WO2020166028A1 - ネットワークノード - Google Patents

ネットワークノード Download PDF

Info

Publication number
WO2020166028A1
WO2020166028A1 PCT/JP2019/005432 JP2019005432W WO2020166028A1 WO 2020166028 A1 WO2020166028 A1 WO 2020166028A1 JP 2019005432 W JP2019005432 W JP 2019005432W WO 2020166028 A1 WO2020166028 A1 WO 2020166028A1
Authority
WO
WIPO (PCT)
Prior art keywords
version
interface
network node
rrc
protocol
Prior art date
Application number
PCT/JP2019/005432
Other languages
English (en)
French (fr)
Inventor
輝朗 戸枝
健次 甲斐
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/429,869 priority Critical patent/US20220110171A1/en
Priority to PCT/JP2019/005432 priority patent/WO2020166028A1/ja
Publication of WO2020166028A1 publication Critical patent/WO2020166028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers

Definitions

  • the present invention relates to a network node in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • Non-Patent Document 2 In the NR wireless communication system, similar to the dual connectivity in the LTE wireless communication system, data is divided between the base station (eNB) of the LTE wireless communication system and the base station (gNB) of the NR wireless communication system, and these bases are divided.
  • a technology called LTE-NR dual connectivity, NR-NR dual connectivity, or multi-RAT (Multi Radio Access Technology) dual connectivity (hereinafter referred to as "MR-DC") that simultaneously transmits and receives data by a station has been introduced.
  • MR-DC Multi Radio Access Technology
  • HLS Higher Layer Split
  • gNB-CU Central Unit
  • gNB-DU Distributed Unit
  • HLS LTE wireless communication system
  • the present invention has been made in view of the above points, and an object thereof is to use a version of a protocol that is matched between network nodes in a wireless communication system.
  • a receiving unit that receives information related to a protocol version of an upper layer message, and a plurality of upper networks that terminate and separate the upper layer based on information related to the protocol version
  • a network node which is one of the plurality of upper network nodes, having a control unit that uses the same protocol version between the nodes.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and subsequent schemes (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Random access channel
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex). May be used.
  • “configuring” a wireless parameter and the like may mean that a predetermined value is preset (Pre-configure), or the base station device 10 Alternatively, the wireless parameter notified from the user device 20 may be set.
  • FIG. 1 is a diagram showing a configuration example of a network architecture in the embodiment of the present invention.
  • the wireless network architecture according to the embodiment of the present invention uses 4G-CU (Central Unit), 4G-DU (Distributed Unit), EPC (Evolved Packet Core), etc. on the LTE-Advanced side.
  • the wireless network architecture in the embodiment of the present invention includes 5G-CU, 5G-DU, 5GC (5G Core network) and the like on the 5G side.
  • the 4G-CU includes an RRC (Radio Resource Control) layer and a PDCP (Packet Data Convergence Protocol) layer.
  • the 4G-DU includes an RLC (Radio Link Control) layer, a MAC (Medium Access Control) layer, and an L1 (Layer 1, PHY layer, or physical layer), and is connected to the UE via RF.
  • a network node including 4G-CU and 4G-DU is called an eNB.
  • the 4G-CU is connected to the 4G-DU via an FH (Flonthaul) interface. Further, the 4G-CU is connected to the EPC via the IP border gateway.
  • the 5G-CU includes an RRC layer and a PDCP layer.
  • the 4G-DU includes an RLC layer, a MAC layer and L1 and is connected to the UE via RF.
  • the 5G-CU includes the RRC layer and is connected to the 5G-DU via the FH interface and is connected to the 5GC via the NG interface (NG interface). Further, the 5G-CU is connected to the 4G-CU by an X2 interface.
  • the PDCP layer in 4G-CU serves as a coupling or separation point when performing 4G-5G DC (Dual Connectivity), that is, EN-DC (E-UTRA-NR Dual Connectivity).
  • a network node including 5G-CU and 5G-DU is called gNB.
  • 5G-CU may be referred to as gNB-CU and 5G-DU may be referred to as gNB-DU.
  • the base station device 10 may be a gNB-CU which is a network node or a gNB-DU which is a network node.
  • the gNB-CU and gNB-DU based on the above 5G may be referred to as eNB-CU and eNB-DU in the LTE wireless communication system.
  • DC is performed with 4G-DU and 5G-DU.
  • a UE User Equipment
  • a UE is wirelessly connected via the RF of 4G-DU or 5G-DU and transmits/receives a packet.
  • FIG. 1 shows a wireless network architecture at the time of LTE-NR DC, that is, EN-DC (E-UTRA-NR Dual Connectivity).
  • EN-DC E-UTRA-NR Dual Connectivity
  • a similar wireless network architecture may be used when the NR is operated standalone.
  • NR-DC NR-NR Dual Connectivity
  • NR-DC may be performed by connecting the UE to multiple 5G-CUs, and the UE may connect to multiple 5G-DUs and a single 5G-CU.
  • NR-DC may be performed by.
  • multiple 5G-CUs may be connected to the 5G-DU.
  • a configuration in which a plurality of 5G-CUs are connected to a 5G-DU will be mainly assumed. Note that the following description may be applied to the CU-DU configuration in the LTE wireless communication system.
  • FIG. 2 is a diagram showing a configuration example (1) of the wireless communication system in the embodiment of the present invention.
  • CU10B, CU10C, and CU10D are arranged for each PLMN (Public Land Mobile Network) as RAN (Radio Access Network) sharing, and are connected to a single DU 10A. That is, the DU 10A has a plurality of HLS interfaces.
  • the HLS interface is, for example, an interface from which the PDCP layer or the RRC layer is separated.
  • FIG. 3 is a diagram showing a configuration example (2) of the wireless communication system in the embodiment of the present invention.
  • the HLS interface is separated between the E-UTRAN and the NG-RAN, and the CU 10B connected to the EPC and the CU 10C connected to the 5GC are connected to the DU 10A. That is, the DU 10A has a plurality of HLS interfaces. Note that, in the example of FIG. 3, the CU is separated for each HLS interface, but it is also possible that a single CU is separated and only the HLS interface is separated.
  • the signals in the wireless communication system are roughly classified into UE (User Equipment) individual signals and cell common signals.
  • the UE-specific signal is terminated in any CU. Therefore, for example, a mechanism for allocating UE-specific signals to CUs is required for each PLMN ID and for each E-UTRAN or NG-RAN access network. If the mechanism does not exist, it is not possible to select an appropriate CU in transmission/reception of a signal for each UE.
  • a signal common to cells requires a mechanism for preventing inconsistency between HLS interfaces in notification from a plurality of CUs. If the mechanism does not exist, the DU cannot determine which CU should follow the instruction.
  • FIG. 4 is a diagram for explaining an example (1) of signal transmission in the embodiment of the present invention.
  • An example of a signal transmitted when the DU 10A is connected to the CU 10B and the CU 10C will be described with reference to FIG.
  • the CU 10B transmits the UE-specific 1 signal to the DU 10A
  • the CU 10C transmits the UE-specific 2 signal to the DU 10A. That is, the UE-specific signal is transmitted from each CU 10.
  • the cell-common signal is transmitted from only CU 10B to DU 10A.
  • the DU 10A can correctly transmit the cell-common signal to the UE 20.
  • FIG. 5 is a diagram for explaining an example (2) of signal transmission in the embodiment of the present invention.
  • An example of a signal transmitted when the DU 10A is connected to the CU 10B and the CU 10C will be described with reference to FIG. Similar to FIG. 4, regarding the UE-specific signal, the CU 10B transmits the UE-specific 1 signal to the DU 10A, and the CU 10C transmits the UE-specific 2 signal to the DU 10A. That is, the UE-specific signal is transmitted from each CU 10.
  • the cell-common signal is transmitted from the CU 10B or CU 10C to the DU 10A after the cell-common signal is coordinated between the CU 10B and the CU 10C.
  • the DU 10A can correctly transmit the cell-common signal to the UE 20.
  • FIG. 6 is a flowchart for explaining an operation example (1) in the embodiment of the present invention. An operation example in which the DU 10 that receives the RRC message from the UE 20 determines to which CU 10 the CU 10 will transmit will be described with reference to FIG. 6.
  • step S11 the DU 10 receives the RRC message from the UE 20. Since the RRC layer is not terminated in the DU 10, the DU 10 normally does not decode the RRC message. Therefore, the DU 10 decodes only the part of the RRC message necessary for determining the destination CU 10 and determines the destination CU 10 (S12). Then, the DU 10 transmits the RRC message to the CU 10 of the determined destination (S13). As described above, the DU 10 receiving the RRC message from the UE 20 can determine which CU 10 the DU 10 transmits to.
  • FIG. 7 is a flowchart for explaining an operation example (2) in the embodiment of the present invention. An operation example in which the DU 10 that receives the RRC message from the UE 20 determines to which CU 10 the CU 10 will transmit will be described with reference to FIG. 7.
  • step S21 the DU 10 tries to connect to a plurality of connected CUs 10.
  • the DU 10 may receive a response indicating whether connection is possible from the CU 10 (S22), or may receive a response only from the CU 10 that is connectable.
  • step S23 the DU 10 connects to only the connectable CU 10.
  • the DU 10 receiving the RRC message from the UE 20 can determine which CU 10 the DU 10 transmits to.
  • FIG. 8 is a flowchart for explaining an operation example (3) in the embodiment of the present invention. An operation example in which the DU 10 that receives the RRC message from the UE 20 determines to which CU 10 the CU 10 will transmit will be described with reference to FIG. 8.
  • step S31 the priority interface between CU and DU is set.
  • the DU 10 determines the CU 10 to be connected based on the instruction from the CU 10 to which the priority interface is set (S32).
  • the DU 10 connects to the determined CU 10 (S33).
  • the DU 10 may reconnect to the CU 10 that is the connection target, or the CU 10 to which the priority interface is set may transmit the UE context to the CU 10 that is the connection target.
  • the DU 10 receiving the RRC message from the UE 20 can determine which CU 10 the DU 10 transmits to.
  • FIG. 9 is a flowchart for explaining an operation example (4) in the embodiment of the present invention. An operation example in which information is notified from the CU 10 to the DU 10 will be described with reference to FIG. 9.
  • step S41 an interface that defines the CU-DU that exchanges predetermined information is defined.
  • the CU 10 notifies the DU 10 only by the determined interface (S42).
  • the CU 10 may notify another CU 10 of the determined interface (S43).
  • the notification in step S43 may be directly transmitted from CU10 to another CU10, or may be transmitted from CU10 to another CU10 via DU10.
  • the notification may not be transmitted in the interface that does not exchange the predetermined information.
  • the CU 10 may be different for each of the predetermined information.
  • the DU 10 combines the plurality of predetermined information.
  • the above-mentioned predetermined information is, for example, gNB-DU system information.
  • the gNB-DU system information is SIB (System Information Block) encoded by the DU 10, and corresponds to MIB (Master Information Block) and SIB1. Since the CU 10 notifies a part of the gNB-DU system information (for example, a prohibited cell, a parameter related to UAC (Unified access control)), cooperation is required between the CUs 10 for notification.
  • SIB System Information Block
  • MIB Master Information Block
  • the above-mentioned predetermined information is, for example, gNB-CU system information.
