WO2020162729A1 - 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치 - Google Patents

무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치 Download PDF

Info

Publication number
WO2020162729A1
WO2020162729A1 PCT/KR2020/001818 KR2020001818W WO2020162729A1 WO 2020162729 A1 WO2020162729 A1 WO 2020162729A1 KR 2020001818 W KR2020001818 W KR 2020001818W WO 2020162729 A1 WO2020162729 A1 WO 2020162729A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
pucch
csi
physical uplink
control channel
Prior art date
Application number
PCT/KR2020/001818
Other languages
English (en)
French (fr)
Inventor
강지원
박종현
고성원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020162729A1 publication Critical patent/WO2020162729A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present specification relates to a method and apparatus for transmitting and receiving a physical uplink control channel in a wireless communication system.
  • Mobile communication systems have been developed to provide voice services while ensuring user mobility.
  • the mobile communication system has expanded to not only voice but also data services, and nowadays, the explosive increase in traffic causes a shortage of resources and users demand higher speed services, so a more advanced mobile communication system is required. .
  • MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • Super Wideband Various technologies such as wideband support and device networking are being studied.
  • This specification proposes a method of transmitting a physical uplink control channel capable of reducing signaling overhead.
  • a method of transmitting a physical uplink control channel (PUCCH) by a terminal includes receiving configuration information related to transmission of a physical uplink control channel (PUCCH). And transmitting the physical uplink control channel (PUCCH) based on the configuration information.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is a predefined control resource set (control Resource set, CORESET) is characterized in that it is transmitted based on the spatial-related quasi-colocation (QCL) RS information.
  • CORESET control Resource set
  • the predefined control resource set may be a control resource set (CORESET) having the lowest ID in the latest slot in the active bandwidth part (active BWP).
  • the setting information may include information indicating the application of space-related QCL RS information of the predefined control resource set (CORESET).
  • the method further includes receiving downlink control information (DCI) and receiving a physical downlink shared channel (PDSCH) based on the downlink control information (DCI). can do.
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for the PDSCH.
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on spatial-related QCL RS information for the PDSCH.
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for a plurality of physical downlink shared channels (PDSCHs).
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is i) any one of a plurality of TCI states (TCI states) for the plurality of PDSCHs, ii) a plurality of TCI states for the plurality of PDSCHs (TCI states) Among them, the TCI state having a specific index, iii) the TCI state of the control resource set (CORESET) related to the scheduling of the plurality of PDSCHs, may include any one of i), ii) and iii).
  • a terminal transmitting a physical uplink control channel is operatively accessible to one or more transceivers, one or more processors, and the one or more processors. And one or more memories for storing instructions for performing operations when transmission of a physical uplink control channel (PUCCH) is performed by the one or more processors.
  • PUCCH physical uplink control channel
  • the operations include receiving configuration information related to transmission of a physical uplink control channel (PUCCH) and transmitting the physical uplink control channel (PUCCH) based on the configuration information.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is a predefined control resource set (control Resource set, CORESET) is characterized in that it is transmitted based on the spatial-related quasi-colocation (QCL) RS information.
  • CORESET control Resource set
  • the predefined control resource set may be a control resource set (CORESET) having the lowest ID in the latest slot in the active bandwidth part (active BWP).
  • the setting information may include information indicating the application of space-related QCL RS information of the predefined control resource set (CORESET).
  • the operations further include receiving downlink control information (DCI) and receiving a physical downlink shared channel (PDSCH) based on the downlink control information (DCI). can do.
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for the PDSCH.
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on spatial-related QCL RS information for the PDSCH.
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for a plurality of physical downlink shared channels (PDSCHs).
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is i) any one of a plurality of TCI states (TCI states) for the plurality of PDSCHs, ii) a plurality of TCI states for the plurality of PDSCHs (TCI states) Among them, the TCI state having a specific index, iii) the TCI state of the control resource set (CORESET) related to the scheduling of the plurality of PDSCHs, may include any one of i), ii) and iii).
  • An apparatus includes one or more memories and one or more processors that are functionally connected to the one or more memories.
  • the one or more processors are configured such that the device receives configuration information related to transmission of a physical uplink control channel (PUCCH) and transmits the physical uplink control channel (PUCCH) based on the configuration information.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is a predefined control resource set (control Resource set, CORESET) is characterized in that it is transmitted based on the spatial-related quasi-colocation (QCL) RS information.
  • CORESET control Resource set
  • One or more non-transitory computer readable media stores one or more instructions.
  • One or more commands executable by one or more processors are configured so that the UE receives configuration information related to transmission of a physical uplink control channel (PUCCH), and transmits the physical uplink control channel (PUCCH) based on the configuration information. do.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is a predefined control resource set (control Resource set, CORESET) is characterized in that it is transmitted based on the spatial-related quasi-colocation (QCL) RS information.
  • CORESET control Resource set
  • PUCCH when configuration information related to transmission of a physical uplink control channel (PUCCH) does not include spatial-related quasi-colocation (QCL) RS information for a PUCCH, PUCCH is a predefined control resource. It is transmitted based on the space-related QCL RS information of the set (control resource set, CORESET). Accordingly, even when there is no configuration of a beam for PUCCH transmission, the PUCCH may be transmitted based on the spatial-related QCL RS information applied as a default. That is, when there is no configuration of a beam for PUCCH transmission, ambiguity of a PUCCH transmission/reception operation may be removed, and a signaling procedure related to configuration of a beam for PUCCH transmission may be omitted.
  • QCL quasi-colocation
  • a PUCCH including ACK/NACK for a physical downlink shared channel (PDSCH) is transmitted based on spatial-related QCL RS information for the PDSCH. Accordingly, since the uplink transmission beam/panel is changed according to the downlink reception beam change, a separate procedure or signaling for a separate uplink beam/panel change may be omitted due to movement of the terminal.
  • PDSCH physical downlink shared channel
  • a PUCCH including ACK/NACK for a plurality of PDSCHs is transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is i) any one of a plurality of TCI states (TCI states) for the plurality of PDSCHs, ii) a plurality of TCI states for the plurality of PDSCHs (TCI states) Among them, the TCI state having a specific index, iii) the TCI state of the control resource set (CORESET) related to the DCI, and any one of i), ii) and iii) may be included. Accordingly, an ambiguity problem in the operation of a terminal/base station that occurs when ACK/NACK for a plurality of PDSCHs is transmitted in one PUCCH resource can be prevented.
  • the PUCCH when there is no beam configuration for PUCCH transmission ii) when the PUCCH includes ACK/NACK of the PDSCH iii) the PUCCH includes ACK/NACK of a plurality of PDSCHs
  • the PUCCH in any of the above cases i) to iii), ambiguity of the operation of the terminal/base station does not occur, and the PUCCH can be transmitted without an additional signaling procedure. Accordingly, in PUCCH transmission, flexibility related to beam configuration is increased.
  • FIG. 1 shows an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • FIG. 2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in this specification can be applied.
  • FIG 3 shows an example of a frame structure in an NR system.
  • FIG. 4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • FIG. 6 illustrates physical channels and general signal transmission used in a 3GPP system.
  • FIG. 7 shows an example of beam formation using SSB and CSI-RS.
  • FIG. 8 shows an example of a UL BM procedure using SRS.
  • FIG. 9 is a flowchart showing an example of a UL BM procedure using SRS.
  • FIG. 10 is a flowchart illustrating a method of transmitting a physical uplink control channel by a terminal in a wireless communication system according to an embodiment of the present specification.
  • FIG. 11 is a flowchart illustrating a method for a terminal to transmit a physical uplink control channel in a wireless communication system according to another embodiment of the present specification.
  • FIG. 12 is a flowchart illustrating a method for a base station to receive a physical uplink control channel in a wireless communication system according to an embodiment of the present specification.
  • FIG. 13 is a flowchart illustrating a method for a base station to transmit a physical uplink control channel in a wireless communication system according to another embodiment of the present specification.
  • FIG. 16 illustrates a signal processing circuit applied to the present invention.
  • FIG 17 shows another example of a wireless device applied to the present invention.
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • the base station may be represented as a first communication device, and the terminal may be represented as a second communication device.
  • Base stations are fixed stations, Node Bs, evolved-NodeBs (eNBs), Next Generation NodeBs (gNBs), base transceiver systems (BTSs), access points (APs), networks (5G) Network), AI system, road side unit (RSU), vehicle, robot, drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device have.
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module , Drone (Unmanned Aerial Vehicle, UAV), AR (Augmented Reality) device, VR (Virtual Reality) device.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle robot
  • AI module AI module
  • Drone Unmanned Aerial Vehicle, UAV
  • AR Algmented Reality
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a wireless technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A/LTE-A pro is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to the technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is called LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is called LTE-A pro
  • 3GPP NR means a technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE/NR may be collectively referred to as a 3GPP system.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • NR is an expression showing an example of 5G radio access technology (RAT).
  • RAT 5G radio access technology
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and It includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-reliable and low latency communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be handled as an application program simply using the data connection provided by the communication system.
  • the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more prevalent as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, namely mMTC. It is predicted that by 2020, there are 20 billion potential IoT devices.
  • Industrial IoT is one of the areas where 5G plays a key role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry through ultra-reliable/low-latency links, such as remote control of the main infrastructure and self-driving vehicles.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This fast speed is required to deliver TV in 4K (6K, 8K and above) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events.
  • Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
  • Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high quality connections regardless of their location and speed.
  • Another application example in the automotive field is an augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window and superimposes information that tells the driver about the distance and movement of the object.
  • wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system guides alternative courses of action to help the driver drive more safely, reducing the risk of accidents.
  • the next step will be remote control or a self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated manner.
  • the smart grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine that provides clinical care from a distance. This helps to reduce barriers to distance and can improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that management be simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • the new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow OFDM parameters different from those of LTE.
  • the new RAT system follows the existing numerology of LTE/LTE-A, but may have a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of neurology. That is, terminals operating with different numerology can coexist in one cell.
  • Numerology corresponds to one subcarrier spacing in the frequency domain.
  • different numerology can be defined.
  • the eLTE eNB is an evolution of the eNB that supports connectivity to EPC and NGC.
  • gNB A node that supports NR as well as connection with NGC.
  • New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice is a network defined by an operator to provide an optimized solution for specific market scenarios requiring specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for NG2 reference point between new RAN and NGC.
  • NG-U User plane interface used for NG3 reference point between new RAN and NGC.
  • Non-standalone NR A deployment configuration in which gNB requires LTE eNB as an anchor for control plane connection to EPC or eLTE eNB as an anchor for control plane connection to NGC.
  • Non-standalone E-UTRA Deployment configuration in which eLTE eNB requires gNB as anchor for control plane connection to NGC.
  • User plane gateway The endpoint of the NG-U interface.
  • FIG. 1 shows an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
  • NG-RAN consists of NG-RA user planes (new AS sublayer/PDCP/RLC/MAC/PHY) and gNBs that provide control plane (RRC) protocol termination for UE (User Equipment). do.
  • NG-RA user planes new AS sublayer/PDCP/RLC/MAC/PHY
  • gNBs that provide control plane (RRC) protocol termination for UE (User Equipment).
  • the gNBs are interconnected via X n interfaces.
  • the gNB is also connected to the NGC through the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the neurology may be defined by subcarrier spacing and CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals is an integer N (or, ) Can be derived by scaling. Further, even if it is assumed that a very low subcarrier spacing is not used at a very high carrier frequency, the neurology to be used can be selected independently of the frequency band.
  • various frame structures according to a plurality of pneumatics may be supported.
  • OFDM orthogonal frequency division multiplexing
  • OFDM neurology supported in the NR system may be defined as shown in Table 1.
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, if the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • numerology or subcarrier spacing (SCS)
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1, FR2 may be configured as shown in Table 2 below.
  • FR2 may mean millimeter wave (mmW).
  • Downlink (uplink) and uplink (uplink) transmission is It consists of a radio frame (radio frame) having a section of.
  • each radio frame is It is composed of 10 subframes (subframes) having an interval of. In this case, there may be one set of frames for uplink and one set of frames for downlink.
  • FIG. 2 shows a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in this specification can be applied.
  • the slots (slots) in the subframe are numbered in increasing order of, within the radio frame It is numbered in increasing order.
  • Table 3 shows the number of OFDM symbols per slot in a normal CP ( ), the number of slots per radio frame ( ), Number of slots per subframe ( ), and Table 3 shows the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in an extended CP.
  • 3 shows an example of a frame structure in an NR system. 3 is merely for convenience of description and does not limit the scope of the present invention.
  • a mini-slot may consist of 2, 4 or 7 symbols, or more or fewer symbols.
  • an antenna port In relation to the physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined such that the channel on which the symbol on the antenna port is carried can be deduced from the channel on which the other symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC/QCL (quasi co-located or quasi co-location).
  • the wide-ranging characteristics include one or more of delay spread, doppler spread, frequency shift, average received power, and received timing.
  • FIG. 4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid on the frequency domain It is composed of subcarriers, and one subframe
  • An exemplary description is made of OFDM symbols, but is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers and It is described by the OFDM symbols of. From here, to be. remind Denotes a maximum transmission bandwidth, which may vary between uplink and downlink as well as numerology.
  • the neurology And one resource grid for each antenna port p.
  • FIG. 5 shows examples of an antenna port and a resource grid for each neurology to which the method proposed in the present specification can be applied.
  • each element of the resource grid for the antenna port p is referred to as a resource element, an index pair Is uniquely identified by From here, Is an index on the frequency domain, Denotes the location of the symbol in the subframe.
  • an index pair Is used. From here, to be.
  • New Merology And resource elements for antenna port p Is the complex value Corresponds to If there is no risk of confusion, or if a particular antenna port or numerology is not specified, the indices p and Can be dropped, resulting in a complex value or Can be
  • a physical resource block (physical resource block) on the frequency domain It is defined as consecutive subcarriers.
  • Point A serves as a common reference point of the resource block grid and can be obtained as follows.
  • -OffsetToPointA for PCell downlink indicates the frequency offset between the lowest sub-carrier and point A of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection, 15 kHz subcarrier spacing for FR1 and Expressed in resource block units assuming a 60 kHz subcarrier spacing for FR2;
  • -absoluteFrequencyPointA represents the frequency-position of point A expressed as in the absolute radio-frequency channel number (ARFCN).
  • Common resource blocks set the subcarrier interval Numbered from 0 to the top in the frequency domain for.
  • Subcarrier spacing setting The center of subcarrier 0 of the common resource block 0 for'point A'coincides with'point A'.
  • the resource element for (k,l) may be given as in Equation 1 below.
  • Is It can be defined relative to point A so that it corresponds to a subcarrier centered on point A.
  • Physical resource blocks are from 0 in the bandwidth part (BWP) Numbered to, Is the number of the BWP.
  • Physical resource block in BWP i And common resource blocks The relationship between can be given by Equation 2 below.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the UE receives a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the base station to synchronize with the base station and obtain information such as a cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. Can do it (S602).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure (RACH) with respect to the base station (S603 to S606).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message)
  • PRACH physical random access channel
  • RAR Random Access Response
  • a contention resolution procedure may be additionally performed (S606).
  • the UE receives PDCCH/PDSCH (S607) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S608) may be performed.
  • the UE may receive downlink control information (DCI) through the PDCCH.
  • DCI includes control information such as resource allocation information for the terminal, and formats may be differently applied according to purpose of use.
  • control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like.
  • the UE may transmit control information such as CQI/PMI/RI described above through PUSCH and/or PUCCH.
  • the BM procedure includes a base station (e.g., gNB, TRP, etc.) and/or a terminal (e.g., UE) beam set that can be used for downlink (DL) and uplink (UL) transmission/reception.
  • a base station e.g., gNB, TRP, etc.
  • a terminal e.g., UE
  • L1 layer 1
  • L2 layer 2
  • -Beam measurement An operation in which the base station or the UE measures the characteristics of the received beamforming signal.
  • Tx beam transmission beam
  • Rx beam reception beam
  • -Beam report an operation in which the UE reports information on a beam formed signal based on beam measurement.
  • the BM procedure can be divided into (1) a DL BM procedure using a synchronization signal (SS)/physical broadcast channel (PBCH) block or a CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS).
  • each BM procedure may include Tx beam sweeping for determining the Tx beam and Rx beam sweeping for determining the Rx beam.
  • DL BM Procedure Downlink Beam Management Procedure
  • the downlink beam management procedure includes (1) the base station transmitting a beamforming DL RS (eg, CSI-RS or SS block (SSB)) and (2) the terminal transmitting a beam report. It may include steps.
  • a beamforming DL RS eg, CSI-RS or SS block (SSB)
  • SSB SS block
  • the beam reporting may include a preferred DL RS ID (identifier) (s) and L1-RSRP corresponding thereto.
  • the DL RS ID may be an SSB resource indicator (SSBRI) or a CSI-RS resource indicator (CRI).
  • SSBRI SSB resource indicator
  • CRI CSI-RS resource indicator
  • FIG. 7 shows an example of beam formation using SSB and CSI-RS.
  • an SSB beam and a CSI-RS beam may be used for beam measurement.
  • the measurement metric is L1-RSRP for each resource/block.
  • SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement.
  • SSB can be used for both Tx beam sweeping and Rx beam sweeping.
  • Rx beam sweeping using SSB may be performed while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts.
  • one SS burst includes one or more SSBs
  • one SS burst set includes one or more SSB bursts.
  • the UE may receive RRC configuration of a list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication purposes.
  • TCI transmission configuration indication
  • M may be 64.
  • Each TCI state can be set as one RS set.
  • Each ID of a DL RS for spatial QCL purpose (QCL Type D) in at least an RS set may refer to one of DL RS types such as SSB, P-CSI RS, SP-CSI RS, and A-CSI RS. .
  • initialization/update of the ID of the DL RS(s) in the RS set used for spatial QCL purposes may be performed through at least explicit signaling.
  • Table 5 shows an example of the TCI-State IE.
  • the TCI-State IE is associated with one or two DL reference signals (RS) corresponding quasi co-location (QCL) types.
  • RS DL reference signals
  • QCL quasi co-location
  • the bwp-Id parameter indicates the DL BWP where the RS is located
  • the cell parameter indicates the carrier where the RS is located
  • the reference signal parameter is a reference that is a source of quasi co-location for the target antenna port(s).
  • the target antenna port(s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
  • a corresponding TCI state ID may be indicated in NZP CSI-RS resource configuration information.
  • a TCI state ID may be indicated in each CORESET setting.
  • the TCI state ID may be indicated through DCI.
  • the antenna port is defined so that a channel carrying a symbol on an antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location). ) It can be said that it is in a relationship.
  • the channel characteristics are delay spread, Doppler spread, frequency/Doppler shift, average received power, and received timing/average delay) and Spatial RX parameter.
  • the Spatial Rx parameter means a spatial (receiving) channel characteristic parameter such as angle of arrival.
  • the UE may be configured as a list of up to M TCI-State configurations in the higher layer parameter PDSCH-Config in order to decode the PDSCH according to the detected PDCCH having DCI intended for the UE and a given serving cell.
  • the M depends on the UE capability.
  • Each TCI-State includes a parameter for setting a quasi co-location relationship between one or two DL reference signals and the DM-RS port of the PDSCH.
  • the Quasi co-location relationship is set with the higher layer parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
  • the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
  • the quasi co-location type corresponding to each DL RS is given by the higher layer parameter qcl-Type of QCL-Info, and can take one of the following values:
  • the corresponding NZP CSI-RS antenna ports may indicate/set that a specific TRS and a specific SSB and a QCL in a QCL-Type A perspective, and a specific SSB and a QCL in a QCL-Type D perspective. have.
  • the terminal receiving this indication/configuration receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used for QCL-TypeD SSB reception to the corresponding NZP CSI-RS reception. can do.
