WO2020164834A1 - Détermination de trajectoire pour machines agricoles au moyen de cartes tramées - Google Patents

Détermination de trajectoire pour machines agricoles au moyen de cartes tramées Download PDF

Info

Publication number
WO2020164834A1
WO2020164834A1 PCT/EP2020/050794 EP2020050794W WO2020164834A1 WO 2020164834 A1 WO2020164834 A1 WO 2020164834A1 EP 2020050794 W EP2020050794 W EP 2020050794W WO 2020164834 A1 WO2020164834 A1 WO 2020164834A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
environment
agricultural
agricultural machine
trajectory
Prior art date
Application number
PCT/EP2020/050794
Other languages
German (de)
English (en)
Inventor
Zhihu Chen
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2020164834A1 publication Critical patent/WO2020164834A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Definitions

  • the present invention relates to the field of autonomously or partially autonomously driving agricultural machinery.
  • the present invention relates to a device, a method, a computer program product, a computer-readable storage medium and a data carrier signal for controlling such a medium
  • DE 10 2012 201 333 A1 discloses an agricultural machine that is provided with a system for automatically setting a processing parameter.
  • the machine comprises an electronic control device which can be operated to derive from sensor signals in which topographical zone of a number of topographical zones of a field the agricultural machine is located. Based on this, an actuator of the machine is controlled depending on the respective topographical zone.
  • these systems known from the prior art have the disadvantage that the detection of the objects on the usable area does not work with sufficient accuracy and without problems.
  • boundary lines between different field pieces can no longer be recognized or cannot be recognized with the required reliability due to a decrease in the reflectivity of the material marking the boundary lines. This leads to incorrect control of the agricultural machine.
  • sensors with a higher resolution that can circumvent this disturbance are usually very expensive.
  • the present invention is therefore based on the object of carrying out the agricultural processing of the usable areas with increased reliability and safety with at least the same effort.
  • the object is achieved by a device, a method, a computer program product, a computer-readable storage medium and a
  • the agricultural machine can be designed as a one-piece vehicle or articulated vehicle. It can include a swather, a hay machine, a combine harvester, a spray machine, a sprayer or another vehicle that can be used in agriculture.
  • the agricultural machine is an autonomous or semi-autonomous vehicle. This means that the agricultural machine can act entirely (in the case of a fully autonomous vehicle) or partially (in the case of a partially autonomous vehicle) without the influence of a human driver.
  • the control device can be located in the agricultural machine, or outside or partially outside the agricultural machine.
  • the device can be part of a central monitoring device for the agricultural area.
  • Communication can be wireless, e.g. via BlueTooth, infrared, local field communication (NFC), radio, internet, intranet, cloud systems and / or wired systems.
  • the raster map unit and the trajectory unit can, individually or together, form an evaluation unit of the control device.
  • the evaluation unit can comprise a central processing unit (CPU) or a graphic processing unit (GPU).
  • the evaluation unit can be an ECU or an ECM.
  • the control device is a device / arrangement that is superordinate to the ECU or the ECM.
  • the environment sensor system for generating environment data can comprise one or more environment sensors.
  • the environment sensors preferably include a radar sensor (e.g. a broadband radar sensor or a ground penetrating radar sensor, GPR), a lidar sensor, an ultrasonic sensor and / or a camera, for example a stereo camera or 3D camera or an infrared camera.
  • the environment sensor system can be attached to the agricultural machine and thus record the environment of the agricultural machine moving on the agricultural area in real time.
  • the environment sensor system can be part of a central monitoring device for monitoring the usable area, the monitoring device being connected to the control device and / or the agricultural machine.
  • the multiple environment sensors of the environment sensor system can be arranged at different positions of the agricultural machine and / or the central monitoring device. At least one of the environment sensors can be arranged on another vehicle, for example on another agricultural machine on the agricultural area.
  • the environment data was created when the agricultural area was recorded and thus includes one or more objects on the usable area, such as grain segments, driveways, buildings and / or other plantings.
  • the environment data are fed into the control device for processing via a data interface.
  • the raster map unit or the evaluation unit is able to extract several raster map elements from the surrounding data which together form the Form raster map. These grid map elements each represent one of several surface elements of the area of the usable area that was detected by the environment sensors.
  • a confidence value is assigned to each grid map element.
  • the confidence value is a frequency or probability value with regard to an association rule. For example, the confidence value indicates the frequency that the same pattern is detected in the respective grid map element in several data sequences of the surrounding data. The multiple data sequences may have been generated at different times. If a certain object (such as a tree) is detected several times in the data sequences, the contour or portrait of this object can be detected as the same pattern.
  • the multiple data sequences can have been generated from different viewing angles of the environment sensor system. This is the case, for example, when the sensor system comprises several sensors, these sensors being positioned differently. If at the same point in time or at different points in time several sensors of the environment sensor system capture the usable area from different angles, an associated data sequence is generated by each sensor. If a certain object (such as a tree) is recorded several times in the multiple data sequences, the contour or portrait of this object can be detected as the same pattern.