  • the gNB-CU system information is a SIB (System Information Block) encoded by the CU 10, and corresponds to the SIB other than the MIB and the SIB1. Since the CU 10 notifies the gNB-CU system information, it is necessary for the CUs 10 to cooperate in notification.
  • SIB System Information Block
  • the above-mentioned predetermined information is, for example, information related to cell management, which is a message related to resource setting of DU (for example, gNB-DU RESOURCE COORDINATION).
  • the information related to cell management is, for example, information indicating cell activation, deactivation, addition, deletion, cell state, and the like. Since the CU 10 determines whether to activate or deactivate the cell, cooperation is required between the CUs 10 in notification. Further, the CU 10 needs to know the state of the cell. When the DU 10 notifies the CU 10 of information related to cell management, cell addition, deletion, or status may be notified in an interface that does not exchange the predetermined information.
  • the above-mentioned predetermined information is, for example, information related to distribution of emergency information (for example, WRITE-REPLACE WARNING). Since the information related to the distribution of emergency information is a parameter that can be updated by the CU 10, cooperation among the CUs 10 is required. For example, it is necessary to cooperate with which CU 10 manages information related to distribution of emergency information, or when which CU 10 is responsible for distribution of emergency information for each cell.
  • emergency information for example, WRITE-REPLACE WARNING
  • FIG. 10 is a flowchart for explaining an operation example (5) in the embodiment of the present invention. An operation example in which the CU 10 notifies the DU 10 of information will be described with reference to FIG. 10.
  • step S51 all CUs 10 cooperate in advance with which signal including predetermined information is notified to DU 10. That is, information indicating which signal is notified to which DU 10 from which CU 10 is shared by the communication between the CUs 10. Subsequently, each CU 10 notifies the DU 10 of a signal according to the result of cooperation (S52).
  • the predetermined information is similar to the predetermined information described in FIG. Since the predetermined information coordinated between the CUs 10 is notified in advance, no contradiction occurs between the notifications. Therefore, a single CU 10 may notify the DU 10 of predetermined information, or a plurality of CUs 10 may notify the DU 10 of predetermined information.
  • FIG. 11 is a diagram for explaining an initialization example (1) in the embodiment of the present invention.
  • initialization targeting a specific UE for example, Part of F1 Interface
  • all UEs is performed. Only the initialization targeting (for example, Reset All) was specified.
  • the UE context of the CU10 is initialized and there is no problem, but when the CU10 gives an initialization instruction to the DU10, the UE context related to other CU10 in the DU10 is initialized. It is necessary to agree on whether or not to do it.
  • initialization may be performed only in the part related to the corresponding HLS interface.
  • the DU 10A when the CU 10B transmits a Reset signal to the DU 10A, the DU 10A initializes the UE context associated with the interface between the CU 10B and the DU 10A as an initialization range. That is, the UE context related to the interface between the CU 10C and the DU 10A is not included in the initialization range and is not initialized.
  • FIG. 12 is a diagram for explaining an initialization example (2) in the embodiment of the present invention.
  • the initialization range By setting the initialization range to all UE contexts, notifying the CU10 other than the CU10 that has transmitted the initialization instruction that the CU10 has been initialized, and notifying the CU10 that the initialization is performed similarly to the initialization in the DU10A, the CU10 side And the range initialized on the DU 10 side may be matched.
  • the DU 10A initializes all UE contexts as an initialization range. Subsequently, when the DU 10A transmits a Reset signal to the CU 10C, the DU 10C initializes the UE context.
  • FIG. 13A is a diagram for explaining an example (1) of the version notification operation.
  • a parameter for example, MeasGapConfig
  • the DU encodes a part of the RRC container (RRC container)
  • the CU decodes the RRC container to put it in the upper RRC container again. Therefore, it is necessary for the CU to have the ability to decode the RRC container of the DU, and it is necessary to match the highest RRC version used between the CU and the DU. Therefore, the DU notifies the CU of the latest RRC version supported, and in the same way, the CU notifies the DU of the latest RRC version supported, and the highest RRC version supported by the CU and DU. Is used in the CU-DU interface.
  • the DU issues "F1 setup Req. (Rel-15)" (F1 setup request) to the CU. Send to. Then, the CU sends “F1 setup Resp. (Rel-16)” (F1 setup response) to the DU.
  • the highest RRC version supported by both is Rel-15, so Rel-15 is used in the CU-DU interface.
  • FIG. 13B is a diagram for explaining an example (2) of the version notification operation.
  • the DU when the RRC version of the CU is Rel-15 and the RRC version of the DU is Rel-16, the DU sends "F1 setup Req. (Rel-16)" to the CU. Then, the CU sends “F1 setup Resp. (Rel-15)” to the DU.
  • the highest RRC version supported by both is Rel-15, so Rel-15 is used in the CU-DU interface.
  • FIG. 13C is a diagram for explaining an example (3) of the version notification operation.
  • the DU when the RRC version of the CU is Rel-15 and the RRC version of the DU is Rel-15, the DU sends "F1 setup Req. (Rel-15)" to the CU. Then, the CU sends “F1 setup Resp. (Rel-15)” to the DU.
  • the highest RRC version supported by both is Rel-15, so Rel-15 is used in the CU-DU interface.
  • FIG. 14 is a diagram for explaining an example (1) of the version notification operation according to the embodiment of the present invention.
  • the DU cannot determine which RRC version to use. Therefore, when a plurality of CUs 10 are connected to the DU 10, the DU 10 uses a plurality of RRC versions for each CU 10.
  • the signal common to cells such as system information may switch the RRC version for each CU, or may use the RRC version determined by the DU 10.
  • Rel-15 is on the interface of CU10B-DU10A. Used, Rel-16 may be used for the interface of CU10C-DU10A.
  • FIG. 15 is a diagram for explaining an example (2) of the version notification operation according to the embodiment of the present invention.
  • the RRC version of CU10B is Rel-15
  • the RRC version of CU10C is Rel-16
  • the RRC version of DU10A is Rel-16
  • CU10B and CU10C cooperate to form CU
  • CU10C sends "F1 setup Req. (Rel-16)" to CU10C, because each CU10 can determine that the highest version common to all CUs, that is, the lowest version among CUs, is Rel-15.
  • CU10C may send "F1 setup Resp. (Rel-15)" to DU10A and use the same RRC version, Rel-15, as the interface of CU10B-DU10A in the interface of CU10C-DU10A. ..
  • FIG. 16 is a diagram for explaining an example (3) of the version notification operation according to the embodiment of the present invention.
  • the RRC version used in the CU-DU interface may be coordinated between the CUs.
  • the DU 10 may match the RRC version between the CUs by newly notifying the CU 10 of the CU 10 to the other CU 10 in which the HLS interface is already established.
  • the interface of CU10C-DU10A is established with RRC version Rel-16.
  • the DU 10A sends "F1 setup Req. (Rel-16)" to the CU 10B.
  • the CU 10B transmits "F1 setup Resp. (Rel-15)” to the DU 10A.
  • the DU 10A has a lower RRC version of the interface of the CU 10B than the RRC version of the interface of the CU 10C, and thus transmits “gNB-DU configure update (Rel-15)” to the CU 10C, and the RRC of the interface of the CU 10C-CU 10A. Change the version to Rel-15.
  • the F1 message name “gNB-DU config update” is an example and may be another name.
  • FIG. 17 is a diagram for explaining an example (4) of the version notification operation in the embodiment of the present invention.
  • the DU 10 may disconnect the already established F1 interface and reestablish the F1 interface with the RRC version used by another CU 10.
  • the interface of CU10C-DU10A is established with RRC version Rel-16.
  • the DU 10A sends "F1 setup Req. (Rel-16)" to the CU 10B.
  • the CU 10B transmits "F1 setup Resp. (Rel-15)” to the DU 10A.
  • the DU 10A transmits "F1 setup Req. (Rel-15)” to the CU 10C because the RRC version of the interface of the CU 10B is lower than the RRC version of the interface of the CU 10C.
  • the CU 10C transmits "F1 setup Resp. (Rel-15)" to the DU 10A, and changes the RRC version of the interface of the CU10C-CU10A to Rel-15.
  • the CU or DU that is the network node can appropriately determine the RRC version used between the CU and the DU.
  • the base station device 10 and the user device 20 include a function for implementing the above-described embodiment. However, each of the base station device 10 and the user device 20 may be provided with only a part of the functions in the embodiment.
  • FIG. 18 is a diagram showing an example of a functional configuration of the base station device 10 in the embodiment of the present invention.
  • the base station device 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function classification and the names of the function units may be any names. Further, the base station device 10 may be the separated CU 10 or DU 10.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the user device 20 side and wirelessly transmitting the signal. Further, the transmission unit 110 transmits the inter-network node message to another network node.
  • the reception unit 120 includes a function of receiving various signals transmitted from the user device 20 and acquiring, for example, information of a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, and the like to the user apparatus 20. Furthermore, the receiving unit 120 receives a message between network nodes from another network node.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the user device 20 in the storage device, and reads it from the storage device as necessary.
  • the content of the setting information is, for example, setting information related to the RRC message, setting information related to communication of the user device 20, and the like.
  • the control unit 140 controls the wireless communication for transmitting and receiving the RRC message, as described in the embodiment. In addition, the control unit 140 controls initialization related to settings related to communication of the user device 20.
  • the functional unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 19 is a diagram showing an example of a functional configuration of the user device 20 in the embodiment of the present invention.
  • the user device 20 includes a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function classification and the names of the function units may be any names.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires signals of higher layers from the received physical layer signals. Further, the receiving section 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals and the like transmitted from the base station apparatus 10.
  • the transmission unit 210 performs P2CH communication to other user apparatuses 20 by using PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), and PSBCH (Physical Sidelink Broadcast Channel). ) Etc., and the receiving part 120 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other user apparatus 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station device 10 or the user device 20 by the receiving unit 220 in a storage device, and reads from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, setting information related to the RRC message.
  • the control unit 240 controls the wireless communication for transmitting and receiving the RRC message, as described in the embodiment.
  • the control unit 240 receives information related to wireless communication from the base station device 10, controls wireless communication of the user device 20 based on the information, and reports necessary information to the base station device 10.
