WO2020162638A1 - Composition for ameliorating malignant tumor diseases - Google Patents

Composition for ameliorating malignant tumor diseases Download PDF

Info

Publication number
WO2020162638A1
WO2020162638A1 PCT/JP2020/005170 JP2020005170W WO2020162638A1 WO 2020162638 A1 WO2020162638 A1 WO 2020162638A1 JP 2020005170 W JP2020005170 W JP 2020005170W WO 2020162638 A1 WO2020162638 A1 WO 2020162638A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
mangiferin
cells
administration group
group
Prior art date
Application number
PCT/JP2020/005170
Other languages
French (fr)
Japanese (ja)
Inventor
升三 西田
正寛 椿
朋也 武田
元三 田邉
森川 敏生
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Priority to JP2020571319A priority Critical patent/JPWO2020162638A1/en
Publication of WO2020162638A1 publication Critical patent/WO2020162638A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a compound that inhibits an NF- ⁇ B-inducing kinase (also known as NIK-MAP3K14) useful for treating and/or preventing malignant tumors such as malignant lymphoma and multiple myeloma.
  • the present invention also relates to a composition for preventing and/or treating malignant tumors such as malignant lymphoma and multiple myeloma using the compound, a pharmaceutical composition, and a processed food.
  • NF- ⁇ B Nuclear factor kappa B
  • This NF- ⁇ B has five members: NF- ⁇ B p65 (p65), RelB, c-Rel, NF- ⁇ B1 (which is present in both precursor p105 and truncated p50) and NF- ⁇ B2 (which is Present in both precursor p100 and truncated p52).
  • NF- ⁇ B1 truncated p50; NF- ⁇ Bp50
  • NF- ⁇ B2 truncated p52; NF- ⁇ Bp52
  • RelB a heterodimer
  • activation of these NF- ⁇ B heterodimers is a signal transduction pathway that is strictly controlled by a series of events including phosphorylation reaction and proteolysis, and includes classical pathway (Canonical pathway) and non-classical pathway (Non-canonical pathway). It is classified into two routes (route).
  • NIK is a serine/threonine kinase that plays a role in both pathways, but is essential in non-classical signal transduction pathways. It phosphorylates IKK ⁇ to partially decompose NF- ⁇ Bp100, resulting in NF- ⁇ Bp52. To release.
  • NF- ⁇ Bp52 translocates into the nucleus by forming a heterodimer with RelB and expresses the gene. Furthermore, in the classical pathway, IKK ⁇ , IKK ⁇ and IKK ⁇ complexes are activated to form a heterodimer of p65 and NF- ⁇ Bp50, which translocates into the nucleus to regulate gene expression.
  • NIK is activated by ligands such as B cell activating factor (BAFF), CD40 ligand and tumor necrosis factor ⁇ (TNF ⁇ ), and it is shown that NIK is important for activation of signal transduction pathway by these ligands. ing. Because of its important role, NIK expression is tightly regulated.
  • BAFF B cell activating factor
  • TNF ⁇ tumor necrosis factor ⁇
  • NIK is degraded by the interaction of TNF receptor-related factor (TRAF), which is a ubiquitin ligase, with NIK, and the amount of NIK protein in cells is small. It is believed that when the non-classical pathway is stimulated by the ligand, the activated receptor causes the TRAF-NIK complex to dissociate, thereby increasing NIK concentration.
  • TNF receptor-related factor TRAF
  • BAFF is produced and secreted from T cells, monocytes/macrophages, dendritic cells, etc., and is known to control B cell differentiation, activation, survival, etc. through three types of receptors on B cells. (Moore, et al., Science. 1999, 285, 260-263: Non-Patent Document 2).
  • BAFF receptors BAFF-R (BAFF-Receptor), TACI (Transmenbrane activator and calcium modulator and cyclophilin ligand interactor), and BMCA (Bcella permuta) are known.
  • BAFF-R and BMCA are mainly expressed in B cells, and TACI is expressed in B cells and activated T cells.
  • the interaction between BAFF and BAFF-R activates the NIK-mediated nonclassical NF- ⁇ B signaling pathway.
  • NF- ⁇ B pathway is constitutively activated in multiple myeloma (Annuziata, et al. Cancer Cell. 2007, 12, 115-130: Non-Patent Document 3 and Demchenko, et al. Blood 2010, 115, 3541-3552: Non-Patent Document 4).
  • NIK gene amplification, TRAF gene deletion, and TRAF gene point mutations are observed in patients with multiple myeloma, and these increase NIK protein expression level and activate NIK constantly. It is a factor that activates the NF- ⁇ B pathway.
  • NIK shRNA inhibition of NIK with shRNA
  • Non-Patent Document 8 Non-Patent Document 8
  • API2-MALT1 fusion protein produced at the chromosomal translocation (t(11;18)(q21;q21)) in Mucosa associated lymphoid tissue (MALT) lymphoma caused protein cleavage at the 325th arginine position of NIK. It has been shown to induce constitutive activation of NIK when performed. This constitutive activation of NIK activates the non-classical NF- ⁇ B pathway, which is involved in cell adhesion and resistance to apoptosis (Rosebeck, et al., Science. 2011, 331, 468-472; Patent Document 9).
  • NIK is highly expressed in the cytoplasm by BAFF stimulation in diffuse large B-cell lymphoma (DLBCL) cells.
  • the activation of NIK due to this high expression is an important signal transduction mechanism involved in lymphoma growth, and NIK shRNA suppresses NIK-induced NF- ⁇ B activation in vitro to suppress the growth of DLBCL cell lines. Is shown (Pham, et al. Blood. 2011, 117, 200-210: Non-Patent Document 10).
  • BAFF expression was observed in B lymphoma cells collected from patients with chronic B lymphoma, and it has been shown that this BAFF reduces drug-induced apoptosis (Kern, et al., Blood. 2004, 103, 679-688: Non-Patent Document 11). It has also been reported that BAFF overexpressing mice induce the development of B lymphoma (Sutherland, et al., Pharmacol. Ther. 2006, 112, 774-786: Non-Patent Document 5).
  • BAFF expression was also found in serum and lymphoma cells of patients with MALT lymphoma, DLBCL, Hodgkin lymphoma and Burkitt lymphoma, which induces cell proliferation and apoptosis resistance of lymphomas, and BAFF high expression lymphoma patients. It has also been shown that the prognosis is poorer than that in low expression patients (He, et al., J. Immunol., 2004, 172, 3268-3279: Non-patent document 12, Novak, et al.,). Blood, 2004, 104, 2247-2253: Non-patent document 13 and Oki, et al, Haematologica. 2007, 92, 269-270: Non-patent document 14).
  • NIK expression was higher than that in T cells collected from a healthy person, activating the downstream nonclassical NF- ⁇ B pathway, and NF- ⁇ B expression in the nucleus. Higher patients have been shown to have a poorer prognosis than lower patients. It has also been shown that treatment of NIK siRNA in peripheral T lymphoma cells can induce cell death (Odqvist, et, al., Clin. Cancer Res. 2013, 19, 2319-2330: Non-patent document 15).
  • NIK siRNA The role of NIK in the growth of tumor cells is not limited to hematopoietic tumors, but it has been shown that NIK is highly expressed in certain pancreatic cancer cell lines, and that cell growth is suppressed by treatment with NIK siRNA (Nishina, et al., Biochem. Biophys. Res. Commun. 2009, 388, 96-101: Non-Patent Document 16).
  • BAFF concentration is higher in the serum of pancreatic cancer patients than in healthy subjects, and that BAFF concentration is correlated with tumor growth and progression of disease stage. Furthermore, it is also reported that BAFF-R is expressed in pancreatic cancer tissue, NF- ⁇ Bp52 and RelB are highly expressed, and B lymphocytes existing around the pancreatic cancer tissue produce BAFF. (Koizumi, et al., PLoS One. 2013, 8, e71367: Non-Patent Document 17).
  • NIK expression was significantly higher than that in benign tissue, and NIK shRNA suppressed tumor growth, induced apoptosis, and arrested cell cycle in vivo. It is recognized (Thu, et al., Oncogene. 2012, 31, 2580-2592: Non-Patent Document 19).
  • NF- ⁇ B is activated in non-small cell lung cancer tissues and cell lines, and it is also confirmed that treatment with NIK siRNA inhibits apoptosis induction and anchorage-independent cell proliferation (Saitoh. , Et al., Lung Cancer 2010, 70, 263-270: Non-Patent Document 20).
  • NIK siRNA treatment and miR-520e that reduces NIK expression suppress cell growth in vitro and tumor growth in vivo.
  • Helicobacter pylori is known to be deeply involved in the development of gastric cancer, and in patients infected with this bacterium, NIK is constantly activated at the site of gastric infection, and the non-classical NF- ⁇ B pathway is activated. It is shown. It has also been reported that gastric cancer cells introduced with a mutant that suppresses NIK activation suppress NF- ⁇ B activation by Helicobacter pylori (Feige, et al., Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 545-550: Non-Patent Document 22 and Maeda, et al, Gastroenterology. 2000, 119, 97-108: Non-Patent Document 23).
  • Non-classical NF- ⁇ B pathway Activation of the non-classical NF- ⁇ B pathway is associated with the development of colitis and colon cancer, and in mice lacking NLRP12, which negatively regulates NIK, non-classical NF- ⁇ B is mediated through NIK activation.
  • the pathway has been shown to activate and induce colitis and cancer.
  • OLFM1 that negatively regulates NIK in colon cancer patients was higher in the non-cancerous part than in the cancerous part, and that cell growth and motility were suppressed by treating NIK siRNA in colonic cancer cells.
  • NIK and RelB are highly expressed in head and neck tumor cells, and it has been shown that treatment of NIK and RelB siRNAs suppresses tumor cell motility and invasion (Das, et al., Mol. Carcinog. 2018). , In press: Non-Patent Document 26).
  • NIK and RelB Overexpression of NIK and RelB has been observed in renal cancer patients, and it has been shown to reduce the 10-year survival rate compared to patients with low expression, and the state of NIK expression is a prognostic factor. Have been reported (Lua, et al., Urol. Int. 2018, 101, 190-196: Non-Patent Document 27).
  • NIK overexpression promotes tumorigenesis in glioma cells, and that non-classical NF- ⁇ B pathway activation by NIK activation enhances glioma cell motility and invasion (Cherry, et. al., Mol. Cancer. 2015, 14, 9: Non-Patent Document 28).
  • NIK mRNA expression was higher in ovarian cancer patient tissue, and the NIK/NF- ⁇ B p52 (non-classical) pathway was activated in ovarian cancer cells, and treatment with NIK shRNA resulted in scaffold dependence. It has been shown to suppress sexual and non-anchorage-dependent cell growth, and also to suppress tumor growth in vivo with NIK shRNA (Uno, et al., PLoS One. 2014, 9, e88347: non- (Patent Document 29)
  • Non-Patent Document 30 In patients with endometrial cancer, it has been shown that the degree of differentiation of cancer tissues is low and that NIK activation is high as the disease progresses, and it has been reported that NIK activation suppresses apoptosis of cancer cells. (Zhou, et al., Int. J. Gynecol. Cancer. 2015, 25, 770-778: Non-Patent Document 30).
  • multiple myeloma malignant lymphoma (MALT lymphoma, DLBCL, Burkitt lymphoma, Hodgkin lymphoma, adult T cell leukemia, peripheral T lymphoma, etc.), pancreatic cancer, breast cancer, malignant melanoma, lung cancer, liver cancer, gastric cancer, In malignant tumors such as colorectal cancer, head and neck tumor, glioma, renal cancer, ovarian cancer and endometrial cancer, BAFF overexpression and NIK overexpression occur, and NIK activation can activate NF- ⁇ B. It can be said that the causative disease is already scientific common sense.
  • BAFF overexpression, NIK and non-classical NF can be used as drugs capable of inhibiting NIK activation and NIK activation associated with BAFF overexpression and suppressing the non-classical NF- ⁇ B signaling pathway.
  • NIK activation and NIK activation associated with BAFF overexpression and suppressing the non-classical NF- ⁇ B signaling pathway.
  • CRAB hypercalcemia, renal disorder, anemia, bone lesion
  • osteoclasts such as monoclonal immunoglobulin (M protein) expressed by multiple myeloma cells, immunoglobulin free light chain, interleukin 6 (IL-6) and Macrophage inflammatory protein 1 ⁇ (MIP-1 ⁇ ) It has been reported that a cell activating factor is involved (Rajkumar, et al., Lancet Oncol. 2014, 15, e538-548: Non-Patent Document 31; Harmer, et al., Front. Endocrinol. 2019, 9, 9. 788: Non-patent document 32; Roussou, et al., Leukemia. 2009, 23, 2177-2181: Non-patent document 33).
  • M protein monoclonal immunoglobulin
  • IL-6 interleukin 6
  • MIP-1 ⁇ Macrophage inflammatory protein 1 ⁇
  • M protein and immunoglobulin free light chain due to multiple myeloma are known to cause renal damage by depositing in the kidney, and also deposit in systemic organs, causing amyloidosis in various organs, resulting in neuropathy. , Causes various symptoms such as arrhythmia. In addition, it causes hyperviscosity syndrome in blood.
  • IL-6 secretion in multiple myeloma has been shown to enhance osteoclast differentiation and activate osteoclasts, which have been reported to lead to bone lesions (Harmer, et al., Front. Endocrinol. 2019, 9, 788: Non-Patent Document 32).
  • MIP-1 ⁇ secreted by multiple myeloma has also been shown to enhance osteoclast differentiation and activation, and to promote bone lesions (Roussou, et al., Leukemia. 2009, 23. , 2177-2181: Non-patent document 33; Tsubaki, et al., J. Cell. Biochem. 2010, 111, 1661-1672: Non-patent document 34).
  • the osteoclast activating factor causes bone lesions, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms.
  • drugs capable of inhibiting NIK activation and NIK activation associated with NIK overexpression and suppressing the non-classical NF- ⁇ B signal transduction pathway include M protein and immunoglobulin free release due to multiple myeloma.
  • Patent Document 1 Japanese Patent Publication No. 2016-5318578 discloses 3-(1H-pyrazol-4-yl)-1H-pyrrolo[2,3-c]pyridine derivatives as NIK inhibitors. ..
  • the compound is an inhibitor of NF- ⁇ B-inducible kinase also known as NIK-MAP3K14, and that the compound is a compound for use in the prevention or treatment of cancer. Is recognized as a right.
  • Patent Document 1 the compound only cites EC50s against three types of cancer cells JJN-3, L-363, and LP-1 (all of which are multiple myeloma cell lines) as an example. From the above, it is recognized as a common general knowledge that NIK inhibitors have a wide therapeutic effect on malignant cancer cells.
  • Patent Document 2 Japanese Patent Laid-Open No. 07-082263 discloses that a xanthone compound having a structure of formula (10) has anticancer activity.
  • R 1 to R 7 H, —OH, C1-6 alkyl, C1-6 alkoxy, epoxypropoxy
  • a benzophenone compound are represented.
  • Patent Document 3 JP-A-2017-0311466 describes that mangiferin inhibits NIK and is effective for multiple myeloma and malignant melanoma. As described above, compounds having a xanthone skeleton have been found to have anticancer activity.
  • Rosebeck S Madden L, Jin X, Gu S, Apel IJ, Appert A, Hamoudi RA, Noels H, Sagaert X, Van LoC, Van LoM P, Baens M, Luc M, Duo M, La LoM P. : Science. 2011, 331, 468-472.
  • Pham LV Fu L, Tamaya AT, Bueso-Ramos C, Drakos E, Vega F, Medeiros LJ, Ford RJ. : Blood. 2011, 117, 200-210. Kern C, Cornel JF, Billard C, Tang R, Rouillard D, Stenou V, Defrance T, Ajchenbaum-Cymbalista F, Simonin PYb, Sb. : Blood.
  • Patent Document 1 a chemical substance is used as a drug that suppresses NIK.
  • the drug administration route is often intravenous administration, which imposes a heavy burden on the patient. Has become. Therefore, it is an object of the present invention to provide a therapeutic agent and an improved composition that inhibit NIK even if it is orally administered and improve malignant tumors such as malignant lymphoma and multiple myeloma.
  • the mangiferin of Patent Document 3 is effective by oral administration, but the required amount of intake is large, and it could not be easily taken even by oral administration. Therefore, more effective or more active therapeutic agents and improved compositions have been sought.
  • the present inventors searched for a compound that inhibits NIK to solve the above problems, and found that the substance having a xanthone skeleton has an NIK inhibitory action including a substance having a structure that has not been found so far. It was confirmed that they actually induce cell death in malignant lymphoma and multiple myeloma.
  • composition for improving malignant tumor disease has the following formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and (7). It is characterized in that it comprises a compound of formula.
  • composition for improving malignant tumor disease containing the above compound can be used as a composition for improving malignant tumor disease related to NIK overexpression and malignant tumor disease related to BAFF overexpression. It can also be used as a therapeutic drug for malignant tumor diseases.
  • the above compounds can be used as a dedifferentiation inducer for plasma cells that have become malignant tumors into B cells. Furthermore, the above compound can be used as a remedy for a concomitant symptom called CRAB (hypercalcemia, renal disorder, anemia, bone lesion) characteristic of multiple myeloma.
  • CRAB hypercalcemia, renal disorder, anemia, bone lesion
  • the therapeutic agent for malignant tumors such as malignant lymphoma and multiple myeloma and the improving composition according to the present invention can improve malignant lymphoma and multiple myeloma.
  • cell death can be effectively induced in malignant tumor cells such as malignant lymphoma cells and multiple myeloma cells. It also does not affect normal cells at concentrations that induce cell death in malignant tumor cells.
  • the composition for improving malignant tumors such as malignant lymphoma and multiple myeloma according to the present invention is considered to have an improving effect not only on the malignant tumors shown in Examples but also on other malignant tumors. ..
  • FIG. 6 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using CCRF-SB cells. It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical
  • FIG. 7 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using SU-DHL-5 cells. It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical
  • FIG. 6 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using KMS-28BM cells. It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical
  • 6 is a photograph showing the results of immunoblotting of the NIK inhibitory action of each drug using IM9 cells. 6 is a photograph showing the results of immunoblotting of activation kinetics of IKK, NF- ⁇ B p65, and NF- ⁇ B p52, which are downstream signals of NIK, using IM9 cells, depending on each drug. It is a panel which shows the result of having investigated CD138 expression suppression by each drug using L363 cell by Flow cytometry. It is a panel which shows the result of having investigated CD138 expression suppression by each drug using L363 cell by Flow cytometry.
  • Fig. 6 is a graph showing the results of an ELISA method using L363 cells to examine the inhibitory effect on bone destruction-related factors by each drug.
  • FIG. 9 is a graph showing the results of an ELISA method using KMS-28BM cells to examine IgG secretion inhibition by mangiferin, mangiferin 8a, and noraciriol.
  • FIG. 9 is a graph showing the results of an ELISA method using KMS-28BM cells to suppress the secretion of the ⁇ chain of the immunoglobulin free light chain by mangiferin, mangiferin 8a, and noraciriol.
  • FIG. 7 is a graph showing the results of an examination by ELISA using KMS-28BM cells for the effect of suppressing bone destruction-related factors by mangiferin, mangiferin 8a, and noraciriol.
  • 8 is a graph showing the time course of tumor growth when Raji cells were transplanted into NOD/ShiJic-scidJcl mice and noraciriol was orally administered.
  • FIG. 26 is a photograph showing a tumor of an untreated mouse and a tumor of a mouse to which noractiliole was administered on day 27 in FIG. 26.
  • FIG. 6 is a graph showing the time course of tumor growth when L363 cells were transplanted into NOD/ShiJic-scidJcl mice and noraciriol was orally administered.
  • FIG. 29 is a photograph showing a tumor of an untreated mouse and a tumor of a mouse to which noractiliole was administered on day 8 in FIG. 28.
  • composition for improving malignant tumors such as malignant lymphoma and multiple myeloma according to the present invention will be described below.
  • the following description is an exemplification of one embodiment and one example of the present invention, and the present invention is not limited to the following description.
  • the following embodiments can be modified without departing from the spirit of the present invention.
  • the therapeutic agent for malignant tumor such as malignant lymphoma and multiple myeloma according to the present invention has a xanthone skeleton (1), (2), (3), (4), (5), (6) ) And a substance represented by the formula (7) are contained as active ingredients.
  • the formula (1) is 1,2',3',4',6-penta-O-propionyl mangiferin, and is hereinafter referred to as "mangiferin 8a".
  • mangiferin is shown in Formula (8).
  • the formula (2) is 1,3,6,7-tetrahydroxyxanthone, which is hereinafter referred to as “norachiriol”.
  • the formula (3) is 1,3,5,6-tetrahydroxyxanthone and is hereinafter referred to as “tetrahydroxyxanthone”.
  • the formula (4) is 1,3,6-trihydroxy-methoxyxanthone and is hereinafter referred to as “methoxyxanthone”.
  • the formula (5) is 9-hydroxyxanthene, and is hereinafter referred to as "xanthydrol”.
  • the formula (6) is 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one. ⁇ -Mangostin”.
  • the formula (7) is 1,3,6,7-tetrahydroxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one. Mangosteen” is called.
  • mangiferin 8a is obtained by ether-bonding a propionyl group to a part of the hydroxy groups of mangiferin (see the formula (8)). As shown in the Examples below, this compound exhibits superior inhibition of NIK and IKK activity than mangiferin and a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • Noraciliol (CAS number 3542-72-1) is a part of xanthone (CAS number: 90-47-1) to which a hydroxy group is attached, and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • Tetrahydroxyxanthone (CAS number 5084-31-1) is a part of xanthone to which a hydroxy group is attached and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • Methoxyxanthone (CAS number 41357-84-0) is a part of xanthone in which a hydroxy group and a part of the hydroxy group are ether-bonded with a methyl group, and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • Xanthohydrol (CAS number 96-46-0) has a hydroxy group at the position of the ketone of xanthone and has a xanthone skeleton. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • ⁇ -Mangosteen (CAS number 6147-11-1) is a xanthone having a bismethylbutenyl group and a hydroxy group bonded to a part thereof and has a xanthone skeleton. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • ⁇ -Mangostin (CAS No. 96-46-0) is a xanthone having a bismethylbutenyl group, a hydroxyl group and a methyl group bonded to this hydroxyl group, and having a xanthone skeleton. There is. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
  • compositions for improving malignant tumor disease contains at least one of these seven compounds as an active ingredient. It may also contain other pharmaceutically acceptable ingredients.
  • the composition for improving malignant tumor disease according to the present invention can be provided as a therapeutic agent for malignant tumor disease (a pharmaceutical composition containing an agent for inducing dedifferentiation into B cells and a CARB improving agent).
  • the composition according to the present invention as a pharmaceutical composition can exert its effect by oral administration. Therefore, it can be provided as an internal preparation.
  • the powdery composition for improving malignant tumor disease may be provided in the form of a capsule, granule, powder, tablet or the like.
  • additives such as binders, lubricants, disintegrating agents, coloring agents, flavoring agents, preservatives, antioxidants, stabilizers are added, and capsules, granules, powders and tablets are added. It can be produced by a conventional method.
  • the pharmaceutical composition according to the present invention may be formulated into an external preparation such as a solution, an ointment, a cream, a gelling agent, a patch, and an aerosol, and may be administered parenterally.
  • an external preparation water, a lower alcohol, a solubilizing agent, a surfactant, an emulsion stabilizer, a gelling agent, an adhesive, and other necessary base components can be added.
  • additives such as a vasodilator, an adrenocortical hormone, a keratolytic agent, a moisturizer, a bactericide, an antioxidant, a cooling agent, a fragrance, and a pigment may be appropriately mixed.
  • composition for improving malignant tumor disease according to the present invention can be provided as a processed food. That is, the composition for improving malignant tumor disease according to the present invention has the same effect as that of the composition for improvement according to the present invention, even when ingested as a processed food.
  • processed food for example, candy, gum, jelly, biscuits, cookies, rice crackers, bread, noodles, fish meat/meat paste products, tea, soft drinks, coffee drinks, milk drinks, whey drinks, lactic acid bacteria drinks , Yogurt, ice cream, pudding, etc., as well as general processed foods, including health foods, as well as health foods such as specified health foods and nutrition foods specified by the Ministry of Health, Labor and Welfare system. Further, processed foods include dietary supplements, feeds, food additives and the like.
  • the processed food according to the present invention can be prepared by adding the composition for improving malignant tumor disease to the raw material of these processed foods. It should be noted that, when adding noraciliol, ⁇ -mangostin and ⁇ -mangostin to these processed foods, the use of a material containing noraciliol, ⁇ -mangostin and ⁇ -mangostin as a raw material is excluded from the application.
  • the composition for improving malignant tumor disease according to the present invention will be described based on Examples.
  • Mangiferin 2.1 g, 4.98 mmol
  • propionic anhydride (12.8 mL, 99.4 mmol)
  • dry pyridine 60 mL
  • the reaction solution was poured into ice water (400 mL) and extracted with ethyl acetate.
  • the ethyl acetate layer was washed successively with ice-cooled 10% sulfuric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated.
  • ⁇ Example 2 Synthesis of noraciriol> Noracilliol was synthesized according to the method of Non-Patent Document 38.
  • the synthesizing method shown in this example is briefly described as follows. That is, 2,4,5-trimethoxybenzoic acid (Compound II) is treated with thionyl chloride according to the method described in the literature (Non-Patent Document 38) to obtain 2,4,5-trimethoxybenzoic acid chloride (Compound III). It was Then, 2-hydroxy-2',4,4',5,6'-is obtained by Friedel-Crafts reaction between the obtained compound (Compound III) and 1,3,5-trimethoxybenzene (Compound IV).
  • Pentamethoxybenzophenone (Compound V) was obtained. Further, this compound (V) is treated with tetrabutylammonium hydroxide to obtain 1,3,6,7-tetramethoxyxanthone (Compound VI), and then demethylation is carried out to obtain noratyliol (Compound I). Obtained in a yield of 39%.
  • FIG. 1 is referred to.
  • ⁇ Example 3 Examination of cell death-inducing effect of each drug on Raji cells> Raji cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C.
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. Raji cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. The results are shown in Figure 2.
  • the mangiferin 8a-administered group is "Mangeriferin 8a”
  • the noraciriol-administered group is "Noratyryolol”
  • the tetrahydroxanthone-administered group is "1,3,5,6-tetrahydroxyxanthone”
  • the methoxyxanthone-administered group is "1".
  • xanthodol-administered group was "Xanthydolol”
  • ⁇ -mangostin-administered group was " ⁇ -mangostin”
  • ⁇ -mangostin-administered group was " ⁇ -mangostin” (hereinafter the same).
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. Further, Table 1 shows the results of calculating IC50 (half-maximum inhibitory concentration: the same applies hereinafter).
  • CCRF-SB cells malignant lymphoma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding CCRF-SB cells in 96-well plate, each concentration of drug was added, and cell viability was measured by trypan blue dye method. Results are shown in FIG.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 2 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • Namalwa cells malignant lymphoma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • Namalwa cells were seeded on a 96-well plate, drugs at various concentrations were added, and cell viability was measured by the trypan blue dye method. The results are shown in Fig. 4.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 3 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • Z138 cells malignant lymphoma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • Z138 cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. Results are shown in FIG.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 4 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • SU-DHL-5 cells malignant lymphoma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • SU-DHL-5 cells were seeded on a 96-well plate, drugs at various concentrations were added, and the cell viability was measured by the trypan blue dye method. Results are shown in FIG.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 5 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noraciliol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • L363 cells multiple myeloma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding L363 cells in 96-well plate, each concentration of drug was added, and cell viability was measured by trypan blue dye method. The results are shown in Fig. 7.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 6 shows the results of calculating IC50 values.
