WO2020162458A1 - Polarization state control device and computer-readable recording medium - Google Patents

Polarization state control device and computer-readable recording medium Download PDF

Info

Publication number
WO2020162458A1
WO2020162458A1 PCT/JP2020/004144 JP2020004144W WO2020162458A1 WO 2020162458 A1 WO2020162458 A1 WO 2020162458A1 JP 2020004144 W JP2020004144 W JP 2020004144W WO 2020162458 A1 WO2020162458 A1 WO 2020162458A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
retarder
polarization state
control device
state control
Prior art date
Application number
PCT/JP2020/004144
Other languages
French (fr)
Japanese (ja)
Inventor
晴継 福本
安藤 道則
山下 達弥
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020162458A1 publication Critical patent/WO2020162458A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present disclosure relates to a recording medium that records a program for executing a polarization state control device and a polarization state control method, and more particularly to a technique for controlling a phase delay amount of a retarder.
  • the multilayer polarization grating is offset with respect to the periodic molecular structure of the first polarization grating layer along the interface between the first polarization grating layer and the second polarization grating layer. It has a periodic molecular structure.
  • the third polarization grating layer also has a periodic molecular structure of the second polarization grating layer along the interface between the second polarization grating layer and the third polarization grating layer. It has a periodic molecular structure that is offset.
  • This multilayer polarization diffraction grating reduces the wavelength dependence of diffraction efficiency due to the above configuration.
  • a beam deflecting device configured by arranging a polarization diffraction element having a first birefringence distribution period and a second polarization diffraction element having a second birefringence distribution period in line (in line).
  • a polarization diffraction element having a first birefringence distribution period and a second polarization diffraction element having a second birefringence distribution period in line (in line).
  • the phase delay amount may not be set to the desired value due to the phase delay amount changing in each retarder due to the individual difference of the retarder, deterioration over time, temperature change during use, etc. In this case, there is a problem in that the light of the desired polarization state cannot be emitted from the retarder.
  • the present disclosure aims to provide a polarization state control technique capable of accurately controlling the phase delay amount of a retarder.
  • the polarization state control device is configured to include a linear polarizer, a retarder, a reflection plate, a light receiving unit, and a control unit.
  • the linear polarizer polarizes the source light into linearly polarized light.
  • the light source light that has passed through the linear polarizer is incident on the retarder, and the retarder changes the polarization state of the incident light according to the applied voltage and emits the light.
  • the reflection plate reflects a part of the light source light that has passed through the linear polarizer toward the incident surface side on the exit surface side of the retarder.
  • the light receiving unit receives the light reflected by the reflecting plate and passing through the linear polarizer.
  • the control unit controls the retarder so that light obtained by polarizing the incident light with a phase delay of ⁇ /2 or 0 is emitted from the retarder based on the amount of light received by the light receiving unit. Control the applied voltage.
  • the light source light that has passed through the linear polarizer that polarizes the light source light into linearly polarized light is incident on the retarder.
  • the retarder changes the polarization state of the incident light according to the applied voltage and emits the light.
  • the reflection plate reflects a part of the light source light that has passed through the linear polarizer toward the incident surface side on the exit surface side of the retarder. The light reflected by the reflecting plate and passing through the linear polarizer is received by the light receiving section.
  • the control unit polarizes the incident light with a phase delay of ⁇ /2 or 0 based on the light amount of the light received by the light receiving unit.
  • the voltage applied to the retarder is controlled so that the light is emitted from the retarder. Accordingly, the polarization state control device of the present disclosure can accurately control the phase delay amount of the retarder.
  • the polarization state control device that is the second aspect of the technology of the present disclosure is a quarter that is arranged on the optical path where light is not reflected by the reflection plate and between the linear polarizer and the retarder.
  • a wave plate may be further included.
  • the polarization state control device of the present disclosure circularly polarized light is incident on the retarder, by accurately controlling the phase delay amount of the retarder, from the retarder of the circularly polarized light controlled in the desired rotation direction. Light can be emitted.
  • the polarization state control device is arranged on the optical path where light is reflected by the reflection plate, and is disposed between the linear polarizer and the retarder. It can be configured to further include a four-wave plate.
  • the polarization state control device can be configured to further include a polarization grating on which the light emitted from the retarder is incident.
  • the reflection plate can reflect light that has not been incident on the polarization grating.
  • the polarization state control device of the present disclosure can accurately control the phase delay amount of the light incident from the retarder to the polarization grating, and thus maximize the diffraction efficiency of the light emitted from the polarization grating. it can.
  • the polarization state control device can stack a plurality of combinations of the retarder and the polarization grating.
  • the reflection plate and the light receiving unit are provided corresponding to each of the combinations.
  • the control unit may control the voltage applied to the retarders that form the combination corresponding to the light receiving units, based on the amount of light received by each of the light receiving units.
  • the control unit controls the voltage applied to the retarder so that the amount of light received by the light receiving unit is maximized. be able to. Accordingly, the polarization state control device of the present disclosure uses the luminous intensity of the light reflected by the reflection plate and passed through the retarder and the linear polarizer again, so that the voltage value that maximizes the light amount is ⁇ /2 or 0. Can be used as a voltage value for setting the amount of phase delay.
  • the linear polarizer emits P-polarized light in an incident direction and emits S-polarized light in a direction orthogonal to the incident direction. It is a polarization beam splitter.
  • the light receiving unit receives the S-polarized light emitted from the polarization beam splitter, and the control unit applies the light to the retarder so that the amount of the S-polarized light received by the light receiving unit is minimized.
  • the voltage applied can be controlled.
  • the polarization state control device of the present disclosure uses the luminous intensity of the S-polarized light that has been reflected by the reflection plate and passed through the retarder and the polarization beam splitter again, so that the voltage value that minimizes the light amount is ⁇ / It may be a voltage value for setting the phase delay amount of 2 or 0.
  • the control unit has a preset characteristic of the amount of phase delay with respect to the voltage applied to the retarder, which is lower than a predetermined voltage value. In the first numerical range of values, a voltage value with a phase delay amount of ⁇ /2 is searched for, and in a second numerical value range of voltage values higher than the predetermined voltage value, a voltage value with a phase delay amount of 0 is searched for. can do. Further, in the polarization state control device which is the ninth aspect of the technology of the present disclosure, the control unit has a phase characteristic of ⁇ /2 or 0 in a preset characteristic of a phase delay amount with respect to a voltage applied to the retarder.
  • the voltage value applied to the retarder may be searched in the vicinity of the voltage value corresponding to the delay amount. Accordingly, the polarization state control device of the present disclosure can accurately search for a voltage value corresponding to the phase delay amount ⁇ /2 and a voltage value corresponding to the phase delay amount 0.
  • a polarization state control method that is another aspect of the technology of the present disclosure is a method for realizing the function provided by the polarization state control device.
  • a polarization state control program that is another aspect of the technology of the present disclosure is a program for executing the polarization state control method, and is a program for causing a computer to function as a control unit of the polarization state control device. is there.
  • a recording medium that is another aspect of the technique of the present disclosure is a recording medium that records the above-mentioned polarization state control program.
  • the retarder and the linear polarizer are applied to the retarder so that the phase delay amount becomes ⁇ /2 or 0 based on the light amount of the light that has passed through the retarder and the linear polarizer again. Control the voltage. Accordingly, the technique of the present disclosure can accurately control the phase delay amount of the retarder.
  • FIG. 1 It is a schematic diagram showing the composition of the polarization control device concerning a 1st embodiment. It is a functional block diagram of a control part. It is a figure which shows an example of the relationship between a voltage and a light quantity. It is a figure for demonstrating the relationship between the amount of light and the amount of phase delays. It is a figure which shows an example of a voltage-phase delay amount characteristic. It is a flow chart which shows an example of polarization state control processing. It is a schematic diagram showing composition of a polarization control device concerning a 2nd embodiment.
  • FIG. 6 is a diagram for explaining a temperature change of a voltage-phase delay amount characteristic.
  • the polarization state control device 10 includes a linear polarizer 12, a retarder 14, a mirror 16, a light receiving unit 18, a control unit 20, a control power supply 22, and The first and second electrodes 24L and 24R are included.
  • the linear polarizer 12 polarizes the light (L1) emitted from the laser light source 26 into linearly polarized light (L2) and emits it.
  • the retarder 14 is a ⁇ /2 plate, and is provided with first and second electrodes 24L and 24R partially connected to the control power supply 22.
  • the ⁇ /2 plate is a 1 ⁇ 2 wavelength plate that rotates the polarization direction of linearly polarized light.
  • the retarder 14 receives the light (L2) emitted from the linear polarizer 12 and also emits the light (L3) in which the polarization state of the incident light is changed according to the applied voltage.
  • Mirror 16 is an example of a reflector in the technique of the present disclosure.
  • the mirror 16 is provided on the emission surface So side of the retarder 14, and reflects a part (L4) of the light emitted from the linear polarizer 12 to the incidence surface Si side on the emission surface So side of the retarder 14.
  • Part of the light emitted from the linear polarizer 12 enters from the incident surface Si of the retarder 14 and reaches the reflecting surface of the mirror 16 provided on the exit surface So side.
  • the light (reflected light) reflected by the mirror 16 travels from the exit surface So side of the retarder 14 to the entrance surface Si side.
  • the light receiving unit 18 receives the light (L5) reflected by the mirror 16 and passing through the linear polarizer 12, and outputs the light amount data indicating the light amount of the received light.
  • the light receiving unit 18 is, for example, a light amount monitor.
  • the control unit 20 can be realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the computer functions as the control unit 20 of the polarization state control device 10 by the CPU executing the polarization state control program.
  • the ROM stores a polarization state control program for executing a polarization state control process described later.
  • the ROM is an example of a recording medium that records the program.
  • control unit 20 includes a light amount acquisition unit 42, a voltage value determination unit 44, a voltage control unit 46, and a DB (database) 48.
  • the light amount acquisition unit 42 acquires the light amount data output from the light receiving unit 18, and transfers it to the voltage value determination unit 44.
  • the voltage value determination unit 44 causes the light incident on the retarder 14 to be polarized with a phase delay of ⁇ /2 or 0 and to be emitted from the retarder 14 based on the light amount data passed from the light amount acquisition unit 42. , The voltage value applied to the retarder 14 is determined.
  • FIG. 3 schematically shows an example of the relationship between the voltage applied to the retarder 14 and the light amount obtained from the light receiving unit 18.
  • the voltage value determination unit 44 sets the voltage value at which the light amount indicated by the light amount data passed from the light amount acquisition unit 42 becomes the maximum voltage value as the voltage value at which the phase delay amount becomes ⁇ /2 or 0. decide.
  • the principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is ⁇ /2 or 0 will be described.
  • the retarder 14 when the phase delay amount of the retarder 14 is ⁇ /2 (1/2 wavelength), the retarder 14 operates as a ⁇ /2 plate as shown in FIG. Therefore, when the angle between the plane of polarization of linearly polarized light and the fast axis of the retarder 14 is ⁇ , the angle between the plane of polarization and the fast axis becomes 2 ⁇ after passing through the retarder 14 once.
  • the retarder 14 rotates the polarization direction of the incident light by 2 ⁇ and emits it. That is, the plane of polarization of the incident light changes to a position folded back with respect to the fast axis.
  • the polarization plane of the light emitted from the retarder 14 changes to a position folded back with respect to the fast axis by the same principle. That is, the polarization plane of the emitted light returns to the original position. Therefore, in the configuration of the first embodiment, the plane of polarization of the emitted light and the pass axis of the linear polarizer 12 match. Therefore, the amount of light emitted from the linear polarizer 12 is maximized.
  • the phase delay amount of the retarder 14 is 0, the polarization plane of the linearly polarized light does not change even after passing through the retarder 14. Further, the polarization plane of the emitted light does not change even after the emitted light from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again. Therefore, in the configuration of the first embodiment, the plane of polarization of the emitted light and the pass axis of the linear polarizer 12 match. Therefore, the amount of light emitted from the linear polarizer 12 is maximized.
  • the voltage value determination unit 44 determines the voltage value applied to the retarder 14. Specifically, the voltage value determination unit 44 searches the predetermined search range (within the numerical range) while changing the voltage applied to the retarder 14, and the voltage value that maximizes the light amount based on the search result. To decide. The voltage value determination unit 44 determines a predetermined search range with reference to the DB 48.
  • the DB 48 is a database in which the characteristics of the phase delay amount with respect to the voltage applied to the retarder 14 (hereinafter referred to as “voltage-phase delay amount characteristics”) are stored. For example, when the retarder 14 starts to be used, the phase delay amount is measured while changing the applied voltage, and the data indicating the voltage-phase delay amount characteristic can be stored based on the voltage value and the measured value. .. FIG. 5 shows an example of the voltage-phase delay amount characteristic stored in the DB 48.
  • the voltage-phase delay amount characteristic shows a monotonically decreasing curve. Therefore, in the voltage-phase delay amount characteristic stored in the DB 48, the voltage value determination unit 44 sets an arbitrary voltage value between the voltage value at which the phase delay amount becomes ⁇ /2 and the voltage value at which the phase delay amount becomes 0 as a threshold value. Set. Then, the voltage value determination unit 44 searches for a voltage value at which the phase delay amount is ⁇ /2, with the numerical value range (first numerical value range) of the voltage value lower than the set threshold value as the search range (first search range). ..
  • the voltage value determination unit 44 searches for a voltage value at which the phase delay amount is 0, with the numerical range (second numerical range) of the voltage value higher than the set threshold value as the search range (second search range). In this case, instead of the voltage-phase delay amount characteristic as shown in FIG. 5, only the voltage value serving as the predetermined threshold value may be stored.
  • the voltage value determination unit 44 sets the vicinity of the voltage value corresponding to the phase delay amount of ⁇ /2 or 0, for example, the numerical value range of a predetermined voltage value before and after including the voltage value.
  • the search range a voltage value at which the phase delay amount becomes ⁇ /2 or 0 may be searched.
  • the voltage-phase delay amount characteristic shown in FIG. 5 instead of the voltage-phase delay amount characteristic shown in FIG. 5, only the voltage values corresponding to the phase delay amounts of ⁇ /2 and 0 may be stored.
  • the voltage value determination unit 44 sets the voltage value search range as described above, and in the relationship between the voltage and the light amount as shown in FIG. It is possible to accurately search for
  • the voltage value determination unit 44 transfers the determined voltage value to the voltage control unit 46.
  • the voltage control unit 46 sets the voltage value transferred from the voltage value determination unit 44 in the control power supply 22.
  • the control power supply 22 applies the voltage of the set voltage value to the retarder 14 via the first and second electrodes 24L and 24R.
  • the control power supply 22 applies a voltage so that the phase delay amount of the retarder 14 is set to ⁇ /2 or 0, and the polarization plane of the linearly polarized light (L3) emitted from the retarder 14 Can be switched to the desired direction.
  • the voltage controller 46 controls the voltage applied to the retarder 14 so that the light polarized with the phase delay of ⁇ /2 or 0 is emitted from the retarder 14.
  • a part (L1) of the laser light emitted from the laser light source 26 enters the linear polarizer 12 and is linearly polarized by the linear polarizer 12.
  • the linearly polarized light (L2) is emitted from the linear polarizer 12 and is incident on the retarder 14. Then, the retarder 14 changes the polarization state of the incident light according to the phase delay amount set in the retarder 14 and emits the polarized light (L3).
  • a part (L20) of the laser light emitted from the laser light source 26 enters the linear polarizer 12 and is linearly polarized by the linear polarizer 12.
  • the linearly polarized light (L4) is emitted from the linear polarizer 12 and is incident on the retarder 14.
  • the light reaching the emission surface So of the retarder 14 is reflected by the reflection surface of the mirror 16.
  • the reflected light passes through the retarder 14 and the linear polarizer 12 again (L5), and is received by the light receiving unit 18.
  • the light receiving unit 18 outputs light amount data indicating the light amount of the received light. Then, the control unit 20 executes the polarization state control process shown in FIG. As a result, the phase delay amount of the retarder 14 is set to ⁇ /2 or 0.
  • the voltage value determination unit 44 refers to the data regarding the voltage-phase delay amount characteristic stored in the DB 48, and determines that the predetermined threshold value is exceeded.
  • the numerical value range of the low voltage value is set as the search range for searching the voltage value where the phase delay amount is ⁇ /2.
  • the voltage value determination unit 44 sets a numerical value range of voltage values higher than a predetermined threshold value as a search range for searching for a voltage value with a phase delay amount of 0.