  • the functional unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the functional unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional block may be implemented by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuration, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
  • I can't.
  • functional blocks (components) that function transmission are called a transmitting unit and a transmitter.
  • the implementation method is not particularly limited.
  • the base station device 10, the user device 20, and the like according to the embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of the base station device 10 and the user device 20 according to the embodiment of the present disclosure.
  • the base station device 10 and the user device 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
  • the word “apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configurations of the base station device 10 and the user device 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the base station device 10 and the user device 20 causes a predetermined software (program) to be loaded onto hardware such as the processor 1001, the storage device 1002, etc., so that the processor 1001 performs an arithmetic operation and communication by the communication device 1004. It is realized by controlling or at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
  • CPU central processing unit
  • the control unit 140, the control unit 240, and the like described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used.
  • the control unit 140 of the base station device 10 illustrated in FIG. 18 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the user device 20 illustrated in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (ElectricallyErasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store an executable program (program code), a software module, or the like for implementing the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu disc). -Ray disk), smart card, flash memory (eg card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-described storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD). May be composed of
  • FDD Frequency Division Duplex
  • TDD time division duplex
  • the transmitter/receiver may be implemented by physically or logically separating the transmitter and the receiver.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station device 10 and the user device 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured to include hardware, and the hardware may implement part or all of each functional block. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a receiving unit that receives information related to the protocol version of the message of the upper layer, and the upper layer based on the information related to the version of the protocol,
  • a network node which is one of the plurality of upper network nodes, is provided, which has a control unit that uses the same protocol version among a plurality of upper network nodes that terminate and separate.
  • the CU or DU that is the network node can appropriately determine the RRC version used between the CU and the DU. That is, it is possible to use the version of the protocol that is matched between the network nodes in the wireless communication system.
  • the version of the same protocol among the plurality of upper network nodes may be the lowest version among the plurality of upper network nodes.
  • the CU can unify the RRC version used among a plurality of CUs to the lowest RRC version.
  • the control unit When the control unit receives an interface establishment request including a protocol version of a message of an upper layer from a lower network node, the lower network node sends an interface establishment response including a lowest protocol version among the plurality of upper network nodes. May be sent to.
  • the CU when the CU receives the interface establishment request from the DU, the CU can notify the DU of the RRC version emphasized with the other CU by the interface establishment response.
  • a transmission unit that transmits an interface establishment request including a protocol version of a message of an upper layer to one of a plurality of upper network nodes that terminates and separates the upper layer
  • a receiving unit that receives an interface establishment response including a protocol version of an upper layer message from an upper network node that has transmitted the interface establishment request, and a protocol version of a higher layer message included in the interface establishment response, the interface
  • a network node having a control unit for transmitting to an upper network node other than the upper network node that has transmitted the establishment request.
  • the CU or DU that is the network node can appropriately determine the RRC version used between the CU and the DU. That is, it is possible to use the version of the protocol that is matched between the network nodes in the wireless communication system.
  • the control unit includes a protocol of the upper layer message included in the interface establishment response. Version may be sent to a higher level network node corresponding to the already established interface.
  • the control unit includes a protocol of the upper layer message included in the interface establishment response. Version to the upper network node corresponding to the already established interface and maintain the interface and include it in the setting change request, or disconnect the interface and transmit it again in the interface establishment request. Good.
  • the DU receives an interface establishment response including a version lower than the protocol version of the already established interface from the CU, the CU corresponding to the interface whose lower version has already been established to another CU.
  • the RRC version can be unified among the CUs.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by the plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station apparatus 10 and the user apparatus 20 have been described using functional block diagrams for convenience of processing description, such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor included in the base station device 10 according to the embodiment of the present invention and the software operated by the processor included in the user device 20 according to the embodiment of the present invention are respectively a random access memory (RAM), a flash memory, and a read memory. It may be stored in a dedicated memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the mode/embodiment described in the present disclosure, and may be performed using another method.
  • information is notified by physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be called an RRC message, for example, RRC message. It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Full Radio Access
  • NR new Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • It may be applied to at least one of the next-generation systems.
  • a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation that is assumed to be performed by the base station device 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the user device 20 are other than the base station device 10 and the base station device 10. It is clear that it can be performed by at least one of the network nodes of (for example, but not limited to, MME or S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). Good.
  • Information, signals, etc. described in the present disclosure may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
  • Information that has been input and output may be stored in a specific location (for example, memory), or may be managed using a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value (0 or 1) represented by 1 bit, may be performed by a Boolean value (Boolean: true or false), and may be performed by comparing numerical values (for example, , Comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier CC:Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • base station Base Station
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • GNB NodeB
  • access point “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (eg, indoor small base station (RRH: It is also possible to provide communication services by Remote Radio Head).
  • RRH indoor small base station
  • the term "cell” or “sector” means a part or the whole coverage area of at least one of the base station and the base station subsystem that perform communication services in this coverage. Refers to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user devices 20 (eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • a plurality of user devices 20 eg, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • the user apparatus 20 may have the function of the above-described base station apparatus 10.
  • the wording such as “up” and “down” may be replaced with the wording corresponding to the terminal-to-terminal communication (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station may have the function of the above-mentioned user terminal.
  • determining and “determining” as used in this disclosure may encompass a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment, calculating, computing, processing, deriving, investigating, and looking up, search, inquiry. (Eg, searching in a table, database, or another data structure), considering ascertaining as “judging” or “deciding”, and the like.
  • “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judging” and “deciding”.
  • judgment and “decision” are considered to be “judgment” and “decision” when things such as resolving, selecting, choosing, selecting, establishing, and comparing are done. May be included. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”. In addition, “determination (decision)” may be read as “assuming”, “expecting”, “considering”, and the like.
  • connection means any direct or indirect connection or coupling between two or more elements, and It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • references to elements using designations such as “first”, “second”, etc. used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements may be employed, or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver At least one of specific filtering processing performed in the frequency domain and specific windowing processing performed by the transceiver in the time domain may be shown.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with fewer symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for signal transmission. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user device 20, transmission power, etc.) to each user device 20 in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (the number of mini-slots) forming the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRBs: Physical RBs), subcarrier groups (SCGs: Sub-Carrier Groups), resource element groups (REGs: Resource Element Groups), PRB pairs, RB pairs, etc. May be called.
  • PRBs Physical resource blocks
  • SCGs Sub-Carrier Groups
  • REGs Resource Element Groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • a bandwidth part (may also be called a partial bandwidth) may represent a subset of consecutive common RBs (common resource blocks) for a certain numerology in a certain carrier.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP DL BWP
  • one or more BWPs may be set in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
  • the structure of the wireless frame, subframe, slot, minislot, symbol, etc. described above is just an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed similarly as “different”.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • the CU 10 is an example of an upper network node.
  • the DU 10 is an example of a lower network node.
  • the RRC message is an example of an upper layer message.
  • the RRC version is an example of a protocol version of a higher layer message.
  • F1 setup Req. Is an example of an interface establishment request.
  • F1 setup Resp. Is an example of an interface establishment response.
  • base station device 110 transmission unit 120 reception unit 130 setting unit 140 control unit 20 user device 210 transmission unit 220 reception unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Abstract