  • a certain object such as a tree
  • the confidence value can be calculated according to the proportion of data sequences in which the same pattern is detected in the total amount of recorded data sequences. If the same pattern is detected 90 times in 100 recorded data sequences, for example, the confidence value is 90%.
  • the raster map unit or the evaluation unit can enter a correlation value between the data relating to this object in the data Determine sequences.
  • the confidence value can be weighted on the basis of the calculated correlation value. If the correlation value is a predefined
  • the weighting factor can be 1. Otherwise, the weighting factor is less than 1 and is, for example, proportional to the calculated correlation value.
  • the grid map unit or the evaluation unit can use a pre-stored database in which predefined patterns for various objects can be called up.
  • predefined patterns for various objects can be called up.
  • a high confidence value of a grid map element means that the associated surface element is unavailable or occupied with a correspondingly high degree of probability.
  • a high confidence value of a grid map element means that the associated surface element can be driven on or is unoccupied with a correspondingly high degree of probability.
  • the confidence value can be an occupancy rate.
  • the occupancy rate of a grid map element indicates the probability that the associated surface element of the usable area is occupied by an obstacle (e.g. trees, buildings, animals, vehicles, people, grain segments).
  • the environment sensor system is also preferably able to generate three-dimensional environment data (i.e. with spatial data with regard to three axes of a Cartesian coordinate system or with regard to a spherical coordinate system). In this way a three-dimensional raster map can be created.
  • the trajectory unit or the evaluation unit Based on the generated grid map, the trajectory unit or the evaluation unit generates a trajectory for the agricultural machine.
  • the trajectory includes an area on the agricultural area that the agricultural machine can drive on.
  • the passability can be derived from the confidence values of the grid map elements.
  • the drivable area is preferably in front of the agricultural machine.
  • the trajectory can be calculated using a cost function.
  • the control device can furthermore comprise a signal unit which, based on the generated trajectory, can generate a control signal for the agricultural machine, for example for an actuator of the agricultural machine.
  • the control signal can be saved and made available externally.
  • the control signal and / or the grid map can be output from the control device via an output interface to the agricultural machine (eg the actuator) or to a control center connected to the agricultural machine that can simultaneously coordinate several agricultural machines.
  • the trajectory can be calculated particularly reliably.
  • the agricultural machine can thus be controlled in its movement on the agricultural area in a safer and more reliable manner. Collisions of the agricultural machine with another agricultural machine, another vehicle, people and other objects on the usable area can be avoided or at least reduced more effectively. In particular, damage to the harvests can be minimized.
  • the agricultural machine is advantageously independent of a trajectory planning supplied externally (i.e. from an entity outside the agricultural machine).
  • the trajectory can be updated and / or optimized at any time, taking into account vehicle data such as speed, acceleration, wheel speed, load and / or deflection angle between a tractor and a trailer in the case of an articulated agricultural machine.
  • the method further comprises calculating a plurality of possible trajectories and selecting a trajectory from the plurality of trajectories based on a cost function.
  • the cost function can be such that its value is higher, the more likely a condition is met.
  • the condition that is taken into account by the trajectory unit or the evaluation unit of the control device can include the following examples, although these are not restrictive for the present invention: minimum path length of the agricultural machine, avoidance of a collision with another vehicle, people and / or buildings , Avoiding driving into harvested areas.
  • the method further comprises obtaining a map of the surroundings for the agricultural area.
  • the map of the surroundings can be generated by another sensor or a navigation system, for example the global navigation satellite system (GNSS).
  • the area map can be a camera image that includes a plurality of pixels.
  • One or more color values of a color system, such as the RGB system, can be assigned to each pixel.
  • the environment map can preferably be displayed by a display device (such as a screen, projector).
  • the environment map can be used to optimize the generation of trajectories, in particular the generated trajectory.
  • the method further comprises combining the environment map with the raster map and / or the trajectory.
  • the trajectory can be optimized.
  • the grid map and / or trajectory can be superimposed on the environment map.
  • the superimposition preferably takes place by means of a coordinate transformation, in which, for example, coordinate information of the raster map and / or the trajectory is converted into coordinates of the coordinate system to which the environment map relates (or the coordinates existing in the environment map are present).
  • a grid map and / or trajectory already contained in the environment map can be replaced by the above-described grid map created according to the invention or the trajectory created according to the invention.
  • the computer program product according to the invention is designed to be loaded into a memory of a computer and comprises software code sections with which the method steps of the method according to the invention are carried out when the computer program product is running on the computer.
  • a program is part of the software of a data processing system, for example an evaluation device or a computer.
  • Software is a collective term for programs and associated data.
  • the complement to software is hardware.
  • Hardware describes the mechanical and electronic alignment of a data processing system.
  • a computer is an evaluation device.