  • the voltage value determining unit 44 sets the vicinity of the voltage value corresponding to the phase delay amount of ⁇ /2 or 0, for example, the numerical value range of a predetermined voltage value before and after including the voltage value. You may set as a search range.
  • step S14 the voltage value determination unit 44 causes the voltage value corresponding to the initial value (first search value) within the search range set by the process of step S12 (for example, the minimum voltage value within the numerical range). Is output to the voltage control unit 46.
  • the voltage control unit 46 sets the voltage value input from the voltage value determination unit 44 in the control power supply 22.
  • step S16 the control power supply 22 applies the voltage having the set voltage value to the retarder 14 via the first and second electrodes 24L and 24R.
  • the light amount acquisition unit 42 acquires the light amount data output from the light receiving unit 18 when the control power supply 22 applies a voltage.
  • step S18 the voltage value determination unit 44 stores the voltage value set by the process of step S14 and the light amount acquired by the process of step S16 as a set of data.
  • step S20 the voltage value determination unit 44 determines whether or not the processes of steps S16 and S18 have been completed for the voltage values within the search range set by the process of step S12 (end of search). Is determined).
  • step S22 the voltage value determination unit 44 changes and sets the voltage value to a value shifted by a predetermined value (a value obtained by increasing or decreasing the voltage value by a predetermined value), and then returns to step S16.
  • step S24 the voltage value determination unit 44 determines whether or not the processes of steps S16 and S18 have been completed for the voltage values within the search range set by the process of step S12 (end of search). Is determined).
  • step S22 the voltage value determination unit 44 changes and sets the voltage value to a value shifted by a predetermined value (a value obtained by increasing or decreasing the voltage value by a predetermined value), and then returns to step S16.
  • step S24 the voltage value determination unit 44 determines whether or not the processes of steps S16 and S18 have been completed for the voltage values within the search range set by the process
  • step S24 the voltage value determination unit 44 sets the voltage value of the group data having the maximum light amount, out of the group data of the voltage value and the light amount stored by the process of step S18, to the phase delay of ⁇ /2 or 0. It is determined as the voltage value corresponding to the quantity.
  • the voltage value determination unit 44 outputs the determined voltage value to the voltage control unit 46.
  • the voltage control unit 46 sets the voltage value input from the voltage value determination unit 44 in the control power supply 22, and the polarization state control process ends.
  • the polarization state control device 10 As described above, according to the polarization state control device 10 according to the first embodiment, the amount of light that is reflected by the exit surface So side of the retarder 14 and passes through the linear polarizer 12 again to be output is monitored. ing. Then, the polarization state control device 10 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Thereby, the polarization state control device 10 can set the phase delay amount of the retarder 14 to ⁇ /2 or 0. As a result, as shown in FIG.
  • the polarization state control device 10 sets the polarization plane of the linearly polarized light of the light emitted from the retarder 14 to a desired state ( Switch to (polarization state).
  • the polarization state control device 10 can emit the light (L3) whose polarization state has been changed by the retarder 14.
  • the polarization state control device 10 according to the first embodiment can accurately control the phase delay amount of the retarder 14.
  • the angle ⁇ formed by the polarization plane of the linearly polarized light incident on the retarder 14 and the fast axis of the retarder 14 is set to 45 degrees so that 2 ⁇ becomes 90 degrees. Set. In this case, the plane of polarization of the incident light is rotated by 90 degrees. Therefore, in the configuration of the first embodiment, for example, linearly polarized light having a horizontal polarization plane can be switched to linearly polarized light having a vertical polarization plane.
  • the polarization state control device 210 has an optical path on which light from the laser light source 26 is not reflected by the mirror 16.
  • the ⁇ /4 plate 28 is arranged between the linear polarizer 12 and the retarder 14.
  • the ⁇ /4 plate 28 is a quarter wavelength plate that converts linearly polarized light into circularly polarized light.
  • the ⁇ /4 plate 28 receives the linearly polarized light (L2) emitted from the linear polarizer 12 and converts the linearly polarized light into circularly polarized light and emits it (L6).
  • the rotation direction of the circularly polarized light emitted from the ⁇ /4 plate 28 may be clockwise or counterclockwise.
  • the circularly polarized light (L6) When the circularly polarized light (L6) is incident on the retarder 14, the circularly polarized light (L7) is rotated clockwise or counterclockwise according to the set phase delay amount of ⁇ /2 or 0. Is emitted.
  • the polarization state control device 210 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Accordingly, the polarization state control device 210 can set the phase delay amount of the retarder 14 to ⁇ /2 or 0. As a result, as shown in FIG. 7, when the circularly polarized light (L6) is incident on the retarder 14, the polarization state control device 210 causes the clockwise or counterclockwise circularly polarized light depending on the phase delay amount. (L7) can be emitted.
  • the polarization state control device 310 in addition to the configuration of the polarization state control device 210 according to the second embodiment, has a polarization grating (on which the light emitted from the retarder 14 enters). A polarization diffraction grating) 30 is further included.
  • the mirror 16 is arranged on the exit surface So side of the retarder 14 and at a position capable of reflecting the light before entering the polarization grating 30.
  • the polarization grating 30 diffracts the incident light according to the set diffraction angle and emits it (L8).
  • the polarization state control device 310 controls the voltage applied to the retarder 14 so that the light amount of the light becomes maximum based on the light amount as the monitoring result. Thereby, the polarization state control device 310 can set the phase delay amount of the retarder 14 to ⁇ /2 or 0. As a result, as shown in FIG. 8, when the circularly polarized light (L6) enters the retarder 14, the polarization state control device 310 emits the light (L8) diffracted according to the diffraction angle from the retarder 14. can do.
  • the rotation direction of the circularly polarized light incident on the polarization grating 30 is exactly left-handed or right-handed circularly polarized light, the diffraction efficiency by the polarization grating 30 is maximized.
  • the light incident on the polarization grating 30 becomes elliptically polarized light instead of circularly polarized light, the diffraction efficiency decreases. Therefore, in order to maximize the diffraction efficiency, the light emitted from the retarder 14 needs to be accurately circularly polarized.
  • the polarization state control device 410 includes the light from the laser light source 26 reflected by the mirror 16.
  • a ⁇ /4 plate 428 is arranged on the road between the linear polarizer 12 and the retarder 14.
  • the ⁇ /4 plate 428 is located on the optical path where the light from the laser light source 26 is not reflected by the mirror 16 and between the linear polarizer 12 and the retarder 14 ( An example integrated with the ⁇ /4 plate 28) in the second and third embodiments is shown.
  • the ⁇ /4 plate 428 reflects the circularly polarized light (L9) that has passed through the retarder 14 again after being reflected by the mirror 16, and converts the circularly polarized light into linearly polarized light and emits the linearly polarized light (L10).
  • the principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is ⁇ /2 or 0 will be described.
  • the retarder 14 operates as a ⁇ /2 plate. Therefore, the light emitted from the retarder 14 becomes circularly polarized light in the rotation direction opposite to the rotation direction of the circularly polarized light of the incident light to the retarder 14.
  • the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, it becomes circularly polarized light in the opposite rotation direction by the same principle. That is, the rotation direction of the circularly polarized light of the light (L9) reflected by the mirror 16 and emitted from the retarder 14 returns to the circularly polarized state of the light incident on the retarder 14.
  • the polarization plane of the light (L10) emitted from the ⁇ /4 plate 428 and the linear polarizer 12 Coincides with the passing axis of. Therefore, the amount of light emitted from the linear polarizer 12 (L5) is maximized.
  • the rotation direction of circularly polarized light does not change even after passing through the retarder 14. Even after the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, the rotation direction of circularly polarized light does not change. Further, when the circularly polarized light is incident on the ⁇ /4 plate 428, the plane of polarization of the emitted light (L10) from the ⁇ /4 plate 428 and the pass axis of the linear polarizer 12 coincide with each other. Therefore, the amount of light emitted from the linear polarizer 12 (L5) is maximized.
  • the polarization state control device 410 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Accordingly, the polarization state control device 410 can set the phase delay amount of the retarder 14 to ⁇ /2 or 0. As a result, the polarization state control device 410 can cause circularly polarized light (L6) whose rotation direction is exactly left-handed or right-handed to enter the polarization grating 30, as shown in FIG. The polarization state control device 410 can maximize the diffraction efficiency of the light (L8) emitted from the polarization grating 30.
  • the polarization state control device 510 includes a polarization beam splitter 512 and a control unit instead of the linear polarizer 12 and the control unit 20 of the polarization state control device 310 according to the third exemplary embodiment.
  • the unit 520 is provided.
  • the polarization beam splitter 512 emits P-polarized light (L11, L13) in the incident direction of the light (L1, L20) incident on the polarization beam splitter 512.
  • the polarization beam splitter 512 emits S-polarized light (L12, L14) in a direction orthogonal to the incident direction of the light incident on the polarization beam splitter 512.
  • the light receiving unit 18 receives the light (L17), which is the reflected light (L15) reflected by the mirror 16 and is incident on the polarization beam splitter 512 and is emitted as S-polarized light, and outputs light amount data indicating the light amount of the received light. To do.
  • control unit 520 includes a light amount acquisition unit 42, a voltage value determination unit 544, a voltage control unit 46, and a DB 48 that stores a voltage-phase delay amount characteristic. It is configured to include.
  • the voltage value determination unit 544 sets the voltage value at which the amount of light indicated by the light amount data passed from the light amount acquisition unit 42 becomes the minimum voltage value as the voltage value at which the phase delay amount becomes ⁇ /2 or 0. decide.
  • the principle that the amount of light emitted from the polarization beam splitter 512 (S-polarized light) is minimized when the phase delay amount of the retarder 14 is ⁇ /2 or 0 will be described.
  • the retarder 14 operates as a ⁇ /2 plate as shown in FIG. Therefore, when the angle between the plane of polarization of linearly polarized light and the fast axis of the retarder 14 is ⁇ , the angle between the plane of polarization and the fast axis becomes 2 ⁇ after passing through the retarder 14 once. That is, the plane of polarization of the incident light changes to a position folded back with respect to the fast axis.
  • the polarization plane of the light emitted from the retarder 14 changes to a position folded back with respect to the fast axis by the same principle.
  • the polarization plane of the emitted light returns to the original position. Therefore, in the configuration of the fifth embodiment, the light emitted from the retarder 14 becomes P-polarized light. Therefore, when the light is incident on the polarization beam splitter 512, the light amount of the S-polarized component becomes the minimum.
  • the phase delay amount of the retarder 14 is 0, the P-polarized light does not change even after passing through the retarder 14. Furthermore, the P-polarized light of the emitted light does not change even after the emitted light from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again. Therefore, in the configuration of the fifth embodiment, the light emitted from the retarder 14 becomes P-polarized light. Therefore, when the light is incident on the polarization beam splitter 512, the light amount of the S-polarized component becomes the minimum.
  • a part (L1) of the laser light emitted from the laser light source 26 enters the polarization beam splitter 512 and is polarized by the polarization beam splitter 512.
  • the P-polarized emitted light (L11) is emitted in the incident direction
  • the S-polarized emitted light (L12) is emitted in the direction orthogonal to the incident direction.
  • the P-polarized outgoing light (L11) is converted into circularly polarized light via the ⁇ /4 plate 28, and the circularly polarized light (L6) is incident on the retarder 14.
  • the retarder 14 emits polarized light according to the phase delay amount set in the retarder 14.
  • the light emitted from the retarder 14 enters the polarization grating 30.
  • the polarization grating 30 emits light (L8) diffracted at the diffraction angle set for the polarization grating 30.
  • a part (L20) of the laser light emitted from the laser light source 26 enters the polarization beam splitter 512 and is polarized by the polarization beam splitter 512.
  • the P-polarized emitted light (L13) is emitted in the incident direction
  • the S-polarized emitted light (L14) is emitted in the direction orthogonal to the incident direction.
  • the P-polarized outgoing light (L13) enters the retarder 14.
  • the light reaching the emission surface So of the retarder 14 is reflected by the reflection surface of the mirror 16.
  • the reflected light again passes through the retarder 14 and enters the polarization beam splitter 512 (L15).
  • the polarization beam splitter 512 emits P-polarized outgoing light (L16) in the incident direction, and emits S-polarized outgoing light (L17) in the direction orthogonal to the incident direction.
  • the light receiving unit 18 receives the S-polarized outgoing light (L17) from the polarization beam splitter 512, and outputs light amount data indicating the light amount of the received light. Then, the control unit 520 executes the polarization state control process shown in FIG. As a result, the phase delay amount of the retarder 14 is set to ⁇ /2 or 0.
  • the polarization state control process according to the first embodiment performs a process of searching for a voltage value that maximizes the light amount, whereas the polarization state control process according to the fifth embodiment determines a voltage value that minimizes the light amount. Perform the process of searching.
  • the process of the fifth embodiment is different from the process of the first embodiment only in this point, and thus the description thereof is omitted.
  • the light intensity is monitored.
  • the polarization state control device 510 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light is minimized.
  • the polarization state control device 510 can set the phase delay amount of the retarder 14 to ⁇ /2 or 0.
  • the polarization state control device 510 can enter the circularly polarized light (L6) whose rotation direction is exactly left-handed or right-handed into the polarization grating 30, as shown in FIG.
  • the polarization state control device 510 can maximize the diffraction efficiency of the emitted light (L8) from the polarization grating 30.
  • the retarder 14 and the polarization grating 30 of the polarization state control device 310 according to the third embodiment are combined so that the main surfaces thereof face each other. At least two layers are provided (a plurality of layers are stacked). In the example of FIG.
  • the first layer of the combination of the retarder (first retarder) 14A and the polarization grating (first polarization grating) 30A, the retarder (second retarder) 14B and the polarization grating (second polarization grating) 30B The case where it is configured by the second layer of the combination and the third layer of the combination of the retarder (third retarder) 14C and the polarization grating (third polarization grating) 30C is illustrated.
  • the retarders 14 and the polarization gratings 30 in each layer are arranged alternately.
  • the retarder 14A is provided with first and second electrodes 24AL and 24AR
  • the retarder 14B is provided with first and second electrodes 24BL and 24BR
  • the retarder 14C is provided with first and second electrodes 24CL and 24CR.
  • a voltage is applied to each of the retarders 14 at an individually set voltage value.
  • Mirrors 16A, 16B and 16C and light receiving portions 18A, 18B and 18C are provided corresponding to each of the first layer, the second layer and the third layer of the combination.
  • reference numerals A, B, and C are omitted.
  • Each of the mirrors 16 is located on the emission surface So side of the retarder 14 forming the combination of the corresponding layers and at a position that reflects the light before being incident on the polarization grating 30 forming the combination of the corresponding layers. Will be placed.
  • the polarization state control device 610 according to the sixth embodiment includes a control unit 620 instead of the control unit 20 of the polarization state control device 310 according to the third embodiment.
  • control unit 620 includes a light amount acquisition unit 42, a voltage value determination unit 644, a voltage control unit 646, and a DB 48 that stores a voltage-phase delay amount characteristic. It is configured to include.
  • the voltage value determination unit 644 determines the voltage value to be applied to the retarder 14 that constitutes the combination of layers corresponding to each light receiving unit 18, based on the light amount data acquired from each of the light receiving units 18.
  • the method of determining the voltage value is the same as the method shown in the first to fourth embodiments.
  • the voltage control unit 646 applies the voltage value corresponding to each layer determined by the voltage value determination unit 644 to the retarder 14 that forms a combination of corresponding layers via the first and second electrodes 24L and 24R. As described above, the power source for control 22 is set.
  • the polarization state control device 610 As described above, according to the polarization state control device 610 according to the sixth embodiment, two or more layers in which the retarder 14 and the polarization grating 30 are combined are provided.
  • the polarization state control device 610 independently sets the phase delay amount of the retarder 14 of each layer to ⁇ /2 or 0. Thereby, the polarization state control device 610 can diffract the emitted light in a plurality of directions by using the single light source by the plurality of polarization gratings 30.
  • the polarization state control device stores the voltage-phase delay amount characteristic in advance for each of a plurality of different temperatures, monitors the ambient temperature, and measures the voltage-phase delay amount corresponding to the ambient temperature. You may select a characteristic and determine a voltage value like each above-mentioned embodiment.
  • the polarization state control device not only shifts the phase delay amount due to the individual difference of the retarder 14 or deterioration over time, but also shifts the phase delay amount due to the temperature change during use. Therefore, the amount of phase delay can be optimized at all times.
  • the above embodiments can be combined and implemented.
  • the combination of the retarder 14 and the polarization grating 30 may be a multilayer configuration.
  • the polarization state control program for executing the polarization state control processing according to each of the above embodiments may be recorded in a computer-readable recording medium and provided.
  • the configuration capable of obtaining emitted light in a desired polarization state as in each of the above-described embodiments can be used in a light beam scanner such as a laser radar, a laser processing machine, or the like.