ネットワークノードは、上位レイヤのメッセージのプロトコルのバージョンに係る情報を受信する受信部と、前記プロトコルのバージョンに係る情報に基づいて、前記上位レイヤを終端し、かつ分離する複数の上位ネットワークノード間で同一のプロトコルのバージョンを使用する制御部とを有し、前記複数の上位ネットワークノードのうちのひとつである。

Description

ネットワークノード
 本発明は、無線通信システムにおけるネットワークノードに関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 NR無線通信システムでは、LTE無線通信システムにおけるデュアルコネクティビティと同様に、LTE無線通信システムの基地局(eNB)とNR無線通信システムの基地局(gNB)との間でデータを分割し、これらの基地局によってデータを同時送受信する、LTE-NRデュアルコネクティビティ、NR-NRデュアルコネクテビティ又はマルチRAT(Multi Radio Access Technology)デュアルコネクティビティ(以下、「MR-DC」という。)と呼ばれる技術が導入されている(例えば非特許文献2)。
 また、NR無線通信システムでは、HLS(Higher layer split)が導入されている。gNB-CU(Central Unit)に上位レイヤ、gNB-DU(Distributed Unit)に下位レイヤが分離して配置される(例えば非特許文献3)。なお、LTE無線通信システムにおいても、同様のCU-DU構成を取ることが可能である(HLSが導入されている)。
3GPP TS 38.300 V15.4.0(2018-12) 3GPP TS 37.340 V15.4.0(2018-12) 3GPP TS 38.401 V15.4.0(2018-12)
 NR及びLTEの無線通信システムにおいて、単一のDUに対して、複数のHLSインタフェースを接続することが検討されている。単一のDUが、複数のHLSインタフェースを有する場合、CU-DU間でプロトコルのバージョンに不整合が生じる場合があった。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおけるネットワークノード間で整合されたプロトコルのバージョンを使用することを目的とする。
 開示の技術によれば、上位レイヤのメッセージのプロトコルのバージョンに係る情報を受信する受信部と、前記プロトコルのバージョンに係る情報に基づいて、前記上位レイヤを終端し、かつ分離する複数の上位ネットワークノード間で同一のプロトコルのバージョンを使用する制御部とを有し、前記複数の上位ネットワークノードのうちのひとつであるネットワークノードが提供される。
 開示の技術によれば、無線通信システムにおけるネットワークノード間で整合されたプロトコルのバージョンを使用することができる。
本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。 本発明の実施の形態における無線通信システムの構成例(1)を示す図である。 本発明の実施の形態における無線通信システムの構成例(2)を示す図である。 本発明の実施の形態における信号送信の例(1)を説明するための図である。 本発明の実施の形態における信号送信の例(2)を説明するための図である。 本発明の実施の形態における動作例(1)を説明するためのフローチャートである。 本発明の実施の形態における動作例(2)を説明するためのフローチャートである。 本発明の実施の形態における動作例(3)を説明するためのフローチャートである。 本発明の実施の形態における動作例(4)を説明するためのフローチャートである。 本発明の実施の形態における動作例(5)を説明するためのフローチャートである。 本発明の実施の形態における初期化の例(1)を説明するための図である。 本発明の実施の形態における初期化の例(2)を説明するための図である。 バージョン通知動作の例(1)を説明するための図である。 バージョン通知動作の例(2)を説明するための図である。 バージョン通知動作の例(3)を説明するための図である。 本発明の実施の形態におけるバージョン通知動作の例(1)を説明するための図である。 本発明の実施の形態におけるバージョン通知動作の例(2)を説明するための図である。 本発明の実施の形態におけるバージョン通知動作の例(3)を説明するための図である。 本発明の実施の形態におけるバージョン通知動作の例(4)を説明するための図である。 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。 本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。 本発明の実施の形態における基地局装置10又はユーザ装置20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局装置10又はユーザ装置20から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。図1に示されるように、本発明の実施の形態における無線ネットワークアーキテクチャは、LTE-Advanced側において、4G-CU(Central Unit)、4G-DU(Distributed Unit)、EPC(Evolved Packet Core)等を含む。本発明の実施の形態における無線ネットワークアーキテクチャは、5G側において、5G-CU、5G-DU、5GC(5G Core network)等を含む。
 図1に示されるように、4G側において、4G-CUは、RRC(Radio Resource Control)レイヤ及びPDCP(Packet Data Convergence Protocol)レイヤを含む。4G-DUは、RLC(Radio Link Control)レイヤ、MAC(Medium Access Control)レイヤ及びL1(レイヤ1、PHY層又は物理層)を含み、RFを介してUEと接続される。4G-CU及び4G-DUを含むネットワークノードをeNBという。4G-CUは、4G-DUとFH(Flonthaul)インタフェースを介して接続される。また、4G-CUは、IPボーダゲートウェイを介してEPCに接続される。
 一方、5G側において、図1に示されるように、5G-CUは、RRCレイヤ及びPDCPレイヤを含む。4G-DUは、RLCレイヤ、MACレイヤ及びL1を含み、RFを介してUEと接続される。5G-CUは、RRCレイヤを含み、5G-DUとFHインタフェースを介して接続され、5GCとNGインタフェース(NG interface)を介して接続されている。また、5G-CUは、4G-CUとX2インタフェースで接続されている。4G-CUにおけるPDCPレイヤが、4G-5GのDC(Dual Connectivity)すなわちEN-DC(E-UTRA-NR Dual Connectivity)を行う場合の結合又は分離ポイントとなる。5G-CU及び5G-DUを含むネットワークノードをgNBという。また、5G-CUをgNB-CU、5G-DUをgNB-DUと呼んでもよい。以下の説明において、基地局装置10は、ネットワークノードであるgNB-CUであってもよいし、ネットワークノードであるgNB-DUであってもよい。なお、上記の5Gを前提にしたgNB-CU及びgNB-DUは、LTE無線通信システムにおいては、eNB-CU及びeNB-DUと呼称してもよい。
 また、図1に示されるように、4G-DUと5G-DUとで、DCが行われる。なお図示しないが、UE(User Equipment)が、4G-DU又は5G-DUのRFを介して無線接続され、パケットを送受信する。
 なお、図1は、LTE-NRのDCすなわちEN-DC(E-UTRA-NR Dual Connectivity)時の無線ネットワークアーキテクチャを示している。しかしながら、NRがスタンドアロン運用される場合も、同様の無線ネットワークアーキテクチャが使用されてよい。
 なお、5G-CUに、複数の5G-DUが接続されてもよい。また、複数の5G-CUにUEが接続することによって、NR-DC(NR-NR Dual Connectivity)が行われてもよく、複数の5G-DU及び単一の5G-CUにUEが接続することによってNR-DCが行われてもよい。
 また、5G-DUに、複数の5G-CUが接続されてもよい。以下の説明において、5G-DUに複数の5G-CUが接続される構成を主に想定する。なお、以下の説明は、LTE無線通信システムにおけるCU-DU構成に適用されてもよい。
 図2は、本発明の実施の形態における無線通信システムの構成例(1)を示す図である。図2に示されるように、RAN(Radio Access Network)シェアリングとしてPLMN(Public Land Mobile Network)ごとにCU10B、CU10C及びCU10Dが配置され、単一のDU10Aと接続される。すなわち、DU10Aは、複数のHLSインタフェースを有する。HLSインタフェースは、例えば、PDCPレイヤ又はRRCレイヤが分離されるインタフェースである。
 図3は、本発明の実施の形態における無線通信システムの構成例(2)を示す図である。図3に示されるように、E-UTRANとNG-RANとでHLSインタフェースを分離して、EPCに接続されるCU10Bと、5GCに接続されるCU10Cとが、DU10Aと接続される。すなわち、DU10Aは、複数のHLSインタフェースを有する。なお、図3の例では、HLSインタフェースごとにCUが分離されているが、CUは単一でHLSインタフェースのみ分離されている場合も想定される。
 ここで、無線通信システムにおける信号は、UE(User Equipment)個別の信号とセル共通の信号に大別される。UE個別の信号は、いずれかのCUで終端される。したがって、例えば、PLMN IDごと、E-UTRAN又はNG-RANのアクセスネットワークごとに、UE個別の信号をCUに割り振るための仕組みが必要となる。当該仕組みが存在しない場合、UE個別の信号の送受信において適切なCUを選択することができない。一方、セル共通の信号は、複数のCUからの通知において、HLSインタフェース間で矛盾が生じないようにするための仕組みが必要となる。当該仕組みが存在しない場合、DUはいずれのCUの指示に従えばよいか判断できない。
 図4は、本発明の実施の形態における信号送信の例(1)を説明するための図である。図4を用いて、CU10B及びCU10CにDU10Aが接続される場合に送信される信号の例を示す。図4に示されるように、UE個別の信号は、CU10BからUE個別1の信号がDU10Aに送信され、CU10CからUE個別2の信号がDU10Aに送信される。すなわち、UE個別の信号は、CU10からそれぞれ送信される。
 一方、図4に示されるように、セル共通の信号は、CU10BのみからDU10Aに送信される。セル共通の信号が予め特定のCU10から送信される構成とすることで、DU10Aは、セル共通の信号を正しくUE20に送信することができる。
 図5は、本発明の実施の形態における信号送信の例(2)を説明するための図である。図5を用いて、CU10B及びCU10CにDU10Aが接続される場合に送信される信号の例を示す。図4と同様に、UE個別の信号は、CU10BからUE個別1の信号がDU10Aに送信され、CU10CからUE個別2の信号がDU10Aに送信される。すなわち、UE個別の信号は、CU10からそれぞれ送信される。
 一方、図5に示されるように、セル共通の信号は、CU10BとCU10Cとでセル共通の信号の協調が行われた後、CU10B又はCU10CからDU10Aに送信される。セル共通の信号がCU10間で協調された後いずれかのCU10から送信される構成とすることで、DU10Aは、セル共通の信号を正しくUE20に送信することができる。
 図6は、本発明の実施の形態における動作例(1)を説明するためのフローチャートである。図6を用いて、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定する動作例を説明する。
 ステップS11において、DU10は、UE20からRRCメッセージを受信する。RRCレイヤは、DU10では終端されていないため、通常DU10はRRCメッセージをデコードしない。そこで、DU10は、RRCメッセージのうち宛先となるCU10の決定に必要な部分のみをデコードして、宛先のCU10を決定する(S12)。続いて、DU10は、決定した宛先のCU10にRRCメッセージを送信する(S13)。上述のように、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定することができる。