  • the UE may receive an activation command by MAC CE signaling used to map up to 8 TCI states to the codepoint of the DCI field'Transmission Configuration Indication'.
  • beam reciprocity (or beam correspondence) between Tx beam and Rx beam may or may not be established according to UE implementation. If reciprocity between the Tx beam and the Rx beam is established in both the base station and the terminal, a UL beam pair may be matched through a DL beam pair. However, when the reciprocity between the Tx beam and the Rx beam is not established at either of the base station and the terminal, a UL beam pair determination process is required separately from the DL beam pair determination.
  • the base station can use the UL BM procedure to determine the DL Tx beam without requesting the terminal to report a preferred beam.
  • UL BM may be performed through beamformed UL SRS transmission, and whether to apply the UL BM of the SRS resource set is set by (higher layer parameter) usage.
  • usage is set to'BeamManagement (BM)', only one SRS resource may be transmitted to each of a plurality of SRS resource sets at a given time instant.
  • BM BeamManagement
  • the terminal may receive one or more Sounding Reference Symbol (SRS) resource sets set by the (higher layer parameter) SRS-ResourceSet (through higher layer signaling, RRC signaling, etc.).
  • SRS Sounding Reference Symbol
  • the UE may be configured with K ⁇ 1 SRS resources (higher later parameter SRS-resource).
  • K is a natural number, and the maximum value of K is indicated by SRS_capability.
  • the UL BM procedure can be divided into a Tx beam sweeping of a terminal and an Rx beam sweeping of a base station.
  • FIG. 8 shows an example of a UL BM procedure using SRS.
  • Figure 8 (a) shows the Rx beam determination procedure of the base station
  • Figure 8 (b) shows the Tx beam sweeping procedure of the terminal.
  • FIG. 9 is a flowchart showing an example of a UL BM procedure using SRS.
  • the terminal receives RRC signaling (eg, SRS-Config IE) including a usage parameter set to'beam management' (higher layer parameter) from the base station (S910).
  • RRC signaling eg, SRS-Config IE
  • SRS-Config IE usage parameter set to'beam management' (higher layer parameter) from the base station (S910).
  • Table 6 shows an example of an SRS-Config IE (Information Element), and the SRS-Config IE is used for SRS transmission configuration.
  • the SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
  • the network may trigger transmission of the SRS resource set using the configured aperiodicSRS-ResourceTrigger (L1 DCI).
  • usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management, codebook-based or non-codebook-based transmission.
  • the usage parameter corresponds to the L1 parameter'SRS-SetUse'.
  • 'spatialRelationInfo' is a parameter indicating the setting of the spatial relation between the reference RS and the target SRS.
  • the reference RS may be SSB, CSI-RS, or SRS corresponding to the L1 parameter'SRS-SpatialRelationInfo'.
  • the usage is set for each SRS resource set.
  • the terminal determines the Tx beam for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (S920).
  • SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beam as the beam used in SSB, CSI-RS or SRS for each SRS resource.
  • SRS-SpatialRelationInfo may or may not be set for each SRS resource.
  • SRS-SpatialRelationInfo is set in the SRS resource, the same beam as the beam used in SSB, CSI-RS or SRS is applied and transmitted. However, if the SRS-SpatialRelationInfo is not set in the SRS resource, the UE randomly determines a Tx beam and transmits the SRS through the determined Tx beam (S930).
  • the UE applies the same spatial domain transmission filter (or generated from the filter) as the spatial domain Rx filter used for SSB/PBCH reception, and the corresponding SRS resource To transmit; or
  • the UE transmits SRS resources by applying the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS; or
  • the UE transmits the SRS resource by applying the same spatial domain transmission filter used for transmission of periodic SRS.
  • the terminal may or may not receive feedback on the SRS from the base station as in the following three cases (S940).
  • Spatial_Relation_Info When Spatial_Relation_Info is set for all SRS resources in the SRS resource set, the UE transmits the SRS through the beam indicated by the base station. For example, if Spatial_Relation_Info all indicate the same SSB, CRI, or SRI, the UE repeatedly transmits the SRS with the same beam. In this case, it corresponds to FIG. 8(a) for the purpose of the base station selecting the Rx beam.
  • Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
  • the terminal can freely transmit while changing the SRS beam. That is, in this case, the UE sweeps the Tx beam and corresponds to FIG. 8(b).
  • Spatial_Relation_Info can be set only for some SRS resources in the SRS resource set.
  • the SRS is transmitted with the indicated beam
  • the terminal may arbitrarily apply and transmit a Tx beam.
  • PUCCH Beam instruction PUCCH beam indication
  • the base station When the base station instructs the UE to use a beam for PUCCH transmission, it may indicate/set spatial relation info like the SRS.
  • Spatial relation info like SRS, may be SSB, CSI-RS, or SRS, and provides reference RS information in terms of a beam to be used for target PUCCH transmission.
  • the beam In the case of PUCCH, the beam can be set/instructed (differently) in units of PUCCH resources, and two methods are supported.
  • the first method is a method of always applying the corresponding spatial relation RS when transmitting the corresponding PUCCH when one spatial relation info is set as an RRC message (ie, RRC only).
  • the second method is a method of indicating a specific one to be applied to the target PUCCH resource from among a plurality of spatial relation RS information set as RRC as a MAC-CE message after setting two or more spatial relation info with an RRC message (i.e. RRC + MAC-CE).
  • PUSCH Beam instruction (PUSCH beam indication)
  • the base station When the base station instructs the terminal to use a beam for PUSCH transmission in DCI format 0_1, it may indicate an SRS resource as a reference.
  • a codebook (CB) based transmission method In the CB-based transmission scheme, similar to LTE UL MIMO, precoder information to be applied to a plurality of terminal antenna ports is indicated to DCI through TPMI and TRI.
  • beamformed SRS resource transmission is supported, and up to two SRS resources may be configured for CB based transmission. Since each SRS resource can be set with different spatial relation info, it can be transmitted while beamforming in different directions.
  • the base station receiving this may designate one of the two beams to be used when applying the PUSCH as a 1-bit SRS resource ID (SRI) field of DCI.
  • SRI SRS resource ID
  • each SRS resource is beamformed according to each spatial relation RS and transmitted to each 4 port.
  • the base station selects and indicates one of the two SRS resources as SRI, and at the same time indicates TPMI and TRI as UL DCI as MIMO precoding information to be applied to SRS ports used for transmission of the corresponding SRS resource.
  • the terminal can receive up to 4 1 port SRS resources.
  • the terminal instructed to this is transmitted to the base station by beamforming each SRS resource according to the corresponding spatial relation info, and the base station receiving this indicates one or a plurality of SRI(s) to be applied to the PUSCH transmission.
  • the base station receiving this indicates one or a plurality of SRI(s) to be applied to the PUSCH transmission.
  • the number of resources of the indicated SRS i.e., the number of SRIs
  • the number of resources of the indicated SRS becomes the same as the transmission rank. Does not.
  • each indicated 1 port SRS resource is subjected to the same beamforming (precoding) as a specific PUSCH DMRS port (or layer).
  • a specific NZP CSI-RS resource may be associated with RRC to each SRS resource (associated CSI-RS IE in 38.331), and if this is set, when the aperiodic SRS for the non-CB is triggered by DCI The associated NZP CSI-RS is also triggered.
  • the UE receives the triggered NZP CSI-RS, calculates a beam coefficient (or precoder) to be applied to each SRS resource (using channel reciprocity), and then transmits the corresponding SRS resources (sequentially).
  • the base station schedules the PUSCH in DCI format 0_0, since the SRI field in the CB based or non-CB based transmission does not exist in DCI format 0_0, a direct beam indication method through DCI is not supported.
  • the UE transmits the corresponding PUSCH using the same beam as the beam to be applied to transmission of the PUCCH resource having the lowest ID among the PUCCH resources configured in the active BWP of the corresponding cell (ie, spatial relation info is the same).
  • the NR system supports more flexible and dynamic CSI measurement and reporting.
  • the CSI measurement may include a procedure for acquiring CSI by receiving a CSI-RS and computing the received CSI-RS.
  • CM channel measurement
  • IM interference measurement
  • CSI-IM For the configuration of CSI-IM, a 4 port NZP CSI-RS RE pattern is used.
  • NR's CSI-IM-based IMR has a design similar to that of LTE's CSI-IM, and is set independently from ZP CSI-RS resources for PDSCH rate matching.
  • each port emulates an interference layer with a (preferred channel and) precoded NZP CSI-RS.
  • the base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS-based IMR.
  • the terminal measures interference by assuming a channel / interference layer for each port in the resource set.
  • a number of resources are set in a set, and the base station or network indicates a subset of NZP CSI-RS resources for channel / interference measurement through DCI.
  • Each CSI resource setting'CSI-ResourceConfig' includes a configuration for an S ⁇ 1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList).
  • the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
  • S represents the number of the set CSI-RS resource set.
  • the configuration for the S ⁇ 1 CSI resource set is each CSI resource set including CSI-RS resources (consisting of NZP CSI-RS or CSI-IM) and the SS/PBCH block used for L1-RSRP computation (SSB ) Includes resource.
  • Each CSI resource setting is located in the DL BWP (bandwidth part) identified by the higher layer parameter bwp-id.
  • the time domain behavior of the CSI-RS resource within the CSI resource setting included in the CSI-ResourceConfig IE is indicated by the higher layer parameter resourceType, and may be set to aperiodic, periodic or semi-persistent.
  • the number of set CSI-RS resource sets (S) is limited to '1'.
  • the set period (periodicity) and slot offset (slot offset) are given in the numerology of the associated DL BWP, as given by the bwp-id.
  • the same time domain behavior is configured for CSI-ResourceConfig.
  • the same time domain behavior is configured for CSI-ResourceConfig.
  • CM channel measurement
  • IM interference measurement
  • a channel measurement resource may be an NZP CSI-RS for CSI acquisition
  • an interference measurement resource may be a CSI-IM and an NZP CSI-RS for IM.
  • CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
  • the NZP CSI-RS for IM is mainly used for intra-cell interference measurement from a multi-user.
  • the UE may assume that CSI-RS resource(s) for channel measurement and CSI-IM / NZP CSI-RS resource(s) for interference measurement configured for one CSI reporting are'QCL-TypeD' for each resource. .
  • resource setting can mean a list of resource sets.
  • each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is one or more CSI-ReportConfig and each CSI-ReportConfig linked to a periodic, semi-persistent or aperiodic resource setting.
  • One reporting setting can be connected with up to three resource settings.
  • the resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference)
  • the setting is for interference measurement performed on CSI-IM or NZP CSI-RS.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM-based interference measurement
  • the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
  • each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
  • the resource setting is for channel measurement for L1-RSRP computation.
  • the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
  • the second resource setting (given by higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM. It is used for interference measurement.
  • each CSI-RS resource for channel measurement is associated with each CSI-IM resource and resource according to the order of CSI-RS resources and CSI-IM resources within the corresponding resource set. .
  • the number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
  • the UE when interference measurement is performed in the NZP CSI-RS, the UE does not expect to be set as one or more NZP CSI-RS resources in the associated resource set within the resource setting for channel measurement.
  • the UE in which the higher layer parameter nzp-CSI-RS-ResourcesForInterference is configured does not expect 18 or more NZP CSI-RS ports to be configured in the NZP CSI-RS resource set.
  • the UE assumes the following.
  • Each NZP CSI-RS port configured for interference measurement corresponds to an interfering transport layer.
  • time and frequency resources that can be used by the UE are controlled by the base station.
  • Channel state information is a channel quality indicator (CQI), a precoding matrix indicator (PMI), a CSI-RS resource indicator (CRI), an SS/PBCH block resource indicator (SSBRI), a layer It may include at least one of indicator (LI), rank indicator (RI), or L1-RSRP.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SS/PBCH block resource indicator
  • LI indicator
  • RI rank indicator
  • L1-RSRP L1-RSRP
  • the UE N ⁇ 1 CSI-ReportConfig reporting setting M ⁇ 1 CSI-ResourceConfig resource setting, and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH -Set by higher layer (provided by TriggerStateList).
  • each trigger state includes a channel and an associated CSI-ReportConfigs list indicating selectively interference resource set IDs.
  • each trigger state includes one associated CSI-ReportConfig.
  • time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
  • Periodic CSI reporting is performed on short PUCCH and long PUCCH.
  • Periodic CSI reporting period (periodicity) and slot offset (slot offset) may be set to RRC, refer to the CSI-ReportConfig IE.
  • SP CSI reporting is performed on short PUCCH, long PUCCH, or PUSCH.
  • a period and a slot offset are set to RRC, and CSI reporting is activated/deactivated by a separate MAC CE.
  • the periodicity of SP CSI reporting is set to RRC, but the slot offset is not set to RRC, and SP CSI reporting is activated/deactivated by DCI (format 0_1).
  • the initial CSI reporting timing follows the PUSCH time domain allocation value indicated by DCI, and the subsequent CSI reporting timing follows the period set by RRC.
  • SP-CSI C-RNTI For SP CSI reporting on PUSCH, a separate RNTI (SP-CSI C-RNTI) is used.
  • DCI format 0_1 includes a CSI request field, and may activate/deactivation a specific configured SP-CSI trigger state.
  • SP CSI reporting has the same or similar activation/deactivation as a mechanism having data transmission on the SPS PUSCH.
  • aperiodic CSI reporting is performed on PUSCH and is triggered by DCI.
  • AP CSI-RS timing is set by RRC.
  • timing for AP CSI reporting is dynamically controlled by DCI.
  • a method of dividing CSI from a plurality of reporting instances applied to PUCCH-based CSI reporting in LTE eg, transmission in the order of RI, WB PMI/CQI, and SB PMI/CQI
  • a method of dividing CSI from a plurality of reporting instances applied to PUCCH-based CSI reporting in LTE eg, transmission in the order of RI, WB PMI/CQI, and SB PMI/CQI
  • the NR limits the setting of a specific CSI report in the short/long PUCCH, and a CSI omission rule is defined.
  • the PUSCH symbol/slot location is dynamically indicated by DCI.
  • candidate slot offsets are set by RRC.
  • a slot offset (Y) is set for each reporting setting.
  • slot offset K2 is set separately.
  • Two CSI latency classes (low latency class, high latency class) are defined in terms of CSI computation complexity.
  • low latency CSI it is a WB CSI including a maximum of 4 ports Type-I codebook or a maximum of 4-ports non-PMI feedback CSI.
  • High latency CSI refers to CSI other than low latency CSI.
  • (Z, Z') is defined in units of OFDM symbols.
  • Z represents the minimum CSI processing time until CSI reporting is performed after receiving the Aperiodic CSI triggering DCI.
  • Z' represents the minimum CSI processing time until CSI reporting is performed after receiving the CSI-RS for the channel/interference.
  • the UE reports the number of CSIs that can be simultaneously calculated.
  • the above contents (3GPP system, frame structure, NR system, etc.) may be applied in combination with the methods proposed in the present specification to be described later, or may be supplemented to clarify the technical characteristics of the methods proposed in the present specification. .
  • RRC reconfiguration and/or MAC-CE message transmission is required to update spatial relation information.
  • CB based PUSCH codebook-based physical uplink shared channel
  • Spatial relation information of the PUCCH resource corresponding to the lowest PUCCH ID of the corresponding bandwidth part (BWP) should be updated.
  • the base station must transmit an RRC reconfiguration and/or MAC-CE message to update spatial relationship information of the corresponding PUCCH resource.
  • a spatial relation RS RS
  • an associated CSI-RS associated CSI-RS
  • a method of configuring and using a UE-specifically beamformed CSI-RS may be considered. That is, the beam to be applied to the corresponding NZP CSI-RS is changed according to the movement/rotation of the corresponding terminal.
  • the above method may cause a problem of consuming too much downlink reference signal (DL RS) resources when the base station has a large number of terminals.
  • DL RS downlink reference signal
  • SRS resource ID an SRS transmission beam ID (SRS Tx beam ID)
  • SRS resource set SRS
  • a method of defining a panel as a resource set) is being discussed.
  • a method of introducing an explicit separate ID is being discussed. In the latter case, a panel ID or group ID may be attached to each SRS resource.
  • an implicit method, an explicit method, or a panel ID is introduced, not only the UL beam change but also the UL panel change may be indicated according to the UL channel state. As a result, greater signaling/resource overhead may be caused due to the panel ID of the terminal.
  • a method of transmitting a physical uplink control channel (PUCCH) to an uplink beam/panel corresponding to a Transmission Configuration Indicator (TCI) of a physical downlink shared channel (PDSCH) may be considered.
  • PUCCH physical uplink control channel
  • TCI Transmission Configuration Indicator
  • a downlink beam reference signal (DL beam RS, DL RS related to QCL type D) of the PDSCH may be set/indicated/applied to a spatial relation RS (RS) of the PUCCH.
  • the PUCCH may include ACK/NACK for the PDSCH.
  • the UL beam/panel may be automatically changed through the DL reception beam change when the terminal moves. Accordingly, a separate procedure or signaling for UL beam/panel change may be omitted.
  • spatial relation info 'flexible' or'null'
  • The'PDSCH TCI' means (Type D) QCL reference RS information set/instructed for the corresponding PDSCH. Same as the downlink beam indication mechanism
  • the default TCI refers to QCL information (Quasi-colocation information) to be applied when the UE performs buffering before completing decoding for a beam indication with DCI.
  • the default TCI is a TCI applied to a specific set of control resources (determined by a promised rule).
  • the specific control resource set is a control resource set related to a monitored search space with the lowest CORESET ID in the most recent slot of one or more control resource sets (CORESET) within the active bandwidth portion of the serving cell.
  • the base station may schedule a plurality of PDSCHs corresponding to the same UL panel/beam.
  • the UE may assume that the UL panel/beam corresponding to a plurality of TCI states for the plurality of PDSCHs is the same. Accordingly, the UE may transmit the PUCCH based on the UL panel/beam corresponding to any one of a plurality of TCI states.
  • the plurality of PDSCHs may be scheduled to satisfy the following.
  • a plurality of TCI states for the plurality of PDSCHs may all be promised to be the same.
  • At least the Type D QCL reference RS included in each of the plurality of TCI states may be the same.
  • the Type D QCL reference RS included in any one TCI state among the plurality of TCI states is related to the Type D QCL reference RS included in the other TCI state among the remaining TCI states and QCL. There may be.
  • the UE may transmit the PUCCH through a UL panel/beam corresponding to the TCI determined based on a specific rule.
  • the UE may select any one of a plurality of TCI states according to a specific rule and transmit the PUCCH through a UL panel/beam corresponding to the corresponding TCI.
  • the TCI determined based on the'specific rule' may be any one of 1) to 3) below.
  • Default TCI i.e. the TCI of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell
  • the UE may transmit the PUCCH to a UL panel/beam corresponding to a corresponding TCI by selecting one TCI state according to a rule set/instructed by the base station or a designated PDSCH (TCI).
  • TCI PDSCH
  • Method 1-1 (Method A to Method C) described above solves the ambiguity problem that may occur when ACK/NACK for a plurality of PDSCHs are bundled and transmitted in one PUCCH resource. This is the way to do it.
  • each method will be described in more detail.
  • Method A is for ACK/NACK bundling i) TCI for each PDSCH is the same ii) At least (Type D) QCL relationship is established between Type D QCL reference RSs of each PDSCH iii) (DL beam/panel and UE between base station and terminal In the case where beam/panel matching information is shared), the UL panel/beam corresponding to a plurality of TCI states is not different, and the base station properly schedules to satisfy any one of i) to iii). Accordingly, when the UE transmits the PUCCH for bundled ACK/NACK, ambiguity does not occur even if the UE determines the UL panel/beam based on any of a plurality of PDSCHs.
  • Method B is a method of determining a PDSCH to be applied according to a rule promised between a base station and a terminal.
