal obtained by dividing the drive pulse supplied to the main power source 4 at an appropriate ratio (for example, 1/4) to the auxiliary power source 5.
  • the auxiliary power supply unit 5 generates a rectangular wave low voltage as shown in FIG. 4B, which has a frequency of f/4 and an amplitude value of, for example, about several V, based on the signal obtained from the timing signal generation unit 6. To do.
  • the control unit 7 controls each unit in order to perform the analysis operation, and as the functional blocks characteristic of this embodiment, the voltage-m/z shift amount information storage unit 71, the mass scanning voltage information acquisition control unit, and the like. 72, a mass error calculation unit 73, a mass error determination unit 74, an adjusted voltage information storage unit 75, a mass scanning voltage control unit 76, and the like.
  • the control unit 7 can be configured by a hardware circuit, but normally, at least a part of the control unit 7 is mainly configured by a personal computer, and by executing a dedicated control/processing program installed in the personal computer. , Its function may be achieved.
  • the mass-charge ratio range of the ions that are stably trapped in the ion trap 2 depends on the frequency of the rectangular wave high voltage applied to the ring electrode 21. Therefore, when the ions are confined in the ion trap 2 as described above, the timing signal generator 6 supplies a drive pulse having a predetermined frequency to the switching elements 43 and 44 according to the instruction from the controller 7, and responds to this. A rectangular wave high voltage having a frequency is generated by the main power supply unit 4 and applied to the ring electrode 21. At this time, the voltage applied to the end cap electrodes 22 and 24 is maintained at the ground potential. It should be noted that when trapping ions in a predetermined, somewhat wide mass-to-charge ratio range, the frequency of the rectangular wave high voltage is appropriately selected according to the mass-to-charge ratio range.
  • a resonance excitation phenomenon is used to allow the ions to be trapped through the ion emission port 25 in order of mass-to-charge ratio. It is discharged from 2, and detected by the detection unit 3.
  • the rectangular wave high voltage for ion trapping is applied from the main power source section 4 to the ring electrode 21, while the frequency of the ion trapping rectangular wave high voltage is divided from the auxiliary power source section 5 to the end cap electrodes 22 and 24, respectively.
  • a rectangular wave voltage (rectangular wave low voltage) for resonance excitation is applied.
  • the frequency of the rectangular wave high voltage for ion trapping and the frequency of the rectangular wave low voltage for resonance excitation are synchronously scanned.
  • ions having a specific mass-to-charge ratio are resonantly excited and greatly vibrate, and are sequentially ejected from the ion trap 2.
  • the DIT-MS of the present embodiment when the frequency of the rectangular wave high voltage is scanned, the voltage amplitude of the rectangular wave high voltage is changed without being kept constant, so that the entire mass scanning is performed. The mass error is reduced.
  • FIG. 2 is a flow chart of a characteristic processing operation in this DIT-MS
  • FIG. 3 is a schematic diagram showing an example of a change in voltage amplitude with a frequency change of a rectangular wave high voltage during mass scanning in this DIT-MS.
  • calibrants whose precise mass-to-charge ratio values (theoretical values) are known are used.
  • the number of calibrants may be two or more.
  • the relationship between the amount of change in the voltage amplitude of the square wave high voltage and the amount of change in the mass-to-charge ratio was experimentally investigated in advance for each mass-to-charge ratio value corresponding to the calibrant used, and the voltage-m/z shift amount information was obtained. It is stored in the storage unit 71. Specifically, for example, the change value of the mass-to-charge ratio when the voltage amplitude of the rectangular wave high voltage is reduced by 0.1 V from the specified voltage amplitude value may be obtained.
  • the voltage information acquisition control unit 72 for mass scanning of the control unit 7 outputs the outputs of the first voltage source 41 and the second voltage source 42 in order to make the voltage amplitude of the rectangular wave high voltage constant.
  • the voltages are set to be fixed at predetermined values (step S1). Under such a voltage condition, mass spectrometry is performed on five kinds of calibrants, and mass spectrum data over a predetermined mass-charge ratio range is acquired (step S2).
  • the five kinds of calibrants are Cal.a, Cal.b, Cal.c, Cal.d, and Cal.e as shown in FIG. 3, and the mass-to-charge ratio of Cal.a is the smallest.
  • Cal.a, Cal.b, Cal.c, Cal.d, Cal.e in that order.
  • the mass calibration unit 81 calculates the mass-to-charge ratio actual measurement value from the mass spectrum data of the two calibrants Cal.a and Cal.e whose mass-to-charge ratio is minimum and maximum, and calculates the calibrants.
  • a linear calibration formula is obtained based on the difference between the measured value and the theoretical value of the mass-to-charge ratio of. Then, using this calibration formula, mass calibration is performed for all calibrants Cal.a, Cal.b, Cal.c, Cal.d, Cal.e, and the mass-to-charge ratio value after this mass calibration is measured. The value is sent to the control unit 7 (step S3).
  • the mass error calculation unit 73 first selects the calibrant Cal.a having the smallest mass-to-charge ratio, and obtains the mass error of the mass-to-charge ratio corresponding to the calibrant (step S4).
  • the mass error determination unit 74 determines whether the mass error is within a predetermined allowable range (step S5). If the mass error is within the allowable range, the process proceeds from step S5 to step S8 described later.
  • the mass scanning voltage information acquisition control unit 72 determines that the information stored in the voltage-m/z shift amount information storage unit 71, that is, the corresponding calibrant.
  • the amount of change in the voltage amplitude at which the mass error becomes zero is calculated.
  • the frequency is scanned so as to change the voltage amplitude according to the calculation result.
  • mass spectrometry of the corresponding calibrant is performed again (step S6).
  • the mass calibration unit 81 calibrates the mass-to-charge ratio value of the calibrant to be measured, which is obtained from the obtained mass spectrum data, using the above calibration formula, and obtains the measured mass-to-charge ratio value. Then, the mass error calculator 73 calculates the mass error of the mass-to-charge ratio corresponding to the calibrant (step S7). After that, the process returns from step S7 to S5, and the mass error determination unit 74 determines whether or not the mass error is within the allowable range. Then, if the mass error is not within the allowable range, the processes of steps S5 to S6 are repeated.
  • step S5 the determined amount of change in voltage amplitude is stored in the adjusted voltage information storage unit 75 corresponding to the frequency of the rectangular wave high voltage (step S8).
  • the mass scanning voltage information acquisition control unit 72 determines whether or not there remains a calibrant for which the amount of change in voltage amplitude has not been determined (step S9). If the calibrant still remains, the calibrant having the next largest mass-to-charge ratio is selected, and the mass error calculation unit 73 obtains the mass error of the mass-to-charge ratio corresponding to the calibrant (step S10) and returns to step S5. , Executes the processing described above. Therefore, by repeating steps S10 ⁇ S5 to S7 ⁇ S8 ⁇ S9, after mass calibration is performed for all five kinds of calibrants Cal.a, Cal.b, Cal.c, Cal.d, and Cal.e. The amount of change in the voltage amplitude is determined so that the mass error is within the allowable range, and the information is stored in the adjusted voltage information storage unit 75.
  • the voltage adjustment amount at the frequency corresponding to each calibrant tends to be as shown in FIG. 3B.
  • the negative voltage adjustment amount means to reduce the voltage. That is, in FIG. 3B, the plot indicated by ⁇ is the adjustment amount of the first voltage V H having the positive polarity, and the plot indicated by ⁇ is the adjustment amount of the second voltage V L having the negative polarity.
  • the voltage amplitude of the rectangular wave high voltage is adjusted by adjusting the first voltage V H in the decreasing direction.
  • the voltage amplitude of the rectangular wave high voltage is adjusted by adjusting the second voltage V L in the decreasing direction.
  • a straight line connects the voltage adjustment amount at the frequency corresponding to the calibrant with one mass-to-charge ratio and the voltage adjustment amount at the frequency corresponding to the calibrant with the mass-to-charge ratio adjacent thereto.
  • this is not necessarily a straight line and may be connected by an appropriate curve.
  • the mass scanning time voltage control unit 76 sets a rectangular wave height corresponding to the mass-to-charge ratio range. Determine the frequency scan range of voltage. Then, based on the information of the voltage adjustment amount corresponding to the frequency stored in the adjusted voltage information storage unit 75, the first voltage V H and the second voltage generated by the first voltage source 41 in accordance with the frequency scanning. The value of the second voltage V L generated by the source 42 is changed. As a result, the voltage amplitude of the rectangular wave high voltage generated by switching is adjusted according to the frequency change, and the mass error is reduced over the entire mass-charge ratio range. As a result, the mass accuracy of the obtained mass spectrum can be improved.
  • the number of calibrants is 5, but this may be 2 or more.
  • the larger the number of calibrants the more accurately the voltage adjustment amount can be obtained, which is advantageous for improving the mass accuracy of the mass spectrum.
  • the time and labor required to prepare the calibrant increase, and the time required for the above-described process for obtaining the voltage adjustment amount also increases. Therefore, a suitable number of calibrants is usually about several.
  • the three-dimensional quadrupole ion trap was used as the ion trap, but it is natural that it can be replaced with a linear ion trap.
  • the configuration of the main power supply unit 4 shown in FIG. 1 is merely an example, and it is needless to say that the configuration is not limited to the exemplified one as long as it is a configuration capable of generating the waveform of the voltage amplitude and the frequency required as the rectangular wave high voltage. is there.
  • An aspect of the mass spectrometer according to the present invention has an ion trap that traps ions in a space surrounded by three or more electrodes, and applies a rectangular wave voltage for trapping ions to at least one electrode. While a rectangular wave voltage for resonance excitation is applied to each of a pair of electrodes arranged opposite to each other, the ions having a specific mass-to-charge ratio are selectively ejected from the ion trap by resonance excitation.