 図7は、本発明の実施の形態における動作例(2)を説明するためのフローチャートである。図7を用いて、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定する動作例を説明する。
 ステップS21において、DU10は、接続されている複数のCU10に接続を試行する。DU10は、CU10から接続可否を示す応答を受信してもよいし(S22)、接続可であるCU10のみから応答を受信してもよい。ステップS23において、DU10は、接続可能なCU10のみに接続する。上述のように、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定することができる。
 図8は、本発明の実施の形態における動作例(3)を説明するためのフローチャートである。図8を用いて、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定する動作例を説明する。
 ステップS31において、CU-DU間の優先インタフェースが設定される。続いて、優先インタフェースが設定されたCU10からの指示に基づいてDU10は接続するCU10を決定する(S32)。続いて、DU10は決定されたCU10に接続する(S33)。ここで、DU10は、改めて接続対象であるCU10に接続を行ってもよいし、優先インタフェースが設定されたCU10が接続対象であるCU10にUEコンテクスト(UE context)を送信してもよい。上述のように、UE20からRRCメッセージを受信したDU10が、いずれのCU10に送信するか決定することができる。
 図9は、本発明の実施の形態における動作例(4)を説明するためのフローチャートである。図9を用いて、CU10からDU10に情報が通知される動作例を説明する。
 ステップS41において、所定の情報をやり取りするCU-DU間を規定するインタフェースを定める。CU10は、定められたインタフェースのみでDU10に通知する(S42)。CU10は、定められたインタフェースを他のCU10に通知してもよい(S43)。ステップS43における通知は、CU10から他のCU10に直接送信されてもよいし、CU10からDU10を介して他のCU10に送信されてもよい。CU10からDU10を介して他のCU10に通知が送信される場合、当該所定の情報をやり取りしないインタフェースにおいては通知が送信されなくてもよい。また、当該所定の情報ごとに、CU10が異なってもよい。複数のCU10から所定の情報を受信した場合、DU10は複数の所定の情報を結合する。
 上記所定の情報は、例えば、gNB-DUシステム情報である。gNB-DUシステム情報とは、DU10がエンコードするSIB(System Information Block)であり、MIB(Master Information Block)及びSIB1に該当する。CU10が、gNB-DUシステム情報の一部(例えば、禁止セル、UAC(Unified access control)に関するパラメータ)を通知するため、CU10間で通知に際し協調が必要となる。
 上記所定の情報は、例えば、gNB-CUシステム情報である。gNB-CUシステム情報とは、CU10がエンコードするSIB(System Information Block)であり、MIB及びSIB1以外のSIBに該当する。CU10が、gNB-CUシステム情報を通知するため、CU10間で通知に際し協調が必要となる。
 上記所定の情報は、例えば、DUのリソース設定に係るメッセージ(例えば、gNB-DU RESOURCE COORDINATION)であるセル管理に係る情報である。セル管理に係る情報とは、例えば、セルの有効化、無効化、追加、削除、セル状態を示す情報等である。CU10がセルの有効化又は無効化を決定するため、CU10間で通知に際し協調が必要となる。また、CU10は、セルの状態を把握する必要がある。なお、DU10からCU10にセル管理に係る情報を通知する場合、当該所定の情報をやり取りしないインタフェースにおいて、セルの追加、削除又はステータスが通知されてもよい。
 上記所定の情報は、例えば、緊急情報の配信に係る情報(例えば、WRITE-REPLACE WARNING)である。緊急情報の配信に係る情報は、CU10が更新できるパラメータであるため、CU10間の協調が必要となる。例えば、いずれのCU10が緊急情報の配信に係る情報を管理するか、又はセルごとに緊急情報の配信を分担する場合いずれのセルをいずれのCU10が担当するか協調が必要となる。
 図10は、本発明の実施の形態における動作例(5)を説明するためのフローチャートである。図10を用いて、CU10からDU10に情報が通知される動作例を説明する。
 ステップS51において、予めすべてのCU10間で所定の情報を含むいずれの信号をDU10に通知するかが協調される。すなわち、いずれの信号がいずれのCU10からDU10に通知されるかを示す情報が、CU10間の通信によって共有される。続いて、各CU10は、協調の結果にしたがって信号をDU10に通知する(S52)。所定の情報は、図9で説明した所定の情報と同様である。予めCU10間で協調された所定の情報が通知されるため、各通知間で矛盾は生じない。したがって、単一のCU10が所定の情報をDU10に通知してもよいし、複数のCU10が所定の情報をDU10に通知してもよい。
 図11は、本発明の実施の形態における初期化の例(1)を説明するための図である。従来技術においては、複数のHLSインタフェースが想定されていないため、UE個別の情報(UEコンテクスト)の初期化に関して、特定のUEを対象とする初期化(例えば、Part of F1 Interface)又は全てのUEを対象とする初期化(例えば、Reset All)のみが規定されていた。しかしながら、複数のHLSインタフェースを設定する場合、CU10側とDU10側で初期化される範囲を整合させる必要がある。DU10がCU10に初期化指示をする場合は、CU10のUEコンテクストを初期化して問題ないが、CU10がDU10に初期化指示をする場合は、DU10内の他のCU10に関連するUEコンテクストを初期化するか否かの認識を合わせる必要がある。
 そこで、対応するHLSインタフェースに関連する部分に限定して初期化を行ってもよい。図11に示されるように、CU10Bは、DU10AにReset信号を送信すると、DU10Aは、CU10B-DU10A間のインタフェースに関連するUEコンテクストを初期化範囲として初期化する。すなわち、CU10C-DU10A間のインタフェースに関連するUEコンテクストは初期化範囲に含まれず初期化されない。
 図12は、本発明の実施の形態における初期化の例(2)を説明するための図である。初期化範囲をすべてのUEコンテクストとし、初期化指示を送信したCU10以外のCU10に初期化したことを通知し、DU10Aにおける初期化と同様に初期化するよう要求する通知を行うことで、CU10側とDU10側で初期化される範囲を整合させてもよい。
 図12に示されるように、CU10Bは、DU10AにReset信号を送信すると、DU10Aは、すべてのUEコンテクストを初期化範囲とし初期化する。続いて、DU10Aは、CU10CにReset信号を送信すると、DU10CはUEコンテクストを初期化する。
 なお、図11に示される初期化方法と図12に示される初期化方法とのいずれを使用するかを、図11に示されるCU10BからDU10Aに送信されるReset信号で明示的に指示することが可能であってもよい。
 図13Aは、バージョン通知動作の例(1)を説明するための図である。従来技術においては、DUが、RRCコンテナ(RRC container)の一部をエンコードし、RRCコンテナをCUがデコードして再度上位のRRCコンテナに入れるためにエンコードするパラメータ(例えば、MeasGapConfig)が存在する。したがって、CUがDUのRRCコンテナをデコードできる能力が必要となるため、CU-DU間で用いる最上位のRRCバージョンを一致させる必要がある。そこで、DUはCUにサポートしている最新のRRCバージョンを通知し、同様にCUはDUにサポートしている最新のRRCバージョンを通知して、CU及びDUでサポートしている最上位のRRCバージョンをCU-DUインタフェースで使用する。
 図13Aに示されるように、CUのRRCバージョンがRel-16でありDUのRRCバージョンがRel-15である場合、DUは「F1 setup Req.(Rel-15)」(F1セットアップ要求)をCUに送信する。続いて、CUは「F1 setup Resp.(Rel-16)」(F1セットアップ応答)をDUに送信する。双方でサポートしている最上位のRRCバージョンはRel-15であるため、CU-DUインタフェースではRel-15が使用される。
 図13Bは、バージョン通知動作の例(2)を説明するための図である。図13Bに示されるように、CUのRRCバージョンがRel-15でありDUのRRCバージョンがRel-16である場合、DUは「F1 setup Req.(Rel-16)」をCUに送信する。続いて、CUは「F1 setup Resp.(Rel-15)」をDUに送信する。双方でサポートしている最上位のRRCバージョンはRel-15であるため、CU-DUインタフェースではRel-15が使用される。
 図13Cは、バージョン通知動作の例(3)を説明するための図である。図13Cに示されるように、CUのRRCバージョンがRel-15でありDUのRRCバージョンがRel-15である場合、DUは「F1 setup Req.(Rel-15)」をCUに送信する。続いて、CUは「F1 setup Resp.(Rel-15)」をDUに送信する。双方でサポートしている最上位のRRCバージョンはRel-15であるため、CU-DUインタフェースではRel-15が使用される。
 図14は、本発明の実施の形態におけるバージョン通知動作の例(1)を説明するための図である。複数のCUがDUに接続される場合、CU間でサポートするRRCバージョンが異なる場合、DUはいずれのRRCバージョンを使用すればよいか判断できない。
そこで、複数のCU10がDU10に接続される場合、CU10ごとに複数のRRCバージョンをDU10が使用する。システム情報等のセル共通の信号は、CUごとにRRCバージョンを切り替えてもよいし、DU10が決定したRRCバージョンを使用してもよい。
 図14に示されるように、CU10BのRRCバージョンがRel-15、CU10CのRRCバージョンがRel-16、DU10AのRRCバージョンがRel-16であった場合、CU10B-DU10AのインタフェースにはRel-15が使用されて、CU10C-DU10AのインタフェースにはRel-16が使用されてもよい。
 図15は、本発明の実施の形態におけるバージョン通知動作の例(2)を説明するための図である。図15に示されるように、CU10BのRRCバージョンがRel-15、CU10CのRRCバージョンがRel-16、DU10AのRRCバージョンがRel-16であった場合、CU10BとCU10Cとが協調することにより、CU間で共通する最上位のバージョンすなわちCU間で最も低いバージョンがRel-15であることが各CU10で判別できるため、DU10Aから「F1 setup Req.(Rel-16)」がCU10Cに送信された場合、CU10Cは、「F1 setup Resp.(Rel-15)」をDU10Aに送信して、CU10C-DU10Aのインタフェースにおいて、CU10B-DU10Aのインタフェースと同一のRRCバージョンであるRel-15を使用してもよい。
 図16は、本発明の実施の形態におけるバージョン通知動作の例(3)を説明するための図である。DU10を介して、CU-DUインタフェースで使用されるRRCバージョンがCU間で協調されてもよい。例えば、DU10は、あるCU10のRRCバージョンを既にHLSインタフェースが確立されている他のCU10に改めて通知することで、RRCバージョンをCU間で整合させてもよい。
 図16に示されるように、CU10C-DU10AのインタフェースはRRCバージョンがRel-16で確立されている。当該状態において、DU10Aは、「F1 setup Req.(Rel-16)」をCU10Bに送信する。続いて、CU10Bは、「F1 setup Resp.(Rel-15)」をDU10Aに送信する。続いて、DU10Aは、CU10CのインタフェースのRRCバージョンよりもCU10BのインタフェースのRRCバージョンが低いため、「gNB-DU config update(Rel-15)」をCU10Cに送信して、CU10C-CU10AのインタフェースのRRCバージョンをRel-15に変更する。F1メッセージ名「gNB-DU config update」は例であり、他の名称であってもよい。