  • the noratiriol-administered group In the mangiferin 8a-administered group, the noratiriol-administered group, the tetrahydroxyxanthone-administered group, the methoxyxanthone-administered group, the xanthohydrol-administered group, and the ⁇ -mangostin-administered group, it was observed that cell death was induced at a concentration lower than that of mangiferin.
  • KMS-28BM cells multiple myeloma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding KMS-28BM cells on 96-well plate, each concentration of drug was added and cell viability was measured by trypan blue dye method. The results are shown in Fig. 8.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 7 shows the results of calculating IC50 values.
  • the noratiriol-administered group In the mangiferin 8a-administered group, the noratiriol-administered group, the tetrahydroxyxanthone-administered group, the methoxyxanthone-administered group, the xanthohydrol-administered group, and the ⁇ -mangostin-administered group, it was observed that cell death was induced at a concentration lower than that of mangiferin.
  • ARH77 cells multiple myeloma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • ARH77 cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. The results are shown in Fig. 9.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 8 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • IM9 cells multiple myeloma cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • IM9 cells were seeded on a 96-well plate, each concentration of drug was added, and the cell viability was measured by the trypan blue dye method. The results are shown in Fig. 10.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs.
  • Table 9 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group. was recognized.
  • RPMI1788 cells normal B lymphocyte cell line
  • the culture medium used was RPMI-1640 medium supplemented with 100 ⁇ g/mL penicillin, 100 U/mL streptomycin and fetal bovine serum.
  • RPMI1788 cells were seeded on a 96-well plate, added with each concentration of drug, and the cell viability was measured by the trypan blue dye method. The results are shown in Fig. 11.
  • the horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%).
  • a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. No decrease in cell viability was observed with any of the drugs.
  • Table 10 shows the results of calculating IC50 values. IC50 values of all drugs were 100 ⁇ M or more.
  • composition for improving malignant tumor disease according to the present invention induces cell death in malignant tumor cells at a concentration that does not affect normal cells.
  • Example 13 Examination of NIK activation inhibition by administration of each drug> As a result of investigating the NIK inhibitory action by each drug administration using IM9 cells by immunoblotting, the NIK activation inhibitory action was recognized (FIG. 12).
  • IM9 cells were seeded in a 150 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 72 hours (Control). IM9 cells were seeded in a 150 cm 2 flask and precultured for 24 hours, then 100 ⁇ M mangiferin, 10 ⁇ M Mangiferin 8a, 10 ⁇ M noractilol, 10 ⁇ M methoxyxanthone, 50 ⁇ M tetrahydroxyxanthone, 10 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 50 ⁇ M ⁇ -mangostin were added to final concentrations, and at 37° C. and 5% CO 2 conditions. Cultured for 72 hours. Proteins were extracted from these cell suspensions with a cell lysate and used as samples. Note that 50 ⁇ M DMF, which is an NF- ⁇ B p65 nuclear translocation inhibitor, was used as a target.
  • 50 ⁇ M DMF which is an NF- ⁇ B p
  • Each sample was subjected to SDS-PAGE, transferred to a PVDF membrane, and examined for phosphorylation of NIK using an anti-phospho-NIK antibody and an anti-NIK antibody.
  • Figure 12 shows the results of immunoblotting.
  • Control 50 ⁇ M DMF, 100 ⁇ M mangiferin, 10 ⁇ M mangiferin 8a, 10 ⁇ M noraciriol, 10 ⁇ M methoxyxanthone, 50 ⁇ M tetrahydroxyxanthone, Control, 10 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangosteen, and 50 ⁇ M ⁇ -mangosteen were added. The cases are shown side by side.
  • the antibody type is shown in the vertical direction. Specifically, the case of an anti-phospho-NIK antibody (denoted as "Phospho-NIK”) and the case of an anti-NIK antibody (denoted as "NIK”) are shown. In the photograph of the anti-NIK antibody, no decrease in NIK band intensity was observed as compared with Control. On the other hand, in the case of the anti-phospho-NIK antibody, the immunoblotting result of the sample was diminished with mangiferin, mangiferin 8a, noraciliol, methoxyxanthone, tetrahydroxyxanthone, xanthohydrol, ⁇ -mangostin and ⁇ -mangostin. NF- ⁇ B p65 nuclear translocation inhibitor, DMF, did not become thinner than Control.
  • Example 14 Examination of NIK downstream signal by administration of each drug> As a result of examining the activation kinetics of NIK downstream signals IKK, NF- ⁇ B p52 and NF- ⁇ B p65 by administration of each drug, inhibition of IKK activity and inhibition of nuclear translocation of NF- ⁇ B p52 and NF- ⁇ B p65 were examined. Yes (Fig. 13).
  • Each sample was prepared in the same manner as in Example 13, subjected to SDS-PAGE, transferred to a PVDF membrane, and used with anti-phospho-IKK antibody and anti-IKK antibody, anti-NF- ⁇ Bp52 antibody, anti-NF- ⁇ Bp65 antibody, and anti-Lamin antibody. The assay was carried out.
  • Figure 13 shows the results of immunoblotting.
  • Control 50 ⁇ M DMF, 100 ⁇ M mangiferin, 10 ⁇ M mangiferin 8a, 10 ⁇ M noraciriol, 10 ⁇ M methoxyxanthone, 50 ⁇ M tetrahydroxyxanthone, Control, 10 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangosteen, and 50 ⁇ M ⁇ -mangosteen were added. The cases are shown side by side.
  • anti-phospho-IKK antibody described as “Phospho-IKK”
  • anti-IKK antibody described as “IKK”
  • anti-NF- ⁇ Bp52 antibody described as “NF- ⁇ Bp52nuclear”
  • anti-NF- ⁇ Bp65 anti-NF- ⁇ Bp65
  • Antibodies described as “NF- ⁇ Bp65nuclear”
  • anti-Lamin antibodies described as "Lamin”
  • the cytosolic fraction and the nuclear fraction were extracted using ProteoExtract (registered trademark) Subcellular Proteome Extraction Kit manufactured by Merck Ltd.
  • NF- ⁇ Bp52nuclear anti-NF- ⁇ Bp52 antibody
  • anti-NF- ⁇ Bp65 antibody anti-NF- ⁇ Bp65nuclear
  • anti-Lamin antibody anti-Lamin antibody against a substance in the cell nucleus.
  • Lamin is present regardless of all drugs, but nuclear NF- ⁇ Bp52 is diminished by mangiferin, mangiferin 8a, noraciliol, methoxyxanthone, tetrahydroxyxanthone, xanthydrol, ⁇ -mangostin and ⁇ -mangostin. Although it was confirmed, the increase in DMF was recognized as compared with Control. In addition, NF- ⁇ Bp65 in the nucleus was decreased (shadows were reduced) with all drugs.
  • Lamin is a fibrous protein that maintains structure and regulates transcription in the cell nucleus. Therefore, it was shown that NF- ⁇ Bp65 and NF- ⁇ Bp52 in the nucleus do not exist or are very small even when they are present when each drug is added in the state where the nuclear substance is detected in all samples. ing.
  • Example 15 CD138 expression suppression effect by administration of each drug in L363 cells> As a result of investigating the CD138 expression-suppressing action by administration of each drug using L363 cells by Flow cytometry, the CD138 expression-suppressing action was confirmed.
  • L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 ⁇ M mangiferin, 1 ⁇ M Mangiferin 8a, 1 ⁇ M noractilol, 5 ⁇ M tetrahydroxyxanthone, 5 ⁇ M methoxyxanthone, 1 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 5 ⁇ M ⁇ -mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the cells were stained with an anti-CD138 antibody that is a malignancy marker for multiple myeloma, and the expression of CD138 was measured using BD LSR Fortessa.
  • the results are shown in FIGS. 14 and 15.
  • the horizontal axis represents the CD138 expression level, and the vertical axis represents the cell number.
  • the solid line in the panel shows the Negative control that has not been treated with the anti-CD138 antibody and the drug
  • the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD138 antibody
  • the broken line shows that that has been treated with the drug and the anti-CD138 antibody. ..
  • the CD138 expression was significantly increased in the Positive control as compared with the Negative control group that was not treated with the drug or the anti-CD138 antibody.
  • Mangiferin administration group (FIG. 14(a)), mangiferin 8a administration group (FIG. 14(b)), noraciliol administration group (FIG. 14(c)), tetrahydroxyxanthone administration group, (FIG. 14(d)), methoxyxanthone.
  • the administration group (FIG. 15(e)), the xanthohydrol administration group (FIG. 15(f)), the ⁇ -mangostin administration group (FIG. 15(g)), and the ⁇ -mangostin administration group (FIG.
  • Example 16 CD20 expression increasing effect by administration of each drug on L363 cells> As a result of investigating the CD20 expression increasing action by each drug administration using L363 cells by Flow cytometry, the CD20 expression increasing action was confirmed.
  • L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 ⁇ M mangiferin, 1 ⁇ M Mangiferin 8a, 1 ⁇ M noractilol, 5 ⁇ M tetrahydroxyxanthone, 5 ⁇ M methoxyxanthone, 1 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 5 ⁇ M ⁇ -mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days.
  • the cells were stained with an anti-CD20 antibody that is a B cell marker, and the expression of CD20 was measured using BD LSR Fortessa. CCRF-SB cells were used as a CD20-positive control.
  • the results are shown in FIGS. 16 and 17.
  • the horizontal axis represents the expression level of CD20, and the vertical axis represents the cell number.
  • the solid line in the panel shows the Negative control that has not been treated with the anti-CD20 antibody and the drug
  • the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD20 antibody
  • the broken line shows that that has been treated with the drug and the anti-CD20 antibody.
  • the dashed-dotted line shows CCRF-SB cells treated with anti-CD20 antibody.
  • the CD20 expression was hardly increased in the Positive control, which was about the same as the Negative control. That is, it can be seen that L363 cells do not express CD20.
  • the CCRF-SB cells used as a CD20-positive control the CD20 expression was significantly increased as compared with the L363 cells Negative control and Positive control. This indicates that CCRF-SB cells express CD20.
  • the mangiferin administration group (FIG. 16(a)), the mangiferin 8a administration group (FIG. 16(b)), the noratiliol administration group (FIG. 16(c)), the tetrahydroxyxanthone administration group, (FIG. 16(d)) methoxy.
  • the xanthone administration group (FIG. 17(e))
  • the xanthohydrol administration group (FIG. 17(f)
  • the ⁇ -mangostin administration group (FIG. 17(g)
  • the ⁇ -mangostin administration group (FIG. 17(h)).
  • the expression level of CD20 was remarkably increased.
  • CD20 is not normally expressed, and the effect of the anti-CD20 antibody rituximab, which binds to CD20 and exerts an antitumor effect, is not observed.
  • the increased expression of CD20 by the composition containing mangiferin 8a, noraciliol, tetrahydroxyxanthone, methoxyxanthone, xanthohydrol, ⁇ -mangostin, ⁇ -mangostin according to the present invention enables rituximab to bind to cells. , Can exert an antitumor effect. That is, the antitumor effect of rituximab can be expected by converting multiple myeloma into B cell-like by the above substances.
  • the improvement of multiple myeloma using rituximab may be achieved by using a composition containing mangiferin 8a, noraciliol, tetrahydroxyxanthone, methoxyxanthone, xanthohydrol, ⁇ -mangostin, ⁇ -mangostin and rituximab.
  • Example 17 IgG secretion inhibitory effect by administration of each drug on L363 cells>
  • ELISA enzyme-linked immunosorbent assay
  • L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 ⁇ M mangiferin, 1 ⁇ M Mangiferin 8a, 1 ⁇ M noractilol, 5 ⁇ M tetrahydroxyxanthone, 5 ⁇ M methoxyxanthone, 1 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 5 ⁇ M ⁇ -mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IgG secreted was measured by ELISA. For this measurement, a human anti-IgG antibody ELISA kit (Funakoshi) was used.
  • the results are shown in Fig. 18.
  • the horizontal axis represents the sample group and the vertical axis represents the IgG secretion amount (ng/mL).
  • IgG is 2861 ng/mL
  • the doses were 140 ng/mL, 40 ng/mL, 59 ng/mL, 145 ng/mL, 67 ng/mL, 106 ng/mL, 24 ng/mL, and 61 ng/mL, respectively.
  • the mangiferin administration group decreases IgG secretion
  • the mangiferin 8a administration group, the noratiriol administration group the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthhydrol administration group, the ⁇ -mangosteen administration group. It was found that the ⁇ -mangostin administration group markedly suppressed IgG secretion at a lower dose than the mangiferin administration group.
  • control group causes renal damage, amyloidosis, and hyperviscosity syndrome due to IgG production
  • the group and the ⁇ -mangostin administration group suppressed renal damage, amyloidosis, and hyperviscosity syndrome.
  • ⁇ Example 18 Inhibitory effect of ⁇ chain of immunoglobulin free light chain by administration of each drug on L363 cells> The inhibitory effect on the ⁇ chain of the immunoglobulin free light chain by administration of each drug in L363 cells was examined by enzyme-linked immunosorbent assay (ELISA). As a result, the inhibitory effect on the ⁇ chain of the immunoglobulin free light chain was suppressed. recognized.
  • ELISA enzyme-linked immunosorbent assay
  • L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 ⁇ M mangiferin, 1 ⁇ M Mangiferin 8a, 1 ⁇ M noractilol, 5 ⁇ M tetrahydroxyxanthone, 5 ⁇ M methoxyxanthone, 1 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 5 ⁇ M ⁇ -mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days.
  • the results are shown in Fig. 19.
  • the horizontal axis represents the sample group, and the vertical axis represents the amount of ⁇ chain secretion ( ⁇ g/L).
  • the IgG is 142 ⁇ g/L
  • the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangosteen administration group, the ⁇ -In the mangosteen-administered group the doses were 30 ⁇ g/L, 23 ⁇ g/L, 23 ⁇ g/L, 33 ⁇ g/L, 31 ⁇ g/L, 29 ⁇ g/L, 30 ⁇ g/L, 31 ⁇ g/L, respectively.
  • the mangiferin administration group decreased the secretion of ⁇ chain
  • the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangosteen administration group were administered. It was found that the ⁇ -chain secretion was significantly suppressed in the ⁇ -mangostin administration group and the mangiferin administration group at a lower dose.
  • control group causes renal damage, amyloidosis, and hyperviscosity syndrome due to the production of ⁇ chain
  • the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangosteen It can be said that the administration group and the ⁇ -mangostin administration group suppressed renal damage, amyloidosis, and hyperviscosity syndrome.
  • Example 19 Inhibitory effect of bone destruction-related factor secretion by administration of each drug on L363 cells> As a result of Luminex's investigation of the inhibitory effect on the secretion of bone destruction-related factors by administration of each drug using L363 cells, the inhibitory effect on the secretion of bone destruction-related factors was confirmed.
  • L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 ⁇ M mangiferin, 1 ⁇ M Mangiferin 8a, 1 ⁇ M noractilol, 5 ⁇ M tetrahydroxyxanthone, 5 ⁇ M methoxyxanthone, 1 ⁇ M xanthohydrol, 50 ⁇ M ⁇ -mangostin and 5 ⁇ M ⁇ -mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days.
  • MIP-1 ⁇ which is a bone destruction-related factor, secreted was measured by Luminex. This measurement was performed using a Human Magnetic Luminex Assay (R&D).
  • the results are shown in Fig. 20.
  • the horizontal axis represents the sample group, and the vertical axis represents the secreted amount of MIP-1 ⁇ (pg/mL). In Control, the secreted amount of MIP-1 ⁇ was 245 pg/mL.
  • the amount of MIP-1 ⁇ secretion was The values were 0 pg/mL, 0 pg/mL, 0 pg/mL, 0 pg/mL, 0.73 pg/mL, 0 pg/mL, 0 pg/mL, and 0 pg/mL, respectively.
  • the mangiferin administration group was found to reduce the secretion of MIP-1 ⁇ , and the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthydrol administration group, ⁇ -mangosteen It was found that the administration group and the ⁇ -mangostin administration group markedly suppressed MIP-1 ⁇ secretion at a lower dose than the mangiferin administration group. That is, the control group has bone lesions (bone destruction) due to MIP-1 ⁇ production, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms.
  • bone lesions bone destruction
  • Mangiferin-administered group mangiferin-8a-administered group, noraciliol-administered group, tetrahydroxyxanthone-administered group, xanthydrol-administered group, ⁇ -mangosteen-administered group, ⁇ -mangostin-administered group, bone lesion (bone destruction), bone lesion
  • hypercalcemia pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms were suppressed.
  • Example 20 CD138 expression suppression effect by administration of each drug on KMS-28BM cells> As a result of investigating the CD138 expression inhibitory action by each drug administration using KMS-28BM cells by Flow cytometry, the CD138 expression inhibitory action was confirmed.
  • KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control).
  • KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 ⁇ M mangiferin, 0.1 ⁇ M mangiferin 8a, and 0.05 ⁇ M noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the cells were stained with an anti-CD138 antibody that is a malignancy marker for multiple myeloma, and the expression of CD138 was measured using BD LSR Fortessa.
  • the results are shown in Fig. 21.
  • the horizontal axis represents the CD138 expression level, and the vertical axis represents the cell number.
  • the solid line in the panel shows the Negative control that has not been treated with the anti-CD138 antibody and the drug
  • the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD138 antibody
  • the broken line shows that that has been treated with the drug and the anti-CD138 antibody. ..
  • the CD138 expression was significantly increased in the Positive control as compared with the Negative control group which was not treated with the drug or the anti-CD138 antibody.
  • the CD138 expression level was remarkably reduced, and was almost the same as that of Positive control. It was about the same as Negative control. That is, it was found that mangiferin, mangiferin 8a, and noraciliol suppress the expression of CD138, which is a malignancy marker for multiple myeloma.
  • Example 21 CD20 expression increasing effect by administration of each drug on KMS-28BM cells> As a result of investigating the CD20 expression increasing action by administration of each drug using KMS-28BM cells by Flow cytometry, the CD20 expression increasing action was confirmed.
  • KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control).
  • KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 ⁇ M mangiferin, 0.1 ⁇ M mangiferin 8a, and 0.05 ⁇ M noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the cells were stained with an anti-CD20 antibody that is a B cell marker, and the expression of CD20 was measured using BD LSR Fortessa. CCRF-SB cells were used as a CD20-positive control.
  • the results are shown in Fig. 22.
  • the horizontal axis represents the expression level of CD20, and the vertical axis represents the cell number.
  • the solid line in the panel shows the Negative control that has not been treated with the anti-CD20 antibody and the drug
  • the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD20 antibody
  • the dashed line shows that that has been treated with the drug and the anti-CD20 antibody.
  • the dashed-dotted line shows CCRF-SB cells treated with anti-CD20 antibody.
  • the CD20 expression was hardly increased in the Positive control, which was about the same as the Negative control. That is, it can be seen that KMS-28BM cells do not express CD20.
  • the CCRF-SB cells used as the CD20-positive control the CD20 expression was significantly increased as compared with the KMS-28BM cells Negative control and Positive control. This indicates that CCRF-SB cells express CD20.
  • the CD20 expression level was remarkably increased as compared with Positive control. Was there.
  • Example 22 IgG secretion inhibitory effect by administration of each drug on KMS-28BM cells> The inhibitory effect on IgG secretion by administration of each drug using KMS-28BM cells was examined by enzyme-linked immunosorbent assay (ELISA), and the inhibitory effect on IgG secretion was confirmed.
  • ELISA enzyme-linked immunosorbent assay
  • KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control).
  • KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 ⁇ M mangiferin, 0.1 ⁇ M mangiferin 8a, and 0.05 ⁇ M noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IgG secreted was measured by ELISA. For this measurement, a human anti-IgG antibody ELISA kit (Funakoshi) was used.
  • the results are shown in Fig. 23.
  • the horizontal axis represents the sample group and the vertical axis represents the IgG secretion amount (ng/mL).
  • IgG was 2018 ng/mL in Control, whereas 106 ng/mL, 40 ng/mL, and 0 ng/mL were respectively in the mangiferin administration group, the mangiferin 8a administration group, and the noratiriol administration group.
  • the mangiferin-administered group decreased IgG secretion, and it was found that the mangiferin 8a-administered group and the noratiriol-administered group significantly suppressed IgG secretion at a lower dose than the mangiferin-administered group. That is, it can be said that the control group caused renal damage, amyloidosis, and hyperviscosity syndrome due to IgG production, and the mangiferin-administered group, mangiferin 8a-administered group, and noraciriol-administered group suppressed renal injury, amyloidosis, and hyperviscosity syndrome. ..
  • ⁇ Example 23 Inhibitory effect of ⁇ chain of immunoglobulin free light chain by administration of each drug on KMS-28BM cells> The inhibitory effect on the ⁇ chain of the immunoglobulin free light chain by administration of each drug in KMS-28BM cells was examined by enzyme-linked immunosorbent assay (ELISA), and the inhibitory effect on the ⁇ chain of the immunoglobulin free light chain was suppressed. The action was recognized.
  • ELISA enzyme-linked immunosorbent assay
  • KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control).
  • KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 ⁇ M mangiferin, 0.1 ⁇ M mangiferin 8a, and 0.05 ⁇ M noraciliol were added so that the final concentrations would be obtained, and the cells were cultured at 37°C under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of ⁇ chain secreted immunoglobulin free light chain was measured by ELISA. This measurement was performed using a human anti- ⁇ chain antibody ELISA kit (Funakoshi).
  • Fig. 24 The results are shown in Fig. 24.
  • the horizontal axis represents the sample group, and the vertical axis represents the amount of ⁇ chain secretion ( ⁇ g/L).
  • IgG was 16 ⁇ g/L
  • the mangiferin 8a administration group, and the noratiriol administration group they were 0 ⁇ g/L, 0 ⁇ g/L, and 6.9 ⁇ g/L, respectively.
  • the mangiferin-administered group decreased the secretion of the ⁇ chain
  • the mangiferin 8a-administered group and the noratiriol-administered group significantly suppressed the ⁇ -chain secretion at a lower dose than the mangiferin-administered group. That is, the control group caused nephropathy, amyloidosis, hyperviscosity syndrome due to ⁇ chain production
  • the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group suppressed the renal injury, amyloidosis, hyperviscosity syndrome. I can say.
  • Example 24 Inhibitory effect of bone destruction-related factor secretion by administration of each drug on KMS-28BM cells> As a result of Luminex's study on the inhibitory action on the secretion of bone destruction-related factors by administration of each drug using KMS-28BM cells, the inhibitory action on the secretion of bone destruction-related factors was confirmed.
  • KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control).
  • KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 ⁇ M mangiferin, 0.1 ⁇ M mangiferin 8a, and 0.05 ⁇ M noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IL-6, which is a bone destruction-related factor, secreted was measured by Luminex. This measurement was performed using a Human Magnetic Luminex Assay (R&D).
  • Fig. 25 The results are shown in Fig. 25.
  • the horizontal axis represents the sample group, and the vertical axis represents the amount of IL-6 secreted (pg/mL).
  • the amount of IL-6 secreted was 153 pg/mL.
  • the IL-6 secretion amount in the mangiferin administration group, the mangiferin 8a administration group, and the noratiriol administration group was 36 pg/mL, 28 pg/mL, and 43 pg/mL, respectively.
  • the mangiferin-administered group decreased IL-6 secretion, and that the mangiferin-8a-administered group and the noraciriol-administered group significantly suppressed IL-6 secretion at a lower dose than the mangiferin-administered group. It was That is, the control group had bone lesions (bone destruction) due to IL-6 production, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms.
  • Mangiferin administration group mangiferin 8a administration group, noraciliol administration group, bone lesions (bone destruction), hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, It can be said that the neurological symptoms associated with spinal cord compression symptoms were suppressed.
  • Example 25 Tumor growth inhibitory effect of in vivo administration of noraciriol on Raji cells> Raji cells were transplanted into NOD/ShiJic-scidJcl mice, and the tumor growth inhibitory effect when orally administered noraciriol was examined. As a result, a remarkable tumor growth inhibitory effect was observed.
  • Raji cells were transplanted to NOD/ShiJic-scidJcl mice, and when the mean tumor volume exceeded 100 mm 3 , the day 0 was treated with oral administration of noraciriol at 100 mg/kg to the mice for 27 consecutive days, and the tumor volume was measured. ..
  • the group that has just been transplanted with Raji cells is called the target group, and the group that has been administered noraciriol is called the noraciriol-administered group.
  • Results are shown in FIG. Referring to the figure, the horizontal axis represents the number of days elapsed (day) and the vertical axis represents the tumor volume (mm 3 ).
  • White circles indicate a target group (displayed as "Control”).
  • the black diamonds indicate the noractilol administration group (indicated as "100 mg/kg norathyriol”).
  • “*” was shown for those that were significantly different (P ⁇ 0.01) from the control group.
  • tumor growth was significantly suppressed in the noraciriol administration group compared to the control group.
  • FIG. 27 shows a photograph of the tumor 27 days after the start of administration.
  • FIG. 27(a) shows a photograph of a tumor of one mouse in the control group
  • FIG. 27(b) shows a photograph of one mouse in the noractilol administration group.
  • the target group of FIG. 27(a) a significant increase in tumor is observed.
  • the noraciliol-administered group in FIG. 27(b) a remarkable decrease in volume was observed as compared with the control group.
  • Example 26 Tumor growth inhibitory effect of in vivo administration of noraciriol on L363 cells>
  • L363 cells were transplanted to NOD/ShiJic-scidJcl mice and noraciriol was orally administered, the tumor growth inhibitory effect was examined. As a result, a remarkable tumor growth inhibitory effect was observed.
  • L363 cells were transplanted into NOD/ShiJic-scidJcl mice, and when the mean tumor volume exceeded 100 mm 3 , the day 0 was treated with oral administration of noratiriol at 100 mg/kg to the mice for 8 days, and the tumor volume was measured. ..
  • the group that has just been transplanted with L363 cells is called the target group, and the group that has been administered noraciliol is called the noraciriol-administered group.
  • Fig. 28 The results are shown in Fig. 28.
  • the horizontal axis represents the number of days elapsed and the vertical axis represents the tumor volume.
  • White circles indicate a target group (displayed as "Control”).
  • the black diamond marks indicate the noractilol administration group (indicated as "100 mg/kg norathyriol”).
  • “*” was shown for those that were significantly different (P ⁇ 0.01) from the control group.
  • tumor growth was significantly suppressed in the noraciriol administration group compared to the control group.
  • FIG. 29 shows a photograph of the tumor 8 days after the start of administration.
  • FIG. 29(a) shows a photograph of a tumor of one mouse in the control group
  • FIG. 29(b) shows a photograph of one mouse in the noraciriol administration group.
  • the tumor is remarkably increased.
  • the noraciliol-administered group in FIG. 29(b) a remarkable decrease in volume was observed as compared with the control group.
  • the composition for improving malignant tumor disease according to the present invention can be used as a pharmaceutical composition useful for malignant tumor disease caused by activation of NF- ⁇ B p52 and NF- ⁇ B p65 as a selective NIK inhibitor. .. Further, the composition for improving malignant tumor disease according to the present invention is applied to bone lesions (bone destruction) associated with multiple myeloma, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, and spinal cord compression fractures. It can be used as a useful pharmaceutical composition for spinal cord symptom associated therewith, neurological symptom associated with spinal cord compressive symptom, renal disorder, amyloidosis, hyperviscosity syndrome.