  • Computer program products generally comprise a sequence of instructions which, when the program is loaded, cause the hardware to carry out a specific method that leads to a specific result.
  • the computer program product causes the inventive technical effect described above.
  • the computer program product according to the invention is platform independent. That means it can run on any computing platform.
  • the computer program product is preferably executed on an evaluation device according to the invention for detecting the surroundings of the vehicle.
  • the software code sections are written in any programming language, for example in Python.
  • the computer-readable storage medium is, for example, an electronic, magnetic, optical or magneto-optical storage medium.
  • the data carrier signal is a signal which the computer program product from a storage medium on which the computer program product is stored to another entity, for example another storage medium, a server, a cloud system or a data processing facility , transmits.
  • FIG. 1 shows a schematic representation of a device according to the invention according to one embodiment
  • Fig. 2 is a schematic representation of an agricultural machine on an agricultural economic area
  • FIG. 3 shows a schematic illustration of a raster map based on
  • Fig. 4 is a schematic representation of a further grid map, which one
  • 5A shows a further schematic illustration of an agricultural machine using the example of a spraying machine on the agricultural area
  • FIG. 5B shows a schematic illustration of the spray machine from FIG. 5, wherein several trajectories can be seen.
  • the control device 10 comprises a data interface for receiving environmental data which are generated by an environmental sensor system 22 when detecting a useful agricultural area 60.
  • the environment sensor system 22 can include one or more environment sensors, which are configured as a radar sensor, lidar sensor, image sensor, camera (stereo camera, infrared camera), RFID receiver and / or ultrasonic sensor.
  • the control device 10 also includes a grid map unit 14 for evaluating the surroundings data in order to create a grid map 222 (see FIG. 3) with a plurality of grid map elements 224.
  • the grid map elements 224 each represent one of several surface elements (62) of the part of the usable area 60 detected by the surroundings sensor system 22.
  • Each grid map element 224 is assigned a confidence value (for example an occupancy rate).
  • the control device 10 further comprises a trajectory unit 16 for generating a trajectory 226 (see FIG. 5B) based on the raster map 222.
  • the trajectory 226 calculated in this way is used in a control signal for the agricultural machine 50.
  • FIG. 1 shows by way of example that an output interface 20 can be provided in the control device 10 in order to output the raster map 222 to an external entity, for example the agricultural machine 50 or a control center connected to it.
  • an output interface 20 can be provided in the control device 10 in order to output the raster map 222 to an external entity, for example the agricultural machine 50 or a control center connected to it.
  • a signal unit 18 can be provided in the control device 10, which generates a control signal based on the trajectory 226 and / or the raster map 224.
  • the control signal can be output via the output interface 20 to the external entity, such as the agricultural machine 50.
  • a map interface 26 for receiving a map of the surroundings 242 generated by a map unit 24 can be provided in the control device 10.
  • the map unit 24 can comprise a navigation unit that belongs, for example, to a global navigation satellite system (GNSS).
  • GNSS global navigation satellite system
  • the environment map 242 can thus be a navigation map.
  • the environment map 242 can, as shown by way of example in FIG. 1, be output together with the grid map 222 to the external entity, or alternatively, when the trajectory 226 is generated by the trajectory unit 16, be taken into account.
  • the grid map 222 and / or the trajectory 226 can in particular be superimposed on the environment map 242 (see FIG. 4).
  • FIG. 2 shows a schematic representation of the exemplary agricultural machine 50 on an agricultural area 60.
  • the environment sensor system 22 is preferably attached to the agricultural machine 50. In this way, the surroundings can be recorded in real time during the agricultural processing operations of the agricultural machine 50 and independently of external sensor systems (i.e. outside of the agricultural machine 50).
  • the grid map 222 comprises two types of grid map elements, namely first and second grid map elements 224a, 224b.
  • the multiple first grid map elements 224a have a higher confidence value in the sense of an occupancy rate, while the multiple second grid map elements 224b are assigned a comparatively lower confidence value in the sense of an occupancy rate.
  • the surface elements of the usable area 60 which are represented by the first and second raster map elements 224a, b, are occupied by obstacles with the corresponding high and low probability.
  • the raster map 222 can be superimposed on an environment map 242, which is designed here as a camera image.
  • An overlay is preferably carried out by means of a coordinate transformation.
  • the coordinates of the raster map elements 224a, 224b can be converted into coordinates of the camera coordinate system.
  • the evaluation unit 15 can comprise a calibration unit for this purpose.
  • FIGS. 5A-B several trajectories 226 can be generated on the basis of the generated raster map 222.
  • the agricultural machine 50 shown there is a spraying machine which comprises a spraying device 54 arranged at the rear end of the main machine body of the spraying machine 50.
  • the spray device 54 is used to spray the usable area 60 with certain pesticides.
  • FIG. 5A-B several driveways 52 can be seen, which are elements 62 between Getreideseg.
  • grid elements 224b are generated for the areas of the routes 52, to which a low occupancy rate is assigned.
  • grid elements 224a are generated for the areas of the grain segments 62, to which a high occupancy rate is assigned.
  • the trajectories 226 are generated based on the distribution of the confidence values or the occupancy rate on the grid map 222.
  • the trajectories 226 thus run along the already existing routes 52.
  • the best trajectory 226 can be selected with the aid of a cost function, the cost function being linked to a predefined condition as described above.