 図17は、本発明の実施の形態におけるバージョン通知動作の例(4)を説明するための図である。
DU10は、既に確立されたF1インタフェースを切断して、他のCU10で使用されているRRCバージョンで再度F1インタフェースを確立してもよい。
 図17に示されるように、CU10C-DU10AのインタフェースはRRCバージョンがRel-16で確立されている。当該状態において、DU10Aは、「F1 setup Req.(Rel-16)」をCU10Bに送信する。続いて、CU10Bは、「F1 setup Resp.(Rel-15)」をDU10Aに送信する。続いて、DU10Aは、CU10CのインタフェースのRRCバージョンよりもCU10BのインタフェースのRRCバージョンが低いため、「F1 setup Req.(Rel-15)」をCU10Cに送信する。続いて、CU10Cは、「F1 setup Resp.(Rel-15)」をDU10Aに送信して、CU10C-CU10AのインタフェースのRRCバージョンをRel-15に変更する。
 上述の実施例により、複数のCUがDUに接続される構成において、ネットワークノードであるCU又はDUは、CU-DU間で使用されるRRCバージョンを適切に決定することができる。
 すなわち、無線通信システムにおけるネットワークノード間で整合されたプロトコルのバージョンを使用することができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ装置20の機能構成例を説明する。基地局装置10及びユーザ装置20は上述した実施例を実施する機能を含む。ただし、基地局装置10及びユーザ装置20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局装置10>
 図18は、本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。図18に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図18に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、基地局装置10は、分離されたCU10又はDU10であってもよい。
 送信部110は、ユーザ装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、ユーザ装置20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。ままた、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
 設定部130は、予め設定される設定情報、及び、ユーザ装置20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、RRCメッセージに係る設定情報、ユーザ装置20の通信に係る設定情報等である。
 制御部140は、実施例において説明したように、RRCメッセージを送受信する無線通信を制御する。また、制御部140は、ユーザ装置20の通信に係る設定に係る初期化を制御する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <ユーザ装置20>
 図19は、本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。図19に示されるように、ユーザ装置20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ装置20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他のユーザ装置20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局装置10又はユーザ装置20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、RRCメッセージに係る設定情報等である。
 制御部240は、実施例において説明したように、RRCメッセージを送受信する無線通信を制御する。また、制御部240は、基地局装置10から無線通信に係る情報を受信して、当該情報に基づいてユーザ装置20の無線通信を制御し、必要な情報を基地局装置10に報告する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図18及び図19)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局装置10、ユーザ装置20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本開示の一実施の形態に係る基地局装置10及びユーザ装置20のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ装置20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ装置20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局装置10及びユーザ装置20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図18に示した基地局装置10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図19に示したユーザ装置20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局装置10及びユーザ装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、上位レイヤのメッセージのプロトコルのバージョンに係る情報を受信する受信部と、前記プロトコルのバージョンに係る情報に基づいて、前記上位レイヤを終端し、かつ分離する複数の上位ネットワークノード間で同一のプロトコルのバージョンを使用する制御部とを有し、前記複数の上位ネットワークノードのうちのひとつであるネットワークノードが提供される。
 上記の構成により、複数のCUがDUに接続される構成において、ネットワークノードであるCU又はDUは、CU-DU間で使用されるRRCバージョンを適切に決定することができる。すなわち、無線通信システムにおけるネットワークノード間で整合されたプロトコルのバージョンを使用することができる。
 前記プロトコルのバージョンに係る情報を、前記複数の上位ネットワークノードのいずれかに送信する送信部をさらに有してもよい。当該構成により、複数のCUがDUに接続される構成において、ネットワークノードであるCUは、CU-DU間で使用されるRRCバージョンを協調して決定することができる。
 前記複数の上位ネットワークノード間で同一のプロトコルのバージョンは、前記複数の上位ネットワークノード間で最も低いバージョンであってもよい。当該構成により、CUは、複数のCU間で使用するRRCバージョンを最も低いRRCバージョンに統一することができる。
 前記制御部は、下位ネットワークノードから上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立要求を受信した場合、前記複数の上位ネットワークノード間で最も低いプロトコルのバージョンを含むインタフェース確立応答を前記下位ネットワークノードに送信してもよい。当該構成により、CUは、DUからインタフェース確立要求を受信した場合、他のCUと強調されたRRCバージョンをインタフェース確立応答でDUに通知することができる。
 また、本発明の実施の形態によれば、上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立要求を上位レイヤを終端し、かつ分離する複数の上位ネットワークノードのいずれかに送信する送信部と、上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立応答を前記インタフェース確立要求を送信した上位ネットワークノードから受信する受信部と、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記インタフェース確立要求を送信した上位ネットワークノード以外の上位ネットワークノードに送信する制御部とを有するネットワークノードが提供される。
 上記の構成により、複数のCUがDUに接続される構成において、ネットワークノードであるCU又はDUは、CU-DU間で使用されるRRCバージョンを適切に決定することができる。すなわち、無線通信システムにおけるネットワークノード間で整合されたプロトコルのバージョンを使用することができる。
 前記制御部は、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンが、既に確立されているインタフェースのプロトコルのバージョンよりも低い場合、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記既に確立されているインタフェースに対応する上位ネットワークノードに送信してもよい。当該構成により、DUは、既に確立されているインタフェースのプロトコルのバージョンよりも低いバージョンを含むインタフェース確立応答をCUから受信した場合、他のCUに低いバージョンを既に確立されているインタフェースに対応するCUに送信して、CU間でRRCバージョンを統一することができる。
 前記制御部は、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンが、既に確立されているインタフェースのプロトコルのバージョンよりも低い場合、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記既に確立されているインタフェースに対応する上位ネットワークノードに、インタフェースを維持して設定変更要求に含めて送信するか、又はインタフェースを切断して再度インタフェース確立要求に含めて送信してもよい。当該構成により、DUは、既に確立されているインタフェースのプロトコルのバージョンよりも低いバージョンを含むインタフェース確立応答をCUから受信した場合、他のCUに低いバージョンを既に確立されているインタフェースに対応するCUに送信して、CU間でRRCバージョンを統一することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置10及びユーザ装置20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局装置10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置20との通信のために行われる様々な動作は、基地局装置10及び基地局装置10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局装置10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ装置20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局装置10が有する機能をユーザ装置20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ装置20に対して、無線リソース(各ユーザ装置20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、CU10は、上位ネットワークノードの一例である。DU10は、下位ネットワークノードの一例である。RRCメッセージは、上位レイヤのメッセージの一例である。RRCバージョンは、上位レイヤのメッセージのプロトコルのバージョンの一例である。F1 setup Req.は、インタフェース確立要求の一例である。F1 setup Resp.は、インタフェース確立応答の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局装置
110   送信部
120   受信部
130   設定部
140   制御部
20    ユーザ装置
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (7)