  • Method C is to set/instruct the UE to determine the UL panel/beam based on which PDSCH (TCI) of the plurality of PDSCHs (TCI) by the base station, or the base station based on which of the plurality of PDSCHs (TCI) This is a method of directly designating whether to determine the UL panel/beam to the terminal.
  • TCI PDSCH
  • TCI PDSCH
  • a method of transmitting a physical uplink shared channel (PUSCH) to an uplink beam/panel corresponding to the TCI of the physical downlink shared channel (PDSCH) may be considered.
  • ACK/NACK for PDSCH(s) when ACK/NACK for PDSCH(s) is transmitted to PUSCH (piggyback) (under a specific condition), (when there is no separate panel/beam indication for PUSCH and/or a proposed method) When separately configured/instructed to apply)
  • the corresponding ACK/NACK PUSCH may be transmitted to the UL beam/panel corresponding to the PDSCH TCI.
  • Method 1-1 may be applied to transmission of the PUSCH.
  • Method 1 and Method 1-1 can be equally applied to cases in which ACK/NACK is transmitted through PUSCH (under specific conditions).
  • ACK/NACK can be sent along with data to the PUSCH without sending a PUCCH, and at this time, Method 1 and Method 1-1 can be applied to the corresponding PUSCH transmission.
  • there may be a separate panel/beam indication for the corresponding PUSCH (eg, indication through SRI of DCI 0_1, indication through lowest ID PUCCH of DCI0_0, indication through associatedCSI-RS for non-CB UL).
  • a separate panel/beam indication for the PUSCH eg, indication through SRI of DCI 0_1, indication through lowest ID PUCCH of DCI0_0, indication through associatedCSI-RS for non-CB UL.
  • Method 2 may be applied, ignoring the indication/setting.
  • Method 2 may be limitedly applied only when there is no separate panel/beam indication/configuration for the PUSCH and/or when explicitly configured/instructed to apply Method 2.
  • this method may be applied to transmission of a PUSCH scheduled through DCI format0_0.
  • Method 1 and Method 2 an implicit UL panel/beam setting/instruction method for PUCCH/PUSCH reporting ACK/NACK is proposed.
  • an implicit UL panel/beam setting/instruction method for PUCCH/PUSCH reporting CSI will be described.
  • a method of transmitting a physical uplink control channel (PUCCH) to a UL beam/panel corresponding to a measurement target of CSI may be considered.
  • PUCCH physical uplink control channel
  • the UE uses a UL beam/panel corresponding to the (NZP)CSI-RS (or SSB) to be measured for the corresponding CSI.
  • the corresponding PUCCH can be transmitted.
  • the CSI includes not only report information related to precoding such as PMI, CQI, and RI, but also report information related to beam (eg, CRI/SSBRI, RSRP, SINR, etc.).
  • the CSI-RS (or SSB) resource may be indicated through CSI report (setting) setting to which the corresponding PUCCH resource belongs.
  • signaling overhead can be reduced because the UL panel/beam can be freely changed without resetting spatial relation information for PUCCH to RRC or MAC-CE.
  • the PUCCH may be transmitted based on a UL beam/panel corresponding to a CSI-RS (or SSB) resource selected and reported by the UE.
  • the UE when it is set to report a plurality of CRIs (or SSBRIs), the UE is a CSI-RS related to a CRI (or SSBRI) having the highest quality (eg, RSRP, SINR, CQI) among the plurality of CRIs (or SSBRIs)
  • the PUCCH may be transmitted based on the UL beam/panel corresponding to (or SSB).
  • Method 3-1 is ambiguity about which CSI-RS the UE should determine the UL panel/beam based on when there are multiple CSI-RSs (or SSBs) to be measured. This is a way to solve the (ambiguity) problem.
  • the terminal When it is configured to perform CSI reporting based on a plurality of CSI-RS (or SSB) resources, the terminal selects N resources of good quality among the corresponding resources and selects CSI for the corresponding N resources. Report as (N can be set by the base station).
  • the UE selects the CSI-RS (or SSB) resource having the highest quality, and thus the UL beam/panel for transmission of the PUCCH may also be determined based on the resource.
  • the PUCCH has a high probability of being transmitted through a UL panel/beam having excellent quality.
  • the UL panel/beam may be determined based on the CSI-RS (or SSB) having the highest quality among the N CSI-RS (or SSB) resources. That is, the UE may transmit CSI report information by determining a UL panel/beam based on a DL RS having the highest quality among a plurality of DL RS (CSI-RS or SSB) resources or a DL RS determined based on a specific (separate) standard. .
  • the CSI PUCCH can be transmitted based on an excellent panel/beam with a high probability without additional signaling.
  • the corresponding PUCCH may be transmitted as follows.
  • the UE determines one CSI-RS (or SSB) among a plurality of CSI-RS (or SSB) according to a specific rule, and a UL beam corresponding to the CSI-RS (or SSB) / The corresponding PUCCH can be transmitted based on the panel.
  • the CSI-RS (or SSB) based on the specific rule may be any one of 1) to 5) below.
  • the UE determines a UL panel/beam for each CSI report based on the above-described schemes, then determines one UL panel/beam according to a specific rule, and PUCCH based on the UL panel/beam. Can be transmitted.
  • the UL panel/beam based on the specific rule may be related to any one of 1) to 4) below.
  • the CSI (the CSI on/for the lowest CC ID or PCell or the default) for the basic/initial bandwidth portion of the primary cell (PCell), the primary cell (PCell), or the component carrier (CC) with the lowest ID. /initial BWP in PCell)
  • Method 3-2 is a method for resolving ambiguity in UL panel/beam selection when transmitting a plurality of CSI report information to one PUCCH resource. .
  • one CSI report is designed to be made in one PUCCH resource, but when the transmission slot positions of the set/instructed PUCCH resources overlap, the UE cannot simultaneously transmit two or more PUCCH resources, or there may be a limit of transmission power. have.
  • a separate PUCCH resource capable of transmitting a plurality of CSI report information together may be set.
  • These PUCCH resources are referred to as multi-CSI PUCCH resources for convenience.
  • measurement RS (set) may be different for each CSI, when method 3 and/or method 3-1 is applied, the UL panel/beam selected for each CSI may be different. Problems arise.
  • the specific rule is a predefined CSI priority rule (CSI) for when the size of a payload that can be sent in PUCCH/PUSCH is smaller than the total CSI payload when sending a plurality of CSIs.
  • priority rule for example, a beam report takes precedence over a CSI report. That is, the UL panel/beam may be determined based on the CSI report having the highest priority according to the CSI priority rule.
  • a rule to be applied by a base station instead of the specific rule, a rule to be applied by a base station, a DL RS (set), a CSI report, or a BWP/CC ID may be designated/set.
  • the base station can designate BWP/CC ID(s) to select/apply a UL panel/beam based on a specific DL BWP/CC (set) or UL BWP/CC (set). have.
  • a method of transmitting a physical uplink shared channel (PUSCH) to a UL beam/panel corresponding to a measurement target of CSI may be considered.
  • PUSCH physical uplink shared channel
  • the UE uses a UL beam/panel corresponding to the (NZP)CSI-RS (or SSB) to be measured for the corresponding CSI.
  • the corresponding PUSCH can be transmitted.
  • the CSI includes not only precoding-related report information such as PMI, CQI, and RI, but also beam-related report information (eg, CRI/SSBRI, RSRP, SINR, etc.), and the CSI-RS (or SSB) resource is a corresponding PUSCH resource It may be indicated through the CSI report (setting) to which it belongs.
  • precoding-related report information such as PMI, CQI, and RI
  • beam-related report information eg, CRI/SSBRI, RSRP, SINR, etc.
  • the CSI-RS (or SSB) resource is a corresponding PUSCH resource It may be indicated through the CSI report (setting) to which it belongs.
  • spatial relation information or associated CSI-RS for SRS resources for CB/non-CB for beam indication for PUSCH as RRC/MAC-CE It is possible to freely change the UL panel/beam without resetting, so that signaling overhead can be reduced. In addition, there is an advantage in that the PUSCH beam can be more dynamically changed without changing the PUCCH beam in DCI format 0_0.
  • method 4 in the case of DCI format 0_1) according to the above-described method is spatial relation information in SRS resource(s) for CB/non-CB. /
  • the associated CSI-RS associated CSI-RS
  • the mode applying method 4 is explicitly indicated (e.g., setting of a specific code point in the SRI field of DCI 0_1 and the SRI field of DCI 0_1) /Definition, it can be used limitedly when a new field indicating ON/OFF of the corresponding mode of DCI 0_1 is added).
  • the CSI-RS/SSB resource (in the case of AP CSI) may be indicated through a CSI request field of DCI, and the method includes not only the case where only CSI is transmitted to the PUSCH, but also a UCI different from CSI ( Example: ACK/NACK) and/or data (UL-SCH) may be transmitted together.
  • the PUSCH may be transmitted based on a UL beam/panel corresponding to a CSI-RS (or SSB) selected and reported by the UE.
  • the UE when it is set to report a plurality of CRIs (or SSBRIs), the UE is a CSI-RS related to a CRI (or SSBRI) having the highest quality (eg, RSRP, SINR, CQI) among the plurality of CRIs (or SSBRIs)
  • the PUSCH may be transmitted based on the UL beam/panel corresponding to (or SSB).
  • Method 4-1 described above is an ambiguity as to which CSI-RS the UE should determine the UL panel/beam based on when there are multiple CSI-RSs (or SSBs) to be measured. This is a way to solve the (ambiguity) problem.
  • the terminal When it is configured to perform CSI reporting based on a plurality of CSI-RS (or SSB) resources, the terminal selects N resources of good quality among the corresponding resources and selects CSI for the corresponding N resources. Report as (N can be set by the base station).
  • the UE selects the CSI-RS (or SSB) resource having the highest quality, and thus the UL beam/panel for transmission of the PUSCH may also be determined based on the resource.
  • the PUSCH has a high probability of being transmitted through a UL panel/beam having excellent quality.
  • the UL panel/beam may be determined based on the CSI-RS (or SSB) having the highest quality among the N CSI-RS (or SSB) resources. That is, the UE may transmit CSI report information by determining a UL panel/beam based on a DL RS having the highest quality among a plurality of DL RS (CSI-RS or SSB) resources or a DL RS determined based on a specific (separate) standard. .
  • the CSI PUSCH can be transmitted based on the excellent panel/beam with a high probability without additional signaling.
  • the corresponding PUSCH may be transmitted as follows.
  • the UE determines one CSI-RS (or SSB) among a plurality of CSI-RS (or SSB) according to a specific rule, and a UL beam corresponding to the CSI-RS (or SSB) / The corresponding PUSCH can be transmitted based on the panel.
  • the CSI-RS (or SSB) based on the specific rule may be any one of 1) to 5) below.
  • the UE determines a UL panel/beam for each CSI report based on the above-described schemes, then determines one UL panel/beam according to a specific rule, and PUSCH based on the UL panel/beam. Can be transmitted.
  • the UL panel/beam based on the specific rule may be related to any one of 1) to 4) below.
  • the CSI (the CSI on/for the lowest CC ID or PCell or the default) for the basic/initial bandwidth portion of the primary cell (PCell), the primary cell (PCell), or the component carrier (CC) with the lowest ID. /initial BWP in PCell)
  • Method 4-2 is a method for resolving ambiguity in UL panel/beam selection when transmitting a plurality of CSI report information to one PUSCH resource to be.
  • a plurality of CSI information may be multiplexed together and transmitted in one PUSCH. This occurs when a plurality of CSI report IDs are grouped and set in one CSI triggering state, and then the corresponding state is triggered by a CSI request field of DCI.
  • the measurement RS (set) may be different for each CSI, when the proposal 4 and/or 4-1 is applied, the UL panel/beam selected for each CSI may be different. Occurs.
  • the specific rule is a predefined CSI priority rule (CSI) when the size of a payload that can be sent to PUSCH/PUSCH is smaller than the total CSI payload when sending a plurality of CSIs.
  • priority rule for example, a beam report takes precedence over a CSI report. That is, the UL panel/beam may be determined based on the CSI report having the highest priority according to the CSI priority rule.
  • a rule to be applied by a base station instead of the specific rule, a rule to be applied by a base station, a DL RS (set), a CSI report, or a BWP/CC ID may be designated/set.
  • the base station can designate BWP/CC ID(s) to select/apply a UL panel/beam based on a specific DL BWP/CC (set) or UL BWP/CC (set). have.
  • the transmission beam and/or the corresponding reception panel/beam may be changed at each transmission time point, It may be more desirable to have the UL panel/beam determined based on the most recently transmitted (received) measurement. For example, when Method 4 is applied to a semi-static CSI (SP CSI on semi-persistently scheduled (SPS) PUSCH) in a semi-statically scheduled PUSCH, the UL panel/beam may vary for each PUSCH transmission time point.
  • SP CSI on semi-persistently scheduled (SPS) PUSCH semi-statically scheduled
  • the UL panel/beam at the time of initial transmission is maintained until the time of deactivation.
  • the UL panel/beam is determined based on the most recently transmitted (received) measurement value as described above. Thus, it may be more desirable to allow the UL panel/beam to be changed on the fly.
  • the proposed schemes for the SPS PUSCH may be applied not only to SP CSI reporting using SPS PUSCH, but also to attempt to transmit UL-SCH (and UCI) based on SPS PUSCH (designed for the purpose of URLLC, VoIP, etc.).
  • the base station may not know for sure what DL RS the UE transmits PUSCH/PUCCH based on which DL RS (according to a specific method).
  • the base station may have to receive the PUSCH/PUCCH of the corresponding terminal through a plurality of DL Rx panel(s)/beam(s).
  • the corresponding PUSCH/PUCCH may be repeatedly transmitted (in the time or frequency domain) (using the same or different panels/beams).
  • the schemes proposed in this specification may be applied only to determine the UL panel (except for the UL beam).
  • the method for indicating one of the plurality of UL beams within the UL panel determined by the above method may be used as it is.
  • an association process between the DL RS and the UE Rx/Tx panel may have been performed before the proposed schemes are applied.
  • the terminal and the base station can perform the following procedure.
  • Step 1 setting of PUCCH (and/or SRS) for this mode (configuration of PUCCH resources (and SRS) for this mode)
  • Procedure for the base station to set PUCCH resources to apply the proposed scheme to the terminal (e.g., when there is no setting of spatial relationship information, set spatial relationship information to'flexible' or'null', explicitly set )
  • the base station can acquire UL panel/beam information (suitable for each PUCCH/PUSCH transmission) through this procedure (enhancement of)
  • Step 3 Determination/selection of UL panel/beam for PUCCH
  • the terminal receiving the DL DCI through the PDCCH determines the UL panel/beam for transmission of the ACK/NACK PUCCH based on the TCI of the PDSCH scheduled for the corresponding DL DCI (for details, see Method 1/1-1. )
  • Step 1 setting of PUSCH and/or SRS for PUSCH (configuration of PUSCH and/or SRS for PUSCH)
  • Procedure for the base station to set whether to apply the proposed scheme to the terminal for CB or non-CB based UL transmission, for ACK/NACK or CSI transmission, for a specific DCI format) (e.g., no configuration of spatial relation info/ associatedCSI-RS for SRS resources for CB/non-CB based UL, explicit indication)
  • the procedure may be indicated by DCI, and in this case may be performed after step 2.
  • the base station can acquire UL panel/beam information (suitable for each PUCCH/PUSCH transmission) through this procedure (enhancement of)
  • Step 3 Determination/selection of UL panel/beam for PUSCH
  • Case1 A UE that receives a DL DCI through a PDCCH and transmits an ACK/NACK for a PDSCH scheduled to a corresponding DL DCI as a PUSCH (according to a specific situation) determines a UL panel/beam based on the TCI of the corresponding PDSCH ( Refer to Method 2 for details)
  • operations of the base station/terminal are the apparatuses of FIGS. It can be processed by (eg, processors 102 and 202 of FIG. 15).
  • operations of the base station/terminal are at least one processor (e.g., 102, 202 of FIG. 15). ) May be stored in a memory (eg, 104, 204 in FIG. 15) in the form of an instruction/program (eg, instruction, executable code) for driving.
  • a processor e.g., 102, 202 of FIG. 15
  • an instruction/program e.g, instruction, executable code
  • FIG. 10 is a flowchart illustrating a method of transmitting a physical uplink control channel by a terminal in a wireless communication system according to an embodiment of the present specification.
  • a method for a UE to transmit a Physical Uplink Control Channel includes a PUCCH configuration information receiving step (S1010) and a PUCCH transmitting step (S1020). Include.
  • the UE receives configuration information related to transmission of a physical uplink control channel (PUCCH) from the base station.
  • PUCCH physical uplink control channel
  • the operation of the terminal (100/200 in FIGS. 14 to 18) receiving configuration information related to transmission of a physical uplink control channel (PUCCH) from the base station (100/200 in FIGS. 14 to 18) May be implemented by the device of FIGS. 14 to 18.
  • the memory 104 can be controlled.
  • the UE transmits the physical uplink control channel (PUCCH) to the base station based on the configuration information.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is predefined based on the configuration information not including spatial relation RS information for the physical uplink control channel (PUCCH). It may be transmitted based on the space-related quasi-colocation (QCL) RS information of the controlled resource set (CORESET).
  • QCL space-related quasi-colocation
  • the predefined control resource set may be a control resource set (CORESET) having the lowest ID in the latest slot in the active bandwidth part (active BWP).
  • the setting information may include information indicating the application of space-related QCL RS information of the predefined control resource set (CORESET) (eg, information indicating on/off, information indicating enable/disable).
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for a plurality of physical downlink shared channels (PDSCHs).
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is
  • TCI states Any one of a plurality of TCI states for the plurality of PDSCHs (TCI states)
  • i) is a case in which a plurality of TCI states are the same, when the type D QCL reference RS included in each TCI state is the same, or the QCL relationship between the type D QCL reference RS included in each TCI state is This may be the case.
  • the ii) may be a TCI state having the highest or lowest ID among a plurality of TCI states.
  • the terminal (100/200 in FIGS. 14 to 18) transmits the physical uplink control channel (PUCCH) to the base station (100/200 in FIGS. 14 to 18) based on the configuration information.
  • the operation can be implemented by the device of FIGS. 14-18.
  • at least one processor 102 transmits the physical uplink control channel (PUCCH) to the base station 200 based on the configuration information.
  • the above memory 104 can be controlled.
  • the above-described method may include DCI reception and PDSCH reception, which will be described in detail below with reference to FIG. 11.
  • FIG. 11 is a flowchart illustrating a method for a terminal to transmit a physical uplink control channel in a wireless communication system according to another embodiment of the present specification.
  • a method for transmitting a physical uplink control channel (PUCCH) by a terminal includes a PUCCH configuration information receiving step (S1110), a DCI receiving step (S1120), It includes a PDSCH reception step (S1130) and a PUCCH transmission step (S1140). Since S1110 and S1140 are the same as S1010 and S1020 described above, a redundant description will be omitted.
  • the terminal receives configuration information related to transmission of a physical uplink control channel (PUCCH) from the base station.
  • PUCCH physical uplink control channel
  • the operation of the terminal (100/200 of FIGS. 14 to 18) receiving configuration information related to transmission of a physical uplink control channel (PUCCH) from the base station (100/200 of FIGS. 14 to 18) May be implemented by the device of FIGS. 14 to 18.
  • the memory 104 can be controlled.
  • the terminal receives downlink control information (DCI) from the base station.
  • DCI may include information related to scheduling of a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • FIG. To 18 the operation of the terminal (100/200 of FIGS. 14 to 18) receiving downlink control information (DCI) from the base station (100/200 of FIGS. 14 to 18) is shown in FIG. To 18 may be implemented.