  • the mass spectrometer that detects A voltage generation unit that generates a rectangular wave voltage for ion trapping and a rectangular wave voltage for resonance excitation, Targeting a plurality of calibration samples whose precise mass-to-charge ratio values are known, while adjusting the voltage amplitude of the rectangular wave high voltage for ion trapping, the ion trapping is performed so as to scan the mass-to-charge ratio of the ions to be detected. And based on the result of the mass analysis in which the frequency of the rectangular wave voltage for resonance excitation is synchronously scanned, the voltage amplitude adjustment in which the mass error in the mass-to-charge ratio corresponding to each of the plurality of calibration samples falls within the allowable range.
  • a voltage amplitude adjustment information acquisition unit that acquires information, At the time of performing mass analysis over a predetermined mass-to-charge ratio range for the target sample, based on the voltage amplitude adjustment information, a rectangular wave high voltage for ion trapping accompanying the frequency scanning of the rectangular wave voltage for ion trapping and resonance excitation.
  • a control unit that controls the voltage generation unit to change the voltage amplitude of Equipped with.
  • the mass spectrometer described in the first paragraph when the frequency of the rectangular wave voltage for ion trapping is scanned during resonance excitation and ejection, the voltage amplitude is also appropriately changed with the scanning of the frequency. Thereby, a mass error in the course of scanning the mass-to-charge ratio of the ion to be detected can be reduced, and the mass accuracy of the mass spectrum can be improved.
  • the voltage amplitude adjustment information acquisition unit is a pre-information storage unit in which information indicating the relationship between the adjustment amount of the voltage amplitude of the rectangular wave high voltage for ion trapping and the change amount of the mass-to-charge ratio of the calibration sample is stored in advance.
  • the voltage amplitude of the square wave high voltage for ion trapping may be adjusted based on the information stored in the advance information storage unit when the mass spectrometry is performed on the calibration sample.
  • the voltage at the time of mass analysis for the calibration sample is utilized by using the information indicating the relationship between the adjustment amount of the voltage amplitude and the change amount of the mass-to-charge ratio which is obtained in advance.
  • the amplitude can be determined. Thereby, the voltage amplitude at the time of mass spectrometry for the calibration sample can be determined more quickly and accurately.
  • the mass spectrometer according to the 1st or 2nd item makes the voltage amplitude of the rectangular wave high voltage for ion trapping constant for at least two of the plurality of calibration samples. Further, based on the result of performing the mass analysis while maintaining, mass calibration information calculation unit that calculates calibration information for correcting the mass error over a predetermined mass-to-charge ratio range, further comprising: The voltage amplitude adjustment information acquisition unit may obtain the mass error after performing the mass calibration using the calibration information.
  • the mass error that remains after the mass calibration is performed may be reduced by adjusting the voltage amplitude. Therefore, in many cases, the adjustment amount of the voltage amplitude is small, and the adjustment of the voltage amplitude according to the change of the frequency becomes easy.

Abstract

This mass spectrometer has an ion trap (2), uses resonant excitation discharge to perform a mass scan, and is provided with: voltage generation units (4, 5) which generate a high-voltage square wave and a low-voltage square wave; a voltage amplitude adjustment information acquisition unit (72) which, on the basis of the results of performing, for multiple calibration samples of which the precise m/z value is known, a mass scan in which, while adjusting the voltage amplitude of the high-voltage square wave, the frequency of the high-voltage square wave and the low-voltage square wave is synchronously scanned so as to scan m/z of target ions, acquires voltage amplitude adjustment information for which mass error in m/z corresponding to each of the multiple calibration samples falls within a permissible range; and a control unit (76) which, during implementation of mass spectrometry across a prescribed m/z range for a target sample, on the basis of the voltage amplitude adjustment information, controls the voltage generation unit so as to change the voltage amplitude accompanying scanning of the high-voltage square wave frequency. By this means, it is possible to improve mass accuracy in the mass spectrum in the case of performing mass scanning using resonant excitation discharge.

Description

質量分析装置Mass spectrometer
 本発明は、高周波電場の作用によってイオンを捕捉するイオントラップを備える質量分析装置に関する。 The present invention relates to a mass spectrometer equipped with an ion trap that captures ions by the action of a high-frequency electric field.
 質量分析装置においてイオントラップは、高周波電場の作用によりイオンを捕捉して閉じ込めたり、特定の質量電荷比m/zを持つイオンを選別したり、さらにはそうして選別したイオンを解離させたりするために用いられる。イオントラップとしては、内面が回転1葉双曲面形状である1個のリング電極と、リング電極を挟んで対向して配置された内面が回転2葉双曲面形状である一対のエンドキャップ電極とからなる3次元四重極型イオントラップや、互いに平行に配置された4本の略円柱状のロッド電極から成るリニア型イオントラップがよく知られている。本明細書では、便宜上、「3次元四重極型イオントラップ」を例に挙げてイオントラップの説明を行う。 In a mass spectrometer, an ion trap captures and confine ions by the action of a high-frequency electric field, selects ions having a specific mass-to-charge ratio m/z, and further dissociates the selected ions. Used for. As the ion trap, one ring electrode whose inner surface has a rotating one-lobed hyperboloid shape and a pair of end cap electrodes whose inner surfaces are opposed to each other with the ring electrode sandwiched therebetween have a rotating two-lobed hyperboloid shape The three-dimensional quadrupole type ion trap and the linear type ion trap composed of four substantially cylindrical rod electrodes arranged in parallel with each other are well known. In this specification, for convenience, the ion trap will be described by taking a “three-dimensional quadrupole ion trap” as an example.
 一般的なイオントラップでは、通常、リング電極に正弦波状の高周波電圧を印加することで、リング電極及びエンドキャップ電極で囲まれる空間にイオン捕捉用の高周波電場を形成し、この高周波電場によってイオンを振動させながら閉じ込めを行う。これに対し、正弦波状の高周波電圧の代わりに、矩形波電圧をリング電極に印加することでイオンの閉じ込めを行うイオントラップが開発されている(特許文献1、非特許文献1など参照)。この種のイオントラップは、通常、「H」、「L」という二つの論理値に対応する電圧レベルを有する矩形波電圧が使用されることから、デジタルイオントラップ(DIT=Digital Ion Trap)と呼ばれる。 In a general ion trap, a sinusoidal high-frequency voltage is usually applied to the ring electrode to form a high-frequency electric field for trapping ions in the space surrounded by the ring electrode and the end cap electrode, and the high-frequency electric field generates ions. Confine while vibrating. On the other hand, an ion trap that traps ions by applying a rectangular wave voltage to the ring electrode instead of the sinusoidal high frequency voltage has been developed (see Patent Document 1, Non-Patent Document 1, etc.). This type of ion trap is called a digital ion trap (DIT=Digital Ion Trap) because a square wave voltage having a voltage level corresponding to two logical values of “H” and “L” is usually used. ..
 デジタルイオントラップでは、非特許文献1に記載されているように、捕捉したいイオンの質量電荷比範囲に応じた所定の周波数を有する矩形波電圧を捕捉用高周波電圧としてリング電極に印加し、目的とする質量電荷比範囲のイオンを閉じ込める。こうして捕捉したイオンを質量電荷比に応じて順次イオン出射口から排出させ該イオン出射口の外側に設けた検出器により検出する際には、イオンの共鳴励起現象を利用する。即ち、リング電極に印加する矩形波高電圧(通常、電圧振幅は数百V以上)を所定の分周比(例えば1/4分周)で分周した矩形波低電圧(通常、電圧振幅は数V程度と上記矩形波高電圧に比べて格段に小さいので「低電圧」という)をエンドキャップ電極に印加し、それら矩形波電圧の電圧振幅を一定に維持したまま矩形波高電圧及び矩形波低電圧の周波数を同期的に走査する。これにより、イオントラップ内に捕捉されているイオンは、質量電荷比の順に共鳴励起されて大きく振動し、イオン出射口を通してイオントラップの外部に排出される。この排出されたイオンを検出器により検出することで、所定の質量電荷比範囲に亘るマススペクトルを作成することができる。 In the digital ion trap, as described in Non-Patent Document 1, a rectangular wave voltage having a predetermined frequency according to the mass-to-charge ratio range of ions to be trapped is applied to a ring electrode as a trapping high-frequency voltage. To confine ions in the mass-to-charge ratio range. When the ions thus trapped are sequentially ejected from the ion emission port according to the mass-to-charge ratio and detected by a detector provided outside the ion emission port, the resonance excitation phenomenon of the ions is used. That is, a rectangular wave low voltage (usually, the voltage amplitude is several times), which is obtained by dividing a rectangular wave high voltage (usually, the voltage amplitude is several hundreds V or more) applied to the ring electrode by a predetermined division ratio (for example, 1/4 division). V, which is significantly smaller than the above-mentioned rectangular wave high voltage, is referred to as “low voltage”) and is applied to the end cap electrodes, and the rectangular wave high voltage and the rectangular wave low voltage are maintained while the voltage amplitude of the rectangular wave voltage is kept constant. Scan frequencies synchronously. As a result, the ions trapped in the ion trap are resonantly excited in the order of mass-to-charge ratio and vibrate greatly, and are ejected to the outside of the ion trap through the ion emission port. By detecting the ejected ions with a detector, it is possible to create a mass spectrum over a predetermined mass-charge ratio range.