Abstract

Procédé de commande d'une machine agricole (50) consistant à obtenir des données environnementales qui sont générées par un système de détection environnementale (22) lors de la détection d'une surface agricole utile (60), évaluer les données environnementales pour établir une carte tramée (222) comportant plusieurs éléments de carte tramée (224) qui représentent chacun un des éléments (62) de la surface utile (60) et auxquels est associée une valeur de confiance, et, sur la base de la carte tramée (222), génération d'une trajectoire (226) destinée à être utilisée dans un signal de commande pour la machine agricole (50).
PCT/EP2020/050794 2019-02-14 2020-01-14 Détermination de trajectoire pour machines agricoles au moyen de cartes tramées WO2020164834A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019201914.5A DE102019201914A1 (de) 2019-02-14 2019-02-14 Trajektoriebestimmung für Landmaschinen unter Verwendung von Rasterkarten
DE102019201914.5 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164834A1 true WO2020164834A1 (fr) 2020-08-20

Family

ID=69167837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050794 WO2020164834A1 (fr) 2019-02-14 2020-01-14 Détermination de trajectoire pour machines agricoles au moyen de cartes tramées

Country Status (2)

Country Link
DE (1) DE102019201914A1 (fr)
WO (1) WO2020164834A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462805A (zh) * 2020-11-19 2021-03-09 西安理工大学 基于改进蚁群算法的5g网联无人机航迹规划方法
CN117596551A (zh) * 2024-01-19 2024-02-23 浙江大学建筑设计研究院有限公司 一种基于手机信令数据的绿道网用户行为还原方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103370A1 (de) 2022-02-14 2023-08-17 Deere & Company Verfahren zur sensorgestützten Führung einer Arbeitsmaschine und entsprechende Anordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761084A1 (fr) * 1995-09-06 1997-03-12 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé de commande et de régulation de machines agricoles de travail et/ou de distribution
EP0821296A2 (fr) * 1996-07-23 1998-01-28 CLAAS KGaA Système de planification d'itinéraire pour des véhicules agricoles
EP0917816A1 (fr) * 1997-11-20 1999-05-26 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé pour ajuster et/ou régler des machines agricoles de traitement ou d'épandage
EP1840690A2 (fr) * 2006-03-30 2007-10-03 CLAAS Selbstfahrende Erntemaschinen GmbH Procédé destiné à la fabrication d'un plan de route pour systèmes de machines agricoles
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
DE102016209437A1 (de) * 2016-05-31 2017-11-30 Deere & Company Selbsttätiges Lenksystem zur Führung eines landwirtschaftlichen Fahrzeugs über ein Feld und entsprechendes Verfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761084A1 (fr) * 1995-09-06 1997-03-12 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé de commande et de régulation de machines agricoles de travail et/ou de distribution
EP0821296A2 (fr) * 1996-07-23 1998-01-28 CLAAS KGaA Système de planification d'itinéraire pour des véhicules agricoles
EP0917816A1 (fr) * 1997-11-20 1999-05-26 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé pour ajuster et/ou régler des machines agricoles de traitement ou d'épandage
EP1840690A2 (fr) * 2006-03-30 2007-10-03 CLAAS Selbstfahrende Erntemaschinen GmbH Procédé destiné à la fabrication d'un plan de route pour systèmes de machines agricoles
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
DE102016209437A1 (de) * 2016-05-31 2017-11-30 Deere & Company Selbsttätiges Lenksystem zur Führung eines landwirtschaftlichen Fahrzeugs über ein Feld und entsprechendes Verfahren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462805A (zh) * 2020-11-19 2021-03-09 西安理工大学 基于改进蚁群算法的5g网联无人机航迹规划方法
CN117596551A (zh) * 2024-01-19 2024-02-23 浙江大学建筑设计研究院有限公司 一种基于手机信令数据的绿道网用户行为还原方法及装置
CN117596551B (zh) * 2024-01-19 2024-04-09 浙江大学建筑设计研究院有限公司 一种基于手机信令数据的绿道网用户行为还原方法及装置