  • one or more processors 102 may receive one or more transceivers 106 and/or one or more memories 104 to receive downlink control information (DCI) from the base station 200. ) Can be controlled.
  • the terminal receives a physical downlink shared channel (PDSCH) from the base station based on the downlink control information (DCI).
  • PDSCH physical downlink shared channel
  • DCI downlink control information
  • the terminal receives a physical downlink shared channel based on the downlink control information (DCI) from the base station (100/200 of FIGS. 14 to 18).
  • the operation of receiving a downlink shared channel (PDSCH) may be implemented by the devices of FIGS. 14 to 18.
  • one or more processors 102 are configured to receive a physical downlink shared channel (PDSCH) from the base station 200 based on the downlink control information (DCI). It is possible to control more than one transceiver 106 and/or more than one memory 104.
  • the UE transmits the physical uplink control channel (PUCCH) to the base station based on the configuration information.
  • PUCCH physical uplink control channel
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for the PDSCH.
  • the PUCCH may be transmitted based on spatial-related QCL RS information for the PDSCH.
  • the spatial-related QCL RS information for the PDSCH may include a Transmission Configuration Indicator state (TCI).
  • TCI Transmission Configuration Indicator state
  • the terminal (100/200 of FIGS. 14 to 18) transmits the physical uplink control channel (PUCCH) to the base station (100/200 of FIGS. 14 to 18) based on the setting information.
  • the operation can be implemented by the device of FIGS. 14-18.
  • at least one processor 102 transmits the physical uplink control channel (PUCCH) to the base station 200 based on the configuration information.
  • the above memory 104 can be controlled.
  • FIG. 12 is a flowchart illustrating a method for a base station to receive a physical uplink control channel in a wireless communication system according to an embodiment of the present specification.
  • a method for a base station to receive a physical uplink control channel (PUCCH) includes a PUSCH configuration information transmission step (S1210) and a PUCCH reception step (S1220). Include.
  • the base station transmits configuration information related to transmission of a physical uplink control channel (PUCCH) to the terminal.
  • PUCCH physical uplink control channel
  • the base station (100/200 of FIGS. 14 to 18) transmits configuration information related to transmission of a physical uplink control channel (PUCCH) to the terminal (100/200 of FIGS. 14 to 18). May be implemented by the device of FIGS. 14 to 18.
  • one or more processors 202 may transmit configuration information related to transmission of a physical uplink control channel (PUCCH) to the terminal 100 by one or more transceivers 206 and/or one or more
  • the memory 204 can be controlled.
  • the base station receives the physical uplink control channel (PUCCH) based on the configuration information from the terminal.
  • PUCCH physical uplink control channel
  • the physical uplink control channel is predefined based on the configuration information not including spatial relation RS information for the physical uplink control channel (PUCCH). It may be transmitted based on the space-related quasi-colocation (QCL) RS information of the controlled resource set (CORESET).
  • QCL space-related quasi-colocation
  • the predefined control resource set may be a control resource set (CORESET) having the lowest ID in the latest slot in the active bandwidth part (active BWP).
  • the setting information may include information indicating the application of space-related QCL RS information of the predefined control resource set (CORESET) (eg, information indicating on/off or information indicating enable/disable).
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for a plurality of physical downlink shared channels (PDSCHs).
  • HARQ-ACK information Hybrid Automatic Repeat Request Acknowledgment information
  • the PUCCH may be transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is
  • TCI states Any one of a plurality of TCI states for the plurality of PDSCHs (TCI states)
  • i) is a case in which a plurality of TCI states are the same, when the type D QCL reference RS included in each TCI state is the same, or the QCL relationship between the type D QCL reference RS included in each TCI state is This may be the case.
  • the ii) may be a TCI state having the highest or lowest ID among a plurality of TCI states.
  • the base station (100/200 of FIGS. 14 to 18) transmits the physical uplink control channel (PUCCH) based on the configuration information from the base station (100/200 of FIGS. 14 to 18).
  • the operation can be implemented by the device of FIGS. 14-18.
  • one or more processors 202 may receive one or more transceivers 206 and/or one or more to receive the physical uplink control channel (PUCCH) based on the configuration information from the terminal 100.
  • the above memory 204 can be controlled.
  • the above-described method may include DCI transmission and PDSCH transmission steps, which will be described in detail below with reference to FIG. 13.
  • FIG. 13 is a flowchart illustrating a method for a base station to receive a physical uplink control channel in a wireless communication system according to another embodiment of the present specification.
  • a method for a base station to receive a physical uplink control channel (PUCCH) includes a PUCCH configuration information transmission step (S1310), a DCI transmission step (S1320), It includes a PDSCH transmission step (S1330) and a PUCCH reception step (S1340). Since S1310 and S1340 are the same as S1210 and S1220 described above, a redundant description will be omitted.
  • the base station transmits configuration information related to transmission of a physical uplink control channel (PUCCH) to the terminal.
  • PUCCH physical uplink control channel
  • the operation of the base station (100/200 of FIGS. 14 to 18) transmitting configuration information related to transmission of the physical uplink control channel (PUCCH) to the terminal (100/200 of FIGS. 14 to 18) May be implemented by the device of FIGS. 14 to 18.
  • one or more processors 202 may transmit configuration information related to transmission of a physical uplink control channel (PUCCH) to the terminal 100 by one or more transceivers 206 and/or one or more
  • the memory 204 can be controlled.
  • the base station transmits downlink control information (DCI) to the terminal.
  • DCI may include information related to scheduling of a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • FIG. To 18 the operation of the base station (100/200 in FIGS. 14 to 18) transmitting downlink control information (DCI) to the terminal (100/200 in FIGS. 14 to 18) is shown in FIG. To 18 may be implemented.
  • one or more processors 202 may transmit one or more transceivers 206 and/or one or more memories 204 to transmit downlink control information (DCI) to the terminal 200. ) Can be controlled.
  • the base station transmits a physical downlink shared channel (PDSCH) based on the downlink control information (DCI) to the terminal.
  • PDSCH physical downlink shared channel
  • DCI downlink control information
  • the base station (100/200 of FIGS. 14 to 18) sends a physical downlink shared channel based on the downlink control information (DCI) to the terminal (100/200 of FIGS. 14 to 18).
  • the operation of transmitting a Downlink Shared Channel, PDSCH) may be implemented by the devices of FIGS. 14 to 18.
  • one or more processors 202 transmit a physical downlink shared channel (PDSCH) based on the downlink control information (DCI) to the terminal 100. It is possible to control more than one transceiver 206 and/or more than one memory 204.
  • the base station receives the physical uplink control channel (PUCCH) based on the configuration information from the terminal.
  • PUCCH physical uplink control channel
  • the PUCCH may include HARQ-ACK information (Hybrid Automatic Repeat Request Acknowledgment information) for the PDSCH.
  • the PUSCH may be transmitted based on spatial-related QCL RS information for the PDSCH.
  • the spatial-related QCL RS information for the PDSCH may include a Transmission Configuration Indicator state (TCI).
  • TCI Transmission Configuration Indicator state
  • the base station receives the physical uplink control channel (PUCCH) based on the configuration information from the terminal (100/200 of FIGS. 14 to 18).
  • the operation can be implemented by the device of FIGS. 14-18.
  • one or more processors 202 may receive one or more transceivers 206 and/or one or more to receive the physical uplink control channel (PUCCH) based on the configuration information from the terminal 100.
  • the above memory 204 can be controlled.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, including Head-Mounted Device (HMD), Head-Up Display (HUD), TV, smartphone, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • a base station and a network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to another wireless device.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices/base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other through wireless communication/connections 150a, 150b, 150c.
  • the wireless communication/connections 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • various configuration information setting processes e.g, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 14 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202.
  • the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document include firmware or software configured to be performed in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • the one or more memories 104, 204 may be connected to the one or more processors 102, 202 through various techniques such as wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, proposals, methods and/or operation flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
  • FIG. 16 illustrates a signal processing circuit applied to the present invention.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations/functions of FIG. 16 may be performed in processors 102 and 202 and/or transceivers 106 and 206 of FIG. 15.
  • the hardware elements of FIG. 16 may be implemented in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 15.
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 15.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 15, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 15.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 16.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device.
  • the scrambled bit sequence may be modulated by the modulator 1020 into a modulation symbol sequence.
  • the modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the N*M precoding matrix W.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the reverse of the signal processing process 1010 to 1060 of FIG. 16.
  • a wireless device eg, 100, 200 in FIG. 15
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • a signal processing circuit for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • FIG 17 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 14).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 15, and various elements, components, units/units, and/or modules ) Can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 15.
  • transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 15.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Figs. 14, 100a), vehicles (Figs. 14, 100b-1, 100b-2), XR devices (Figs. 14, 100c), portable devices (Figs. 14, 100d), and home appliances.
  • Fig. 14, 100e) IoT device (Fig. 14, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It may be implemented in the form of an AI server/device (FIGS. 14 and 400), a base station (FIGS. 14 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 is a random access memory (RAM), a dynamic RAM (DRAM), a read only memory (ROM), a flash memory, a volatile memory, and a non-volatile memory. volatile memory) and/or a combination thereof.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 17, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100.
  • the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • the physical uplink control channel is It is transmitted based on space-related QCL RS information of a predefined control resource set (CORESET). Accordingly, even when there is no configuration of a beam for PUCCH transmission, the PUCCH may be transmitted based on the spatial-related QCL RS information applied as a default. That is, when there is no configuration of a beam for PUCCH transmission, ambiguity of a PUCCH transmission/reception operation may be removed, and a signaling procedure related to configuration of a beam for PUCCH transmission may be omitted.
  • CORESET predefined control resource set
  • a PUCCH including ACK/NACK for a physical downlink shared channel (PDSCH) is transmitted based on spatial-related QCL RS information for the PDSCH. Accordingly, since the uplink transmission beam/panel is changed according to the downlink reception beam change, a separate procedure or signaling for a separate uplink beam/panel change may be omitted due to movement of the terminal.
  • PDSCH physical downlink shared channel
  • a PUCCH including ACK/NACK for a plurality of PDSCHs is transmitted based on predetermined spatial-related QCL RS information.
  • the predetermined spatial-related QCL RS information is i) any one of a plurality of TCI states (TCI states) for the plurality of PDSCHs, ii) a plurality of TCI states for the plurality of PDSCHs (TCI states)
  • the TCI state having a specific index, iii) the TCI state of the control resource set (CORESET) related to the scheduling of the plurality of PDSCHs may include any one of i), ii) and iii). Accordingly, an ambiguity problem in the operation of a terminal/base station that occurs when ACK/NACK for a plurality of PDSCHs is transmitted in one PUCCH resource can be prevented.
  • the PUCCH when there is no beam configuration for PUCCH transmission ii) when the PUCCH includes ACK/NACK of the PDSCH iii) the PUCCH includes ACK/NACK of a plurality of PDSCHs
  • the PUCCH in any of the above cases i) to iii), ambiguity of the operation of the terminal/base station does not occur, and the PUCCH can be transmitted without an additional signaling procedure. Accordingly, in PUCCH transmission, flexibility related to beam configuration is increased.
  • the embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the invention is one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code can be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor through various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 방법은 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 단계 및 상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 단계를 포함한다. 상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 한다.

Description

무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치
본 명세서는 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 시그널링 오버헤드를 줄일 수 있는 물리 상향링크 제어 채널 전송 방법을 제안한다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 방법은 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 단계 및 상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 단계를 포함한다.
상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 한다.
상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)일 수 있다.
상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보를 포함할 수 있다.
상기 방법은 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계 및 상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하는 단계를 더 포함할 수 있다.
상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다.
상기 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다.
상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 미리 결정된 공간 관련 QCL RS 정보는 i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태, ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태, iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태, 상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다.
본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 단말은 하나 이상의 송수신기, 하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 물리 상향링크 제어 채널(PUCCH)의 전송이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함한다.
상기 동작들은 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 단계 및 상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 단계를 포함한다.
상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 한다.
상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)일 수 있다.
상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보를 포함할 수 있다.
상기 동작들은 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계 및 상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하는 단계를 더 포함할 수 있다.
상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다.
상기 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다.
상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 미리 결정된 공간 관련 QCL RS 정보는 i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태, ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태, iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태, 상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다.
본 명세서의 또 다른 실시예에 따른 장치는 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함한다. 상기 하나 이상의 프로세서들은 상기 장치가 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하고, 상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 설정된다.
상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 한다.
본 명세서의 또 다른 실시예에 따른 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체는 하나 이상의 명령어를 저장한다.
하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하고, 상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 설정된다.
상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 한다.
본 명세서의 일 실시예에 의하면, 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보에 PUCCH에 대한 공간 관련 QCL(quasi-colocation) RS 정보가 포함되지 않은 경우, PUCCH는 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL RS 정보에 기반하여 전송된다. 따라서 PUCCH 전송을 위한 빔의 설정이 없는 경우에도 디폴트(default)로 적용되는 공간 관련 QCL RS 정보에 기반하여 PUCCH가 전송될 수 있다. 즉, PUCCH 전송을 위한 빔의 설정이 없는 경우 PUCCH 송수신 동작의 모호성(ambiguity)이 제거될 수 있고, PUCCH 전송을 위한 빔의 설정과 관련된 시그널링 절차가 생략될 수 있다.
본 명세서의 일 실시예에 의하면, 물리 하향링크 공유 채널(PDSCH)에 대한 ACK/NACK을 포함하는 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송된다. 따라서 하향링크 수신 빔 변경에 따라 상향링크 전송 빔/패널이 변경되는 바, 단말의 이동 등으로 인해 별도의 상향링크 빔/패널 변경을 위한 절차나 시그널링이 생략될 수 있다.
본 명세서의 일 실시예에 의하면, 복수의 PDSCH에 대한 ACK/NACK을 포함하는 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송된다. 상기 미리 결정된 공간 관련 QCL RS 정보는 i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태, ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태, iii) 상기 DCI와 관련된 제어 자원 세트(CORESET)의 TCI 상태, 상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다. 따라서 복수의 PDSCH에 대한 ACK/NACK이 하나의 PUCCH 자원에서 전송됨에 따라 발생하는 단말/기지국 동작상의 모호성(ambiguity) 문제가 방지될 수 있다.
상기와 같이 본 명세서의 실시예들에 의하면, i)PUCCH 전송을 위한 빔 설정이 없는 경우 ii) PUCCH가 PDSCH의 ACK/NACK을 포함하는 경우 iii) PUCCH가 복수의 PDSCH의 ACK/NACK을 포함하는 경우, 상기 i) 내지 iii) 중 어느 경우에도 단말/기지국 동작의 모호성(ambiguity)이 발생하지 않으며 추가적인 시그널링 절차 없이 PUCCH가 전송될 수 있다. 따라서 PUCCH 전송에 있어 빔 설정과 관련된 유연성(flexibility)이 증가한다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 6은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 7은 SSB와 CSI-RS를 이용한 빔 형성의 일례를 나타낸다.
도 8은 SRS를 이용한 UL BM 절차의 일례를 나타낸다.
도 9는 SRS를 이용한 UL BM 절차의 일례를 나타낸 흐름도이다.
도 10은 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널을 전송하는 방법을 설명하기 위한 흐름도이다.
도 11은 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널을 전송하는 방법을 설명하기 위한 흐름도이다.
도 12는 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 기지국이 물리 상향링크 제어 채널을 수신하는 방법을 설명하기 위한 흐름도이다.
도 13은 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 물리 상향링크 제어 채널을 전송하는 방법을 설명하기 위한 흐름도이다.
도 14는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 15는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 16은 본 발명에 적용되는 신호 처리 회로를 예시한다.
도 17은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
도 18은 본 발명에 적용되는 휴대 기기를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI 시스템, RSU(road side unit), 차량(vehicle), 로봇, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 36.331: Radio Resource Control (RRC) protocol specification
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology 에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology 의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 technology 를 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
뉴머로러지(numerology)는 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2020001818-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2020001818-appb-T000001
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Figure PCTKR2020001818-appb-T000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2020001818-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2020001818-appb-I000003
이고,
Figure PCTKR2020001818-appb-I000004
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
Figure PCTKR2020001818-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2020001818-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2020001818-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2020001818-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2020001818-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2020001818-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2020001818-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2020001818-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2020001818-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2020001818-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 3은 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
Figure PCTKR2020001818-appb-I000015
), 무선 프레임 별 슬롯의 개수(
Figure PCTKR2020001818-appb-I000016
), 서브프레임 별 슬롯의 개수(
Figure PCTKR2020001818-appb-I000017
)를 나타내며, 표 3은 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2020001818-appb-T000003
Figure PCTKR2020001818-appb-T000004
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다. 도 3은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
표 4의 경우, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 3을 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 3에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 3과 같이 정의될 수 있다.
또한, 미니-슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수도 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 4를 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2020001818-appb-I000018
서브캐리어들로 구성되고, 하나의 서브프레임이
Figure PCTKR2020001818-appb-I000019
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2020001818-appb-I000020
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2020001818-appb-I000021
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2020001818-appb-I000022
이다. 상기
Figure PCTKR2020001818-appb-I000023
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 5와 같이, 뉴머롤로지
Figure PCTKR2020001818-appb-I000024
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
Figure PCTKR2020001818-appb-I000025
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2020001818-appb-I000026
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2020001818-appb-I000027
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2020001818-appb-I000028
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2020001818-appb-I000029
이 이용된다. 여기에서,
Figure PCTKR2020001818-appb-I000030
이다.
뉴머롤로지
Figure PCTKR2020001818-appb-I000031
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2020001818-appb-I000032
는 복소 값(complex value)
Figure PCTKR2020001818-appb-I000033
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2020001818-appb-I000034
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2020001818-appb-I000035
또는
Figure PCTKR2020001818-appb-I000036
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2020001818-appb-I000037
연속적인 서브캐리어들로 정의된다.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정
Figure PCTKR2020001818-appb-I000038
에 대한 주파수 영역에서 0부터 위쪽으로 넘버링(numbering)된다.
서브캐리어 간격 설정
Figure PCTKR2020001818-appb-I000039
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
Figure PCTKR2020001818-appb-I000040
와 서브캐리어 간격 설정
Figure PCTKR2020001818-appb-I000041
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
Figure PCTKR2020001818-appb-M000001
여기에서,
Figure PCTKR2020001818-appb-I000042
Figure PCTKR2020001818-appb-I000043
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
Figure PCTKR2020001818-appb-I000044
까지 번호가 매겨지고,
Figure PCTKR2020001818-appb-I000045
는 BWP의 번호이다. BWP i에서 물리 자원 블록
Figure PCTKR2020001818-appb-I000046
와 공통 자원 블록
Figure PCTKR2020001818-appb-I000047
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
Figure PCTKR2020001818-appb-M000002
여기에서,
Figure PCTKR2020001818-appb-I000048
는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록일 수 있다.
물리 채널 및 일반적인 신호 전송
도 6은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S603 내지 S606). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S606).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
빔 관리(Beam Management, BM)
BM 절차는 다운링크(downlink, DL) 및 업링크(uplink, UL) 송/수신에 사용될 수 있는 기지국(예: gNB, TRP 등) 및/또는 단말(예: UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): 기지국 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다. 또한, 각 BM 절차는 Tx beam을 결정하기 위한 Tx beam sweeping과 Rx beam을 결정하기 위한 Rx beam sweeping을 포함할 수 있다.
하향링크 빔 관리 절차(DL BM Procedure)
하향링크 빔 관리 절차(DL BM 절차)는 (1) 기지국이 빔 형성 DL RS(예를 들어, CSI-RS 또는 SS 블록 (SSB))를 전송하는 단계 및 (2) 단말이 빔 보고를 송신하는 단계를 포함할 수 있다.
여기서, 빔 보고(beam reporting)는 바람직한 DL RS ID (식별자) (들) 및 그에 대응하는 L1-RSRP를 포함할 수 있다.