 非特許文献1にも記載されているように、共鳴励起排出における矩形波高電圧の周波数と排出される(共鳴励起される)イオンの質量電荷比との関係は理論的に決まるものの、実際には、イオントラップを構成する電極の形状や組立精度の限界、等の種々の要因によって、理論的に排出される筈であるイオンの質量電荷比と実際に排出されるイオンの質量電荷比とでは差が生じる。そこで一般的に、精密な質量電荷比が既知である複数種(通常は二種)のイオンについて理論質量電荷比値と実測質量電荷比値との差をそれぞれ求め、その複数の差値に基づいて較正式を算出し、この較正式を用いて実測の質量電荷比を較正する質量較正(キャリブレーション)が行われている(特許文献1等参照)。通常、較正式は二種のイオンの差値に基づく直線式である。 As described in Non-Patent Document 1, although the relationship between the frequency of the rectangular wave high voltage in resonant excitation and ejection and the mass-to-charge ratio of ejected (resonance excited) ions is theoretically determined, it is actually Due to various factors such as the shape of the electrodes that make up the ion trap, the limit of assembly accuracy, etc., there is a difference between the mass-to-charge ratio of ions that should be theoretically ejected and the mass-to-charge ratio of ions that are actually ejected. Occurs. Therefore, generally, the difference between the theoretical mass-to-charge ratio value and the measured mass-to-charge ratio value is obtained for a plurality of species (usually two species) of which the precise mass-to-charge ratio is known, and based on the plurality of difference values. A calibration formula is calculated by using the calibration formula, and mass calibration (calibration) is performed to calibrate a measured mass-to-charge ratio using the calibration formula (see Patent Document 1 and the like). Usually, the calibration formula is a linear formula based on the difference value between two kinds of ions.
特開2011-96542号公報JP, 2011-96542, A
 しかしながら、本発明者の実験によれば、上述したような質量較正を行っても、質量電荷比範囲の中で部分的に質量誤差が十分に軽減できない場合があり、そのためにマススペクトルの質量精度が低くなることがある。 However, according to the experiments by the present inventor, even if the above-described mass calibration is performed, the mass error may not be sufficiently reduced partially in the mass-to-charge ratio range. May be low.
 本発明は上記課題を解決するために成されたものであり、デジタルイオントラップを用い、共鳴励起排出によりイオンを選択的にイオントラップから排出して検出する質量分析装置において、目的とする質量電荷比範囲の全体に亘りマススペクトルの質量精度を向上させること、をその主たる目的としている。 The present invention has been made to solve the above-mentioned problems, and in a mass spectrometer that uses a digital ion trap and selectively ejects ions from the ion trap by resonance excitation ejection to detect, the target mass charge Its main purpose is to improve the mass accuracy of the mass spectrum over the entire ratio range.
 上記課題を解決するために成された本発明の一つの態様は、3以上の電極で囲まれる空間にイオンを捕捉するイオントラップを有し、少なくとも1つの電極にイオン捕捉用の矩形波電圧を印加しつつ該電極とは異なる対向配置された一対の電極にそれぞれ共鳴励起用の矩形波電圧を印加することにより、特定の質量電荷比を有するイオンを共鳴励起により選択的にイオントラップ内から排出して検出する質量分析装置において、
 イオン捕捉用矩形波電圧及び共鳴励起用矩形波電圧を生成する電圧発生部と、
 精密な質量電荷比値が既知である複数の較正用試料を対象として、前記イオン捕捉用矩形波高電圧の電圧振幅を調整しつつ、検出対象のイオンの質量電荷比を走査するようにイオン捕捉用及び共鳴励起用の矩形波電圧の周波数を同期的に走査する質量分析を実施した結果に基づいて、前記複数の較正用試料にそれぞれ対応する質量電荷比における質量誤差が許容範囲に収まる電圧振幅調整情報を取得する電圧振幅調整情報取得部と、
 目的試料に対する所定の質量電荷比範囲に亘る質量分析の実行時に、前記電圧振幅調整情報に基づいて、イオン捕捉用及び共鳴励起用の矩形波電圧の周波数の走査に伴ってイオン捕捉用矩形波高電圧の電圧振幅を変化させるように前記電圧発生部を制御する制御部と、
 を備えるものである。
One embodiment of the present invention made to solve the above problem has an ion trap for trapping ions in a space surrounded by three or more electrodes, and at least one electrode is provided with a rectangular wave voltage for trapping ions. By applying a rectangular wave voltage for resonance excitation to a pair of electrodes arranged opposite to each other while being applied, ions having a specific mass-to-charge ratio are selectively ejected from the ion trap by resonance excitation. In the mass spectrometer to detect by
A voltage generation unit that generates a rectangular wave voltage for ion trapping and a rectangular wave voltage for resonance excitation,
Targeting a plurality of calibration samples whose precise mass-to-charge ratio values are known, while adjusting the voltage amplitude of the rectangular wave high voltage for ion trapping, the ion trapping is performed so as to scan the mass-to-charge ratio of the ions to be detected. And based on the result of the mass analysis in which the frequency of the rectangular wave voltage for resonance excitation is synchronously scanned, the voltage amplitude adjustment in which the mass error in the mass-to-charge ratio corresponding to each of the plurality of calibration samples falls within the allowable range. A voltage amplitude adjustment information acquisition unit that acquires information,
At the time of performing mass analysis over a predetermined mass-to-charge ratio range for the target sample, based on the voltage amplitude adjustment information, a rectangular wave high voltage for ion trapping accompanying the frequency scanning of the rectangular wave voltage for ion trapping and resonance excitation. A control unit that controls the voltage generation unit to change the voltage amplitude of
It is equipped with.
 例えば三次元四重極型のデジタルイオントラップでは、リング電極に印加されるイオン捕捉用の矩形波電圧の周波数を変化させると共鳴励起排出されるイオンの質量電荷比が変化するが、該矩形波電圧の電圧振幅を変化させても共鳴励起排出されるイオンの質量電荷比が変化する。本発明に係る質量分析装置では、矩形波高電圧の周波数を走査する際に、該矩形波高電圧の電圧振幅を一定に維持するのではなく、該電圧振幅を積極的に変化させることで質量走査時の各質量電荷比における質量誤差を減少させる。 For example, in a three-dimensional quadrupole type digital ion trap, when the frequency of a rectangular wave voltage for trapping ions applied to a ring electrode is changed, the mass-charge ratio of ions excited by resonance excitation changes. Even if the voltage amplitude of the voltage is changed, the mass-to-charge ratio of the ions excited by resonance excitation changes. In the mass spectrometer according to the present invention, when the frequency of the rectangular wave high voltage is scanned, the voltage amplitude of the rectangular wave high voltage is not maintained constant, but the voltage amplitude is positively changed during mass scanning. The mass error in each mass-to-charge ratio of is reduced.
 この発明に係る質量分析装置によれば、所定の質量電荷比範囲に亘る質量走査のために矩形波電圧の周波数が走査されるとき、その周波数の変化に伴って、質量誤差が小さくなるように該矩形波電圧の振幅が適宜調整される。それにより、矩形波電圧の電圧振幅を一定に制御する場合に比べて、目的とする質量電荷比範囲内での質量誤差、特にその質量電荷比範囲内で部分的に大きくなる質量誤差を減らすことができ、全体的に質量精度が高いマススペクトルを取得することができる。 According to the mass spectrometer of the present invention, when the frequency of the rectangular wave voltage is scanned for the mass scanning over the predetermined mass-to-charge ratio range, the mass error is reduced as the frequency changes. The amplitude of the rectangular wave voltage is adjusted appropriately. As a result, compared with the case where the voltage amplitude of the rectangular wave voltage is controlled to be constant, the mass error within the target mass-to-charge ratio range, especially the mass error that partially increases within the mass-to-charge ratio range, is reduced. It is possible to obtain a mass spectrum with high mass accuracy as a whole.
本発明の一実施形態であるデジタルイオントラップ質量分析装置(DIT-MS)の概略構成図。The schematic block diagram of the digital ion trap mass spectrometer (DIT-MS) which is one embodiment of the present invention. 本実施形態のDIT-MSにおける特徴的な処理動作のフローチャート。9 is a flowchart of a characteristic processing operation in the DIT-MS of the present embodiment. 本実施形態のDIT-MSにおける質量走査時の矩形波高電圧の周波数変化に伴う電圧振幅の変化の一例を示す模式図。The schematic diagram which shows an example of the change of the voltage amplitude with the frequency change of the rectangular wave high voltage at the time of mass scanning in DIT-MS of this embodiment. DIT-MSにおける共鳴励起排出時の矩形波電圧波形の一例を示すタイミング図。FIG. 6 is a timing chart showing an example of a rectangular wave voltage waveform at the time of resonance excitation discharge in DIT-MS.
 本発明に係る質量分析装置で使用されるイオントラップは、通常、3次元四重極型のイオントラップ、又は、リニア型のイオントラップである。3次元四重極型のイオントラップの場合、通常、イオントラップは、環状のリング電極と、該リング電極を挟んで対向配置された一対のエンドキャップ電極とからなり、リング電極にイオン捕捉用の矩形波電圧、一対のエンドキャップ電極に共鳴励起用の矩形波電圧が印加される。一方、リニア型のイオントラップの場合、通常、イオントラップは、中心軸を取り囲むように互いに平行に配置された4本のロッド電極からなり、中心軸を挟んで対向する2本のロッド電極が上記リング電極に代わるものであり、別の2本のロッド電極がそれぞれ上記一対のエンドキャップ電極に代わるものである。 The ion trap used in the mass spectrometer according to the present invention is usually a three-dimensional quadrupole ion trap or a linear ion trap. In the case of a three-dimensional quadrupole type ion trap, the ion trap is usually composed of an annular ring electrode and a pair of end cap electrodes that are arranged to face each other with the ring electrode interposed therebetween. A rectangular wave voltage and a rectangular wave voltage for resonance excitation are applied to the pair of end cap electrodes. On the other hand, in the case of a linear type ion trap, the ion trap is usually composed of four rod electrodes arranged in parallel with each other so as to surround the central axis, and the two rod electrodes facing each other with the central axis interposed therebetween are as described above. It replaces the ring electrode, and another two rod electrodes replace the pair of end cap electrodes.
 本発明に係る質量分析装置の一実施形態であるデジタルイオントラップ質量分析装置(DIT-MS)について、添付図面を参照して説明する。このDIT-MSは3次元四重極型イオントラップを用いたものであるが、リニア型イオントラップに置き換え可能であることは当業者に明らかである。
 図1は、この実施形態によるDIT-MSの要部の構成図である。
A digital ion trap mass spectrometer (DIT-MS) that is an embodiment of a mass spectrometer according to the present invention will be described with reference to the accompanying drawings. This DIT-MS uses a three-dimensional quadrupole ion trap, but it is obvious to those skilled in the art that it can be replaced with a linear ion trap.