Also Published As

Publication number Publication date
DE102019201914A1 (de) 2020-08-20

Similar Documents

Publication Publication Date Title
EP3381281B1 (fr) Procédé et dispositif de lutte contre des organismes vivants indésirables sur un champ
EP3305052B1 (fr) Dispositif de commande, tracteur avec un dispositif de commande et procédé pour un dispositif de commande
WO2020164834A1 (fr) Détermination de trajectoire pour machines agricoles au moyen de cartes tramées
EP3782467B1 (fr) Procédé d'identification des mauvaises herbes dans un rang défini de plantes d'une surface agricole
EP3255973B1 (fr) Dispositif d'épandage de liquides et procédé pour le contrôle du mouvement d'au moins deux bras d'extension d'un pulvérisateur agricole
DE102016212623A1 (de) UAV-basiertes Abfühlen für Arbeitsabläufe in einem Arbeitsbereich
DE102017217391A1 (de) Landwirtschaftliches Arbeitsfahrzeug
WO2020182564A1 (fr) Système d'aide au pilotage basé sur la vision pour des véhicules terrestres
DE102016209437A1 (de) Selbsttätiges Lenksystem zur Führung eines landwirtschaftlichen Fahrzeugs über ein Feld und entsprechendes Verfahren
EP3738420B1 (fr) Procédé de fonctionnement d'un engin agricole automatique
AT521647A1 (de) Verfahren und System zur Datenaufbereitung, zum Trainieren eines künstlichen neuronalen Netzes und zum Analysieren von Sensordaten
EP3895531B1 (fr) Système d'épandage agricole, procédé d'ajustement d'une quantité d'application, ainsi que machine d'épandage agricole
DE102019114866A1 (de) Steuersystem und Verfahren zum Betreiben einer landwirtschaftlichen Arbeitsmaschine sowie landwirtschaftliche Arbeitsmaschine
DE102019203394A1 (de) Verfahren zum Einstellen eines Parameters einer landwirtschaftlichen Spritzvorrichtung
EP3663881B1 (fr) Procédé de commande d'un véhicule autonome en fonction des vecteurs de mouvement estimés
EP3887915B1 (fr) Dispositif pour localiser une machine agricole en fonction de données de détection et par segmentation d'image
EP4052550B1 (fr) Dispositif de compensation de la suspension latérale pour la viticulture
DE60303577T2 (de) Verfahren zum Überwachen der Umgebung eines Fahrzeugs
DE102019206901A1 (de) Landwirtschaftliche Umfelderkennung zur Kollisionsvermeidung mit Hilfe einer Drohne
WO2019179756A1 (fr) Procédé de détermination d'une hauteur de peuplement de plantes de plein champ
WO2020164833A1 (fr) Procédé de commande d'une machine agricole sur la base de la détection d'un tracé de délimitation sur une carte tramée
WO2020160863A1 (fr) Dispositif de planification d'itinéraire pour une machine agricole en fonction de données de détection et par segmentation d'image
DE102019202299B4 (de) Verfahren zur Online-Kalibrierung und Kalibriereinrichtung
DE102020214075A1 (de) Verfahren zum Steuern einer Einheit einer mobilen landwirtschaftlichen Vorrichtung
DE102019201908A1 (de) Sensorbasierte Bewegungsbegrenzung von Landmaschinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700812

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20700812

Country of ref document: EP

Kind code of ref document: A1