  1.  上位レイヤのメッセージのプロトコルのバージョンに係る情報を受信する受信部と、
     前記プロトコルのバージョンに係る情報に基づいて、前記上位レイヤを終端し、かつ分離する複数の上位ネットワークノード間で同一のプロトコルのバージョンを使用する制御部とを有し、
     前記複数の上位ネットワークノードのうちのひとつであるネットワークノード。
  2.  前記プロトコルのバージョンに係る情報を、前記複数の上位ネットワークノードのいずれかに送信する送信部をさらに有する請求項1記載のネットワークノード。
  3.  前記複数の上位ネットワークノード間で同一のプロトコルのバージョンは、前記複数の上位ネットワークノード間で最も低いバージョンである請求項1記載のネットワークノード。
  4.  前記制御部は、下位ネットワークノードから上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立要求を受信した場合、前記複数の上位ネットワークノード間で最も低いプロトコルのバージョンを含むインタフェース確立応答を前記下位ネットワークノードに送信する請求項3記載のネットワークノード。
  5.  上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立要求を上位レイヤを終端し、かつ分離する複数の上位ネットワークノードのいずれかに送信する送信部と、
     上位レイヤのメッセージのプロトコルのバージョンを含むインタフェース確立応答を前記インタフェース確立要求を送信した上位ネットワークノードから受信する受信部と、
     前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記インタフェース確立要求を送信した上位ネットワークノード以外の上位ネットワークノードに送信する制御部とを有するネットワークノード。
  6.  前記制御部は、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンが、既に確立されているインタフェースのプロトコルのバージョンよりも低い場合、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記既に確立されているインタフェースに対応する上位ネットワークノードに送信する請求項5記載のネットワークノード。
  7.  前記制御部は、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンが、既に確立されているインタフェースのプロトコルのバージョンよりも低い場合、前記インタフェース確立応答に含まれる上位レイヤのメッセージのプロトコルのバージョンを、前記既に確立されているインタフェースに対応する上位ネットワークノードに、インタフェースを維持して設定変更要求に含めて送信するか、又はインタフェースを切断して再度インタフェース確立要求に含めて送信する請求項6記載のネットワークノード。
PCT/JP2019/005432 2019-02-14 2019-02-14 ネットワークノード WO2020166028A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/429,869 US20220110171A1 (en) 2019-02-14 2019-02-14 Network node
PCT/JP2019/005432 WO2020166028A1 (ja) 2019-02-14 2019-02-14 ネットワークノード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005432 WO2020166028A1 (ja) 2019-02-14 2019-02-14 ネットワークノード