DL RS ID는 SSB resource indicator(SSBRI) 또는 CSI-RS resource indicator(CRI) 일 수 있다.
도7은 SSB와 CSI-RS를 이용한 빔 형성의 일례를 나타낸다.
도 7과 같이, SSB 빔과 CSI-RS 빔은 빔 측정을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다. SSB는 coarse한 빔 측정을 위해 사용되며, CSI-RS는 fine한 빔 측정을 위해 사용될 수 있다. SSB는 Tx 빔 스위핑과 Rx 빔 스위핑 모두에 사용될 수 있다. SSB를 이용한 Rx 빔 스위핑은 다수의 SSB bursts에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx 빔을 변경하면서 수행될 수 있다. 여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS burst set은 하나 또는 그 이상의 SSB burst들을 포함한다.
DL BM 관련 빔 지시(beam indication)
단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정 받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI state는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
표 5는 TCI-State IE의 일례를 나타낸다.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다.
Figure PCTKR2020001818-appb-T000005
표 5에서, bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
QCL(Quasi-Co Location)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수/도플러 쉬프트(Frequency/Doppler shift), 평균 수신 파워(Average received power), 수신 타이밍/평균지연(Received Timing / average delay), Spatial RX parameter 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 angle of arrival과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다.
단말은 해당 단말 및 주어진 serving cell에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, higher layer parameter PDSCH-Config 내 M 개까지의 TCI-State configuration의 리스트로 설정될 수 있다. 상기 M은 UE capability에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL reference signal과 PDSCH의 DM-RS port 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.
Quasi co-location 관계는 첫 번째 DL RS에 대한 higher layer parameter qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다. 두 개의 DL RS의 경우, reference가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL type은 동일하지 않다.
각 DL RS에 대응하는 quasi co-location type은 QCL-Info의 higher layer parameter qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, target antenna port가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS antenna ports는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 codepoint에 매핑하기 위해 사용되는 MAC CE signaling에 의한 activation command를 수신할 수 있다.
UL BM 절차
UL BM은 단말 구현에 따라 Tx beam - Rx beam 간 beam reciprocity(또는 beam correspondence)가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL beam pair를 통해 UL beam pair를 맞출 수 있다. 하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.
또한, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.
UL BM은 beamformed UL SRS 전송을 통해 수행될 수 있으며, SRS resource set의 UL BM의 적용 여부는 (higher layer parameter) usage에 의해 설정된다. usage가 'BeamManagement(BM)'로 설정되면, 주어진 time instant에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다.
단말은 (higher layer parameter) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 Sounding Reference Symbol (SRS) resource set들을 (higher layer signaling, RRC signaling 등을 통해) 설정받을 수 있다. 각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (higher later parameter SRS-resource)이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
DL BM과 마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.
도 8은 SRS를 이용한 UL BM 절차의 일례를 나타낸다.
도 8(a)는 기지국의 Rx beam 결정 절차를 나타내고, 도 8(b)는 단말의 Tx beam sweeping 절차를 나타낸다.
도 9는 SRS를 이용한 UL BM 절차의 일례를 나타낸 흐름도이다.
- 단말은 'beam management'로 설정된 (higher layer parameter) usage parameter를 포함하는 RRC signaling(예: SRS-Config IE)를 기지국으로부터 수신한다(S910).
표 6은 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 list와 SRS-ResourceSet들의 list를 포함한다. 각 SRS resource set는 SRS-resource들의 set를 의미한다.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거할 수 있다.
Figure PCTKR2020001818-appb-T000006
표 6에서, usage는 SRS resource set이 beam management를 위해 사용되는지, codebook 기반 또는 non-codebook 기반 전송을 위해 사용되는지를 지시하는 higher layer parameter를 나타낸다. usage parameter는 L1 parameter 'SRS-SetUse'에 대응한다. 'spatialRelationInfo'는 reference RS와 target SRS 사이의 spatial relation의 설정을 나타내는 parameter이다. 여기서, reference RS는 L1 parameter 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다. 상기, usage는 SRS resource set 별로 설정된다.
- 단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S920). 여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다. 또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.
- 만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다. 하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S930).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해:
i) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 spatial domain Rx filter와 동일한 (혹은 해당 filter로부터 생성된) spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다; 또는
ii) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 periodic CSI-RS 또는 SP CSI-RS의 수신을 위해 사용되는 동일한 spatial domain transmission filter를 적용하여 SRS resource를 전송한다; 또는
iii) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용된 동일한 spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.
'SRS-ResourceConfigType'이 'SP-SRS' 또는 'AP-SRS'로 설정된 경우에도 위와 유사하게 빔 결정 및 전송 동작이 적용될 수 있다.
- 추가적으로, 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S940).
i) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다. 이 경우는, 기지국이 Rx beam을 selection하는 용도로서 도 8(a)에 대응한다.
ii) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다. 즉, 이 경우는 단말이 Tx beam을 sweeping하는 용도로서, 도 8(b)에 대응한다.
iii) SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.
PUCCH 빔 지시( PUCCH beam indication)
기지국이 단말에게 PUCCH전송에 사용할 빔을 지시함에 있어 SRS와 마찬가지로 spatial relation info를 지시/설정할 수 있다. Spatial relation info는 SRS와 마찬가지로 SSB, CSI-RS, 혹은 SRS일 수 있으며 target이 되는 PUCCH전송에 사용할 빔 관점에서의 reference RS정보를 제공한다. PUCCH의 경우 PUCCH resource 단위로 빔을 (다르게) 설정/지시할 수 있으며, 두 가지 방식이 지원된다. 첫 번째 방식은 RRC message로 하나의 spatial relation info를 설정하면, 해당 PUCCH 전송 시 항상 해당 spatial relation RS를 적용하는 방법이다(즉, RRC only). 두 번째 방식은 RRC message로 둘 이상의 spatial relation info를 설정한 후, MAC-CE message로 RRC로 설정된 복 수개의 spatial relation RS정보들 중에서 target PUCCH자원에 적용할 특정 하나를 지시하는 방법이다(즉, RRC + MAC-CE).
PUSCH 빔 지시( PUSCH beam indication)
기지국이 단말에게 PUSCH전송에 사용할 빔을 DCI format 0_1으로 지시함에 있어 reference가 되는 SRS자원을 지시할 수 있다. NR PUSCH전송에 있어서 codebook(CB) based 전송 방식과 non-codebook based 전송 방식 두 가지 방식을 지원한다. CB based 전송 방식은 LTE UL MIMO와 유사하게 복수의 단말 antenna ports에 적용할 precoder정보를 TPMI와 TRI를 통해 DCI로 지시한다. 단, LTE와는 다르게 beamformed SRS resource 전송이 지원되며, CB based 전송을 위해 최대 두 개의 SRS 자원들이 설정될 수 있다. 각 SRS자원은 서로 다른 spatial relation info로 설정될 수 있기 때문에 서로 다른 방향으로 빔포밍이 되면서 전송될 수 있다. 이를 수신한 기지국은 둘 중에 PUSCH를 적용할 때 사용할 빔 하나를 DCI의 1 bit SRI(SRS resource ID) field로 지정해 줄 수 있다. 예시적으로 4 Tx 단말이 두 개의 4 port SRS resource들을 설정 받고, 각 SRS자원은 서로 다른 spatial relation RS를 설정받은 경우, 각 SRS 자원을 각 spatial relation RS에 맞춰서 빔포밍을 하여 각각 4 port로 전송하게 되며, 기지국은 둘 중 하나의 SRS자원을 SRI로 선택하여 지시하면서 동시에 해당 SRS 자원 전송에 사용하였던 SRS ports에 적용할 MIMO precoding정보로서 TPMI와 TRI를 함께 UL DCI로 지시한다. Non-CB based전송에 있어서 단말은 최대 4개의 1 port SRS자원들을 설정 받을 수 있다. 이를 지시받은 단말은 각 SRS자원을 해당 spatial relation info에 맞춰서 빔포밍을 하여 기지국으로 전송하게 되며, 이를 수신한 기지국은 PUSCH전송에 적용할 하나 또는 복 수개의 SRI(s)를 지시한다. CB based방식과 달리 non-CB방식은 각 SRS 자원이 1 port만으로 구성되므로 TPMI가 지시되지 않으며, 결국 지시되는 SRS의 자원 수 (즉, SRI의 수)가 전송 rank와 동일하게 되므로 TRI도 지시되지 않는다. 결국 지시된 각 1 port SRS resource는 특정 PUSCH DMRS port (혹은 layer)와 동일한 빔포밍(precoding)이 적용되게 된다. Non-CB UL 전송에 있어, 각 SRS자원에 특정 NZP CSI-RS자원이 RRC로 association될 수도 있으며(associatedCSI-RS IE in 38.331) 이렇게 설정된 경우, 해당 non-CB용 aperiodic SRS를 DCI로 trigger될 때 associated NZP CSI-RS도 함께 trigger된다. 이 때, 단말은 triggered NZP CSI-RS를 수신하여 각 SRS자원에 적용할 빔 계수(or precoder)를 (channel reciprocity를 이용해) 계산한 후 해당 SRS 자원들을 (순차적으로) 송신하게 된다.
기지국이 DCI format 0_0 로 PUSCH를 scheduling하는 경우, DCI format 0_0에는 상기 CB based 혹은 non-CB based전송에서의 SRI field가 존재하지 않으므로 DCI를 통한 직접적인 빔 지시 방법이 지원되지는 않는다. 이 때, 단말은 해당 cell의 active BWP에서 설정된 PUCCH자원들 중 lowest ID를 갖는 PUCCH자원 전송에 적용할 빔과 동일한 빔을 사용해 해당 PUSCH를 전송하게 된다(즉, spatial relation info가 동일).
CSI 측정 및 보고(CSI measurement and reporting) 절차
NR 시스템은 보다 유연하고 동적인 CSI measurement 및 reporting을 지원한다.
상기 CSI measurement는 CSI-RS를 수신하고, 수신된 CSI-RS를 computation하여 CSI를 acquisition하는 절차를 포함할 수 있다.
CSI measurement 및 reporting의 time domain behavior로서, aperiodic/semi-persistent/periodic CM(channel measurement) 및 IM(interference measurement)이 지원된다.
CSI-IM의 설정을 위해 4 port NZP CSI-RS RE pattern을 이용한다.
NR의 CSI-IM 기반 IMR은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH rate matching을 위한 ZP CSI-RS resource들과는 독립적으로 설정된다.
그리고, NZP CSI-RS 기반 IMR에서 각각의 port는 (바람직한 channel 및) precoded NZP CSI-RS를 가진 interference layer를 emulate한다.
이는, multi-user case에 대해 intra-cell interference measurement에 대한 것으로, MU interference를 주로 target 한다.
기지국은 설정된 NZP CSI-RS 기반 IMR의 각 port 상에서 precoded NZP CSI-RS를 단말로 전송한다.
단말은 resource set에서 각각의 port에 대해 channel / interference layer를 가정하고 interference를 측정한다.
채널에 대해, 어떤 PMI 및 RI feedback도 없는 경우, 다수의 resource들은 set에서 설정되며, 기지국 또는 네트워크는 channel / interference measurement에 대해 NZP CSI-RS resource들의 subset을 DCI를 통해 지시한다.
resource setting 및 resource setting configuration에 대해 보다 구체적으로 살펴본다.
자원 세팅(resource setting)
각각의 CSI resource setting ‘CSI-ResourceConfig’는 (higher layer parameter csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI resource set에 대한 configuration을 포함한다.
여기서, CSI resource setting은 CSI-RS- resourcesetlist에 대응한다.
여기서, S는 설정된 CSI-RS resource set의 수를 나타낸다.
여기서, S≥1 CSI resource set에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS resource들을 포함하는 각각의 CSI resource set과 L1-RSRP computation에 사용되는 SS/PBCH block (SSB) resource를 포함한다.
각 CSI resource setting은 higher layer parameter bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다.
그리고, CSI reporting setting에 링크된 모든 CSI resource setting들은 동일한 DL BWP를 갖는다.
CSI-ResourceConfig IE에 포함되는 CSI resource setting 내에서 CSI-RS resource의 time domain behavior는 higher layer parameter resourceType에 의해 지시되며, aperiodic, periodic 또는 semi-persistent로 설정될 수 있다.
Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 CSI-RS resource set의 수(S)는 ‘1’로 제한된다.
Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 주기(periodicity) 및 슬롯 오프셋(slot offset)은 bwp-id에 의해 주어지는 것과 같이, 연관된 DL BWP의 numerology에서 주어진다.
UE가 동일한 NZP CSI-RS resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
UE가 동일한 CSI-IM resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
다음은 channel measurement (CM) 및 interference measurement(IM)을 위한 하나 또는 그 이상의 CSI resource setting들은 higher layer signaling을 통해 설정된다.
- interference measurement에 대한 CSI-IM resource.
- interference measurement에 대한 NZP CSI-RS 자원.
- channel measurement에 대한 NZP CSI-RS 자원.
즉, CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.
여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 inter-cell interference measurement에 대해 사용된다.
그리고, IM을 위한 NZP CSI-RS는 주로 multi-user로부터 intra-cell interference measurement를 위해 사용된다.
UE는 채널 측정을 위한 CSI-RS resource(들) 및 하나의 CSI reporting을 위해 설정된 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)이 자원 별로 'QCL-TypeD'라고 가정할 수 있다.
자원 세팅 설정(resource setting configuration)
살핀 것처럼, resource setting은 resource set list를 의미할 수 있다.
aperiodic CSI에 대해, higher layer parameter CSI-AperiodicTriggerState를 사용하여 설정되는 각 트리거 상태(trigger state)는 각각의 CSI-ReportConfig가 periodic, semi-persistent 또는 aperiodic resource setting에 링크되는 하나 또는 다수의 CSI-ReportConfig와 연관된다.
하나의 reporting setting은 최대 3개까지의 resource setting과 연결될 수 있다.
- 하나의 resource setting이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) resource setting 은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 interference measurement를 위한 것이다.
- 세 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 기반 interference measurement를 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 resource setting 은 NZP CSI-RS 기반 interference measurement를 위한 것이다.
Semi-persistent 또는 periodic CSI에 대해, 각 CSI-ReportConfig는 periodic 또는 semi-persistent resource setting에 링크된다.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 resource setting 이 설정되면, 상기 resource setting은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이며, (higher layer parameter csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 상에서 수행되는 interference measurement를 위해 사용된다.
CSI measurement 관련 CSI computation에 대해 살펴본다.
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS resource는 대응하는 resource set 내에서 CSI-RS resource들 및 CSI-IM resource들의 순서에 의해 CSI-IM resource와 자원 별로 연관된다.
채널 측정을 위한 CSI-RS resource의 수는 CSI-IM resource의 수와 동일하다.
그리고, interference measurement가 NZP CSI-RS에서 수행되는 경우, UE는 채널 측정을 위한 resource setting 내에서 연관된 resource set에서 하나 이상의 NZP CSI-RS resource로 설정될 것으로 기대하지 않는다.
Higher layer parameter nzp-CSI-RS-ResourcesForInterference가 설정된 단말은 NZP CSI-RS resource set 내에 18 개 이상의 NZP CSI-RS port가 설정될 것으로 기대하지 않는다.
CSI 측정을 위해, 단말은 아래 사항을 가정한다.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS port는 간섭 전송 계층에 해당한다.
- 간섭 측정을 위한 NZP CSI-RS port의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.
- 채널 측정을 위한 NZP CSI-RS resource의 RE(s) 상에서 다른 간섭 신호, 간섭 측정을 위한 NZP CSI-RS resource 또는 간섭 측정을 위한 CSI-IM resource.
CSI 보고(Reporting) 절차에 대해 보다 구체적으로 살펴본다.
CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다.
CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI) 또는 L1-RSRP 중 적어도 하나를 포함할 수 있다.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP에 대해, 단말은 N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting 및 하나 또는 두 개의 trigger state들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)로 higher layer에 의해 설정된다.
상기 aperiodicTriggerStateList에서 각 trigger state는 channel 및 선택적으로 interference 대한 resource set ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다.
상기 semiPersistentOnPUSCH-TriggerStateList에서 각 trigger state는 하나의 연관된 CSI-ReportConfig가 포함된다.
그리고, CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다.
이하, periodic, semi-persistent (SP), aperiodic CSI reporting에 대해 각각 설명한다.
periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다.
Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다.
다음, SP CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다.
Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE로 CSI 보고가 activation/deactivation 된다.
PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다.
최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다.
PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다.
DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다.
그리고, SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다.
다음, aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다.
AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정된다.
여기서, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.
NR은 LTE에서 PUCCH 기반 CSI 보고에 적용되었던 다수의 reporting instance들에서 CSI를 나누어 보고하는 방식 (예를 들어, RI, WB PMI/CQI, SB PMI/CQI 순서로 전송)이 적용되지 않는다.
대신, NR은 short/long PUCCH에서 특정 CSI 보고를 설정하지 못하도록 제한하고, CSI omission rule이 정의된다.
그리고, AP CSI reporting timing과 관련하여, PUSCH symbol/slot location은 DCI에 의해 동적으로 지시된다. 그리고, candidate slot offset들은 RRC에 의해 설정된다.
CSI reporting에 대해, slot offset(Y)는 reporting setting 별로 설정된다.
UL-SCH에 대해, slot offset K2는 별개로 설정된다.
2개의 CSI latency class(low latency class, high latency class)는 CSI computation complexity의 관점에서 정의된다.
Low latency CSI의 경우, 최대 4 ports Type-I codebook 또는 최대 4-ports non-PMI feedback CSI를 포함하는 WB CSI이다.
High latency CSI는 low latency CSI를 제외한 다른 CSI를 말한다.
Normal 단말에 대해, (Z, Z’)는 OFDM symbol들의 unit에서 정의된다.
Z는 Aperiodic CSI triggering DCI를 수신한 후 CSI 보고를 수행하기 까지의 최소 CSI processing time을 나타낸다.
Z’는 channel/interference에 대한 CSI-RS를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다.
추가적으로, 단말은 동시에 calculation할 수 있는 CSI의 개수를 report한다.
앞서 살핀 내용들(3GPP system, frame structure, NR시스템 등)은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다.
본 명세서에서 '/'는 문맥에 따라 'and', 'or', 혹은 'and/or'를 의미한다.
전술한 Rel-15 NR UL BM 및 PUCCH/PUSCH beam indication 방식은 빔 대응성이 있는 단말(beam correspondence UE)과 빔 대응성이 없는 단말(non-beam correspondence UE)을 모두 고려하여 설계되었다. 다만, 아래와 같이 빔 변경에 대한 유연성(flexibility)가 떨어져 불필요한 시그널링 오버헤드(signaling overhead)를 야기하는 단점이 존재한다.
물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)의 경우, 빔을 변경하려면 공간 관계 정보(spatial relation info)를 업데이트하기 위해 RRC 재설정 및/또는 MAC-CE 메시지 전송이 요구된다.
코드북 기반 물리 상향링크 공유 채널(CB based PUSCH)의 경우, 코드북 용도(codebook usage)의 SRS자원(들)에 적용된 빔 이외의 빔으로 변경하기 위해서는 다음의 동작들이 요구된다. 구체적으로 기지국은 usage= 'CB'로 설정된 SRS 자원(들)의 공간 관계(spatial relation)를 RRC로 재설정하고, 단말은 해당 SRS자원(들)을 전송하여야 한다.
비-코드북 기반 물리 상향링크 공유 채널(Non-CB based PUSCH)의 경우, non-CB용도의 SRS자원(들)에 적용된 빔 이외의 빔으로 변경하기 위해서는 다음의 동작들이 요구된다. 구체적으로 기지국은 usage= 'non-CB'로 설정된 SRS 자원(들)의 공간 관계(spatial relation) 또는 연관된 CSI-RS(associatedCSI-RS)를 RRC로 재설정하고, 단말에 해당 SRS 자원(들)을 전송하여야 한다.