FIG. 1 is a configuration diagram of a main part of a DIT-MS according to this embodiment.
 [本装置の全体構成]
 このDIT-MSは、目的試料をイオン化するイオン化部1と、イオンを質量電荷比に応じて分離する3次元四重極型のイオントラップ2と、イオンを検出する検出部3と、を備える。
[Overall configuration of this device]
The DIT-MS includes an ionization unit 1 that ionizes a target sample, a three-dimensional quadrupole ion trap 2 that separates ions according to a mass-to-charge ratio, and a detection unit 3 that detects ions.
 イオン化部1はマトリクス支援レーザ脱離イオン化(MALDI)法を用いたものであり、パルス状のレーザ光を出射するレーザ照射部11、試料成分を含むサンプル13が付着されたサンプルプレート12、レーザ光の照射によってサンプル13から放出されたイオンを引き出すとともにその引き出し方向を限定するアパーチャ電極14、引き出されたイオンを案内するイオンレンズ15、などを含む。もちろん、イオン化部1におけるイオン化法の種類はMALDI法に限るものではなく、他のレーザイオン化法やレーザ光を用いないイオン化法でも構わない。 The ionization unit 1 uses a matrix-assisted laser desorption/ionization (MALDI) method, and includes a laser irradiation unit 11 that emits a pulsed laser beam, a sample plate 12 to which a sample 13 containing a sample component is attached, and a laser beam. And an ion electrode 15 that guides the extracted ions. Of course, the type of ionization method in the ionization unit 1 is not limited to the MALDI method, and other laser ionization methods or ionization methods that do not use laser light may be used.
 イオントラップ2は、円環状の1個のリング電極21と、これを挟むように対向して配置された、入口側エンドキャップ電極22及び出口側エンドキャップ電極24と、からなり、これら3個の電極21、22、24で囲まれた空間の一部がイオン捕捉領域となる。入口側エンドキャップ電極22の略中央にはイオン入射口23が穿設され、イオン化部1から出射したイオンはイオン入射口23を通過してイオントラップ2内に導入される。一方、出口側エンドキャップ電極24の略中央にはイオン出射口25が穿設され、イオン出射口25を通ってイオントラップ2内から排出されたイオンは検出部3に到達して検出される。 The ion trap 2 includes one ring-shaped ring electrode 21 and an inlet-side end cap electrode 22 and an outlet-side end cap electrode 24, which are arranged to face each other so as to sandwich the ring-shaped ring electrode 21. A part of the space surrounded by the electrodes 21, 22, and 24 serves as an ion trapping region. An ion entrance port 23 is formed in the center of the entrance-side end cap electrode 22, and the ions emitted from the ionization section 1 pass through the ion entrance port 23 and are introduced into the ion trap 2. On the other hand, an ion emission port 25 is formed substantially at the center of the outlet side end cap electrode 24, and the ions ejected from the ion trap 2 through the ion emission port 25 reach the detection unit 3 and are detected.
 検出部3は、イオンを電子に変換するコンバージョンダイノード31と、コンバージョンダイノード31から到来する電子を増倍して検出する二次電子増倍管32とを含み、入射したイオンの量に応じた検出信号を生成しデータ処理部8に送る。データ処理部8は、イオントラップ2において質量分離されつつ順次排出されるイオンに対して検出部3で得られる検出信号に基づいて、マススペクトルを作成する機能を有する。データ処理部8はキャリブラント(較正用試料)の質量電荷比理論値と質量電荷比実測値との差に基づいて較正式を作成し、この較正式を用いて質量較正を行う質量較正部81を機能ブロックとして含む。 The detection unit 3 includes a conversion dynode 31 that converts ions into electrons, and a secondary electron multiplier 32 that multiplies and detects electrons coming from the conversion dynode 31, and detects according to the amount of incident ions. A signal is generated and sent to the data processing unit 8. The data processing unit 8 has a function of creating a mass spectrum based on a detection signal obtained by the detection unit 3 with respect to ions that are sequentially ejected while being mass-separated in the ion trap 2. The data processing unit 8 creates a calibration formula based on the difference between the theoretical value of the mass-to-charge ratio of the calibrant (calibration sample) and the actual measurement value of the mass-to-charge ratio, and the mass calibration unit 81 that performs mass calibration using this calibration formula. Is included as a functional block.
 主電源部4はイオントラップ2のリング電極21に矩形波高電圧を印加するものであり正極性の第1電圧VHを発生する第1電圧源41と、負極性の第2電圧VLを発生する第2電圧源42と、第1電圧源41の出力端と第2電圧源42の出力端との間に直列に接続された第1スイッチング素子43及び第2スイッチング素子44と、を含む。一方、補助電源部5は、イオントラップ2のエンドキャップ電極22、24にそれぞれ異なる矩形波低電圧を印加するものである。 The main power supply unit 4 applies a rectangular wave high voltage to the ring electrode 21 of the ion trap 2, and generates a first voltage source 41 that generates a positive first voltage V H and a negative second voltage V L. A second voltage source 42, and a first switching element 43 and a second switching element 44 connected in series between the output terminal of the first voltage source 41 and the output terminal of the second voltage source 42. On the other hand, the auxiliary power supply unit 5 applies different rectangular wave low voltages to the end cap electrodes 22 and 24 of the ion trap 2.
 タイミング信号発生部6はハードウェアによるロジック回路であり、制御部7による制御の下に、第1スイッチング素子43及び第2スイッチング素子44が交互にオンするように(但し、同時にオンすることがないように)、所定周波数の駆動パルスを生成して各スイッチング素子43、44に供給する。第1スイッチング素子43がオンするとき第1電圧VHが出力され、第2スイッチング素子44がオンするときに第2電圧VLが出力される。そのため、主電源部4の出力電圧VOUTは理想的には、図4(a)に示すように、ハイレベルがVH、ローレベルがVLである所定周波数f(周期t)の矩形波電圧となる。ここでは、VHとVLとは絶対値がほぼ同じで極性が逆の高電圧であり、例えば、その絶対値は数百V~1kV程度である。また、周波数fは通常数十kHz~数MHz程度の範囲である。但し、システムの基準電位によっては、VHとVLとは同極性であってもよい。 The timing signal generator 6 is a hardware logic circuit, and under the control of the controller 7, the first switching element 43 and the second switching element 44 are turned on alternately (however, they are not turned on at the same time. As described above, a drive pulse having a predetermined frequency is generated and supplied to each of the switching elements 43 and 44. The first voltage V H is output when the first switching element 43 is turned on, and the second voltage V L is output when the second switching element 44 is turned on. Therefore, ideally, as shown in FIG. 4A, the output voltage V OUT of the main power supply unit 4 is a rectangular wave of a predetermined frequency f (cycle t) in which the high level is V H and the low level is V L. It becomes a voltage. Here, V H and V L are high voltages whose absolute values are almost the same and their polarities are opposite to each other. For example, their absolute values are several hundreds V to 1 kV. The frequency f is usually in the range of several tens kHz to several MHz. However, V H and V L may have the same polarity depending on the reference potential of the system.
 またタイミング信号発生部6は、主電源部4に供給する駆動パルスを適宜の比(例えば1/4)で分周したパルス信号を補助電源部5に与える。補助電源部5はタイミング信号発生部6から得られる信号に基づき、周波数がf/4であって振幅値が例えば数V程度である、図4(b)に示すような矩形波低電圧を生成する。 Further, the timing signal generator 6 gives a pulse signal obtained by dividing the drive pulse supplied to the main power source 4 at an appropriate ratio (for example, 1/4) to the auxiliary power source 5. The auxiliary power supply unit 5 generates a rectangular wave low voltage as shown in FIG. 4B, which has a frequency of f/4 and an amplitude value of, for example, about several V, based on the signal obtained from the timing signal generation unit 6. To do.
 制御部7は分析動作を実施するために各部を制御するものであり、本実施形態に特徴的な機能ブロックとして、電圧-m/zシフト量情報記憶部71、質量走査時電圧情報取得制御部72、質量誤差算出部73、質量誤差判定部74、調整済み電圧情報記憶部75、質量走査時電圧制御部76などを含む。この制御部7はハードウェア回路により構成することも可能であるが、通常、少なくとも一部はパーソナルコンピュータを中心に構成され、該パーソナルコンピュータにインストールされた専用の制御・処理プログラムを実行することにより、その機能が達成されるものとすることができる。 The control unit 7 controls each unit in order to perform the analysis operation, and as the functional blocks characteristic of this embodiment, the voltage-m/z shift amount information storage unit 71, the mass scanning voltage information acquisition control unit, and the like. 72, a mass error calculation unit 73, a mass error determination unit 74, an adjusted voltage information storage unit 75, a mass scanning voltage control unit 76, and the like. The control unit 7 can be configured by a hardware circuit, but normally, at least a part of the control unit 7 is mainly configured by a personal computer, and by executing a dedicated control/processing program installed in the personal computer. , Its function may be achieved.
 [本装置の基本的な質量分析動作の説明]
 本実施形態のDIT-MSにおける質量分析動作を概略的に説明する。
 イオン化部1において、制御部7の制御の下にレーザ照射部11から短時間レーザ光をサンプル13に出射すると、該サンプル13中の試料成分がイオン化される。発生したイオンはイオンレンズ15により収束され、イオン入射口23を経てイオントラップ2内の空間に導入されて捕捉される。
[Explanation of basic mass spectrometry operation of this device]
A mass spectrometric operation in the DIT-MS of this embodiment will be schematically described.
In the ionization unit 1, when laser light is emitted from the laser irradiation unit 11 to the sample 13 for a short time under the control of the control unit 7, the sample component in the sample 13 is ionized. The generated ions are converged by the ion lens 15 and introduced into the space in the ion trap 2 via the ion entrance 23 to be captured.