Abstract

Compounds for ameliorating or treating malignant tumor diseases have been proposed, but many of those cannot be orally taken and have placed a burden on patients. Mangiferin has the effect of ameliorating malignant tumor diseases through oral intake, but the effect is small, and it has been realistically not easy to take mangiferin. Furthermore, a novel or improved form of an existing drug for inhibiting a kinase such as NIK has been constantly needed for development of a more effective medicine and the like for treating malignant tumor diseases. According to the present invention, formula (1), formula (2), formula (3), formula (4), formula (5), formula (6), and formula (7) are effective when being orally taken, and can exhibit the effect in small amounts compared to mangiferin.

Description

[規則26に基づく補充 02.03.2020] 悪性腫瘍疾患の改善用組成物[Replenishment based on Rule 26 02.03.2020] Composition for improving malignant tumor disease
 本発明は、悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍治療および/または予防に有用なNF-κB誘導キナーゼ(NIK-MAP3K14としても知られている)を阻害する化合物に関する。また、本発明は、当該化合物を用いた悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍等の予防・治療の組成物、医薬組成物、加工食品に関する。 The present invention relates to a compound that inhibits an NF-κB-inducing kinase (also known as NIK-MAP3K14) useful for treating and/or preventing malignant tumors such as malignant lymphoma and multiple myeloma. The present invention also relates to a composition for preventing and/or treating malignant tumors such as malignant lymphoma and multiple myeloma using the compound, a pharmaceutical composition, and a processed food.
 NF-κB(Nuclear factor kappa B)は、免疫応答、細胞増殖、アポトーシスおよび発癌に関与する各種遺伝子発現を調節する転写因子である。このNF-κBは5つのメンバー:NF-κBp65(p65)、RelB、c-Rel、NF-κB1(これは、前駆体p105と切断型p50の両方で存在する)およびNF-κB2(これは、前駆体p100と切断型p52の両方で存在する)から構成されている。主に、NF-κB1(切断型p50;NF-κBp50)とp65がヘテロダイマー、NF-κB2(切断型p52;NF-κBp52)とRelBがヘテロダイマーを形成する。 NF-κB (Nuclear factor kappa B) is a transcription factor that regulates the expression of various genes involved in immune response, cell proliferation, apoptosis and carcinogenesis. This NF-κB has five members: NF-κB p65 (p65), RelB, c-Rel, NF-κB1 (which is present in both precursor p105 and truncated p50) and NF-κB2 (which is Present in both precursor p100 and truncated p52). Mainly, NF-κB1 (truncated p50; NF-κBp50) and p65 form a heterodimer, and NF-κB2 (truncated p52; NF-κBp52) and RelB form a heterodimer.
 また、これらNF-κBヘテロダイマーの活性化はリン酸化反応およびタンパク質分解を含む連続事象によって厳密に制御されるシグナル伝達経路であり、古典的経路(Canonical経路)および非古典的経路(Non-canonical経路)の2つの経路に分類される。 In addition, activation of these NF-κB heterodimers is a signal transduction pathway that is strictly controlled by a series of events including phosphorylation reaction and proteolysis, and includes classical pathway (Canonical pathway) and non-classical pathway (Non-canonical pathway). It is classified into two routes (route).
 NIKはセリン/スレオニンキナーゼであり、両方の経路で役割を担うが、非古典的なシグナル伝達経路では必須なものであり、IKKαをリン酸化することでNF-κBp100を部分分解し、NF-κBp52を遊離させる。 NIK is a serine/threonine kinase that plays a role in both pathways, but is essential in non-classical signal transduction pathways. It phosphorylates IKKα to partially decompose NF-κBp100, resulting in NF-κBp52. To release.
 NF-κBp52はRelBとヘテロダイマーを形成することで、核内へと移行し、遺伝子を発現させる。さらに、古典的経路ではIKKα、IKKβおよびIKKγ複合体を活性化させることでp65とNF-κBp50のヘテロダイマーを形成させ、これが核内へと移行することで、遺伝子発現を調節する。 NF-κBp52 translocates into the nucleus by forming a heterodimer with RelB and expresses the gene. Furthermore, in the classical pathway, IKKα, IKKβ and IKKγ complexes are activated to form a heterodimer of p65 and NF-κBp50, which translocates into the nucleus to regulate gene expression.
 NIKはB細胞活性化因子(BAFF)、CD40リガンドおよび腫瘍壊死因子α(TNFα)などのリガンド等によって活性化され、これらのリガンドによるシグナル伝達経路の活性化にNIKが重要であることが示されている。その重要な役割のために、NIKの発現は厳密に調節されている。 NIK is activated by ligands such as B cell activating factor (BAFF), CD40 ligand and tumor necrosis factor α (TNFα), and it is shown that NIK is important for activation of signal transduction pathway by these ligands. ing. Because of its important role, NIK expression is tightly regulated.
 通常の非刺激条件下では、ユビキチンリガーゼであるTNF受容体関連因子(TRAF)とNIKが相互作用することにより、NIKが分解されるため、細胞内におけるNIKタンパク量は少ない。非古典的経路がリガンドによって刺激されると、活性化された受容体により、TRAF-NIK複合体を解離させ、それによりNIK濃度が増加すると考えられている。(Thu and Richmond,Cytokine Growth F.R.2010,21,213-226:非特許文献1)。 Under normal non-stimulation conditions, NIK is degraded by the interaction of TNF receptor-related factor (TRAF), which is a ubiquitin ligase, with NIK, and the amount of NIK protein in cells is small. It is believed that when the non-classical pathway is stimulated by the ligand, the activated receptor causes the TRAF-NIK complex to dissociate, thereby increasing NIK concentration. (Thu and Richmond, Cytokine Growth FR 2010, 21, 213-226: Non-Patent Document 1).
 BAFFはT細胞、単球/マクロファージ、樹状細胞等から産生・分泌され、B細胞上の3種類の受容体を介してB細胞の分化、活性化、生存等を制御することが知られている(Moore,et al., Science. 1999, 285,260-263:非特許文献2)。 BAFF is produced and secreted from T cells, monocytes/macrophages, dendritic cells, etc., and is known to control B cell differentiation, activation, survival, etc. through three types of receptors on B cells. (Moore, et al., Science. 1999, 285, 260-263: Non-Patent Document 2).
 BAFFの受容体としては、BAFF-R(BAFF-Receptor)、TACI(Taransmenbrane activator and calcium modulator and cyclophilin ligand interactor)およびBMCA(B cell maturation antigen)が知られている。 As BAFF receptors, BAFF-R (BAFF-Receptor), TACI (Transmenbrane activator and calcium modulator and cyclophilin ligand interactor), and BMCA (Bcella permuta) are known.
 BAFF-RおよびBMCAは主にB細胞に発現しており、TACIはB細胞と活性化T細胞に発現している。BAFFとBAFF-Rとの相互作用はNIKを介した非古典的NF-κBシグナル伝達経路を活性化する。 BAFF-R and BMCA are mainly expressed in B cells, and TACI is expressed in B cells and activated T cells. The interaction between BAFF and BAFF-R activates the NIK-mediated nonclassical NF-κB signaling pathway.
 多発性骨髄腫ではNF-κB経路が恒常的に活性化していることが示されている(Annuziata,et al.Cancer Cell.2007,12,115-130:非特許文献3およびDemchenko,et al.Blood.2010,115,3541-3552:非特許文献4)。また、多発性骨髄腫患者ではNIK遺伝子の増幅、TRAF遺伝子の欠失、TRAF遺伝子の点変異が認められることが示されており、これらによりNIKタンパク発現量が増加し、NIKを恒常的に活性化させることが、NF-κB経路を活性化する要因となっている。また、NIKをshRNA(NIK shRNA)で阻害することでNF-κB活性化を抑制し、多発性骨髄腫細胞株に細胞死を誘導することを示している(Annuziata,et al.Cancer Cell.2007,12,115-130:非特許文献3)。 It has been shown that the NF-κB pathway is constitutively activated in multiple myeloma (Annuziata, et al. Cancer Cell. 2007, 12, 115-130: Non-Patent Document 3 and Demchenko, et al. Blood 2010, 115, 3541-3552: Non-Patent Document 4). In addition, it has been shown that NIK gene amplification, TRAF gene deletion, and TRAF gene point mutations are observed in patients with multiple myeloma, and these increase NIK protein expression level and activate NIK constantly. It is a factor that activates the NF-κB pathway. It has also been shown that inhibition of NIK with shRNA (NIK shRNA) suppresses NF-κB activation and induces cell death in multiple myeloma cell lines (Annuziata, et al. Cancer Cell. 2007). 12, 115-130: Non-Patent Document 3).
 また多発性骨髄腫患者では血清中のBAFF濃度が上昇していることが示されており、BAFFは単球やマクロファージからだけではなく、多発性骨髄腫細胞からも分泌されること、およびBAFFのオートクリンにより多発性骨髄腫細胞の増殖が亢進されることが報告されている(Sutherland,et al.,Pharmacol.Ther.2006,112,774-786:非特許文献5およびNovak,et al.,Blood.2004,103,689-694:非特許文献6)。 It has also been shown that serum BAFF levels are elevated in patients with multiple myeloma, indicating that BAFF is secreted not only from monocytes and macrophages but also from multiple myeloma cells, and that BAFF It has been reported that autocrine enhances the growth of multiple myeloma cells (Sutherland, et al., Pharmacol. Ther. 2006, 112, 774-786: Non-Patent Document 5 and Novak, et al., Blood, 2004, 103, 689-694: Non-Patent Document 6).
 ホジキンリンパ腫患者でも同様にTRAF遺伝子の点変異及びNIKタンパク発現量の増加が認められることが示されており、これらにおいてもNIK shRNAにより細胞死誘導することが報告されている(Ranuncolo,et al.,Blood.2012,120,3756-3763:非特許文献7)。 It has been shown that a TRAF gene point mutation and an increase in NIK protein expression are also observed in Hodgkin's lymphoma patients, and it is also reported that NIK shRNA induces cell death (Ranuncolo, et al. , Blood. 2012, 120, 3756-3763: Non-Patent Document 7).
 さらに、成人T細胞白血病細胞でもNIKタンパク質の細胞質量が増加し、NIK shRNA処理でIn vivoにおける成人T細胞白血病の腫瘍増殖を抑制することが示されている(Saitoh,et al.,Blood.2008,111,5118-5129:非特許文献8)。 Furthermore, it has been shown that the cell mass of NIK protein is also increased in adult T cell leukemia cells, and that the NIK shRNA treatment suppresses the tumor growth of adult T cell leukemia in vivo (Saitoh, et al., Blood. 2008). , 111, 5118-5129: Non-Patent Document 8).
 また、Mucosa associated lymphoid tissue(MALT)リンパ腫において染色体転座(t(11;18)(q21;q21))で産生されるAPI2-MALT1融合タンパク質がNIKの325番目のアルギニンの位置で、タンパク質切断を行うことで、NIKの恒常的活性化を誘導することが示さている。このNIKの恒常的活性化により非古典的NF-κB経路が活性化されることで、細胞接着及びアポトーシス抵抗性に関与する(Rosebeck,et al.,Science.2011,331,468-472;非特許文献9)。 In addition, the API2-MALT1 fusion protein produced at the chromosomal translocation (t(11;18)(q21;q21)) in Mucosa associated lymphoid tissue (MALT) lymphoma caused protein cleavage at the 325th arginine position of NIK. It has been shown to induce constitutive activation of NIK when performed. This constitutive activation of NIK activates the non-classical NF-κB pathway, which is involved in cell adhesion and resistance to apoptosis (Rosebeck, et al., Science. 2011, 331, 468-472; Patent Document 9).
 びまん性大細胞型B細胞性リンパ腫(DLBCL)細胞では、BAFF刺激によりNIKが細胞質に高発現する。この高発現によるNIKの活性化は、リンパ腫の増殖に関与する重要なシグナル伝達機構であり、NIK shRNAによりIn vitroでNIK誘導NF-κB活性化を抑制してDLBCL細胞株の増殖を抑制することが示されている(Pham,et al.Blood.2011,117,200-210:非特許文献10)。 NIK is highly expressed in the cytoplasm by BAFF stimulation in diffuse large B-cell lymphoma (DLBCL) cells. The activation of NIK due to this high expression is an important signal transduction mechanism involved in lymphoma growth, and NIK shRNA suppresses NIK-induced NF-κB activation in vitro to suppress the growth of DLBCL cell lines. Is shown (Pham, et al. Blood. 2011, 117, 200-210: Non-Patent Document 10).
 また、慢性Bリンパ腫患者から採取したBリンパ腫細胞においてBAFF発現が認められており、このBAFFにより薬剤誘導性アポトーシスが減少することが示されている(Kern,et al.,Blood.2004,103,679-688:非特許文献11)。BAFF過剰発現マウスではBリンパ腫の発生を誘導することも報告されている(Sutherland,et al.,Pharmacol.Ther.2006,112,774-786:非特許文献5)。 Moreover, BAFF expression was observed in B lymphoma cells collected from patients with chronic B lymphoma, and it has been shown that this BAFF reduces drug-induced apoptosis (Kern, et al., Blood. 2004, 103, 679-688: Non-Patent Document 11). It has also been reported that BAFF overexpressing mice induce the development of B lymphoma (Sutherland, et al., Pharmacol. Ther. 2006, 112, 774-786: Non-Patent Document 5).
 さらに、MALTリンパ腫、DLBCL、ホジキンリンパ腫およびバーキットリンパ腫患者の血清中およびリンパ腫細胞においてもBAFF発現が認められており、これによりリンパ腫の細胞増殖およびアポトーシス抵抗性を誘導すること、BAFF高発現リンパ腫患者において低発現患者と比較し、予後が不良であることも示されている(He,et al., J.Immunol.,2004,172,3268-3279:非特許文献12、Novak,et al.,Blood.2004,104,2247-2253:非特許文献13およびOki,et al,Haematologica.2007,92,269-270:非特許文献14)。 Furthermore, BAFF expression was also found in serum and lymphoma cells of patients with MALT lymphoma, DLBCL, Hodgkin lymphoma and Burkitt lymphoma, which induces cell proliferation and apoptosis resistance of lymphomas, and BAFF high expression lymphoma patients. It has also been shown that the prognosis is poorer than that in low expression patients (He, et al., J. Immunol., 2004, 172, 3268-3279: Non-patent document 12, Novak, et al.,). Blood, 2004, 104, 2247-2253: Non-patent document 13 and Oki, et al, Haematologica. 2007, 92, 269-270: Non-patent document 14).
 末梢Tリンパ腫患者から採取したTリンパ腫において、NIK発現が健常人から採取したT細胞と比較し高く、下流の非古典的NF-κB経路を活性化すること、核内でのNF-κB発現が高い患者は低い患者と比較し、予後不良であることが示されている。また、末梢Tリンパ腫細胞でNIK siRNA処理により、細胞死を誘導できることも示されている(Odqvist,et,al.,Clin.Cancer Res.2013,19,2319-2330:非特許文献15)。 In T lymphoma collected from a patient with peripheral T lymphoma, NIK expression was higher than that in T cells collected from a healthy person, activating the downstream nonclassical NF-κB pathway, and NF-κB expression in the nucleus. Higher patients have been shown to have a poorer prognosis than lower patients. It has also been shown that treatment of NIK siRNA in peripheral T lymphoma cells can induce cell death (Odqvist, et, al., Clin. Cancer Res. 2013, 19, 2319-2330: Non-patent document 15).
 腫瘍細胞の増殖におけるNIKの役割は造血器腫瘍に限らず、ある種の膵臓癌細胞株でNIKが高発現し、その細胞増殖はNIK siRNA処理で抑制されることが示されている(Nishina,et al.,Biochem.Biophys.Res.Commun.2009,388,96-101:非特許文献16)。 The role of NIK in the growth of tumor cells is not limited to hematopoietic tumors, but it has been shown that NIK is highly expressed in certain pancreatic cancer cell lines, and that cell growth is suppressed by treatment with NIK siRNA (Nishina, et al., Biochem. Biophys. Res. Commun. 2009, 388, 96-101: Non-Patent Document 16).
 また、膵癌患者の血清中では健常人と比較し、BAFF濃度が高いこと、腫瘍増殖および病期の進行とBAFF濃度が相関していることも示されている。さらに、膵癌組織ではBAFF-Rが発現していること、NF-κBp52およびRelBが高発現していること、および膵癌組織の周囲に存在するBリンパ球がBAFFを産生していることも報告されている(Koizumi,et al.,PLoS One.2013,8,e71367:非特許文献17)。 It has also been shown that the BAFF concentration is higher in the serum of pancreatic cancer patients than in healthy subjects, and that BAFF concentration is correlated with tumor growth and progression of disease stage. Furthermore, it is also reported that BAFF-R is expressed in pancreatic cancer tissue, NF-κBp52 and RelB are highly expressed, and B lymphocytes existing around the pancreatic cancer tissue produce BAFF. (Koizumi, et al., PLoS One. 2013, 8, e71367: Non-Patent Document 17).
 Basal-likeの乳癌細胞株において、NIK高発現がNF-κBの恒常的活性化を誘導することが報告されている(Yamamoto,et al.,Cancer Sci.2010.101,2391-2397:非特許文献18)。 It has been reported that high expression of NIK induces constitutive activation of NF-κB in a Basal-like breast cancer cell line (Yamamoto, et al., Cancer Sci. 2011.101, 391-2397: non-patent reference). Reference 18).
 また、悪性黒色腫では組織マイクロアレイ解析による検討により、良性組織と比較して有意にNIK発現が高いことが示されており、NIK shRNAによりIn vivoにおいて腫瘍増殖の抑制、アポトーシス誘導、細胞周期停止が認められている(Thu,et al.,Oncogene.2012,31,2580-2592:非特許文献19)。 In addition, in the case of malignant melanoma, analysis by tissue microarray analysis showed that NIK expression was significantly higher than that in benign tissue, and NIK shRNA suppressed tumor growth, induced apoptosis, and arrested cell cycle in vivo. It is recognized (Thu, et al., Oncogene. 2012, 31, 2580-2592: Non-Patent Document 19).
 さらに、非小細胞肺癌組織および細胞株でNF-κBが活性化していることが示されており、NIK siRNA処理でアポトーシス誘導および足場非依存性細胞増殖を抑制することも認められている(Saitoh,et al.,Lung Cancer.2010,70,263-270:非特許文献20)。 Furthermore, it has been shown that NF-κB is activated in non-small cell lung cancer tissues and cell lines, and it is also confirmed that treatment with NIK siRNA inhibits apoptosis induction and anchorage-independent cell proliferation (Saitoh. , Et al., Lung Cancer 2010, 70, 263-270: Non-Patent Document 20).
 肝癌患者および肝癌細胞株においてもNIKが高発現していることが示されており、NIK siRNA処理およびNIK発現を低下させるmiR-520eによりin vitroでの細胞増殖およびin vivoでの腫瘍増殖を抑制することが示されている(Zhang,et al.,Oncogene,2012,31,3607-3620:非特許文献21)。 It has been shown that NIK is highly expressed also in liver cancer patients and liver cancer cell lines, and NIK siRNA treatment and miR-520e that reduces NIK expression suppress cell growth in vitro and tumor growth in vivo. (Zhang, et al., Oncogene, 2012, 31, 3607-3620: Non-Patent Document 21).
 ヘリコバクター・ピロリ菌は胃癌発症に深く関与することが知られており、この菌に感染した患者では胃感染部位でNIKが恒常的に活性化し、非古典的NF-κB経路を活性化することが示されている。また、NIKの活性化を抑制する変異体を導入した胃癌細胞ではヘリコバクター・ピロリ菌によるNF-κB活性化を抑制することも報告されている(Feige,et al.,Biochim.Biophys.Acta Mol.Cell Res.2018,1865,545-550:非特許文献22およびMaeda,et al,Gastroenterology.2000,119,97-108:非特許文献23) Helicobacter pylori is known to be deeply involved in the development of gastric cancer, and in patients infected with this bacterium, NIK is constantly activated at the site of gastric infection, and the non-classical NF-κB pathway is activated. It is shown. It has also been reported that gastric cancer cells introduced with a mutant that suppresses NIK activation suppress NF-κB activation by Helicobacter pylori (Feige, et al., Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 545-550: Non-Patent Document 22 and Maeda, et al, Gastroenterology. 2000, 119, 97-108: Non-Patent Document 23).
 非古典的NF-κB経路の活性化は結腸炎および結腸癌の発症と関連しており、NIKを負に調節するNLRP12を欠損させたマウスでは、NIK活性化を介して非古典的NF-κB経路が活性化し、結腸炎および結腸癌を誘発することが示されている。また、大腸癌患者においてNIKを負に調節するOLFM1の発現が癌部と比較し、非癌部で高いこと、大腸癌細胞でのNIK siRNA処理により細胞増殖および運動を抑制することが報告されている(Allen,et al.Immunity 2012,36,742-754:非特許文献24およびShi,et al.,J.Pathol.2016,240,352-365:非特許文献25) Activation of the non-classical NF-κB pathway is associated with the development of colitis and colon cancer, and in mice lacking NLRP12, which negatively regulates NIK, non-classical NF-κB is mediated through NIK activation. The pathway has been shown to activate and induce colitis and cancer. In addition, it was reported that the expression of OLFM1 that negatively regulates NIK in colon cancer patients was higher in the non-cancerous part than in the cancerous part, and that cell growth and motility were suppressed by treating NIK siRNA in colonic cancer cells. (Allen, et al. Immunity 2012, 36, 742-754: Non-patent document 24 and Shi, et al., J. Pathol. 2016, 240, 352-365: Non-patent document 25)
 頭頸部腫瘍細胞ではNIKおよびRelBが高発現しており、NIKおよびRelBのsiRNA処理により、腫瘍細胞の運動、浸潤を抑制することが示されている(Das,et al.,Mol.Carcinog.2018,In press:非特許文献26)。 NIK and RelB are highly expressed in head and neck tumor cells, and it has been shown that treatment of NIK and RelB siRNAs suppresses tumor cell motility and invasion (Das, et al., Mol. Carcinog. 2018). , In press: Non-Patent Document 26).
 腎癌患者において、NIKおよびRelBの過剰発現が認められており、発現が低い患者と比較し、10年生存率を低下させることが示されており、NIKの発現の状態が予後因子となることが報告されている(Lua,et al.,Urol.Int.2018,101,190-196:非特許文献27)。 Overexpression of NIK and RelB has been observed in renal cancer patients, and it has been shown to reduce the 10-year survival rate compared to patients with low expression, and the state of NIK expression is a prognostic factor. Have been reported (Lua, et al., Urol. Int. 2018, 101, 190-196: Non-Patent Document 27).
 グリオーマ細胞ではNIKの過剰発現が腫瘍形成を促進すること、また、NIK活性化による非古典的NF-κB経路活性化がグリオーマ細胞の運動、浸潤を亢進することが示されている(Cherry,et al.,Mol.Cancer.2015,14,9:非特許文献28)。 It has been shown that NIK overexpression promotes tumorigenesis in glioma cells, and that non-classical NF-κB pathway activation by NIK activation enhances glioma cell motility and invasion (Cherry, et. al., Mol. Cancer. 2015, 14, 9: Non-Patent Document 28).
 卵巣癌患者組織では、正常の卵巣組織と比較し、NIK mRNA発現が高いこと、また卵巣癌細胞においてNIK/NF-κB p52(非古典的)経路が活性化しており、NIK shRNA処理により足場依存性および非足場依存性の細胞増殖を抑制すること、さらに、in vivoにおける腫瘍増殖をNIK shRNAで抑制することが示されている(Uno,et al.,PLoS One.2014,9,e88347:非特許文献29) Compared to normal ovarian tissue, NIK mRNA expression was higher in ovarian cancer patient tissue, and the NIK/NF-κB p52 (non-classical) pathway was activated in ovarian cancer cells, and treatment with NIK shRNA resulted in scaffold dependence. It has been shown to suppress sexual and non-anchorage-dependent cell growth, and also to suppress tumor growth in vivo with NIK shRNA (Uno, et al., PLoS One. 2014, 9, e88347: non- (Patent Document 29)
 子宮体癌患者においては、癌組織の分化度が低くなることおよび病気が進行するにつれNIKの活性化が高いことが示されており、NIKの活性化は癌細胞のアポトーシスを抑制すると報告されている(Zhou,et al.,Int.J.Gynecol.Cancer.2015,25,770-778:非特許文献30)。 In patients with endometrial cancer, it has been shown that the degree of differentiation of cancer tissues is low and that NIK activation is high as the disease progresses, and it has been reported that NIK activation suppresses apoptosis of cancer cells. (Zhou, et al., Int. J. Gynecol. Cancer. 2015, 25, 770-778: Non-Patent Document 30).
 以上のように、多発性骨髄腫、悪性リンパ腫(MALTリンパ腫、DLBCL、バーキットリンパ腫、ホジキンリンパ腫、成人T細胞白血病、末梢Tリンパ腫等)、膵癌、乳癌、悪性黒色腫、肺癌、肝癌、胃癌、大腸癌、頭頸部腫瘍、グリオーマ、腎癌、卵巣癌および子宮体癌等の悪性腫瘍では、BAFFの過剰発現およびNIKの過剰発現が生じ、NIKの活性化がNF-κBを活性化させることが、原因の疾患であるのは、すでに科学的常識であると言える。 As described above, multiple myeloma, malignant lymphoma (MALT lymphoma, DLBCL, Burkitt lymphoma, Hodgkin lymphoma, adult T cell leukemia, peripheral T lymphoma, etc.), pancreatic cancer, breast cancer, malignant melanoma, lung cancer, liver cancer, gastric cancer, In malignant tumors such as colorectal cancer, head and neck tumor, glioma, renal cancer, ovarian cancer and endometrial cancer, BAFF overexpression and NIK overexpression occur, and NIK activation can activate NF-κB. It can be said that the causative disease is already scientific common sense.
 したがって、BAFFによるNIK活性化およびNIK過剰発現に伴うNIKの活性化を阻害し、非古典的NF-κBシグナル伝達経路を抑制することができる医薬品等は、BAFF過剰発現、NIKおよび非古典的NF-κBシグナル伝達の過剰な活性化が認められる悪性腫瘍に対して治療効果を有する。 Therefore, BAFF overexpression, NIK and non-classical NF can be used as drugs capable of inhibiting NIK activation and NIK activation associated with BAFF overexpression and suppressing the non-classical NF-κB signaling pathway. -Has a therapeutic effect on malignant tumors with over-activation of κB signaling.
 また、多発性骨髄腫では特徴的なCRAB(高カルシウム血症、腎障害、貧血、骨病変)呼ばれる随伴症状を伴うことが知られている。 Also, multiple myeloma is known to be accompanied by a characteristic symptom called CRAB (hypercalcemia, renal disorder, anemia, bone lesion).
 CRAB発症には多発性骨髄腫細胞が発現する単クローン性免疫グロブリン(Mタンパク)、免疫グロブリン遊離軽鎖、インターロイキン6(IL-6)およびMacrophage inflammatory protein 1α(MIP-1α)等の破骨細胞活性化因子が関与することが報告されている(Rajkumar,et al.,Lancet Oncol.2014,15,e538-548:非特許文献31;Harmer,et al.,Front.Endocrinol.2019,9,788:非特許文献32;Roussou,et al.,Leukemia.2009,23,2177-2181:非特許文献33)。 For the development of CRAB, osteoclasts such as monoclonal immunoglobulin (M protein) expressed by multiple myeloma cells, immunoglobulin free light chain, interleukin 6 (IL-6) and Macrophage inflammatory protein 1α (MIP-1α) It has been reported that a cell activating factor is involved (Rajkumar, et al., Lancet Oncol. 2014, 15, e538-548: Non-Patent Document 31; Harmer, et al., Front. Endocrinol. 2019, 9, 9. 788: Non-patent document 32; Roussou, et al., Leukemia. 2009, 23, 2177-2181: Non-patent document 33).
 多発性骨髄腫によるMタンパクおよび免疫グロブリン遊離軽鎖は腎臓に沈着することで腎障害を引き起こすことが知られており、また、全身臓器にも沈着するため種々の臓器でアミロイドーシスを引き起こし、神経障害、不整脈等の多彩な症状を発症させる。さらに、血液においては過粘稠度症候群を引き起こす。 M protein and immunoglobulin free light chain due to multiple myeloma are known to cause renal damage by depositing in the kidney, and also deposit in systemic organs, causing amyloidosis in various organs, resulting in neuropathy. , Causes various symptoms such as arrhythmia. In addition, it causes hyperviscosity syndrome in blood.
 多発性骨髄腫でのIL-6分泌は破骨細胞への分化の亢進および破骨細胞を活性化させることが示されており、これにより骨病変が進行することが報告されている(Harmer,et al.,Front.Endocrinol.2019,9,788:非特許文献32)。また、多発性骨髄腫より分泌されるMIP-1αも破骨細胞への分化や活性化を亢進し、骨病変を亢進させることが示されている(Roussou,et al.,Leukemia.2009,23,2177-2181:非特許文献33;Tsubaki, et al.,J.Cell.Biochem.2010,111,1661-1672:非特許文献34)。これら因子による骨病変の進行により高カルシウム血症を発症することも報告されている(Lee, et al.,Intern.Med.J.2017,47,938-951:非特許文献35)。すなわち、破骨細胞活性化因子により、骨病変、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を発症する。 IL-6 secretion in multiple myeloma has been shown to enhance osteoclast differentiation and activate osteoclasts, which have been reported to lead to bone lesions (Harmer, et al., Front. Endocrinol. 2019, 9, 788: Non-Patent Document 32). MIP-1α secreted by multiple myeloma has also been shown to enhance osteoclast differentiation and activation, and to promote bone lesions (Roussou, et al., Leukemia. 2009, 23. , 2177-2181: Non-patent document 33; Tsubaki, et al., J. Cell. Biochem. 2010, 111, 1661-1672: Non-patent document 34). It has also been reported that hypercalcemia is caused by progression of bone lesions due to these factors (Lee, et al., Intern. Med. J. 2017, 47, 938-951: Non-patent document 35). That is, the osteoclast activating factor causes bone lesions, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms.
 NF-κB2変異マウスにおいて、骨髄腫を発症し、Mタンパクの発現が亢進することが報告されている(McCarhty,et al.,BMC Cancer.2012,12,203:非特許文献36)。さらに、NF-κB経路の活性化は破骨細胞活性化因子であるIL-6およびMIP-1α等の発現を亢進することも報告されている(Vrabel,et al.,Blood Rev.2019,34,56-66:非特許文献37)。 It has been reported that myeloma develops and expression of M protein is enhanced in NF-κB2 mutant mice (McCarhty, et al., BMC Cancer. 2012, 12, 203: Non-Patent Document 36). Furthermore, activation of the NF-κB pathway has also been reported to enhance the expression of osteoclast activating factors such as IL-6 and MIP-1α (Vrabel, et al., Blood Rev. 2019, 34. , 56-66: Non-Patent Document 37).
 以上のように、多発性骨髄腫では、NF-κB経路の活性化によりMタンパク発現および破骨細胞活性化因子による骨病変が発症するのは、すでに科学的常識であると言える。 As described above, it is already common scientific knowledge that in multiple myeloma, activation of the NF-κB pathway causes M protein expression and bone lesions due to osteoclast activating factors.
 したがって、NIK活性化およびNIK過剰発現に伴うNIKの活性化を阻害し、非古典的NF-κBシグナル伝達経路を抑制することができる医薬品等は、多発性骨髄腫によるMタンパクや免疫グロブリン遊離軽鎖発現亢進による腎障害、アミロイドーシス、過粘稠度症候群や破骨細胞活性化因子発現亢進による骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状に対して治療効果を有する。すなわちCRABに対して治療効果を有する。 Therefore, drugs capable of inhibiting NIK activation and NIK activation associated with NIK overexpression and suppressing the non-classical NF-κB signal transduction pathway include M protein and immunoglobulin free release due to multiple myeloma. Disorder due to increased chain expression, amyloidosis, bone lesion (bone destruction) due to hyperviscosity syndrome or increased expression of osteoclast activating factor, hypercalcemia associated with bone lesion, pathological fracture, spinal cord compression fracture, spinal cord compression It has therapeutic effects on spinal cord compression symptoms associated with fractures and neurological symptoms associated with spinal cord compression symptoms. That is, it has a therapeutic effect on CRB.
 特許文献1(特表2016-531858号公報)には、NIK阻害剤としての、3-(1H-ピラゾール-4-イル)-1H-ピロロ[2,3-c]ピリジン誘導体が開示されている。ここでは、当該化合物がNIK-MAP3K14としても知られているNF-κB誘導キナーゼの阻害剤であることが示され、当該化合物が癌の予防または治療に使用するための化合物であることが、特許権として認められている。 Patent Document 1 (Japanese Patent Publication No. 2016-531858) discloses 3-(1H-pyrazol-4-yl)-1H-pyrrolo[2,3-c]pyridine derivatives as NIK inhibitors. .. Here, it is shown that the compound is an inhibitor of NF-κB-inducible kinase also known as NIK-MAP3K14, and that the compound is a compound for use in the prevention or treatment of cancer. Is recognized as a right.
 なお、特許文献1では、当該化合物はJJN-3、L-363、LP-1という3種の癌細胞(いずれも多発性骨髄腫細胞株)に対するEC50を実施例として挙げているだけである。以上のことからも、NIK阻害剤が広く悪性癌細胞への治療効果を有することは、技術常識として認識されている。 Note that, in Patent Document 1, the compound only cites EC50s against three types of cancer cells JJN-3, L-363, and LP-1 (all of which are multiple myeloma cell lines) as an example. From the above, it is recognized as a common general knowledge that NIK inhibitors have a wide therapeutic effect on malignant cancer cells.
 また、特許文献2(特開平7-082263号公報)には、(10)式の構造を有するキサントン化合物が抗癌活性を有する点の開示がある。 Further, Patent Document 2 (Japanese Patent Laid-Open No. 07-082263) discloses that a xanthone compound having a structure of formula (10) has anticancer activity.
Figure JPOXMLDOC01-appb-C000050
 なお、(R1 ~R7 :H、-OH、C1-6 アルキル、C1-6 アルコキシ、エポキシプロポキシ)、およびベンゾフェノン化合物を表す。
Figure JPOXMLDOC01-appb-C000050
Note that (R 1 to R 7 : H, —OH, C1-6 alkyl, C1-6 alkoxy, epoxypropoxy) and a benzophenone compound are represented.
 また、特許文献3(特開2017-031146号公報)には、マンギフェリンがNIKを阻害し、多発性骨髄腫および悪性黒色腫に有効があることが記載されている。以上のように、キサントン骨格を有する化合物は抗癌活性を有するものが見出されていた。 Further, Patent Document 3 (JP-A-2017-031146) describes that mangiferin inhibits NIK and is effective for multiple myeloma and malignant melanoma. As described above, compounds having a xanthone skeleton have been found to have anticancer activity.
特表2016-531858号公報Special table 2016-531858 gazette 特開平7-082263号公報JP-A-7-082263 特開2017-031146号公報JP, 2017-031146, A
 特許文献1に示すようにNIKを抑制する薬剤は、化学物質が使用されているが、特許文献3のマンギフェリンを除いて投薬経路が静脈内投与である場合が多く、患者の負担が重いものとなっている。そこで、経口投与であっても、NIKを阻害し、悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍を改善する治療薬および改善組成剤を提供することを目的とする。 As shown in Patent Document 1, a chemical substance is used as a drug that suppresses NIK. However, except for Mangiferin of Patent Document 3, the drug administration route is often intravenous administration, which imposes a heavy burden on the patient. Has become. Therefore, it is an object of the present invention to provide a therapeutic agent and an improved composition that inhibit NIK even if it is orally administered and improve malignant tumors such as malignant lymphoma and multiple myeloma.
 また、特許文献3のマンギフェリンは経口投与によって効果を奏するが、必要な摂取量が多く、経口であっても、容易に摂取できなかった。そこで、より効果あるいは活性の高い治療薬および改善組成物が、求められた。 Also, the mangiferin of Patent Document 3 is effective by oral administration, but the required amount of intake is large, and it could not be easily taken even by oral administration. Therefore, more effective or more active therapeutic agents and improved compositions have been sought.
 さらに、NIKなどのキナーゼを阻害する既存の薬剤の新しいまたは改良された形態が、悪性腫瘍を処置するためのより有効な医薬品等を開発するために、常に必要とされている。 Furthermore, new or improved forms of existing drugs that inhibit kinases such as NIK are always needed to develop more effective drugs etc. for treating malignant tumors.
 本発明者らは、上記の課題を解決すべくNIKを阻害する化合物を探索したところ、キサントン骨格を有する物質の中に、これまで見出されていない構造を持つものを含め、NIK阻害作用を有するものを見出し、実際に悪性リンパ腫および多発性骨髄腫に細胞死を誘導することを確認した。 The present inventors searched for a compound that inhibits NIK to solve the above problems, and found that the substance having a xanthone skeleton has an NIK inhibitory action including a substance having a structure that has not been found so far. It was confirmed that they actually induce cell death in malignant lymphoma and multiple myeloma.
 また、in vivoでの悪性リンパ腫および多発性骨髄腫の腫瘍増殖を顕著に抑制することを認めた。さらに、多発性骨髄腫の悪性度マーカーであるCD138の発現低下、B細胞マーカーであるCD20の発現増加を誘導することを認めるとともに多発性骨髄腫における単クローン性免疫グロブリン産生、免疫グロブリン遊離軽鎖産生、骨破壊誘導因子産生を阻害することも確認し、本発明を完成するに至った。 Moreover, it was confirmed that the tumor growth of malignant lymphoma and multiple myeloma in vivo was significantly suppressed. Furthermore, it was confirmed that the expression of CD138, which is a malignancy marker for multiple myeloma, and the expression of CD20, which is a B cell marker, were increased, and the production of monoclonal immunoglobulin and immunoglobulin free light chain in multiple myeloma was confirmed. It was also confirmed that the production and the factor for inducing bone destruction are inhibited, and the present invention has been completed.
 すなわち、本発明に係る悪性腫瘍疾患の改善組成物は、以下の(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の化合物を含むことを特徴とする。 That is, the composition for improving malignant tumor disease according to the present invention has the following formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and (7). It is characterized in that it comprises a compound of formula.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 また、上記の化合物を含む悪性腫瘍疾患の改善組成物は、NIK過剰発現が関与する悪性腫瘍疾患およびBAFF過剰発現が関与する悪性腫瘍疾患に対しても改善組成物として利用できる。また、悪性腫瘍疾患の治療薬としても利用できる。 Further, the composition for improving malignant tumor disease containing the above compound can be used as a composition for improving malignant tumor disease related to NIK overexpression and malignant tumor disease related to BAFF overexpression. It can also be used as a therapeutic drug for malignant tumor diseases.
 また、上記の化合物は悪性腫瘍となった形質細胞をB細胞様へ脱分化誘導薬として利用できる。さらに、上記の化合物は、多発性骨髄腫では特徴的なCRAB(高カルシウム血症、腎障害、貧血、骨病変)呼ばれる随伴症状を改善薬としても利用することができる。 Also, the above compounds can be used as a dedifferentiation inducer for plasma cells that have become malignant tumors into B cells. Furthermore, the above compound can be used as a remedy for a concomitant symptom called CRAB (hypercalcemia, renal disorder, anemia, bone lesion) characteristic of multiple myeloma.
 本発明に係る悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍治療剤および改善組成剤は、悪性リンパ腫および多発性骨髄腫等を改善させることができる。例えば悪性リンパ腫細胞および多発性骨髄腫細胞等の悪性腫瘍細胞に対して効果的に細胞死を誘導することができる。また、悪性腫瘍細胞に細胞死を誘導する濃度において正常細胞に影響を及ぼさない。 The therapeutic agent for malignant tumors such as malignant lymphoma and multiple myeloma and the improving composition according to the present invention can improve malignant lymphoma and multiple myeloma. For example, cell death can be effectively induced in malignant tumor cells such as malignant lymphoma cells and multiple myeloma cells. It also does not affect normal cells at concentrations that induce cell death in malignant tumor cells.
 また、上述した悪性腫瘍は、NIKタンパクの過剰発現によって悪性腫瘍細胞の発生、増殖および生存を亢進することが考えられている。したがって、本発明に係る悪性リンパ腫、および多発性骨髄腫等などの悪性腫瘍改善組成物は、実施例で示される悪性腫瘍だけでなく、他の悪性腫瘍に対しても改善効果を有すると考えられる。 Moreover, it is considered that the above-described malignant tumor enhances the development, proliferation and survival of malignant tumor cells by overexpression of NIK protein. Therefore, the composition for improving malignant tumors such as malignant lymphoma and multiple myeloma according to the present invention is considered to have an improving effect not only on the malignant tumors shown in Examples but also on other malignant tumors. ..
 さらに、多発性骨髄腫に伴う単クローン性免疫グロブリン産生、免疫グロブリン遊離軽鎖産生および骨破壊誘導因子の産生を阻害することができる。したがって、これら産生に伴うMタンパクや免疫グロブリン遊離軽鎖発現亢進による腎障害、アミロイド―シス、過粘稠度症候群や破骨細胞活性化因子発現亢進による骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を抑制することができる。すなわち、CRABの発現を抑制することができる。 Furthermore, it is possible to inhibit the production of monoclonal immunoglobulin, immunoglobulin free light chain production and bone destruction inducing factor production associated with multiple myeloma. Therefore, it is associated with renal disorders due to the increased expression of M protein and immunoglobulin free light chain associated with these production, amyloidosis, bone lesions (bone destruction) due to hyperviscosity syndrome and increased expression of osteoclast activating factor, and bone lesions. It is possible to suppress hypercalcemia, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms. That is, the expression of CRAB can be suppressed.
ノラチリオールの合成手順を示す図である。It is a figure which shows the synthetic|combination procedure of noraciriol. Raji細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical|medical agent using Raji cell. CCRF-SB細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。FIG. 6 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using CCRF-SB cells. Namalwa細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical|medical agent using Namalwa cell. Z138細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical|medical agent using Z138 cell. SU-DHL-5細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。7 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using SU-DHL-5 cells. L363細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical|medical agent using L363 cell. KMS-28BM細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。FIG. 6 is a graph showing the results of examining the cell death-inducing effect of each drug by the trypan blue dye method using KMS-28BM cells. ARH77細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result examined by the trypan blue dye method about the cell death induction effect by each chemical|medical agent using ARH77 cell. IM9細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result of having examined the cell death induction effect by each chemical|medical agent by the trypan blue dye method using IM9 cell. RPMI1788細胞を用いて、各薬剤による細胞死誘導効果についてトリパンブルーダイ法で検討した結果を示すグラフである。It is a graph which shows the result of having examined the cell death induction effect by each chemical|medical agent by the trypan blue dye method using RPMI1788 cell. IM9細胞を用いて、各薬剤によるNIK阻害作用について、イムノブロティングの結果を示す写真である。6 is a photograph showing the results of immunoblotting of the NIK inhibitory action of each drug using IM9 cells. IM9細胞を用いて、各薬剤により、NIKの下流シグナルであるIKK、NF-κB p65、NF-κB p52の活性化動態について、イムノブロティングの結果を示す写真である。6 is a photograph showing the results of immunoblotting of activation kinetics of IKK, NF-κB p65, and NF-κB p52, which are downstream signals of NIK, using IM9 cells, depending on each drug. L363細胞を用いて、各薬剤によるCD138発現抑制についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having investigated CD138 expression suppression by each drug using L363 cell by Flow cytometry. L363細胞を用いて、各薬剤によるCD138発現抑制についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having investigated CD138 expression suppression by each drug using L363 cell by Flow cytometry. L363細胞を用いて、各薬剤によるCD20発現増加についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having examined CD20 expression increase by each chemical|medical agent by Flow cytometry using L363 cell. L363細胞を用いて、各薬剤によるCD20発現増加についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having examined CD20 expression increase by each chemical|medical agent by Flow cytometry using L363 cell. L363細胞を用いて、各薬剤によるIgG分泌抑制について酵素結合免疫吸着測定法(ELISA)で検討した結果を示すグラフである。It is a graph which shows the result investigated by the enzyme-linked immunosorbent assay (ELISA) about the IgG secretion suppression by each drug using L363 cell. L363細胞を用いて、各薬剤による免疫グロブリン遊離軽鎖のλ鎖の分泌抑制について、ELISA法で検討した結果である。It is the result of having examined by the ELISA method the secretion suppression of the lambda chain of the immunoglobulin free light chain by each drug using L363 cells. L363細胞を用いて、各薬剤による骨破壊関連因子抑制効果についてELISA法で検討した結果を示すグラフである。Fig. 6 is a graph showing the results of an ELISA method using L363 cells to examine the inhibitory effect on bone destruction-related factors by each drug. KMS-28BM細胞を用いて、マンギフェリン、マンギフェリン8a、ノラチリオールによるCD138発現抑制についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having examined CD138 expression suppression by Mangiferin, Mangiferin 8a, and noraciriol in KMS-28BM cell by Flow cytometry. KMS-28BM細胞を用いて、マンギフェリン、マンギフェリン8a、ノラチリオールによるCD20発現増加についてFlow cytometryで検討した結果を示すパネルである。It is a panel which shows the result of having examined CD20 expression increase by mangiferin, mangiferin 8a, and noraciriol using KMS-28BM cell by Flow cytometry. KMS-28BM細胞を用いて、マンギフェリン、マンギフェリン8a、ノラチリオールによるIgG分泌抑制についてELISA法で検討した結果を示すグラフである。FIG. 9 is a graph showing the results of an ELISA method using KMS-28BM cells to examine IgG secretion inhibition by mangiferin, mangiferin 8a, and noraciriol. KMS-28BM細胞を用いて、マンギフェリン、マンギフェリン8a、ノラチリオールによる免疫グロブリン遊離軽鎖のλ鎖の分泌抑制についてELISA法で検討した結果を示すグラフである。FIG. 9 is a graph showing the results of an ELISA method using KMS-28BM cells to suppress the secretion of the λ chain of the immunoglobulin free light chain by mangiferin, mangiferin 8a, and noraciriol. KMS-28BM細胞を用いて、マンギフェリン、マンギフェリン8a、ノラチリオールによる骨破壊関連因子抑制効果についてELISA法で検討した結果を示すグラフである。FIG. 7 is a graph showing the results of an examination by ELISA using KMS-28BM cells for the effect of suppressing bone destruction-related factors by mangiferin, mangiferin 8a, and noraciriol. Raji細胞をNOD/ShiJic-scidJclマウスに移植し、ノラチリオールを経口投与した場合の腫瘍増殖の経時変化を示すグラフである。8 is a graph showing the time course of tumor growth when Raji cells were transplanted into NOD/ShiJic-scidJcl mice and noraciriol was orally administered. 図26で27日目の無処置のマウスの腫瘍を示す写真およびノラチリオールを投与したマウスの腫瘍を示す写真である。FIG. 26 is a photograph showing a tumor of an untreated mouse and a tumor of a mouse to which noractiliole was administered on day 27 in FIG. 26. L363細胞をNOD/ShiJic-scidJclマウスに移植し、ノラチリオールを経口投与した場合の腫瘍増殖の経時変化を示すグラフである。FIG. 6 is a graph showing the time course of tumor growth when L363 cells were transplanted into NOD/ShiJic-scidJcl mice and noraciriol was orally administered. 図28で8日目の無処置のマウスの腫瘍を示す写真およびノラチリオールを投与したマウスの腫瘍を示す写真である。FIG. 29 is a photograph showing a tumor of an untreated mouse and a tumor of a mouse to which noractiliole was administered on day 8 in FIG. 28.
 以下に本発明に係る悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍改善組成物について説明を行う。なお、以下の説明は本発明の一実施の形態および一実施例についての例示であって、本発明は以下の説明に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施の形態は変更することができる。 The composition for improving malignant tumors such as malignant lymphoma and multiple myeloma according to the present invention will be described below. The following description is an exemplification of one embodiment and one example of the present invention, and the present invention is not limited to the following description. The following embodiments can be modified without departing from the spirit of the present invention.
 本発明に係る悪性リンパ腫および多発性骨髄腫等などの悪性腫瘍治療剤はキサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式で表される物質を有効成分として含む。(1)式は、1,2’,3’,4’,6-ペンタ-O-プロピオニルマンギフェリンであり、以下「マンギフェリン8a」と称する。なお、マンギフェリンを(8)式に示す。 The therapeutic agent for malignant tumor such as malignant lymphoma and multiple myeloma according to the present invention has a xanthone skeleton (1), (2), (3), (4), (5), (6) ) And a substance represented by the formula (7) are contained as active ingredients. The formula (1) is 1,2',3',4',6-penta-O-propionyl mangiferin, and is hereinafter referred to as "mangiferin 8a". In addition, mangiferin is shown in Formula (8).
 また(2)式は、1,3,6,7-テトラヒドロキシキサントンであり、以下「ノラチリオール」と呼ぶ。(3)式は、1,3,5,6-テトラヒドロキシキサントンであり、以下「テトラヒドロキシキサントン」と呼ぶ。(4)式は、1,3,6-トリヒドロキシ-メトキシキサントンであり、以下「メトキシキサントン」と呼ぶ。(5)式は、9-ヒドロキシキサンテンであり、以下「キサントヒドロール」と呼ぶ。(6)式は、1,3,6-トリヒドロキシ-7-メトキシ-2,8-ビス(3-メチル-2-ブテン-1-イル)-9H-キサンテン-9-オンであり、以下「α-マンゴスチン」と呼ぶ。(7)式は、1,3,6,7-テトラヒドロキシ-2,8-ビス(3-メチル-2-ブテン-1-イル)-9H-キサンテン-9-オンであり、以下「γ-マンゴスチン」と呼ぶ。 The formula (2) is 1,3,6,7-tetrahydroxyxanthone, which is hereinafter referred to as “norachiriol”. The formula (3) is 1,3,5,6-tetrahydroxyxanthone and is hereinafter referred to as "tetrahydroxyxanthone". The formula (4) is 1,3,6-trihydroxy-methoxyxanthone and is hereinafter referred to as “methoxyxanthone”. The formula (5) is 9-hydroxyxanthene, and is hereinafter referred to as "xanthydrol". The formula (6) is 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one. α-Mangostin”. The formula (7) is 1,3,6,7-tetrahydroxy-2,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one. Mangosteen” is called.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 マンギフェリン8aは、(1)式を見てわかるように、マンギフェリン((8)式参照)の一部のヒドロキシ基の位置にプロピオニル基をエーテル結合させたものである。この化合物は、以下の実施例でも示されるように、マンギフェリンよりも優れたNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 As can be seen from the formula (1), mangiferin 8a is obtained by ether-bonding a propionyl group to a part of the hydroxy groups of mangiferin (see the formula (8)). As shown in the Examples below, this compound exhibits superior inhibition of NIK and IKK activity than mangiferin and a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 ノラチリオール(CAS番号3542-72-1)はキサントン(CAS番号:90-47-1)の一部にヒドロキシ基をつけたものであり、マンギフェリン8a同様にキサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 Noraciliol (CAS number 3542-72-1) is a part of xanthone (CAS number: 90-47-1) to which a hydroxy group is attached, and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 テトラヒドロキシキサントン(CAS番号5084-31-1)はキサントンの一部にヒドロキシ基をつけたものであり、マンギフェリン8a同様にキサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 Tetrahydroxyxanthone (CAS number 5084-31-1) is a part of xanthone to which a hydroxy group is attached and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 メトキシキサントン(CAS番号41357-84-0)はキサントンの一部にヒドロキシ基およびその一部のヒドロキシ基にメチル基をエーテル結合させたものであり、マンギフェリン8a同様にキサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 Methoxyxanthone (CAS number 41357-84-0) is a part of xanthone in which a hydroxy group and a part of the hydroxy group are ether-bonded with a methyl group, and has a xanthone skeleton like mangiferin 8a. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 キサントヒドロール(CAS番号96-46-0)はキサントンのケトンの位置がヒドロキシ基となっているものであり、キサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 Xanthohydrol (CAS number 96-46-0) has a hydroxy group at the position of the ketone of xanthone and has a xanthone skeleton. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 α-マンゴスチン(CAS番号6147-11-1)はキサントンの一部にビスメチルブテニル基およびヒドロキシ基を結合させたものであり、キサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 Α-Mangosteen (CAS number 6147-11-1) is a xanthone having a bismethylbutenyl group and a hydroxy group bonded to a part thereof and has a xanthone skeleton. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 γ-マンゴスチン(CAS番号96-46-0)はキサントンの一部にビスメチルブテニル基、ヒドロキシル基およびこのヒドロキシル基の一部にメチル基を結合させたものであり、キサントン骨格を有している。そして、マンギフェリン8a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、悪性リンパ腫および多発性骨髄腫等の悪性腫瘍に対して高い細胞死誘導効果を示す。 γ-Mangostin (CAS No. 96-46-0) is a xanthone having a bismethylbutenyl group, a hydroxyl group and a methyl group bonded to this hydroxyl group, and having a xanthone skeleton. There is. And, like Mangiferin 8a, it exhibits more NIK and IKK activity inhibition than Mangiferin, and shows a high cell death-inducing effect on malignant tumors such as malignant lymphoma and multiple myeloma.
 これらの化合物は、マンギフェリン同様に比較的低分子量化合物で、水に良く溶け、経口摂取が可能である。本発明に係る悪性腫瘍疾患の改善用組成物は、これら7つの化合物の少なくとも何れかを有効成分として含む。またその他の薬剤として許容される成分を含んでいて良い。  These compounds are relatively low molecular weight compounds like mangiferin, they dissolve well in water and can be taken orally. The composition for improving malignant tumor disease according to the present invention contains at least one of these seven compounds as an active ingredient. It may also contain other pharmaceutically acceptable ingredients.
 本発明に係る悪性腫瘍疾患の改善用組成物は、悪性腫瘍疾患治療薬(B細胞様への脱分化誘導薬やCARB改善薬を含む医薬組成物)として提供することが可能である。医薬組成物として本発明に係る組成物は、経口投与することで効果を発揮することができる。したがって、内用剤として提供することができる。例えば、粉末状の悪性腫瘍疾患改善用組成物を、カプセル剤、顆粒剤、散剤、錠剤等に製剤化して提供されうる。経口剤とする際には、結合剤、滑沢剤、崩壊剤、着色剤、矯味剤、防腐剤、抗酸化剤、安定化剤といった添加剤を加え、カプセル剤、顆粒剤、散剤、錠剤を常法によって製造することができる。 The composition for improving malignant tumor disease according to the present invention can be provided as a therapeutic agent for malignant tumor disease (a pharmaceutical composition containing an agent for inducing dedifferentiation into B cells and a CARB improving agent). The composition according to the present invention as a pharmaceutical composition can exert its effect by oral administration. Therefore, it can be provided as an internal preparation. For example, the powdery composition for improving malignant tumor disease may be provided in the form of a capsule, granule, powder, tablet or the like. In the case of oral preparations, additives such as binders, lubricants, disintegrating agents, coloring agents, flavoring agents, preservatives, antioxidants, stabilizers are added, and capsules, granules, powders and tablets are added. It can be produced by a conventional method.
 さらに、本発明に係る医薬組成物は、液剤、軟膏剤、クリーム剤、ゲル化剤、貼付剤、エアゾール剤といった外用剤に製剤化し、非経口投与してもよい。外用剤とする際には、水、低級アルコール、溶解補助剤、界面活性剤、乳化安定剤、ゲル化剤、粘着剤、その他必要とされる基剤成分を配合することができる。また、血管膨張剤、副腎皮質ホルモン、角質溶解剤、保湿剤、殺菌剤、抗酸化剤、清涼化剤、香料、色素といった添加剤を適宜配合してもよい。 Furthermore, the pharmaceutical composition according to the present invention may be formulated into an external preparation such as a solution, an ointment, a cream, a gelling agent, a patch, and an aerosol, and may be administered parenterally. When used as an external preparation, water, a lower alcohol, a solubilizing agent, a surfactant, an emulsion stabilizer, a gelling agent, an adhesive, and other necessary base components can be added. Further, additives such as a vasodilator, an adrenocortical hormone, a keratolytic agent, a moisturizer, a bactericide, an antioxidant, a cooling agent, a fragrance, and a pigment may be appropriately mixed.
 また、本発明に係る悪性腫瘍疾患の改善用組成物は加工食品として提供することも可能である。つまり、本発明に係る悪性腫瘍疾患改善用組成物は加工食品として摂取しても、本発明に係る改善用組成物と同等の効果を奏する。 Also, the composition for improving malignant tumor disease according to the present invention can be provided as a processed food. That is, the composition for improving malignant tumor disease according to the present invention has the same effect as that of the composition for improvement according to the present invention, even when ingested as a processed food.
 本発明に係る加工食品としては、例えば、飴、ガム、ゼリー、ビスケット、クッキー、煎餅、パン、麺、魚肉・畜肉練製品、茶、清涼飲料、コーヒー飲料、乳飲料、乳清飲料、乳酸菌飲料、ヨーグルト、アイスクリーム、プリン等といった嗜好食品や健康食品を含む一般加工食品だけでなく、厚生労働省の保健機能食品制度に規定された特定保健用食品や栄養機能食品などの保健機能食品を含み、さらに、栄養補助食品(サプリメント)、飼料、食品添加物等も加工食品に含まれる。 As the processed food according to the present invention, for example, candy, gum, jelly, biscuits, cookies, rice crackers, bread, noodles, fish meat/meat paste products, tea, soft drinks, coffee drinks, milk drinks, whey drinks, lactic acid bacteria drinks , Yogurt, ice cream, pudding, etc., as well as general processed foods, including health foods, as well as health foods such as specified health foods and nutrition foods specified by the Ministry of Health, Labor and Welfare system. Further, processed foods include dietary supplements, feeds, food additives and the like.
 これらの加工食品の原料中に、悪性腫瘍疾患の改善用組成物を添加することで、本発明に係る加工食品を調製することができる。なお、これらの加工食品にノラチリオール、α-マンゴスチンおよびγ-マンゴスチンを添加する場合は、そもそも原料にノラチリオール、α-マンゴスチンおよびγ-マンゴスチンを含む材料を使用する場合は適用から除外される。以下実施例に基づいて本発明に係る悪性腫瘍疾患の改善用組成物を説明する。 The processed food according to the present invention can be prepared by adding the composition for improving malignant tumor disease to the raw material of these processed foods. It should be noted that, when adding noraciliol, α-mangostin and γ-mangostin to these processed foods, the use of a material containing noraciliol, α-mangostin and γ-mangostin as a raw material is excluded from the application. Hereinafter, the composition for improving malignant tumor disease according to the present invention will be described based on Examples.
<実施例1:マンギフェリン8aの合成>
 マンギフェリン8aは、原料となる1,3,2’,3’,4’,6,6’,7-オクタ-O-プロピオニルマンギフェリンを合成し、それを元にさらに合成する2段階で得た。
(1)1,3,2’,3’,4’,6,6’,7-オクタ-O-プロピオニルマンギフェリンの合成
<Example 1: Synthesis of Mangiferin 8a>
Mangiferin 8a was obtained in two steps by synthesizing 1,3,2',3',4',6,6',7-octa-O-propionyl mangiferin as a raw material and further synthesizing it. ..
(1) Synthesis of 1,3,2',3',4',6,6',7-octa-O-propionyl mangiferin
 マンギフェリン(2.1g,4.98mmol)、無水プロピオン酸(12.8mL,99.4mmol)および乾燥ピリジン(60mL)を80°Cで5時間加熱した。反応液を氷水(400mL)に注加し、酢酸エチルで抽出した。酢酸エチル層を氷冷した10%硫酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1)を用いて精製し,(9)式の1,3,2’,3’,4’,6,6’,7-オクタ-O-プロピオニルマンギフェリン(3.71g,86%)を無色固体として得た。 Mangiferin (2.1 g, 4.98 mmol), propionic anhydride (12.8 mL, 99.4 mmol) and dry pyridine (60 mL) were heated at 80°C for 5 hours. The reaction solution was poured into ice water (400 mL) and extracted with ethyl acetate. The ethyl acetate layer was washed successively with ice-cooled 10% sulfuric acid, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (n-hexane/ethyl acetate=1/1), and 1,3,2′,3′,4′,6,6′,7-octa of the formula (9) was used. O-propionyl mangiferin (3.71 g, 86%) was obtained as a colorless solid.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 H-NMR(800MHz,DMSO-d)δ:0.70-1.26(24H,m,COCHCH),1.92-2.89(16H,m,COCHCH),3.83-3.91(1H,m,H-6’a),4.05-4.15(2H,m,H-5’ and H-6’b),4.98-5.05(1H,m,H-4’),5.09-5.21(1H,m,H-1’),5.43-5.51(2H,m,H-3’ and H-2’),7.50-7.54(1H,m,H-4),7.68-7.71(1H,m,H-5),7.96-7.98(1H,m,H-8).
 13C-NMR(200MHz,DMSO-d)δ:8.68/8.77/8.79/8.92/8.95/8.98/9.00/9.01/9.04/9.06/9.17/9.19/9.28 (COCHCH), 26.6/26.7/26.9/26.8/26.93/26.97/27.00/27.09/27.35/27.37 (COCHCH), 62.1/62.2 (C6’),68.20/68.23 (C4’), 69.6/70.1(C2’), 70.9/71.3(C1’), 73.6/73.7 (C3’), 75.06/75.10 (C5’), 110.3/111.8 (C4), 111.7/112.6 (C9a), 113.3/113.4 (C5), 118.9/119.0 (C2), 119.7/119.7 (C8a), 120.36/120.40 (C8), 139.57/139.59 (C7’), 147.9 (C6), 149.1/150.9 (C1), 152.5/152.6 (C8b), 153.4/154.8 (C4a), 156.6/156.8 (C3), 171.09/171.13/171.15/171.20/171.72/171.79/171.82/171.93/172.37/172.44/172.78/172.87/173.16/173.23/173.26 (COCHCH), 173.56/173.60 (C9).
 HRMS (FAB) m/z: [M+Na] Calcd for C435019Na 893.2844; Found 893.2883.
1 H-NMR (800 MHz, DMSO-d 6 )δ: 0.70-1.26 (24H, m, COCH 2 CH 3 ), 1.92-2.89 (16H, m, COCH 2 CH 3 ), 3.83-3.91 (1H, m, H-6'a), 4.05-4.15 (2H, m, H-5' and H-6'b), 4.98-5.05 (1H, m, H-4'), 5.09-5.21 (1H, m, H-1'), 5.43-5.51 (2H, m, H-3' and H-2' ), 7.50-7.54 (1H, m, H-4), 7.68-7.71 (1H, m, H-5), 7.96-7.98 (1H, m, H-) 8).
13 C-NMR (200 MHz, DMSO-d 6 ) δ:8.68/8.77/8.79/8.92/8.95/8.98/9.00/9.01/9.04/ 9.06/9.17/9.19/9.28 (COCH 2 CH 3 ), 26.6/26.7/26.9/26.8/26.93/26.97/27.00/ 27.09 / 27.35 / 27.37 (COCH 2 CH 3), 62.1 / 62.2 (C6 '), 68.20 / 68.23 (C4'), 69.6 / 70.1 ( C2'), 70.9/71.3 (C1'), 73.6/73.7 (C3'), 75.06/7.10 (C5'), 110.3/111.8 (C4) , 111.7/112.6 (C9a), 113.3/113.4 (C5), 118.9/119.0 (C2), 119.7/119.7 (C8a), 120.36/120 .40 (C8), 139.57/139.59 (C7'), 147.9 (C6), 149.1/150.9 (C1), 152.5/152.6 (C8b), 153.4. /154.8 (C4a), 156.6/156.8 (C3), 171.09/171.13/171.15/171.20/171.72/171.79/171.82/171.93 /172.37/172.44/172.78/172.87/173.16/1733.23/173.26 (COCH 2 CH 3 ), 173.56/173.60 (C9).
HRMS (FAB) m/z: [M+Na] + Calcd for C 43 H 50 O 19 Na 893.844; Found 893.883.
(2)マンギフェリン8a(1,2’,3’,4’,6-ペンタ-O-プロピオニルマンギフェリン)の合成
 1,3,2’,3’,4’,6,6’,7-オクタ-O-プロピオニルマンギフェリン(3.7g,4.25mmol)、酢酸アンモニウム(3.8g,49.4mmol)、メタノール(80mL)および水(40mL)の混合溶液を室温で5.5時間撹拌した。反応液から減圧濃縮によりメタノールを留去した後、残渣を酢酸エチル(100mL)で希釈した。その混合物を、水および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。残渣をカラムクロマトグラフィー[CHCl/CHOH(20:1)]を用いて精製して得た淡黄色固体(2.54g)をメタノール(80mL)に溶解し、活性炭で脱色して(1)式のマンギフェリン8a(2.16g,73%)を無色固体として得た。
(2) Synthesis of mangiferin 8a (1,2′,3′,4′,6-penta-O-propionyl mangiferin) 1,3,2′,3′,4′,6,6′,7-octa A mixed solution of -O-propionyl mangiferin (3.7 g, 4.25 mmol), ammonium acetate (3.8 g, 49.4 mmol), methanol (80 mL) and water (40 mL) was stirred at room temperature for 5.5 hours. After methanol was distilled off from the reaction solution by concentration under reduced pressure, the residue was diluted with ethyl acetate (100 mL). The mixture was washed successively with water and saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography [CHCl 3 /CH 3 OH (20:1)] and the obtained pale yellow solid (2.54 g) was dissolved in methanol (80 mL) and decolorized with activated carbon (1 ) Mangiferin 8a of the formula) (2.16 g, 73%) was obtained as a colorless solid.
 H-NMR(800MHz,DMSO-d)δ::0.92-1.24(15H,m,COCHCH),1.92-2.32(10H,m,COCHCH),3.85(0.5H,dd-like,J=ca. 12.5,1.5,H-6a’),4.02-4.13(2H,m,H-5’,H-6a’,H-6b’),4.21(0.5H,dd,J=12.5,4.7,H-6b’),4.95(0.5H,d,J=10.0,H-1’),5.00(0.5H,dd,J=9.6,9.6,H-1’),5.01(0.5H,dd,J=9.6,9.6,H-4’),5.15(0.5H,d,J=10.0,H-1’),5.31(0.5H,dd,J=9.6,9.6,H-3’),5.39(0.5H,dd,J=9.6,9.6,H-3’),5.48(0.5H,dd,J=10.0,9.6,H-2’),5.84(0.5H,dd,J=10.0,9.6,H-2’),6.71/6.73(each 0.5H,s,H-4),6.79/6.80(each 0.5H,s,H-5),7.278/7.279(each 0.5H,s,H-8),9.00-11.5(3H,br s,OH×3).
 13C-NMR(200MHz,DMSO-d)δ::8.84/8.89/9.00/9.05/9.10/9.14/9.15/9.21/9.23 (COCHCH), 26.7/26.92/26.96/26.98/27.04/27.08/27.12/27.4 (COCHCH), 62.1/62.4 (C-6’), 68.2/68.4 (C-4’), 68.8/70.5 (C-2’), 71.0/71.1 (C-1’), 73.8/74.2 (C-3’), 74.7/75.3 (C-5’), 99.6/100.8 (C-4), 102.50/102.52 (C-5), 106.6/107.7 (C-9a), 109.1 (C-8), 113.4 (C-2), 114.0/114.1 (C-8a), 143.87/143.88 (C-7), 149.83/149.89 (C-6), 151.3 (C-1), 153.4 (C-8b), 157.6/157.7 (C-4a), 161.0/162.4 (C-3), 171.2/172.0/172.3/172.9/173.2/173.5/173.6 (COCHCH) 172.7/172.8 (C-9).
 HRMS (FAB)m/z:[M+Na] Calcd for C3438NaO16 725.2058; Found. 725.2074.
1 H-NMR (800 MHz, DMSO-d 6 )δ::0.92-1.24 (15H,m,COCH 2 CH 3 ), 1.92-2.32 (10H,m,COCH 2 CH 3 ). , 3.85 (0.5H, dd-like, J=ca. 12.5, 1.5, H-6a'), 4.02-4.13 (2H, m, H-5', H-. 6a′, H-6b′), 4.21 (0.5H, dd, J=12.5, 4.7, H-6b′), 4.95 (0.5H, d, J=10.0) , H-1′), 5.00 (0.5H, dd, J=9.6, 9.6, H-1′), 5.01 (0.5H, dd, J=9.6, 9) .6, H-4′), 5.15 (0.5H, d, J=10.0, H-1′), 5.31 (0.5H, dd, J=9.6, 9.6) , H-3′), 5.39 (0.5H, dd, J=9.6, 9.6, H-3′), 5.48 (0.5H, dd, J=10.0, 9) .6, H-2'), 5.84 (0.5H, dd, J = 10.0, 9.6, H-2'), 6.71/6.73 (each 0.5H, s, H-4), 6.79/6.80 (each 0.5H, s, H-5), 7.278/7.279 (each 0.5H, s, H-8), 9.00-11 .5 (3H, br s, OH x 3).
13 C-NMR (200 MHz, DMSO-d 6 )δ::8.84/8.89/9.00/9.05/9.10/9.14/9.15/9.21/9.23 (COCH 2 CH 3 ), 26.7/26.92/26.96/26.98/27.04/27.08/27.12/27.4 (COCH 2 CH 3 ), 62.1/62 .4 (C-6'), 68.2/68.4 (C-4'), 68.8/70.5 (C-2'), 71.0/71.1 (C-1') , 73.8/74.2 (C-3'), 74.7/75.3 (C-5'), 99.6/100.8 (C-4), 102.50/102.52 ( C-5), 106.6/107.7 (C-9a), 109.1 (C-8), 113.4 (C-2), 114.0/114.1 (C-8a), 143 .87/143.88 (C-7), 149.83/149.89 (C-6), 151.3 (C-1), 153.4 (C-8b), 157.6/157.7 (C-4a), 161.0/162.4 (C-3), 171.2/172.0/172.3/172.9/173.2/173.5/173.6 (COCH 2 CH 3 ) 172.7/172.8 (C-9).
HRMS (FAB) m/z: [M+Na] + Calcd for C 34 H 38 NaO 16 725.2058; Found. 725.2074.
<実施例2:ノラチリオールの合成>
ノラチリオールを非特許文献38の方法に従って合成した。
 本実施例に示す合成方法を簡単に説明すると次のとおりである。すなわち、文献記載(非特許文献38)の方法に従って、2,4,5-トリメトキシ安息香酸(化合物II)を塩化チオニルで処理して2,4,5-トリメトキシ安息香酸クロリド(化合物III)を得た。次に、得られた化合物(化合物III)と1,3,5-トリメトキシベンゼン(化合物IV)とのフリーデル-クラフト反応により2-ヒロドキシ-2’,4,4’,5,6’-ペンタメトキシベンゾフェノン(化合物V)を得た。さらに、この化合物(V)にテトラブチルアンモニウムヒドロキシドを処理して、1,3,6,7-テトラメトキシキサントン(化合物VI)を得、その後、脱メチル化を行い、ノラチリオール(化合物I)を収率39%で得た。
<Example 2: Synthesis of noraciriol>
Noracilliol was synthesized according to the method of Non-Patent Document 38.
The synthesizing method shown in this example is briefly described as follows. That is, 2,4,5-trimethoxybenzoic acid (Compound II) is treated with thionyl chloride according to the method described in the literature (Non-Patent Document 38) to obtain 2,4,5-trimethoxybenzoic acid chloride (Compound III). It was Then, 2-hydroxy-2',4,4',5,6'-is obtained by Friedel-Crafts reaction between the obtained compound (Compound III) and 1,3,5-trimethoxybenzene (Compound IV). Pentamethoxybenzophenone (Compound V) was obtained. Further, this compound (V) is treated with tetrabutylammonium hydroxide to obtain 1,3,6,7-tetramethoxyxanthone (Compound VI), and then demethylation is carried out to obtain noratyliol (Compound I). Obtained in a yield of 39%.
 以下に、本実施例の合成経路を詳細に説明する。なお、図1を参照する。
(1)2,4,5-トリメトキシ安息香酸クロリド(化合物III)の製造方法
 2,4,5-トリメトキシ安息香酸(化合物II、8.49g、0.040mol)にアルゴン雰囲気下、室温で塩化チオニル(5mL)を徐々に加えて溶解させたのち、6時間加熱還流を行った。反応終了後、反応混合物を減圧下留去し、2,4,5-トリメトキシ安息香酸クロリド(化合物III、8.30g、90%)を得た。得られた化合物(III)は、ただちに次の反応へ用いた。
The synthetic route of this example is described in detail below. Note that FIG. 1 is referred to.
(1) Method for producing 2,4,5-trimethoxybenzoic acid chloride (Compound III) 2,4,5-Trimethoxybenzoic acid (Compound II, 8.49 g, 0.040 mol) in an argon atmosphere at room temperature and thionyl chloride. (5 mL) was gradually added and dissolved, and then heated under reflux for 6 hours. After completion of the reaction, the reaction mixture was evaporated under reduced pressure to give 2,4,5-trimethoxybenzoic acid chloride (Compound III, 8.30 g, 90%). The obtained compound (III) was immediately used for the next reaction.
(2)2-ヒロドキシ-2’,4,4’,5,6’-ペンタメトキシベンゾフェノン(化合物V)の製造方法
 上述のようにして得られた2,4,5-トリメトキシ安息香酸クロリド(化合物III、8.07g、0.035mol)、1,3,5-トリメトキシベンゼン(化合物IV、6.48g、0.0385mol)および無水ジエチルエーテル(500mL)の混合懸濁物にアルゴン雰囲気下、室温で塩化アルミニウム(16g)を徐々に加えた後、反応混合物を室温で48時間攪拌した。反応液を減圧下溶媒留去した後、残渣に水を加え、酢酸エチルにて抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1,v/v)により精製し、2-ヒロドキシ-2’,4,4’,5,6’-ペンタメトキシベンゾフェノン(化合物V、8.43g、69%)を得た。
(2) Method for producing 2-hydroxy-2',4,4',5,6'-pentamethoxybenzophenone (compound V) 2,4,5-trimethoxybenzoic acid chloride (compound obtained as described above III, 8.07 g, 0.035 mol), 1,3,5-trimethoxybenzene (compound IV, 6.48 g, 0.0385 mol) and anhydrous diethyl ether (500 mL) in a mixed suspension at room temperature under an argon atmosphere. After gradually adding aluminum chloride (16 g) at room temperature, the reaction mixture was stirred at room temperature for 48 hours. The solvent of the reaction solution was evaporated under reduced pressure, water was added to the residue, and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous sodium sulfate, the desiccant was filtered off with fold-fold filter paper, and the filtrate was evaporated under reduced pressure to give a crude product. The crude product thus obtained was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1, v/v) to give 2-hydroxy-2′,4,4′,5,6′-pentamethoxy. Benzophenone (Compound V, 8.43 g, 69%) was obtained.
(3)1,3,6,7-テトラメトキシキサントン(化合物VI)の製造方法
 上述のようにして得られた2-ヒロドキシ-2’,4,4’,5,6’-ペンタメトキシベンゾフェノン(化合物V、6.97g、0.020mol)をピリジン(10mL)と水(10mL)との混合溶媒を溶かし、40%テトラブチルアンモニウムヒドロキシド水溶液(5mL)を加えて6時間加熱還流を行った。得られた反応混合物を5%塩酸に注加した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1,v/v)により精製し、1,3,6,7-テトラメトキシキサントン(化合物VI、5.82g、92%)を得た。
(3) Method for producing 1,3,6,7-tetramethoxyxanthone (Compound VI) 2-hydroxy-2′,4,4′,5,6′-pentamethoxybenzophenone (obtained as described above Compound V (6.97 g, 0.020 mol) was dissolved in a mixed solvent of pyridine (10 mL) and water (10 mL), 40% tetrabutylammonium hydroxide aqueous solution (5 mL) was added, and the mixture was heated under reflux for 6 hr. The obtained reaction mixture was poured into 5% hydrochloric acid and then extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous sodium sulfate, the desiccant was filtered off with fold-fold filter paper, and the filtrate was evaporated under reduced pressure to give a crude product. The obtained crude product was purified by silica gel column chromatography (n-hexane:ethyl acetate=1:1, v/v) to give 1,3,6,7-tetramethoxyxanthone (Compound VI, 5.82 g, 92%).
(4)ノラチリオール(化合物I)の製造方法
 上述のようにして得られた1,3,6,7-テトラメトキシキサントン(化合物VI、4.74g、0.015mol)とピリジン塩酸塩(5.00g)の混合物を6時間、200℃にて加熱攪拌した。得られた反応混合物を室温まで放冷後、5%塩酸に注加した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=7:1,v/v)により精製し、(2)式のノラチリオール(化合物I、2.65g、68%)を得た。
(4) Method for producing noraciriol (Compound I) 1,3,6,7-tetramethoxyxanthone (Compound VI, 4.74 g, 0.015 mol) obtained as described above and pyridine hydrochloride (5.00 g) The mixture of 1) was heated and stirred at 200° C. for 6 hours. The obtained reaction mixture was allowed to cool to room temperature, poured into 5% hydrochloric acid, and extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous sodium sulfate, the desiccant was filtered off with fold-fold filter paper, and the filtrate was evaporated under reduced pressure to give a crude product. The obtained crude product was purified by silica gel column chromatography (chloroform:methanol=7:1, v/v) to obtain a noratyliol of the formula (2) (Compound I, 2.65 g, 68%).
<実施例3:Raji細胞に対する各薬剤の細胞死誘導効果の検討>
 Raji細胞(悪性リンパ腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。Raji細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図2に示す。
<Example 3: Examination of cell death-inducing effect of each drug on Raji cells>
Raji cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. Raji cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. The results are shown in Figure 2.
 なお、グラフ中で、マンギフェリン8a投与群は、「Mangiferin 8a」、ノラチリオール投与群は「Norathyriol」、テトラヒドロキサントン投与群は、「1,3,5,6-tetrahydroxyxanthone」、メトキシキサントン投与群は「1,3,6-trihydroxy-5-methoxyxanthone」、キサントヒドール投与群は「Xanthydrol」、α-マンゴスチン投与群は「α-mangostin」、γ-マンゴスチン投与群は「γ-mangostin」と示した(以下同じ)。 In the graph, the mangiferin 8a-administered group is "Mangeriferin 8a", the noraciriol-administered group is "Noratyryolol", the tetrahydroxanthone-administered group is "1,3,5,6-tetrahydroxyxanthone", and the methoxyxanthone-administered group is "1". , 3,6-trihydroxy-5-methoxyxanthone", xanthodol-administered group was "Xanthydolol", α-mangostin-administered group was "α-mangostin", and γ-mangostin-administered group was "γ-mangostin" (hereinafter the same). ..
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表1にIC50(半数阻害濃度:以下同じ)値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. Further, Table 1 shows the results of calculating IC50 (half-maximum inhibitory concentration: the same applies hereinafter). Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
<実施例4:CCRF-SB細胞に対する各薬剤の細胞死誘導効果の検討>
 CCRF-SB細胞(悪性リンパ腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。CCRF-SB細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図3に示す。
<Example 4: Examination of cell death inducing effect of each drug on CCRF-SB cells>
CCRF-SB cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding CCRF-SB cells in 96-well plate, each concentration of drug was added, and cell viability was measured by trypan blue dye method. Results are shown in FIG.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表2にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 2 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
<実施例5:Namalwa細胞に対する各薬剤の細胞死誘導効果の検討>
 Namalwa細胞(悪性リンパ腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。Namalwa細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図4に示す。
<Example 5: Examination of cell death inducing effect of each drug on Namalwa cells>
Namalwa cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. Namalwa cells were seeded on a 96-well plate, drugs at various concentrations were added, and cell viability was measured by the trypan blue dye method. The results are shown in Fig. 4.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表3にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 3 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
<実施例6:Z138細胞に対する各薬剤の細胞死誘導効果の検討>
 Z138細胞(悪性リンパ腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。Z138細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図5に示す。
<Example 6: Examination of cell death inducing effect of each drug on Z138 cells>
Z138 cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. Z138 cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. Results are shown in FIG.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表4にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 4 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
<実施例7:SU-DHL-5細胞に対する各薬剤の細胞死誘導効果の検討>
 SU-DHL-5細胞(悪性リンパ腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。SU-DHL-5細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図6に示す。
<Example 7: Examination of cell death-inducing effect of each drug on SU-DHL-5 cells>
SU-DHL-5 cells (malignant lymphoma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. SU-DHL-5 cells were seeded on a 96-well plate, drugs at various concentrations were added, and the cell viability was measured by the trypan blue dye method. Results are shown in FIG.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表5にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 5 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noraciliol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
<実施例8:L363細胞に対する各薬剤の細胞死誘導効果の検討>
 L363細胞(多発性骨髄腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。L363細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図7に示す。
<Example 8: Examination of cell death inducing effect of each drug on L363 cells>
L363 cells (multiple myeloma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding L363 cells in 96-well plate, each concentration of drug was added, and cell viability was measured by trypan blue dye method. The results are shown in Fig. 7.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表6にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 6 shows the results of calculating IC50 values. In the mangiferin 8a-administered group, the noratiriol-administered group, the tetrahydroxyxanthone-administered group, the methoxyxanthone-administered group, the xanthohydrol-administered group, and the γ-mangostin-administered group, it was observed that cell death was induced at a concentration lower than that of mangiferin.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
<実施例9:KMS-28BM細胞に対する各薬剤の細胞死誘導効果の検討>
 KMS-28BM細胞(多発性骨髄腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。KMS-28BM細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図8に示す。
<Example 9: Examination of cell death inducing effect of each drug on KMS-28BM cells>
KMS-28BM cells (multiple myeloma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. After seeding KMS-28BM cells on 96-well plate, each concentration of drug was added and cell viability was measured by trypan blue dye method. The results are shown in Fig. 8.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表7にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 7 shows the results of calculating IC50 values. In the mangiferin 8a-administered group, the noratiriol-administered group, the tetrahydroxyxanthone-administered group, the methoxyxanthone-administered group, the xanthohydrol-administered group, and the γ-mangostin-administered group, it was observed that cell death was induced at a concentration lower than that of mangiferin.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
<実施例10:ARH77細胞に対する各薬剤の細胞死誘導効果の検討>
 ARH77細胞(多発性骨髄腫腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。ARH77細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図9に示す。
<Example 10: Examination of cell death inducing effect of each drug on ARH77 cells>
ARH77 cells (multiple myeloma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. ARH77 cells were seeded on a 96-well plate, each concentration of drug was added, and cell viability was measured by the trypan blue dye method. The results are shown in Fig. 9.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表8にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 8 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
<実施例11:IM9細胞に対する各薬剤の細胞死誘導効果の検討>
 IM9細胞(多発性骨髄腫腫細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。IM9細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図10に示す。
<Example 11: Examination of cell death inducing effect of each drug on IM9 cells>
IM9 cells (multiple myeloma cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. IM9 cells were seeded on a 96-well plate, each concentration of drug was added, and the cell viability was measured by the trypan blue dye method. The results are shown in Fig. 10.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても濃度依存的に細胞生存率の低下が確認された。また、表9にIC50値を算出した結果を示す。マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群では、マンギフェリンより低い濃度で細胞死を誘導することが認められた。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. A decrease in cell viability was confirmed in a concentration-dependent manner for all the drugs. In addition, Table 9 shows the results of calculating IC50 values. Inducing cell death at a lower concentration than mangiferin in the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group. Was recognized.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
<実施例12:RPMI1788細胞に対する各薬剤の細胞死誘導効果の検討>
 RPMI1788細胞(正常Bリンパ球細胞株)は5%CO、37℃の条件下で、培養を行った。培養液はRPMI-1640培地に100μg/mLペニシリン、100U/mLストレプトマイシンとウシ胎児血清を添加したものを用いた。RPMI1788細胞を96-well plateに播種後、各濃度の薬剤を添加し、トリパンブルーダイ法により細胞生存率を測定した。結果を図11に示す。
<Example 12: Examination of cell death inducing effect of each drug on RPMI1788 cells>
RPMI1788 cells (normal B lymphocyte cell line) were cultured under the conditions of 5% CO 2 and 37°C. The culture medium used was RPMI-1640 medium supplemented with 100 μg/mL penicillin, 100 U/mL streptomycin and fetal bovine serum. RPMI1788 cells were seeded on a 96-well plate, added with each concentration of drug, and the cell viability was measured by the trypan blue dye method. The results are shown in Fig. 11.
 横軸は各薬剤の濃度を示し、縦軸は細胞生存率(%)を示す。また、試薬の溶解に用いた0.5%DMSO in PBSのみを添加したものをcontrolとした。いずれの薬剤においても細胞生存率の低下が認められなかった。また、表10にIC50値を算出した結果を示す。全ての薬剤でIC50値は100μM以上であった。 The horizontal axis shows the concentration of each drug and the vertical axis shows the cell viability (%). In addition, a control was prepared by adding only 0.5% DMSO in PBS used for dissolving the reagent. No decrease in cell viability was observed with any of the drugs. In addition, Table 10 shows the results of calculating IC50 values. IC50 values of all drugs were 100 μM or more.
 したがって、本発明に係る悪性腫瘍疾患の改善用組成物は正常細胞に影響を与えない濃度で悪性腫瘍細胞に対して細胞死を誘導することが分かった。 Therefore, it was found that the composition for improving malignant tumor disease according to the present invention induces cell death in malignant tumor cells at a concentration that does not affect normal cells.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
<実施例13:各薬剤投与によるNIK活性化阻害の検討>
 IM9細胞を用いて各薬剤投与によるNIK阻害作用について、イムノブロテッィングで検討した結果、NIK活性化阻害作用を認めた(図12)。
<Example 13: Examination of NIK activation inhibition by administration of each drug>
As a result of investigating the NIK inhibitory action by each drug administration using IM9 cells by immunoblotting, the NIK activation inhibitory action was recognized (FIG. 12).
 IM9細胞を150cmフラスコに播種し、37℃、5%COの条件下で72時間培養したもの(Control)、IM9細胞を150cmフラスコに播種し、24時間前培養後、100μM マンギフェリン、10μM マンギフェリン8a、10μM ノラチリオール、10μM メトキシキサントン、50μM テトラヒドロキシキサントン、10μM キサントヒドロール、50μM α-マンゴスチンおよび50μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で72時間培養した。これらの細胞浮遊液から細胞溶解液にてタンパク質を抽出し、サンプルとした。なお、NF-κB p65核移行阻害剤である50μM DMFを対象として用いた。 IM9 cells were seeded in a 150 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 72 hours (Control). IM9 cells were seeded in a 150 cm 2 flask and precultured for 24 hours, then 100 μM mangiferin, 10 μM Mangiferin 8a, 10 μM noractilol, 10 μM methoxyxanthone, 50 μM tetrahydroxyxanthone, 10 μM xanthohydrol, 50 μM α-mangostin and 50 μM γ-mangostin were added to final concentrations, and at 37° C. and 5% CO 2 conditions. Cultured for 72 hours. Proteins were extracted from these cell suspensions with a cell lysate and used as samples. Note that 50 μM DMF, which is an NF-κB p65 nuclear translocation inhibitor, was used as a target.
 各サンプルをSDS-PAGE後、PVDF膜に転写し、抗phospho-NIK抗体および抗NIK抗体を用いてNIKのリン酸化を検討した。 Each sample was subjected to SDS-PAGE, transferred to a PVDF membrane, and examined for phosphorylation of NIK using an anti-phospho-NIK antibody and an anti-NIK antibody.
 イムノブロテッィングの結果を図12に示す。写真の横方向にはControl、50μM DMF、100μM マンギフェリン、10μM マンギフェリン8a、10μM ノラチリオール、10μM メトキシキサントン、50μM テトラヒドロキシキサントン、Control、10μM キサントヒドロール、50μM α-マンゴスチン、50μM γ-マンゴスチンを添加された場合を並べて示した。 Figure 12 shows the results of immunoblotting. In the horizontal direction of the photograph, Control, 50 μM DMF, 100 μM mangiferin, 10 μM mangiferin 8a, 10 μM noraciriol, 10 μM methoxyxanthone, 50 μM tetrahydroxyxanthone, Control, 10 μM xanthohydrol, 50 μM α-mangosteen, and 50 μM γ-mangosteen were added. The cases are shown side by side.
 縦方向には抗体種を示した。具体的には、抗phospho-NIK抗体の場合(「Phospho-NIK」と表示した)及び抗NIK抗体の場合(「NIK」と表示した)を示した。抗NIK抗体の写真ではControlと比較し、NIKのバンドの濃さの低下は認められなかった。一方、抗phospho-NIK抗体の場合は、マンギフェリン、マンギフェリン8a、ノラチリオール、メトキシキサントン、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチンおよびγ-マンゴスチンではサンプルのイムノブロテッィングの結果は薄くなった。NF-κB p65核移行阻害剤であるDMFではControlと比較し、薄くはならなかった。 ▽The antibody type is shown in the vertical direction. Specifically, the case of an anti-phospho-NIK antibody (denoted as "Phospho-NIK") and the case of an anti-NIK antibody (denoted as "NIK") are shown. In the photograph of the anti-NIK antibody, no decrease in NIK band intensity was observed as compared with Control. On the other hand, in the case of the anti-phospho-NIK antibody, the immunoblotting result of the sample was diminished with mangiferin, mangiferin 8a, noraciliol, methoxyxanthone, tetrahydroxyxanthone, xanthohydrol, α-mangostin and γ-mangostin. NF-κB p65 nuclear translocation inhibitor, DMF, did not become thinner than Control.
<実施例14:各薬剤投与によるNIKの下流シグナルの検討>
 各薬剤投与により、NIKの下流シグナルであるIKK、NF-κB p52、NF-κB p65の活性化動態について検討した結果、IKKの活性阻害、NF-κB p52およびNF-κB p65の核移行阻害を認めた(図13)。
<Example 14: Examination of NIK downstream signal by administration of each drug>
As a result of examining the activation kinetics of NIK downstream signals IKK, NF-κB p52 and NF-κB p65 by administration of each drug, inhibition of IKK activity and inhibition of nuclear translocation of NF-κB p52 and NF-κB p65 were examined. Yes (Fig. 13).
 実施例13と同様に各サンプルを用意し、SDS-PAGE後、PVDF膜に転写し、抗phospho-IKK抗体および抗IKK抗体、抗NF-κBp52抗体および抗NF-κBp65抗体、抗Lamin抗体を用いてアッセイを行った。 Each sample was prepared in the same manner as in Example 13, subjected to SDS-PAGE, transferred to a PVDF membrane, and used with anti-phospho-IKK antibody and anti-IKK antibody, anti-NF-κBp52 antibody, anti-NF-κBp65 antibody, and anti-Lamin antibody. The assay was carried out.
 イムノブロテッィングの結果を図13に示す。写真の横方向にはControl、50μM DMF、100μM マンギフェリン、10μM マンギフェリン8a、10μM ノラチリオール、10μM メトキシキサントン、50μM テトラヒドロキシキサントン、Control、10μM キサントヒドロール、50μM α-マンゴスチン、50μM γ-マンゴスチンを添加された場合を並べて示した。 Figure 13 shows the results of immunoblotting. In the horizontal direction of the photograph, Control, 50 μM DMF, 100 μM mangiferin, 10 μM mangiferin 8a, 10 μM noraciriol, 10 μM methoxyxanthone, 50 μM tetrahydroxyxanthone, Control, 10 μM xanthohydrol, 50 μM α-mangosteen, and 50 μM γ-mangosteen were added. The cases are shown side by side.
 縦方向には抗体種を示した。具体的には、抗phospho-IKK抗体(「Phospho-IKK」と記載)および抗IKK抗体(「IKK」と記載)、抗NF-κBp52抗体(「NF-κBp52nuclear」と記載)、抗NF-κBp65抗体(「NF-κBp65nuclear」と記載)および抗Lamin抗体(「Lamin」と記載)である。 ▽The antibody type is shown in the vertical direction. Specifically, anti-phospho-IKK antibody (described as “Phospho-IKK”), anti-IKK antibody (described as “IKK”), anti-NF-κBp52 antibody (described as “NF-κBp52nuclear”), anti-NF-κBp65. Antibodies (described as "NF-κBp65nuclear") and anti-Lamin antibodies (described as "Lamin").
 また、細胞から核と細胞質基質を分離するのは、メルク株式会社製のProteoExtract(登録商標) Subcellular Proteome Extraction Kitを用いて細胞質分画および核分画を抽出した。 Further, to separate the nucleus and the cytosol from the cells, the cytosolic fraction and the nuclear fraction were extracted using ProteoExtract (registered trademark) Subcellular Proteome Extraction Kit manufactured by Merck Ltd.
 抗IKK抗体の写真ではControlと比較し、IKKのバンドの濃さの低下は認められなかった。一方、抗phospho-IKK抗体の場合は、マンギフェリン、マンギフェリン8a、ノラチリオール、メトキシキサントン、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチンおよびγ-マンゴスチンではサンプルのイムノブロテッィングの結果は薄くなった。NF-κB p65核移行阻害剤であるDMFではControlと比較し、薄くはならなかった。 In the photograph of the anti-IKK antibody, no decrease in the intensity of the IKK band was observed as compared with Control. On the other hand, in the case of the anti-phospho-IKK antibody, the immunoblotting result of the sample was diminished with mangiferin, mangiferin 8a, noraciliol, methoxyxanthone, tetrahydroxyxanthone, xanthohydrol, α-mangostin and γ-mangostin. NF-κB p65 nuclear translocation inhibitor, DMF, did not become thinner than Control.
 次に、細胞核内物質に対する抗NF-κBp52抗体(「NF-κBp52nuclear」と記載)、抗NF-κBp65抗体(「NF-κBp65nuclear」と記載)、および抗Lamin抗体(「Lamin」と記載)を参照する。Laminは、全ての薬剤に係らず存在しているが、核内のNF-κBp52はマンギフェリン、マンギフェリン8a、ノラチリオール、メトキシキサントン、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチンおよびγ-マンゴスチンで薄くなっているのが確認できたが、DMFではControlと比較し、増加が認められた。また、核内のNF-κBp65は、全ての薬剤で、減少した(影が薄くなった)。 Next, refer to anti-NF-κBp52 antibody (described as “NF-κBp52nuclear”), anti-NF-κBp65 antibody (described as “NF-κBp65nuclear”), and anti-Lamin antibody (described as “Lamin”) against a substance in the cell nucleus. To do. Lamin is present regardless of all drugs, but nuclear NF-κBp52 is diminished by mangiferin, mangiferin 8a, noraciliol, methoxyxanthone, tetrahydroxyxanthone, xanthydrol, α-mangostin and γ-mangostin. Although it was confirmed, the increase in DMF was recognized as compared with Control. In addition, NF-κBp65 in the nucleus was decreased (shadows were reduced) with all drugs.
 ラミン(Lamin)は、細胞核内で構造の維持と転写の調節を行う繊維状タンパク質である。したがって、全てのサンプルで核内物質を検出している状態で、各薬剤を添加した場合には核内のNF-κBp65やNF-κBp52は存在しない若しくは、存在しても非常に少ないことを示している。 Lamin is a fibrous protein that maintains structure and regulates transcription in the cell nucleus. Therefore, it was shown that NF-κBp65 and NF-κBp52 in the nucleus do not exist or are very small even when they are present when each drug is added in the state where the nuclear substance is detected in all samples. ing.
<実施例15:L363細胞での各薬剤投与によるCD138発現抑制効果>
 L363細胞を用いて各薬剤投与によるCD138発現抑制作用について、Flow cytometryで検討した結果、CD138発現抑制作用を認めた。
<Example 15: CD138 expression suppression effect by administration of each drug in L363 cells>
As a result of investigating the CD138 expression-suppressing action by administration of each drug using L363 cells by Flow cytometry, the CD138 expression-suppressing action was confirmed.
 L363細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、L363細胞を75cmフラスコに播種し、4時間前培養後、50μM マンギフェリン、1μM マンギフェリン8a、1μM ノラチリオール、5μM テトラヒドロキシキサントン、5μM メトキシキサントン、1μM キサントヒドロール、50μM α-マンゴスチンおよび5μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、細胞を多発性骨髄腫の悪性度マーカーである抗CD138抗体を用いて染色し、BD LSRFortessaを用いて、CD138の発現を測定した。 L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 μM mangiferin, 1 μM Mangiferin 8a, 1 μM noractilol, 5 μM tetrahydroxyxanthone, 5 μM methoxyxanthone, 1 μM xanthohydrol, 50 μM α-mangostin and 5 μM γ-mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the cells were stained with an anti-CD138 antibody that is a malignancy marker for multiple myeloma, and the expression of CD138 was measured using BD LSR Fortessa.
 結果を図14および図15に示す。横軸はCD138の発現量を表し、縦軸は細胞数を表す。また、パネル内の実線は抗CD138抗体および薬剤を処理していないNegative control、点線は薬剤を処理せず、抗CD138抗体で処理したPositive control、破線は薬剤および抗CD138抗体を処理したものを示す。 The results are shown in FIGS. 14 and 15. The horizontal axis represents the CD138 expression level, and the vertical axis represents the cell number. In addition, the solid line in the panel shows the Negative control that has not been treated with the anti-CD138 antibody and the drug, the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD138 antibody, and the broken line shows that that has been treated with the drug and the anti-CD138 antibody. ..
 薬剤および抗CD138抗体無処理のNegative control群と比較し、Positive controlではCD138発現が顕著に増加していた。マンギフェリン投与群(図14(a))、マンギフェリン8a投与群(図14(b))、ノラチリオール投与群(図14(c))、テトラヒドロキシキサントン投与群、(図14(d))、メトキシキサントン投与群、(図15(e))、キサントヒドロール投与群(図15(f))、α-マンゴスチン投与群(図15(g))、γ-マンゴスチン投与群(図15(h))ではPositive controlと比較し、顕著にCD138発現量が低下し、ほぼNegative controlと同程度になっていた。すなわち、マンギフェリン、マンギフェリン8a、ノラチリオール、テトラヒドロキシキサントン、メトキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンは多発性骨髄腫の悪性度マーカーであるCD138発現を抑制することが分かった。 The CD138 expression was significantly increased in the Positive control as compared with the Negative control group that was not treated with the drug or the anti-CD138 antibody. Mangiferin administration group (FIG. 14(a)), mangiferin 8a administration group (FIG. 14(b)), noraciliol administration group (FIG. 14(c)), tetrahydroxyxanthone administration group, (FIG. 14(d)), methoxyxanthone. In the administration group, (FIG. 15(e)), the xanthohydrol administration group (FIG. 15(f)), the α-mangostin administration group (FIG. 15(g)), and the γ-mangostin administration group (FIG. 15(h)) Compared to Positive control, the expression level of CD138 was remarkably reduced, and was almost the same as Negative control. That is, it was found that mangiferin, mangiferin 8a, noractilol, tetrahydroxyxanthone, methoxyxanthone, xanthhydrol, α-mangostin, and γ-mangostin suppress the expression of CD138, which is a malignancy marker for multiple myeloma.
<実施例16:L363細胞での各薬剤投与によるCD20発現増加効果>
 L363細胞を用いて各薬剤投与によるCD20発現増加作用について、Flow cytometryで検討した結果、CD20発現増加作用を認めた。
<Example 16: CD20 expression increasing effect by administration of each drug on L363 cells>
As a result of investigating the CD20 expression increasing action by each drug administration using L363 cells by Flow cytometry, the CD20 expression increasing action was confirmed.
 L363細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、L363細胞を75cmフラスコに播種し、4時間前培養後、50μM マンギフェリン、1μM マンギフェリン8a、1μM ノラチリオール、5μM テトラヒドロキシキサントン、5μM メトキシキサントン、1μM キサントヒドロール、50μM α-マンゴスチンおよび5μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、細胞をB細胞マーカーである抗CD20抗体を用いて染色し、BD LSRFortessaを用いて、CD20の発現を測定した。なお、CD20陽性コントロールとしてCCRF-SB細胞を用いた。 L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 μM mangiferin, 1 μM Mangiferin 8a, 1 μM noractilol, 5 μM tetrahydroxyxanthone, 5 μM methoxyxanthone, 1 μM xanthohydrol, 50 μM α-mangostin and 5 μM γ-mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the cells were stained with an anti-CD20 antibody that is a B cell marker, and the expression of CD20 was measured using BD LSR Fortessa. CCRF-SB cells were used as a CD20-positive control.
 結果を図16および図17に示す。横軸はCD20の発現量を表し、縦軸は細胞数を表す。また、パネル内の実線は抗CD20抗体および薬剤を処理していないNegative control、点線は薬剤を処理せず、抗CD20抗体で処理したPositive control、破線は薬剤および抗CD20抗体を処理したものを示す。一点鎖線はCCRF-SB細胞を抗CD20抗体で処理したものを示す。 The results are shown in FIGS. 16 and 17. The horizontal axis represents the expression level of CD20, and the vertical axis represents the cell number. In addition, the solid line in the panel shows the Negative control that has not been treated with the anti-CD20 antibody and the drug, the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD20 antibody, and the broken line shows that that has been treated with the drug and the anti-CD20 antibody. .. The dashed-dotted line shows CCRF-SB cells treated with anti-CD20 antibody.
 薬剤および抗CD20抗体無処理のNegative control群と比較し、Positive controlではCD20発現がほとんど増加しておらず、Negative controlと同程度であった。つまり、L363細胞はCD20を発現していないことが分かる。一方、CD20陽性コントロールとして用いたCCRF-SB細胞ではL363細胞のNegative controlおよびPositive controlと比較して、CD20発現が顕著に増加していた。このことはCCRF-SB細胞がCD20を発現していることを示す。 Compared to the Negative control group that was not treated with the drug or the anti-CD20 antibody, the CD20 expression was hardly increased in the Positive control, which was about the same as the Negative control. That is, it can be seen that L363 cells do not express CD20. On the other hand, in the CCRF-SB cells used as a CD20-positive control, the CD20 expression was significantly increased as compared with the L363 cells Negative control and Positive control. This indicates that CCRF-SB cells express CD20.
 さらに、マンギフェリン投与群(図16(a))、マンギフェリン8a投与群(図16(b))、ノラチリオール投与群(図16(c))、テトラヒドロキシキサントン投与群、(図16(d))メトキシキサントン投与群(図17(e))、キサントヒドロール投与群(図17(f))、α-マンゴスチン投与群(図17(g))、γ-マンゴスチン投与群(図17(h))ではPositive controlと比較し、顕著にCD20発現量が増加していた。 Furthermore, the mangiferin administration group (FIG. 16(a)), the mangiferin 8a administration group (FIG. 16(b)), the noratiliol administration group (FIG. 16(c)), the tetrahydroxyxanthone administration group, (FIG. 16(d)) methoxy. In the xanthone administration group (FIG. 17(e)), the xanthohydrol administration group (FIG. 17(f)), the α-mangostin administration group (FIG. 17(g)), and the γ-mangostin administration group (FIG. 17(h)). Compared with Positive control, the expression level of CD20 was remarkably increased.
 すなわち、マンギフェリン、マンギフェリン8a、ノラチリオール、テトラヒドロキシキサントン、メトキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンは多発性骨髄腫の悪性度マーカーである抗CD138抗体を抑制し、B細胞マーカーであるCD20発現を増加させた。結果、上記の物質は、多発性骨髄腫細胞をB細胞様へ転換することが分かった。 That is, mangiferin, mangiferin 8a, noraciliol, tetrahydroxyxanthone, methoxyxanthone, xanthohydrol, α-mangostin, γ-mangostin suppress the anti-CD138 antibody, which is a malignancy marker for multiple myeloma, and are B cell markers. Increased CD20 expression. As a result, it was found that the above substances convert multiple myeloma cells into B cells.
 多発性骨髄腫では、通常、CD20は発現しておらず、CD20に結合して抗腫瘍効果を発揮する抗CD20抗体リツキシマブの効果は認められない。しかし、本発明に係るマンギフェリン8a、ノラチリオール、テトラヒドロキシキサントン、メトキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンを含む組成物によるCD20の発現増加は、リツキシマブが細胞に結合することを可能にし、抗腫瘍効果を発揮することができる。すなわち、上記の物質によって多発性骨髄腫をB細胞様に転換させることで、リツキシマブによる抗腫瘍効果を期待することができる。 In multiple myeloma, CD20 is not normally expressed, and the effect of the anti-CD20 antibody rituximab, which binds to CD20 and exerts an antitumor effect, is not observed. However, the increased expression of CD20 by the composition containing mangiferin 8a, noraciliol, tetrahydroxyxanthone, methoxyxanthone, xanthohydrol, α-mangostin, γ-mangostin according to the present invention enables rituximab to bind to cells. , Can exert an antitumor effect. That is, the antitumor effect of rituximab can be expected by converting multiple myeloma into B cell-like by the above substances.
 なお、マンギフェリン8a、ノラチリオール、テトラヒドロキシキサントン、メトキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンを含む組成物とリツキシマブを用いた多発性骨髄腫の改善は本発明としてもよい。 The improvement of multiple myeloma using rituximab may be achieved by using a composition containing mangiferin 8a, noraciliol, tetrahydroxyxanthone, methoxyxanthone, xanthohydrol, α-mangostin, γ-mangostin and rituximab.
<実施例17:L363細胞での各薬剤投与によるIgG分泌抑制効果>
 L363細胞を用いて各薬剤投与によるIgG分泌抑制作用について、酵素結合免疫吸着測定法(ELISA)で検討した結果、IgG分泌抑制作用を認めた。
<Example 17: IgG secretion inhibitory effect by administration of each drug on L363 cells>
As a result of an enzyme-linked immunosorbent assay (ELISA) studying the inhibitory effect on IgG secretion by administration of each drug using L363 cells, an inhibitory effect on IgG secretion was confirmed.
 L363細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、L363細胞を75cmフラスコに播種し、4時間前培養後、50μM マンギフェリン、1μM マンギフェリン8a、1μM ノラチリオール、5μM テトラヒドロキシキサントン、5μM メトキシキサントン、1μM キサントヒドロール、50μM α-マンゴスチンおよび5μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、ELISAによってIgG分泌量を測定した。この測定にはヒト抗IgG抗体ELISAキット(フナコシ)を用いて行った。 L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 μM mangiferin, 1 μM Mangiferin 8a, 1 μM noractilol, 5 μM tetrahydroxyxanthone, 5 μM methoxyxanthone, 1 μM xanthohydrol, 50 μM α-mangostin and 5 μM γ-mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IgG secreted was measured by ELISA. For this measurement, a human anti-IgG antibody ELISA kit (Funakoshi) was used.
 結果を図18に示す。横軸はサンプル群を表し、縦軸はIgG分泌量(ng/mL)を表す。ControlではIgGが2861ng/mLであるのに対し、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではそれぞれ、140ng/mL、40ng/mL、59ng/mL、145ng/mL、67ng/mL、106ng/mL、24ng/mL、61ng/mLであった。 The results are shown in Fig. 18. The horizontal axis represents the sample group and the vertical axis represents the IgG secretion amount (ng/mL). In Control, IgG is 2861 ng/mL, whereas mangiferin administration group, mangiferin 8a administration group, noraciliol administration group, tetrahydroxyxanthone administration group, methoxyxanthone administration group, xanthohydrol administration group, α-mangosteen administration group, γ In the mangosteen administration group, the doses were 140 ng/mL, 40 ng/mL, 59 ng/mL, 145 ng/mL, 67 ng/mL, 106 ng/mL, 24 ng/mL, and 61 ng/mL, respectively.
 以上のようにマンギフェリン投与群はIgGの分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著にIgG分泌を抑制することが分かった。 As described above, it was observed that the mangiferin administration group decreases IgG secretion, and the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthhydrol administration group, the α-mangosteen administration group. It was found that the γ-mangostin administration group markedly suppressed IgG secretion at a lower dose than the mangiferin administration group.
 すなわち、対照群はIgG産生により腎障害、アミロイドーシス、過粘稠度症候群を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群は、腎障害、アミロイドーシス、過粘稠度症候群を抑制したといえる。 That is, the control group causes renal damage, amyloidosis, and hyperviscosity syndrome due to IgG production, and the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the α-mangosteen administration group It can be said that the group and the γ-mangostin administration group suppressed renal damage, amyloidosis, and hyperviscosity syndrome.
<実施例18:L363細胞での各薬剤投与による免疫グロブリン遊離軽鎖のλ鎖の分泌抑制効果>
 L363細胞を用いて各薬剤投与による免疫グロブリン遊離軽鎖のλ鎖の分泌抑制作用について、酵素結合免疫吸着測定法(ELISA)で検討した結果、免疫グロブリン遊離軽鎖のλ鎖の分泌抑制作用を認めた。
<Example 18: Inhibitory effect of λ chain of immunoglobulin free light chain by administration of each drug on L363 cells>
The inhibitory effect on the λ chain of the immunoglobulin free light chain by administration of each drug in L363 cells was examined by enzyme-linked immunosorbent assay (ELISA). As a result, the inhibitory effect on the λ chain of the immunoglobulin free light chain was suppressed. recognized.
 L363細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、L363細胞を75cmフラスコに播種し、4時間前培養後、50μM マンギフェリン、1μM マンギフェリン8a、1μM ノラチリオール、5μM テトラヒドロキシキサントン、5μM メトキシキサントン、1μM キサントヒドロール、50μM α-マンゴスチンおよび5μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、ELISAによって免疫グロブリン遊離軽鎖のλ鎖分泌量を測定した。この測定にはヒト抗λ鎖抗体ELISAキット(フナコシ)を用いて行った。 L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 μM mangiferin, 1 μM Mangiferin 8a, 1 μM noractilol, 5 μM tetrahydroxyxanthone, 5 μM methoxyxanthone, 1 μM xanthohydrol, 50 μM α-mangostin and 5 μM γ-mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of λ chain secreted immunoglobulin free light chain was measured by ELISA. This measurement was performed using a human anti-λ chain antibody ELISA kit (Funakoshi).
 結果を図19に示す。横軸はサンプル群を表し、縦軸はλ鎖分泌量(μg/L)を表す。ControlではIgGが142μg/Lであるのに対し、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではそれぞれ、30μg/L、23μg/L、23μg/L、33μg/L、31μg/L、29μg/L、30μg/L、31μg/Lであった。 The results are shown in Fig. 19. The horizontal axis represents the sample group, and the vertical axis represents the amount of λ chain secretion (μg/L). In Control, the IgG is 142 μg/L, whereas the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangosteen administration group, the γ -In the mangosteen-administered group, the doses were 30 μg/L, 23 μg/L, 23 μg/L, 33 μg/L, 31 μg/L, 29 μg/L, 30 μg/L, 31 μg/L, respectively.
 以上のようにマンギフェリン投与群はλ鎖の分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著にλ鎖分泌を抑制することが分かった。すなわち、対照群はλ鎖産生により腎障害、アミロイドーシス、過粘稠度症候群を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群は、腎障害、アミロイドーシス、過粘稠度症候群を抑制したといえる。 As described above, it was observed that the mangiferin administration group decreased the secretion of λ chain, and the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangosteen administration group were administered. It was found that the γ-chain secretion was significantly suppressed in the γ-mangostin administration group and the mangiferin administration group at a lower dose. That is, the control group causes renal damage, amyloidosis, and hyperviscosity syndrome due to the production of λ chain, and the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the α-mangosteen It can be said that the administration group and the γ-mangostin administration group suppressed renal damage, amyloidosis, and hyperviscosity syndrome.
<実施例19:L363細胞での各薬剤投与による骨破壊関連因子の分泌抑制効果>
 L363細胞を用いて各薬剤投与による骨破壊関連因子の分泌抑制作用について、Luminexで検討した結果、骨破壊関連因子の分泌抑制作用を認めた。
<Example 19: Inhibitory effect of bone destruction-related factor secretion by administration of each drug on L363 cells>
As a result of Luminex's investigation of the inhibitory effect on the secretion of bone destruction-related factors by administration of each drug using L363 cells, the inhibitory effect on the secretion of bone destruction-related factors was confirmed.
 L363細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、L363細胞を75cmフラスコに播種し、4時間前培養後、50μM マンギフェリン、1μM マンギフェリン8a、1μM ノラチリオール、5μM テトラヒドロキシキサントン、5μM メトキシキサントン、1μM キサントヒドロール、50μM α-マンゴスチンおよび5μM γ-マンゴスチンの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、Luminexによって骨破壊関連因子であるMIP-1αの分泌量を測定した。この測定にはHuman Magnetic Luminex Assay(R&D)を用いて行った。 L363 cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). L363 cells were seeded in a 75 cm 2 flask and precultured for 4 hours, then 50 μM mangiferin, 1 μM Mangiferin 8a, 1 μM noractilol, 5 μM tetrahydroxyxanthone, 5 μM methoxyxanthone, 1 μM xanthohydrol, 50 μM α-mangostin and 5 μM γ-mangostin were added to final concentrations, and the conditions were 37° C. and 5% CO 2 . It was cultured for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of MIP-1α, which is a bone destruction-related factor, secreted was measured by Luminex. This measurement was performed using a Human Magnetic Luminex Assay (R&D).
 結果を図20に示す。横軸はサンプル群を表し、縦軸はMIP-1αの分泌量(pg/mL)を表す。ControlではMIP-1αの分泌量が245pg/mLであった。また、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではMIP-1α分泌量はそれぞれ、0pg/mL、0pg/mL、0pg/mL、0pg/mL、0.73pg/mL、0pg/mL、0pg/mL、0pg/mLであった。 The results are shown in Fig. 20. The horizontal axis represents the sample group, and the vertical axis represents the secreted amount of MIP-1α (pg/mL). In Control, the secreted amount of MIP-1α was 245 pg/mL. In addition, in the mangiferin administration group, the mangiferin 8a administration group, the noraciliol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthohydrol administration group, the α-mangostin administration group, and the γ-mangostin administration group, the amount of MIP-1α secretion was The values were 0 pg/mL, 0 pg/mL, 0 pg/mL, 0 pg/mL, 0.73 pg/mL, 0 pg/mL, 0 pg/mL, and 0 pg/mL, respectively.
 以上のようにマンギフェリン投与群はMIP-1αの分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、メトキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著にMIP-1α分泌を抑制することが分かった。すなわち、対照群はMIP-1α産生により骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群は、骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を抑制したといえる。 As described above, the mangiferin administration group was found to reduce the secretion of MIP-1α, and the mangiferin 8a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the methoxyxanthone administration group, the xanthydrol administration group, α-mangosteen It was found that the administration group and the γ-mangostin administration group markedly suppressed MIP-1α secretion at a lower dose than the mangiferin administration group. That is, the control group has bone lesions (bone destruction) due to MIP-1α production, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms. Mangiferin-administered group, mangiferin-8a-administered group, noraciliol-administered group, tetrahydroxyxanthone-administered group, xanthydrol-administered group, α-mangosteen-administered group, γ-mangostin-administered group, bone lesion (bone destruction), bone lesion It can be said that the hypercalcemia, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms were suppressed.
<実施例20:KMS-28BM細胞での各薬剤投与によるCD138発現抑制効果>
 KMS-28BM細胞を用いて各薬剤投与によるCD138発現抑制作用について、Flow cytometryで検討した結果、CD138発現抑制作用を認めた。
<Example 20: CD138 expression suppression effect by administration of each drug on KMS-28BM cells>
As a result of investigating the CD138 expression inhibitory action by each drug administration using KMS-28BM cells by Flow cytometry, the CD138 expression inhibitory action was confirmed.
 KMS-28BM細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、KMS-28BM細胞を75cmフラスコに播種し、4時間前培養後、1μM マンギフェリン、0.1μM マンギフェリン8a、0.05μM ノラチリオールの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、細胞を多発性骨髄腫の悪性度マーカーである抗CD138抗体を用いて染色し、BD LSRFortessaを用いて、CD138の発現を測定した。 KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 μM mangiferin, 0.1 μM mangiferin 8a, and 0.05 μM noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the cells were stained with an anti-CD138 antibody that is a malignancy marker for multiple myeloma, and the expression of CD138 was measured using BD LSR Fortessa.
 結果を図21に示す。横軸はCD138の発現量を表し、縦軸は細胞数を表す。また、パネル内の実線は抗CD138抗体および薬剤を処理していないNegative control、点線は薬剤を処理せず、抗CD138抗体で処理したPositive control、破線は薬剤および抗CD138抗体を処理したものを示す。薬剤および抗CD138抗体無処理のNegative control群と比較し、Positive controlではCD138発現が顕著に増加していた。 The results are shown in Fig. 21. The horizontal axis represents the CD138 expression level, and the vertical axis represents the cell number. In addition, the solid line in the panel shows the Negative control that has not been treated with the anti-CD138 antibody and the drug, the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD138 antibody, and the broken line shows that that has been treated with the drug and the anti-CD138 antibody. .. The CD138 expression was significantly increased in the Positive control as compared with the Negative control group which was not treated with the drug or the anti-CD138 antibody.
 マンギフェリン投与群(図21(a))、マンギフェリン8a投与群(図21(b))、ノラチリオール投与群(図21(c))ではPositive controlと比較し、顕著にCD138発現量が低下し、ほぼNegative controlと同程度になっていた。すなわち、マンギフェリン、マンギフェリン8a、ノラチリオールは多発性骨髄腫の悪性度マーカーであるCD138発現を抑制することが分かった。 In the mangiferin administration group (Fig. 21(a)), the mangiferin 8a administration group (Fig. 21(b)), and the noraciliol administration group (Fig. 21(c)), the CD138 expression level was remarkably reduced, and was almost the same as that of Positive control. It was about the same as Negative control. That is, it was found that mangiferin, mangiferin 8a, and noraciliol suppress the expression of CD138, which is a malignancy marker for multiple myeloma.
<実施例21:KMS-28BM細胞での各薬剤投与によるCD20発現増加効果>
 KMS-28BM細胞を用いて各薬剤投与によるCD20発現増加作用について、Flow cytometryで検討した結果、CD20発現増加作用を認めた。
<Example 21: CD20 expression increasing effect by administration of each drug on KMS-28BM cells>
As a result of investigating the CD20 expression increasing action by administration of each drug using KMS-28BM cells by Flow cytometry, the CD20 expression increasing action was confirmed.
 KMS-28BM細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、KMS-28BM細胞を75cmフラスコに播種し、4時間前培養後、1μM マンギフェリン、0.1μM マンギフェリン8a、0.05μM ノラチリオールの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、細胞をB細胞マーカーである抗CD20抗体を用いて染色し、BD LSRFortessaを用いて、CD20の発現を測定した。なお、CD20陽性コントロールとしてCCRF-SB細胞を用いた。 KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 μM mangiferin, 0.1 μM mangiferin 8a, and 0.05 μM noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the cells were stained with an anti-CD20 antibody that is a B cell marker, and the expression of CD20 was measured using BD LSR Fortessa. CCRF-SB cells were used as a CD20-positive control.
 結果を図22に示す。横軸はCD20の発現量を表し、縦軸は細胞数を表す。また、パネル内の実線は抗CD20抗体および薬剤を処理していないNegative control、点線は薬剤を処理せず、抗CD20抗体で処理したPositive control、破線は薬剤および抗CD20抗体を処理したものを示す。一点鎖線はCCRF-SB細胞を抗CD20抗体で処理したものを示す。 The results are shown in Fig. 22. The horizontal axis represents the expression level of CD20, and the vertical axis represents the cell number. Also, the solid line in the panel shows the Negative control that has not been treated with the anti-CD20 antibody and the drug, the dotted line shows the positive control that has not been treated with the drug and has been treated with the anti-CD20 antibody, and the dashed line shows that that has been treated with the drug and the anti-CD20 antibody. .. The dashed-dotted line shows CCRF-SB cells treated with anti-CD20 antibody.
 薬剤および抗CD20抗体無処理のNegative control群と比較し、Positive controlではCD20発現がほとんど増加しておらず、Negative controlと同程度であった。つまり、KMS-28BM細胞はCD20を発現していないことが分かる。一方、CD20陽性コントロールとして用いたCCRF-SB細胞ではKMS-28BM細胞のNegative controlおよびPositive controlと比較して、CD20発現が顕著に増加していた。このことはCCRF-SB細胞がCD20を発現していることを示す。さらに、マンギフェリン投与群(図22(a))、マンギフェリン8a投与群(図22(b))、ノラチリオール投与群(図22(c))ではPositive controlと比較し、顕著にCD20発現量が増加していた。 Compared to the Negative control group that was not treated with the drug or the anti-CD20 antibody, the CD20 expression was hardly increased in the Positive control, which was about the same as the Negative control. That is, it can be seen that KMS-28BM cells do not express CD20. On the other hand, in the CCRF-SB cells used as the CD20-positive control, the CD20 expression was significantly increased as compared with the KMS-28BM cells Negative control and Positive control. This indicates that CCRF-SB cells express CD20. Furthermore, in the mangiferin administration group (FIG. 22(a)), the mangiferin 8a administration group (FIG. 22(b)), and the noraciliol administration group (FIG. 22(c)), the CD20 expression level was remarkably increased as compared with Positive control. Was there.
 すなわち、マンギフェリン、マンギフェリン8a、ノラチリオールは多発性骨髄腫の悪性度マーカーである抗CD138抗体を抑制し、B細胞マーカーであるCD20発現を増加させた。結果、上記の物質は、多発性骨髄腫細胞(KMS-28BM細胞)をB細胞様へ転換することが分かった。 That is, mangiferin, mangiferin 8a, and noraciliol suppressed the anti-CD138 antibody, which is a malignancy marker for multiple myeloma, and increased the expression of CD20, which is a B cell marker. As a result, it was found that the above substances convert multiple myeloma cells (KMS-28BM cells) into B cells.
<実施例22:KMS-28BM細胞での各薬剤投与によるIgG分泌抑制効果>
 KMS-28BM細胞を用いて各薬剤投与によるIgG分泌抑制作用について、酵素結合免疫吸着測定法(ELISA)で検討した結果、IgG分泌抑制作用を認めた。
<Example 22: IgG secretion inhibitory effect by administration of each drug on KMS-28BM cells>
The inhibitory effect on IgG secretion by administration of each drug using KMS-28BM cells was examined by enzyme-linked immunosorbent assay (ELISA), and the inhibitory effect on IgG secretion was confirmed.
 KMS-28BM細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、KMS-28BM細胞を75cmフラスコに播種し、4時間前培養後、1μM マンギフェリン、0.1μM マンギフェリン8a、0.05μM ノラチリオールの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、ELISAによってIgG分泌量を測定した。この測定にはヒト抗IgG抗体ELISAキット(フナコシ)を用いて行った。 KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 μM mangiferin, 0.1 μM mangiferin 8a, and 0.05 μM noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IgG secreted was measured by ELISA. For this measurement, a human anti-IgG antibody ELISA kit (Funakoshi) was used.
 結果を図23に示す。横軸はサンプル群を表し、縦軸はIgG分泌量(ng/mL)を表す。ControlではIgGが2018ng/mLであるのに対し、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群ではそれぞれ、106ng/mL、40ng/mL、0ng/mLであった。 The results are shown in Fig. 23. The horizontal axis represents the sample group and the vertical axis represents the IgG secretion amount (ng/mL). IgG was 2018 ng/mL in Control, whereas 106 ng/mL, 40 ng/mL, and 0 ng/mL were respectively in the mangiferin administration group, the mangiferin 8a administration group, and the noratiriol administration group.
 以上のようにマンギフェリン投与群はIgGの分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群ではマンギフェリン投与群よりも低用量で顕著にIgG分泌を抑制することが分かった。すなわち、対照群はIgG産生により腎障害、アミロイドーシス、過粘稠度症候群を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群は、腎障害、アミロイドーシス、過粘稠度症候群を抑制したといえる。 As described above, it was confirmed that the mangiferin-administered group decreased IgG secretion, and it was found that the mangiferin 8a-administered group and the noratiriol-administered group significantly suppressed IgG secretion at a lower dose than the mangiferin-administered group. That is, it can be said that the control group caused renal damage, amyloidosis, and hyperviscosity syndrome due to IgG production, and the mangiferin-administered group, mangiferin 8a-administered group, and noraciriol-administered group suppressed renal injury, amyloidosis, and hyperviscosity syndrome. ..
<実施例23:KMS-28BM細胞での各薬剤投与による免疫グロブリン遊離軽鎖のλ鎖の分泌抑制効果>
 KMS-28BM細胞を用いて各薬剤投与による免疫グロブリン遊離軽鎖のλ鎖の分泌抑制作用について、酵素結合免疫吸着測定法(ELISA)で検討した結果、免疫グロブリン遊離軽鎖のλ鎖の分泌抑制作用を認めた。
<Example 23: Inhibitory effect of λ chain of immunoglobulin free light chain by administration of each drug on KMS-28BM cells>
The inhibitory effect on the λ chain of the immunoglobulin free light chain by administration of each drug in KMS-28BM cells was examined by enzyme-linked immunosorbent assay (ELISA), and the inhibitory effect on the λ chain of the immunoglobulin free light chain was suppressed. The action was recognized.
 KMS-28BM細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、KMS-28BM細胞を75cmフラスコに播種し、4時間前培養後、1μMマンギフェリン、0.1μMマンギフェリン8a、0.05μMノラチリオールの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、ELISAによって免疫グロブリン遊離軽鎖のλ鎖分泌量を測定した。この測定にはヒト抗λ鎖抗体ELISAキット(フナコシ)を用いて行った。 KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 µM mangiferin, 0.1 µM mangiferin 8a, and 0.05 µM noraciliol were added so that the final concentrations would be obtained, and the cells were cultured at 37°C under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of λ chain secreted immunoglobulin free light chain was measured by ELISA. This measurement was performed using a human anti-λ chain antibody ELISA kit (Funakoshi).
 結果を図24に示す。横軸はサンプル群を表し、縦軸はλ鎖分泌量(μg/L)を表す。ControlではIgGが16μg/Lであるのに対し、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群ではそれぞれ、0μg/L、0μg/L、6.9μg/Lであった。 The results are shown in Fig. 24. The horizontal axis represents the sample group, and the vertical axis represents the amount of λ chain secretion (μg/L). In the Control, IgG was 16 μg/L, whereas in the mangiferin administration group, the mangiferin 8a administration group, and the noratiriol administration group, they were 0 μg/L, 0 μg/L, and 6.9 μg/L, respectively.
 以上のようにマンギフェリン投与群はλ鎖の分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群ではマンギフェリン投与群よりも低用量で顕著にλ鎖分泌を抑制することが分かった。すなわち、対照群はλ鎖産生により腎障害、アミロイドーシス、過粘稠度症候群を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群は、腎障害、アミロイドーシス、過粘稠度症候群を抑制したといえる。 As described above, it was confirmed that the mangiferin-administered group decreased the secretion of the λ chain, and it was found that the mangiferin 8a-administered group and the noratiriol-administered group significantly suppressed the λ-chain secretion at a lower dose than the mangiferin-administered group. That is, the control group caused nephropathy, amyloidosis, hyperviscosity syndrome due to λ chain production, and the mangiferin administration group, the mangiferin 8a administration group, the noratiriol administration group suppressed the renal injury, amyloidosis, hyperviscosity syndrome. I can say.
<実施例24:KMS-28BM細胞での各薬剤投与による骨破壊関連因子の分泌抑制効果>
 KMS-28BM細胞を用いて各薬剤投与による骨破壊関連因子の分泌抑制作用について、Luminexで検討した結果、骨破壊関連因子の分泌抑制作用を認めた。
<Example 24: Inhibitory effect of bone destruction-related factor secretion by administration of each drug on KMS-28BM cells>
As a result of Luminex's study on the inhibitory action on the secretion of bone destruction-related factors by administration of each drug using KMS-28BM cells, the inhibitory action on the secretion of bone destruction-related factors was confirmed.
 KMS-28BM細胞を75cmフラスコに播種し、37℃、5%COの条件下で10日間培養したもの(Control)、KMS-28BM細胞を75cmフラスコに播種し、4時間前培養後、1μM マンギフェリン、0.1μM マンギフェリン8a、0.05μM ノラチリオールの終濃度になるように添加し、37℃、5%COの条件下で10日間培養した。10日間培養後、培養上清を回収し、Luminexによって骨破壊関連因子であるIL-6の分泌量を測定した。この測定にはHuman Magnetic Luminex Assay(R&D)を用いて行った。 KMS-28BM cells were seeded in a 75 cm 2 flask and cultured under conditions of 37° C. and 5% CO 2 for 10 days (Control). KMS-28BM cells were seeded in a 75 cm 2 flask and precultured for 4 hours, 1 μM mangiferin, 0.1 μM mangiferin 8a, and 0.05 μM noratiliol were added to the final concentrations, and the mixture was cultured at 37° C. under 5% CO 2 for 10 days. After culturing for 10 days, the culture supernatant was collected and the amount of IL-6, which is a bone destruction-related factor, secreted was measured by Luminex. This measurement was performed using a Human Magnetic Luminex Assay (R&D).
 結果を図25に示す。横軸はサンプル群を表し、縦軸はIL-6の分泌量(pg/mL)を表す。ControlではIL-6の分泌量が153pg/mLであった。また、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群ではIL-6分泌量はそれぞれ、36pg/mL、28pg/mL、43pg/mLであった。 The results are shown in Fig. 25. The horizontal axis represents the sample group, and the vertical axis represents the amount of IL-6 secreted (pg/mL). In Control, the amount of IL-6 secreted was 153 pg/mL. Moreover, the IL-6 secretion amount in the mangiferin administration group, the mangiferin 8a administration group, and the noratiriol administration group was 36 pg/mL, 28 pg/mL, and 43 pg/mL, respectively.
 以上のようにマンギフェリン投与群はIL-6の分泌を低下させることが認められ、マンギフェリン8a投与群、ノラチリオール投与群ではマンギフェリン投与群よりも低用量で顕著にIL-6分泌を抑制することが分かった。すなわち、対照群はIL-6産生により骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を引き起こし、マンギフェリン投与群、マンギフェリン8a投与群、ノラチリオール投与群は、骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状を抑制したといえる。 As described above, it was confirmed that the mangiferin-administered group decreased IL-6 secretion, and that the mangiferin-8a-administered group and the noraciriol-administered group significantly suppressed IL-6 secretion at a lower dose than the mangiferin-administered group. It was That is, the control group had bone lesions (bone destruction) due to IL-6 production, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, and neurological symptoms associated with spinal cord compression symptoms. Mangiferin administration group, mangiferin 8a administration group, noraciliol administration group, bone lesions (bone destruction), hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, spinal cord compression symptoms associated with spinal cord compression fractures, It can be said that the neurological symptoms associated with spinal cord compression symptoms were suppressed.
<実施例25:Raji細胞でのin vivoにおけるノラチリオール投与による腫瘍増殖抑制効果>
 Raji細胞をNOD/ShiJic-scidJclマウスに移植し、ノラチリオールを経口投与した場合の腫瘍増殖抑制作用について検討した結果、顕著な腫瘍増殖抑制作用を認めた。
<Example 25: Tumor growth inhibitory effect of in vivo administration of noraciriol on Raji cells>
Raji cells were transplanted into NOD/ShiJic-scidJcl mice, and the tumor growth inhibitory effect when orally administered noraciriol was examined. As a result, a remarkable tumor growth inhibitory effect was observed.
 Raji細胞をNOD/ShiJic-scidJclマウスに移植し、腫瘍体積の平均が100mmを超えた時点を0日目として、ノラチリオールを100mg/kgでマウスに27日間連日経口投与し、腫瘍体積を測定した。 Raji cells were transplanted to NOD/ShiJic-scidJcl mice, and when the mean tumor volume exceeded 100 mm 3 , the day 0 was treated with oral administration of noraciriol at 100 mg/kg to the mice for 27 consecutive days, and the tumor volume was measured. ..
 Raji細胞を移植しただけのグループを対象群、ノラチリオールを投与した群をノラチリオール投与群と呼ぶ。それぞれの群は5匹で構成した。  The group that has just been transplanted with Raji cells is called the target group, and the group that has been administered noraciriol is called the noraciriol-administered group. Each group consisted of 5 animals.
 結果を図26に示す。図を参照して、横軸は経過日数(日)を示し、縦軸は腫瘍体積(mm)を示す。白丸印は対象群(「Control」と表示)を示す。黒菱形印はノラチリオール投与群(「100mg/kg norathyriol」と表示)を示す。また、対象群に対して有意な差(P<0.01)であったものには「*」を示した。 Results are shown in FIG. Referring to the figure, the horizontal axis represents the number of days elapsed (day) and the vertical axis represents the tumor volume (mm 3 ). White circles indicate a target group (displayed as "Control"). The black diamonds indicate the noractilol administration group (indicated as "100 mg/kg norathyriol"). In addition, “*” was shown for those that were significantly different (P<0.01) from the control group.
 対象群(白丸印「-O-」)は経過日数とともに腫瘍増殖が認められ、27日後には5790mmとなった。ノラチリオール投与群(黒ひし形印「-◆-」)では、著しい腫瘍増殖抑制を認めた。 In the control group (open circle "-O-"), tumor growth was observed with the number of days elapsed, and it was 5790 mm 3 after 27 days. In the noraciliol-administered group (black diamond mark "-◆-"), remarkable tumor growth inhibition was observed.
 すなわち、ノラチリオール投与群は対象群よりも有意に腫瘍増殖を抑えた。 That is, tumor growth was significantly suppressed in the noraciriol administration group compared to the control group.
 図27には、投薬開始27日目の腫瘍の写真を示す。図27(a)は対象群、図27(b)はノラチリオール投与群の中の1匹のマウスの腫瘍の写真を示す。図27(a)の対象群では、腫瘍の増大が顕著に認められる。一方、図27(b)のノラチリオール投与群では、対象群と比較して顕著な体積の低下が認められた。 Fig. 27 shows a photograph of the tumor 27 days after the start of administration. FIG. 27(a) shows a photograph of a tumor of one mouse in the control group, and FIG. 27(b) shows a photograph of one mouse in the noractilol administration group. In the target group of FIG. 27(a), a significant increase in tumor is observed. On the other hand, in the noraciliol-administered group in FIG. 27(b), a remarkable decrease in volume was observed as compared with the control group.
  以上のように、ノラチリオール投与群は顕著に腫瘍増殖を抑制することが分かった。 As mentioned above, it was found that the noractilol-administered group remarkably suppressed tumor growth.
<実施例26:L363細胞でのin vivoにおけるノラチリオール投与による腫瘍増殖抑制効果>
 L363細胞をNOD/ShiJic-scidJclマウスに移植し、ノラチリオールを経口投与した場合の腫瘍増殖抑制作用について検討した結果、顕著な腫瘍増殖抑制作用を認めた。
<Example 26: Tumor growth inhibitory effect of in vivo administration of noraciriol on L363 cells>
When L363 cells were transplanted to NOD/ShiJic-scidJcl mice and noraciriol was orally administered, the tumor growth inhibitory effect was examined. As a result, a remarkable tumor growth inhibitory effect was observed.
 L363細胞をNOD/ShiJic-scidJclマウスに移植し、腫瘍体積の平均が100mmを超えた時点を0日目として、ノラチリオールを100mg/kgでマウスに8日間連日経口投与し、腫瘍体積を測定した。 L363 cells were transplanted into NOD/ShiJic-scidJcl mice, and when the mean tumor volume exceeded 100 mm 3 , the day 0 was treated with oral administration of noratiriol at 100 mg/kg to the mice for 8 days, and the tumor volume was measured. ..
 L363細胞を移植しただけのグループを対象群、ノラチリオールを投与した群をノラチリオール投与群と呼ぶ。それぞれの群は5匹で構成した。 The group that has just been transplanted with L363 cells is called the target group, and the group that has been administered noraciliol is called the noraciriol-administered group. Each group consisted of 5 animals.
 結果を図28に示す。図を参照して、横軸は経過日数を示し、縦軸は腫瘍体積を示す。白丸印は対象群(「Control」と表示)を示す。黒菱形印はノラチリオール投与群(「100mg/kg norathyriol」と表示)を示す。また、対象群に対して有意な差(P<0.01)であったものには「*」を示した。 The results are shown in Fig. 28. Referring to the figure, the horizontal axis represents the number of days elapsed and the vertical axis represents the tumor volume. White circles indicate a target group (displayed as "Control"). The black diamond marks indicate the noractilol administration group (indicated as "100 mg/kg norathyriol"). In addition, “*” was shown for those that were significantly different (P<0.01) from the control group.
 対象群(白丸印「-O-」)は経過日数とともに腫瘍増殖が認められ、8日後には745mmとなった。ノラチリオール投与群(黒ひし形印「-◆-」)では、著しい腫瘍増殖抑制を認めた。 In the control group (open circle "-O-"), tumor growth was observed with the lapse of days, and it became 745 mm 3 after 8 days. In the noraciliol-administered group (black diamond mark "-◆-"), remarkable tumor growth inhibition was observed.
 すなわち、ノラチリオール投与群は対象群よりも有意に腫瘍増殖を抑えた。 That is, tumor growth was significantly suppressed in the noraciriol administration group compared to the control group.
 図29には、投薬開始8日目の腫瘍の写真を示す。図29(a)は対象群、図29(b)はノラチリオール投与群の中の1匹のマウスの腫瘍の写真を示す。図29(a)の対象群では、腫瘍の増大が顕著に認められる。一方、図29(b)のノラチリオール投与群では、対象群と比較して顕著な体積の低下が認められた。 FIG. 29 shows a photograph of the tumor 8 days after the start of administration. FIG. 29(a) shows a photograph of a tumor of one mouse in the control group, and FIG. 29(b) shows a photograph of one mouse in the noraciriol administration group. In the target group of FIG. 29(a), the tumor is remarkably increased. On the other hand, in the noraciliol-administered group in FIG. 29(b), a remarkable decrease in volume was observed as compared with the control group.
  以上のように、ノラチリオール投与群は顕著に腫瘍増殖を抑制することが分かった。 As mentioned above, it was found that the noractilol-administered group remarkably suppressed tumor growth.
 本発明に係る悪性腫瘍疾患の改善用組成物は、選択的NIK阻害剤としてNF-κB p52およびNF-κB p65が活性化し発症する悪性腫瘍疾患に対して有用な医薬組成物とすることができる。また、本発明に係る悪性腫瘍疾患の改善用組成物は、多発性骨髄腫に伴う骨病変(骨破壊)、骨病変に伴う高カルシウム血症、病的骨折、脊髄圧迫骨折、脊髄圧迫骨折に伴う脊髄圧迫症状、脊髄圧迫症状に伴う神経症状、腎障害、アミロイドーシス、過粘稠度症候群に対して有用な医薬組成物とすることができる。

 
The composition for improving malignant tumor disease according to the present invention can be used as a pharmaceutical composition useful for malignant tumor disease caused by activation of NF-κB p52 and NF-κB p65 as a selective NIK inhibitor. .. Further, the composition for improving malignant tumor disease according to the present invention is applied to bone lesions (bone destruction) associated with multiple myeloma, hypercalcemia associated with bone lesions, pathological fractures, spinal cord compression fractures, and spinal cord compression fractures. It can be used as a useful pharmaceutical composition for spinal cord symptom associated therewith, neurological symptom associated with spinal cord compressive symptom, renal disorder, amyloidosis, hyperviscosity syndrome.

Claims (7)

  1.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を有効成分とする悪性腫瘍疾患の改善用組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Malignant tumor containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton as an active ingredient A composition for improving a disease.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  2. キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を有効成分とするNIK過剰発現が関与する悪性腫瘍疾患の改善用組成物。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    NIK excess containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton as an active ingredient. A composition for improving malignant tumor disease associated with expression.
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
  3.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を有効成分とするBAFF過剰発現が関与する悪性腫瘍疾患の改善用組成物。
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    BAFF excess containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton as an active ingredient A composition for improving malignant tumor disease associated with expression.
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
  4.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を有効成分とする悪性腫瘍疾患治療薬。
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    Malignant tumor containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton as an active ingredient Disease remedy.
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
  5.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を含む加工食品。
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
    A processed food containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton.
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    Figure JPOXMLDOC01-appb-C000031
    Figure JPOXMLDOC01-appb-C000032
    Figure JPOXMLDOC01-appb-C000033
    Figure JPOXMLDOC01-appb-C000034
    Figure JPOXMLDOC01-appb-C000035
  6.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を含む多発性骨髄腫でのB細胞様への脱分化誘導薬。
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    Figure JPOXMLDOC01-appb-C000038
    Figure JPOXMLDOC01-appb-C000039
    Figure JPOXMLDOC01-appb-C000040
    Figure JPOXMLDOC01-appb-C000041
    Figure JPOXMLDOC01-appb-C000042
    A multiple myeloma comprising at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton. B cell-like dedifferentiation inducer.
    Figure JPOXMLDOC01-appb-C000036
    Figure JPOXMLDOC01-appb-C000037
    Figure JPOXMLDOC01-appb-C000038
    Figure JPOXMLDOC01-appb-C000039
    Figure JPOXMLDOC01-appb-C000040
    Figure JPOXMLDOC01-appb-C000041
    Figure JPOXMLDOC01-appb-C000042
  7.  キサントン骨格を有する(1)式、(2)式、(3)式、(4)式、(5)式、(6)式および(7)式の少なくとも1の化合物を含む多発性骨髄腫に伴うCRAB改善薬。
    Figure JPOXMLDOC01-appb-C000043
    Figure JPOXMLDOC01-appb-C000044
    Figure JPOXMLDOC01-appb-C000045
    Figure JPOXMLDOC01-appb-C000046
    Figure JPOXMLDOC01-appb-C000047
    Figure JPOXMLDOC01-appb-C000048
    Figure JPOXMLDOC01-appb-C000049

     
    In multiple myeloma containing at least one compound of formula (1), formula (2), formula (3), formula (4), formula (5), formula (6) and formula (7) having a xanthone skeleton Accompanied CRB improver.
    Figure JPOXMLDOC01-appb-C000043
    Figure JPOXMLDOC01-appb-C000044
    Figure JPOXMLDOC01-appb-C000045
    Figure JPOXMLDOC01-appb-C000046
    Figure JPOXMLDOC01-appb-C000047
    Figure JPOXMLDOC01-appb-C000048
    Figure JPOXMLDOC01-appb-C000049

PCT/JP2020/005170 2019-02-08 2020-02-10 Composition for ameliorating malignant tumor diseases WO2020162638A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020571319A JPWO2020162638A1 (en) 2019-02-08 2020-02-10 Composition for improving malignant tumor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021877 2019-02-08
JP2019-021877 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162638A1 true WO2020162638A1 (en) 2020-08-13

Family

ID=71947219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005170 WO2020162638A1 (en) 2019-02-08 2020-02-10 Composition for ameliorating malignant tumor diseases

Country Status (2)

Country Link
JP (1) JPWO2020162638A1 (en)
WO (1) WO2020162638A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138735A1 (en) * 2020-12-22 2022-06-30 学校法人近畿大学 Pharmaceutical composition for ameliorating malignant diseases
WO2022173042A1 (en) * 2021-02-15 2022-08-18 学校法人近畿大学 Pharmaceutical composition for preventing cytokine storm
CN115120725A (en) * 2022-05-30 2022-09-30 南方医科大学 Application of SDC1 as therapeutic target of bone destruction disease drug
CN115340519A (en) * 2022-07-22 2022-11-15 广西仙茱中药科技有限公司 Preparation method and application of benzo chromone compound

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298379A (en) * 2004-04-08 2005-10-27 Lotte Co Ltd IkappaB KINASE INHIBITOR
CN101889998A (en) * 2010-05-28 2010-11-24 暨南大学 Composition and application thereof as TR3 receptor inducer
CN102432602A (en) * 2011-10-24 2012-05-02 广西中医学院 Mangiferin hepta-propyl-esterified derivative
JP2013505241A (en) * 2009-09-16 2013-02-14 ザ・ユニバーシティ・オブ・トレド Na / K-ATPase ligand, ouabain antagonist, assay and use thereof
WO2013184755A2 (en) * 2012-06-07 2013-12-12 Georgia State University Research Foundation, Inc. Seca inhibitors and methods of making and using thereof
KR20160103648A (en) * 2015-02-25 2016-09-02 원광대학교산학협력단 A composition comprising alpha or gamma mangostin for preventing, improving or treating pancreatic cancer
JP2016531858A (en) * 2013-09-26 2016-10-13 ヤンセン ファーマシューティカ エヌ.ベー. Novel 3- (1H-pyrazol-4-yl) -1H-pyrrolo [2,3-c] pyridine derivatives as NIK inhibitors
JP2017031146A (en) * 2015-07-30 2017-02-09 学校法人近畿大学 NIK inhibitor
CN109053670A (en) * 2018-07-19 2018-12-21 中国药科大学 A kind of Peroxiredotoxin 6 inhibitor and its application in related disease

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298379A (en) * 2004-04-08 2005-10-27 Lotte Co Ltd IkappaB KINASE INHIBITOR
JP2013505241A (en) * 2009-09-16 2013-02-14 ザ・ユニバーシティ・オブ・トレド Na / K-ATPase ligand, ouabain antagonist, assay and use thereof
CN101889998A (en) * 2010-05-28 2010-11-24 暨南大学 Composition and application thereof as TR3 receptor inducer
CN102432602A (en) * 2011-10-24 2012-05-02 广西中医学院 Mangiferin hepta-propyl-esterified derivative
WO2013184755A2 (en) * 2012-06-07 2013-12-12 Georgia State University Research Foundation, Inc. Seca inhibitors and methods of making and using thereof
JP2016531858A (en) * 2013-09-26 2016-10-13 ヤンセン ファーマシューティカ エヌ.ベー. Novel 3- (1H-pyrazol-4-yl) -1H-pyrrolo [2,3-c] pyridine derivatives as NIK inhibitors
KR20160103648A (en) * 2015-02-25 2016-09-02 원광대학교산학협력단 A composition comprising alpha or gamma mangostin for preventing, improving or treating pancreatic cancer
JP2017031146A (en) * 2015-07-30 2017-02-09 学校法人近畿大学 NIK inhibitor
CN109053670A (en) * 2018-07-19 2018-12-21 中国药科大学 A kind of Peroxiredotoxin 6 inhibitor and its application in related disease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIN, HAFEEZ BILAL ET AL.: "alpha-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L", INHIBITS PANCREATIC TUMOR GROWTH IN XENOGRAFT MOUSE MODEL, ANTIOXIDANTS & REDOX SIGNALING, vol. 21, no. 5, 2014, pages 682 - 699, XP055729706, ISSN: 1523-0864 *
FU, WEI-MING ET AL.: "Apoptosis induced by 1 3,6,7- tetrahydroxyxanthone in Hepatocellular carcinoma and proteomic analysis Apoptosis", vol. 17, no. 8, 2012, pages 842 - 851, XP035074687, ISSN: 1360-8185 *
LI, XUE-DIAN ET AL.: "Synthesis and Anti-inflammatory Activity of Mangiferin Acylated-derivatives", CHINESE JOURNAL OF EXPERIMENTAL TRADITIONAL MEDICAL FORMULAE, vol. 18, no. 24, 2012, pages 228 - 232, ISSN: 1005-9903 *
TANAKA, NAONOBU ET AL.: "Xanthones from Hypericum chinense and their cytotoxicitiy evaluation", PHYTOCHEMISTRY, vol. 70, no. 11-12, 2009, pages 1456 - 1461, XP026652878, ISSN: 0031-9422, DOI: 10.1016/j.phytochem.2009.08.015 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138735A1 (en) * 2020-12-22 2022-06-30 学校法人近畿大学 Pharmaceutical composition for ameliorating malignant diseases
WO2022173042A1 (en) * 2021-02-15 2022-08-18 学校法人近畿大学 Pharmaceutical composition for preventing cytokine storm
CN115120725A (en) * 2022-05-30 2022-09-30 南方医科大学 Application of SDC1 as therapeutic target of bone destruction disease drug
CN115120725B (en) * 2022-05-30 2023-11-07 南方医科大学 Application of SDC1 as drug treatment target point of bone destruction disease
CN115340519A (en) * 2022-07-22 2022-11-15 广西仙茱中药科技有限公司 Preparation method and application of benzo chromone compound

Also Published As

Publication number Publication date
JPWO2020162638A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2020162638A1 (en) Composition for ameliorating malignant tumor diseases
WO2020130102A1 (en) Composition for improving autoimmune disease
HUE027443T2 (en) A novel group of stat3 pathway inhibitors and cancer stem cell pathway inhibitors
WO2022007461A1 (en) Immunomodulator
KR101674145B1 (en) Decursinol-carbamate derivatives, and pharmaceutical composition containing the same for preventing or treating cancer
TW201609094A (en) Novel methods for treating cancer
CN110790739B (en) Compounds for treating neurological diseases and uses thereof
EP4253372A1 (en) Pharmaceutical composition for ameliorating malignant diseases
JP6532860B2 (en) Lipid furan, pyrrole and thiophene compounds for the treatment of cancer, neuropathy and fibrotic disorders
KR101388635B1 (en) Effective anticancer drugs against gefitinib-resistant human lung cancer cells comprising the daphnane diterpenoid compound
JP6272646B2 (en) A pharmaceutical composition for promoting bone formation containing a furofuran type lignan having an axial-equalary orientation, a pharmaceutical preparation containing the composition, a functional food and a health food containing the composition
CN107438433B (en) Pharmaceutical composition for preventing and treating arthritis or inflammatory diseases containing 2-methoxy-4- (3- (4-methoxyphenyl) prop-1-en-1-yl) phenol as an active ingredient
JPWO2005074906A1 (en) Therapeutic agent
EP3805193A1 (en) Novel biphenyl derivative compound and use thereof
WO2009105936A1 (en) The use of phenolic glycosides derivatives in the manufacture of compositions for treating cell proliferation diseases
KR101924801B1 (en) Composition for preventing or treating cancer comprising triazolopyridine derivatives
US20240115589A1 (en) Pharmaceutical composition for preventing cytokine storm
KR101466377B1 (en) dimethoxyphenyldihydropyrazolylnaphthalenol derivatives, preparing method of the same and Use in anti-cancer agent thereof
KR102114197B1 (en) Novel benzylideneacetone derivatives and uses thereof
KR101724425B1 (en) Composition preventing or treating cancer comprising (Z)-2-acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid
US20240115537A1 (en) Composition for preventing or treating breast cancer comprising compound derived from dendropanax morbiferus
KR101697062B1 (en) Novel geranyl flavonoid derivative having improved solubility in water, a method for preparing the same and a pharmaceutical composition comprising the same for prevention and treatment of cancer
CN114874108B (en) Bairimquinone derivative and application thereof in preparing AMPK activator and medicine for treating breast cancer
KR102582097B1 (en) Janus kinase inhibitors and use thereof
KR102100729B1 (en) Anthraquinone-based compounds and composition for preventing or treating cancer diseases comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753189

Country of ref document: EP

Kind code of ref document: A1