Publications (1)

Publication Number Publication Date
WO2020166028A1 true WO2020166028A1 (ja) 2020-08-20

Family

ID=72045254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005432 WO2020166028A1 (ja) 2019-02-14 2019-02-14 ネットワークノード

Country Status (2)

Country Link
US (1) US20220110171A1 (ja)
WO (1) WO2020166028A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3927109A4 (en) * 2019-02-14 2022-09-14 Ntt Docomo, Inc. NETWORK NODE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030529A1 (ja) * 2016-08-12 2018-02-15 富士通株式会社 無線基地局、無線装置、無線制御装置、無線通信システム、通信方法および無線端末

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608830B2 (ja) * 2001-08-22 2011-01-12 日本電気株式会社 移動通信システム及び通信制御方法並びにこれに用いる移動端末及びその制御方法
KR101684999B1 (ko) * 2010-09-27 2016-12-09 삼성전자 주식회사 휴대 단말기의 네트워크 연결 방법 및 장치
TW201216756A (en) * 2010-10-12 2012-04-16 Acer Inc Wireless communications devices, systems, and connection establishment methods
US9572171B2 (en) * 2013-10-31 2017-02-14 Intel IP Corporation Systems, methods, and devices for efficient device-to-device channel contention
US9655036B2 (en) * 2014-05-12 2017-05-16 Futurewei Technologies, Inc. System and method for utilizing stored higher layer information
US10820363B2 (en) * 2016-07-28 2020-10-27 Lg Electronics Inc. Method for performing RRC connection re-establishment procedure and device supporting the same
CA3024596A1 (en) * 2017-11-16 2019-05-16 Comcast Cable Communications, Llc Beam paging assistance
KR20200138366A (ko) * 2018-04-02 2020-12-09 텔레폰악티에볼라겟엘엠에릭슨(펍) 분리된 기지국에서 rrc 버전의 처리
EP3927109A4 (en) * 2019-02-14 2022-09-14 Ntt Docomo, Inc. NETWORK NODE
WO2020166030A1 (ja) * 2019-02-14 2020-08-20 株式会社Nttドコモ ネットワークノード
US20220140861A1 (en) * 2019-02-19 2022-05-05 Huawei Technologies Co., Ltd. Method and Apparatus for Service Continuity Across LF and mmWave
US11477849B2 (en) * 2019-07-30 2022-10-18 Huawei Technologies Co., Ltd. Method and apparatus for cooperation among devices in transmissions over a Uu interface
US11343846B2 (en) * 2020-02-04 2022-05-24 Altiostar Networks, Inc. Status messaging protocol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030529A1 (ja) * 2016-08-12 2018-02-15 富士通株式会社 無線基地局、無線装置、無線制御装置、無線通信システム、通信方法および無線端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; F1 application protocol (F1 AP ) (Release 15)", 3GPP TS 38. 473 V.15.4.1, 14 January 2019 (2019-01-14), XP051687018, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/38_series/38.473/38473-f41.zip> [retrieved on 20190306] *
CATT: "Discussion on RRC version in DC", 3GPP TSG-RAN WG3 #102 R3-186561, 2 November 2018 (2018-11-02), pages 1 - 44, XP051482697, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/TSGR3_102/Docs/R3-186561.zip> [retrieved on 20190306] *

Also Published As

Publication number Publication date
US20220110171A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP2023156440A (ja) 端末、基地局及び通信方法
JP7241172B2 (ja) ユーザ装置及び基地局装置
JP7369211B2 (ja) 端末、基地局及び通信方法
WO2020166030A1 (ja) ネットワークノード
WO2020100559A1 (ja) ユーザ装置及び基地局装置
WO2020100379A1 (ja) ユーザ装置及び基地局装置
WO2020170405A1 (ja) ユーザ装置及び基地局装置
WO2020166028A1 (ja) ネットワークノード
WO2020166006A1 (ja) ネットワークノード
JP7443402B2 (ja) 端末、基地局、通信システム及び通信方法
WO2020246185A1 (ja) 端末及び基地局
WO2021038920A1 (ja) 端末、基地局及び通信方法
JP7313423B2 (ja) 基地局、通信方法、及び無線通信システム
WO2020170445A1 (ja) ユーザ装置及び基地局装置
WO2020161824A1 (ja) ユーザ装置及び基地局装置
WO2020157873A1 (ja) ユーザ装置及び基地局装置
WO2020157874A1 (ja) ユーザ装置及び基地局装置
WO2020161907A1 (ja) ユーザ装置
WO2020166012A1 (ja) ネットワークノード
JP7373559B2 (ja) ユーザ装置及び無線通信システム
JP7273160B2 (ja) 端末、基地局及び通信方法
JP7438245B2 (ja) 端末及び通信方法
WO2021240836A1 (ja) 端末及び通信方法
WO2020161912A1 (ja) ネットワークノード
WO2020179037A1 (ja) ユーザ装置及び基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP