WO2020166085A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020166085A1
WO2020166085A1 PCT/JP2019/005702 JP2019005702W WO2020166085A1 WO 2020166085 A1 WO2020166085 A1 WO 2020166085A1 JP 2019005702 W JP2019005702 W JP 2019005702W WO 2020166085 A1 WO2020166085 A1 WO 2020166085A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
transmission
information
index
signal
Prior art date
Application number
PCT/JP2019/005702
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 岡村
祐輝 松村
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/005702 priority Critical patent/WO2020166085A1/en
Publication of WO2020166085A1 publication Critical patent/WO2020166085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G+(plus), New Radio (NR), 3GPP Rel. 15 or later) is also under consideration.
  • 5G 5th generation mobile communication system
  • 5G+(plus) 5th generation mobile communication system
  • NR New Radio
  • 3GPP Rel. 15 or later 3th generation mobile communication system
  • the user terminal transmits an upstream signal.
  • the uplink signal includes, for example, a random access channel (Physical Random Access Channel (PRACH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)), and a sounding reference signal (Sounding). It may include at least one of Reference Signal (SRS), PUSCH or PUCCH demodulation reference signal (Demodulation Reference Signal (DM-RS)).
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Sounding Sounding reference signal
  • SRS Reference Signal
  • PUSCH Physical Uplink Control Channel
  • DM-RS Demodulation Reference Signal
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • BM Beam Management
  • a node determines the beam correspondence (BC) that determines the transmission beam (transmission spatial domain filter) used for signal transmission based on the reception beam (reception spatial domain filter) used for signal reception. ) Using BM is also considered.
  • the UE transmits the uplink signal transmission beam (based on the downlink reference signal (eg, synchronization signal block (SSB) or channel state information reference signal (CSI-RS))). It is under consideration to determine the transmit spatial domain filter).
  • the UE determines a transmission beam (transmission spatial domain filter) of the uplink signal based on the uplink reference signal (eg, SRS).
  • the UE performs uplink transmission using multiple panels (UE panel, antenna panel, beam).
  • the UE may not be able to properly recognize which panel corresponds to the receive beam or the transmit beam, and as a result, may not be able to appropriately perform control regarding the panel (for example, turning on or off the power of the panel).
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method to appropriately control a panel.
  • a user terminal determines a panel used for transmitting an uplink signal based on a transmission unit that transmits an index of a downlink reference signal and information indicating a correspondence relation between the panel and the correspondence relation. And a control unit.
  • FIG. 1A to 1C are diagrams showing an example of an upstream BM.
  • 2A and 2B are diagrams showing an example of a multi-panel.
  • FIG. 3 is a diagram illustrating an example of a panel information reporting procedure according to the first aspect.
  • 4A and 4B are diagrams illustrating an example of beam report information according to the first example.
  • 5A and 5B are diagrams illustrating an example of first BC-based uplink transmission according to the second aspect.
  • 6A to 6D are diagrams showing an example of second BC-based uplink transmission according to the second mode.
  • 7A to 7C are diagrams showing an example of first non-BC-based uplink transmission according to the second mode.
  • 8A and 8B are diagrams illustrating an example of second non-BC-based uplink transmission according to the second aspect.
  • FIG. 1A to 1C are diagrams showing an example of an upstream BM.
  • 2A and 2B are diagrams showing an example of a multi-panel.
  • FIG. 3 is a
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • Beam management In NR, beam management (Beam Management (BM) is under study. Specifically, in NR, a BM that does not assume to have beam correspondence (BC) (also referred to as a first BM, a BM without (wo) BC, a BM that is not BC-based, and the like) and a beam correspondence are included. Then, the BM assumed (also referred to as the second BM, BM with (w) BC, BC-based BM, etc.) is being studied.
  • BC beam correspondence
  • the BM assumed also referred to as the second BM, BM with (w) BC, BC-based BM, etc.
  • the beam correspondence means, for example, a certain node (for example, a base station or a UE) determines a beam (reception beam, Rx beam) to be used for receiving a signal, and based on the determined Rx beam, the signal It may be the ability to determine the beam (transmission beam, transmission beam) used for transmission.
  • a certain node for example, a base station or a UE
  • determines a beam (reception beam, Rx beam) to be used for receiving a signal and based on the determined Rx beam, the signal It may be the ability to determine the beam (transmission beam, transmission beam) used for transmission.
  • a receiving device for example, a base station in the uplink and a UE in the downlink
  • uses one or more signals from a transmitting device (Tx device) for example, a UE in the uplink and a base station in the downlink.
  • Tx device for example, a UE in the uplink and a base station in the downlink.
  • the transmission device may transmit a signal (for example, an upstream signal or a downstream signal) using the transmission beam instructed by the reception device.
  • a transmission device (for example, UE in uplink, base station in downlink) is a signal from a reception device (Rx device) (for example, base station in uplink, UE in downlink) (
  • a transmission beam may be determined based on a downlink reference signal or an uplink reference signal, and a signal (for example, an uplink signal or a downlink signal) may be transmitted using the determined transmission beam.
  • the beam correspondence is the transmit/receive beam correspondence (Tx/Rx beam correspondance), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated/non-calibrated (Calibrated/Non-calibrated), reciprocity. It may be referred to as calibrated/non-calibrated (reciprocity calibrated/non-calibrated), correspondence, or agreement.
  • FIG. 1A and 1B are diagrams showing an example of an upstream BM.
  • FIG. 1A an example of an uplink BM that is not BC-based is shown.
  • FIG. 1B an example of a BC-based upstream BM is shown.
  • the base station uses the beams B21 to B24 to transmit the downlink signal or receives the uplink signal
  • the UE uses the beams b1 to b4 to receive the downlink signal or transmit the uplink signal.
  • the transmission beam and the reception beam do not always match in each node.
  • the beam B22 and the beam b2 are assumed to be beam pair links (Beam Pair Link (BPL)).
  • BPL Beam Pair Link
  • the UE uses one or more beams (for example, beams B21 to B24 in FIG. 1C) and an uplink reference signal (for example, a sounding reference signal (Sounding)). Reference Signal (SRS)).
  • the UE may transmit one or more beams in different time domains using beam sweep.
  • the UE receives information indicating one or more SRS resources (SRS resources) (for example, SRS resource ID (SRS Resource Indicator (SRI)) or list of SRS resource IDs) and corresponds to the SRS resource.
  • SRS resources for example, SRS resource ID (SRS Resource Indicator (SRI)) or list of SRS resource IDs
  • SRS resource ID SRS Resource Indicator (SRI)
  • SRI SRS Resource Indicator
  • An upstream signal for example, at least one of upstream channels such as SRS, PUSCH, PUCCH, and other upstream physical signals
  • upstream channels such as SRS, PUSCH, PUCCH, and other upstream physical signals
  • the base station (Rx) determines a transmission beam (for example, beam b2 in FIG. 1C) to be used for transmission from the UE (Tx) based on the measurement result of the received reference signal (for example, SRS), and performs the transmission.
  • Information indicating the SRS resource corresponding to the beam eg, SRS resource ID, SRI may be transmitted to the UE.
  • the UE uses the transmission beam (for example, beam b2 in FIG. 1C) corresponding to the SRS resource instructed by the base station to transmit an uplink signal (for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DM-RS). May be sent.
  • an uplink signal for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DM-RS.
  • the base station transmits the transmission beam from the UE based on the measurement result using one or more resources for uplink reference signals (for example, SRS resources in uplink) set in the UE. May be determined and instructed to the UE. This allows the UE to transmit the uplink signal using an appropriate transmission beam.
  • uplink reference signals for example, SRS resources in uplink
  • the transmit beam of the UE may be determined.
  • the base station beforehand informs the UE of the information item of the SRS configuration information (SRS configuration information, for example, radio resource control (RRC)).
  • SRS configuration information for example, radio resource control (RRC)
  • RRC radio resource control
  • IE "SRS-Config"
  • the SRS configuration information may include information regarding one or more SRS resources.
  • the SRS configuration information may include information about one or more sets (SRS resource sets) each including information about one or more SRS resources.
  • the information on the SRS resource includes, for example, the SRI, the number of ports of the SRS resource (for example, 1, 2 or 4), the position of the time domain and the frequency domain of the SRS resource (for example, the number of symbols, the start symbol, etc.), the SRS resource. (Eg, aperiodic, semi-persistent or periodic), spatial relationship information of the SRS resource (eg, RRC IE “spatialRelationInfo” or “SRS-SpatialRelationInfo”), and the like.
  • the spatial relationship information may indicate a spatial relationship between the SRS mapped to the SRS resource and a reference signal (reference RS (Reference RS)).
  • the reference RS is, for example, at least one of a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information-Reference Signal (CSI-RS)), and at least one of these. May be expanded or modified.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • the SSB is a block including at least one of a synchronization signal (Synchronization Signal (SS)) and a broadcast channel (Physical Broadcast Channel (PBCH)), and is also called an SS/PBCH block or the like.
  • the synchronization signal may include at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the spatial relationship information may be information related to SSB (eg, SSB index) or information related to CSI-RS (eg, CSI-RS index or non-zero power), depending on the type of the reference RS having a spatial relationship with the SRS.
  • CSI-RS resource ID e.g, SRS resource ID and ID of upstream bandwidth part (Bandwidth Part (BWP))
  • BWP Bandwidth Part
  • the spatial relationship information indicating SSB or CSI-RS may indicate BC base, and the spatial relationship information indicating SRS may indicate not BC base.
  • the spatial relationship may be paraphrased as a pseudo collocation (QCL: Quasi-Co-Location) relationship (QCL relationship).
  • QCL is an index indicating the statistical property of at least one of a signal and a channel (signal/channel). Further, this information may be notified from the NW as a transmission configuration indication (Transmission Configuration Indication or Transmission Configuration information (TCI)) or a TCI state (TCI state).
  • TCI Transmission Configuration Indication
  • TCI state TCI state
  • spatial parameter for example, spatial reception parameter (Spatial Rx Parameter)
  • QCL types A plurality of types (QCL types) may be defined as the QCL.
  • QCL types AD four QCL types AD having different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters will be described below.
  • -QCL type A Doppler shift, Doppler spread, average delay and delay spread-QCL type
  • B Doppler shift and Doppler spread-QCL type
  • C Average delay and Doppler shift-QCL type
  • D Spatial reception parameter
  • the UE determines the reception beam of the SSB or CSI-RS and uses the transmission beam corresponding to the reception beam (for example, the same beam b2 as the reception beam of SSB or CSI-RS in FIG. 1C). And may transmit an uplink signal (for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DMRS).
  • an uplink signal for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DMRS.
  • the UE determines to use the transmission beam corresponding to the SRS resource whose spatial relationship with the received or detected DL-RS is indicated by the above-mentioned spatial relationship information for the transmission of the uplink signal. Good.
  • the UE uses the same spatial domain filter as the spatial domain filter for receiving the SSB or CSI-RS when the spatial relation information regarding the SSB or CSI-RS and the SRS is set for a certain SRS resource.
  • the SRS resource may be transmitted. That is, in this case, the UE may assume or expect that the UE receive beam of SSB or CSI-RS and the UE transmit beam of SRS are the same.
  • the spatial domain filter for transmission of the base station, the downlink spatial domain transmission filter, and the transmission beam of the base station may be read as each other.
  • the spatial domain filter for reception of the base station, the uplink spatial domain receive filter, and the reception beam of the base station may be read as each other.
  • the spatial domain filter for transmission of the UE, the uplink spatial domain transmission filter, and the transmission beam of the UE may be read as each other.
  • the spatial domain filter for reception of the UE, the downlink spatial domain receive filter, and the reception beam of the UE may be replaced with each other.
  • the UE can determine the spatial domain filter to be applied to the uplink signal based on the downlink reference signal (CSI-RS or SSB) indicated by the spatial relationship information.
  • CSI-RS downlink reference signal
  • SSB downlink reference signal
  • Multi-panel By the way, in NR, it is considered that the UE uses a plurality of panels (multi-panel). Each panel may be composed of a plurality of antenna elements (simply referred to as elements). For example, in large-scale MIMO (Massive MIMO (Multiple Input Multiple Output)), a super multi-element antenna may be used for each panel.
  • MIMO Massive MIMO (Multiple Input Multiple Output)
  • a super multi-element antenna may be used for each panel.
  • a beam can be formed by controlling at least one of the amplitude and phase (amplitude/phase) of the signal transmitted or received (transmitted/received) from each antenna element of each panel.
  • the panel may be called an antenna panel, an antenna port group, an uplink transmission entity, a TXRU (Transceiver Unit) configuration, or the like.
  • 2A and 2B are diagrams showing an example of a multi-panel.
  • 2A and 2B show an example in which the UE implements two panels #0 and #1.
  • the number of panels implemented by the UE is not limited to 2 and may be 3 or more (for example, 4 or even 4). Good).
  • the positions and directions of the antenna panels in FIGS. 2A and 2B are schematic, and are not limited to those shown.
  • FIG. 2B shows an example of a beam formed by controlling the amplitude and/or the phase of the signal transmitted/received from each antenna element of each of the panels #0 and #1.
  • the UE may form one or more beams per panel.
  • the UE can improve the beam gain by controlling the transmission of the uplink signal or the reception of the downlink signal using the beam formed for each panel.
  • the number of beams (SSB index, CSI-RS resource, or SRS resource) associated with each panel in FIG. 2B may be the same or different.
  • the power consumption of the UE may increase. Therefore, it is desired to suppress an increase in power consumption of the UE by controlling the on/off of at least part of the power supplies of the plurality of panels.
  • the network eg, base station
  • the network cannot know which beam is associated with which panel at the UE. For this reason, the network cannot instruct the UE which panel should be turned off, and as a result of the UE turning off the panel determined by itself, the beam gain may not be properly obtained.
  • the present inventors enable the UE to recognize the correspondence between the beam and the panel in the UE on the network side by reporting the correspondence between the beam (the SSB index, CRI or SRI corresponding to the beam) and the panel.
  • the idea was conceived (first aspect).
  • the UE can appropriately determine the panel used for uplink transmission (second aspect).
  • downlink reference signal indicated by spatial relation information “downlink reference signal determined based on spatial relation information”, “downlink reference signal identified by index (or ID) indicated by spatial relation information” , “Downlink reference signal resource identified by index (or ID) indicated by spatial relationship information”, “downlink reference signal transmitted using resource identified by index (or ID) indicated by spatial relationship information”, May be read interchangeably.
  • downlink reference signals are assumed to be SSB and CSI-RS, but the present invention is not limited to this.
  • the downlink reference signal resource is assumed to be SSB or CSI-RS resource (for example, non-zero power CSI-RS resource), but is not limited to this.
  • the index (RS index) of the downlink reference signal may be read as the index of the downlink reference signal resource.
  • SRS SRS resource
  • SRS resource ID SRS resource specified by SRS resource ID
  • SRS transmitted using SRS resource specified by SRS resource ID SRS transmitted using SRS resource specified by SRS resource ID
  • the uplink signal is assumed to be, for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DMRS, but is not limited to this.
  • the panel may be read as a UE panel, an antenna panel, an antenna array, an antenna matrix, an antenna port group, an antenna element group, a DMRS port group, a code division multiplexing (CDM) group, or the like.
  • the ID may be read as an index, a number, or the like.
  • the SSB index may be read as an SS/PBCH block index, an SS/PBCH block resource identifier (SS/PBCH Block Resource indicator (SSBRI)), or the like.
  • SS/PBCH Block Resource indicator SSBRI
  • the CSI-RS index may be read as a CSI-RS resource index, a CSI-RS resource identifier (CSI-RS resource indicator (CRI)), or the like.
  • CRI CSI-RS resource indicator
  • the UE transmits (reports) information (panel information) indicating a correspondence (correspondence) between the index of the downlink reference signal and the panel.
  • the index of the downlink reference signal may be, for example, an SSB index or a CSI-RS index (SSB/CSI-RS index).
  • FIG. 3 is a diagram showing an example of a panel information reporting procedure according to the first aspect.
  • the UE receives one or more downlink reference signals (eg, SSB with one or more SSB indexes or CSI-RS with one or more CSI-RS indexes).
  • the one or more downlink reference signals may be set in the UE for beam measurement.
  • step S102 the UE transmits (reports) information regarding the measurement result (beam reporting information) using the downlink reference signal received in step S101.
  • the beam report information may be transmitted by L1 signaling or higher layer signaling.
  • the beam report information may be included in the uplink control information (eg, Channel State Information (CSI)) transmitted on the PUCCH or PUSCH.
  • the beam report information may be included in the measurement report transmitted by RRC signaling.
  • the beam report information may include, for example, a measurement result using the SSB/CSI-RS index.
  • the measurement result may include at least one of the following.
  • Reference signal received power (RSRP) for example, L1-RSRP
  • RSS Reference signal received quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • the beam report information may include panel information corresponding to the SSB/CSI-RS index.
  • the panel information may be an identifier (also referred to as a panel ID, a panel index, etc.) of a panel corresponding to (associated with) the SSB/CSI-RS index (for example, FIG. 4A), or the SSB/ It may be information (panel switch information) indicating whether the panel used for receiving the CSI-RS index (reception panel) is the same as the current reception panel (for example, FIG. 4B).
  • 4A and 4B are diagrams showing an example of beam report information according to the first aspect. 4A and 4B, for example, as illustrated in FIGS. 2A and 2B, a case where the UE implements two panels #0 and #1 is illustrated as an example. However, the number of panels and beams associated with each panel are illustrated. The number (SSB index number or CSI-RS index number) and the like are not limited to those shown in the figure.
  • the beam report information is associated with each SSB/CSI-RS index, a measurement result using each SSB/CSI-RS index (eg, L1-RSRP), and each SSB/CSI-RS index.
  • a measurement result using each SSB/CSI-RS index eg, L1-RSRP
  • an example is shown including the panel IDs that are provided.
  • the beams corresponding to the SSB index or the CSI-RS indexes #0 to #7 and #8 to #15 are associated with the panels #0 and #1, respectively. Therefore, as shown in FIG. 4B, the beam report information includes panel IDs #0, #0, #0, and #1 respectively associated with SSB/CSI-RS indexes #2, #3, #6, and #14. You may
  • the beam report information is associated with each SSB/CSI-RS index, a measurement result using each SSB/CSI-RS index (for example, L1-RSRP), and each SSB/CSI-RS index.
  • An example is shown that includes the panel switch information that is provided. 4B differs from FIG. 4A in that the beam report information includes panel switch information instead of the panel ID.
  • the panel switch information associated with the SSB/CSI-RS indexes #2, #3, and #6 is “0”, the receiving panels with the SSB/CSI-RS indexes #2, #3, and #6 are displayed. It may be the same as the current receiving panel. For example, if the current receiving panel of the UE is panel #0, the panel switch information may indicate that panel #0 is associated with SSB/CSI-RS indexes #2, #3, #6.
  • the panel switch information associated with the SSB/CSI-RS index #14 is “1”, the receiving panel of the SSB/CSI-RS index #14 may be different from the current receiving panel. For example, if the current receiving panel of the UE is panel #0, the panel switch information may indicate that panel #1 is associated with SSB/CSI-RS index #14.
  • the payload increases as the number of panels installed by the UE increases.
  • the field size the number of bits
  • the field size requires 2 bits.
  • the field size for the panel switch information is 1 bit regardless of the number of panels mounted by the UE. Good. Therefore, in FIG. 4B, when the number of panels mounted by the UE increases, the size of the beam report information (payload, number of bits) can be suppressed compared to FIG. 4A.
  • the number of SSB/CSI-RS indexes that can include (can report) the measurement result in the beam report information may be limited to a predetermined number.
  • the maximum number of the SSB/CSI-RS indexes may be 1, 2 or 4, for example. The maximum may be configured in the UE by higher layer parameters.
  • the UE may also determine which SSB/CSI-RS index measurement result is included in the beam report information based on the panel ID. Specifically, the UE may include the measurement result of the SSB/CSI-RS index associated with each panel ID in the beam report information.
  • the measurement results of a predetermined number for example, three
  • a predetermined number for example, one
  • the UE may decide which panel the SSB/CSI-RS index measurement result associated with which panel is most reported by the current receiving panel. For example, the UE may report many SSB/CSI-RS index measurement results associated with the current reception panel.
  • the beam report information may include information indicating the number of panels mounted by the UE (panel number information).
  • panel number information By comparing the number of panel IDs associated with each SSB/CSI-RS index in the beam report information with the number of the panels, the network (eg, base station) determines that the SSB/CSI-RS index is associated with the UE. You can recognize the existence of panels that are not.
  • the UE may previously transmit capability information (eg, UE capability) indicating whether or not to support the above-described reporting of panel information (eg, panel ID or panel switch information).
  • the UE may transmit the panel information by including the panel information in the beam report information when the report of the panel information is triggered.
  • the report of the panel information may be triggered by at least one of the upper layer parameter and a predetermined field value in the DCI.
  • the UE may decide for itself whether to include the panel information in the beam report information. For example, when mounting a plurality of panels, the UE may include the panel information in the beam report information and transmit the beam report information. When the UE does not implement multiple panels (only implements a single panel or does not implement panels), it may transmit beam report information without including panel information.
  • the network since the UE reports the beam report information including the panel information to the network, the network uses the downlink reference signal index (eg, SSB/CSI-RS index) and the panel. It is possible to properly recognize the correspondence with the ID.
  • the downlink reference signal index eg, SSB/CSI-RS index
  • the panel ID is based on the correspondence between the downlink reference signal index (for example, SSB/CSI-RS index) indicated by the panel information and the panel, or the panel ID specified by the network (for example, base station)
  • the panel information is described as being a panel ID, for example, but it goes without saying that it may be the panel switch information.
  • spatial related information for example, “SRS-SpatialRelationInfo” or “PUCCH-SpatialRelationInfo” of RRC IE
  • target signal for example, SRS or PUCCH
  • the SSB index or the CSI-RS index (non-zero power (NZP)-CSI-RS resource ID) may be indicated as a reference RS (reference RS) having a spatial relationship with the DMRS of PUCCH).
  • the UE determines the panel used for uplink transmission based on whether the index (RS index) of the downlink reference signal included in the beam report information is the same as the reference RS indicated by the space-related information. Good.
  • the UE downlinks based on the panel information in the beam report information.
  • Uplink transmission may be controlled using the same panel as reception (first BC-based upstream transmission).
  • the downlink RS of the RS index included in the beam report information is the reference RS and the QCL type D indicated by the spatial related information, and the types are different, based on the panel information in the beam report information.
  • the uplink transmission may be controlled using the same panel as the downlink reception, or the uplink transmission may be controlled using a panel different from the downlink reception (second BC-based uplink transmission).
  • 5A and 5B are diagrams illustrating an example of first BC-based uplink transmission according to the second aspect. Note that the sequence shown in FIG. 5A is merely an example, and at least some steps may be omitted or steps not shown may be added. Further, the order of at least some of the steps may be exchanged.
  • the downlink RS used for beam measurement and the reference RS having a spatial relationship with the target SRS designated by the spatial related information are of the same type.
  • FIG. 5A shows an example in which the downlink RS and the reference RS are SSB, the present invention is not limited to this and may be CSI-RS.
  • step S201 the UE receives SSB with one or more SSB indexes.
  • step S202 the UE obtains a measurement result using SSB of a predetermined number of SSB indexes (for example, four SSB indexes #2, #3, #4, and #14 in FIG. 5A) and the predetermined number of SSB indexes.
  • Corresponding panel information eg, panel ID in FIG. 5B may be sent.
  • the UE may receive SRS configuration information (eg, “SRS-Config” of RRC IE) from the base station.
  • the SRS setting information may include information on one or more SRS resources for each SRS resource set.
  • the information about each SRS resource may include at least one of SRS resource ID, time domain resource, frequency domain resource, resource type, and spatial relationship information.
  • the spatial relationship information (for example, “SRS-SpatialRelationInfo” of RRC IE) corresponding to each SRS resource ID indicates the index of the reference RS (here, SSB) that has a spatial relationship with the SRS of each SRS resource ID. Good.
  • the spatial relationship information may also indicate the SSB index #2, #3, #6 or #14 reported from the UE to the base station in step S202 as the index of the reference RS. Good.
  • the UE may detect DCI (for example, DCI format 0_1) used for PUSCH scheduling.
  • the UE may determine the spatial relationship of the PUSCH based on the value of a predetermined field (eg, SRS resource identifier field) in the DCI.
  • a predetermined field eg, SRS resource identifier field
  • the UE based on the spatial relationship information corresponding to the SRS resource ID indicated by the predetermined field value, has a reference RS (for example, SSB index #2, #3) that has a spatial relationship with the SRS of the SRS resource ID. , #6 or #14) may be determined.
  • a reference RS for example, SSB index #2, #3
  • the UE may transmit the PUSCH using a transmission beam corresponding to the reception beam of the reference RS (for example, the same beam as the reception beam of the reference RS).
  • the UE may assume the correspondence relationship between the SSB index and the panel ID reported in step S202 even when transmitting the PUSCH. For example, in FIG. 5B, the UE assigns the panel ID used for reception to the SSB index #2, #3, #6 or #14 to the SRS having the spatial relationship with the SSB index #2, #3, #6 or #14. It may be assumed that the PUSCH can be used for transmission based on the resource ID.
  • 6A to 6D are diagrams showing an example of second BC-based uplink transmission according to the second mode. Note that in FIGS. 6A to 6D, differences from FIGS. 5A and 5B will be mainly described.
  • FIG. 6A differs from FIG. 5A in that the downlink RS used for beam measurement and the reference RS having a spatial relationship with the target SRS designated by the spatial-related information are QCL type D and different types. ..
  • FIG. 6A shows an example in which the downlink RS is SSB and the reference RS is CSI-RS, the present invention is not limited to this. That is, although not shown, the downlink RS may be CSI-RS and the reference RS may be SSB.
  • Steps S301 and S302 of FIG. 6A are the same as steps S201 and S202 of FIG. 5A.
  • the UE receives the SRS setting information including the spatial related information corresponding to each SRS resource ID.
  • the spatial relationship information is the SSB index #2, #3, #6 or #14 reported from the UE to the base station in step S302 as the index of the reference RS having a spatial relationship with the SRS of each SRS resource ID, and the QCL.
  • the CSI-RS indexes #2, #3, #6, and #14 that are of type D and different types may be indicated.
  • the CSI-RS index values “2”, “3”, “6” and “14” are the SSB index values “2” “3” “6” and the SSB index values reported to the base station in step S302. It is the same as “14”, but is not limited to this.
  • the CSI index value specified by the spatial relationship information does not have to be the same value as long as it is a value corresponding to the SSB index value.
  • the UE may detect the DCI (eg, DCI format 0_1) used for PUSCH scheduling.
  • the UE based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID).
  • the reference RS for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID.
  • CSI-RS index #2, #3, #6 or #14 may be determined.
  • the UE may transmit the PUSCH by using a transmission beam corresponding to the reception beam of the reference RS (for example, the same beam as the reception beam of the reference RS).
  • the UE may assume that the correspondence between the SSB index and the panel ID reported in step S302 can be used as the correspondence between the CSI-RS index and the panel ID corresponding to the SSB index (for example, 6B, 6C).
  • the UE when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the CSI-RS index corresponding to the SSB index is the panel ID corresponding to the SSB index. You may assume that it corresponds to the same panel ID as. For example, when the spatial relationship information of the SRS resource ID specified in step S304 indicates CSI-RS resource #3, the UE determines that the SSB index #3 corresponding to the CSI-RS resource #3 is used as shown in FIG. 6C. It may be assumed that they correspond to the same panel ID “0”.
  • the UE may assume that the correspondence between the SSB index and the panel ID reported in step S302 cannot be used as the correspondence between the CSI-RS index and the panel ID corresponding to the SSB index (for example, 6B, 6D).
  • the UE when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the CSI-RS index corresponding to the SSB index is the panel ID corresponding to the SSB index. It may be assumed that it corresponds to a panel ID different from. For example, when the spatial relationship information of the SRS resource ID designated in step S304 indicates the CSI-RS resource #3, the UE has a panel ID “1” different from the SSB index #3 corresponding to the CSI-RS resource #3. May be assumed to correspond to.
  • the spatial relationship information corresponding to each PUCCH resource ID is the spatial relationship information corresponding to each SRS resource ID (for example, “SRS-SpatialRelationInfo” of RRC IE). It may be specified similarly.
  • the panel used for transmission of the uplink signal (for example, PUSCH or PUCCH) can be determined based on the correspondence between the downlink reference signal index and the panel.
  • the spatial related information (eg, “SRS-SpatialRelationInfo” or “PUCCH-SpatialRelationInfo” of RRC IE) set in the UE is a desired signal (target signal, eg, SRS or PUCCH).
  • target signal eg, SRS or PUCCH.
  • the SRS resource ID may be indicated as a reference RS (reference RS) having a spatial relationship with (DMRS of PUCCH).
  • the UE may determine the panel to be used for uplink transmission based on the correspondence between the panel and the RS index (eg, SSB/CSI-RS index) indicated by the panel information in the beam report information (first non- BC-based upstream transmission).
  • the RS index eg, SSB/CSI-RS index
  • the UE apart from the correspondence between the RS index (for example, SSB/CSI-RS index) indicated by the panel information in the beam report information and the panel, the SRS resource ID and the panel configured in the SRS configuration information,
  • the panel to be used for uplink transmission may be determined based on the correspondence relationship of (second non-BC-based uplink transmission).
  • FIGS. 7A to 7C are diagrams showing an example of first non-BC-based uplink transmission according to the second mode. Note that in FIGS. 7A to 7C, differences from FIGS. 5A and 5B or FIGS. 6A to 6D will be mainly described.
  • FIG. 7A it is the downlink RS (for example, SSB or CSI-RS) whose corresponding relationship with the panel is indicated by the panel information, whereas the reference RS designated by the space-related information is the uplink RS (for example, , SRS resource ID).
  • the downlink RS is SSB and the reference RS is SRS
  • the present invention is not limited to this. That is, although not shown, the downlink RS may be the CSI-RS and the reference RS may be the SRS.
  • Steps S401 and S402 of FIG. 7A are the same as steps S201 and S202 of FIG. 5A.
  • the UE receives the SRS setting information including the spatial related information corresponding to each SRS resource ID.
  • the spatial relationship information indicates the SRS resource ID (for example, SRS resource IDs #2, #3, #6, #14 in FIG. 7A) as an index of the reference RS having a spatial relationship with the SRS of each SRS resource ID. May be.
  • the SRS resource ID values “2”, “3”, “6”, and “14” are SSB index values “2”, “3”, “6”, and “SBS index” reported to the base station in step S402. 14”, but is not limited to this.
  • the value of the SRS resource ID specified by the spatial relationship information does not have to be the same value as long as it is a value corresponding to the value of the SSB index.
  • the UE may detect the DCI (eg, DCI format 0_1) used for PUSCH scheduling.
  • the UE based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID).
  • SRS resource ID #2, #3, #6 or #14 may be determined.
  • the base station may determine the SRS resource ID specified by DCI based on the SRS measurement result (sounding result) of one or more SRS resource IDs transmitted from the UE.
  • the transmission of the SRS of the one or more SRS resource IDs by the UE may be triggered by an upper layer parameter (eg, MAC control element (MAC CE)) or DCI.
  • the SRS triggered by the MAC CE may be called a semi-persistent SRS (Semi-Persistent (SP)-SRS).
  • the SRS triggered by DCI may also be called an aperiodic SRS (Aperiodic(A)-SRS).
  • the base station may determine the SRS resource ID designated by DCI based on the measurement result of the SRS (Periodic SRS (Periodic (P)-SRS)) periodically transmitted from the UE.
  • the UE may transmit the PUSCH using a beam corresponding to the SRS resource ID designated by the spatial relationship information (for example, a transmission beam having the designated SRS resource ID).
  • the UE may assume that the correspondence relationship between the SSB index and the panel ID reported in step S402 can be used as the correspondence relationship between the SRS resource ID and the panel ID corresponding to the SSB index (for example, as illustrated in FIG. 7B, 7C).
  • the UE when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the SRI resource ID corresponding to the SSB index is the panel ID corresponding to the SSB index. It may be assumed that they correspond to the same panel ID. For example, when the spatial relationship information of the SRS resource ID designated in step S404 indicates the SRS resource ID #14, the UE has the same SSB index #14 corresponding to the SRS resource ID #14 as illustrated in FIG. 7C. It may be assumed that it corresponds to the panel ID “1”.
  • 8A and 8B are diagrams illustrating an example of second non-BC-based uplink transmission according to the second aspect. 8A and 8B will be described focusing on differences from FIGS. 5A and 5B, FIGS. 6A to 6D, or FIGS. 7A to 7C. Steps S501 and S502 of FIG. 8A are the same as steps S201 and S202 of FIG. 5A.
  • step S503 the UE receives SRS setting information including spatial related information corresponding to each SRS resource ID.
  • the spatial relationship information is an SRS resource ID (for example, SRS resource IDs #2, #3, #6, #14 in FIG. 8A) as an index of a reference RS that has a spatial relationship with the SRS of each SRS resource ID, and The panel ID corresponding to the SRS resource ID may be shown.
  • SRS resource ID for example, SRS resource IDs #2, #3, #6, #14 in FIG. 8A
  • the panel ID corresponding to the SRS resource ID may be shown.
  • FIG. 8B is an example of the spatial relationship information.
  • the “SRS-SpatialRelationInfo” of the RRC IE may have an RRC IE “panel-Id” indicating the panel ID in association with the RRC IE “resourceId” indicating the SRS resource ID.
  • the name of the RRC IE indicating the panel ID is not limited to that shown in FIG. 8B.
  • the UE may detect DCI (for example, DCI format 0_1) used for PUSCH scheduling.
  • DCI for example, DCI format 0_1
  • the UE based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID).
  • SRS resource ID #2, #3, #6 or #14 may be determined.
  • the UE may transmit the PUSCH using a beam corresponding to the SRS resource ID designated by the spatial relationship information (for example, a transmission beam having the designated SRS resource ID). Further, it may be assumed that the UE uses the panel ID specified by the spatial relationship information for PUSCH transmission.
  • the spatial relationship information corresponding to each PUCCH resource ID is the spatial relationship information corresponding to each SRS resource ID (for example, “SRS-SpatialRelationInfo” of RRC IE). It may be specified similarly.
  • the panel to be used for uplink transmission can be determined based on the correspondence between the downlink DL and the panel or the panel ID specified in the spatial relationship information.
  • the UE can determine the panel used for uplink transmission. Therefore, it can be determined that the power of a panel different from the panel can be turned off. Note that hysteresis may be used to turn off the power supply. For example, the UE may turn off the panel that is not used when the panel used for uplink transmission is not changed for a predetermined period.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication by using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between multiple Radio Access Technologies (RATs).
  • MR-DC has dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) with LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity (NR-E) with NR and LTE.
  • E-UTRA-NR Dual Connectivity EN-DC
  • NR-E Dual Connectivity
  • NE-DC Dual Connectivity
  • the base station (eNB) of LTE (E-UTRA) is the master node (Master Node (MN)), and the base station (gNB) of NR is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations within the same RAT (eg, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) may be supported.
  • a plurality of base stations within the same RAT eg, dual connectivity (NR-NR Dual Connectivity (NN-DC)
  • N-DC dual connectivity
  • MN and SN are NR base stations (gNB).
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having a relatively wide coverage and a base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement and number of each cell and user terminal 20 are not limited to those shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) using a plurality of component carriers (Component Carrier (CC)) and dual connectivity (DC).
  • CA Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may communicate with each CC using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one of, for example, Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing (OFDM)) based wireless access method may be used. For example, on at least one of downlink (Downlink (DL)) and uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the wireless access method may be called a waveform.
  • other wireless access methods eg, other single carrier transmission method, other multicarrier transmission method
  • the UL and DL wireless access methods may be used as the UL and DL wireless access methods.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • an uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • an uplink control channel Physical Uplink Control Channel (PUCCH)
  • a random access channel that are shared by each user terminal 20.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH, for example.
  • DCI Downlink Control Information
  • the DCI for scheduling PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI for scheduling PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and the search method of the PDCCH candidates (PDCCH candidates).
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • scheduling request (Scheduling Request (Scheduling Request ( Uplink Control Information (UCI) including at least one of (SR))
  • CSI Channel State Information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • scheduling request Scheduling Request (Scheduling Request ( Uplink Control Information (UCI) including at least one of (SR)
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding “link”. Further, it may be expressed without adding "Physical" to the head of each channel.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), etc. may be transmitted.
  • a cell-specific reference signal Cell-specific Reference Signal (CRS)
  • a channel state information reference signal Channel State Information Reference Signal (CSI-RS)
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)), for example.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS block (SSB), or the like. Note that SS and SSB may also be referred to as reference signals.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 10 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission/reception unit 120, a transmission/reception antenna 130, and a transmission line interface 140. It should be noted that the control unit 110, the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140 may each be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission/reception using the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140, measurement, and the like.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the generated data to the transmission/reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, wireless resource management, and the like.
  • the transmission/reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission/reception unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission/reception circuit, etc., which are explained based on common recognition in the technical field of the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmission/reception antenna 130 can be configured by an antenna described based on common recognition in the technical field of the present disclosure, for example, an array antenna or the like.
  • the transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission/reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission/reception unit 120 processes the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer (for example, for the data and control information acquired from the control unit 110) (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission/reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) on the bit string to be transmitted. Processing (if necessary), inverse fast Fourier transform (Inverse Fast Transform (IFFT)) processing, precoding, digital-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • precoding coding
  • digital-analog conversion digital-analog conversion
  • the transmitting/receiving unit 120 may modulate the baseband signal into a radio frequency band, perform filtering, amplifying, etc., and transmit the radio frequency band signal via the transmission/reception antenna 130. ..
  • the transmission/reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (Fast Fourier Transform (FFT)) processing, and inverse discrete Fourier transform (Inverse Discrete Fourier Transform (IDFT)) on the acquired baseband signal. )) Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, User data may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier Transform
  • the transmission/reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 receives power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits/receives signals (backhaul signaling) to/from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission/reception unit 120 and the transmission/reception antenna 130.
  • the transmission/reception unit 120 may receive the index of the downlink reference signal and the information indicating the correspondence relationship with the panel (first aspect).
  • the transmitter/receiver 120 may also transmit the spatial relationship information including the index of the downlink reference signal.
  • the transceiver 120 may transmit the spatial relationship information including the resource identifier of the sounding reference signal (SRS).
  • the transceiver 120 may transmit spatial relationship information including a resource identifier of a sounding reference signal (SRS) and information indicating a panel corresponding to the resource identifier.
  • the control unit 110 may determine the panel used for transmitting the uplink signal based on the correspondence between the index of the downlink reference signal and the panel.
  • the control unit 110 may assume that the panel corresponding to the index of the downlink reference signal is used for transmitting the uplink signal (second mode, first BC base uplink transmission).
  • the control unit 110 may assume that the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal is used for transmitting the uplink signal (second aspect, second BC). Base uplink transmission).
  • the control unit 110 may assume that a panel different from the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal is used for transmitting the uplink signal (second mode, Second BC-based upstream transmission).
  • the control unit 110 may assume that the panel corresponding to the index of the downlink reference signal corresponding to the resource identifier of the SRS is used for transmitting the uplink signal (second aspect, first non-BC). Base uplink transmission).
  • the control unit 110 may instruct the panel used for transmitting the uplink signal in the spatial relationship information (second aspect, second non-BC-based uplink transmission).
  • FIG. 11 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission/reception unit 220, and a transmission/reception antenna 230. Note that each of the control unit 210, the transmission/reception unit 220, and the transmission/reception antenna 230 may be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 may be assumed to also have other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, and the like using the transmission/reception unit 220 and the transmission/reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the data to the transmission/reception unit 220.
  • the transmission/reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter/receiver 220 may include a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, and the like, which are described based on common recognition in the technical field of the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may include a reception processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmission/reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission/reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission/reception unit 220 processes the PDCP layer, the RLC layer (for example, RLC retransmission control), and the MAC layer (for example, for the data and control information acquired from the control unit 210). , HARQ retransmission control) may be performed to generate a bit string to be transmitted.
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit string to be transmitted.
  • the baseband signal may be output by performing transmission processing such as precoding, digital-analog conversion, or the like.
  • the transmission/reception unit 220 transmits the channel using the DFT-s-OFDM waveform when transform precoding is enabled for the channel (for example, PUSCH).
  • the DFT process may be performed as the transmission process, or otherwise, the DFT process may not be performed as the transmission process.
  • the transmission/reception unit 220 may modulate the baseband signal into a radio frequency band, perform filtering, amplification, etc., and transmit the radio frequency band signal via the transmission/reception antenna 230. ..
  • the transmission/reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the acquired baseband signal.
  • User data and the like may be acquired by applying reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing.
  • the transmission/reception unit 220 may perform measurement on the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 may be configured by at least one of the transmission/reception unit 220, the transmission/reception antenna 230, and the transmission path interface 240.
  • the transmission/reception unit 220 may transmit the index of the downlink reference signal and the information indicating the correspondence relationship with the panel. Further, the transmitter/receiver 220 may receive the spatial relationship information including the index of the downlink reference signal. Also, the transceiver 220 may receive the spatial relationship information including the resource identifier of the sounding reference signal (SRS). In addition, the transceiver 220 may receive the spatial relationship information including the resource identifier of the sounding reference signal (SRS) and the information indicating the panel corresponding to the resource identifier.
  • SRS sounding reference signal
  • the control unit 210 may determine the panel used for transmitting the uplink signal based on the correspondence between the index of the downlink reference signal and the panel.
  • the control unit 210 may use the panel corresponding to the index of the downlink reference signal for transmitting the uplink signal (second mode, first BC base uplink transmission).
  • the control unit 210 may use a panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal for transmitting the uplink signal (second aspect, second BC base uplink transmission). ..
  • the control unit 210 may use a panel different from the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal for transmitting the uplink signal (second aspect, second BC). Base uplink transmission).
  • the control unit 210 may use a panel corresponding to the index of the downlink reference signal corresponding to the resource identifier of the SRS for transmitting the uplink signal (second aspect, first non-BC-based uplink transmission). ..
  • the control unit 210 may use the panel designated in the spatial relationship information for transmitting the uplink signal (second mode, second non-BC-based uplink transmission).
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional block may be implemented by combining the one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting (notifying), notifying (communicating), forwarding (forwarding), configuring (reconfiguring), allocating (allocating, mapping), assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the terms such as a device, a circuit, a device, a section, and a unit can be read as each other.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 For example, only one processor 1001 is shown, but there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by causing a predetermined software (program) to be loaded onto hardware such as the processor 1001 and the memory 1002, the processor 1001 performs calculation and communication via the communication device 1004. Is controlled, and at least one of reading and writing of data in the memory 1002 and the storage 1003 is controlled.
  • a predetermined software program
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control unit 110 (210) and the transmission/reception unit 120 (220) described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and for example, at least Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other appropriate storage media. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 may store an executable program (program code), a software module, etc. for implementing the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by
  • the storage 1003
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 for example, realizes at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)), a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like. May be included.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission/reception unit 120 (220) and the transmission/reception antenna 130 (230) described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated from the transmitter 120a (220a) and the receiver 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and part or all of each functional block may be realized by using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CMOS complementary metal-oxide-semiconductor
  • CC component carrier
  • a radio frame may be composed of one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (for example, 1 ms) that does not depend on the numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • the numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and radio frame configuration. , At least one of a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • the slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with fewer symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for signal transmission. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them. It should be noted that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be
  • the unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (the number of mini-slots) forming the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured by one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB (PRB)), subcarrier groups (Sub-Carrier Group (SCG)), resource element groups (Resource Element Group (REG)), PRB pairs, RBs. It may be called a pair or the like.
  • PRB Physical RB
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (may be called partial bandwidth etc.) represents a subset of consecutive common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL UL BWP
  • BWP for DL DL BWP
  • one or more BWPs may be set in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
  • the structure of the radio frame, subframe, slot, minislot, symbol, etc. described above is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in the present disclosure are not limited names in any respect. Further, the mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements are not limiting in any way. ..
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • Information and signals can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input/output via a plurality of network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Information input/output, signals, etc. may be overwritten, updated, or added. The output information, signal, etc. may be deleted. The input information, signal, etc. may be transmitted to another device.
  • a specific location for example, memory
  • Information input/output, signals, etc. may be overwritten, updated, or added.
  • the output information, signal, etc. may be deleted.
  • the input information, signal, etc. may be transmitted to another device.
  • notification of information is not limited to the aspect/embodiment described in the present disclosure, and may be performed using another method.
  • notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (Downlink Control Information (DCI)), uplink control information (Uplink Control Information (UCI))), upper layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (Master Information Block (MIB)), system information block (System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof May be implemented by.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of the predetermined information is not limited to the explicit notification, and may be implicitly (for example, by not notifying the predetermined information or another information). May be carried out).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. , May be performed by comparison of numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) , Servers, or other remote sources, these wired and/or wireless technologies are included within the definition of transmission media.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding “precoding”, “precoder”, “weight (precoding weight)”, “pseudo-collocation (Quasi-Co-Location (QCL))”, “Transmission Configuration Indication state (TCI state)”, “space” “Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, and “panel” are interchangeable. Can be used for
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)", “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • Cell Cell
  • femto cell femto cell
  • pico cell femto cell
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (for example, a small indoor base station (Remote Radio Head (RRH))) to provide communication services.
  • a base station subsystem for example, a small indoor base station (Remote Radio Head (RRH))
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or a base station subsystem providing communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect/embodiment of the present disclosure may be applied.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as “up” and “down” may be replaced with the words corresponding to the terminal-to-terminal communication (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal include a base station and one or more network nodes other than the base station (for example, Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. are conceivable, but not limited to these) or a combination of these is clear.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched according to execution. Further, the order of the processing procedure, sequence, flowchart, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile communications
  • CDMA2000 CDMA2000
  • Ultra Mobile Broadband UMB
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth (registered trademark), a system using any other suitable wireless communication method, and a next-generation system extended based on these may be applied.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • references to elements using designations such as “first”, “second”, etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions.
  • judgment means “judging", “calculating”, “computing”, “processing”, “deriving”, “investigating”, “searching” (looking up, search, inquiry) ( For example, it may be considered to be a “decision” for a search in a table, database or another data structure), ascertaining, etc.
  • “decision (decision)” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access ( Accessing) (e.g., accessing data in memory) and the like may be considered to be a “decision.”
  • judgment (decision) is considered to be “judgment (decision)” such as resolving, selecting, choosing, choosing, establishing, establishing, and comparing. Good. That is, “determination (decision)” may be regarded as “determination (decision)” of some operation.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, the nominal maximum transmission power (the nominal UE maximum transmit power), or the rated maximum transmission power (the It may mean rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave Regions
  • electromagnetic energy having wavelengths in the light (both visible and invisible) region, etc. can be used to be considered “connected” or “coupled” to each other.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed similarly as “different”.

Abstract

A user terminal according to an aspect of the present disclosure comprises a transmission unit that transmits information indicating the correspondence between an index of a downlink reference signal and a panel and a control unit that determines, on the basis of the correspondence, a panel used for transmitting an uplink signal.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) has been specified in the Universal Mobile Telecommunications System (UMTS) network for the purpose of higher data rate, lower latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G+(plus), New Radio (NR), 3GPP Rel. 15 or later) is also under consideration.
 既存のLTEシステム(例えば、LTE Rel.8-14)において、ユーザ端末(UE:User Equipment)は、上り信号を送信する。上り信号は、例えば、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、サウンディング参照信号(Sounding Reference Signal(SRS))、PUSCH又はPUCCHの復調用参照信号(Demodulation Reference Signal(DM-RS))の少なくとも一つを含んでもよい。 In the existing LTE system (for example, LTE Rel.8-14), the user terminal (UE: User Equipment) transmits an upstream signal. The uplink signal includes, for example, a random access channel (Physical Random Access Channel (PRACH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)), and a sounding reference signal (Sounding). It may include at least one of Reference Signal (SRS), PUSCH or PUCCH demodulation reference signal (Demodulation Reference Signal (DM-RS)).
 将来の無線通信システム(以下、NRともいう)において、UEは、ビーム管理(Beam Management(BM))を行うことが検討されている。具体的には、あるノードが、信号の受信に用いる受信ビーム(受信空間ドメインフィルタ)に基づいて、信号の送信に用いる送信ビーム(送信空間ドメインフィルタ)を決定するビームコレスポンデンス(Beam Correspondence(BC))を用いたBMも検討されている。 In the future wireless communication system (hereinafter, also referred to as NR), it is considered that the UE performs beam management (Beam Management (BM)). Specifically, a node determines the beam correspondence (BC) that determines the transmission beam (transmission spatial domain filter) used for signal transmission based on the reception beam (reception spatial domain filter) used for signal reception. ) Using BM is also considered.
 例えば、BCベース(BC有り)の上り送信では、UEは、下り参照信号(例えば、同期信号ブロック(SSB)又はチャネル状態情報参照信号(CSI-RS))に基づいて、上り信号の送信ビーム(送信空間ドメインフィルタ)を決定することが検討されている。一方、非BCベース(BC無し)の上り送信では、UEは、上り参照信号(例えば、SRS)に基づいて、上り信号の送信ビーム(送信空間ドメインフィルタ)を決定することが検討されている。 For example, in the BC-based (with BC) uplink transmission, the UE transmits the uplink signal transmission beam (based on the downlink reference signal (eg, synchronization signal block (SSB) or channel state information reference signal (CSI-RS))). It is under consideration to determine the transmit spatial domain filter). On the other hand, in non-BC-based (no BC) uplink transmission, it is considered that the UE determines a transmission beam (transmission spatial domain filter) of the uplink signal based on the uplink reference signal (eg, SRS).
 また、NRでは、UEが複数のパネル(UEパネル、アンテナパネル、ビーム)を用いて上り送信を行うことが検討されている。しかしながら、UEは、受信ビーム又は送信ビームにどのパネルが対応するのかを適切に認識できない結果、パネルに関する制御(例えば、パネルの電源のオン又はオフ)を適切に行うことができない恐れがある。 Also, in NR, it is considered that the UE performs uplink transmission using multiple panels (UE panel, antenna panel, beam). However, the UE may not be able to properly recognize which panel corresponds to the receive beam or the transmit beam, and as a result, may not be able to appropriately perform control regarding the panel (for example, turning on or off the power of the panel).
 そこで、本開示は、パネルの制御を適切に行うことがユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method to appropriately control a panel.
 本開示の一態様に係るユーザ端末は、下り参照信号のインデックスとパネルとの対応関係を示す情報とを送信する送信部と、前記対応関係に基づいて、上り信号の送信に用いるパネルを決定する制御部と、を具備することを特徴とする。 A user terminal according to an aspect of the present disclosure determines a panel used for transmitting an uplink signal based on a transmission unit that transmits an index of a downlink reference signal and information indicating a correspondence relation between the panel and the correspondence relation. And a control unit.
 本開示の一態様によれば、パネルに関する制御を適切に行うことができる。 According to one aspect of the present disclosure, it is possible to appropriately perform control regarding a panel.
図1A~1Cは、上りBMの一例を示す図である。1A to 1C are diagrams showing an example of an upstream BM. 図2A及び2Bは、マルチパネルの一例を示す図である。2A and 2B are diagrams showing an example of a multi-panel. 図3は、第1の態様に係るパネル情報の報告手順の一例を示す図である。FIG. 3 is a diagram illustrating an example of a panel information reporting procedure according to the first aspect. 図4A及び4Bは、第1の態様に係るビーム報告情報の一例を示す図である。4A and 4B are diagrams illustrating an example of beam report information according to the first example. 図5A及び5Bは、第2の態様に係る第1のBCベース上り送信の一例を示す図である。5A and 5B are diagrams illustrating an example of first BC-based uplink transmission according to the second aspect. 図6A~6Dは、第2の態様に係る第2のBCベース上り送信の一例を示す図である。6A to 6D are diagrams showing an example of second BC-based uplink transmission according to the second mode. 図7A~7Cは、第2の態様に係る第1の非BCベース上り送信の一例を示す図である。7A to 7C are diagrams showing an example of first non-BC-based uplink transmission according to the second mode. 図8A及び8Bは、第2の態様に係る第2の非BCベース上り送信の一例を示す図である。8A and 8B are diagrams illustrating an example of second non-BC-based uplink transmission according to the second aspect. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of the base station according to the embodiment. 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment. 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
(ビーム管理)
 NRでは、ビーム管理(Beam Management(BM))が検討されている。具体的には、NRでは、ビームコレスポンデンス(Beam Correspondence(BC))を有すると想定しないBM(第1のBM、BM without(wo) BC、BCベースでないBM等ともいう)と、ビームコレスポンデンスを有すると想定するBM(第2のBM、BM with(w) BC、BCベースのBM等ともいう)と、が検討されている。
(Beam management)
In NR, beam management (Beam Management (BM)) is under study. Specifically, in NR, a BM that does not assume to have beam correspondence (BC) (also referred to as a first BM, a BM without (wo) BC, a BM that is not BC-based, and the like) and a beam correspondence are included. Then, the BM assumed (also referred to as the second BM, BM with (w) BC, BC-based BM, etc.) is being studied.
 ここで、ビームコレスポンデンスとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)を決定し、決定されたRxビームに基づいて、信号の送信に用いるビーム(送信ビーム、送信ビーム)を決定する能力であってもよい。 Here, the beam correspondence means, for example, a certain node (for example, a base station or a UE) determines a beam (reception beam, Rx beam) to be used for receiving a signal, and based on the determined Rx beam, the signal It may be the ability to determine the beam (transmission beam, transmission beam) used for transmission.