 イオントラップ2内に安定的に捕捉されるイオンの質量電荷比範囲は、リング電極21に印加される矩形波高電圧の周波数に依存する。したがって、上記のようにイオンをイオントラップ2内に閉じ込めておくに際し、タイミング信号発生部6は制御部7からの指示に従って所定周波数の駆動パルスをスイッチング素子43、44に供給し、これに応じた周波数の矩形波高電圧が主電源部4で生成されてリング電極21に印加される。このときには、エンドキャップ電極22、24への印加電圧は接地電位に維持される。なお、所定の或る程度広い質量電荷比範囲のイオンを捕捉する場合には、矩形波高電圧の周波数はその質量電荷比範囲に応じて適切に選択される。 The mass-charge ratio range of the ions that are stably trapped in the ion trap 2 depends on the frequency of the rectangular wave high voltage applied to the ring electrode 21. Therefore, when the ions are confined in the ion trap 2 as described above, the timing signal generator 6 supplies a drive pulse having a predetermined frequency to the switching elements 43 and 44 according to the instruction from the controller 7, and responds to this. A rectangular wave high voltage having a frequency is generated by the main power supply unit 4 and applied to the ring electrode 21. At this time, the voltage applied to the end cap electrodes 22 and 24 is maintained at the ground potential. It should be noted that when trapping ions in a predetermined, somewhat wide mass-to-charge ratio range, the frequency of the rectangular wave high voltage is appropriately selected according to the mass-to-charge ratio range.
 上述したように様々な質量電荷比を有するイオンを捕捉したあと該イオンについてのマススペクトルを取得する際には、共鳴励起現象を利用し、イオンを質量電荷比の順にイオン出射口25を通してイオントラップ2から排出し、検出部3により検出する。このときには、主電源部4からリング電極21にイオン捕捉用の矩形波高電圧を印加する一方、補助電源部5からエンドキャップ電極22、24にそれぞれ、イオン捕捉用矩形波高電圧を分周した周波数の共鳴励振用矩形波電圧(矩形波低電圧)を印加する。そして、イオン捕捉用矩形波高電圧と共鳴励振用矩形波低電圧の周波数を同期的に走査する。それにより、特定の質量電荷比を有するイオンが共鳴励起されて大きく振動し、イオントラップ2から順番に排出される。 As described above, when trapping ions having various mass-to-charge ratios and then obtaining a mass spectrum of the ions, a resonance excitation phenomenon is used to allow the ions to be trapped through the ion emission port 25 in order of mass-to-charge ratio. It is discharged from 2, and detected by the detection unit 3. At this time, the rectangular wave high voltage for ion trapping is applied from the main power source section 4 to the ring electrode 21, while the frequency of the ion trapping rectangular wave high voltage is divided from the auxiliary power source section 5 to the end cap electrodes 22 and 24, respectively. A rectangular wave voltage (rectangular wave low voltage) for resonance excitation is applied. Then, the frequency of the rectangular wave high voltage for ion trapping and the frequency of the rectangular wave low voltage for resonance excitation are synchronously scanned. As a result, ions having a specific mass-to-charge ratio are resonantly excited and greatly vibrate, and are sequentially ejected from the ion trap 2.
 [本装置に特徴的な制御及び処理動作の説明]
 一般的に、上述した共鳴励起排出の際には、矩形波高電圧の電圧振幅、つまりは第1電圧VH及び第2電圧VLの電圧値は一定に制御される。しかしながら、スイッチング素子43、44をオン・オフ動作させる駆動パルスの周波数が連続的に変化されると、パルス幅が変化して電圧変化の過渡状態の影響が変化するとともに、電圧源41、42の負荷も変化する。そのため、矩形波高電圧の周波数変化に伴って、該矩形波高電圧の電圧振幅が変動するほか電圧波形形状も変動する。こうした電圧振幅や波形形状の変動は、質量走査時の質量誤差及びその変動の大きな要因となっていると推定される。
[Explanation of control and processing operations characteristic of this apparatus]
Generally, during the above-described resonance excitation discharge, the voltage amplitude of the rectangular wave high voltage, that is, the voltage values of the first voltage V H and the second voltage V L are controlled to be constant. However, when the frequency of the drive pulse for turning on/off the switching elements 43 and 44 is continuously changed, the pulse width is changed, the influence of the transient state of the voltage change is changed, and the voltage sources 41 and 42 are changed. The load also changes. Therefore, as the frequency of the rectangular wave high voltage changes, the voltage amplitude of the rectangular wave high voltage changes and the voltage waveform shape also changes. Such variations in voltage amplitude and waveform shape are presumed to be a major factor in mass errors during mass scanning and their fluctuations.
 これに対し、本実施形態のDIT-MSでは、矩形波高電圧の周波数を走査する際に、該矩形波高電圧の電圧振幅を一定に維持せずに変化させることで、質量走査時における全体的な質量誤差を軽減するようにしている。 On the other hand, in the DIT-MS of the present embodiment, when the frequency of the rectangular wave high voltage is scanned, the voltage amplitude of the rectangular wave high voltage is changed without being kept constant, so that the entire mass scanning is performed. The mass error is reduced.
 そのための制御及び処理について図2及び図3を参照して説明する。図2はこのDIT-MSにおける特徴的な処理動作のフローチャート、図3はこのDIT-MSにおける質量走査時の矩形波高電圧の周波数変化に伴う電圧振幅の変化の一例を示す模式図である。ここでは一例として、精密な質量電荷比値(理論値)が既知である5種類のキャリブラントを用いるものとする。キャリブラントの数は2以上であればよい。 The control and processing therefor will be described with reference to FIGS. 2 and 3. FIG. 2 is a flow chart of a characteristic processing operation in this DIT-MS, and FIG. 3 is a schematic diagram showing an example of a change in voltage amplitude with a frequency change of a rectangular wave high voltage during mass scanning in this DIT-MS. Here, as an example, it is assumed that five kinds of calibrants whose precise mass-to-charge ratio values (theoretical values) are known are used. The number of calibrants may be two or more.
 事前に、使用するキャリブラントに対応する質量電荷比値毎に、矩形波高電圧の電圧振幅の変化量と質量電荷比の変化量との関係を実験的に調べ、電圧-m/zシフト量情報記憶部71に格納しておく。具体的には例えば、矩形波高電圧の電圧振幅を規定の電圧振幅値から0.1Vだけ減らしたときの質量電荷比の変化値を求めておけばよい。 The relationship between the amount of change in the voltage amplitude of the square wave high voltage and the amount of change in the mass-to-charge ratio was experimentally investigated in advance for each mass-to-charge ratio value corresponding to the calibrant used, and the voltage-m/z shift amount information was obtained. It is stored in the storage unit 71. Specifically, for example, the change value of the mass-to-charge ratio when the voltage amplitude of the rectangular wave high voltage is reduced by 0.1 V from the specified voltage amplitude value may be obtained.
 キャリブラントを用いた質量較正の際に、制御部7の質量走査時電圧情報取得制御部72は矩形波高電圧の電圧振幅を一定にするべく、第1電圧源41及び第2電圧源42の出力電圧をそれぞれ所定値に固定するように設定する(ステップS1)。そうした電圧条件の下で、5種類のキャリブラントについて質量分析を実行し、所定の質量電荷比範囲に亘るマススペクトルデータを取得する(ステップS2)。ここで、5種類のキャリブラントは、図3に示すように、Cal.a、Cal.b、Cal.c、Cal.d、Cal.eであり、その質量電荷比はCal.aが最も小さく、Cal.a、Cal.b、Cal.c、Cal.d、Cal.eの順に大きいものとする。 During the mass calibration using the calibrant, the voltage information acquisition control unit 72 for mass scanning of the control unit 7 outputs the outputs of the first voltage source 41 and the second voltage source 42 in order to make the voltage amplitude of the rectangular wave high voltage constant. The voltages are set to be fixed at predetermined values (step S1). Under such a voltage condition, mass spectrometry is performed on five kinds of calibrants, and mass spectrum data over a predetermined mass-charge ratio range is acquired (step S2). Here, the five kinds of calibrants are Cal.a, Cal.b, Cal.c, Cal.d, and Cal.e as shown in FIG. 3, and the mass-to-charge ratio of Cal.a is the smallest. , Cal.a, Cal.b, Cal.c, Cal.d, Cal.e, in that order.
 データ処理部8において質量較正部81は、質量電荷比が最小、最大である二つのキャリブラントCal.a、Cal.eについて実測したマススペクトルデータから質量電荷比実測値を算出し、それらキャリブラントの質量電荷比の実測値と理論値との差に基づいて直線的な較正式を求める。そして、この較正式を用いて、全てのキャリブラントCal.a、Cal.b、Cal.c、Cal.d、Cal.eについて質量較正を実施し、この質量較正後の質量電荷比値を実測値であるとして制御部7へと送る(ステップS3)。 In the data processing unit 8, the mass calibration unit 81 calculates the mass-to-charge ratio actual measurement value from the mass spectrum data of the two calibrants Cal.a and Cal.e whose mass-to-charge ratio is minimum and maximum, and calculates the calibrants. A linear calibration formula is obtained based on the difference between the measured value and the theoretical value of the mass-to-charge ratio of. Then, using this calibration formula, mass calibration is performed for all calibrants Cal.a, Cal.b, Cal.c, Cal.d, Cal.e, and the mass-to-charge ratio value after this mass calibration is measured. The value is sent to the control unit 7 (step S3).
 制御部7において質量誤差算出部73は、まず質量電荷比が最小であるキャリブラントCal.aを選択し、そのキャリブラントに対応する質量電荷比の質量誤差を求める(ステップS4)。質量誤差判定部74は、その質量誤差が予め定められた許容範囲内に収まっているか否かを判定する(ステップS5)。質量誤差が許容範囲内に収まっていれば、ステップS5から後述するステップS8へと進む。 In the control unit 7, the mass error calculation unit 73 first selects the calibrant Cal.a having the smallest mass-to-charge ratio, and obtains the mass error of the mass-to-charge ratio corresponding to the calibrant (step S4). The mass error determination unit 74 determines whether the mass error is within a predetermined allowable range (step S5). If the mass error is within the allowable range, the process proceeds from step S5 to step S8 described later.
 一方、質量誤差が許容範囲を逸脱している場合、質量走査時電圧情報取得制御部72は電圧-m/zシフト量情報記憶部71に記憶されてている情報、つまりは該当するキャリブラントに対応する矩形波高電圧の電圧振幅の変化量と質量電荷比の変化量との関係、を参照して、質量誤差がゼロになるような電圧振幅の変化量を算出する。そして、そのキャリブラントに対応する質量電荷比を有するイオンが共鳴励起排出される矩形波高電圧の周波数付近の所定の周波数範囲では、その算出結果に応じて電圧振幅を変化させるように周波数を走査することで、該当するキャリブラントについての質量分析を再度実施する(ステップS6)。 On the other hand, if the mass error deviates from the allowable range, the mass scanning voltage information acquisition control unit 72 determines that the information stored in the voltage-m/z shift amount information storage unit 71, that is, the corresponding calibrant. By referring to the relationship between the amount of change in the voltage amplitude of the corresponding rectangular wave high voltage and the amount of change in the mass-to-charge ratio, the amount of change in the voltage amplitude at which the mass error becomes zero is calculated. Then, in a predetermined frequency range near the frequency of the rectangular wave high voltage at which ions having a mass-to-charge ratio corresponding to the calibrant are resonantly excited and ejected, the frequency is scanned so as to change the voltage amplitude according to the calculation result. As a result, mass spectrometry of the corresponding calibrant is performed again (step S6).
 データ処理部8において質量較正部81は得られたマススペクトルデータから求まる測定対象のキャリブラントの質量電荷比値を上記較正式を用いて較正し、質量電荷比実測値を得る。そして、質量誤差算出部73はそのキャリブラントに対応する質量電荷比の質量誤差を求める(ステップS7)。そのあと、ステップS7からS5へと戻り、質量誤差判定部74は、その質量誤差が許容範囲内に収まっているか否かを判定する。そして、質量誤差が許容範囲内に収まっていなければ、ステップS5~S6の処理を繰り返す。それにより、そのキャリブラント由来のイオンに対応する矩形波高電圧の周波数近傍において、質量誤差が許容範囲内に収まるような電圧振幅の変化量を決定することができる。そして、ステップS5でYesと判定されたときには、決定された電圧振幅の変化量をその矩形波高電圧の周波数に対応して調整済み電圧情報記憶部75に記憶する(ステップS8)。 In the data processing unit 8, the mass calibration unit 81 calibrates the mass-to-charge ratio value of the calibrant to be measured, which is obtained from the obtained mass spectrum data, using the above calibration formula, and obtains the measured mass-to-charge ratio value. Then, the mass error calculator 73 calculates the mass error of the mass-to-charge ratio corresponding to the calibrant (step S7). After that, the process returns from step S7 to S5, and the mass error determination unit 74 determines whether or not the mass error is within the allowable range. Then, if the mass error is not within the allowable range, the processes of steps S5 to S6 are repeated. Thereby, in the vicinity of the frequency of the rectangular wave high voltage corresponding to the ions derived from the calibrant, it is possible to determine the amount of change in the voltage amplitude such that the mass error falls within the allowable range. When it is determined to be Yes in step S5, the determined amount of change in voltage amplitude is stored in the adjusted voltage information storage unit 75 corresponding to the frequency of the rectangular wave high voltage (step S8).
 そのあと、質量走査時電圧情報取得制御部72は電圧振幅の変化量を決定していないキャリブラントが残っているか否かを判定する(ステップS9)。未だキャリブラントが残っていれば次に質量電荷比が大きいキャリブラントを選択し、質量誤差算出部73は、そのキャリブラントに対応する質量電荷比の質量誤差を求め(ステップS10)ステップS5に戻り、上述した処理を実行する。したがって、ステップS10→S5~S7の繰り返し→S8→S9、の繰り返しにより、5種類のキャリブラントCal.a、Cal.b、Cal.c、Cal.d、Cal.eの全てについて、質量較正後の質量誤差が許容範囲に収まるような電圧振幅の変化量がそれぞれ決まり、その情報が調整済み電圧情報記憶部75に記憶される。 After that, the mass scanning voltage information acquisition control unit 72 determines whether or not there remains a calibrant for which the amount of change in voltage amplitude has not been determined (step S9). If the calibrant still remains, the calibrant having the next largest mass-to-charge ratio is selected, and the mass error calculation unit 73 obtains the mass error of the mass-to-charge ratio corresponding to the calibrant (step S10) and returns to step S5. , Executes the processing described above. Therefore, by repeating steps S10→S5 to S7→S8→S9, after mass calibration is performed for all five kinds of calibrants Cal.a, Cal.b, Cal.c, Cal.d, and Cal.e. The amount of change in the voltage amplitude is determined so that the mass error is within the allowable range, and the information is stored in the adjusted voltage information storage unit 75.
 いま、5種類のキャリブラントCal.a、Cal.b、Cal.c、Cal.d、Cal.eの初期的な質量誤差が図3(a)中に●で示した状態にあるものとすると、3種類のキャリブラントCal.b、Cal.c、Cal.dについては初期的な質量誤差が許容範囲を外れているため、矩形波高電圧の電圧振幅の調整が実施される。 Now, assuming that the initial mass errors of the five kinds of calibrants Cal.a, Cal.b, Cal.c, Cal.d, and Cal.e are in the state shown by ● in FIG. 3(a). Since the initial mass errors of the three kinds of calibrants Cal.b, Cal.c, and Cal.d are out of the allowable range, the voltage amplitude of the rectangular wave high voltage is adjusted.
 図4に示したような矩形波電圧を印加することで共鳴励起排出を行うイオントラップでは、矩形波高電圧の正極側高電圧(第1電圧VH)を下げるとマススペクトル上で観測される規定の質量電荷比のイオンピークは低マス側にシフトする。一方、矩形波高電圧の負極側高電圧(第2電圧VL)を下げるとマススペクトル上で観測される規定の質量電荷比のイオンピークは高マス側にシフトする。そこで、本実施形態のDIT-MSでは、質量誤差が負値である場合には、負極側高電圧(第2電圧VL)を下げるように電圧振幅を変化させる。一方、質量誤差が正値である場合には、正極側高電圧(第1電圧VH)を下げるように電圧振幅を変化させる。 In an ion trap that performs resonant excitation and ejection by applying a rectangular wave voltage as shown in FIG. 4, the regulation observed on the mass spectrum when the positive electrode side high voltage (first voltage V H ) of the rectangular wave high voltage is lowered. The ion peak of the mass-to-charge ratio of is shifted to the lower mass side. On the other hand, when the high voltage (second voltage V L ) on the negative side of the rectangular wave high voltage is lowered, the ion peak of the specified mass-to-charge ratio observed on the mass spectrum shifts to the high mass side. Therefore, in the DIT-MS of the present embodiment, when the mass error is a negative value, the voltage amplitude is changed so as to lower the negative electrode side high voltage (second voltage V L ). On the other hand, when the mass error is a positive value, the voltage amplitude is changed so as to lower the high voltage on the positive electrode side (first voltage V H ).
 したがって、各キャリブラントにおける質量誤差が図3(a)に示したようになる場合、各キャリブラントに対応する周波数における電圧調整量は図3(b)に示すような傾向になる。但し、図3(b)においてマイナスの電圧調整量とは電圧を下げることを意味する。即ち、図3(b)において、○で示すプロットは正極性である第1電圧VHの調整量、□で示すプロットは負極性である第2電圧VLの調整量である。キャリブラントCal.b及びCal.cについては、第1電圧VHが下がる方向に調整されることで矩形波高電圧の電圧振幅が調整される。また、キャリブラントCal.dについては、第2電圧VLが下がる方向に調整されることで矩形波高電圧の電圧振幅が調整される。 Therefore, when the mass error in each calibrant is as shown in FIG. 3A, the voltage adjustment amount at the frequency corresponding to each calibrant tends to be as shown in FIG. 3B. However, in FIG. 3B, the negative voltage adjustment amount means to reduce the voltage. That is, in FIG. 3B, the plot indicated by ◯ is the adjustment amount of the first voltage V H having the positive polarity, and the plot indicated by □ is the adjustment amount of the second voltage V L having the negative polarity. For the calibrants Cal.b and Cal.c, the voltage amplitude of the rectangular wave high voltage is adjusted by adjusting the first voltage V H in the decreasing direction. Further, for the calibrant Cal.d, the voltage amplitude of the rectangular wave high voltage is adjusted by adjusting the second voltage V L in the decreasing direction.
 なお、図3(b)では、一つの質量電荷比のキャリブラントに対応する周波数における電圧調整量とそれに隣合う質量電荷比のキャリブラントに対応する周波数における電圧調整量との間を直線で結んでいるが、これは必ずしも直線でなく適宜の曲線で結んでもよい。 In FIG. 3B, a straight line connects the voltage adjustment amount at the frequency corresponding to the calibrant with one mass-to-charge ratio and the voltage adjustment amount at the frequency corresponding to the calibrant with the mass-to-charge ratio adjacent thereto. However, this is not necessarily a straight line and may be connected by an appropriate curve.
 目的とする試料成分を含むサンプルについて質量分析を実施して所定の質量電荷比範囲に亘るマススペクトルを取得する際には、質量走査時電圧制御部76がその質量電荷比範囲に対応した矩形波高電圧の周波数走査範囲を決める。そして、調整済み電圧情報記憶部75に記憶されている、周波数に対応した電圧調整量の情報に基づいて、周波数の走査に従って第1電圧源41で生成する第1電圧VH、及び第2電圧源42で生成する第2電圧VLの値をそれぞれ変化させる。それにより、スイッチングにより生成される矩形波高電圧の電圧振幅が周波数変化に伴って調整され、質量電荷比範囲全体に亘り質量誤差が小さくなる。その結果、得られるマススペクトルの質量精度を向上させることができる。 When performing mass spectrometry on a sample containing a target sample component to obtain a mass spectrum over a predetermined mass-to-charge ratio range, the mass scanning time voltage control unit 76 sets a rectangular wave height corresponding to the mass-to-charge ratio range. Determine the frequency scan range of voltage. Then, based on the information of the voltage adjustment amount corresponding to the frequency stored in the adjusted voltage information storage unit 75, the first voltage V H and the second voltage generated by the first voltage source 41 in accordance with the frequency scanning. The value of the second voltage V L generated by the source 42 is changed. As a result, the voltage amplitude of the rectangular wave high voltage generated by switching is adjusted according to the frequency change, and the mass error is reduced over the entire mass-charge ratio range. As a result, the mass accuracy of the obtained mass spectrum can be improved.
 なお、上記実施形態では、キャリブラントの数が5であるが、これは2以上であればよい。一般に、キャリブラントの数が多いほうが電圧調整量がより正確に求まるため、マススペクトルの質量精度を向上させるには有利である。その反面、キャリブラントを用意する手間が増えるとともに上述したような電圧調整量を求めるための処理に要する時間も長くなる。したがって、キャリブラントの数は通常、数個程度が適当である。 In the above embodiment, the number of calibrants is 5, but this may be 2 or more. Generally, the larger the number of calibrants, the more accurately the voltage adjustment amount can be obtained, which is advantageous for improving the mass accuracy of the mass spectrum. On the other hand, the time and labor required to prepare the calibrant increase, and the time required for the above-described process for obtaining the voltage adjustment amount also increases. Therefore, a suitable number of calibrants is usually about several.
 また、上記実施形態では、イオントラップとして3次元四重極型イオントラップを用いたが、リニア型イオントラップに置き換え可能であることは当然である。また、図1に示した主電源部4の構成はあくまでも一例であり、矩形波高電圧として必要な電圧振幅及び周波数の波形を生成可能な構成であれば、例示したものに限らないことも当然である。 Also, in the above embodiment, the three-dimensional quadrupole ion trap was used as the ion trap, but it is natural that it can be replaced with a linear ion trap. Further, the configuration of the main power supply unit 4 shown in FIG. 1 is merely an example, and it is needless to say that the configuration is not limited to the exemplified one as long as it is a configuration capable of generating the waveform of the voltage amplitude and the frequency required as the rectangular wave high voltage. is there.
 さらにまた、上記実施形態及び変形例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜、変形、追加、修正を行っても本願特許請求の範囲に包含されることは当然である。 Furthermore, the above-described embodiments and modified examples are merely examples of the present invention, and it is needless to say that any appropriate modification, addition, or modification made within the scope of the present invention is also included in the scope of the claims of the present application. ..
 [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Various aspects]
Those skilled in the art will appreciate that the exemplary embodiments described above are specific examples of the following aspects.
 (第1項)本発明に係る質量分析装置の一態様は、3以上の電極で囲まれる空間にイオンを捕捉するイオントラップを有し、少なくとも1つの電極にイオン捕捉用の矩形波電圧を印加しつつ該電極とは異なる対向配置された一対の電極にそれぞれ共鳴励起用の矩形波電圧を印加することにより、特定の質量電荷比を有するイオンを共鳴励起により選択的にイオントラップ内から排出して検出する質量分析装置において、
 イオン捕捉用矩形波電圧及び共鳴励起用矩形波電圧を生成する電圧発生部と、
 精密な質量電荷比値が既知である複数の較正用試料を対象として、前記イオン捕捉用矩形波高電圧の電圧振幅を調整しつつ、検出対象のイオンの質量電荷比を走査するようにイオン捕捉用及び共鳴励起用の矩形波電圧の周波数を同期的に走査する質量分析を実施した結果に基づいて、前記複数の較正用試料にそれぞれ対応する質量電荷比における質量誤差が許容範囲に収まる電圧振幅調整情報を取得する電圧振幅調整情報取得部と、
 目的試料に対する所定の質量電荷比範囲に亘る質量分析の実行時に、前記電圧振幅調整情報に基づいて、イオン捕捉用及び共鳴励起用の矩形波電圧の周波数の走査に伴ってイオン捕捉用矩形波高電圧の電圧振幅を変化させるように前記電圧発生部を制御する制御部と、
 を備える。
(Claim 1) An aspect of the mass spectrometer according to the present invention has an ion trap that traps ions in a space surrounded by three or more electrodes, and applies a rectangular wave voltage for trapping ions to at least one electrode. While a rectangular wave voltage for resonance excitation is applied to each of a pair of electrodes arranged opposite to each other, the ions having a specific mass-to-charge ratio are selectively ejected from the ion trap by resonance excitation. In the mass spectrometer that detects
A voltage generation unit that generates a rectangular wave voltage for ion trapping and a rectangular wave voltage for resonance excitation,
Targeting a plurality of calibration samples whose precise mass-to-charge ratio values are known, while adjusting the voltage amplitude of the rectangular wave high voltage for ion trapping, the ion trapping is performed so as to scan the mass-to-charge ratio of the ions to be detected. And based on the result of the mass analysis in which the frequency of the rectangular wave voltage for resonance excitation is synchronously scanned, the voltage amplitude adjustment in which the mass error in the mass-to-charge ratio corresponding to each of the plurality of calibration samples falls within the allowable range. A voltage amplitude adjustment information acquisition unit that acquires information,
At the time of performing mass analysis over a predetermined mass-to-charge ratio range for the target sample, based on the voltage amplitude adjustment information, a rectangular wave high voltage for ion trapping accompanying the frequency scanning of the rectangular wave voltage for ion trapping and resonance excitation. A control unit that controls the voltage generation unit to change the voltage amplitude of
Equipped with.
 第1項に記載の質量分析装置によれば、共鳴励起排出に際しイオン捕捉用矩形波電圧の周波数が走査されるときに、その電圧振幅もその周波数の走査に伴って適宜変化される。それにより、検出対象のイオンの質量電荷比を走査する途中における質量誤差を減少させることができ、マススペクトルの質量精度を向上させることができる。 According to the mass spectrometer described in the first paragraph, when the frequency of the rectangular wave voltage for ion trapping is scanned during resonance excitation and ejection, the voltage amplitude is also appropriately changed with the scanning of the frequency. Thereby, a mass error in the course of scanning the mass-to-charge ratio of the ion to be detected can be reduced, and the mass accuracy of the mass spectrum can be improved.
 (第2項)第1項に記載の質量分析装置において、
 前記電圧振幅調整情報取得部は、前記較正用試料について前記イオン捕捉用矩形波高電圧の電圧振幅の調整量と質量電荷比の変化量との関係を示す情報が予め格納された事前情報格納部を有し、
 前記較正用試料に対する質量分析の実行時に、前記事前情報格納部に格納されている情報に基づいて前記イオン捕捉用矩形波高電圧の電圧振幅を調整する、ものとすることができる。
(Item 2) In the mass spectrometer according to item 1,
The voltage amplitude adjustment information acquisition unit is a pre-information storage unit in which information indicating the relationship between the adjustment amount of the voltage amplitude of the rectangular wave high voltage for ion trapping and the change amount of the mass-to-charge ratio of the calibration sample is stored in advance. Have,
The voltage amplitude of the square wave high voltage for ion trapping may be adjusted based on the information stored in the advance information storage unit when the mass spectrometry is performed on the calibration sample.
 第2項に記載の質量分析装置によれば、予め求めておいた電圧振幅の調整量と質量電荷比の変化量との関係を示す情報を利用して較正用試料に対する質量分析の際の電圧振幅を決めることができる。それにより、較正用試料に対する質量分析の際の電圧振幅をより迅速に且つ精度良く決定することができる。 According to the mass spectrometer described in the second paragraph, the voltage at the time of mass analysis for the calibration sample is utilized by using the information indicating the relationship between the adjustment amount of the voltage amplitude and the change amount of the mass-to-charge ratio which is obtained in advance. The amplitude can be determined. Thereby, the voltage amplitude at the time of mass spectrometry for the calibration sample can be determined more quickly and accurately.
 (第3項及び第4項)第1項又は第2項に記載の質量分析装置は、前記複数の較正用試料のうちの少なくとも二つについて、前記イオン捕捉用矩形波高電圧の電圧振幅を一定に保ちつつ質量分析を実施した結果に基づいて、所定の質量電荷比範囲に亘る質量誤差を補正する較正情報を算出する質量較正情報算出部、をさらに備え、
 前記電圧振幅調整情報取得部は、前記較正情報を利用した質量較正を実施したうえで質量誤差を求めるものとすることができる。
(3rd and 4th items) The mass spectrometer according to the 1st or 2nd item makes the voltage amplitude of the rectangular wave high voltage for ion trapping constant for at least two of the plurality of calibration samples. Further, based on the result of performing the mass analysis while maintaining, mass calibration information calculation unit that calculates calibration information for correcting the mass error over a predetermined mass-to-charge ratio range, further comprising:
The voltage amplitude adjustment information acquisition unit may obtain the mass error after performing the mass calibration using the calibration information.
 第3項及び第4項に記載の質量分析装置によれば、質量較正を実行したうえで残る(つまりは較正しきれない)質量誤差について電圧振幅の調整によって低減を図ればよい。そのため、多くの場合、電圧振幅の調整量は僅かで済み、周波数の変化に応じた電圧振幅の調整が容易になる。 According to the mass spectrometers described in Sections 3 and 4, the mass error that remains after the mass calibration is performed (that is, cannot be completely calibrated) may be reduced by adjusting the voltage amplitude. Therefore, in many cases, the adjustment amount of the voltage amplitude is small, and the adjustment of the voltage amplitude according to the change of the frequency becomes easy.