Abstract

This polarization state control device is configured to include a linear polarizer 12, a retarder 14, a reflecting plate 16, a light receiving unit 18, and a control unit 20. Source light that has passed through the linear polarizer 12 for polarizing the source light into linearly polarized light is incident on the retarder 14. The retarder 14 emits the incident light after changing the polarization state of the incident light according to applied voltage. The reflecting plate 16 reflects, on the emission surface So side of the retarder 14, part of the source light that has passed through the linear polarizer 12 to the incidence surface Si side. The light receiving unit 18 receives light reflected by the reflecting plate 16 and passing through the linear polarizer 12, and outputs light amount data indicating the light amount of the received light. The control unit 20 controls voltage to be applied to the retarder 14 on the basis of the light amount inputted from the light receiving unit 18 such that light obtained by polarizing the incident light with a phase delay of λ/2 or 0 is emitted from the retarder 14.

Description

偏光状態制御装置及びコンピュータが読取可能な記録媒体Polarization state control device and computer-readable recording medium
 本開示は、偏光状態制御装置及び偏光状態制御方法を実行するためのプログラムを記録した記録媒体に係り、特に、リターダの位相遅れ量を制御する技術に関する。 The present disclosure relates to a recording medium that records a program for executing a polarization state control device and a polarization state control method, and more particularly to a technique for controlling a phase delay amount of a retarder.
 従来、第1層から第3層の偏光回折層から構成される多層偏光回折格子が提案されている(特許文献1参照)。この多層偏光回折格子は、第1の偏光回折格子層と第2の偏光回折格子層との間の界面に沿って、第1の偏光回折格子層の周期的分子構造に対してオフセットされている周期的分子構造を有している。また、第3の偏光回折格子層も、第2の偏光回折格子層と第3の偏光回折格子層との間の界面に沿って、第2の偏光回折格子層の周期的分子構造に対してオフセットされている周期的分子構造を有している。この多層偏光回折格子は、上記の構成により、回折効率の波長依存性を低減している。 Conventionally, a multilayer polarization diffraction grating including first to third polarization diffraction layers has been proposed (see Patent Document 1). The multilayer polarization grating is offset with respect to the periodic molecular structure of the first polarization grating layer along the interface between the first polarization grating layer and the second polarization grating layer. It has a periodic molecular structure. The third polarization grating layer also has a periodic molecular structure of the second polarization grating layer along the interface between the second polarization grating layer and the third polarization grating layer. It has a periodic molecular structure that is offset. This multilayer polarization diffraction grating reduces the wavelength dependence of diffraction efficiency due to the above configuration.
 また、第1の複屈折率分布の周期を有する偏光回折素子と、第2の複屈折率分布の周期を有する偏光回折素子とを、一列に並べて(インラインに)配置して構成したビーム偏向装置が提案されている(特許文献2参照)。 A beam deflecting device configured by arranging a polarization diffraction element having a first birefringence distribution period and a second polarization diffraction element having a second birefringence distribution period in line (in line). Has been proposed (see Patent Document 2).
 また、光学異方性を有する物質の複屈折を利用して、光の偏光状態を電気的に変える液晶リターダの駆動方法が提案されている(特許文献3参照)。この駆動方法は、液晶リターダへの印加電圧Vが閾値電圧Vthより大きい範囲において、印加電圧の逆数と液晶リターダの位相差との線形制御を可能にする。 Also, a method of driving a liquid crystal retarder that electrically changes the polarization state of light by utilizing the birefringence of a substance having optical anisotropy has been proposed (see Patent Document 3). This driving method enables linear control of the reciprocal of the applied voltage and the phase difference of the liquid crystal retarder in the range where the applied voltage V to the liquid crystal retarder is larger than the threshold voltage Vth.
米国特許第8305523号US Patent No. 8305523 米国特許第8982313号US Pat. No. 8,982,313 特許第3529699号公報Japanese Patent No. 3529699
 リターダの個体差、経年劣化、使用時の温度変化等の影響により、リターダ個々において位相遅れ量が変化することにより、位相遅れ量が所望の値に設定されなくなる場合がある。この場合、所望の偏光状態の光をリターダから出射することができない、という問題がある。 -The phase delay amount may not be set to the desired value due to the phase delay amount changing in each retarder due to the individual difference of the retarder, deterioration over time, temperature change during use, etc. In this case, there is a problem in that the light of the desired polarization state cannot be emitted from the retarder.
 本開示は、リターダの位相遅れ量を正確に制御することができる偏光状態の制御技術を提供することを目的とする。 The present disclosure aims to provide a polarization state control technique capable of accurately controlling the phase delay amount of a retarder.
 本開示の技術の第1の態様である偏光状態制御装置は、直線偏光子、リターダ、反射板、受光部、及び制御部を含んで構成されている。前記直線偏光子は、光源光を直線偏光に偏光する。前記リターダは、前記直線偏光子を通過した光源光が入射されると共に、印加される電圧に応じて、入射された光の偏光状態を変えて出射する。前記反射板は、前記直線偏光子を通過した光源光の一部を、前記リターダの出射面側において入射面側に反射させる。前記受光部は、前記反射板により反射されて、前記直線偏光子を通過した光を受光する。前記制御部は、前記受光部により受光された光の光量に基づいて、前記入射された光をλ/2又は0の位相遅れで偏光した光が前記リターダから出射されるように、前記リターダに印加する電圧を制御する。 The polarization state control device according to the first aspect of the technology of the present disclosure is configured to include a linear polarizer, a retarder, a reflection plate, a light receiving unit, and a control unit. The linear polarizer polarizes the source light into linearly polarized light. The light source light that has passed through the linear polarizer is incident on the retarder, and the retarder changes the polarization state of the incident light according to the applied voltage and emits the light. The reflection plate reflects a part of the light source light that has passed through the linear polarizer toward the incident surface side on the exit surface side of the retarder. The light receiving unit receives the light reflected by the reflecting plate and passing through the linear polarizer. The control unit controls the retarder so that light obtained by polarizing the incident light with a phase delay of λ/2 or 0 is emitted from the retarder based on the amount of light received by the light receiving unit. Control the applied voltage.
 上記第1の態様である偏光状態制御装置によれば、光源光を直線偏光に偏光する直線偏光子を通過した光源光がリターダに入射される。リターダは、印加される電圧に応じて、入射された光の偏光状態を変えて出射する。また、反射板が、直線偏光子を通過した光源光の一部を、リターダの出射面側において入射面側に反射させる。反射板により反射されて、直線偏光子を通過した光は受光部で受光される。 According to the polarization state control device of the first aspect, the light source light that has passed through the linear polarizer that polarizes the light source light into linearly polarized light is incident on the retarder. The retarder changes the polarization state of the incident light according to the applied voltage and emits the light. Further, the reflection plate reflects a part of the light source light that has passed through the linear polarizer toward the incident surface side on the exit surface side of the retarder. The light reflected by the reflecting plate and passing through the linear polarizer is received by the light receiving section.
 そして、上記第1の態様である偏光状態制御装置によれば、制御部が、受光部により受光された光の光量に基づいて、入射された光をλ/2又は0の位相遅れで偏光した光がリターダから出射されるように、リターダに印加する電圧を制御する。これにより、本開示の偏光状態制御装置は、リターダの位相遅れ量を正確に制御することができる。 Then, according to the polarization state control device of the first aspect, the control unit polarizes the incident light with a phase delay of λ/2 or 0 based on the light amount of the light received by the light receiving unit. The voltage applied to the retarder is controlled so that the light is emitted from the retarder. Accordingly, the polarization state control device of the present disclosure can accurately control the phase delay amount of the retarder.
 また、本開示の技術の第2の態様である偏光状態制御装置は、光が前記反射板で反射されない光路上であって、前記直線偏光子と前記リターダとの間に配置される1/4波長板をさらに含んで構成することができる。これにより、本開示の偏光状態制御装置は、リターダに円偏光の光が入射され、リターダの位相遅れ量が正確に制御されることにより、リターダから、所望の回転方向に制御された円偏光の光を出射することができる。 In addition, the polarization state control device that is the second aspect of the technology of the present disclosure is a quarter that is arranged on the optical path where light is not reflected by the reflection plate and between the linear polarizer and the retarder. A wave plate may be further included. Thus, the polarization state control device of the present disclosure, circularly polarized light is incident on the retarder, by accurately controlling the phase delay amount of the retarder, from the retarder of the circularly polarized light controlled in the desired rotation direction. Light can be emitted.
 また、本開示の技術の第3の態様である偏光状態制御装置は、光が前記反射板で反射される光路上であって、前記直線偏光子と前記リターダとの間に配置される1/4波長板をさらに含んで構成することができる。 The polarization state control device according to the third aspect of the technique of the present disclosure is arranged on the optical path where light is reflected by the reflection plate, and is disposed between the linear polarizer and the retarder. It can be configured to further include a four-wave plate.
 また、本開示の技術の第4の態様である偏光状態制御装置は、前記リターダから出射された光が入射される偏光グレーティングをさらに含んで構成することができる。前記偏光状態制御装置において、前記反射板は、前記偏光グレーティングへ入射される前の光を反射することができる。これにより、本開示の偏光状態制御装置は、リターダから偏光グレーティングへ入射される光の位相遅れ量が正確に制御されているため、偏光グレーティングから出射される光の回折効率を最大にすることができる。 The polarization state control device according to the fourth aspect of the technology of the present disclosure can be configured to further include a polarization grating on which the light emitted from the retarder is incident. In the polarization state control device, the reflection plate can reflect light that has not been incident on the polarization grating. Thereby, the polarization state control device of the present disclosure can accurately control the phase delay amount of the light incident from the retarder to the polarization grating, and thus maximize the diffraction efficiency of the light emitted from the polarization grating. it can.
 また、本開示の技術の第5の態様である偏光状態制御装置は、前記リターダと前記偏光グレーティングとの組み合わせを複数積層することができる。前記偏光状態制御装置において、前記反射板及び前記受光部は、前記組み合わせの各々に対応して設けられている。前記制御部は、前記受光部の各々により受光された光の光量に基づいて、前記受光部に対応する前記組み合わせを構成する前記リターダに印加する電圧を制御することができる。これにより、本開示の偏光状態制御装置は、リターダの位相遅れ量が個別に正確に制御されるため、複数の方向に正確に出射光を回折させることができる。 Further, the polarization state control device according to the fifth aspect of the technique of the present disclosure can stack a plurality of combinations of the retarder and the polarization grating. In the polarization state control device, the reflection plate and the light receiving unit are provided corresponding to each of the combinations. The control unit may control the voltage applied to the retarders that form the combination corresponding to the light receiving units, based on the amount of light received by each of the light receiving units. With this, the polarization state control device of the present disclosure can accurately control the phase delay amount of the retarder individually, and thus can accurately diffract the emitted light in a plurality of directions.
 また、本開示の技術の第6の態様である偏光状態制御装置において、前記制御部は、前記受光部により受光された光の光量が最大となるように、前記リターダに印加する電圧を制御することができる。これにより、本開示の偏光状態制御装置は、反射板で反射して再度リターダ及び直線偏光子を通過した光の光度を用いているため、光量が最大となる電圧値を、λ/2又は0の位相遅れ量を設定するための電圧値とすることができる。 Further, in the polarization state control device according to the sixth aspect of the technology of the present disclosure, the control unit controls the voltage applied to the retarder so that the amount of light received by the light receiving unit is maximized. be able to. Accordingly, the polarization state control device of the present disclosure uses the luminous intensity of the light reflected by the reflection plate and passed through the retarder and the linear polarizer again, so that the voltage value that maximizes the light amount is λ/2 or 0. Can be used as a voltage value for setting the amount of phase delay.
 また、本開示の技術の第7の態様である偏光状態制御装置において、前記直線偏光子は、入射方向へP偏光の光を出射し、前記入射方向と直交する方向へS偏光の光を出射する偏光ビームスプリッタである。前記受光部は、前記偏光ビームスプリッタから出射されるS偏光の光を受光し、前記制御部は、前記受光部で受光されたS偏光の光の光量が最小となるように、前記リターダに印加する電圧を制御することができる。これにより、本開示の偏光状態制御装置は、反射板で反射して再度リターダ及び偏光ビームスプリッタを通過したS偏光の光の光度を用いているため、光量が最小となる電圧値を、λ/2又は0の位相遅れ量を設定するための電圧値とすることができる。 Further, in the polarization state control device according to the seventh aspect of the technology of the present disclosure, the linear polarizer emits P-polarized light in an incident direction and emits S-polarized light in a direction orthogonal to the incident direction. It is a polarization beam splitter. The light receiving unit receives the S-polarized light emitted from the polarization beam splitter, and the control unit applies the light to the retarder so that the amount of the S-polarized light received by the light receiving unit is minimized. The voltage applied can be controlled. Accordingly, the polarization state control device of the present disclosure uses the luminous intensity of the S-polarized light that has been reflected by the reflection plate and passed through the retarder and the polarization beam splitter again, so that the voltage value that minimizes the light amount is λ/ It may be a voltage value for setting the phase delay amount of 2 or 0.
 また、本開示の技術の第8の態様である偏光状態制御装置において、前記制御部は、予め設定された、前記リターダに印加する電圧に対する位相遅れ量の特性において、所定の電圧値より低い電圧値の第1数値範囲において、位相遅れ量がλ/2となる電圧値を探索し、前記所定の電圧値より高い電圧値の第2数値範囲において、位相遅れ量が0となる電圧値を探索することができる。また、本開示の技術の第9の態様である偏光状態制御装置において、前記制御部は、予め設定された、前記リターダに印加する電圧に対する位相遅れ量の特性において、λ/2又は0の位相遅れ量に対応する電圧値の近傍で、前記リターダに印加する電圧値を探索してもよい。これにより、本開示の偏光状態制御装置は、位相遅れ量のλ/2に対応する電圧値と、位相遅れ量の0に対応する電圧値と、を正確に探索することができる。 Further, in the polarization state control device which is the eighth aspect of the technology of the present disclosure, the control unit has a preset characteristic of the amount of phase delay with respect to the voltage applied to the retarder, which is lower than a predetermined voltage value. In the first numerical range of values, a voltage value with a phase delay amount of λ/2 is searched for, and in a second numerical value range of voltage values higher than the predetermined voltage value, a voltage value with a phase delay amount of 0 is searched for. can do. Further, in the polarization state control device which is the ninth aspect of the technology of the present disclosure, the control unit has a phase characteristic of λ/2 or 0 in a preset characteristic of a phase delay amount with respect to a voltage applied to the retarder. The voltage value applied to the retarder may be searched in the vicinity of the voltage value corresponding to the delay amount. Accordingly, the polarization state control device of the present disclosure can accurately search for a voltage value corresponding to the phase delay amount λ/2 and a voltage value corresponding to the phase delay amount 0.
 また、本開示の技術の他の態様である偏光状態制御方法は、上記偏光状態制御装置が提供する機能を実現するための方法である。また、本開示の技術の他の態様である偏光状態制御プログラムは、上記偏光状態制御方法を実行するためのプログラムであり、コンピュータを、上記偏光状態制御装置の制御部として機能させるためのプログラムである。また、本開示の技術の他の態様である記録媒体は、上記偏光状態制御プログラムを記録した記録媒体である。 A polarization state control method that is another aspect of the technology of the present disclosure is a method for realizing the function provided by the polarization state control device. A polarization state control program that is another aspect of the technology of the present disclosure is a program for executing the polarization state control method, and is a program for causing a computer to function as a control unit of the polarization state control device. is there. A recording medium that is another aspect of the technique of the present disclosure is a recording medium that records the above-mentioned polarization state control program.
 本開示の技術によれば、反射板により反射されて再度リターダ及び直線偏光子を通過した光の光量に基づいて、リターダの位相遅れ量がλ/2又は0になるように、リターダに印加する電圧を制御する。これにより、本開示の技術は、リターダの位相遅れ量を正確に制御することができる。 According to the technology of the present disclosure, the retarder and the linear polarizer are applied to the retarder so that the phase delay amount becomes λ/2 or 0 based on the light amount of the light that has passed through the retarder and the linear polarizer again. Control the voltage. Accordingly, the technique of the present disclosure can accurately control the phase delay amount of the retarder.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態に係る偏光状態制御装置の構成を示す概略図である。 制御部の機能ブロック図である。 電圧と光量との関係の一例を示す図である。 光量と位相遅れ量との関係を説明するための図である。 電圧-位相遅れ量特性の一例を示す図である。 偏光状態制御処理の一例を示すフローチャートである。 第2実施形態に係る偏光状態制御装置の構成を示す概略図である。 第3実施形態に係る偏光状態制御装置の構成を示す概略図である。 第4実施形態に係る偏光状態制御装置の構成を示す概略図である。 第5実施形態に係る偏光状態制御装置の構成を示す概略図である。 光量と位相遅れ量との関係を説明するための図である。 第6実施形態に係る偏光状態制御装置の構成を示す概略図である。 電圧-位相遅れ量特性の温度変化を説明するための図である。
The above and other objects, features and advantages of the present disclosure will become more apparent by the following detailed description with reference to the accompanying drawings.
It is a schematic diagram showing the composition of the polarization control device concerning a 1st embodiment. It is a functional block diagram of a control part. It is a figure which shows an example of the relationship between a voltage and a light quantity. It is a figure for demonstrating the relationship between the amount of light and the amount of phase delays. It is a figure which shows an example of a voltage-phase delay amount characteristic. It is a flow chart which shows an example of polarization state control processing. It is a schematic diagram showing composition of a polarization control device concerning a 2nd embodiment. It is a schematic diagram showing composition of a polarization control device concerning a 3rd embodiment. It is a schematic diagram showing composition of a polarization control device concerning a 4th embodiment. It is a schematic diagram showing composition of a polarization control device concerning a 5th embodiment. It is a figure for demonstrating the relationship between the amount of light and the amount of phase delays. It is a schematic diagram showing composition of a polarization control device concerning a 6th embodiment. FIG. 6 is a diagram for explaining a temperature change of a voltage-phase delay amount characteristic.
 以下、図面を参照して本開示の技術の実施形態を詳細に説明する。 Hereinafter, embodiments of the technology of the present disclosure will be described in detail with reference to the drawings.
<第1実施形態>
 図1に示すように、第1実施形態に係る偏光状態制御装置10は、直線偏光子12と、リターダ14と、ミラー16と、受光部18と、制御部20と、制御用電源22と、第1及び第2電極24L,24Rと、を含んで構成される。
<First Embodiment>
As shown in FIG. 1, the polarization state control device 10 according to the first embodiment includes a linear polarizer 12, a retarder 14, a mirror 16, a light receiving unit 18, a control unit 20, a control power supply 22, and The first and second electrodes 24L and 24R are included.
 直線偏光子12は、レーザ光源26から出射された光(L1)を直線偏光の光(L2)に偏光して出射する。 The linear polarizer 12 polarizes the light (L1) emitted from the laser light source 26 into linearly polarized light (L2) and emits it.
 リターダ14は、λ/2板であり、一部に制御用電源22と接続された第1及び第2電極24L,24Rが設けられている。なお、λ/2板は、直線偏光の偏光方向を回転させる1/2波長板である。リターダ14は、直線偏光子12から出射した光(L2)が入射されると共に、印加される電圧に応じて、入射された光の偏光状態を変えた光(L3)を出射する。 The retarder 14 is a λ/2 plate, and is provided with first and second electrodes 24L and 24R partially connected to the control power supply 22. The λ/2 plate is a ½ wavelength plate that rotates the polarization direction of linearly polarized light. The retarder 14 receives the light (L2) emitted from the linear polarizer 12 and also emits the light (L3) in which the polarization state of the incident light is changed according to the applied voltage.
 ミラー16は、本開示の技術における反射板の一例である。ミラー16は、リターダ14の出射面So側に設けられており、直線偏光子12から出射した光の一部(L4)を、リターダ14の出射面So側において入射面Si側に反射させる。直線偏光子12から出射した光の一部は、リターダ14の入射面Siから入射し、出射面So側に設けられたミラー16の反射面に到達する。その結果、ミラー16により反射された光(反射光)は、リターダ14の出射面So側から入射面Si側に進む。 Mirror 16 is an example of a reflector in the technique of the present disclosure. The mirror 16 is provided on the emission surface So side of the retarder 14, and reflects a part (L4) of the light emitted from the linear polarizer 12 to the incidence surface Si side on the emission surface So side of the retarder 14. Part of the light emitted from the linear polarizer 12 enters from the incident surface Si of the retarder 14 and reaches the reflecting surface of the mirror 16 provided on the exit surface So side. As a result, the light (reflected light) reflected by the mirror 16 travels from the exit surface So side of the retarder 14 to the entrance surface Si side.
 受光部18は、ミラー16により反射されて、直線偏光子12を通過した光(L5)を受光し、受光した光の光量を示す光量データを出力する。受光部18は、例えば光量モニタである。 The light receiving unit 18 receives the light (L5) reflected by the mirror 16 and passing through the linear polarizer 12, and outputs the light amount data indicating the light amount of the received light. The light receiving unit 18 is, for example, a light amount monitor.
 制御部20は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、を備えたコンピュータにより実現することができる。第1実施形態では、CPUが偏光状態制御プログラムを実行することにより、コンピュータが偏光状態制御装置10の制御部20として機能することになる。また、例えばROMには、後述する偏光状態制御処理を実行するための偏光状態制御プログラムが記憶されている。なお、本開示の技術では、ROMが、プログラムを記録した記録媒体の一例である。 The control unit 20 can be realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). In the first embodiment, the computer functions as the control unit 20 of the polarization state control device 10 by the CPU executing the polarization state control program. Further, for example, the ROM stores a polarization state control program for executing a polarization state control process described later. In the technique of the present disclosure, the ROM is an example of a recording medium that records the program.
 図2に示すように、制御部20は、光量取得部42と、電圧値決定部44と、電圧制御部46と、DB(database)48と、を含んで構成される。 As shown in FIG. 2, the control unit 20 includes a light amount acquisition unit 42, a voltage value determination unit 44, a voltage control unit 46, and a DB (database) 48.
 光量取得部42は、受光部18から出力された光量データを取得し、電圧値決定部44に受け渡す。 The light amount acquisition unit 42 acquires the light amount data output from the light receiving unit 18, and transfers it to the voltage value determination unit 44.
 電圧値決定部44は、光量取得部42から受け渡された光量データに基づいて、リターダ14に入射された光がλ/2又は0の位相遅れで偏光されてリターダ14から出射されるように、リターダ14に印加する電圧値を決定する。 The voltage value determination unit 44 causes the light incident on the retarder 14 to be polarized with a phase delay of λ/2 or 0 and to be emitted from the retarder 14 based on the light amount data passed from the light amount acquisition unit 42. , The voltage value applied to the retarder 14 is determined.
 図3に、リターダ14に印加する電圧と、受光部18から取得される光量と、の関係の一例を概略的に示す。電圧値決定部44は、図3に示すように、位相遅れ量がλ/2又は0となる電圧値として、光量取得部42から受け渡された光量データが示す光量が最大となる電圧値を決定する。 FIG. 3 schematically shows an example of the relationship between the voltage applied to the retarder 14 and the light amount obtained from the light receiving unit 18. As shown in FIG. 3, the voltage value determination unit 44 sets the voltage value at which the light amount indicated by the light amount data passed from the light amount acquisition unit 42 becomes the maximum voltage value as the voltage value at which the phase delay amount becomes λ/2 or 0. decide.
 ここで、第1実施形態において、リターダ14の位相遅れ量がλ/2又は0の場合に、直線偏光子12からの出射光の光量が最大になる原理について説明する。 Here, in the first embodiment, the principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is λ/2 or 0 will be described.
 まず、リターダ14の位相遅れ量がλ/2(1/2波長)の場合、図4に示すように、リターダ14がλ/2板として動作する。このため、直線偏光の偏波面とリターダ14の速軸とのなす角度がθの場合、リターダ14を一回通過した後、偏波面と速軸とのなす角度は2θになる。入射光の偏光方向がλ/2板の速軸に対してθの方位角で入射した場合、リターダ14は、入射光の偏光方向を2θ回転させて出射する。つまり、入射光の偏波面が速軸に対して折り返した位置に変わる。リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した場合、同様の原理によって、リターダ14からの出射光の偏波面が速軸に対して折り返した位置に変わる。つまり、出射光の偏波面が元の位置に戻ることになる。したがって、第1実施形態の構成では、出射光の偏波面と直線偏光子12の通過軸とが一致する。そのため、直線偏光子12からの出射光の光量が最大になる。 First, when the phase delay amount of the retarder 14 is λ/2 (1/2 wavelength), the retarder 14 operates as a λ/2 plate as shown in FIG. Therefore, when the angle between the plane of polarization of linearly polarized light and the fast axis of the retarder 14 is θ, the angle between the plane of polarization and the fast axis becomes 2θ after passing through the retarder 14 once. When the polarization direction of the incident light is incident at an azimuth angle of θ with respect to the fast axis of the λ/2 plate, the retarder 14 rotates the polarization direction of the incident light by 2θ and emits it. That is, the plane of polarization of the incident light changes to a position folded back with respect to the fast axis. When the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, the polarization plane of the light emitted from the retarder 14 changes to a position folded back with respect to the fast axis by the same principle. That is, the polarization plane of the emitted light returns to the original position. Therefore, in the configuration of the first embodiment, the plane of polarization of the emitted light and the pass axis of the linear polarizer 12 match. Therefore, the amount of light emitted from the linear polarizer 12 is maximized.
 また、リターダ14の位相遅れ量が0の場合、リターダ14を通過した後においても直線偏光の偏波面は変わらない。さらに、リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した後も、出射光の偏波面は変わらない。したがって、第1実施形態の構成では、出射光の偏波面と直線偏光子12の通過軸とが一致する。そのため、直線偏光子12からの出射光の光量が最大になる。 Moreover, when the phase delay amount of the retarder 14 is 0, the polarization plane of the linearly polarized light does not change even after passing through the retarder 14. Further, the polarization plane of the emitted light does not change even after the emitted light from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again. Therefore, in the configuration of the first embodiment, the plane of polarization of the emitted light and the pass axis of the linear polarizer 12 match. Therefore, the amount of light emitted from the linear polarizer 12 is maximized.
 電圧値決定部44は、リターダ14に印加する電圧値を決定する。具体的には、電圧値決定部44は、リターダ14に印加する電圧を変化させながら、所定の探索範囲内(数値範囲内)を探索して、探索結果を基に光量が最大となる電圧値を決定する。電圧値決定部44は、DB48を参照して、所定の探索範囲を決定する。 The voltage value determination unit 44 determines the voltage value applied to the retarder 14. Specifically, the voltage value determination unit 44 searches the predetermined search range (within the numerical range) while changing the voltage applied to the retarder 14, and the voltage value that maximizes the light amount based on the search result. To decide. The voltage value determination unit 44 determines a predetermined search range with reference to the DB 48.
 DB48は、リターダ14に印加する電圧に対する位相遅れ量の特性(以下「電圧-位相遅れ量特性」という)が記憶されたデータベースである。例えば、リターダ14の使用開始時などに、印加する電圧を変えながら位相遅れ量を計測し、電圧値と計測値とに基づき、電圧-位相遅れ量特性を示すデータを記憶しておくことができる。図5に、DB48に記憶される電圧-位相遅れ量特性の一例を示す。 The DB 48 is a database in which the characteristics of the phase delay amount with respect to the voltage applied to the retarder 14 (hereinafter referred to as “voltage-phase delay amount characteristics”) are stored. For example, when the retarder 14 starts to be used, the phase delay amount is measured while changing the applied voltage, and the data indicating the voltage-phase delay amount characteristic can be stored based on the voltage value and the measured value. .. FIG. 5 shows an example of the voltage-phase delay amount characteristic stored in the DB 48.
 図5に示すように、電圧-位相遅れ量特性は、単調減少曲線を示す。そこで、電圧値決定部44は、DB48に記憶された電圧-位相遅れ量特性において、位相遅れ量がλ/2になる電圧値と0になる電圧値との間の任意の電圧値を閾値として設定する。そして、電圧値決定部44は、設定した閾値より低い電圧値の数値範囲(第1数値範囲)を探索範囲(第1探索範囲)として、位相遅れ量がλ/2となる電圧値を探索する。また、電圧値決定部44は、設定した閾値より高い電圧値の数値範囲(第2数値範囲)を探索範囲(第2探索範囲)として、位相遅れ量が0となる電圧値を探索する。なお、この場合、図5に示すような電圧-位相遅れ量特性に代えて、所定の閾値となる電圧値のみを記憶しておいてもよい。 As shown in FIG. 5, the voltage-phase delay amount characteristic shows a monotonically decreasing curve. Therefore, in the voltage-phase delay amount characteristic stored in the DB 48, the voltage value determination unit 44 sets an arbitrary voltage value between the voltage value at which the phase delay amount becomes λ/2 and the voltage value at which the phase delay amount becomes 0 as a threshold value. Set. Then, the voltage value determination unit 44 searches for a voltage value at which the phase delay amount is λ/2, with the numerical value range (first numerical value range) of the voltage value lower than the set threshold value as the search range (first search range). .. Further, the voltage value determination unit 44 searches for a voltage value at which the phase delay amount is 0, with the numerical range (second numerical range) of the voltage value higher than the set threshold value as the search range (second search range). In this case, instead of the voltage-phase delay amount characteristic as shown in FIG. 5, only the voltage value serving as the predetermined threshold value may be stored.
 また、電圧値決定部44は、電圧-位相遅れ量特性において、λ/2又は0の位相遅れ量に対応する電圧値の近傍、例えばその電圧値を含む前後の所定の電圧値の数値範囲を探索範囲として、位相遅れ量がλ/2又は0になる電圧値を探索してもよい。なお、この場合、図5に示すような電圧-位相遅れ量特性に代えて、λ/2及び0の位相遅れ量に対応する電圧値のみを記憶しておいてもよい。 In the voltage-phase delay amount characteristic, the voltage value determination unit 44 sets the vicinity of the voltage value corresponding to the phase delay amount of λ/2 or 0, for example, the numerical value range of a predetermined voltage value before and after including the voltage value. As the search range, a voltage value at which the phase delay amount becomes λ/2 or 0 may be searched. In this case, instead of the voltage-phase delay amount characteristic shown in FIG. 5, only the voltage values corresponding to the phase delay amounts of λ/2 and 0 may be stored.
 電圧値決定部44は、上記のように電圧値の探索範囲を設定することで、図3に示すような電圧と光量との関係において、位相遅れ量がλ/2になる電圧値と、0になる電圧値と、を正確に探索することができる。 The voltage value determination unit 44 sets the voltage value search range as described above, and in the relationship between the voltage and the light amount as shown in FIG. It is possible to accurately search for
 電圧値決定部44は、決定した電圧値を電圧制御部46へ受け渡す。 The voltage value determination unit 44 transfers the determined voltage value to the voltage control unit 46.
 電圧制御部46は、電圧値決定部44から受け渡された電圧値を制御用電源22に設定する。 The voltage control unit 46 sets the voltage value transferred from the voltage value determination unit 44 in the control power supply 22.
 制御用電源22は、設定された電圧値の電圧を、第1及び第2電極24L,24Rを介してリターダ14に印加する。第1実施形態では、制御用電源22がリターダ14の位相遅れ量がλ/2又は0に設定されるように電圧を印加し、リターダ14から出射される光(L3)の直線偏光の偏波面が所望の方向に切り替えられる。このとき、第1実施形態では、電圧制御部46は、λ/2又は0の位相遅れで偏光した光がリターダ14から出射されるように、リターダ14に印加する電圧を制御する。 The control power supply 22 applies the voltage of the set voltage value to the retarder 14 via the first and second electrodes 24L and 24R. In the first embodiment, the control power supply 22 applies a voltage so that the phase delay amount of the retarder 14 is set to λ/2 or 0, and the polarization plane of the linearly polarized light (L3) emitted from the retarder 14 Can be switched to the desired direction. At this time, in the first embodiment, the voltage controller 46 controls the voltage applied to the retarder 14 so that the light polarized with the phase delay of λ/2 or 0 is emitted from the retarder 14.
 次に、第1実施形態に係る偏光状態制御装置10の作用について説明する。 Next, the operation of the polarization state control device 10 according to the first embodiment will be described.
 レーザ光源26から出射されたレーザ光の一部(L1)は、直線偏光子12に入射され、直線偏光子12によって直線偏光される。直線偏光された光(L2)は、直線偏光子12から出射され、リターダ14に入射される。そして、リターダ14は、当該リターダ14に設定された位相遅れ量に応じて、入射された光の偏光状態を変化させ、偏光された光(L3)を出射する。 A part (L1) of the laser light emitted from the laser light source 26 enters the linear polarizer 12 and is linearly polarized by the linear polarizer 12. The linearly polarized light (L2) is emitted from the linear polarizer 12 and is incident on the retarder 14. Then, the retarder 14 changes the polarization state of the incident light according to the phase delay amount set in the retarder 14 and emits the polarized light (L3).
 一方、レーザ光源26から出射されたレーザ光の一部(L20)は、直線偏光子12に入射され、直線偏光子12によって直線偏光される。直線偏光された光(L4)は、直線偏光子12から出射され、リターダ14に入射される。リターダ14の出射面Soまで到達した光は、ミラー16の反射面によって反射される。反射された光は、リターダ14及び直線偏光子12を再び通過して(L5)、受光部18で受光される。 On the other hand, a part (L20) of the laser light emitted from the laser light source 26 enters the linear polarizer 12 and is linearly polarized by the linear polarizer 12. The linearly polarized light (L4) is emitted from the linear polarizer 12 and is incident on the retarder 14. The light reaching the emission surface So of the retarder 14 is reflected by the reflection surface of the mirror 16. The reflected light passes through the retarder 14 and the linear polarizer 12 again (L5), and is received by the light receiving unit 18.
 受光部18は、受光した光の光量を示す光量データを出力する。そして、制御部20は、図6に示す偏光状態制御処理を実行する。これにより、リターダ14の位相遅れ量は、λ/2又は0に設定される。 The light receiving unit 18 outputs light amount data indicating the light amount of the received light. Then, the control unit 20 executes the polarization state control process shown in FIG. As a result, the phase delay amount of the retarder 14 is set to λ/2 or 0.
 図6に示すように、第1実施形態に係る偏光状態制御処理のステップS12において、電圧値決定部44は、DB48に記憶された電圧-位相遅れ量特性に関するデータを参照し、所定の閾値より低い電圧値の数値範囲を、位相遅れ量がλ/2となる電圧値を探索する探索範囲として設定する。また、電圧値決定部44は、所定の閾値より高い電圧値の数値範囲を、位相遅れ量が0となる電圧値を探索する探索範囲として設定する。 As shown in FIG. 6, in step S12 of the polarization state control process according to the first embodiment, the voltage value determination unit 44 refers to the data regarding the voltage-phase delay amount characteristic stored in the DB 48, and determines that the predetermined threshold value is exceeded. The numerical value range of the low voltage value is set as the search range for searching the voltage value where the phase delay amount is λ/2. In addition, the voltage value determination unit 44 sets a numerical value range of voltage values higher than a predetermined threshold value as a search range for searching for a voltage value with a phase delay amount of 0.
 なお、電圧値決定部44は、電圧-位相遅れ量特性において、λ/2又は0の位相遅れ量に対応する電圧値の近傍、例えばその電圧値を含む前後の所定の電圧値の数値範囲を探索範囲として設定してもよい。 In the voltage-phase delay amount characteristic, the voltage value determining unit 44 sets the vicinity of the voltage value corresponding to the phase delay amount of λ/2 or 0, for example, the numerical value range of a predetermined voltage value before and after including the voltage value. You may set as a search range.
 次に、ステップS14において、電圧値決定部44は、ステップS12の処理によって設定された探索範囲内の初期値(最初の探索値)に相当する電圧値(例えば数値範囲内の最小の電圧値)を電圧制御部46に出力する。電圧制御部46は、電圧値決定部44から入力された電圧値を制御用電源22に設定する。 Next, in step S14, the voltage value determination unit 44 causes the voltage value corresponding to the initial value (first search value) within the search range set by the process of step S12 (for example, the minimum voltage value within the numerical range). Is output to the voltage control unit 46. The voltage control unit 46 sets the voltage value input from the voltage value determination unit 44 in the control power supply 22.
 次に、ステップS16において、制御用電源22は、設定された電圧値の電圧を、第1及び第2電極24L,24Rを介してリターダ14に印加する。光量取得部42は、制御用電源22が電圧を印加した際に、受光部18から出力される光量データを取得する。 Next, in step S16, the control power supply 22 applies the voltage having the set voltage value to the retarder 14 via the first and second electrodes 24L and 24R. The light amount acquisition unit 42 acquires the light amount data output from the light receiving unit 18 when the control power supply 22 applies a voltage.
 次に、ステップS18において、電圧値決定部44は、ステップS14の処理によって設定された電圧値と、ステップS16の処理によって取得された光量と、を一組のデータとして記憶する。 Next, in step S18, the voltage value determination unit 44 stores the voltage value set by the process of step S14 and the light amount acquired by the process of step S16 as a set of data.
 次に、ステップS20において、電圧値決定部44は、ステップS12の処理によって設定された探索範囲内の電圧値に対して、ステップS16及びS18の処理が終了したか否かを判定する(探索終了を判定する)。探索範囲内に未処理の電圧値が存在する場合(探索が終了していない場合)には、ステップS22へ移行する。ステップS22において、電圧値決定部44は、電圧値を所定値分ずらした値(電圧値を所定値分増減した値)に変更して設定し、ステップS16に戻る。一方、探索範囲内に未処理の電圧値が存在しない場合(探索が終了した場合)には、ステップS24へ移行する。 Next, in step S20, the voltage value determination unit 44 determines whether or not the processes of steps S16 and S18 have been completed for the voltage values within the search range set by the process of step S12 (end of search). Is determined). When there is an unprocessed voltage value within the search range (when the search is not completed), the process proceeds to step S22. In step S22, the voltage value determination unit 44 changes and sets the voltage value to a value shifted by a predetermined value (a value obtained by increasing or decreasing the voltage value by a predetermined value), and then returns to step S16. On the other hand, when there is no unprocessed voltage value in the search range (when the search is completed), the process proceeds to step S24.
 ステップS24において、電圧値決定部44は、ステップS18の処理によって記憶された電圧値と光量との組データのうち、光量が最大となる組データの電圧値を、λ/2又は0の位相遅れ量に対応する電圧値として決定する。電圧値決定部44は、決定した電圧値を電圧制御部46に出力する。そして、電圧制御部46は、電圧値決定部44から入力された電圧値を制御用電源22に設定し、偏光状態制御処理は終了する。 In step S24, the voltage value determination unit 44 sets the voltage value of the group data having the maximum light amount, out of the group data of the voltage value and the light amount stored by the process of step S18, to the phase delay of λ/2 or 0. It is determined as the voltage value corresponding to the quantity. The voltage value determination unit 44 outputs the determined voltage value to the voltage control unit 46. Then, the voltage control unit 46 sets the voltage value input from the voltage value determination unit 44 in the control power supply 22, and the polarization state control process ends.
 以上説明したように、第1実施形態に係る偏光状態制御装置10によれば、リターダ14の出射面So側で反射し、再び直線偏光子12を通過して出射された光の光量をモニタリングしている。そして、偏光状態制御装置10は、モニタリング結果である光量に基づいて、光の光量が最大になるように、リターダ14に印加する電圧を制御する。これにより、偏光状態制御装置10は、リターダ14の位相遅れ量をλ/2又は0に設定することができる。その結果、偏光状態制御装置10は、図1に示すように、リターダ14に直線偏光の光(L2)が入射した場合に、リターダ14からの出射光の直線偏光の偏波面を所望の状態(偏光状態)に切り替える。偏光状態制御装置10は、リターダ14によって偏光状態が変えられた光(L3)を出射することができる。以上のように、第1実施形態に係る偏光状態制御装置10は、リターダ14の位相遅れ量を正確に制御することができる。 As described above, according to the polarization state control device 10 according to the first embodiment, the amount of light that is reflected by the exit surface So side of the retarder 14 and passes through the linear polarizer 12 again to be output is monitored. ing. Then, the polarization state control device 10 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Thereby, the polarization state control device 10 can set the phase delay amount of the retarder 14 to λ/2 or 0. As a result, as shown in FIG. 1, when the linearly polarized light (L2) is incident on the retarder 14, the polarization state control device 10 sets the polarization plane of the linearly polarized light of the light emitted from the retarder 14 to a desired state ( Switch to (polarization state). The polarization state control device 10 can emit the light (L3) whose polarization state has been changed by the retarder 14. As described above, the polarization state control device 10 according to the first embodiment can accurately control the phase delay amount of the retarder 14.
 第1実施形態の構成の使い方としては、例えば、リターダ14に入射する直線偏光の偏波面とリターダ14の速軸とのなす角度θを45度に設定して、2θが90度になるように設定する。この場合、入射光の偏波面が90度回転することになる。よって、第1実施形態の構成では、例えば、偏波面が水平の直線偏光の光を、偏波面が垂直の直線偏光の光に切り替えることができる。 As the usage of the configuration of the first embodiment, for example, the angle θ formed by the polarization plane of the linearly polarized light incident on the retarder 14 and the fast axis of the retarder 14 is set to 45 degrees so that 2θ becomes 90 degrees. Set. In this case, the plane of polarization of the incident light is rotated by 90 degrees. Therefore, in the configuration of the first embodiment, for example, linearly polarized light having a horizontal polarization plane can be switched to linearly polarized light having a vertical polarization plane.
<第2実施形態>
 次に、第2実施形態について説明する。なお、第2実施形態に係る偏光状態制御装置において、第1実施形態に係る偏光状態制御装置10と同様の構成については、同一符号を付して詳細な説明を省略する。
<Second Embodiment>
Next, a second embodiment will be described. In the polarization state control device according to the second embodiment, the same components as those of the polarization state control device 10 according to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図7に示すように、第2実施形態に係る偏光状態制御装置210は、第1実施形態に係る偏光状態制御装置10の構成に加え、レーザ光源26からの光がミラー16で反射されない光路上であって、直線偏光子12とリターダ14との間に、λ/4板28が配置される。なお、λ/4板28は、直線偏光を円偏光に変換する1/4波長板である。 As shown in FIG. 7, in addition to the configuration of the polarization state control device 10 according to the first embodiment, the polarization state control device 210 according to the second embodiment has an optical path on which light from the laser light source 26 is not reflected by the mirror 16. The λ/4 plate 28 is arranged between the linear polarizer 12 and the retarder 14. The λ/4 plate 28 is a quarter wavelength plate that converts linearly polarized light into circularly polarized light.
 λ/4板28は、直線偏光子12から出射される直線偏光の光(L2)が入射されると共に、直線偏光の光を円偏光の光に変えて出射する(L6)。λ/4板28から出射される円偏光の光の回転方向は、右回りであっても左回りであってもよい。 The λ/4 plate 28 receives the linearly polarized light (L2) emitted from the linear polarizer 12 and converts the linearly polarized light into circularly polarized light and emits it (L6). The rotation direction of the circularly polarized light emitted from the λ/4 plate 28 may be clockwise or counterclockwise.
 リターダ14は、円偏光の光(L6)が入射されると、設定されたλ/2又は0の位相遅れ量に応じて、回転方向を右回り又は左回りとする円偏光の光(L7)を出射する。 When the circularly polarized light (L6) is incident on the retarder 14, the circularly polarized light (L7) is rotated clockwise or counterclockwise according to the set phase delay amount of λ/2 or 0. Is emitted.
 なお、リターダ14の位相遅れ量がλ/2又は0の場合に、直線偏光子12からの出射光の光量が最大になる原理、及び、制御部20における偏光状態制御処理は、第1実施形態と同様であるため、説明を省略する。 The principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is λ/2 or 0, and the polarization state control process in the control unit 20 is the same as in the first embodiment. Since it is the same as, the description will be omitted.
 以上説明したように、第2実施形態に係る偏光状態制御装置210によれば、リターダ14の出射面So側で反射し、再び直線偏光子12を通過して出射された光の光量をモニタリングしている。そして、偏光状態制御装置210は、モニタリング結果である光量に基づいて、光の光量が最大になるように、リターダ14に印加する電圧を制御する。これにより、偏光状態制御装置210は、リターダ14の位相遅れ量をλ/2又は0に設定することができる。その結果、偏光状態制御装置210は、図7に示すように、リターダ14に円偏光の光(L6)が入射した場合に、位相遅れ量に応じた、右回り又は左回りの円偏光の光(L7)を出射することができる。 As described above, according to the polarization state control device 210 according to the second embodiment, the amount of light that is reflected by the exit surface So side of the retarder 14 and passes through the linear polarizer 12 again to be output is monitored. ing. Then, the polarization state control device 210 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Accordingly, the polarization state control device 210 can set the phase delay amount of the retarder 14 to λ/2 or 0. As a result, as shown in FIG. 7, when the circularly polarized light (L6) is incident on the retarder 14, the polarization state control device 210 causes the clockwise or counterclockwise circularly polarized light depending on the phase delay amount. (L7) can be emitted.
<第3実施形態>
 次に、第3実施形態について説明する。なお、第3実施形態に係る偏光状態制御装置において、第2実施形態に係る偏光状態制御装置210と同様の構成については、同一符号を付して詳細な説明を省略する。
<Third Embodiment>
Next, a third embodiment will be described. In the polarization state control device according to the third embodiment, the same components as those of the polarization state control device 210 according to the second embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図8に示すように、第3実施形態に係る偏光状態制御装置310は、第2実施形態に係る偏光状態制御装置210の構成に加え、リターダ14から出射された光が入射される偏光グレーティング(偏光回折格子)30をさらに含む。この構成において、ミラー16は、リターダ14の出射面So側であって、偏光グレーティング30に入射する前の光を反射可能な位置に配置される。 As shown in FIG. 8, in addition to the configuration of the polarization state control device 210 according to the second embodiment, the polarization state control device 310 according to the third embodiment has a polarization grating (on which the light emitted from the retarder 14 enters). A polarization diffraction grating) 30 is further included. In this configuration, the mirror 16 is arranged on the exit surface So side of the retarder 14 and at a position capable of reflecting the light before entering the polarization grating 30.
 偏光グレーティング30は、回転方向が右回り又は左回りの円偏光の光(L6)が入射された場合、設定された回折角度に応じて、入射された光を回折させて出射する(L8)。 When the circularly polarized light (L6) whose rotation direction is clockwise or counterclockwise is incident, the polarization grating 30 diffracts the incident light according to the set diffraction angle and emits it (L8).
 なお、リターダ14の位相遅れ量がλ/2又は0の場合に、直線偏光子12からの出射光の光量が最大になる原理、及び、制御部20における偏光状態制御処理は、第1実施形態と同様であるため、説明を省略する。 The principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is λ/2 or 0, and the polarization state control process in the control unit 20 is the same as in the first embodiment. Since it is the same as, the description will be omitted.
 以上説明したように、第3実施形態に係る偏光状態制御装置310によれば、リターダ14の出射面So側で反射し、再び直線偏光子12を通過して出射された光の光量をモニタリングしている。そして、偏光状態制御装置310は、モニタリング結果である光量に基づいて、光の光量が最大になるように、リターダ14に印加する電圧を制御する。これにより、偏光状態制御装置310は、リターダ14の位相遅れ量をλ/2又は0に設定することができる。その結果、偏光状態制御装置310は、図8に示すように、リターダ14に円偏光の光(L6)が入射した場合に、回折角度に応じて回折された光(L8)をリターダ14から出射することができる。 As described above, according to the polarization state control device 310 according to the third embodiment, the light amount of the light reflected by the exit surface So side of the retarder 14 and passing through the linear polarizer 12 again is monitored. ing. Then, the polarization state control device 310 controls the voltage applied to the retarder 14 so that the light amount of the light becomes maximum based on the light amount as the monitoring result. Thereby, the polarization state control device 310 can set the phase delay amount of the retarder 14 to λ/2 or 0. As a result, as shown in FIG. 8, when the circularly polarized light (L6) enters the retarder 14, the polarization state control device 310 emits the light (L8) diffracted according to the diffraction angle from the retarder 14. can do.
 偏光グレーティング30に入射する円偏光の光の回転方向が、正確に左回り又は右回りの円偏光であれば、偏光グレーティング30による回折効率が最大になる。しかし、偏光グレーティング30に入射する光が円偏光ではなく楕円偏光になると、回折効率が低下する。したがって、回折効率を最大にするために、リターダ14からの出射光を正確に円偏光にする必要がある。 If the rotation direction of the circularly polarized light incident on the polarization grating 30 is exactly left-handed or right-handed circularly polarized light, the diffraction efficiency by the polarization grating 30 is maximized. However, when the light incident on the polarization grating 30 becomes elliptically polarized light instead of circularly polarized light, the diffraction efficiency decreases. Therefore, in order to maximize the diffraction efficiency, the light emitted from the retarder 14 needs to be accurately circularly polarized.
 第3実施形態の構成では、図8に示すように、位相遅れ量が正確にλ/2又は0に設定されたリターダ14から出射された円偏光の光が偏光グレーティング30に入射される。そのため、第3実施形態の構成では、回転方向が正確に左回り又は右回りの円偏光の光が入射される。これにより、第3実施形態の構成では、回折効率を最大にすることができる。 In the configuration of the third embodiment, as shown in FIG. 8, circularly polarized light emitted from the retarder 14 whose phase delay amount is accurately set to λ/2 or 0 is incident on the polarization grating 30. Therefore, in the configuration of the third embodiment, circularly polarized light whose rotation direction is exactly counterclockwise or clockwise is incident. Thereby, in the configuration of the third embodiment, the diffraction efficiency can be maximized.
<第4実施形態>
 次に、第4実施形態について説明する。なお、第4実施形態に係る偏光状態制御装置において、第3実施形態に係る偏光状態制御装置310と同様の構成については、同一符号を付して詳細な説明を省略する。
<Fourth Embodiment>
Next, a fourth embodiment will be described. In the polarization state control device according to the fourth embodiment, the same components as those of the polarization state control device 310 according to the third embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図9に示すように、第4実施形態に係る偏光状態制御装置410は、第3実施形態に係る偏光状態制御装置310の構成に加え、レーザ光源26からの光がミラー16で反射される光路上であって、直線偏光子12とリターダ14との間に、λ/4板428が配置される。図9の例では、λ/4板428は、レーザ光源26からの光がミラー16で反射されない光路上であって、直線偏光子12とリターダ14との間に配置されるλ/4板(第2及び第3実施形態におけるλ/4板28)と一体化された例を示している。 As shown in FIG. 9, in addition to the configuration of the polarization state control device 310 according to the third embodiment, the polarization state control device 410 according to the fourth embodiment includes the light from the laser light source 26 reflected by the mirror 16. A λ/4 plate 428 is arranged on the road between the linear polarizer 12 and the retarder 14. In the example of FIG. 9, the λ/4 plate 428 is located on the optical path where the light from the laser light source 26 is not reflected by the mirror 16 and between the linear polarizer 12 and the retarder 14 ( An example integrated with the λ/4 plate 28) in the second and third embodiments is shown.
 λ/4板428は、ミラー16で反射し、再びリターダ14を通過した円偏光の光(L9)が入射されると共に、円偏光の光を直線偏光の光に変えて出射する(L10)。 The λ/4 plate 428 reflects the circularly polarized light (L9) that has passed through the retarder 14 again after being reflected by the mirror 16, and converts the circularly polarized light into linearly polarized light and emits the linearly polarized light (L10).
 ここで、第4実施形態において、リターダ14の位相遅れ量がλ/2又は0の場合に、直線偏光子12からの出射光の光量が最大になる原理について説明する。 Here, in the fourth embodiment, the principle that the amount of light emitted from the linear polarizer 12 is maximized when the phase delay amount of the retarder 14 is λ/2 or 0 will be described.
 まず、リターダ14の位相遅れ量がλ/2の場合、リターダ14がλ/2板として動作する。このため、リターダ14からの出射光は、リターダ14への入射光の円偏光の回転方向と逆の回転方向の円偏光になる。リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した場合、同様な原理によって、逆の回転方向の円偏光になる。つまり、ミラー16で反射してリターダ14から出射される光(L9)の円偏光の回転方向が、リターダ14に入射された光の円偏光の状態に戻ることになる。 First, when the phase delay amount of the retarder 14 is λ/2, the retarder 14 operates as a λ/2 plate. Therefore, the light emitted from the retarder 14 becomes circularly polarized light in the rotation direction opposite to the rotation direction of the circularly polarized light of the incident light to the retarder 14. When the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, it becomes circularly polarized light in the opposite rotation direction by the same principle. That is, the rotation direction of the circularly polarized light of the light (L9) reflected by the mirror 16 and emitted from the retarder 14 returns to the circularly polarized state of the light incident on the retarder 14.
 さらに、ミラー16で反射してリターダ14から出射される光(L9)がλ/4板428に入射した場合、λ/4板428から出射される光(L10)の偏波面と直線偏光子12の通過軸とが一致する。そのため、直線偏光子12からの出射光(L5)の光量が最大になる。 Further, when the light (L9) reflected by the mirror 16 and emitted from the retarder 14 enters the λ/4 plate 428, the polarization plane of the light (L10) emitted from the λ/4 plate 428 and the linear polarizer 12 Coincides with the passing axis of. Therefore, the amount of light emitted from the linear polarizer 12 (L5) is maximized.
 また、リターダ14の位相遅れ量が0の場合、リターダ14を通過した後においても、円偏光の回転方向は変わらない。また、リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した後も、円偏光の回転方向は変わらない。さらに、その円偏光がλ/4板428に入射した場合、λ/4板428からの出射光(L10)の偏波面と直線偏光子12の通過軸とが一致する。そのため、直線偏光子12からの出射光(L5)の光量が最大になる。 Moreover, when the phase delay amount of the retarder 14 is 0, the rotation direction of circularly polarized light does not change even after passing through the retarder 14. Even after the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, the rotation direction of circularly polarized light does not change. Further, when the circularly polarized light is incident on the λ/4 plate 428, the plane of polarization of the emitted light (L10) from the λ/4 plate 428 and the pass axis of the linear polarizer 12 coincide with each other. Therefore, the amount of light emitted from the linear polarizer 12 (L5) is maximized.
 制御部20における偏光状態制御処理は、第1実施形態と同様であるため、説明を省略する。 Since the polarization state control processing in the control unit 20 is the same as that in the first embodiment, the description will be omitted.
 以上説明したように、第4実施形態に係る偏光状態制御装置410によれば、リターダ14の出射面So側で反射し、再び直線偏光子12を通過して出射された光の光量をモニタリングしている。そして、偏光状態制御装置410は、モニタリング結果である光量に基づいて、光の光量が最大になるように、リターダ14に印加する電圧を制御する。これにより、偏光状態制御装置410は、リターダ14の位相遅れ量をλ/2又は0に設定することができる。その結果、偏光状態制御装置410は、図9に示すように、回転方向が正確に左回り又は右回りの円偏光の光(L6)を、偏光グレーティング30に入射することができる。偏光状態制御装置410は、偏光グレーティング30からの出射光(L8)の回折効率を最大にすることができる。 As described above, according to the polarization state control device 410 according to the fourth embodiment, the light amount of the light reflected by the exit surface So side of the retarder 14 and again emitted through the linear polarizer 12 is monitored. ing. Then, the polarization state control device 410 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light becomes maximum. Accordingly, the polarization state control device 410 can set the phase delay amount of the retarder 14 to λ/2 or 0. As a result, the polarization state control device 410 can cause circularly polarized light (L6) whose rotation direction is exactly left-handed or right-handed to enter the polarization grating 30, as shown in FIG. The polarization state control device 410 can maximize the diffraction efficiency of the light (L8) emitted from the polarization grating 30.
<第5実施形態>
 次に、第5実施形態について説明する。なお、第5実施形態に係る偏光状態制御装置において、第3実施形態に係る偏光状態制御装置310と同様の構成については、同一符号を付して詳細な説明を省略する。
<Fifth Embodiment>
Next, a fifth embodiment will be described. In the polarization state control device according to the fifth embodiment, the same components as those of the polarization state control device 310 according to the third embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 図10に示すように、第5実施形態に係る偏光状態制御装置510は、第3実施形態に係る偏光状態制御装置310の直線偏光子12及び制御部20に代えて、偏光ビームスプリッタ512及び制御部520を備える。 As shown in FIG. 10, the polarization state control device 510 according to the fifth exemplary embodiment includes a polarization beam splitter 512 and a control unit instead of the linear polarizer 12 and the control unit 20 of the polarization state control device 310 according to the third exemplary embodiment. The unit 520 is provided.
 偏光ビームスプリッタ512は、偏光ビームスプリッタ512へ入射される光(L1,L20)の入射方向へP偏光の光(L11,L13)を出射する。偏光ビームスプリッタ512は、偏光ビームスプリッタ512への入射される光の入射方向と直交する方向へS偏光の光(L12,L14)を出射する。 The polarization beam splitter 512 emits P-polarized light (L11, L13) in the incident direction of the light (L1, L20) incident on the polarization beam splitter 512. The polarization beam splitter 512 emits S-polarized light (L12, L14) in a direction orthogonal to the incident direction of the light incident on the polarization beam splitter 512.
 受光部18は、ミラー16で反射された反射光(L15)が偏光ビームスプリッタ512に入射され、S偏光として出射された光(L17)を受光し、受光した光の光量を示す光量データを出力する。 The light receiving unit 18 receives the light (L17), which is the reflected light (L15) reflected by the mirror 16 and is incident on the polarization beam splitter 512 and is emitted as S-polarized light, and outputs light amount data indicating the light amount of the received light. To do.
 図2に示す制御部20の構成と同様に、制御部520は、光量取得部42と、電圧値決定部544と、電圧制御部46と、電圧-位相遅れ量特性を記憶するDB48と、を含んで構成される。 Similar to the configuration of the control unit 20 illustrated in FIG. 2, the control unit 520 includes a light amount acquisition unit 42, a voltage value determination unit 544, a voltage control unit 46, and a DB 48 that stores a voltage-phase delay amount characteristic. It is configured to include.
 電圧値決定部544は、図11に示すように、位相遅れ量がλ/2又は0となる電圧値として、光量取得部42から受け渡された光量データが示す光量が最小となる電圧値を決定する。 As shown in FIG. 11, the voltage value determination unit 544 sets the voltage value at which the amount of light indicated by the light amount data passed from the light amount acquisition unit 42 becomes the minimum voltage value as the voltage value at which the phase delay amount becomes λ/2 or 0. decide.
 ここで、第5実施形態において、リターダ14の位相遅れ量がλ/2又は0の場合に、偏光ビームスプリッタ512からの出射光(S偏光)の光量が最小になる原理について説明する。 Here, in the fifth embodiment, the principle that the amount of light emitted from the polarization beam splitter 512 (S-polarized light) is minimized when the phase delay amount of the retarder 14 is λ/2 or 0 will be described.
 まず、リターダ14の位相遅れ量がλ/2の場合、図4に示すように、リターダ14がλ/2板として動作する。このため、直線偏光の偏波面とリターダ14の速軸とのなす角度がθの場合、リターダ14を一回通過した後、偏波面と速軸とのなす角度は2θになる。つまり、入射光の偏波面が速軸に対して折り返した位置に変わる。リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した場合、同様の原理によって、リターダ14からの出射光の偏波面が速軸に対して折り返した位置に変わる。つまり、出射光の偏波面が元の位置に戻ることになる。したがって、第5実施形態の構成では、リターダ14からの出射光はP偏光となる。そのため、偏光ビームスプリッタ512へ入射した場合、S偏光成分の光量は最小になる。 First, when the phase delay amount of the retarder 14 is λ/2, the retarder 14 operates as a λ/2 plate as shown in FIG. Therefore, when the angle between the plane of polarization of linearly polarized light and the fast axis of the retarder 14 is θ, the angle between the plane of polarization and the fast axis becomes 2θ after passing through the retarder 14 once. That is, the plane of polarization of the incident light changes to a position folded back with respect to the fast axis. When the light emitted from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again, the polarization plane of the light emitted from the retarder 14 changes to a position folded back with respect to the fast axis by the same principle. That is, the polarization plane of the emitted light returns to the original position. Therefore, in the configuration of the fifth embodiment, the light emitted from the retarder 14 becomes P-polarized light. Therefore, when the light is incident on the polarization beam splitter 512, the light amount of the S-polarized component becomes the minimum.
 また、リターダ14の位相遅れ量が0の場合、リターダ14を通過した後においてもP偏光は変わらない。さらに、リターダ14からの出射光がミラー16によって反射されて再度リターダ14を通過した後も、出射光のP偏光は変わらない。したがって、第5実施形態の構成では、リターダ14からの出射光はP偏光となる。そのため、偏光ビームスプリッタ512へ入射した場合、S偏光成分の光量は最小になる。 Also, when the phase delay amount of the retarder 14 is 0, the P-polarized light does not change even after passing through the retarder 14. Furthermore, the P-polarized light of the emitted light does not change even after the emitted light from the retarder 14 is reflected by the mirror 16 and passes through the retarder 14 again. Therefore, in the configuration of the fifth embodiment, the light emitted from the retarder 14 becomes P-polarized light. Therefore, when the light is incident on the polarization beam splitter 512, the light amount of the S-polarized component becomes the minimum.
 次に、第5実施形態に係る偏光状態制御装置510の作用について説明する。 Next, the operation of the polarization state control device 510 according to the fifth embodiment will be described.
 レーザ光源26から出射されたレーザ光の一部(L1)は、偏光ビームスプリッタ512に入射され、偏光ビームスプリッタ512によって偏光される。P偏光の出射光(L11)は入射方向へ出射され、S偏光の出射光(L12)は入射方向に直交する方向に出射される。P偏光の出射光(L11)は、λ/4板28を介して円偏光に変換され、円偏光の光(L6)がリターダ14に入射される。リターダ14は、当該リターダ14に設定された位相遅れ量に応じて、偏光された光を出射する。リターダ14から出射された光は、偏光グレーティング30に入射される。偏光グレーティング30は、当該偏光グレーティング30に設定された回折角度で回折された光(L8)を出射する。 A part (L1) of the laser light emitted from the laser light source 26 enters the polarization beam splitter 512 and is polarized by the polarization beam splitter 512. The P-polarized emitted light (L11) is emitted in the incident direction, and the S-polarized emitted light (L12) is emitted in the direction orthogonal to the incident direction. The P-polarized outgoing light (L11) is converted into circularly polarized light via the λ/4 plate 28, and the circularly polarized light (L6) is incident on the retarder 14. The retarder 14 emits polarized light according to the phase delay amount set in the retarder 14. The light emitted from the retarder 14 enters the polarization grating 30. The polarization grating 30 emits light (L8) diffracted at the diffraction angle set for the polarization grating 30.
 一方、レーザ光源26から出射されたレーザ光の一部(L20)は、偏光ビームスプリッタ512に入射され、偏光ビームスプリッタ512によって偏光される。P偏光の出射光(L13)は入射方向へ出射され、S偏光の出射光(L14)は入射方向に直交する方向に出射される。P偏光の出射光(L13)はリターダ14に入射される。リターダ14の出射面Soまで到達した光は、ミラー16の反射面によって反射される。反射された光は、再びリターダ14を通過して、偏光ビームスプリッタ512へ入射される(L15)。偏光ビームスプリッタ512は、P偏光の出射光(L16)を入射方向に出射し、S偏光の出射光(L17)を入射方向に直交する方向に出射する。 On the other hand, a part (L20) of the laser light emitted from the laser light source 26 enters the polarization beam splitter 512 and is polarized by the polarization beam splitter 512. The P-polarized emitted light (L13) is emitted in the incident direction, and the S-polarized emitted light (L14) is emitted in the direction orthogonal to the incident direction. The P-polarized outgoing light (L13) enters the retarder 14. The light reaching the emission surface So of the retarder 14 is reflected by the reflection surface of the mirror 16. The reflected light again passes through the retarder 14 and enters the polarization beam splitter 512 (L15). The polarization beam splitter 512 emits P-polarized outgoing light (L16) in the incident direction, and emits S-polarized outgoing light (L17) in the direction orthogonal to the incident direction.
 そして、受光部18が、偏光ビームスプリッタ512からのS偏光の出射光(L17)を受光し、受光した光の光量を示す光量データを出力する。そして、制御部520は、図6に示す偏光状態制御処理を実行する。これにより、リターダ14の位相遅れ量は、λ/2又は0に設定される。 Then, the light receiving unit 18 receives the S-polarized outgoing light (L17) from the polarization beam splitter 512, and outputs light amount data indicating the light amount of the received light. Then, the control unit 520 executes the polarization state control process shown in FIG. As a result, the phase delay amount of the retarder 14 is set to λ/2 or 0.
 第1実施形態に係る偏光状態制御処理は、光量が最大となる電圧値を探索する処理を行うのに対して、第5実施形態に係る偏光状態制御処理は、光量が最小となる電圧値を探索する処理を行う。第5実施形態の処理は、この点が第1実施形態の処理と異なるだけであるため、説明を省略する。 The polarization state control process according to the first embodiment performs a process of searching for a voltage value that maximizes the light amount, whereas the polarization state control process according to the fifth embodiment determines a voltage value that minimizes the light amount. Perform the process of searching. The process of the fifth embodiment is different from the process of the first embodiment only in this point, and thus the description thereof is omitted.
 以上説明したように、第5実施形態に係る偏光状態制御装置510によれば、リターダ14の出射面So側で反射し、再び偏光ビームスプリッタ512を通過して出射されたS偏光(L17)の光量をモニタリングしている。偏光状態制御装置510は、モニタリング結果である光量に基づいて、光の光量が最小になるように、リターダ14に印加する電圧を制御する。これにより、偏光状態制御装置510は、リターダ14の位相遅れ量をλ/2又は0に設定することができる。その結果、偏光状態制御装置510は、図10に示すように、回転方向が正確に左回り又は右回りの円偏光の光(L6)を、偏光グレーティング30に入射することができる。偏光状態制御装置510は、偏光グレーティング30からの出射光(L8)の回折効率を最大にすることができる。 As described above, according to the polarization state control device 510 according to the fifth embodiment, the S-polarized light (L17) that is reflected by the exit surface So side of the retarder 14 and again passes through the polarization beam splitter 512 and is output. The light intensity is monitored. The polarization state control device 510 controls the voltage applied to the retarder 14 based on the light amount that is the monitoring result so that the light amount of the light is minimized. Thereby, the polarization state control device 510 can set the phase delay amount of the retarder 14 to λ/2 or 0. As a result, the polarization state control device 510 can enter the circularly polarized light (L6) whose rotation direction is exactly left-handed or right-handed into the polarization grating 30, as shown in FIG. The polarization state control device 510 can maximize the diffraction efficiency of the emitted light (L8) from the polarization grating 30.
<第6実施形態>
 次に、第6実施形態について説明する。なお、第6実施形態に係る偏光状態制御装置において、第3実施形態に係る偏光状態制御装置310と同様の構成については、同一符号を付して詳細な説明を省略する。
<Sixth Embodiment>
Next, a sixth embodiment will be described. In the polarization state control device according to the sixth embodiment, the same components as those of the polarization state control device 310 according to the third embodiment are designated by the same reference numerals and detailed description thereof will be omitted.
 図12に示すように、第6実施形態に係る偏光状態制御装置610は、第3実施形態に係る偏光状態制御装置310のリターダ14と偏光グレーティング30との主面が対向するように組み合わせられた層が、少なくとも2つ以上設けられている(複数積層されている)。図12の例では、リターダ(第1リターダ)14Aと偏光グレーティング(第1偏光グレーティング)30Aとの組み合わせの第1層、リターダ(第2リターダ)14Bと偏光グレーティング(第2偏光グレーティング)30Bとの組み合わせの第2層、及びリターダ(第3リターダ)14Cと偏光グレーティング(第3偏光グレーティング)30Cとの組み合わせの第3層で構成される場合を例示している。また、各層におけるリターダ14と偏光グレーティング30とは交互に配置されるように構成されている。 As shown in FIG. 12, in the polarization state control device 610 according to the sixth embodiment, the retarder 14 and the polarization grating 30 of the polarization state control device 310 according to the third embodiment are combined so that the main surfaces thereof face each other. At least two layers are provided (a plurality of layers are stacked). In the example of FIG. 12, the first layer of the combination of the retarder (first retarder) 14A and the polarization grating (first polarization grating) 30A, the retarder (second retarder) 14B and the polarization grating (second polarization grating) 30B The case where it is configured by the second layer of the combination and the third layer of the combination of the retarder (third retarder) 14C and the polarization grating (third polarization grating) 30C is illustrated. In addition, the retarders 14 and the polarization gratings 30 in each layer are arranged alternately.
 リターダ14Aは第1及び第2電極24AL,24ARが設けられ、リターダ14Bは第1及び第2電極24BL,24BRが設けられ、リターダ14Cは第1及び第2電極24CL,24CRが設けられている。リターダ14の各々には、個別に設定された電圧値で電圧が印加される。 The retarder 14A is provided with first and second electrodes 24AL and 24AR, the retarder 14B is provided with first and second electrodes 24BL and 24BR, and the retarder 14C is provided with first and second electrodes 24CL and 24CR. A voltage is applied to each of the retarders 14 at an individually set voltage value.
 また、組み合わせの第1層、第2層、第3層の各々に対応して、ミラー16A,16B,16Cと、受光部18A,18B,18Cと、が設けられている。以下では、各層及び各層に対応する構成の各々を区別なく説明する場合には、符号のA,B,Cを省略して表記する。 Mirrors 16A, 16B and 16C and light receiving portions 18A, 18B and 18C are provided corresponding to each of the first layer, the second layer and the third layer of the combination. In the following, when the respective layers and the configurations corresponding to the respective layers are described without distinction, reference numerals A, B, and C are omitted.
 ミラー16の各々は、対応する層の組み合わせを構成するリターダ14の出射面So側であって、かつ、対応する層の組み合わせを構成する偏光グレーティング30へ入射される前の光を反射する位置に配置される。 Each of the mirrors 16 is located on the emission surface So side of the retarder 14 forming the combination of the corresponding layers and at a position that reflects the light before being incident on the polarization grating 30 forming the combination of the corresponding layers. Will be placed.
 また、第6実施形態に係る偏光状態制御装置610は、第3実施形態に係る偏光状態制御装置310の制御部20に代えて、制御部620を備える。 The polarization state control device 610 according to the sixth embodiment includes a control unit 620 instead of the control unit 20 of the polarization state control device 310 according to the third embodiment.
 図2に示す制御部20の構成と同様に、制御部620は、光量取得部42と、電圧値決定部644と、電圧制御部646と、電圧-位相遅れ量特性を記憶するDB48と、を含んで構成される。 Similar to the configuration of the control unit 20 illustrated in FIG. 2, the control unit 620 includes a light amount acquisition unit 42, a voltage value determination unit 644, a voltage control unit 646, and a DB 48 that stores a voltage-phase delay amount characteristic. It is configured to include.
 電圧値決定部644は、受光部18の各々から取得された光量データに基づいて、各受光部18に対応する層の組み合わせを構成するリターダ14に印加する電圧値を決定する。電圧値の決定方法は、上記第1~第4実施形態に示す方法と同様である。 The voltage value determination unit 644 determines the voltage value to be applied to the retarder 14 that constitutes the combination of layers corresponding to each light receiving unit 18, based on the light amount data acquired from each of the light receiving units 18. The method of determining the voltage value is the same as the method shown in the first to fourth embodiments.
 電圧制御部646は、電圧値決定部644により決定された各層に対応する電圧値が、第1及び第2電極24L,24Rを介して、対応する層の組み合わせを構成するリターダ14に印加されるように、制御用電源22に設定する。 The voltage control unit 646 applies the voltage value corresponding to each layer determined by the voltage value determination unit 644 to the retarder 14 that forms a combination of corresponding layers via the first and second electrodes 24L and 24R. As described above, the power source for control 22 is set.
 以上説明したように、第6実施形態に係る偏光状態制御装置610によれば、リターダ14と偏光グレーティング30とが組み合わせられた層が、2つ以上設けられている。偏光状態制御装置610は、各層のリターダ14の位相遅れ量を、それぞれ独立してλ/2又は0に設定する。これにより、偏光状態制御装置610は、複数の偏光グレーティング30により、単一光源を用いて複数の方向へ出射光を回折させることができる。 As described above, according to the polarization state control device 610 according to the sixth embodiment, two or more layers in which the retarder 14 and the polarization grating 30 are combined are provided. The polarization state control device 610 independently sets the phase delay amount of the retarder 14 of each layer to λ/2 or 0. Thereby, the polarization state control device 610 can diffract the emitted light in a plurality of directions by using the single light source by the plurality of polarization gratings 30.
 なお、上記各実施形態において参照する電圧-位相遅れ量特性は、図13に示すように、温度変化によって関数曲線が変化する。そこで、上記各実施形態に係る偏光状態制御装置は、異なる複数の温度毎に、電圧-位相遅れ量特性を予め記憶しておき、周囲温度をモニタリングし、周囲温度に対応する電圧-位相遅れ量特性を選択して、上記各実施形態のように電圧値を決定してもよい。これにより、上記各実施形態に係る偏光状態制御装置は、リターダ14の個体差や経年劣化等に起因する位相遅れ量のずれだけでなく、使用時の温度変化に起因する位相遅れ量のずれも解消して、常時位相遅れ量を最適化することができる。 In the voltage-phase delay amount characteristic referred to in each of the above-described embodiments, as shown in FIG. 13, the function curve changes with temperature change. Therefore, the polarization state control device according to each of the above embodiments stores the voltage-phase delay amount characteristic in advance for each of a plurality of different temperatures, monitors the ambient temperature, and measures the voltage-phase delay amount corresponding to the ambient temperature. You may select a characteristic and determine a voltage value like each above-mentioned embodiment. As a result, the polarization state control device according to each of the above-described embodiments not only shifts the phase delay amount due to the individual difference of the retarder 14 or deterioration over time, but also shifts the phase delay amount due to the temperature change during use. Therefore, the amount of phase delay can be optimized at all times.
 また、上記各実施形態をそれぞれ組み合わせて実施することもできる。例えば、第4実施形態及び第5実施形態の構成において、リターダ14と偏光グレーティング30との組合せを多層にする構成としてもよい。 Also, the above embodiments can be combined and implemented. For example, in the configurations of the fourth and fifth embodiments, the combination of the retarder 14 and the polarization grating 30 may be a multilayer configuration.
 また、上記各実施形態に係る偏光状態制御処理を実行するための偏光状態制御プログラムは、コンピュータが読み取り可能な記録媒体に記録し提供してもよい。 The polarization state control program for executing the polarization state control processing according to each of the above embodiments may be recorded in a computer-readable recording medium and provided.
 上記各実施形態のように、所望の偏光状態の出射光を得られる構成は、レーザレーダ等の光ビームスキャナ、レーザ加工機などに用いることができる。 The configuration capable of obtaining emitted light in a desired polarization state as in each of the above-described embodiments can be used in a light beam scanner such as a laser radar, a laser processing machine, or the like.

Claims (10)

  1.  光源光を直線偏光に偏光する直線偏光子と、
     前記直線偏光子を通過した光源光が入射されると共に、印加される電圧に応じて、入射された光の偏光状態を変えて出射するリターダと、
     前記直線偏光子を通過した光源光の一部を、前記リターダの出射面側において入射面側に反射させる反射板と、
     前記反射板により反射されて、前記直線偏光子を通過した光を受光する受光部と、
     前記受光部により受光された光の光量に基づいて、前記入射された光をλ/2又は0の位相遅れで偏光した光が前記リターダから出射されるように、前記リターダに印加する電圧を制御する制御部と、
     を含む、偏光状態制御装置。
    A linear polarizer that polarizes the source light into linearly polarized light,
    The light source light that has passed through the linear polarizer is incident, and according to the applied voltage, a retarder that changes the polarization state of the incident light and emits light,
    A part of the light source light that has passed through the linear polarizer, a reflection plate that reflects to the incident surface side on the exit surface side of the retarder,
    A light receiving section that receives the light that has been reflected by the reflecting plate and that has passed through the linear polarizer,
    The voltage applied to the retarder is controlled so that light obtained by polarizing the incident light with a phase delay of λ/2 or 0 is emitted from the retarder based on the amount of light received by the light receiving unit. Control unit to
    A polarization state control device including:
  2.  光が前記反射板で反射されない光路上であって、前記直線偏光子と前記リターダとの間に配置される1/4波長板をさらに含む、
     請求項1に記載の偏光状態制御装置。
    Further comprising a quarter-wave plate disposed on the optical path where light is not reflected by the reflector and between the linear polarizer and the retarder.
    The polarization state control device according to claim 1.
  3.  光が前記反射板で反射される光路上であって、前記直線偏光子と前記リターダとの間に配置される1/4波長板をさらに含む、
     請求項1又は請求項2に記載の偏光状態制御装置。
    A quarter-wave plate disposed on the optical path of light reflected by the reflection plate and between the linear polarizer and the retarder,
    The polarization state control device according to claim 1 or 2.
  4.  前記リターダから出射された光が入射される偏光グレーティングをさらに含み、
     前記反射板は、前記偏光グレーティングへ入射される前の光を反射する、
     請求項2又は請求項3に記載の偏光状態制御装置。
    Further comprising a polarization grating on which the light emitted from the retarder is incident,
    The reflection plate reflects the light before entering the polarizing grating,
    The polarization state control device according to claim 2 or 3.
  5.  前記リターダと前記偏光グレーティングとの組み合わせが複数積層され、
     前記反射板及び前記受光部は、前記組み合わせの各々に対応して設けられ、
     前記制御部は、前記受光部の各々により受光された光の光量に基づいて、前記受光部に対応する前記組み合わせを構成する前記リターダに印加する電圧を制御する、
     請求項4に記載の偏光状態制御装置。
    A plurality of combinations of the retarder and the polarization grating are laminated,
    The reflector and the light receiving unit are provided corresponding to each of the combinations,
    The control unit controls a voltage applied to the retarder forming the combination corresponding to the light receiving unit, based on the amount of light received by each of the light receiving units,
    The polarization state control device according to claim 4.
  6.  前記制御部は、前記受光部により受光された光の光量が最大となるように、前記リターダに印加する電圧を制御する、
     請求項1~請求項5のいずれか1項に記載の偏光状態制御装置。
    The control unit controls the voltage applied to the retarder so that the amount of light received by the light receiving unit is maximized,
    The polarization state control device according to any one of claims 1 to 5.
  7.  前記直線偏光子は、入射方向へP偏光の光を出射し、前記入射方向と直交する方向へS偏光の光を出射する偏光ビームスプリッタであり、
     前記受光部は、前記偏光ビームスプリッタから出射されるS偏光の光を受光し、
     前記制御部は、前記受光部で受光されたS偏光の光の光量が最小となるように、前記リターダに印加する電圧を制御する、
     請求項1~請求項5のいずれか1項に記載の偏光状態制御装置。
    The linear polarizer is a polarization beam splitter that emits P-polarized light in an incident direction and emits S-polarized light in a direction orthogonal to the incident direction.
    The light receiving unit receives the S-polarized light emitted from the polarization beam splitter,
    The control unit controls the voltage applied to the retarder so that the amount of S-polarized light received by the light receiving unit is minimized.
    The polarization state control device according to any one of claims 1 to 5.
  8.  前記制御部は、予め設定された、前記リターダに印加する電圧に対する位相遅れ量の特性において、所定の電圧値より低い電圧値の第1数値範囲において、位相遅れ量がλ/2となる電圧値を探索し、前記所定の電圧値より高い電圧値の第2数値範囲において、位相遅れ量が0となる電圧値を探索する、
     請求項1~請求項7のいずれか1項に記載の偏光状態制御装置。
    In the preset characteristic of the phase delay amount with respect to the voltage applied to the retarder, the control unit sets a voltage value at which the phase delay amount is λ/2 in the first numerical range of the voltage value lower than the predetermined voltage value. Is searched for in the second numerical value range of the voltage value higher than the predetermined voltage value, and the voltage value at which the phase delay amount becomes 0 is searched.
    The polarization state control device according to any one of claims 1 to 7.
  9.  前記制御部は、予め設定された、前記リターダに印加する電圧に対する位相遅れ量の特性において、λ/2又は0の位相遅れ量に対応する電圧値の近傍で、前記リターダに印加する電圧値を探索する、
     請求項1~請求項8のいずれか1項に記載の偏光状態制御装置。
    In the characteristic of the phase delay amount with respect to the voltage applied to the retarder set in advance, the control unit controls the voltage value applied to the retarder in the vicinity of the voltage value corresponding to the phase delay amount of λ/2 or 0. Explore,
    The polarization state control device according to any one of claims 1 to 8.
  10.  コンピュータを、請求項1~請求項9のいずれか1項に記載の偏光状態制御装置として機能させるための偏光状態制御プログラムが記録された記録媒体。 A recording medium recording a polarization state control program for causing a computer to function as the polarization state control device according to any one of claims 1 to 9.
PCT/JP2020/004144 2019-02-05 2020-02-04 Polarization state control device and computer-readable recording medium WO2020162458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019019128A JP7188756B2 (en) 2019-02-05 2019-02-05 Polarization state controller and program
JP2019-019128 2019-02-05

Publications (1)

Publication Number Publication Date
WO2020162458A1 true WO2020162458A1 (en) 2020-08-13

Family

ID=71947111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004144 WO2020162458A1 (en) 2019-02-05 2020-02-04 Polarization state control device and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP7188756B2 (en)
WO (1) WO2020162458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698759A (en) * 2023-08-03 2023-09-05 江西师范大学 Object chiral recognition method and device based on circular polarization related optical difference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039020A (en) * 2002-06-28 2004-02-05 Ricoh Co Ltd Optical pickup device and optical disk drive
JP2005100609A (en) * 2003-09-01 2005-04-14 Asahi Glass Co Ltd Optical head device
JP2010121935A (en) * 2007-11-05 2010-06-03 Nippon Sheet Glass Co Ltd Polarized image picking-up device and image processing device
JP2015038922A (en) * 2013-08-19 2015-02-26 富士フイルム株式会社 Laser device, control method and optoacoustic measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247378A (en) * 1991-06-07 1993-09-21 Peter Miller Optical retarder having means for determining the retardance of the cell corresponding to the sensed capacitance thereof
JP3064044B2 (en) * 1991-06-28 2000-07-12 松下電工株式会社 Floor support legs
JP3226046B2 (en) * 1991-10-08 2001-11-05 ヒーハイスト精工株式会社 Phase shifter
JP4196448B2 (en) * 1998-10-27 2008-12-17 ソニー株式会社 Phase difference control apparatus and optical device
JP2006252638A (en) * 2005-03-09 2006-09-21 Asahi Glass Co Ltd Polarization diffraction element and optical head apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039020A (en) * 2002-06-28 2004-02-05 Ricoh Co Ltd Optical pickup device and optical disk drive
JP2005100609A (en) * 2003-09-01 2005-04-14 Asahi Glass Co Ltd Optical head device
JP2010121935A (en) * 2007-11-05 2010-06-03 Nippon Sheet Glass Co Ltd Polarized image picking-up device and image processing device
JP2015038922A (en) * 2013-08-19 2015-02-26 富士フイルム株式会社 Laser device, control method and optoacoustic measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698759A (en) * 2023-08-03 2023-09-05 江西师范大学 Object chiral recognition method and device based on circular polarization related optical difference
CN116698759B (en) * 2023-08-03 2023-10-27 江西师范大学 Object chiral recognition method and device based on circular polarization related optical difference

Also Published As

Publication number Publication date
JP2020126174A (en) 2020-08-20
JP7188756B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
US7375819B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US20070097377A1 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
EP3761463A1 (en) Light resonator and laser processing machine
WO2020162458A1 (en) Polarization state control device and computer-readable recording medium
RU2457591C2 (en) Compact laser light source having narrow spectral width
US8693095B2 (en) Method and apparatus for decorrelation of spatially and temporally coherent light
CN109211528A (en) A kind of parameter calibration system and method for liquid crystal variable retarder
Kim et al. A compact holographic recording setup for tuning pitch using polarizing prisms
US20060014048A1 (en) Retardation plate
JP5347911B2 (en) 1/2 wavelength plate, optical pickup device, polarization conversion element, and projection display device
JPH10239518A (en) Phase difference plate, and polarizing element using it
US6317450B1 (en) Reeder compensator
JP2000266666A (en) Ellipsometer
JP5136185B2 (en) Wavelength filter
JPS58500501A (en) Non-polarized electro-optical Q-switch laser
JPH11231359A (en) Surface elastic wave high-speed optical deflecting element
JPS6134128B2 (en)
Yajima et al. Experimental demonstration of polarization beam splitter based on auto-cloning photonic crystal
JPH09297213A (en) Polarizer
JP5803027B2 (en) Pulse width expansion device
Yang et al. Polarization analysis for laser optical system
RU2648567C1 (en) Two-crystal acousto-optical frequency
JP4661144B2 (en) Wavelength separation optical element, color temperature variable light source device, color temperature correction optical device, and imaging system
US5726802A (en) Broadband quarter-wave retarding 180° fold prism
JP2001018084A (en) Laser beam machining optical system and laser beam output monitoring optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752911

Country of ref document: EP

Kind code of ref document: A1