 BCベースでないBMでは、受信装置(Rx装置)(例えば、上りでは基地局、下りではUE)は、送信装置(Tx装置)(例えば、上りではUE、下りでは基地局)からの一以上の信号(例えば、上り参照信号又は下り参照信号)の測定結果に基づいて、当該送信装置からの送信に用いる送信ビームを決定し、当該送信ビームを示す情報(例えば、ビームインデックス)を当該送信装置に送信する。当該送信装置は、当該受信装置から指示された送信ビームを用いて信号(例えば、上り信号又は下り信号)を送信してもよい。 In a BM that is not BC-based, a receiving device (Rx device) (for example, a base station in the uplink and a UE in the downlink) uses one or more signals from a transmitting device (Tx device) (for example, a UE in the uplink and a base station in the downlink). (For example, based on the measurement result of the uplink reference signal or the downlink reference signal), determine the transmission beam used for transmission from the transmission device, and transmit information indicating the transmission beam (for example, beam index) to the transmission device. To do. The transmission device may transmit a signal (for example, an upstream signal or a downstream signal) using the transmission beam instructed by the reception device.
 一方、BCベースのBMでは、送信装置(Tx装置)(例えば、上りではUE、下りでは基地局)は、受信装置(Rx装置)(例えば、上りでは基地局、下りではUE)からの信号(例えば、下り参照信号又は上り参照信号)に基づいて、送信ビームを決定し、決定した送信ビームを用いて信号(例えば、上り信号又は下り信号)を送信してもよい。 On the other hand, in the BC-based BM, a transmission device (Tx device) (for example, UE in uplink, base station in downlink) is a signal from a reception device (Rx device) (for example, base station in uplink, UE in downlink) ( For example, a transmission beam may be determined based on a downlink reference signal or an uplink reference signal, and a signal (for example, an uplink signal or a downlink signal) may be transmitted using the determined transmission beam.
 なお、ビームコレスポンデンスは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。 In addition, the beam correspondence is the transmit/receive beam correspondence (Tx/Rx beam correspondance), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated/non-calibrated (Calibrated/Non-calibrated), reciprocity. It may be referred to as calibrated/non-calibrated (reciprocity calibrated/non-calibrated), correspondence, or agreement.
 図1A及び1Bは、上りBMの一例を示す図である。図1Aでは、BCベースでない上りBMの一例が示される。図1Bでは、BCベースの上りBMの一例が示される。なお、図1A及び1Bでは、基地局は、ビームB21~B24を用いて下り信号を送信又は上り信号を受信し、UEは、ビームb1~b4を用いて下り信号を受信又は上り信号を送信するものとする(図1C参照)。ただし、それぞれのノードに置いて送信ビームと受信ビームは必ずしも一致するとは限らない。また、図1Cでは、ビームB22及びビームb2がビームペアリンク(Beam Pair Link(BPL))であるものとする。 1A and 1B are diagrams showing an example of an upstream BM. In FIG. 1A, an example of an uplink BM that is not BC-based is shown. In FIG. 1B, an example of a BC-based upstream BM is shown. 1A and 1B, the base station uses the beams B21 to B24 to transmit the downlink signal or receives the uplink signal, and the UE uses the beams b1 to b4 to receive the downlink signal or transmit the uplink signal. (See FIG. 1C). However, the transmission beam and the reception beam do not always match in each node. Further, in FIG. 1C, the beam B22 and the beam b2 are assumed to be beam pair links (Beam Pair Link (BPL)).
 図1Aに示すように、BCベースでないBMでは、UE(Tx)は、一以上のビーム(例えば、図1Cでは、ビームB21~B24)を用いて、上り参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))を送信する。UEは、ビームスィープを用いて異なる時間領域で一以上のビームを送信してもよい。 As shown in FIG. 1A, in a BM that is not BC-based, the UE (Tx) uses one or more beams (for example, beams B21 to B24 in FIG. 1C) and an uplink reference signal (for example, a sounding reference signal (Sounding)). Reference Signal (SRS)). The UE may transmit one or more beams in different time domains using beam sweep.
 例えば、UEは、一以上のSRS用のリソース(SRSリソース)を示す情報(例えば、SRSリソースID(SRS Resource Indicator(SRI))又はSRSリソースIDのリスト)を受信し、当該SRSリソースに対応するビームを用いて上り信号(例えば、SRS、PUSCH、PUCCHなどの上りチャネル、他の上り物理信号の少なくとも一つ)を送信してもよい。 For example, the UE receives information indicating one or more SRS resources (SRS resources) (for example, SRS resource ID (SRS Resource Indicator (SRI)) or list of SRS resource IDs) and corresponds to the SRS resource. An upstream signal (for example, at least one of upstream channels such as SRS, PUSCH, PUCCH, and other upstream physical signals) may be transmitted using a beam.
 基地局(Rx)は、受信した参照信号(例えば、SRS)の測定結果に基づいて、UE(Tx)からの送信に用いる送信ビーム(例えば、図1Cでは、ビームb2)を決定し、当該送信ビームに対応するSRSリソースを示す情報(例えば、SRSリソースID、SRI)をUEに送信してもよい。 The base station (Rx) determines a transmission beam (for example, beam b2 in FIG. 1C) to be used for transmission from the UE (Tx) based on the measurement result of the received reference signal (for example, SRS), and performs the transmission. Information indicating the SRS resource corresponding to the beam (eg, SRS resource ID, SRI) may be transmitted to the UE.
 UEは、基地局から指示されたSRSリソースに対応する送信ビーム(例えば、図1Cでは、ビームb2)を用いて上り信号(例えば、PRACH、PUSCH、PUCCH、SRS、DM-RSの少なくとも一つ)を送信してもよい。 The UE uses the transmission beam (for example, beam b2 in FIG. 1C) corresponding to the SRS resource instructed by the base station to transmit an uplink signal (for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DM-RS). May be sent.
 このように、BCベースではないBMでは、UEに設定される一以上の上り参照信号用のリソース(例えば、上りではSRSリソース)を用いた測定結果に基づいて、基地局がUEからの送信ビームを決定してUEに指示してもよい。これにより、UEは、適切な送信ビームを用いて上り信号を送信できる。 As described above, in the BM that is not the BC base, the base station transmits the transmission beam from the UE based on the measurement result using one or more resources for uplink reference signals (for example, SRS resources in uplink) set in the UE. May be determined and instructed to the UE. This allows the UE to transmit the uplink signal using an appropriate transmission beam.
 一方、図1Bに示すように、BCベースのBMでは、基地局(Rx)における上り参照信号(例えば、SRS)の測定なしに、UEで受信(又は検出)される下り参照信号に基づいて、UEの送信ビームが決定されてもよい。 On the other hand, as shown in FIG. 1B, in the BC-based BM, based on the downlink reference signal received (or detected) by the UE without measurement of the uplink reference signal (for example, SRS) in the base station (Rx), The transmit beam of the UE may be determined.
 具体的には、図1Bにおいて、基地局は、予め、UEに対して、SRS用の設定(configuration)情報(SRS設定情報、例えば、無線リソース制御(Radio Resource Control(RRC))の情報項目(IE)「SRS-Config」)を送信してもよい。SRS設定情報は、一以上のSRSリソースに関する情報を含んでもよい。SRS設定情報は、一以上のSRSリソースに関する情報をそれぞれ含む一以上のセット(SRSリソースセット)に関する情報を含んでもよい。 Specifically, in FIG. 1B, the base station beforehand informs the UE of the information item of the SRS configuration information (SRS configuration information, for example, radio resource control (RRC)). IE) "SRS-Config") may be sent. The SRS configuration information may include information regarding one or more SRS resources. The SRS configuration information may include information about one or more sets (SRS resource sets) each including information about one or more SRS resources.
 SRSリソースに関する情報は、例えば、SRI、当該SRSリソースのポート数(例えば、1、2又は4)、当該SRSリソースの時間領域及び周波数領域の位置(例えば、シンボル数、開始シンボルなど)、SRSリソースのタイプ(例えば、非周期、セミパーシステント又は周期的)、当該SRSリソースの空間関係情報(例えば、RRCのIE「spatialRelationInfo」又は「SRS-SpatialRelationInfo」)などの少なくとも一つを含んでもよい。 The information on the SRS resource includes, for example, the SRI, the number of ports of the SRS resource (for example, 1, 2 or 4), the position of the time domain and the frequency domain of the SRS resource (for example, the number of symbols, the start symbol, etc.), the SRS resource. (Eg, aperiodic, semi-persistent or periodic), spatial relationship information of the SRS resource (eg, RRC IE “spatialRelationInfo” or “SRS-SpatialRelationInfo”), and the like.
 ここで、空間関係情報は、当該SRSリソースにマッピングされるSRSと基準信号(基準RS(Reference RS))との空間関係(spatial relation)を示してもよい。基準RSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information-Reference Signal(CSI-RS))及びSRSの少なくとも一つ、又は、これらの少なくとも一つを拡張又は変更して構成されてもよい。 Here, the spatial relationship information may indicate a spatial relationship between the SRS mapped to the SRS resource and a reference signal (reference RS (Reference RS)). The reference RS is, for example, at least one of a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information-Reference Signal (CSI-RS)), and at least one of these. May be expanded or modified.
 SSBは、同期信号(Synchronization Signal(SS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも一つを含むブロックであり、SS/PBCHブロック等とも呼ばれる。同期信号は、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも一つを含んでもよい。 -The SSB is a block including at least one of a synchronization signal (Synchronization Signal (SS)) and a broadcast channel (Physical Broadcast Channel (PBCH)), and is also called an SS/PBCH block or the like. The synchronization signal may include at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
 例えば、空間関係情報は、SRSと空間関係にある基準RSの種類に応じて、SSBに関する情報(例えば、SSBのインデックス)、又は、CSI-RSに関する情報(例えば、CSI-RSのインデックス又はノンゼロパワーCSI-RSリソースのID)、又は、SRSに関する情報(例えば、SRSリソースID及び上りの帯域幅部分(Bandwidth Part(BWP))のID)を含んでもよい(示してもよい)。なお、空間関係情報がSSB又はCSI-RSを示すことは、BCベースであることを示し、空間関係情報がSRSを示すことはBCベースでないことを示してもよい。 For example, the spatial relationship information may be information related to SSB (eg, SSB index) or information related to CSI-RS (eg, CSI-RS index or non-zero power), depending on the type of the reference RS having a spatial relationship with the SRS. CSI-RS resource ID) or information about SRS (for example, SRS resource ID and ID of upstream bandwidth part (Bandwidth Part (BWP))) may be included (may be shown). The spatial relationship information indicating SSB or CSI-RS may indicate BC base, and the spatial relationship information indicating SRS may indicate not BC base.
 ここで、空間関係とは、疑似コロケーション(QCL:Quasi-Co-Location)の関係(QCL関係)等と言い換えられてもよい。QCLとは、信号及びチャネルの少なくとも一つ(信号/チャネル)の統計的性質を示す指標である。またこの情報は送信構成指示(Transmission Configuration Indication又はTransmission Configuration information(TCI))又はTCIの状態(TCI状態)としてNWから通知されても良い。 Here, the spatial relationship may be paraphrased as a pseudo collocation (QCL: Quasi-Co-Location) relationship (QCL relationship). QCL is an index indicating the statistical property of at least one of a signal and a channel (signal/channel). Further, this information may be notified from the NW as a transmission configuration indication (Transmission Configuration Indication or Transmission Configuration information (TCI)) or a TCI state (TCI state).
 例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 For example, when a certain signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay (average delay) between these different signals/channels. ), delay spread, and spatial parameter (Spatial parameter) (for example, spatial reception parameter (Spatial Rx Parameter)) are the same (meaning that at least one of them is QCL). You may.
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す。
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド
 ・QCLタイプC:平均遅延及びドップラーシフト
 ・QCLタイプD:空間受信パラメータ
A plurality of types (QCL types) may be defined as the QCL. For example, four QCL types AD having different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters will be described below.
-QCL type A: Doppler shift, Doppler spread, average delay and delay spread-QCL type B: Doppler shift and Doppler spread-QCL type C: Average delay and Doppler shift-QCL type D: Spatial reception parameter
 図1Bにおいて、UEは、当該SSB又はCSI-RSの受信ビームを決定し、当該受信ビームに対応する送信ビーム(例えば、図1Cでは、SSB又はCSI-RSの受信ビームと同じビームb2)を用いて上り信号(例えば、PRACH、PUSCH、PUCCH、SRS及びDMRSの少なくとも一つ)を送信してもよい。 In FIG. 1B, the UE determines the reception beam of the SSB or CSI-RS and uses the transmission beam corresponding to the reception beam (for example, the same beam b2 as the reception beam of SSB or CSI-RS in FIG. 1C). And may transmit an uplink signal (for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DMRS).
 具体的には、UEは、上述の空間関係情報によって、受信又は検出したDL-RSとの空間関係が示されるSRSリソースに対応する送信ビームを、上り信号の送信に用いることを決定してもよい。 Specifically, the UE determines to use the transmission beam corresponding to the SRS resource whose spatial relationship with the received or detected DL-RS is indicated by the above-mentioned spatial relationship information for the transmission of the uplink signal. Good.
 UEは、あるSRSリソースについて、SSB又はCSI-RSとSRSとに関する空間関係情報を設定される場合には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタと同じ空間ドメインフィルタを用いて当該SRSリソースを送信してもよい。つまり、この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定(assume)又は予期(expect)してもよい。 The UE uses the same spatial domain filter as the spatial domain filter for receiving the SSB or CSI-RS when the spatial relation information regarding the SSB or CSI-RS and the SRS is set for a certain SRS resource. The SRS resource may be transmitted. That is, in this case, the UE may assume or expect that the UE receive beam of SSB or CSI-RS and the UE transmit beam of SRS are the same.
 なお、基地局の送信のための空間ドメインフィルタと、下りリンク空間ドメイン送信フィルタ(downlink spatial domain transmission filter)と、基地局の送信ビームと、は互いに読み替えられてもよい。基地局の受信のための空間ドメインフィルタと、上りリンク空間ドメイン受信フィルタ(uplink spatial domain receive filter)と、基地局の受信ビームと、は互いに読み替えられてもよい。 Note that the spatial domain filter for transmission of the base station, the downlink spatial domain transmission filter, and the transmission beam of the base station may be read as each other. The spatial domain filter for reception of the base station, the uplink spatial domain receive filter, and the reception beam of the base station may be read as each other.
 また、UEの送信のための空間ドメインフィルタと、上りリンク空間ドメイン送信フィルタ(uplink spatial domain transmission filter)と、UEの送信ビームと、は互いに読み替えられてもよい。UEの受信のための空間ドメインフィルタと、下りリンク空間ドメイン受信フィルタ(downlink spatial domain receive filter)と、UEの受信ビームと、は互いに読み替えられてもよい。 Also, the spatial domain filter for transmission of the UE, the uplink spatial domain transmission filter, and the transmission beam of the UE may be read as each other. The spatial domain filter for reception of the UE, the downlink spatial domain receive filter, and the reception beam of the UE may be replaced with each other.
 このように、BCベースの上りBMでは、UEは、空間関係情報により示される下り参照信号(CSI-RS又はSSB)に基づいて、上り信号に適用する空間ドメインフィルタを決定することができる。 As described above, in the BC-based uplink BM, the UE can determine the spatial domain filter to be applied to the uplink signal based on the downlink reference signal (CSI-RS or SSB) indicated by the spatial relationship information.
(マルチパネル)
 ところで、NRでは、UEは、複数のパネル(マルチパネル)を用いることが検討されている。各パネルは、複数のアンテナ素子(単に、素子ともいう)から構成されてもよい。例えば、大規模MIMO(Massive MIMO(Multiple Input Multiple Output))では、各パネルに超多素子アンテナを用いてもよい。
(Multi-panel)
By the way, in NR, it is considered that the UE uses a plurality of panels (multi-panel). Each panel may be composed of a plurality of antenna elements (simply referred to as elements). For example, in large-scale MIMO (Massive MIMO (Multiple Input Multiple Output)), a super multi-element antenna may be used for each panel.
 各パネルの各アンテナ素子から送信又は受信(送信/受信)される信号の振幅及び位相の少なくとも一つ(振幅/位相)を制御することで、ビーム(アンテナ指向性)を形成することができる。パネルは、アンテナパネル、アンテナポートグループ、又は、上り送信エンティティ、TXRU(Transceiver Unit)構成等と呼ばれてもよい。 A beam (antenna directivity) can be formed by controlling at least one of the amplitude and phase (amplitude/phase) of the signal transmitted or received (transmitted/received) from each antenna element of each panel. The panel may be called an antenna panel, an antenna port group, an uplink transmission entity, a TXRU (Transceiver Unit) configuration, or the like.
 図2A及び2Bは、マルチパネルの一例を示す図である。図2A及び2Bでは、UEが2つのパネル#0及び#1を実装する一例が示されるが、UEが実装するパネルの数は2に限られず、3以上であってもよい(例えば、4でもよい)。また、図2A及び2Bにおけるアンテナパネルの位置及び方向等は模式的なものであり、図示するものに限られない。 2A and 2B are diagrams showing an example of a multi-panel. 2A and 2B show an example in which the UE implements two panels #0 and #1. However, the number of panels implemented by the UE is not limited to 2 and may be 3 or more (for example, 4 or even 4). Good). Further, the positions and directions of the antenna panels in FIGS. 2A and 2B are schematic, and are not limited to those shown.
 図2Bでは、パネル#0及び#1それぞれの各アンテナ素子から送信/受信される信号の振幅及び/又は位相を制御することによって形成されるビームの一例が示される。図2Bに示すように、UEは、パネル毎に一以上のビームを形成してもよい。UEは、パネル毎に形成されるビームを用いて、上り信号の送信又は下り信号の受信を制御することにより、ビーム利得を向上させることができる。 FIG. 2B shows an example of a beam formed by controlling the amplitude and/or the phase of the signal transmitted/received from each antenna element of each of the panels #0 and #1. As shown in FIG. 2B, the UE may form one or more beams per panel. The UE can improve the beam gain by controlling the transmission of the uplink signal or the reception of the downlink signal using the beam formed for each panel.
 なお、図2Bにおいて各パネルに関連付けられるビーム(SSBインデックス、CSI-RSリソース又はSRSリソース)の数は同一であってもよいし、異なってもよい。 Note that the number of beams (SSB index, CSI-RS resource, or SRS resource) associated with each panel in FIG. 2B may be the same or different.