DCI 포맷 0_0의 하향링크 제어 정보에 의해 스케쥴링된 PUSCH의 경우, 빔을 변경하기 위해서는 다음의 동작들이 요구된다. 해당 대역폭 부분(BWP)의 가장 낮은 PUCCH 아이디(lowest PUCCH ID)에 해당하는 PUCCH 자원의 공간 관계 정보(spatial relation info)가 업데이트 되어야 한다. 기지국은 해당 PUCCH 자원의 공간 관계 정보 업데이트를 위해 RRC 재설정 및/또는 MAC-CE 메시지를 전송하여야 한다.
상기와 같이 빔 변경과 관련된 유연성(flexibility)이 떨어지는 단점을 극복하기 위해, 특히 빔 대응성 단말(beam correspondence UE)이라면, 공간 관계 RS(spatial relation RS) 혹은 연관된 CSI-RS(associatedCSI-RS)를 단말 특정하게 빔 포밍된 CSI-RS(UE-specifically beamformed CSI-RS)로 설정하여 사용하는 방법이 고려될 수 있다. 즉, 해당 단말의 이동/회전 등에 따라 해당 NZP CSI-RS에 적용할 빔이 변경된다. 상기 방법은 단말 수가 많은 기지국인 경우 하향링크 참조 신호(DL RS) 자원을 너무 많이 소모하는 문제가 발생할 수 있다. 결국 이러한 기지국에서는 셀/TRP 특정하게 빔 포밍된 CSI-RS(cell/TRP-specific beamformed CSI-RS)를 적용하는 것이 훨씬 효율적이다. 이러한 경우 단말 이동에 따른 잦은 빔 변경은 위와 같은 시그널링(signaling) 부담을 초래한다.
추가로, 단말의 복수 패널을 고려하는 다양한 방안이 논의되고 있다. 일 예로, 기존의 SRS 자원 아이디(SRS resource ID)가 결국 SRS 전송 빔 아이디(SRS Tx beam ID)를 의미한다고 했을 때, 하나 또는 복수 개의 SRS 자원들을 그루핑(grouping)하는 단위인 SRS 자원 세트(SRS resource set)로 패널(panel)을 정의하자는 방안이 논의되고 있다. 다른 예로, 명시적인 별도의 ID를 도입하자는 방안이 논의되고 있다. 후자의 경우 각 SRS 자원 에 패널 ID(panel ID or group ID)가 결합(attach)되는 형태일 수 있다. 결국 암시적(implicit)인 방식이나 명시적(explicit)인 방식이나 패널 ID가 도입된다면 UL 채널 상태에 따라 UL 빔 변경뿐만 아니라 UL 패널 변경도 지시되어야 할 수 있다. 결국, 단말의 패널 ID로 인해 더 큰 시그널링/자원 오버헤드(signaling/resource overhead)가 야기될 수 있다.
본 명세서에서는 전술한 문제점을 해결하기 위해, 시그널링 오버헤드(signaling overhead)를 최소화하면서 상향링크 패널/빔을 동적으로 변경시키기 위한 방법들을 제안한다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.
이하에서는 ACK/NACK PUCCH/PUSCH 전송에 있어서 패널/빔 지시와 관련된 방법을 살펴본다.
[방법 1]
물리 상향링크 제어 채널(PUCCH)을 물리 하향링크 공유 채널(PDSCH)의 TCI(Transmission Configuration Indicator)에 상응하는 상향링크 빔/패널로 전송하는 방법이 고려될 수 있다.
구체적으로 PUCCH 자원에 대해, 상기 PDSCH의 하향링크 빔 참조 신호(DL beam RS, QCL 타입 D와 관련된 DL RS)가 PUCCH의 공간 관계 RS(spatial relation RS)로 설정/지시/적용될 수 있다. 일 실시예에 의하면, 상기 PUCCH는 상기 PDSCH에 대한 ACK/NACK을 포함할 수 있다.
해당 PDSCH의 DL 수신 빔에 상응하는 UL 송신 빔을 해당 PUCCH에 사용하도록 관련(align)시킴으로써, 단말 이동 시 DL 수신 빔 변경을 통해 UL 빔/패널이 자동으로 변경될 수 있다. 이에 따라 별도의 UL 빔/패널 변경을 위한 절차나 시그널링이 생략될 수 있다.
일 실시예에 의하면, 전술한 방법은 기존 PUCCH 빔 지시 방법과의 충돌을 막기 위해 해당 PUCCH자원에 공간 관계 정보(spatial relation info)가 설정되지 않은 경우 및/또는 상기 방법 1을 적용하는 모드가 명시적으로 지시(예: spatial relation info='flexible' or 'null')된 경우에 한정적으로 사용될 수 있다.
상기 'PDSCH의 TCI'는 해당 PDSCH에 대해 설정/지시된 (Type D) QCL reference RS 정보를 의미한다. 하향링크 빔 지시 매커니즘(DL beam indication mechanism)과 동일하게
상기 'PDSCH의 TCI'는 Is-TCI-present=OFF인 경우 해당 PDSCH를 스케줄링하는 PDCCH TCI에 의해 결정될 수 있다.
상기 'PDSCH의 TCI'는 Is-TCI-present=ON인 경우 해당 PDSCH를 스케줄링하는 PDCCH의 DCI에서 지시하는 TCI에 의해(scheduling offset이후인 경우) 또는 디폴트 TCI(default TCI)에 의해 (scheduling offset이내인 경우) 결정될 수 있다. 상기 디폴트 TCI는 단말이 DCI로 빔 지시에 대한 디코딩(decoding)을 완료하기 전까지 버퍼링(buffering)을 수행할 때 적용할 QCL 정보(Quasi-colocation information)를 의미한다.
상기 디폴트 TCI는 (약속된 규칙에 의해 결정되는) 특정 제어 자원 세트에 적용되는 TCI이다. 상기 특정 제어 자원 세트는 서빙 셀의 활성 대역폭 부분 내에서 하나 이상의 제어 자원 세트(Control Resource Set, CORESET)의 가장 최근 슬롯에서 가장 낮은 CORESET ID로 모니터링된 검색 공간(monitored search space)과 관련된 제어 자원 세트일 수 있다('the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell').
[방법 1-1]
특정 PUCCH 자원에서 복수의 PDSCH에 대한 복수의 ACK/NACK이 번들링(bundling)되어 전송되는 경우 다음과 같은 방법들이 고려될 수 있다.
방법 A)
기지국은 동일한 UL 패널/빔에 상응하는 복수의 PDSCH들을 스케줄링 할 수 있다. 단말은 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states)에 상응하는 UL 패널/빔이 동일한 것으로 가정할 수 있다. 이에 따라 단말은 복수의 TCI 상태들(TCI states)들 중 어느 하나의 TCI 상태에 상응하는 UL 패널/빔에 기반하여 PUCCH를 전송할 수 있다.
상기 복수의 PDSCH들은 다음을 만족하도록 스케줄링 될 수 있다.
일 실시예에 의하면, 상기 복수의 PDSCH들에 대한 복수의 TCI 상태들은 모두 동일하도록 약속할 수 있다. 적어도 상기 복수의 TCI 상태들에 각각 포함되는 Type D QCL reference RS는 동일한 것일 수 있다.
일 실시예에 의하면, 상기 복수의 TCI 상태들 중 어느 하나의 TCI 상태에 포함되는 Type D QCL reference RS는 상기 나머지 TCI 상태들 중 다른 하나의 TCI 상태에 포함되는 Type D QCL reference RS과 QCL 관계에 있을 수 있다.
방법 B)
단말은 특정 규칙에 기반하여 결정된 TCI에 상응하는 UL 패널/빔으로 상기 PUCCH를 전송할 수 있다.
단말은 특정 규칙에 의해 복수의 TCI 상태들 중 어느 하나의 TCI 상태를 선택하고, 해당 TCI에 상응하는 UL 패널/빔으로 상기 PUCCH를 전송할 수 있다.
상기 '특정 규칙'에 기반하여 결정된 TCI는 아래 1) 내지 3) 중 어느 하나일 수 있다.
1) 가장 낮은 또는 높은 아이디 혹은 순번에 해당하는 TCI(the lowest or the highest TCI (state) ID among PDSCH TCIs or the first or the last TCI (state) among PDSCH TCIs)
2) 상기 복수의 PDSCH들을 스케줄링 하는 CORESET TCI
3) 디폴트 TCI (즉, the TCI of the CORESET associated with a monitored search space with the lowest CORESET-ID in the latest slot in which one or more CORESETs within the active BWP of the serving cell)
방법 C)
단말은 기지국이 설정/지시한 규칙 또는 지정한 PDSCH(TCI)에 의해 하나의 TCI 상태를 선택하여 해당 TCI에 상응하는 UL 패널/빔으로 상기 PUCCH를 전송할 수 있다.
방법 1을 적용함에 있어, 상술한 방법 1-1(방법 A 내지 방법 C)은 복수의 PDSCH에 대한 ACK/NACK을 묶어서 하나의 PUCCH자원에서 전송하는 경우에 발생할 수 있는 모호성(ambiguity) 문제를 해결하기 위한 방법이다. 이하 각 방법들을 보다 구체적으로 설명한다.
방법 A는 ACK/NACK bundling시 i) 각 PDSCH에 대한 TCI를 동일 ii) 각 PDSCH들의 Type D QCL reference RS간에 적어도 (Type D) QCL관계가 성립 iii) (기지국과 단말간에 DL 빔/패널과 UE 빔/패널간 매칭 정보가 공유되는 경우로서) 복수의 TCI 상태들에 상응하는 UL 패널/빔이 다르지 않음, 상기 i) 내지 iii) 중 어느 하나를 만족하도록 기지국이 적절히 스케줄링하는 방법이다. 이에 따라 단말이 bundled ACK/NACK에 대한 PUCCH전송 시, 단말이 복수의 PDSCH들 중 어느 PDSCH를 기준으로 UL 패널/빔을 결정하여도 모호성(ambiguity)이 발생하지 않는다.
방법 B는 기지국과 단말간 약속된 규칙에 의해 적용할 PDSCH를 결정하는 방식이다.
방법 C는 기지국이 복수의 PDSCH(TCI) 중 어느 PDSCH(TCI)를 기준으로 UL 패널/빔을 결정할 지에 대한 규칙을 단말에게 설정/지시하거나, 기지국이 복수의 PDSCH(TCI) 중 어느 것을 기준으로 UL 패널/빔을 결정할 지를 직접적으로 단말에 지정해주는 방식이다.
[방법 2]
물리 상향링크 공유 채널(PUSCH)을 물리 하향링크 공유 채널(PDSCH)의 TCI에 상응하는 상향링크 빔/패널로 전송하는 방법이 고려될 수 있다.
일 실시예에 의하면, (특정 조건에 의해) PDSCH(s)에 대한 ACK/NACK이 PUSCH로 전송(piggyback)되는 경우, (PUSCH에 대한 별도의 패널/빔 지시가 없는 경우 및/또는 제안 방식을 적용하도록 별도로 설정/지시된 경우) PDSCH TCI에 상응하는 UL 빔/패널로 해당 ACK/NACK PUSCH를 전송할 수 있다.
복수의 PDSCH에 대한 ACK/NACK이 번들링(bundling)이 되는 경우, 상기 방법 1-1이 상기 PUSCH의 전송에 적용될 수 있다.
구체적으로 방법 1 및 방법 1-1은 ACK/NACK이 (특정 조건에 의해) PUSCH로 전송되는 경우들에도 동일하게 적용될 수 있다.
예를 들면, PUCCH 전송 심볼/슬롯에 PUSCH 자원이 할당된 경우 PUCCH를 보내지 않고 PUSCH에 데이터와 함께 ACK/NACK을 보낼 수 있고, 이 때에 방법 1 및 방법 1-1이 해당 PUSCH 전송에 적용될 수 있다.
이때에는 해당 PUSCH에 대한 별도의 패널/빔 지시가 있을 수 있다(예: DCI 0_1의 SRI를 통한 지시, DCI0_0의 lowest ID PUCCH를 통한 지시, non-CB UL에 대한 associatedCSI-RS를 통한 지시). 상기와 같이 PUSCH에 대한 별도 패널/빔 지시가 있는 경우 해당 지시/설정을 무시하고 위 방법 2가 적용될 수 있다. 또는 상기 PUSCH에 대한 별도 패널/빔 지시/설정이 없는 경우 및/또는 방법 2를 적용하도록 명시적으로 설정/지시된 경우에만 한정적으로 방법 2가 적용될 수 있다. 일례로 DCI format0_0을 통해 스케줄링된 PUSCH의 전송에 본 방식이 적용될 수도 있다.
이하에서는 CSI PUCCH/PUSCH 전송에 있어서 패널/빔 지시와 관련된 방법을 살펴본다.
상술한 방법 1 및 방법 2에서는 ACK/NACK을 보고하는 PUCCH/PUSCH에 대한 암묵적(implicit) UL 패널/빔 설정/지시 방법을 제안하였다. 이하에서는 CSI를 보고하는 PUCCH/PUSCH에 대한 암묵적(implicit) UL 패널/빔 설정/지시 방법을 살펴본다.
[방법 3]
물리 상향링크 제어 채널(PUCCH)을 CSI의 측정(measurement) 대상에 상응하는 UL 빔/패널(beam/panel)로 전송하는 방법이 고려될 수 있다.
구체적으로 단말은 CSI PUCCH 자원에 대한 PUCCH 패널/빔결정에 있어, 해당 CSI의 측정(measurement) 대상이 되는 (NZP)CSI-RS (또는 SSB)에 상응하는 UL 빔/패널(beam/panel)로 해당 PUCCH를 전송할 수 있다.
상기 CSI는 PMI, CQI, RI등 프리코딩 관련 보고 정보뿐만 아니라 빔 관련 보고 정보(예: CRI/SSBRI, RSRP, SINR, 등)를 포함한다. 상기 CSI-RS(또는 SSB)자원은 해당 PUCCH자원이 속한 CSI report(setting) 설정을 통해 지시될 수 있다.
본 실시예에 의하면, PUCCH에 대한 공간 관계 정보(spatial relation info)를 RRC 혹은 MAC-CE로 재설정하지 않고도 UL 패널/빔이 자유롭게 변경될 수 있어 시그널링 오버헤드가 감소될 수 있다.
일 실시예에 의하면, 전술한 방법은 기존 UL 빔 지시 방식과 충돌을 막기 위해 해당 PUCCH자원에 공간 관계 정보(spatial relation info)가 설정되지 않은 경우 및/또는 상기 방법 3을 적용하는 모드가 명시적으로 지시(예: spatial relation info='flexible' or 'null')된 경우에 한정적으로 사용될 수 있다.
[방법 3-1]
상기 CSI-RS(또는 SSB)가 복수의 자원들로 구성된 경우, 상기 PUCCH는 단말이 선택하여 보고하는 CSI-RS(또는 SSB) 자원에 상응하는 UL 빔/패널에 기반하여 전송될 수 있다.
또한, 복수의 CRI(또는 SSBRI)를 보고하도록 설정된 경우, 단말은 상기 복수의 CRI(또는 SSBRI)들 중 가장 품질(예: RSRP, SINR, CQI)이 우수한 CRI(또는 SSBRI)와 관련된 CSI-RS(또는 SSB)에 상응하는 UL 빔/패널에 기반하여 해당 PUCCH를 전송할 수 있다.
방법 3을 적용함에 있어, 상술한 방법 3-1은 측정의 대상이 되는 CSI-RS(또는 SSB)가 복수인 경우 단말이 어떠한 CSI-RS를 기준으로 UL 패널/빔을 결정해야 하는 지에 대한 모호성(ambiguity) 문제를 해결하기 위한 방법이다.
복수의 CSI-RS (또는 SSB)자원들을 기반으로 CSI 보고를 수행하도록 설정된 경우, 단말은 해당 자원들 중에서 품질이 좋은 N개(best N)의 자원을 선택하여 해당 N개의 자원에 대한 CSI를 선택적으로 보고한다(N은 기지국이 설정 가능).
N=1인 경우, 단말은 가장 품질이 우수한 CSI-RS(또는 SSB)자원을 선택하게 되므로 PUCCH의 전송을 위한 UL 빔/패널도 상기 자원에 기반하여 결정할 수 있다. DL과 UL의 채널 상호성(reciprocity) 속성을 고려할 때 상기 PUCCH는 품질이 우수한 UL 패널/빔으로 전송될 확률이 높다.
또한, N>1인 경우, 상기 N개의 CSI-RS(또는 SSB)자원들 중에서도 가장 품질이 우수한 CSI-RS(또는 SSB)를 기준으로 UL 패널/빔이 결정될 수 있다. 즉, 단말은 복수 개의 DL RS(CSI-RS 또는 SSB)자원 중에서 가장 품질이 우수한 DL RS 혹은 특정 (별도) 기준으로 결정된 DL RS를 기준으로 UL 패널/빔을 결정하여 CSI 보고 정보를 전송할 수 있다.
상기와 같이 본 실시예에 의하면 추가적인 시그널링 없이 높은 확률로 우수한 패널/빔에 기반하여 CSI PUCCH가 전송될 수 있다.
[방법 3-2]
(단일 혹은 복수의 CC(component carrier)/BWP에 설정된 서로 다른 CSI-RS/SSB 자원(들)에 대한) 복수의 CSI 보고들이 하나의 PUCCH 자원에서 전송되는 경우(예: multi-CSI PUCCH in NR Rel-15), 해당 PUCCH는 다음과 같이 전송될 수 있다.
일 실시예에 의하면, 단말은 특정 규칙에 의해 복수의 CSI-RS(또는 SSB)들 중 하나의 CSI-RS(또는 SSB)를 결정하고, 해당 CSI-RS(또는 SSB)에 상응하는 UL 빔/패널에 기반하여 해당 PUCCH를 전송할 수 있다.
상기 특정 규칙에 기반하는 CSI-RS(또는 SSB)는 아래 1) 내지 5) 중 어느 하나일 수 있다.
1) 가장 낮은 ID를 갖는 CSI-RS/SSB(lowest CSI-RS/SSB ID among selected per CSI report)
2) 가장 높은 수신 품질을 갖는 CSI-RS/SSB(the CSI-RS/SSB with the highest received quality)
3) 가장 낮은 ID를 갖는 컴포넌트 캐리어(CC)에서의 RS(세트)(the RS (set) in the lowest CC ID)
4) 프라이머리 셀(Primary Cell, PCell)에서의 RS(세트)(the RS (set) in PCell)
5) 프라이머리 셀(PCell)의 디폴트/초기 DL 대역폭 부분에서의 RS(세트)(the RS(set) in default/initial DL BWP in PCell)
일 실시예에 의하면, 단말은 전술한 방식들에 기반하여 각 CSI 보고에 대한 UL 패널/빔을 결정한 후 특정 규칙에 의해 하나의 UL 패널/빔을 결정하고, 해당 UL 패널/빔에 기반하여 PUCCH를 전송할 수 있다.
상기 특정 규칙에 기반하는 UL 패널/빔은 아래 1) 내지 4) 중 어느 하나와 관련된 것일 수 있다.
1) 가장 낮은 PUCCH ID(the lowest PUCCH ID)
2) 가장 낮은 CSI 보고 ID(the lowest CSI report ID)
3) 가장 최근의 DL RS로부터 측정된 CSI(the CSI measured from the most recent DL RS)
4) 프라이머리 셀(PCell)에서 기본/초기 대역폭 부분, 프라이머리 셀(PCell) 또는 가장 낮은 ID를 갖는 컴포넌트 캐리어(CC)에 대한 CSI(the CSI on/for the lowest CC ID or PCell or the default/initial BWP in PCell)
방법 3 및/또는 3-1의 적용에 있어서, 상기 방법 3-2는 복수의 CSI 보고 정보들을 하나의 PUCCH자원에 전송하는 경우 UL 패널/빔의 선택에 모호성(ambiguity)을 해소하기 위한 방법이다.
기본적으로 하나의 CSI 보고는 하나의 PUCCH 자원에서 이루어지도록 설계되었으나, 설정/지시된 PUCCH자원의 전송 슬롯 위치가 겹치는 경우에 단말이 둘 이상의 PUCCH 자원들을 동시에 전송할 수 없거나, 전송 전력의 한계가 있을 수 있다.
전술한 문제점을 해결하기 위해 복수의 CSI 보고 정보들을 함께 (즉, UCI multiplexing을 하여) 전송할 수 있는 별도의 PUCCH 자원이 설정될 수 있다. 이러한 PUCCH 자원을 편의상 multi-CSI PUCCH 자원이라고 한다. Multi-CSI PUCCH를 통한 CSI보고의 경우, 각 CSI에 measurement RS (set)이 다를 수 있기 때문에 방법 3 및/또는 방법 3-1을 적용할 경우 각 CSI별로 선택되는 UL 패널/빔이 다를 수 있는 문제가 발생한다.
이러한 경우, i) 특정 규칙에 의해 DL RS (set)을 선택한 후 해당 DL RS (set)에 대응되는 UL 패널/빔을 선택하는 방법, ii) 방법 3 및/또는 3-1을 따라 각 CSI보고에 대한 UL 패널/빔을 선택한 후 (해당 UL 패널/빔이 일치하지 않는 경우) 특정 규칙에 따라 그 중 하나의 UL 패널/빔을 선택하는 방법이 고려될 수 있다.
상기 ii)에 있어 상기 특정 규칙은 복수의 CSI를 보낼 때 총 CSI 페이로드(payload)보다 PUCCH/PUSCH로 보낼 수 있는 페이로드(payload) 크기가 작을 경우를 위해 미리 정의된 CSI 우선순위 규칙(CSI priority rule)에 기반할 수 있다(예: 빔 보고(beam report)가 CSI 보고(CSI report)보다 우선). 즉, CSI 우선 순위 규칙에 따라 가장 높은 우선 순위(highest priority)를 갖는 CSI 보고를 기반으로 UL 패널/빔이 결정될 수 있다.
일 실시예에 의하면, 상기 특정 규칙 대신 기지국이 적용할 규칙, DL RS (set), CSI 보고 또는 BWP/CC ID가 지정/설정될 수 있다. 예를 들어, multi-CSI PUCCH의 경우 특정 DL BWP/CC (set) 혹은 UL BWP/CC (set)를 기준으로 UL 패널/빔을 선택/적용하도록 기지국이 BWP/CC ID(s)를 지정할 수 있다.
[방법 4]
물리 상향링크 공유 채널(PUSCH)을 CSI의 측정(measurement) 대상에 상응하는 UL 빔/패널(beam/panel)로 전송하는 방법이 고려될 수 있다.
구체적으로 단말은 CSI PUSCH 자원에 대한 PUSCH 패널/빔 결정에 있어, 해당 CSI의 측정(measurement) 대상이 되는 (NZP)CSI-RS (또는 SSB)에 상응하는 UL 빔/패널(beam/panel)로 해당 PUSCH를 전송할 수 있다.
상기 CSI에는 PMI, CQI, RI등 precoding관련 보고 정보뿐만 아니라 빔 관련 보고 정보(예: CRI/SSBRI, RSRP, SINR, etc.)를 포함하며, 상기 CSI-RS(또는 SSB)자원은 해당 PUSCH 자원이 속한 CSI report (setting) 설정을 통해 지시될 수 있다.
상기 제안 방식을 적용하면, PUSCH에 대한 빔 지시에 대해 CB/non-CB용 SRS 자원들에 대한 공간 관계 정보(spatial relation info)나 연관된 CSI-RS(associatedCSI-RS)를 RRC/MAC-CE로 재설정하지 않고도 UL 패널/빔을 자유롭게 변경할 수 있어 시그널링 오버헤드가 감소될 수 있다. 또한, DCI format 0_0에서 PUCCH 빔을 변경하지 않고도 PUSCH 빔을 보다 동적으로 변경할 수 있는 장점이 있다.
일 실시예에 의하면, 전술한 방법은 기존 UL 빔 지시 방식과 충돌을 막기 위해 방법 4는 (DCI format 0_1인 경우) CB/non-CB용 SRS자원(들)에 공간 관계 정보(spatial relation info)/연관된 CSI-RS(associatedCSI-RS)가 설정되지 않은 경우 및/또는 상기 방법 4를 적용하는 모드가 명시적으로 지시(예: DCI 0_1의 SRI 필드, DCI 0_1의 SRI 필드의 특정 코드 포인트의 설정/정의, DCI 0_1의 해당 모드의 ON/OFF를 지시하는 새로운 필드의 추가)된 경우에 한정적으로 사용될 수 있다.
상기 CSI-RS/SSB 자원은 (AP CSI인 경우), DCI의 CSI 요청 필드(CSI request field)를 통해 지시될 수도 있으며, 또한 상기 방법은 PUSCH에 CSI만 전송되는 경우뿐만 아니라 CSI와 다른 UCI(예: ACK/NACK) 및/또는 data (UL-SCH)가 함께 전송되는 경우에도 적용될 수 있다.
[방법 4-1]
상기 CSI-RS(또는 SSB)가 복수의 자원들로 구성된 경우, 상기 PUSCH는 단말이 선택하여 보고하는 CSI-RS(또는 SSB)에 상응하는 UL 빔/패널에 기반하여 전송될 수 있다.
또한, 복수의 CRI(또는 SSBRI)를 보고하도록 설정된 경우, 단말은 상기 복수의 CRI(또는 SSBRI)들 중 가장 품질(예: RSRP, SINR, CQI)이 우수한 CRI(또는 SSBRI)와 관련된 CSI-RS(또는 SSB)에 상응하는 UL 빔/패널에 기반하여 해당 PUSCH를 전송할 수 있다.
방법 4를 적용함에 있어, 상술한 방법 4-1은 측정의 대상이 되는 CSI-RS(또는 SSB)가 복수인 경우 단말이 어떠한 CSI-RS를 기준으로 UL 패널/빔을 결정해야 하는 지에 대한 모호성(ambiguity) 문제를 해결하기 위한 방법이다.
복수의 CSI-RS (또는 SSB)자원들을 기반으로 CSI 보고를 수행하도록 설정된 경우, 단말은 해당 자원들 중에서 품질이 좋은 N개(best N)의 자원을 선택하여 해당 N개의 자원에 대한 CSI를 선택적으로 보고한다(N은 기지국이 설정 가능).
N=1인 경우, 단말은 가장 품질이 우수한 CSI-RS(또는 SSB)자원을 선택하게 되므로 PUSCH의 전송을 위한 UL 빔/패널도 상기 자원에 기반하여 결정할 수 있다. DL과 UL의 채널 상호성(reciprocity) 속성을 고려할 때 상기 PUSCH는 품질이 우수한 UL 패널/빔으로 전송될 확률이 높다.
또한, N>1인 경우, 상기 N개의 CSI-RS(또는 SSB)자원들 중에서도 가장 품질이 우수한 CSI-RS(또는 SSB)를 기준으로 UL 패널/빔이 결정될 수 있다. 즉, 단말은 복수 개의 DL RS(CSI-RS 또는 SSB)자원 중에서 가장 품질이 우수한 DL RS 혹은 특정 (별도) 기준으로 결정된 DL RS를 기준으로 UL 패널/빔을 결정하여 CSI 보고 정보를 전송할 수 있다.
상기와 같이 본 실시예에 의하면 추가적인 시그널링 없이 높은 확률로 우수한 패널/빔에 기반하여 CSI PUSCH가 전송될 수 있다.
[방법 4-2]
복수의 CSI 보고들이 하나의 PUSCH 자원에서 전송되는 경우(예: multi-CSI PUSCH in NR Rel-15), 해당 PUSCH는 다음과 같이 전송될 수 있다.
일 실시예에 의하면, 단말은 특정 규칙에 의해 복수의 CSI-RS(또는 SSB)들 중 하나의 CSI-RS(또는 SSB)를 결정하고, 해당 CSI-RS(또는 SSB)에 상응하는 UL 빔/패널에 기반하여 해당 PUSCH를 전송할 수 있다.
상기 특정 규칙에 기반하는 CSI-RS(또는 SSB)는 아래 1) 내지 5) 중 어느 하나일 수 있다.
1) 가장 낮은 ID를 갖는 CSI-RS/SSB(lowest CSI-RS/SSB ID among selected per CSI report)
2) 가장 높은 수신 품질을 갖는 CSI-RS/SSB(the CSI-RS/SSB with the highest received quality)
3) 가장 낮은 ID를 갖는 컴포넌트 캐리어(CC)에서의 RS(세트)(the RS (set) in the lowest CC ID)
4) 프라이머리 셀(Primary Cell, PCell)에서의 RS(세트)(the RS (set) in PCell)
5) 프라이머리 셀(PCell)의 디폴트/초기 DL 대역폭 부분에서의 RS(세트)(the RS(set) in default/initial DL BWP in PCell)
일 실시예에 의하면, 단말은 전술한 방식들에 기반하여 각 CSI 보고에 대한 UL 패널/빔을 결정한 후 특정 규칙에 의해 하나의 UL 패널/빔을 결정하고, 해당 UL 패널/빔에 기반하여 PUSCH를 전송할 수 있다.
상기 특정 규칙에 기반하는 UL 패널/빔은 아래 1) 내지 4) 중 어느 하나와 관련된 것일 수 있다.
1) 가장 낮은 PUSCH ID(the lowest PUSCH ID)
2) 가장 낮은 CSI 보고 ID(the lowest CSI report ID)
3) 가장 최근의 DL RS로부터 측정된 CSI(the CSI measured from the most recent DL RS)
4) 프라이머리 셀(PCell)에서 기본/초기 대역폭 부분, 프라이머리 셀(PCell) 또는 가장 낮은 ID를 갖는 컴포넌트 캐리어(CC)에 대한 CSI(the CSI on/for the lowest CC ID or PCell or the default/initial BWP in PCell)
방법 4 및/또는 방법 4-1의 적용에 있어서, 상기 방법 4-2는 복수의 CSI 보고 정보들을 하나의 PUSCH 자원에 전송하는 경우 UL 패널/빔의 선택에 모호성(ambiguity)을 해소하기 위한 방법이다.
하나의 PUSCH에는 복수의 CSI정보가 함께 다중화(multiplexing)되어 전송될 수 있다. 이는 하나의 CSI 트리거링 상태(CSI triggering state)에 복수 개의 CSI report ID들이 묶어서 설정된 후, 해당 상태가 DCI의 CSI 요청 필드(CSI request field)로 트리거링(triggering)된 경우에 발생한다. Multi-CSI PUSCH를 통한 CSI보고의 경우, 각 CSI에 measurement RS (set)이 다를 수 있기 때문에 제안 4 및/또는 4-1을 적용할 경우 각 CSI별로 선택되는 UL 패널/빔이 다를 수 있는 문제가 발생한다.
이러한 경우, i) 특정 규칙에 의해 DL RS (set)을 선택한 후 해당 DL RS (set)에 대응되는 UL 패널/빔을 선택하는 방법, ii) 방법 4 및/또는 4-1을 따라 각 CSI보고에 대한 UL 패널/빔을 선택한 후 (해당 UL 패널/빔이 일치하지 않는 경우) 특정 규칙에 따라 그 중 하나의 UL 패널/빔을 선택하는 방법이 고려될 수 있다.
상기 ii)에 있어 상기 특정 규칙은 복수의 CSI를 보낼 때 총 CSI 페이로드(payload)보다 PUSCH/PUSCH로 보낼 수 있는 페이로드(payload) 크기가 작을 경우를 위해 미리 정의된 CSI 우선순위 규칙(CSI priority rule)에 기반할 수 있다(예: 빔 보고(beam report)가 CSI 보고(CSI report)보다 우선). 즉, CSI 우선 순위 규칙에 따라 가장 높은 우선 순위(highest priority)를 갖는 CSI 보고를 기반으로 UL 패널/빔이 결정될 수 있다.
일 실시예에 의하면, 상기 특정 규칙 대신 기지국이 적용할 규칙, DL RS (set), CSI 보고 또는 BWP/CC ID가 지정/설정될 수 있다. 예를 들어, multi-CSI PUSCH의 경우 특정 DL BWP/CC (set) 혹은 UL BWP/CC (set)를 기준으로 UL 패널/빔을 선택/적용하도록 기지국이 BWP/CC ID(s)를 지정할 수 있다.
방법 3과 4에서 주기적(Periodic) 또는 반정적(semi-persistent, SP) CSI-RS인 경우(및 SSB인 경우), 전송 시점마다 전송 빔 및/또는 상응하는 수신 패널/빔이 바뀔 수 있으므로, 가장 최근에 전송된(수신한) 측정치를 기반으로 UL 패널/빔을 결정하도록 하는 것이 보다 바람직할 수 있다. 예를 들어, 방법 4가 반정적으로 스케줄된 PUSCH에서의 반정적 CSI(SP CSI on semi-persistently scheduled(SPS) PUSCH)에 적용되는 경우, PUSCH전송 시점마다 UL 패널/빔이 달라질 수 있다.
SPS PUSCH인 경우는 (비교적 짧은 시간 구간 동안 주기적인 보고에 활용하는 것이 주 목적이므로) 최초 전송 시점의 UL 패널/빔이 비활성화(deactivation)시점까지 유지되도록 규정할 수 도 있다. Periodic or SP CSI on PUCCH인 경우에는 (비교적 긴 시간 구간 동안 주기적인 보고에 활용하는 것이 주 목적이므로) 전술한 방법과 같이 가장 최근 전송된(수신한) 측정치를 기반으로 UL 패널/빔을 결정하도록 하여 UL 패널/빔이 그때그때 변경될 수 있도록 하는 것이 보다 바람직할 수 있다. 상기 SPS PUSCH에 대한 제안 방식들은 SPS PUSCH를 이용한 SP CSI 보고뿐만 아니라 (URLLC, VoIP등의 목적으로 설계된) SPS PUSCH 기반 UL-SCH(및 UCI) 전송 시도 적용될 수 있겠다.
방법 3-1과 4-1에서 있어서, (구체적 방식에 따라) 단말이 어떠한 DL RS를 기준으로 UL 패널/빔을 결정하여 PUSCH/PUCCH를 전송하는 지 기지국이 확실히 알지 못할 수 있다. 이러한 경우 기지국은 복수의 DL Rx 패널(들)/빔(들)을 통해 해당 단말의 PUSCH/PUCCH를 수신해야 할 수 있다. 이러한 복수 패널/빔 기반 수신 성능을 향상시키기 위해 해당 PUSCH/PUCCH를 (시간 또는 주파수 영역으로) (동일 혹은 서로 다른 패널/빔을 사용하여) 반복 전송하도록 설정될 수도 있다.
본 명세서에서의 제안 방식들은 (UL 빔은 제외하고) UL 패널을 결정하는 데에만 적용될 수도 있다. 이 경우, 상기 방식으로 결정된 UL 패널 내에서 복수의 UL 빔들 중 하나에 대한 지시 방법은 기존 방식이 그대로 사용될 수 있다. 또한, DL RS와 UE Rx/Tx 패널간 연관(association)과정은 상기 제안 방식들이 적용되기 이전에 수행되었을 수 있다.
상기 제안 방식들의 적용에 있어 단말과 기지국은 다음과 같은 절차를 수행할 수 있다.
<PUCCH전송>
-단계 1: 이 모드에 대한 PUCCH(및/또는 SRS)의 설정(configuration of PUCCH resources (and SRS) for this mode)
기지국이 단말에게 제안 방식을 적용할 PUCCH자원들을 (RRC메시지를 통해) 설정하는 절차(예: 공간 관계 정보의 설정이 없는 경우, 공간 관계 정보를 'flexible' 또는 'null'로 설정, 명시적 설정)
-단계 2: DL/UL 빔/패널 관리(DL/UL beam/panel management)
기지국과 단말 간 DL/UL 빔/패널 쌍을 맞추는 과정
참고: 본 절차(의 enhancement)를 통해 기지국은 (각 PUCCH/PUSCH전송에 적합한) UL 패널/빔정보를 획득할 수 있음
-단계3: PUCCH를 위한 UL 패널/빔의 결정/선택(determination/selection of UL panel/beam for PUCCH)
Case1) PDCCH를 통해 DL DCI를 수신한 단말은, 해당 DL DCI로 스케쥴된 PDSCH의 TCI를 기준으로 ACK/NACK PUCCH의 전송을 위한 UL panel/beam을 결정(상세 내용은 방법 1/1-1참조)
Case2) RRC/MAC-CE로 Perodic/SP CSI보고를 PUCCH를 통해 수행하도록 지시받은 단말은 PUCCH자원의 측정 대상이 되는 DL RS를 기준으로 UL 패널/빔을 결정(상세 내용은 방법 3/3-1/3-2참조)
<PUSCH전송>
-단계 1: PUSCH에 대한 PUSCH 및/또는 SRS의 설정(configuration of PUSCH and/or SRS for PUSCH)
기지국이 단말에게 (CB or non-CB based UL 전송에 있어서, ACK/NACK or CSI 전송에 있어서, 특정 DCI format에 있어서) 제안 방식의 적용 여부를 설정하는 절차(예: no configuration of spatial relation info/associatedCSI-RS for SRS resources for CB/non-CB based UL, 명시적 지시)
상기 절차는 DCI로 지시될 수도 있으며, 이러한 경우 단계 2 이후에 수행될 수 있다.
(예: DCI 0_1의 SRI 필드, DCI 0_1의 SRI 필드의 특정 코드 포인트의 설정/정의, DCI 0_1의 해당 모드의 ON/OFF를 지시하는 새로운 필드의 추가)
-단계 2: DL/UL 빔/패널 관리(DL/UL beam/panel management)
기지국과 단말 간 DL/UL 빔/패널 쌍을 맞추는 과정
참고: 본 절차(의 enhancement)를 통해 기지국은 (각 PUCCH/PUSCH전송에 적합한) UL 패널/빔정보를 획득할 수 있음
-단계 3: PUSCH를 위한 UL 패널/빔의 결정/선택(determination/selection of UL panel/beam for PUSCH)
Case1) PDCCH를 통해 DL DCI를 수신하고, (특정 상황에 의해) 해당 DL DCI로 스케쥴링된 PDSCH에 대한 ACK/NACK을 PUSCH로 전송하는 단말은 해당 PDSCH의 TCI를 기준으로 UL 패널/빔을 결정 (상세 내용은 방법 2참조)
Case2) RRC/MAC-CE/DCI로 SP/aperiodic CSI보고를 (SPS) PUSCH를 통해 수행하도록 지시받은 단말은 CSI의 measurement 대상이 되는 DL RS를 기준으로 UL 패널/빔을 결정 (상세 내용은 방법 4/4-1/4-2참조)
구현적인 측면에서 상술한 실시예들에 따른 기지국/단말의 동작(예: 방법 1 내지 방법 4 중 적어도 하나에 기반하는 상향링크 빔/패널 변경과 관련된 동작)들은 후술할 도 14 내지 도 18의 장치(예: 도 15의 프로세서(102, 202))에 의해 처리될 수 있다.
또한 상술한 실시예에 따른 기지국/단말의 동작(예: 방법 1 내지 방법 4 중 적어도 하나에 기반하는 상향링크 빔/패널 변경과 관련된 동작)들은 적어도 하나의 프로세서(예: 도 15의 102, 202)를 구동하기 위한 명령어/프로그램(예: instruction, executable code)형태로 메모리(예: 도 15의 104, 204)에 저장될 수도 있다.