1…イオン化部
 11…レーザ照射部
 12…サンプルプレート
 13…サンプル
 14…アパーチャ電極
 15…イオンレンズ
2…イオントラップ
 21…リング電極
 22…入口側エンドキャップ電極
 23…イオン入射口
 24…出口側エンドキャップ電極
 25…イオン出射口
3…検出部
 31…コンバージョンダイノード
 32…二次電子増倍管
4…主電源部
 41…第1電圧源
 42…第2電圧源
 43…第1スイッチング素子
 44…第2スイッチング素子
5…補助電源部
6…タイミング信号発生部
7…制御部
 71…m/zシフト量情報記憶部
 72…質量走査時電圧情報取得制御部
 73…質量誤差算出部
 74…質量誤差判定部
 75…電圧情報記憶部
 76…質量走査時電圧制御部
8…データ処理部
 81…質量較正部
DESCRIPTION OF SYMBOLS 1... Ionization part 11... Laser irradiation part 12... Sample plate 13... Sample 14... Aperture electrode 15... Ion lens 2... Ion trap 21... Ring electrode 22... Entrance side end cap electrode 23... Ion entrance port 24... Exit side end cap Electrode 25... Ion emission port 3... Detection part 31... Conversion dynode 32... Secondary electron multiplier 4... Main power supply part 41... First voltage source 42... Second voltage source 43... First switching element 44... Second switching Element 5... Auxiliary power supply unit 6... Timing signal generating unit 7... Control unit 71... m/z shift amount information storage unit 72... Mass scanning voltage information acquisition control unit 73... Mass error calculation unit 74... Mass error determination unit 75... Voltage information storage unit 76... Mass scanning voltage control unit 8... Data processing unit 81... Mass calibration unit

Claims (4)

  1.  3以上の電極で囲まれる空間にイオンを捕捉するイオントラップを有し、少なくとも1つの電極にイオン捕捉用の矩形波電圧を印加しつつ該電極とは異なる対向配置された一対の電極にそれぞれ共鳴励起用の矩形波電圧を印加することにより、特定の質量電荷比を有するイオンを共鳴励起により選択的にイオントラップ内から排出して検出する質量分析装置において、
     イオン捕捉用矩形波電圧及び共鳴励起用矩形波電圧を生成する電圧発生部と、
     精密な質量電荷比値が既知である複数の較正用試料を対象として、前記イオン捕捉用矩形波高電圧の電圧振幅を調整しつつ、検出対象のイオンの質量電荷比を走査するようにイオン捕捉用及び共鳴励起用の矩形波電圧の周波数を同期的に走査する質量分析を実施した結果に基づいて、前記複数の較正用試料にそれぞれ対応する質量電荷比における質量誤差が許容範囲に収まる電圧振幅調整情報を取得する電圧振幅調整情報取得部と、
     目的試料に対する所定の質量電荷比範囲に亘る質量分析の実行時に、前記電圧振幅調整情報に基づいて、イオン捕捉用及び共鳴励起用の矩形波電圧の周波数の走査に伴ってイオン捕捉用矩形波高電圧の電圧振幅を変化させるように前記電圧発生部を制御する制御部と、
     を備える質量分析装置。
    An ion trap that traps ions in a space surrounded by three or more electrodes is provided, and a rectangular wave voltage for ion trapping is applied to at least one electrode while resonating with a pair of electrodes that are arranged opposite to each other. By applying a rectangular wave voltage for excitation, in a mass spectrometer for selectively ejecting and detecting ions having a specific mass-to-charge ratio from the ion trap by resonance excitation,
    A voltage generation unit that generates a rectangular wave voltage for ion trapping and a rectangular wave voltage for resonance excitation,
    Targeting a plurality of calibration samples whose precise mass-to-charge ratio values are known, while adjusting the voltage amplitude of the rectangular wave high voltage for ion trapping, the ion trapping is performed so as to scan the mass-to-charge ratio of the ions to be detected. And based on the result of the mass analysis in which the frequency of the rectangular wave voltage for resonance excitation is synchronously scanned, the voltage amplitude adjustment in which the mass error in the mass-to-charge ratio corresponding to each of the plurality of calibration samples falls within the allowable range. A voltage amplitude adjustment information acquisition unit that acquires information,
    At the time of performing mass analysis over a predetermined mass-to-charge ratio range for the target sample, based on the voltage amplitude adjustment information, a rectangular wave high voltage for ion trapping accompanying the frequency scanning of the rectangular wave voltage for ion trapping and resonance excitation. A control unit that controls the voltage generation unit to change the voltage amplitude of
    A mass spectrometer equipped with.
  2.  前記電圧振幅調整情報取得部は、前記較正用試料について前記イオン捕捉用矩形波高電圧の電圧振幅の調整量と質量電荷比の変化量との関係を示す情報が予め格納された事前情報格納部を有し、
     前記較正用試料に対する質量分析の実行時に、前記事前情報格納部に格納されている情報に基づいて前記イオン捕捉用矩形波高電圧の電圧振幅を調整する、請求項1に記載の質量分析装置。
    The voltage amplitude adjustment information acquisition unit is a pre-information storage unit in which information indicating the relationship between the adjustment amount of the voltage amplitude of the rectangular wave high voltage for ion trapping and the change amount of the mass-to-charge ratio of the calibration sample is stored in advance. Have,
    The mass spectrometer according to claim 1, wherein the voltage amplitude of the rectangular wave high voltage for ion trapping is adjusted based on the information stored in the advance information storage unit when the mass spectrometry is performed on the calibration sample.
  3.  前記複数の較正用試料のうちの少なくとも二つについて、前記イオン捕捉用矩形波高電圧の電圧振幅を一定に保ちつつ質量分析を実施した結果に基づいて、所定の質量電荷比範囲に亘る質量誤差を補正する較正情報を算出する質量較正情報算出部、をさらに備え、
     前記電圧振幅調整情報取得部は、前記較正情報を利用した質量較正を実施したうえで質量誤差を求める、請求項1に記載の質量分析装置。
    For at least two of the plurality of calibration samples, based on the results of performing mass analysis while keeping the voltage amplitude of the square wave high voltage for ion trapping constant, a mass error over a predetermined mass-to-charge ratio range. Further comprising a mass calibration information calculation unit for calculating calibration information to be corrected,
    The mass spectrometer according to claim 1, wherein the voltage amplitude adjustment information acquisition unit obtains a mass error after performing mass calibration using the calibration information.
  4.  前記複数の較正用試料のうちの少なくとも二つについて、前記イオン捕捉用矩形波高電圧の電圧振幅を一定に保ちつつ質量分析を実施した結果に基づいて、所定の質量電荷比範囲に亘る質量誤差を補正する較正情報を算出する質量較正情報算出部、をさらに備え、
     前記電圧振幅調整情報取得部は、前記較正情報を利用した質量較正を実施したうえで質量誤差を求める、請求項2に記載の質量分析装置。
    For at least two of the plurality of calibration samples, based on the results of performing mass analysis while keeping the voltage amplitude of the square wave high voltage for ion trapping constant, a mass error over a predetermined mass-to-charge ratio range. Further comprising a mass calibration information calculation unit for calculating calibration information to be corrected,
    The mass spectrometer according to claim 2, wherein the voltage amplitude adjustment information acquisition unit obtains a mass error after performing mass calibration using the calibration information.
PCT/JP2019/030136 2019-02-14 2019-08-01 Mass spectrometer WO2020166111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572073A JP7074214B2 (en) 2019-02-14 2019-08-01 Mass spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-024230 2019-02-14
JP2019024230 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020166111A1 true WO2020166111A1 (en) 2020-08-20

Family

ID=72043885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030136 WO2020166111A1 (en) 2019-02-14 2019-08-01 Mass spectrometer

Country Status (2)

Country Link
JP (1) JP7074214B2 (en)
WO (1) WO2020166111A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277376A (en) * 2008-05-12 2009-11-26 Shimadzu Corp Mass spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277376A (en) * 2008-05-12 2009-11-26 Shimadzu Corp Mass spectrometer

Also Published As

Publication number Publication date
JPWO2020166111A1 (en) 2021-10-14
JP7074214B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP5440449B2 (en) Ion trap mass spectrometer
US7208728B2 (en) Mass spectrometer
JP5771456B2 (en) Mass spectrometry method
JP5080567B2 (en) Mass spectrometer control method and mass spectrometer
US9548193B2 (en) Quadrupole mass spectrometer with quadrupole mass filter as a mass separator
EP2430404A1 (en) Ion population control in a mass spectrometer having mass-selective transfer optics
JP2018045999A (en) Method of calibrating mass spectrometer
US8410436B2 (en) Quadrupole mass spectrometer
US9214321B2 (en) Methods and systems for applying end cap DC bias in ion traps
JP5737144B2 (en) Ion trap mass spectrometer
US8513592B2 (en) Ion trap mass spectrometer
JP5407616B2 (en) Ion trap device
JP4506260B2 (en) Method of ion selection in ion storage device
WO2020166111A1 (en) Mass spectrometer
US9870912B2 (en) Mass spectrometers having real time ion isolation signal generators
JP5482135B2 (en) Ion trap mass spectrometer
JP7192736B2 (en) Linear ion trap and its operation method
JP7151625B2 (en) Mass spectrometer
JP5146411B2 (en) Ion trap mass spectrometer
JP5293562B2 (en) Ion trap mass spectrometer
US20230335388A1 (en) Linear ion trap and method for operating the same
US20200185208A1 (en) Ion trap mass spectrometer and ion trap mass spectrometry method
WO2017126067A1 (en) Mass spectrometry device and ion detection method therefor
JPH08222180A (en) Mass spectrograph and mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915003

Country of ref document: EP

Kind code of ref document: A1