 図2A及び2Bにおいて、UEに実装される複数のパネルの全てをオン(on)にし続ける場合、UEの消費電力が増大する恐れがある。したがって、当該複数のパネルの少なくとも一部の電源のオン又はオフを制御することによって、UEの消費電力の増大を抑制することが望まれる。 2A and 2B, if all of the plurality of panels mounted on the UE are kept on, the power consumption of the UE may increase. Therefore, it is desired to suppress an increase in power consumption of the UE by controlling the on/off of at least part of the power supplies of the plurality of panels.
 しかしながら、ネットワーク(例えば、基地局)は、UEにおいてどのビームがどのパネルに関連付けられるのかを認識できない。このため、ネットワークからUEに対してオフにすべきパネルを指示することはできず、UEが自身で決定したパネルをオフにする結果、ビーム利得を適切に得ることができない恐れがある。 However, the network (eg, base station) cannot know which beam is associated with which panel at the UE. For this reason, the network cannot instruct the UE which panel should be turned off, and as a result of the UE turning off the panel determined by itself, the beam gain may not be properly obtained.
 そこで、本発明者らは、UEがビーム(に対応するSSBインデックス、CRI又はSRI)とパネルの対応関係が報告することにより、ネットワーク側においてUEにおけるビームとパネルとの対応関係を認識可能とすることを着想した(第1の態様)。また、UEが、上り送信に用いるパネルを適切に決定可能とすることを着想した(第2の態様)。 Therefore, the present inventors enable the UE to recognize the correspondence between the beam and the panel in the UE on the network side by reporting the correspondence between the beam (the SSB index, CRI or SRI corresponding to the beam) and the panel. The idea was conceived (first aspect). In addition, it was conceived that the UE can appropriately determine the panel used for uplink transmission (second aspect).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施の態様に示した構成は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The configurations shown in the respective embodiments may be applied individually or in combination.
 また、以下において、「空間関係情報が示す下り参照信号」、「空間関係情報に基づいて決定される下り参照信号」、「空間関係情報が示すインデックス(又はID)で識別される下り参照信号」、「空間関係情報が示すインデックス(又はID)で識別される下り参照信号リソース」、「空間関係情報が示すインデックス(又はID)で識別されるリソースを用いて送信される下り参照信号」は、相互に読み替えられてよい。 Further, in the following, “downlink reference signal indicated by spatial relation information”, “downlink reference signal determined based on spatial relation information”, “downlink reference signal identified by index (or ID) indicated by spatial relation information” , "Downlink reference signal resource identified by index (or ID) indicated by spatial relationship information", "downlink reference signal transmitted using resource identified by index (or ID) indicated by spatial relationship information", May be read interchangeably.
 また、下り参照信号は、SSB、CSI-RSを想定するが、これに限られない。下り参照信号リソースは、SSB、CSI-RSリソース(例えば、ノンゼロパワーCSI-RSリソース)を想定するが、これに限られない。また、下り参照信号のインデックス(RSインデックス)は、下り参照信号リソースのインデックスと読み替えられてもよい。 Also, downlink reference signals are assumed to be SSB and CSI-RS, but the present invention is not limited to this. The downlink reference signal resource is assumed to be SSB or CSI-RS resource (for example, non-zero power CSI-RS resource), but is not limited to this. Further, the index (RS index) of the downlink reference signal may be read as the index of the downlink reference signal resource.
 また、「SRS」、「SRSリソース」、「SRSリソースID」、「SRSリソースIDで特定されるSRSリソース」、「SRSリソースIDで特定されるSRSリソースを用いて送信されるSRS」等は相互に読み替えられてもよい。 Further, "SRS", "SRS resource", "SRS resource ID", "SRS resource specified by SRS resource ID", "SRS transmitted using SRS resource specified by SRS resource ID", etc. May be read as
 また、上り信号は、例えば、PRACH、PUSCH、PUCCH、SRS、及び、DMRSの少なくとも一つを想定するが、これに限られない。 The uplink signal is assumed to be, for example, at least one of PRACH, PUSCH, PUCCH, SRS, and DMRS, but is not limited to this.
 また、パネルは、UEパネル、アンテナパネル、アンテナアレイ、アンテナマトリクス、アンテナポートグループ、アンテナ素子グループ、DMRSポートグループ、符号分割多重(Code Division Multiplexing(CDM))グループなどと読み替えられてもよい。IDは、インデックス、番号などと読み替えられてもよい。 Also, the panel may be read as a UE panel, an antenna panel, an antenna array, an antenna matrix, an antenna port group, an antenna element group, a DMRS port group, a code division multiplexing (CDM) group, or the like. The ID may be read as an index, a number, or the like.
 また、SSBインデックスは、SS/PBCHブロックインデックス、SS/PBCHブロックリソース識別子(SS/PBCH Block Resource indicator (SSBRI))等と読み替えられてもよい。 Also, the SSB index may be read as an SS/PBCH block index, an SS/PBCH block resource identifier (SS/PBCH Block Resource indicator (SSBRI)), or the like.
 また、CSI-RSインデックスは、CSI-RSリソースインデックス、CSI-RSリソース識別子(CSI-RS resource indicator(CRI))等と読み替えられてもよい。 Also, the CSI-RS index may be read as a CSI-RS resource index, a CSI-RS resource identifier (CSI-RS resource indicator (CRI)), or the like.
(第1の態様)
 第1の態様では、UEは、下り参照信号のインデックスとパネルとの対応関係(correspondence)を示す情報(パネル情報)を送信(報告)する。当該下り参照信号のインデックスは、例えば、SSBインデックス又はCSI-RSインデックス(SSB/CSI-RSインデックス)であってもよい。
(First mode)
In the first aspect, the UE transmits (reports) information (panel information) indicating a correspondence (correspondence) between the index of the downlink reference signal and the panel. The index of the downlink reference signal may be, for example, an SSB index or a CSI-RS index (SSB/CSI-RS index).
 図3は、第1の態様に係るパネル情報の報告手順の一例を示す図である。ステップS101において、UEは、一以上の下り参照信号(例えば、一以上のSSBインデックスのSSB又は一以上のCSI-RSインデックスのCSI-RS)を受信する。当該一以上の下り参照信号は、ビーム測定用にUEに設定されてもよい。 FIG. 3 is a diagram showing an example of a panel information reporting procedure according to the first aspect. In step S101, the UE receives one or more downlink reference signals (eg, SSB with one or more SSB indexes or CSI-RS with one or more CSI-RS indexes). The one or more downlink reference signals may be set in the UE for beam measurement.
 ステップS102において、UEは、ステップS101で受信した下り参照信号を用いて測定結果に関する情報(ビーム報告情報(beam reporting information))を送信(報告)する。 In step S102, the UE transmits (reports) information regarding the measurement result (beam reporting information) using the downlink reference signal received in step S101.
 当該ビーム報告情報は、L1シグナリングにより又は上位レイヤシグナリングにより送信されてもよい。L1シグナリングの場合、ビーム報告情報は、PUCCH又はPUSCHで送信される上り制御情報(例えば、チャネル状態情報(Channel State Information(CSI)))に含まれてもよい。上位レイヤシグナリングの場合、ビーム報告情報は、RRCシグナリングで送信される測定報告(measurement report)に含まれてもよい。 The beam report information may be transmitted by L1 signaling or higher layer signaling. In the case of L1 signaling, the beam report information may be included in the uplink control information (eg, Channel State Information (CSI)) transmitted on the PUCCH or PUSCH. In the case of upper layer signaling, the beam report information may be included in the measurement report transmitted by RRC signaling.
 当該ビーム報告情報は、例えば、SSB/CSI-RSインデックスを用いた測定結果を含んでもよい。当該測定結果は、以下の少なくとも一つを含んでもよい。
・参照信号受信電力(Reference Signal Received Power(RSRP))(例えば、L1-RSRP)
・参照信号受信品質(Reference Signal Received Quality(RSRQ))
・受信信号電力対干渉及び雑音電力比(Signal-to-Interference plus Noise power Ratio(SINR))
The beam report information may include, for example, a measurement result using the SSB/CSI-RS index. The measurement result may include at least one of the following.
Reference signal received power (RSRP) (for example, L1-RSRP)
-Reference signal received quality (RSRQ)
-Received signal power to interference and noise power ratio (Signal-to-Interference plus Noise power Ratio (SINR))
 当該ビーム報告情報は、UEに設定される測定用のSSB/CSI-RSインデックスの中で、上位X(例えば、X=1、2又は4)個の測定結果(例えば、L1-RSRP)を含んでもよい。また、当該ビーム報告情報は、上位X個の測定結果に対応するSSB/CSI-RSインデックスを含んでもよい。 The beam report information includes the upper X (eg, X=1, 2 or 4) measurement results (eg, L1-RSRP) in the SSB/CSI-RS index for measurement set in the UE. But it's okay. Further, the beam report information may include SSB/CSI-RS indexes corresponding to the top X measurement results.
 また、ビーム報告情報は、当該SSB/CSI-RSインデックスに対応するパネル情報を含んでもよい。当該パネル情報は、当該SSB/CSI-RSインデックスに対応する(関連付けられる)パネルの識別子(パネルID、パネルインデックス等ともいう)であってもよいし(例えば、図4A)、又は、上記SSB/CSI-RSインデックスの受信に用いるパネル(受信パネル)が現在の受信パネルと同一であるか否かを示す情報(パネルスイッチ情報)であってもよい(例えば、図4B)。 Also, the beam report information may include panel information corresponding to the SSB/CSI-RS index. The panel information may be an identifier (also referred to as a panel ID, a panel index, etc.) of a panel corresponding to (associated with) the SSB/CSI-RS index (for example, FIG. 4A), or the SSB/ It may be information (panel switch information) indicating whether the panel used for receiving the CSI-RS index (reception panel) is the same as the current reception panel (for example, FIG. 4B).
 図4A及び4Bは、第1の態様に係るビーム報告情報の一例を示す図である。なお、図4A及び4Bでは、例えば、図2A及び2Bに示されるように、UEが2つのパネル#0及び#1を実装する場合を一例として例示するが、パネル数、各パネルに関連付けられるビーム数(SSBインデックス数又はCSI-RSインデックス数)等は図示するものに限られない。 4A and 4B are diagrams showing an example of beam report information according to the first aspect. 4A and 4B, for example, as illustrated in FIGS. 2A and 2B, a case where the UE implements two panels #0 and #1 is illustrated as an example. However, the number of panels and beams associated with each panel are illustrated. The number (SSB index number or CSI-RS index number) and the like are not limited to those shown in the figure.
 例えば、図4Aでは、ビーム報告情報が、各SSB/CSI-RSインデックスと、各SSB/CSI-RSインデックスを用いた測定結果(例えば、L1-RSRP)と、各SSB/CSI-RSインデックスに関連付けられるパネルIDを含む一例が示される。 For example, in FIG. 4A, the beam report information is associated with each SSB/CSI-RS index, a measurement result using each SSB/CSI-RS index (eg, L1-RSRP), and each SSB/CSI-RS index. An example is shown including the panel IDs that are provided.
 例えば、図2Bでは、SSBインデックス又はCSI-RSインデックス#0~#7、#8~#15に対応するビームがそれぞれパネル#0、#1に関連付けられる。このため、図4Bに示すように、SSB/CSI-RSインデックス#2、#3、#6、#14にそれぞれ関連付けられるパネルID#0、#0、#0、#1がビーム報告情報に含まれてもよい。 For example, in FIG. 2B, the beams corresponding to the SSB index or the CSI-RS indexes #0 to #7 and #8 to #15 are associated with the panels #0 and #1, respectively. Therefore, as shown in FIG. 4B, the beam report information includes panel IDs #0, #0, #0, and #1 respectively associated with SSB/CSI-RS indexes #2, #3, #6, and #14. You may
 一方、図4Bでは、ビーム報告情報が、各SSB/CSI-RSインデックスと、各SSB/CSI-RSインデックスを用いた測定結果(例えば、L1-RSRP)と、各SSB/CSI-RSインデックスに関連付けられるパネルスイッチ情報を含む一例が示される。図4Bでは、ビーム報告情報が、パネルIDの代わりに、パネルスイッチ情報を含む点で図4Aと異なる。 On the other hand, in FIG. 4B, the beam report information is associated with each SSB/CSI-RS index, a measurement result using each SSB/CSI-RS index (for example, L1-RSRP), and each SSB/CSI-RS index. An example is shown that includes the panel switch information that is provided. 4B differs from FIG. 4A in that the beam report information includes panel switch information instead of the panel ID.
 図4Bでは、SSB/CSI-RSインデックス#2、#3、#6に関連付けられるパネルスイッチ情報は「0」であるので、SSB/CSI-RSインデックス#2、#3、#6の受信パネルが現在の受信パネルと同一であってもよい。例えば、UEの現在の受信パネルがパネル#0である場合、当該パネルスイッチ情報は、SSB/CSI-RSインデックス#2、#3、#6にパネル#0が関連付けられることを示してもよい。 In FIG. 4B, since the panel switch information associated with the SSB/CSI-RS indexes #2, #3, and #6 is “0”, the receiving panels with the SSB/CSI-RS indexes #2, #3, and #6 are displayed. It may be the same as the current receiving panel. For example, if the current receiving panel of the UE is panel #0, the panel switch information may indicate that panel #0 is associated with SSB/CSI-RS indexes #2, #3, #6.
 一方、SSB/CSI-RSインデックス#14に関連付けられるパネルスイッチ情報は「1」であるので、SSB/CSI-RSインデックス#14の受信パネルが現在の受信パネルと異なってもよい。例えば、UEの現在の受信パネルがパネル#0である場合、当該パネルスイッチ情報は、SSB/CSI-RSインデックス#14にパネル#1が関連付けられることを示してもよい。 On the other hand, since the panel switch information associated with the SSB/CSI-RS index #14 is “1”, the receiving panel of the SSB/CSI-RS index #14 may be different from the current receiving panel. For example, if the current receiving panel of the UE is panel #0, the panel switch information may indicate that panel #1 is associated with SSB/CSI-RS index #14.
 図4Aに示すように、各SSB/CSI-RSインデックスに関連付けられるパネルIDを指定する場合、UEが実装するパネル数の増加に応じてペイロードが増加する。例えば、図2Aに示すように、UEが2パネルを実装する場合は、パネルID用のフィールドサイズ(ビット数)は1ビットで足りる。一方、UEが4パネルを実装する場合は当該フィールドサイズに2ビットを要する。 As shown in FIG. 4A, when the panel ID associated with each SSB/CSI-RS index is specified, the payload increases as the number of panels installed by the UE increases. For example, as shown in FIG. 2A, when the UE implements two panels, the field size (the number of bits) for the panel ID is 1 bit. On the other hand, when the UE implements 4 panels, the field size requires 2 bits.
 一方、図4Bに示すように、各SSB/CSI-RSインデックスに関連付けられるパネルスイッチ情報を指定する場合、当該パネルスイッチ情報用のフィールドサイズは、UEが実装するパネル数に関係なく、1ビットでよい。したがって、図4Bでは、UEが実装するパネル数が増加する場合に、図4Aと比べて、ビーム報告情報のサイズ(ペイロード、ビット数)を抑制できる。 On the other hand, as shown in FIG. 4B, when the panel switch information associated with each SSB/CSI-RS index is specified, the field size for the panel switch information is 1 bit regardless of the number of panels mounted by the UE. Good. Therefore, in FIG. 4B, when the number of panels mounted by the UE increases, the size of the beam report information (payload, number of bits) can be suppressed compared to FIG. 4A.
 なお、上記ビーム報告情報で測定結果を含めることができる(報告できる)SSB/CSI-RSインデックスの数は、所定数に制限されてもよい。例えば、当該SSB/CSI-RSインデックスの最大数は、例えば、1、2又は4であってもよい。当該最大は、上位レイヤパラメータによってUEに設定(configure)されてもよい。 Note that the number of SSB/CSI-RS indexes that can include (can report) the measurement result in the beam report information may be limited to a predetermined number. For example, the maximum number of the SSB/CSI-RS indexes may be 1, 2 or 4, for example. The maximum may be configured in the UE by higher layer parameters.
 また、UEは、パネルIDに基づいて、ビーム報告情報内にどのSSB/CSI-RSインデックスの測定結果を含めるかを決定してもよい。具体的には、UEは、各パネルIDに関連付けられるSSB/CSI-RSインデックスの測定結果をビーム報告情報内に含めてもよい。 The UE may also determine which SSB/CSI-RS index measurement result is included in the beam report information based on the panel ID. Specifically, the UE may include the measurement result of the SSB/CSI-RS index associated with each panel ID in the beam report information.
 例えば、図2Bに示すように、パネル#0及び#1をUEが実装する場合、パネル#0に関連付けられる所定数(例えば、3つ)のSSB/CSI-RSインデックスの測定結果と、パネル#1に関連付けられる所定数の(例えば、1つ)のSSB/CSI-RSインデックスの測定結果とをビーム報告情報内に含めてもよい。 For example, as shown in FIG. 2B, when the UE implements panels #0 and #1, the measurement results of a predetermined number (for example, three) of SSB/CSI-RS indexes associated with panel #0 and panel #0. A predetermined number (for example, one) of SSB/CSI-RS index measurement results associated with 1 may be included in the beam report information.
 UEは、どのパネルに関連付けられるSSB/CSI-RSインデックスの測定結果を多く報告するかを、現在の受信パネルによって決定してもよい。例えば、UEは、現在の受信パネルに関連付けられるSSB/CSI-RSインデックスの測定結果を多く報告してもよい。 The UE may decide which panel the SSB/CSI-RS index measurement result associated with which panel is most reported by the current receiving panel. For example, the UE may report many SSB/CSI-RS index measurement results associated with the current reception panel.
 また、上記ビーム報告情報は、UEが実装するパネル数を示す情報(パネル数情報)を含んでもよい。ビーム報告情報内の各SSB/CSI-RSインデックスに関連付けられるパネルIDの数と、当該パネル数とを比較することにより、ネットワーク(例えば、基地局)は、UEにおいてSSB/CSI-RSインデックスが関連付けられないパネルの存在を認識できる。 Further, the beam report information may include information indicating the number of panels mounted by the UE (panel number information). By comparing the number of panel IDs associated with each SSB/CSI-RS index in the beam report information with the number of the panels, the network (eg, base station) determines that the SSB/CSI-RS index is associated with the UE. You can recognize the existence of panels that are not.
 また、UEは、以上のようなパネル情報(例えば、パネルID又はパネルスイッチ情報)の報告をサポートするか否かを示す能力情報(例えば、UE capability)を予め送信してもよい。UEは、当該パネル情報の報告がトリガされる場合に、当該パネル情報をビーム報告情報に含めて送信してもよい。なお、当該パネル情報の報告は、上位レイヤパラメータ及びDCI内の所定フィールド値の少なくとも一つでトリガされればよい。 Also, the UE may previously transmit capability information (eg, UE capability) indicating whether or not to support the above-described reporting of panel information (eg, panel ID or panel switch information). The UE may transmit the panel information by including the panel information in the beam report information when the report of the panel information is triggered. In addition, the report of the panel information may be triggered by at least one of the upper layer parameter and a predetermined field value in the DCI.
 また、UEは、パネル情報をビーム報告情報に含めるか否かを自ら決定してもよい。例えば、UEは、複数のパネルを実装する場合に、パネル情報をビーム報告情報に含めて送信してもよい。UEが、複数のパネルを実装しない場合(単一のパネルのみを実装する場合、又は、パネルを実装しない場合)は、パネル情報を含めずにビーム報告情報を送信してもよい。 Also, the UE may decide for itself whether to include the panel information in the beam report information. For example, when mounting a plurality of panels, the UE may include the panel information in the beam report information and transmit the beam report information. When the UE does not implement multiple panels (only implements a single panel or does not implement panels), it may transmit beam report information without including panel information.
 以上のように、第1の態様によれば、UEは、パネル情報を含むビーム報告情報をネットワークに報告するので、ネットワークは、下り参照信号のインデックス(例えば、SSB/CSI-RSインデックス)とパネルIDとの対応関係を適切に認識できる。 As described above, according to the first aspect, since the UE reports the beam report information including the panel information to the network, the network uses the downlink reference signal index (eg, SSB/CSI-RS index) and the panel. It is possible to properly recognize the correspondence with the ID.
(第2の態様)
 第2の態様では、パネル情報によって示される下り参照信号のインデックス(例えば、SSB/CSI-RSインデックス)とパネルとの対応関係に基づく、又は、ネットワーク(例えば、基地局)から指定されるパネルIDに基づく、上り送信の制御について説明する。なお、第2の態様では、上記パネル情報は、例えば、パネルIDであるものとして説明を行うが、上記パネルスイッチ情報であってもよいことは勿論である。
(Second mode)
In the second aspect, the panel ID is based on the correspondence between the downlink reference signal index (for example, SSB/CSI-RS index) indicated by the panel information and the panel, or the panel ID specified by the network (for example, base station) The control of uplink transmission based on is explained. In the second mode, the panel information is described as being a panel ID, for example, but it goes without saying that it may be the panel switch information.
<BCベース上り送信>
 BCベース(BC有り)の場合、UEに設定される空間関連情報(例えば、RRC IEの「SRS-SpatialRelationInfo」又は「PUCCH-SpatialRelationInfo」)は、所望の信号(ターゲット信号、例えば、SRS又はPUCCH(PUCCHのDMRS))と空間関係となる基準RS(reference RS)として、SSBインデックス又はCSI-RSインデックス(ノンゼロパワー(NZP)―CSI-RSリソースID)を示してもよい。
<BC-based upstream transmission>
In the case of BC base (with BC), spatial related information (for example, “SRS-SpatialRelationInfo” or “PUCCH-SpatialRelationInfo” of RRC IE) set in the UE is a desired signal (target signal, for example, SRS or PUCCH ( The SSB index or the CSI-RS index (non-zero power (NZP)-CSI-RS resource ID) may be indicated as a reference RS (reference RS) having a spatial relationship with the DMRS of PUCCH).
 UEは、上記ビーム報告情報に含まれる下り参照信号のインデックス(RSインデックス)が上記空間関連情報によって示される基準RSと同一であるか否かに基づいて、上り送信に用いるパネルを決定してもよい。 The UE determines the panel used for uplink transmission based on whether the index (RS index) of the downlink reference signal included in the beam report information is the same as the reference RS indicated by the space-related information. Good.
 具体的には、UEは、上記ビーム報告情報に含まれるRSインデックスの下りRSが上記空間関連情報によって示される基準RSと同一の種類である場合、ビーム報告情報内のパネル情報に基づいて、下り受信と同一のパネルを用いて上り送信を制御してもよい(第1のBCベース上り送信)。 Specifically, if the downlink RS of the RS index included in the beam report information is of the same type as the reference RS indicated by the spatial related information, the UE downlinks based on the panel information in the beam report information. Uplink transmission may be controlled using the same panel as reception (first BC-based upstream transmission).
 一方、UEは、上記ビーム報告情報に含まれるRSインデックスの下りRSが上記空間関連情報によって示される基準RSとQCLタイプDであり、かつ、種類が異なる場合、ビーム報告情報内のパネル情報に基づいて、下り受信と同一のパネルを用いて上り送信を制御してもよいし、又は、下り受信とは異なるパネルを用いて上り送信を制御してもよい(第2のBCベース上り送信)。 On the other hand, when the downlink RS of the RS index included in the beam report information is the reference RS and the QCL type D indicated by the spatial related information, and the types are different, based on the panel information in the beam report information. The uplink transmission may be controlled using the same panel as the downlink reception, or the uplink transmission may be controlled using a panel different from the downlink reception (second BC-based uplink transmission).
≪第1のBCベース上り送信≫
 図5A及び5Bは、第2の態様に係る第1のBCベース上り送信の一例を示す図である。なお、図5Aに示されるシーケンスは例示にすぎず、少なくとも一部のステップは省略されてもよいし、図示しないステップが追加されてもよい。また、少なくとも一部のステップの順番は入れ替えられてもよい。
<<First BC-based uplink transmission>>
5A and 5B are diagrams illustrating an example of first BC-based uplink transmission according to the second aspect. Note that the sequence shown in FIG. 5A is merely an example, and at least some steps may be omitted or steps not shown may be added. Further, the order of at least some of the steps may be exchanged.
 図5Aでは、ビーム測定に用いられる下りRSと、空間関連情報によって指定されるターゲットSRSと空間関係となる基準RSとが同一の種類であるものとする。例えば、図5Aでは、当該下りRS及び当該基準RSがSSBである一例を示すが、これに限られず、CSI-RSであってもよい。 In FIG. 5A, it is assumed that the downlink RS used for beam measurement and the reference RS having a spatial relationship with the target SRS designated by the spatial related information are of the same type. For example, although FIG. 5A shows an example in which the downlink RS and the reference RS are SSB, the present invention is not limited to this and may be CSI-RS.
 図5Aに示すように、ステップS201において、UEは、一以上のSSBインデックスのSSBを受信する。 As shown in FIG. 5A, in step S201, the UE receives SSB with one or more SSB indexes.
 ステップS202において、UEは、所定数のSSBインデックス(例えば、図5Aでは、4つのSSBインデックス#2、#3、#4及び#14)のSSBを用いた測定結果及び当該所定数のSSBインデックスに対応するパネル情報(例えば、図5BのパネルID)を送信してもよい。 In step S202, the UE obtains a measurement result using SSB of a predetermined number of SSB indexes (for example, four SSB indexes #2, #3, #4, and #14 in FIG. 5A) and the predetermined number of SSB indexes. Corresponding panel information (eg, panel ID in FIG. 5B) may be sent.
 ステップS203において、UEは、基地局から、SRS設定情報(例えば、RRC IEの「SRS-Config」)を受信してもよい。SRS設定情報は、SRSリソースセット毎に、一以上のSRSリソースに関する情報を含んでもよい。各SRSリソースに関する情報は、SRSリソースID、時間領域リソース、周波数領域リソース、リソースタイプ、空間関係情報の少なくとも一つを含んでもよい。 In step S203, the UE may receive SRS configuration information (eg, “SRS-Config” of RRC IE) from the base station. The SRS setting information may include information on one or more SRS resources for each SRS resource set. The information about each SRS resource may include at least one of SRS resource ID, time domain resource, frequency domain resource, resource type, and spatial relationship information.
 各SRSリソースIDに対応する空間関係情報(例えば、RRC IEの「SRS-SpatialRelationInfo」)は、当該各SRSリソースIDのSRSと空間関係となる基準RS(ここでは、SSB)のインデックスを示してもよい。例えば、図5Aに示すように、当該空間関係情報は、当該基準RSのインデックスとして、ステップS202でUEから基地局に報告されたSSBインデックス#2、#3、#6又は#14を示してもよい。 The spatial relationship information (for example, “SRS-SpatialRelationInfo” of RRC IE) corresponding to each SRS resource ID indicates the index of the reference RS (here, SSB) that has a spatial relationship with the SRS of each SRS resource ID. Good. For example, as shown in FIG. 5A, the spatial relationship information may also indicate the SSB index #2, #3, #6 or #14 reported from the UE to the base station in step S202 as the index of the reference RS. Good.
 ステップS204において、UEは、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_1)を検出してもよい。UEは、当該DCI内の所定フィールド(例えば、SRSリソース識別子フィールド)の値に基づいて、当該PUSCHの空間関係を決定してもよい。 In step S204, the UE may detect DCI (for example, DCI format 0_1) used for PUSCH scheduling. The UE may determine the spatial relationship of the PUSCH based on the value of a predetermined field (eg, SRS resource identifier field) in the DCI.
 具体的には、UEは、当該所定フィールド値が示すSRSリソースIDに対応する空間関係情報に基づいて、当該SRSリソースIDのSRSと空間関係となる基準RS(例えば、SSBインデックス#2、#3、#6又は#14)を決定してもよい。 Specifically, the UE, based on the spatial relationship information corresponding to the SRS resource ID indicated by the predetermined field value, has a reference RS (for example, SSB index #2, #3) that has a spatial relationship with the SRS of the SRS resource ID. , #6 or #14) may be determined.
 ステップS205において、UEは、当該基準RSの受信ビームに対応する送信ビーム(例えば、基準RSの受信ビームと同一のビーム)を用いて当該PUSCHを送信してもよい。 In step S205, the UE may transmit the PUSCH using a transmission beam corresponding to the reception beam of the reference RS (for example, the same beam as the reception beam of the reference RS).
 また、UEは、当該PUSCHの送信においても、ステップS202で報告したSSBインデックスとパネルIDとの対応関係を想定してもよい。例えば、UEは、図5Bにおいて、SSBインデックス#2、#3、#6又は#14に受信に用いられるパネルIDを、SSBインデックス#2、#3、#6又は#14と空間関係となるSRSリソースIDに基づくPUSCHの送信に利用できると想定してもよい。 Also, the UE may assume the correspondence relationship between the SSB index and the panel ID reported in step S202 even when transmitting the PUSCH. For example, in FIG. 5B, the UE assigns the panel ID used for reception to the SSB index #2, #3, #6 or #14 to the SRS having the spatial relationship with the SSB index #2, #3, #6 or #14. It may be assumed that the PUSCH can be used for transmission based on the resource ID.
≪第2のBCベース上り送信≫
 図6A~6Dは、第2の態様に係る第2のBCベース上り送信の一例を示す図である。なお、図6A~6Dでは、図5A及び5Bとの相違点を中心に説明する。
<<Second BC base uplink transmission>>
6A to 6D are diagrams showing an example of second BC-based uplink transmission according to the second mode. Note that in FIGS. 6A to 6D, differences from FIGS. 5A and 5B will be mainly described.
 図6Aでは、ビーム測定に用いられる下りRSと、空間関連情報によって指定されるターゲットSRSと空間関係となる基準RSとが、QCLタイプDであり、かつ、種類が異なる点で、図5Aと異なる。例えば、図6Aでは、当該下りRSがSSBである一方、当該基準RSはCSI-RSである一例を示すが、これに限られない。すなわち、図示しないが、当該下りRSがCSI-RSで当該基準RSがSSBであってもよい。 6A differs from FIG. 5A in that the downlink RS used for beam measurement and the reference RS having a spatial relationship with the target SRS designated by the spatial-related information are QCL type D and different types. .. For example, although FIG. 6A shows an example in which the downlink RS is SSB and the reference RS is CSI-RS, the present invention is not limited to this. That is, although not shown, the downlink RS may be CSI-RS and the reference RS may be SSB.
 図6AのステップS301、S302は、図5AのステップS201、S202と同様である。ステップS303において、UEは、各SRSリソースIDに対応する空間関連情報を含むSRS設定情報を受信する。 Steps S301 and S302 of FIG. 6A are the same as steps S201 and S202 of FIG. 5A. In step S303, the UE receives the SRS setting information including the spatial related information corresponding to each SRS resource ID.
 当該空間関係情報は、各SRSリソースIDのSRSと空間関係となる基準RSのインデックスとして、ステップS302でUEから基地局に報告されたSSBインデックス#2、#3、#6又は#14と、QCLタイプDであり、かつ、異なる種類のCSI-RSインデックス#2、#3、#6、#14を示してもよい。 The spatial relationship information is the SSB index #2, #3, #6 or #14 reported from the UE to the base station in step S302 as the index of the reference RS having a spatial relationship with the SRS of each SRS resource ID, and the QCL. The CSI-RS indexes #2, #3, #6, and #14 that are of type D and different types may be indicated.
 なお、図6Aでは、CSI-RSインデックスの値「2」「3」「6」及び「14」は、ステップS302で基地局に報告されるSSBインデックスの値「2」「3」「6」及び「14」と同一であるが、これに限られない。空間関係情報で指定されるCSIインデックスの値は、当該SSBインデックスの値に対応する値であれば同一の値でなくともよい。 In FIG. 6A, the CSI-RS index values “2”, “3”, “6” and “14” are the SSB index values “2” “3” “6” and the SSB index values reported to the base station in step S302. It is the same as “14”, but is not limited to this. The CSI index value specified by the spatial relationship information does not have to be the same value as long as it is a value corresponding to the SSB index value.
 ステップS304において、UEは、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_1)を検出してもよい。UEは、当該DCI内の所定フィールド(例えば、SRSリソース識別子フィールド)の値が示すSRSリソースIDに対応する空間関係情報に基づいて、当該SRSリソースIDのSRSと空間関係となる基準RS(例えば、CSI-RSインデックス#2、#3、#6又は#14)を決定してもよい。 In step S304, the UE may detect the DCI (eg, DCI format 0_1) used for PUSCH scheduling. The UE, based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID). CSI-RS index #2, #3, #6 or #14) may be determined.
 ステップS305において、UEは、当該基準RSの受信ビームに対応する送信ビーム(例えば、基準RSの受信ビームと同一のビーム)を用いて当該PUSCHを送信してもよい。 In step S305, the UE may transmit the PUSCH by using a transmission beam corresponding to the reception beam of the reference RS (for example, the same beam as the reception beam of the reference RS).
 また、UEは、ステップS302で報告したSSBインデックスとパネルIDとの対応関係を、当該SSBインデックスに対応するCSI-RSインデックスとパネルIDとの対応関係として利用できると想定してもよい(例えば、図6B、6C)。 In addition, the UE may assume that the correspondence between the SSB index and the panel ID reported in step S302 can be used as the correspondence between the CSI-RS index and the panel ID corresponding to the SSB index (for example, 6B, 6C).
 具体的には、図6Bに示すように、SSBインデックスに対応するパネルIDを基地局に報告する場合、UEは、当該SSBインデックスに対応するCSI-RSインデックスは、当該SSBインデックスに対応するパネルIDと同一のパネルIDに対応すると想定してもよい。例えば、UEは、ステップS304で指定されたSRSリソースIDの空間関係情報がCSI-RSリソース#3を示す場合、図6Cに示すように、CSI-RSリソース#3に対応するSSBインデックス#3と同一のパネルID「0」に対応すると想定してもよい。 Specifically, as shown in FIG. 6B, when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the CSI-RS index corresponding to the SSB index is the panel ID corresponding to the SSB index. You may assume that it corresponds to the same panel ID as. For example, when the spatial relationship information of the SRS resource ID specified in step S304 indicates CSI-RS resource #3, the UE determines that the SSB index #3 corresponding to the CSI-RS resource #3 is used as shown in FIG. 6C. It may be assumed that they correspond to the same panel ID “0”.
 或いは、UEは、ステップS302で報告したSSBインデックスとパネルIDとの対応関係を、当該SSBインデックスに対応するCSI-RSインデックスとパネルIDとの対応関係として利用できないと想定してもよい(例えば、図6B、6D)。 Alternatively, the UE may assume that the correspondence between the SSB index and the panel ID reported in step S302 cannot be used as the correspondence between the CSI-RS index and the panel ID corresponding to the SSB index (for example, 6B, 6D).
 具体的には、図6Bに示すように、SSBインデックスに対応するパネルIDを基地局に報告する場合、UEは、当該SSBインデックスに対応するCSI-RSインデックスは、当該SSBインデックスに対応するパネルIDとは異なるパネルIDに対応すると想定してもよい。例えば、UEは、ステップS304で指定されたSRSリソースIDの空間関係情報がCSI-RSリソース#3を示す場合、CSI-RSリソース#3に対応するSSBインデックス#3とは異なるパネルID「1」に対応すると想定してもよい。 Specifically, as shown in FIG. 6B, when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the CSI-RS index corresponding to the SSB index is the panel ID corresponding to the SSB index. It may be assumed that it corresponds to a panel ID different from. For example, when the spatial relationship information of the SRS resource ID designated in step S304 indicates the CSI-RS resource #3, the UE has a panel ID “1” different from the SSB index #3 corresponding to the CSI-RS resource #3. May be assumed to correspond to.
 なお、上記では、PUSCHについて説明するが、PUCCH等の他の上り送信にも適用可能である。例えば、各PUCCHリソースIDに対応する空間関係情報(例えば、RRC IEの「PUCCH-SpatialRelationInfo」)は、上記各SRSリソースIDに対応する空間関係情報(例えば、RRC IEの「SRS-SpatialRelationInfo」)と同様に指定されてもよい。 Note that, although PUSCH is described above, it is also applicable to other uplink transmission such as PUCCH. For example, the spatial relationship information corresponding to each PUCCH resource ID (for example, “PUCCH-SpatialRelationInfo” of RRC IE) is the spatial relationship information corresponding to each SRS resource ID (for example, “SRS-SpatialRelationInfo” of RRC IE). It may be specified similarly.
 以上のように、BCベース上り送信では、下り参照信号のインデックスとパネルとの対応関係に基づいて、上り信号(例えば、PUSCH又はPUCCH)の送信に用いるパネルを決定できる。 As described above, in BC-based uplink transmission, the panel used for transmission of the uplink signal (for example, PUSCH or PUCCH) can be determined based on the correspondence between the downlink reference signal index and the panel.
<非BCベース上り送信>
 非BCベース(BC無し)の場合、UEに設定される空間関連情報(例えば、RRC IEの「SRS-SpatialRelationInfo」又は「PUCCH-SpatialRelationInfo」)は、所望の信号(ターゲット信号、例えば、SRS又はPUCCH(PUCCHのDMRS))と空間関係となる基準RS(reference RS)として、SRSリソースIDを示してもよい。
<Non-BC based upstream transmission>
In the case of non-BC base (no BC), the spatial related information (eg, “SRS-SpatialRelationInfo” or “PUCCH-SpatialRelationInfo” of RRC IE) set in the UE is a desired signal (target signal, eg, SRS or PUCCH). The SRS resource ID may be indicated as a reference RS (reference RS) having a spatial relationship with (DMRS of PUCCH).
 UEは、ビーム報告情報内のパネル情報が示すRSインデックス(例えば、SSB/CSI-RSインデックス)とパネルとの対応関係に基づいて、上り送信に用いるパネルを決定してもよい(第1の非BCベース上り送信)。 The UE may determine the panel to be used for uplink transmission based on the correspondence between the panel and the RS index (eg, SSB/CSI-RS index) indicated by the panel information in the beam report information (first non- BC-based upstream transmission).
 或いは、UEは、ビーム報告情報内のパネル情報が示すRSインデックス(例えば、SSB/CSI-RSインデックス)とパネルとの対応関係とは別に、SRS設定情報内で設定されるSRSリソースIDとパネルとの対応関係に基づいて、上り送信に用いるパネルを決定してもよい(第2の非BCベース上り送信)。 Alternatively, the UE, apart from the correspondence between the RS index (for example, SSB/CSI-RS index) indicated by the panel information in the beam report information and the panel, the SRS resource ID and the panel configured in the SRS configuration information, The panel to be used for uplink transmission may be determined based on the correspondence relationship of (second non-BC-based uplink transmission).
≪第1の非BCベース上り送信≫
 図7A~7Cは、第2の態様に係る第1の非BCベース上り送信の一例を示す図である。なお、図7A~7Cでは、図5A及び5B又は図6A~6Dとの相違点を中心に説明する。
<<First non-BC-based uplink transmission>>
7A to 7C are diagrams showing an example of first non-BC-based uplink transmission according to the second mode. Note that in FIGS. 7A to 7C, differences from FIGS. 5A and 5B or FIGS. 6A to 6D will be mainly described.
 図7Aでは、パネル情報によりパネルとの対応関係が示されるのは下りRS(例えば、SSB又はCSI-RS)であるのに対して、空間関連情報によって指定される基準RSは、上りRS(例えば、SRSリソースID)である。例えば、図7Aでは、当該下りRSがSSBであり、当該基準RSがSRSである一例を示すが、これに限られない。すなわち、図示しないが、当該下りRSがCSI-RSで当該基準RSがSRSであってもよい。 In FIG. 7A, it is the downlink RS (for example, SSB or CSI-RS) whose corresponding relationship with the panel is indicated by the panel information, whereas the reference RS designated by the space-related information is the uplink RS (for example, , SRS resource ID). For example, although FIG. 7A shows an example in which the downlink RS is SSB and the reference RS is SRS, the present invention is not limited to this. That is, although not shown, the downlink RS may be the CSI-RS and the reference RS may be the SRS.
 図7AのステップS401、S402は、図5AのステップS201、S202と同様である。ステップS403において、UEは、各SRSリソースIDに対応する空間関連情報を含むSRS設定情報を受信する。 Steps S401 and S402 of FIG. 7A are the same as steps S201 and S202 of FIG. 5A. In step S403, the UE receives the SRS setting information including the spatial related information corresponding to each SRS resource ID.
 当該空間関係情報は、各SRSリソースIDのSRSと空間関係となる基準RSのインデックスとして、SRSリソースID(例えば、図7Aでは、SRSリソースID#2、#3、#6、#14)を示してもよい。 The spatial relationship information indicates the SRS resource ID (for example, SRS resource IDs #2, #3, #6, #14 in FIG. 7A) as an index of the reference RS having a spatial relationship with the SRS of each SRS resource ID. May be.
 なお、図7Aでは、SRSリソースIDの値「2」「3」「6」及び「14」は、ステップS402で基地局に報告されるSSBインデックスの値「2」「3」「6」及び「14」と同一であるが、これに限られない。空間関係情報で指定されるSRSリソースIDの値は、当該SSBインデックスの値に対応する値であれば同一の値でなくともよい。 In FIG. 7A, the SRS resource ID values “2”, “3”, “6”, and “14” are SSB index values “2”, “3”, “6”, and “SBS index” reported to the base station in step S402. 14”, but is not limited to this. The value of the SRS resource ID specified by the spatial relationship information does not have to be the same value as long as it is a value corresponding to the value of the SSB index.
 ステップS404において、UEは、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_1)を検出してもよい。UEは、当該DCI内の所定フィールド(例えば、SRSリソース識別子フィールド)の値が示すSRSリソースIDに対応する空間関係情報に基づいて、当該SRSリソースIDのSRSと空間関係となる基準RS(例えば、SRSリソースID#2、#3、#6又は#14)を決定してもよい。 In step S404, the UE may detect the DCI (eg, DCI format 0_1) used for PUSCH scheduling. The UE, based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID). SRS resource ID #2, #3, #6 or #14) may be determined.
 なお、基地局は、DCIで指定されるSRSリソースIDを、UEから送信される一以上のSRSリソースIDのSRSの測定結果(サウンディング結果)に基づいて決定してもよい。UEによる当該一以上のSRSリソースIDのSRSの送信は、上位レイヤパラメータ(例えば、MAC制御要素(MAC CE))又はDCIによってトリガされてもよい。MAC CEによりトリガされるSRSは、セミパーシステントSRS(Semi-Persistent(SP)-SRS)と呼ばれてもよい。また、DCIによりトリガされるSRSは、非周期SRS(Aperiodic(A)-SRS)と呼ばれてもよい。或いは、基地局は、UEから周期的に送信されるSRS(周期的SRS(Periodic(P)-SRS))の測定結果に基づいて、DCIで指定するSRSリソースIDを決定してもよい。 The base station may determine the SRS resource ID specified by DCI based on the SRS measurement result (sounding result) of one or more SRS resource IDs transmitted from the UE. The transmission of the SRS of the one or more SRS resource IDs by the UE may be triggered by an upper layer parameter (eg, MAC control element (MAC CE)) or DCI. The SRS triggered by the MAC CE may be called a semi-persistent SRS (Semi-Persistent (SP)-SRS). The SRS triggered by DCI may also be called an aperiodic SRS (Aperiodic(A)-SRS). Alternatively, the base station may determine the SRS resource ID designated by DCI based on the measurement result of the SRS (Periodic SRS (Periodic (P)-SRS)) periodically transmitted from the UE.
 ステップS405において、UEは、上記空間関係情報で指定されるSRSリソースIDに対応するビーム(例えば、指定されたSRSリソースIDの送信ビーム)を用いて当該PUSCHを送信してもよい。 In step S405, the UE may transmit the PUSCH using a beam corresponding to the SRS resource ID designated by the spatial relationship information (for example, a transmission beam having the designated SRS resource ID).
 また、UEは、ステップS402で報告したSSBインデックスとパネルIDとの対応関係を、当該SSBインデックスに対応するSRSリソースIDとパネルIDとの対応関係として利用できると想定してもよい(例えば、図7B、7C)。 Further, the UE may assume that the correspondence relationship between the SSB index and the panel ID reported in step S402 can be used as the correspondence relationship between the SRS resource ID and the panel ID corresponding to the SSB index (for example, as illustrated in FIG. 7B, 7C).
 具体的には、図7Bに示すように、SSBインデックスに対応するパネルIDを基地局に報告する場合、UEは、当該SSBインデックスに対応するSRIリソースIDは、当該SSBインデックスに対応するパネルIDと同一のパネルIDに対応すると想定してもよい。例えば、UEは、ステップS404で指定されたSRSリソースIDの空間関係情報がSRSリソースID#14を示す場合、図7Cに示すように、SRSリソースID#14に対応するSSBインデックス#14と同一のパネルID「1」に対応すると想定してもよい。 Specifically, as shown in FIG. 7B, when reporting the panel ID corresponding to the SSB index to the base station, the UE determines that the SRI resource ID corresponding to the SSB index is the panel ID corresponding to the SSB index. It may be assumed that they correspond to the same panel ID. For example, when the spatial relationship information of the SRS resource ID designated in step S404 indicates the SRS resource ID #14, the UE has the same SSB index #14 corresponding to the SRS resource ID #14 as illustrated in FIG. 7C. It may be assumed that it corresponds to the panel ID “1”.
≪第1の非BCベース上り送信≫
 図8A及び8Bは、第2の態様に係る第2の非BCベース上り送信の一例を示す図である。なお、図8A及び8Bでは、図5A及び5B、図6A~6D又は図7A~7Cとの相違点を中心に説明する。図8AのステップS501、S502は、図5AのステップS201、S202と同様である。
<<First non-BC-based uplink transmission>>
8A and 8B are diagrams illustrating an example of second non-BC-based uplink transmission according to the second aspect. 8A and 8B will be described focusing on differences from FIGS. 5A and 5B, FIGS. 6A to 6D, or FIGS. 7A to 7C. Steps S501 and S502 of FIG. 8A are the same as steps S201 and S202 of FIG. 5A.
 ステップS503において、UEは、各SRSリソースIDに対応する空間関連情報を含むSRS設定情報を受信する。 In step S503, the UE receives SRS setting information including spatial related information corresponding to each SRS resource ID.
 当該空間関係情報は、各SRSリソースIDのSRSと空間関係となる基準RSのインデックスとして、SRSリソースID(例えば、図8Aでは、SRSリソースID#2、#3、#6、#14)及び当該SRSリソースIDに対応するパネルIDを示してもよい。 The spatial relationship information is an SRS resource ID (for example, SRS resource IDs #2, #3, #6, #14 in FIG. 8A) as an index of a reference RS that has a spatial relationship with the SRS of each SRS resource ID, and The panel ID corresponding to the SRS resource ID may be shown.
 図8Bは、当該空間関係情報の一例である。図8Bに示すように、例えば、RRC IEの「SRS-SpatialRelationInfo」は、SRSリソースIDを示すRRC IE「resourceId」に関連付けてパネルIDを示すRRC IE「panel-Id」を有してもよい。なお、パネルIDを示すRRC IEの名称は、図8Bに示すものに限られない。 FIG. 8B is an example of the spatial relationship information. As shown in FIG. 8B, for example, the “SRS-SpatialRelationInfo” of the RRC IE may have an RRC IE “panel-Id” indicating the panel ID in association with the RRC IE “resourceId” indicating the SRS resource ID. The name of the RRC IE indicating the panel ID is not limited to that shown in FIG. 8B.
 ステップS504において、UEは、PUSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット0_1)を検出してもよい。UEは、当該DCI内の所定フィールド(例えば、SRSリソース識別子フィールド)の値が示すSRSリソースIDに対応する空間関係情報に基づいて、当該SRSリソースIDのSRSと空間関係となる基準RS(例えば、SRSリソースID#2、#3、#6又は#14)を決定してもよい。 In step S504, the UE may detect DCI (for example, DCI format 0_1) used for PUSCH scheduling. The UE, based on the spatial relationship information corresponding to the SRS resource ID indicated by the value of the predetermined field (for example, the SRS resource identifier field) in the DCI, the reference RS (for example, the reference RS that has the spatial relationship with the SRS of the SRS resource ID). SRS resource ID #2, #3, #6 or #14) may be determined.
 ステップS505において、UEは、上記空間関係情報で指定されるSRSリソースIDに対応するビーム(例えば、指定されたSRSリソースIDの送信ビーム)を用いて当該PUSCHを送信してもよい。また、UEは、上記空間関係情報で指定されるパネルIDをPUSCH送信に用いると想定してもよい。 In step S505, the UE may transmit the PUSCH using a beam corresponding to the SRS resource ID designated by the spatial relationship information (for example, a transmission beam having the designated SRS resource ID). Further, it may be assumed that the UE uses the panel ID specified by the spatial relationship information for PUSCH transmission.
 なお、上記では、PUSCHについて説明するが、PUCCH等の他の上り送信にも適用可能である。例えば、各PUCCHリソースIDに対応する空間関係情報(例えば、RRC IEの「PUCCH-SpatialRelationInfo」)は、上記各SRSリソースIDに対応する空間関係情報(例えば、RRC IEの「SRS-SpatialRelationInfo」)と同様に指定されてもよい。 Note that, although PUSCH is described above, it is also applicable to other uplink transmission such as PUCCH. For example, the spatial relationship information corresponding to each PUCCH resource ID (for example, “PUCCH-SpatialRelationInfo” of RRC IE) is the spatial relationship information corresponding to each SRS resource ID (for example, “SRS-SpatialRelationInfo” of RRC IE). It may be specified similarly.
 以上のように、非BCベース上り送信では、下りDLとパネルとの対応関係又は空間関係情報内で指定されるパネルIDに基づいて、上り送信に用いるパネルを決定できる。 As described above, in non-BC-based uplink transmission, the panel to be used for uplink transmission can be determined based on the correspondence between the downlink DL and the panel or the panel ID specified in the spatial relationship information.
 以上のように、第2の態様において、UEは、上り送信に利用するパネルを決定できる。このため、当該パネルとは異なるパネルの電源をオフにできると判断できる。なお、当該電源のオフにはヒステリシスが用いられてもよい。例えば、UEは、上り送信に用いるパネルが所定期間変更されない場合に、使用していないパネルの電源をオフにしてもよい。 As described above, in the second aspect, the UE can determine the panel used for uplink transmission. Therefore, it can be determined that the power of a panel different from the panel can be turned off. Note that hysteresis may be used to turn off the power supply. For example, the UE may turn off the panel that is not used when the panel used for uplink transmission is not changed for a predetermined period.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication by using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Also, the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between multiple Radio Access Technologies (RATs). MR-DC has dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) with LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity (NR-E) with NR and LTE. -UTRA Dual Connectivity (NE-DC)) etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the base station (eNB) of LTE (E-UTRA) is the master node (Master Node (MN)), and the base station (gNB) of NR is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations within the same RAT (eg, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having a relatively wide coverage and a base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement and number of each cell and user terminal 20 are not limited to those shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) using a plurality of component carriers (Component Carrier (CC)) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate with each CC using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD).
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one of, for example, Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing (OFDM)) based wireless access method may be used. For example, on at least one of downlink (Downlink (DL)) and uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, other wireless access methods (eg, other single carrier transmission method, other multicarrier transmission method) may be used as the UL and DL wireless access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH) etc. may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Also, in the wireless communication system 1, as uplink channels, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)), and a random access channel that are shared by each user terminal 20. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. Also, the Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH, for example.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI for scheduling PDSCH may be called DL assignment, DL DCI, etc., and the DCI for scheduling PUSCH may be called UL grant, UL DCI, etc. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to the search area and the search method of the PDCCH candidates (PDCCH candidates). A CORESET may be associated with one or more search spaces. The UE may monitor CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request (Scheduling Request ( Uplink Control Information (UCI) including at least one of (SR)) may be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that, in the present disclosure, downlink, uplink, etc. may be expressed without adding “link”. Further, it may be expressed without adding "Physical" to the head of each channel.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), etc. may be transmitted. In the wireless communication system 1, as the DL-RS, a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation) Reference Signal (DMRS), Positioning Reference Signal (PRS), Phase Tracking Reference Signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)), for example. A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS block (SSB), or the like. Note that SS and SSB may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. are transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 10 is a diagram illustrating an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission/reception unit 120, a transmission/reception antenna 130, and a transmission line interface 140. It should be noted that the control unit 110, the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the characteristic part in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission/reception using the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140, measurement, and the like. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the generated data to the transmission/reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, wireless resource management, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission/reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission/reception unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission/reception circuit, etc., which are explained based on common recognition in the technical field of the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 1211 and an RF unit 122. The receiving unit may include a reception processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission/reception antenna 130 can be configured by an antenna described based on common recognition in the technical field of the present disclosure, for example, an array antenna or the like.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitter/receiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission/reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) processes the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer (for example, for the data and control information acquired from the control unit 110) (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) on the bit string to be transmitted. Processing (if necessary), inverse fast Fourier transform (Inverse Fast Transform (IFFT)) processing, precoding, digital-analog conversion, and other transmission processing may be performed to output the baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may modulate the baseband signal into a radio frequency band, perform filtering, amplifying, etc., and transmit the radio frequency band signal via the transmission/reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission/reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (Fast Fourier Transform (FFT)) processing, and inverse discrete Fourier transform (Inverse Discrete Fourier Transform (IDFT)) on the acquired baseband signal. )) Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, User data may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission/reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 receives power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), etc. may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits/receives signals (backhaul signaling) to/from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120及び送受信アンテナ130の少なくとも1つによって構成されてもよい。 Note that the transmission unit and the reception unit of the base station 10 according to the present disclosure may be configured by at least one of the transmission/reception unit 120 and the transmission/reception antenna 130.