전술한 실시예들을 단말의 동작 측면에서 이하 도 10 내지 도 11을 참조하여 구체적으로 설명한다.
도 10은 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널을 전송하는 방법을 설명하기 위한 흐름도이다.
도 10을 참조하면, 본 명세서의 일 실시예에 따른 단말이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 방법은 PUCCH 설정 정보 수신 단계(S1010) 및 PUCCH 전송 단계(S1020)를 포함한다.
S1010에서, 단말은 기지국으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신한다.
상술한 S1010에 따라, 단말(도 14 내지 도 18의 100/200)이 기지국(도 14 내지 도 18의 100/200)으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
S1020에서, 단말은 상기 설정 정보에 기반하여 기지국에 상기 물리 상향링크 제어 채널(PUCCH)을 전송한다.
일 실시예에 의하면, 상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송될 수 있다.
일 실시예에 의하면, 상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)일 수 있다. 상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보(예: on/off를 나타내는 정보, enable/disable을 나타내는 정보)를 포함할 수 있다.
일 실시예에 의하면, 상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다. 상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 미리 결정된 공간 관련 QCL RS 정보는
i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태
ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태
iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태,
상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다.
구체적으로, 상기 i)는 복수의 TCI 상태들(TCI states)이 동일한 경우, 각 TCI 상태에 포함되는 타입 D QCL reference RS가 동일한 경우 또는 각 TCI 상태에 포함되는 타입 D QCL reference RS간에 QCL 관계가 성립하는 경우일 수 있다. 상기 ii)는 복수의 TCI 상태들(TCI states) 중 가장 높거나 낮은 ID를 갖는 TCI 상태일 수 있다.
상술한 S1020에 따라, 단말(도 14 내지 도 18의 100/200)이 상기 설정 정보에 기반하여 기지국(도 14 내지 도 18의 100/200)에 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 상기 설정 정보에 기반하여 기지국(200)에 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
전술한 방법은 DCI 수신 및 PDSCH 수신 단계를 포함할 수 있는 바, 이하 도 11을 참조하여 구체적으로 설명한다.
도 11은 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널을 전송하는 방법을 설명하기 위한 흐름도이다.
도 11을 참조하면, 본 명세서의 다른 실시예에 따른 단말이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 방법은 PUCCH 설정 정보 수신 단계(S1110), DCI 수신 단계(S1120), PDSCH 수신 단계(S1130) 및 PUCCH 전송 단계(S1140)를 포함한다. 상기 S1110 및 S1140은 전술한 S1010 및 S1020과 동일한 바 중복되는 설명은 생략한다.
S1110에서, 단말은 기지국으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신한다.
상술한 S1110에 따라, 단말(도 14 내지 도 18의 100/200)이 기지국(도 14 내지 도 18의 100/200)으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
S1120에서, 단말은 기지국으로부터 하향링크 제어 정보(Downlink Control Information, DCI)를 수신한다. 상기 DCI는 물리 하향링크 공유 채널(PDSCH)의 스케줄링과 관련된 정보를 포함할 수 있다.
상술한 S1120에 따라, 단말(도 14 내지 도 18의 100/200)이 기지국(도 14 내지 도 18의 100/200)으로부터 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
S1130에서, 단말은 기지국으로부터 상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신한다.
상술한 S1130에 따라, 단말(도 14 내지 도 18의 100/200)이 기지국(도 14 내지 도 18의 100/200)으로부터 상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
S1140에서, 단말은 상기 설정 정보에 기반하여 기지국에 상기 물리 상향링크 제어 채널(PUCCH)을 전송한다.
일 실시예에 의하면, 상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다. 상기 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다. 상기 PDSCH에 대한 공간 관련 QCL RS 정보는 TCI 상태(Transmission Configuration Indicator state)를 포함할 수 있다.
상술한 S1140에 따라, 단말(도 14 내지 도 18의 100/200)이 상기 설정 정보에 기반하여 기지국(도 14 내지 도 18의 100/200)에 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(102)는 상기 설정 정보에 기반하여 기지국(200)에 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.
전술한 실시예들을 기지국의 동작 측면에서 이하 도 12 내지 도 13을 참조하여 구체적으로 설명한다.
도 12는 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 기지국이 물리 상향링크 제어 채널을 수신하는 방법을 설명하기 위한 흐름도이다.
도 12를 참조하면, 본 명세서의 일 실시예에 따른 기지국이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 수신하는 방법은 PUSCH 설정 정보 전송 단계(S1210) 및 PUCCH 수신 단계(S1220)를 포함한다.
S1210에서, 기지국은 단말에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송한다.
상술한 S1210에 따라, 기지국(도 14 내지 도 18의 100/200)이 단말(도 14 내지 도 18의 100/200)에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(100)에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
S1220에서, 기지국은 단말로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 수신한다.
일 실시예에 의하면, 상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송될 수 있다.
일 실시예에 의하면, 상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)일 수 있다. 상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보(예: on/off를 나타내는 정보 또는 enable/disable을 나타내는 정보)를 포함할 수 있다.
일 실시예에 의하면, 상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다. 상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다.
상기 미리 결정된 공간 관련 QCL RS 정보는
i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태
ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태
iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태,
상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다.
구체적으로, 상기 i)는 복수의 TCI 상태들(TCI states)이 동일한 경우, 각 TCI 상태에 포함되는 타입 D QCL reference RS가 동일한 경우 또는 각 TCI 상태에 포함되는 타입 D QCL reference RS간에 QCL 관계가 성립하는 경우일 수 있다. 상기 ii)는 복수의 TCI 상태들(TCI states) 중 가장 높거나 낮은 ID를 갖는 TCI 상태일 수 있다.
상술한 S1220에 따라, 기지국(도 14 내지 도 18의 100/200)이 기지국(도 14 내지 도 18의 100/200)으로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(100)로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 수신하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
전술한 방법은 DCI 전송 및 PDSCH 전송 단계를 포함할 수 있는 바, 이하 도 13을 참조하여 구체적으로 설명한다.
도 13은 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 물리 상향링크 제어 채널을 수신하는 방법을 설명하기 위한 흐름도이다.
도 13을 참조하면, 본 명세서의 다른 실시예에 따른 기지국이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 수신하는 방법은 PUCCH 설정 정보 전송 단계(S1310), DCI 전송 단계(S1320), PDSCH 전송 단계(S1330) 및 PUCCH 수신 단계(S1340)를 포함한다. 상기 S1310 및 S1340은 전술한 S1210 및 S1220과 동일한 바 중복되는 설명은 생략한다.
S1310에서, 기지국은 단말에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송한다.
상술한 S1310에 따라, 기지국(도 14 내지 도 18의 100/200)이 단말(도 14 내지 도 18의 100/200)에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(100)에 물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
S1320에서, 기지국은 단말에 하향링크 제어 정보(Downlink Control Information, DCI)를 전송한다. 상기 DCI는 물리 하향링크 공유 채널(PDSCH)의 스케줄링과 관련된 정보를 포함할 수 있다.
상술한 S1320에 따라, 기지국(도 14 내지 도 18의 100/200)이 단말(도 14 내지 도 18의 100/200)에 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(200)에 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
S1330에서, 기지국은 단말에 상기 하향링크 제어 정보(DCI)에 기반하는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 전송한다.
상술한 S1330에 따라, 기지국(도 14 내지 도 18의 100/200)이 단말(도 14 내지 도 18의 100/200)에 상기 하향링크 제어 정보(DCI)에 기반하는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 전송하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(100)에 상기 하향링크 제어 정보(DCI)에 기반하는 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
S1340에서, 기지국은 단말로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 수신한다.
일 실시예에 의하면, 상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함할 수 있다. 상기 PUSCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송될 수 있다. 상기 PDSCH에 대한 공간 관련 QCL RS 정보는 TCI 상태(Transmission Configuration Indicator state)를 포함할 수 있다.
상술한 S1340에 따라, 기지국(도 14 내지 도 18의 100/200)이 단말(도 14 내지 도 18의 100/200)로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 수신하는 동작은 도 14 내지 도 18의 장치에 의해 구현될 수 있다. 예를 들어, 도 15를 참조하면, 하나 이상의 프로세서(202)는 단말(100)로부터 상기 설정 정보에 기반하는 상기 물리 상향링크 제어 채널(PUCCH)을 수신하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.
본 발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 14는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 14를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 발명이 적용되는 무선 기기 예
도 15는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 15를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 14의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)를 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 발명이 적용되는 신호 처리 회로 예
도 16은 본 발명에 적용되는 신호 처리 회로를 예시한다.
도 16을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 16의 동작/기능은 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 16의 하드웨어 요소는 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 15의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 15의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 15의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 16의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 16의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 15의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
본 발명이 적용되는 무선 기기 활용 예
도 17은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 14 참조). 도 17을 참조하면, 무선 기기(100, 200)는 도 15의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 15의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 15의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 14, 100a), 차량(도 14, 100b-1, 100b-2), XR 기기(도 14, 100c), 휴대 기기(도 14, 100d), 가전(도 14, 100e), IoT 기기(도 14, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 14, 400), 기지국(도 14, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 17에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
본 발명이 적용되는 휴대기기 예
도 18은 본 발명에 적용되는 휴대 기기를 예시한다.
휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 18을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 17의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
본 명세서의 실시예에 따른 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치의 효과를 설명하면 다음과 같다.
본 명세서의 일 실시예에 의하면, 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여, 상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL RS 정보에 기반하여 전송된다. 따라서 PUCCH 전송을 위한 빔의 설정이 없는 경우에도 디폴트(default)로 적용되는 공간 관련 QCL RS 정보에 기반하여 PUCCH가 전송될 수 있다. 즉, PUCCH 전송을 위한 빔의 설정이 없는 경우 PUCCH 송수신 동작의 모호성(ambiguity)이 제거될 수 있고, PUCCH 전송을 위한 빔의 설정과 관련된 시그널링 절차가 생략될 수 있다.
본 명세서의 일 실시예에 의하면, 물리 하향링크 공유 채널(PDSCH)에 대한 ACK/NACK을 포함하는 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송된다. 따라서 하향링크 수신 빔 변경에 따라 상향링크 전송 빔/패널이 변경되는 바, 단말의 이동 등으로 인해 별도의 상향링크 빔/패널 변경을 위한 절차나 시그널링이 생략될 수 있다.
본 명세서의 일 실시예에 의하면, 복수의 PDSCH에 대한 ACK/NACK을 포함하는 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송된다. 상기 미리 결정된 공간 관련 QCL RS 정보는 i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태, ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태, iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태, 상기 i), ii) 및 iii) 중 어느 하나를 포함할 수 있다. 따라서 복수의 PDSCH에 대한 ACK/NACK이 하나의 PUCCH 자원에서 전송됨에 따라 발생하는 단말/기지국 동작상의 모호성(ambiguity) 문제가 방지될 수 있다.
상기와 같이 본 명세서의 실시예들에 의하면, i)PUCCH 전송을 위한 빔 설정이 없는 경우 ii) PUCCH가 PDSCH의 ACK/NACK을 포함하는 경우 iii) PUCCH가 복수의 PDSCH의 ACK/NACK을 포함하는 경우, 상기 i) 내지 iii) 중 어느 경우에도 단말/기지국 동작의 모호성(ambiguity)이 발생하지 않으며 추가적인 시그널링 절차 없이 PUCCH가 전송될 수 있다. 따라서 PUCCH 전송에 있어 빔 설정과 관련된 유연성(flexibility)이 증가한다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (20)

  1. 무선 통신 시스템에서 단말이 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 방법에 있어서,
    물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 단계; 및
    상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 단계;를 포함하되,
    상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS Information)가 포함되지 않은 상기 설정 정보에 기반하여,
    상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 하는 방법.
  2. 제1 항에 있어서,
    상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)인 것을 특징으로 하는 방법.
  3. 제2 항에 있어서,
    상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보를 포함하는 것을 특징으로 하는 방법.
  4. 제1 항에 있어서,
    하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계; 및
    상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  5. 제4 항에 있어서,
    상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함하는 것을 특징으로 하는 방법.
  6. 제5 항에 있어서,
    상기 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송되는 것을 특징으로 하는 방법.
  7. 제1 항에 있어서,
    상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함하는 것을 특징으로 하는 방법.
  8. 제7 항에 있어서,
    상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송되는 것을 특징으로 하는 방법.
  9. 제8 항에 있어서,
    상기 미리 결정된 공간 관련 QCL RS 정보는,
    i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태
    ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태
    iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태
    상기 i), ii) 및 iii) 중 어느 하나를 포함하는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)을 전송하는 단말에 있어서,
    하나 이상의 송수신기;
    하나 이상의 프로세서들; 및
    상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 물리 상향링크 제어 채널(PUCCH)의 전송이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하며,
    상기 동작들은,
    물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하는 단계; 및
    상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하는 단계;를 포함하되,
    상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여,
    상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 하는 단말.
  11. 제10 항에 있어서,
    상기 미리 정의된 제어 자원 세트(CORESET)는 활성 대역폭 부분(active BWP) 내의 최신 슬롯(latest slot)에서 가장 낮은 아이디(lowest ID)를 갖는 제어 자원 세트(CORESET)인 것을 특징으로 하는 단말.
  12. 제11 항에 있어서,
    상기 설정 정보는 상기 미리 정의된 제어 자원 세트(CORESET)의 공간 관련 QCL RS 정보의 적용을 나타내는 정보를 포함하는 것을 특징으로 하는 단말.
  13. 제10 항에 있어서,
    상기 동작들은,
    하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계; 및
    상기 하향링크 제어 정보(DCI)에 기반하여 물리 하향링크 공유 채널(Physical Downlink Shared Channel, PDSCH)을 수신하는 단계를 더 포함하는 것을 특징으로 하는 단말.
  14. 제13 항에 있어서,
    상기 PUCCH는 상기 PDSCH에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함하는 것을 특징으로 하는 단말.
  15. 제14 항에 있어서,
    상기 PUCCH는 상기 PDSCH에 대한 공간 관련 QCL RS 정보에 기반하여 전송되는 것을 특징으로 하는 단말.
  16. 제10 항에 있어서,
    상기 PUCCH는 복수의 물리 하향링크 공유 채널(PDSCH)에 대한 HARQ-ACK 정보(Hybrid Automatic Repeat reQuest Acknowledgment information)를 포함하는 것을 특징으로 하는 단말.
  17. 제16 항에 있어서,
    상기 PUCCH는 미리 결정된 공간 관련 QCL RS 정보에 기반하여 전송되는 것을 특징으로 하는 단말.
  18. 제17 항에 있어서,
    상기 미리 결정된 공간 관련 QCL RS 정보는,
    i) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 어느 하나의 TCI 상태
    ii) 상기 복수의 PDSCH에 대한 복수의 TCI 상태들(TCI states) 중 특정 인덱스를 갖는 TCI 상태
    iii) 상기 복수의 PDSCH의 스케줄링과 관련된 제어 자원 세트(CORESET)의 TCI 상태
    상기 i), ii) 및 iii) 중 어느 하나를 포함하는 것을 특징으로 하는 단말.
  19. 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서,
    상기 하나 이상의 프로세서들은 상기 장치가,
    물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하고,
    상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 설정되며,
    상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여,
    상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 하는 장치.
  20. 하나 이상의 명령어를 저장하는 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체에 있어서,
    하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이,
    물리 상향링크 제어 채널(PUCCH)의 전송과 관련된 설정 정보를 수신하고,
    상기 설정 정보에 기반하여 상기 물리 상향링크 제어 채널(PUCCH)을 전송하도록 설정되며,
    상기 물리 상향링크 제어 채널(PUCCH)에 대한 공간 관련 RS 정보(Spatial Relation RS information)가 포함되지 않은 상기 설정 정보에 기반하여,
    상기 물리 상향링크 제어 채널(PUCCH)은 미리 정의된 제어 자원 세트(control resource set, CORESET)의 공간 관련 QCL(quasi-colocation) RS 정보에 기반하여 전송되는 것을 특징으로 하는 비일시적(non-transitory) 컴퓨터 판독 가능 매체.
PCT/KR2020/001818 2019-02-08 2020-02-10 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치 WO2020162729A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0015196 2019-02-08
KR20190015196 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162729A1 true WO2020162729A1 (ko) 2020-08-13

Family

ID=71947843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001818 WO2020162729A1 (ko) 2019-02-08 2020-02-10 무선 통신 시스템에서 물리 상향링크 제어 채널 송수신 방법 및 그 장치

Country Status (1)

Country Link
WO (1) WO2020162729A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098104A1 (ko) * 2020-11-04 2022-05-12 엘지전자 주식회사 무선 통신 시스템에서 공간 파라미터 동적 지시 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128376A1 (ko) * 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
KR20190004226A (ko) * 2017-06-28 2019-01-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128376A1 (ko) * 2017-01-05 2018-07-12 엘지전자(주) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
KR20190004226A (ko) * 2017-06-28 2019-01-11 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements to multi-beam operation", R1-1901164, 3GPP TSG RAN WG1 AD-HOC MEETING 1901, 11 January 2019 (2019-01-11), Taipei, Taiwan, pages 2.1 - 2.2.3, XP051576696 *
ERICSSON: "UL beam selection improvements", R1-1901205, 3GPP TSG RAN WG1 AD-HOC MEETING 1901, vol. 2.2, 11 January 2019 (2019-01-11), Taipei, Taiwan, XP051576734 *
ZTE: "Remaining issues on beam management", R1-1805828, 3GPP TSG RAN WG1 MEETING #93, vol. 3.1, 3.5, 11 May 2018 (2018-05-11), Busan, Korea, XP051461566 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098104A1 (ko) * 2020-11-04 2022-05-12 엘지전자 주식회사 무선 통신 시스템에서 공간 파라미터 동적 지시 방법 및 장치
US11778637B2 (en) 2020-11-04 2023-10-03 Lg Electronics Inc. Method and device for dynamically indicating spatial parameters in wireless communication system

Similar Documents

Publication Publication Date Title
WO2020162728A1 (ko) 무선 통신 시스템에서 물리 상향링크 공유 채널 송수신 방법 및 그 장치
WO2020162716A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
WO2020246819A1 (ko) 무선 통신 시스템에서 상향링크 신호 송수신 방법 및 그 장치
WO2021010707A1 (ko) 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치
WO2020209597A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 그 장치
WO2021040353A1 (ko) 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 그 장치
WO2020222606A1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2020222567A1 (ko) 무선 통신 시스템에서 상향링크 채널의 송수신 방법 및 그 장치
WO2021010710A1 (ko) 무선 통신 시스템에서 harq-ack 정보를 송수신 하는 방법 및 이에 대한 장치
WO2021029755A1 (ko) 무선 통신 시스템에서 빔 실패 복구 절차를 수행하는 방법 및 그 장치
WO2021020847A1 (ko) 무선 통신 시스템에서 물리 상향링크 공유 채널 송수신 방법 및 그 장치
WO2020197357A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
WO2021066635A1 (ko) 무선 통신 시스템에서 물리 하향링크 공유채널의 송수신 방법 및 그 장치
WO2020122687A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2020122686A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2020197353A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
WO2021020835A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
WO2020122685A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2020162718A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
WO2021034086A1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신 하는 방법 및 이에 대한 장치
WO2020222605A1 (ko) 무선 통신 시스템에서 데이터 채널의 송수신 방법 및 이에 대한 장치
WO2021029711A1 (ko) 무선 통신 시스템에서 상향링크 신호 송수신 방법 및 그 장치
WO2020162731A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 그 장치
WO2020231170A1 (ko) 무선 통신 시스템에서 하향링크 신호의 송수신 방법 및 그 장치
WO2020204675A1 (ko) 무선 통신 시스템에서 상향링크 신호의 송수신 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753267

Country of ref document: EP

Kind code of ref document: A1