 なお、送受信部120は、下り参照信号のインデックスとパネルとの対応関係を示す情報とを受信してもよい(第1の態様)。また、送受信部120は、下り参照信号のインデックスを含む空間関係情報を送信してもよい。また、送受信部120は、サウンディング参照信号(SRS)のリソース識別子を含む空間関係情報を送信してもよい。また、送受信部120は、サウンディング参照信号(SRS)のリソース識別子と、前記リソース識別子に対応するパネルを示す情報を含む空間関係情報を送信してもよい。 Note that the transmission/reception unit 120 may receive the index of the downlink reference signal and the information indicating the correspondence relationship with the panel (first aspect). The transmitter/receiver 120 may also transmit the spatial relationship information including the index of the downlink reference signal. Further, the transceiver 120 may transmit the spatial relationship information including the resource identifier of the sounding reference signal (SRS). In addition, the transceiver 120 may transmit spatial relationship information including a resource identifier of a sounding reference signal (SRS) and information indicating a panel corresponding to the resource identifier.
 制御部110は、下り参照信号のインデックスとパネルとの対応関係に基づいて、上り信号の送信に用いられるパネルを決定してもよい。 The control unit 110 may determine the panel used for transmitting the uplink signal based on the correspondence between the index of the downlink reference signal and the panel.
 制御部110は、前記下り参照信号のインデックスに対応するパネルが、前記上り信号の送信に用いられると想定してもよい(第2の態様、第1のBCベース上り送信)。 The control unit 110 may assume that the panel corresponding to the index of the downlink reference signal is used for transmitting the uplink signal (second mode, first BC base uplink transmission).
 制御部110は、前記他の下り参照信号に対応する前記下り参照信号のインデックスに対応するパネルが、前記上り信号の送信に用いられると想定してもよい(第2の態様、第2のBCベース上り送信)。 The control unit 110 may assume that the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal is used for transmitting the uplink signal (second aspect, second BC). Base uplink transmission).
 制御部110は、前記他の下り参照信号に対応する前記下り参照信号のインデックスに対応するパネルとは異なるパネルが、前記上り信号の送信に用いられると想定してもよい(第2の態様、第2のBCベース上り送信)。 The control unit 110 may assume that a panel different from the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal is used for transmitting the uplink signal (second mode, Second BC-based upstream transmission).
 制御部110は、前記SRSのリソース識別子に対応する前記下り参照信号のインデックスに対応するパネルが、前記上り信号の送信に用いられると想定してもよい(第2の態様、第1の非BCベース上り送信)。 The control unit 110 may assume that the panel corresponding to the index of the downlink reference signal corresponding to the resource identifier of the SRS is used for transmitting the uplink signal (second aspect, first non-BC). Base uplink transmission).
 制御部110は、前記上り信号の送信に用いるパネルを前記空間関係情報内で指示してもよい(第2の態様、第2の非BCベース上り送信)。 The control unit 110 may instruct the panel used for transmitting the uplink signal in the spatial relationship information (second aspect, second non-BC-based uplink transmission).
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 11 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission/reception unit 220, and a transmission/reception antenna 230. Note that each of the control unit 210, the transmission/reception unit 220, and the transmission/reception antenna 230 may be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 may be assumed to also have other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, and the like using the transmission/reception unit 220 and the transmission/reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the data to the transmission/reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission/reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter/receiver 220 may include a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, and the like, which are described based on common recognition in the technical field of the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 2211 and an RF unit 222. The receiving unit may include a reception processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission/reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission/reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) processes the PDCP layer, the RLC layer (for example, RLC retransmission control), and the MAC layer (for example, for the data and control information acquired from the control unit 210). , HARQ retransmission control) may be performed to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit string to be transmitted. The baseband signal may be output by performing transmission processing such as precoding, digital-analog conversion, or the like.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether or not to apply DFT processing may be based on the setting of transform precoding. The transmission/reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform when transform precoding is enabled for the channel (for example, PUSCH). The DFT process may be performed as the transmission process, or otherwise, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission/reception unit 220 (RF unit 222) may modulate the baseband signal into a radio frequency band, perform filtering, amplification, etc., and transmit the radio frequency band signal via the transmission/reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission/reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the acquired baseband signal. User data and the like may be acquired by applying reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission/reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 Note that the transmission unit and the reception unit of the user terminal 20 according to the present disclosure may be configured by at least one of the transmission/reception unit 220, the transmission/reception antenna 230, and the transmission path interface 240.
 なお、送受信部220は、下り参照信号のインデックスとパネルとの対応関係を示す情報とを送信してもよい。また、送受信部220は、下り参照信号のインデックスを含む空間関係情報を受信してもよい。また、送受信部220は、サウンディング参照信号(SRS)のリソース識別子を含む空間関係情報を受信してもよい。また、送受信部220は、サウンディング参照信号(SRS)のリソース識別子と、前記リソース識別子に対応するパネルを示す情報を含む空間関係情報を受信してもよい。 Note that the transmission/reception unit 220 may transmit the index of the downlink reference signal and the information indicating the correspondence relationship with the panel. Further, the transmitter/receiver 220 may receive the spatial relationship information including the index of the downlink reference signal. Also, the transceiver 220 may receive the spatial relationship information including the resource identifier of the sounding reference signal (SRS). In addition, the transceiver 220 may receive the spatial relationship information including the resource identifier of the sounding reference signal (SRS) and the information indicating the panel corresponding to the resource identifier.
 制御部210は、下り参照信号のインデックスとパネルとの対応関係に基づいて、上り信号の送信に用いるパネルを決定してもよい。 The control unit 210 may determine the panel used for transmitting the uplink signal based on the correspondence between the index of the downlink reference signal and the panel.
 制御部210は、前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いてもよい(第2の態様、第1のBCベース上り送信)。 The control unit 210 may use the panel corresponding to the index of the downlink reference signal for transmitting the uplink signal (second mode, first BC base uplink transmission).
 制御部210は、前記他の下り参照信号に対応する前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いてもよい(第2の態様、第2のBCベース上り送信)。 The control unit 210 may use a panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal for transmitting the uplink signal (second aspect, second BC base uplink transmission). ..
 制御部210は、前記他の下り参照信号に対応する前記下り参照信号のインデックスに対応するパネルとは異なるパネルを、前記上り信号の送信に用いてもよい(第2の態様、第2のBCベース上り送信)。 The control unit 210 may use a panel different from the panel corresponding to the index of the downlink reference signal corresponding to the other downlink reference signal for transmitting the uplink signal (second aspect, second BC). Base uplink transmission).
 制御部210は、前記SRSのリソース識別子に対応する前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いてもよい(第2の態様、第1の非BCベース上り送信)。 The control unit 210 may use a panel corresponding to the index of the downlink reference signal corresponding to the resource identifier of the SRS for transmitting the uplink signal (second aspect, first non-BC-based uplink transmission). ..
 制御部210は、前記空間関係情報内で指示されるパネルを、前記上り信号の送信に用いてもよい(第2の態様、第2の非BCベース上り送信)。 The control unit 210 may use the panel designated in the spatial relationship information for transmitting the uplink signal (second mode, second non-BC-based uplink transmission).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
Note that the block diagrams used in the description of the above-described embodiments show blocks of functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices. The functional block may be implemented by combining the one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting (notifying), notifying (communicating), forwarding (forwarding), configuring (reconfiguring), allocating (allocating, mapping), assigning, etc. Not limited. For example, a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, the user terminal, and the like according to an embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure. FIG. 12 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the present disclosure, the terms such as a device, a circuit, a device, a section, and a unit can be read as each other. The hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, only one processor 1001 is shown, but there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function in the base station 10 and the user terminal 20, for example, by causing a predetermined software (program) to be loaded onto hardware such as the processor 1001 and the memory 1002, the processor 1001 performs calculation and communication via the communication device 1004. Is controlled, and at least one of reading and writing of data in the memory 1002 and the storage 1003 is controlled.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates an operating system to control the entire computer, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like. For example, at least a part of the control unit 110 (210) and the transmission/reception unit 120 (220) described above may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and for example, at least Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other appropriate storage media. It may be configured by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 may store an executable program (program code), a software module, etc. for implementing the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004, for example, realizes at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)), a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like. May be included. For example, the transmission/reception unit 120 (220) and the transmission/reception antenna 130 (230) described above may be realized by the communication device 1004. The transmitter/receiver 120 (220) may be physically or logically separated from the transmitter 120a (220a) and the receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and part or all of each functional block may be realized by using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be read as each other. The signal may also be a message. The reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Moreover, a component carrier (Component Carrier (CC)) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or a plurality of periods (frames) in the time domain. Each of the one or more periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (for example, 1 ms) that does not depend on the numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. The numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and radio frame configuration. , At least one of a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with fewer symbols than slots. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent the time unit for signal transmission. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them. It should be noted that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be The unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI means, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like. When a TTI is given, the time interval (for example, the number of symbols) in which the transport block, code block, codeword, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Moreover, the number of slots (the number of mini-slots) forming the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, the RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB (PRB)), subcarrier groups (Sub-Carrier Group (SCG)), resource element groups (Resource Element Group (REG)), PRB pairs, RBs. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (may be called partial bandwidth etc.) represents a subset of consecutive common RBs (common resource blocks) for a certain neurology in a certain carrier. Good. Here, the common RB may be specified by the index of the RB based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). For the UE, one or more BWPs may be set in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal/channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the structure of the radio frame, subframe, slot, minislot, symbol, etc. described above is merely an example. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented. For example, the radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in the present disclosure are not limited names in any respect. Further, the mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Information and signals can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input/output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Information input/output, signals, etc. may be overwritten, updated, or added. The output information, signal, etc. may be deleted. The input information, signal, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspect/embodiment described in the present disclosure, and may be performed using another method. For example, notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (Downlink Control Information (DCI)), uplink control information (Uplink Control Information (UCI))), upper layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (Master Information Block (MIB)), system information block (System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination thereof May be implemented by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, the MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and may be implicitly (for example, by not notifying the predetermined information or another information). May be carried out).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. , May be performed by comparison of numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or any other name, instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules. , Application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc. should be construed broadly.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) , Servers, or other remote sources, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. “Network” may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo-collocation (Quasi-Co-Location (QCL))”, “Transmission Configuration Indication state (TCI state)”, “space” "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", and "panel" are interchangeable. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS)”, “radio base station”, “fixed station”, “NodeB”, “eNB (eNodeB)”, “gNB (gNodeB)”, "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier", etc. may be used interchangeably. A base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (for example, a small indoor base station (Remote Radio Head (RRH))) to provide communication services. The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or a base station subsystem providing communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “Mobile Station (MS)”, “user terminal”, “User Equipment (UE)”, and “terminal” are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type). ). At least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be replaced by the user terminal. For example, the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, the words such as “up” and “down” may be replaced with the words corresponding to the terminal-to-terminal communication (for example, “side”). For example, the uplink channel and the downlink channel may be replaced with the side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced by the base station. In this case, the base station 10 may have the function of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation supposed to be performed by the base station may be performed by its upper node in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal include a base station and one or more network nodes other than the base station (for example, Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. are conceivable, but not limited to these) or a combination of these is clear.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be switched according to execution. Further, the order of the processing procedure, sequence, flowchart, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global. System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, Ultra-WideBand (UWB), Bluetooth (registered trademark), a system using any other suitable wireless communication method, and a next-generation system extended based on these may be applied. Also, a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as “first”, “second”, etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "judgment" means "judging", "calculating", "computing", "processing", "deriving", "investigating", "searching" (looking up, search, inquiry) ( For example, it may be considered to be a "decision" for a search in a table, database or another data structure), ascertaining, etc.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "decision (decision)" includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access ( Accessing) (e.g., accessing data in memory) and the like may be considered to be a "decision."
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is considered to be "judgment (decision)" such as resolving, selecting, choosing, choosing, establishing, establishing, and comparing. Good. That is, “determination (decision)” may be regarded as “determination (decision)” of some operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming," "expecting," "considering," etc.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, the nominal maximum transmission power (the nominal UE maximum transmit power), or the rated maximum transmission power (the It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the term "connected," "coupled," or any variation thereof, refers to any direct or indirect connection or coupling between two or more elements. And can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. The connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, where two elements are connected, one or more wires, cables, printed electrical connections, etc. are used, as well as some non-limiting and non-exhaustive examples, radio frequency domain, microwave Regions, electromagnetic energy having wavelengths in the light (both visible and invisible) region, etc. can be used to be considered "connected" or "coupled" to each other.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term “A and B are different” may mean “A and B are different from each other”. The term may mean that “A and B are different from C”. The terms "remove", "coupled" and the like may be construed similarly as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in this disclosure, these terms are inclusive, as are the terms “comprising”. Is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if translations add articles, such as a, an, and the in English, the disclosure may include that the noun that follows these articles is plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention according to the present disclosure has been described above in detail, but it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modified and changed modes without departing from the spirit and scope of the invention defined based on the description of the claims. Therefore, the description of the present disclosure is for the purpose of exemplifying description, and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  下り参照信号のインデックスとパネルとの対応関係を示す情報とを送信する送信部と、
     前記対応関係に基づいて、上り信号の送信に用いるパネルを決定する制御部と、
    を具備することを特徴とするユーザ端末。
    A transmission unit that transmits information indicating the correspondence between the downlink reference signal index and the panel,
    A control unit that determines a panel to be used for transmitting an upstream signal based on the correspondence relationship,
    A user terminal comprising:
  2.  前記下り参照信号のインデックスを含む空間関係情報を受信する受信部と、
     前記制御部は、前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いることを特徴とする請求項1に記載のユーザ端末。
    A receiving unit for receiving spatial relationship information including the index of the downlink reference signal,
    The user terminal according to claim 1, wherein the control unit uses a panel corresponding to an index of the downlink reference signal for transmitting the uplink signal.
  3.  他の下り参照信号のインデックスを含む空間関係情報を受信する受信部と、
     前記制御部は、前記他の下り参照信号に対応する前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いることを特徴とする請求項1に記載のユーザ端末。
    A receiving unit that receives spatial relationship information including indexes of other downlink reference signals,
    The user terminal according to claim 1, wherein the control unit uses a panel corresponding to an index of the downlink reference signal corresponding to the other downlink reference signal for transmitting the uplink signal.
  4.  他の下り参照信号のインデックスを含む空間関係情報を受信する受信部と、
     前記制御部は、前記他の下り参照信号のインデックスに対応する前記下り参照信号のインデックスに対応するパネルとは異なるパネルを、前記上り信号の送信に用いることを特徴とする請求項1に記載のユーザ端末。
    A receiving unit that receives spatial relationship information including indexes of other downlink reference signals,
    The said control part uses a panel different from the panel corresponding to the index of the said downlink reference signal corresponding to the index of the said other downlink reference signal for transmission of the said uplink signal, The claim 1 characterized by the above-mentioned. User terminal.
  5.  サウンディング参照信号(SRS)のリソース識別子を含む空間関係情報を受信する受信部と、
     前記制御部は、前記SRSのリソース識別子に対応する前記下り参照信号のインデックスに対応するパネルを、前記上り信号の送信に用いることを特徴とする請求項1に記載のユーザ端末。
    A receiver for receiving spatial relation information including a resource identifier of a sounding reference signal (SRS),
    The user terminal according to claim 1, wherein the control unit uses a panel corresponding to an index of the downlink reference signal corresponding to the resource identifier of the SRS for transmitting the uplink signal.
  6.  下り参照信号のインデックスとパネルとの対応関係を示す情報とを送信する工程と、
     前記対応関係に基づいて、上り信号の送信に用いるパネルを決定する工程と、
    を有することを特徴とするユーザ端末の無線通信方法。
    Transmitting information indicating the correspondence between the downlink reference signal index and the panel,
    Determining a panel to be used for transmitting an upstream signal based on the correspondence,
    A wireless communication method for a user terminal, comprising:
PCT/JP2019/005702 2019-02-15 2019-02-15 User terminal and wireless communication method WO2020166085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005702 WO2020166085A1 (en) 2019-02-15 2019-02-15 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005702 WO2020166085A1 (en) 2019-02-15 2019-02-15 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020166085A1 true WO2020166085A1 (en) 2020-08-20

Family

ID=72044373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005702 WO2020166085A1 (en) 2019-02-15 2019-02-15 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020166085A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Enhancements on multi-beam operation [ online", 3GPP TSG-RAN WG1 #95 RL-1812636, 3 November 2018 (2018-11-03), pages 1, 2, XP051478877, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/Rl-1812636.zip> [retrieved on 20190314] *
INTEL CORPORATION: "On Beam management Enhancement [ online", 3GPP TSG-RAN WG1 #94B RL-1810791, 29 September 2018 (2018-09-29), pages 4 - 7, XP051518196, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGRl_94b/Docs/Rl-1810791.zip> [retrieved on 20190314] *
XIAOMI: "Enhancements on beam management[ online", 3GPP TSG-RAN WG 1#95 R 1-1813340, 2 November 2018 (2018-11-02), pages 2, XP051479650, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_95/Docs/Rl-1813340.zip> [retrieved on 20190314] *

Similar Documents

Publication Publication Date Title
WO2020166081A1 (en) User terminal and wireless communication method
WO2020090059A1 (en) User terminal and wireless communications method
WO2020148903A1 (en) User terminal and wireless communication method
WO2020170449A1 (en) User terminal and wireless communication method
JP7315573B2 (en) Terminal, wireless communication method, base station and system
WO2020170398A1 (en) User terminal and wireless communication method
WO2020090060A1 (en) User terminal and wireless communication method
WO2020170444A1 (en) User terminal and wireless communication method
WO2020090122A1 (en) User terminal and wireless communications method
JP7264915B2 (en) Terminal, wireless communication method, base station and system
WO2021090403A1 (en) Terminal and wireless communication method
WO2021033223A1 (en) Terminal and wireless communication method
WO2020144774A1 (en) User terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
WO2021038682A1 (en) Terminal and wireless communication method
WO2020121528A1 (en) User equipment and wireless communication method
WO2020170450A1 (en) User terminal and wireless communication method
WO2020090061A1 (en) User equipment
WO2020121412A1 (en) User terminal and radio communication method
WO2021215379A1 (en) Terminal, wireless communication method, and base station
WO2020166086A1 (en) User terminal and wireless communication method
WO2020144775A1 (en) User terminal and wireless communication method
WO2020144871A1 (en) User terminal and wireless communication method
WO2022201551A1 (en) Terminal, wireless communication method, and base station
WO2022201550A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP