WO2020162446A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2020162446A1
WO2020162446A1 PCT/JP2020/004095 JP2020004095W WO2020162446A1 WO 2020162446 A1 WO2020162446 A1 WO 2020162446A1 JP 2020004095 W JP2020004095 W JP 2020004095W WO 2020162446 A1 WO2020162446 A1 WO 2020162446A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical
waveguide
mounting surface
optical module
Prior art date
Application number
PCT/JP2020/004095
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 稲葉
長谷川 淳一
麻衣子 有賀
一樹 山岡
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2020571210A priority Critical patent/JPWO2020162446A1/en
Priority to CN202080012889.9A priority patent/CN113424087B/en
Publication of WO2020162446A1 publication Critical patent/WO2020162446A1/en
Priority to US17/393,957 priority patent/US20210364697A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • G02B6/1203Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29398Temperature insensitivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0656Seeding, i.e. an additional light input is provided for controlling the laser modes, for example by back-reflecting light from an external optical component
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens

Definitions

  • the present invention relates to an optical module.
  • Optical modules used for optical communication, etc. are equipped with optical elements that give a predetermined effect to the input light and output it.
  • the optical element for example, a waveguide element having an interference waveguide section is used.
  • the interference waveguide section is a section configured by a waveguide and having an optical interference function of interfering the input light (Patent Document 1).
  • the waveguide element and optical element are mounted by being bonded to the board with a bonding material on the mounting surface facing the board.
  • the stress from the substrate distorts the waveguide element or the optical element, and the optical characteristics of the waveguide element or the optical element are changed. It may change.
  • the present invention has been made in view of the above, and an object thereof is to provide an optical module in which a change in optical characteristics of a waveguide element or an optical element due to stress from a substrate is suppressed.
  • the waveguide element may be arranged in a region within the non-projection region that is separated from the projection region by a distance that is twice or more a width of a waveguide that forms the interference waveguide unit. It is characterized in that it is bonded to the substrate with a bonding material.
  • An optical module includes a substrate, an optical element that has a mounting surface facing the substrate, and outputs a given light by applying a predetermined action to the input light, and the mounting surface includes:
  • the optical element is composed of a projection area and a non-projection area where the optical path of the light is projected on the mounting surface, and the optical element is bonded to the substrate by a bonding material in the non-projection area. ..
  • the optical module according to one aspect of the present invention is characterized in that the optical element is an etalon filter or a polarization beam combiner/splitter.
  • An optical module includes a substrate, an optical element that has a mounting surface facing the substrate, and outputs a light having a predetermined action on the input light. On the mounting surface, a plurality of bonding materials separated from each other are bonded to the substrate.
  • An optical module according to an aspect of the present invention is characterized in that the substrate or the optical element includes a position control unit that positions the plurality of bonding materials so as to be separated from each other.
  • the present invention it is possible to suppress the change in the optical characteristics of the waveguide element or the optical element due to the stress from the substrate.
  • FIG. 1 is a schematic partially cutaway side view of the optical module according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining a mounted state of the waveguide element.
  • FIG. 3 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 4 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 5 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 6 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 7 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 8 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 1 is a schematic partially cutaway side view of the optical module according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining a mounted state of the waveguide element.
  • FIG. 3 is a schematic diagram illustrating an example
  • FIG. 9 is a schematic diagram illustrating an example of a mounted state of the optical element.
  • FIG. 10 is a schematic diagram illustrating an example of a mounted state of the optical element.
  • FIG. 11 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 12 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 13 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 14 is a schematic diagram illustrating an example of a mounted state of the waveguide element.
  • FIG. 15A is a schematic diagram illustrating an example of a pattern.
  • FIG. 15B is a schematic diagram illustrating an example of a pattern.
  • FIG. 15C is a schematic diagram illustrating an example of a pattern.
  • FIG. 15D is a schematic diagram illustrating an example of a pattern.
  • FIG. 15E is a schematic diagram illustrating an example of a pattern.
  • FIG. 15F is
  • the bottom plate portion 1a is made of a material having high thermal conductivity such as copper tungsten (CuW), copper molybdenum (CuMo), and alumina (Al 2 O 3 ).
  • the side wall portion 1b, the upper lid portion 1c, and the light output portion 1d are made of a material having a low coefficient of thermal expansion such as Fe—Ni—Co alloy or alumina.
  • thermoelectric cooling element TEC
  • carrier 3
  • semiconductor laser element 4 lens 5
  • optical isolator 6 lens holder 7, lens 8
  • waveguide element 10
  • light receiving element holder 11 a light receiving element unit 12.
  • the optical module 100 is configured such that these components are mounted inside the housing 1 and the upper lid portion 1c is attached and hermetically sealed.
  • thermoelectric cooling element 2 is fixed to the bottom plate portion 1a.
  • the thermoelectric cooling element 2 is supplied with electric power from the outside through a lead (not shown) and absorbs heat or generates heat according to the direction in which a current flows.
  • the thermoelectric cooling element 2 is a known Peltier module, and has a configuration in which a semiconductor element is arranged between two insulating substrates.
  • the substrate on the upper lid 1c side is referred to as the substrate 2a.
  • the two substrates include, for example, any one of ceramics such as aluminum nitride, alumina, and silicon nitride (Si 3 N 4 ).
  • the two substrates may be aluminum nitride substrates, alumina substrates, or silicon nitride substrates.
  • the carrier 3, the semiconductor laser element 4, the lens 5, the optical isolator 6, the lens holder 7, the lens 8, the waveguide element 10, the light receiving element holder 11, and the light receiving element unit 12 are mounted on the substrate 2 a of the thermoelectric cooling element 2. .. These components are controlled to the desired temperature by passing an electric current through the thermoelectric cooling element 2.
  • the semiconductor laser device 4 is mounted on the carrier 3 and is, for example, a wavelength tunable laser device.
  • the carrier 3, which is also called a submount, is made of an insulating material having high thermal conductivity, and efficiently transfers the heat generated by the semiconductor laser element 4 to the thermoelectric cooling element 2.
  • the semiconductor laser element 4 is supplied with power from outside via a lead (not shown) and outputs the laser light L1 to the lens 5 side.
  • the wavelength of the laser light L1 is, for example, 900 nm or more and 1650 nm or less, which is suitable as a wavelength for optical communication.
  • the lens 5 is mounted on the carrier 3.
  • the laser light L1 is input to the lens 5, and the laser light L1 is collimated and output.
  • the optical isolator 6 receives the collimated laser beam L1, passes the laser beam L1, and outputs it to the optical output unit 1d side.
  • the optical isolator 6 blocks passage of light traveling from the side of the light output unit 1d. As a result, the optical isolator 6 blocks reflected light or the like from entering the semiconductor laser element 4 from the outside.
  • the semiconductor laser element 4 also outputs the laser light L2 having relatively weak power from the end face (rear end face) opposite to the end face (output end face) that outputs the laser light L1 facing the lens 5.
  • the lens 8 is mounted on the lens holder 7, collects the laser light L2, and outputs the laser light L2 to the waveguide element 10.
  • the waveguide element 10 is a planar lightwave circuit element made of, for example, silica glass or a semiconductor such as silicon.
  • the waveguide element 10 has one ring resonator 10a as an interference waveguide section having an optical interference function.
  • the waveguide element may have a plurality of ring resonators.
  • the ring resonator 10a is a portion including a ring waveguide and two optical coupler waveguides that input and output light to and from the ring waveguide.
  • the optical coupler waveguide for example, a multimode interference waveguide type or a directional coupler can be used.
  • the waveguide element 10 has a mounting surface 10b, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10b side, and is bonded to the substrate 2a by a bonding material 9.
  • the ring resonator 10a is formed near the surface opposite to the mounting surface 10b.
  • the joining material 9 is, for example, an epoxy resin, an acrylic resin, a rubber adhesive, a silicone resin adhesive, or solder.
  • the light receiving element unit 12 is mounted on the light receiving element holder 11 and has two light receiving elements.
  • the two light receiving elements respectively receive the two laser beams output from the waveguide element 10.
  • the current signal output from each of the two light receiving elements is output to an external controller and used for wavelength control of the laser light L1 as in the known technique.
  • the mounting surface 10b includes a projection area 10ba, which is an area where the ring resonator 10a is projected on the mounting surface 10b, and a non-projection area 10bb, which is an area other than the projection area 10ba. Since the projection area 10ba is a projection of the waveguides forming the ring resonator 10a, the area surrounded by the projection area of the ring waveguide is not the projection area 10ba but the non-projection area 10bb.
  • the waveguide element 10 is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10bb.
  • the bonding material 9 expands or contracts, so that the waveguide element 10 is stressed.
  • the waveguide element 10 is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10bb, stress is less likely to act on the ring resonator 10a whose optical characteristics are likely to change due to stress. As a result, changes in the optical characteristics of the waveguide element 10 due to stress from the substrate are suppressed.
  • the waveguide element 10 may be bonded by the bonding material 9 in a region apart from the projection region 10ba by a certain distance (distance D in FIG. 2) among the non-projection regions 10bb. preferable.
  • the separation distance is preferably at least twice the waveguide width of the waveguides forming the ring resonator 10a.
  • the waveguide width is the width in the direction parallel to the ring resonator 10a and orthogonal to the extending direction of the waveguide.
  • the width of guided light exuding in the waveguide is smaller than twice the width of the waveguide. Therefore, if the separation distance is twice or more the width of the waveguide, the action of the stress on the ring resonator 10a can be more reliably achieved. Can be suppressed.
  • the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate is suppressed. Further, like the optical module 100, when the non-projection region 10bb on one end face side of the waveguide element 10 is fixed to the substrate, it is possible to further suppress the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate. Benefits are obtained.
  • FIG. 3 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 21 which is a substitute for the substrate 2a.
  • the substrate 21 includes a metallized pattern 21a as a position control unit that positions the bonding material 9 in the non-projection area.
  • the metallized pattern 21a extends longer than the bonding material 9 in the direction perpendicular to the paper surface.
  • the bonding material 9 can be located in the non-projection area 10bb because the metallization pattern 21a prevents the bonding material 9 from flowing out to the projection area 10ba in the course of curing.
  • FIG. 4 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 22 which is a substitute for the substrate 2a.
  • the substrate 22 includes a protrusion 22a as a position control unit that positions the bonding material 9 in the non-projection area.
  • the protrusion 22a extends longer than the bonding material 9 in the direction perpendicular to the paper surface.
  • the bonding material 9 can be positioned in the non-projection area 10bb because the protrusion 22a prevents the bonding material 9 from flowing out to the projection area 10ba in the course of curing.
  • FIG. 5 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 23 which is a replacement of the substrate 2a.
  • the substrate 23 includes a rough surface area 23a as a position control section that positions the bonding material 9 in the non-projection area.
  • the rough surface region 23a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. Since the bonding material 9 stays in the rough surface area 23a in the course of hardening, the bonding material 9 is prevented from flowing out to the projection area 10ba, and thus can be positioned in the non-projection area 10bb.
  • FIG. 6 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 24 which is a substitute for the substrate 2a.
  • the substrate 24 includes a countersink portion 24a as a position control portion that positions the bonding material 9 in the non-projection area.
  • the counterbore 24a extends longer than the joining material 9 in the direction perpendicular to the plane of the drawing.
  • FIG. 7 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10A in the optical module.
  • the waveguide element 10A includes a ring resonator 10Aa.
  • the mounting surface 10Ab of the waveguide element 10A is not parallel to the ring resonator 10Aa.
  • the waveguide element 10A is mounted on the substrate 25.
  • the mounting surface 10Ab includes a projection area 10Aba, which is an area where the ring resonator 10a is projected on the mounting surface 10b, and a non-projection area 10Abb, which is an area other than the projection area 10Aba.
  • the waveguide element 10A is bonded to the substrate 25 with the bonding material 9 in the non-projection area 10Abb. This suppresses changes in the optical characteristics of the waveguide element 10A due to stress from the substrate.
  • FIG. 8 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10B in the optical module.
  • the waveguide element 10B is a Mach-Zehnder interferometer element made of a semiconductor such as silica glass or silicon.
  • the waveguide element 10B has a one-stage Mach-Zehnder interferometer 10Ba as an interference waveguide portion having an optical interference function.
  • the waveguide element may have a plurality of Mach-Zehnder interferometers.
  • the Mach-Zehnder interferometer 10Ba is a part including two optical coupler waveguides and an arm waveguide connected to the two optical coupler waveguides.
  • the waveguide element 10B has a mounting surface 10Bb, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Bb side, and is bonded to the substrate 2a by a bonding material 9.
  • the Mach-Zehnder interferometer 10Ba is formed near the surface opposite to the mounting surface 10Bb.
  • the mounting surface 10Bb includes a projection area 10Bba, which is an area where the Mach-Zehnder interferometer 10Ba is projected on the mounting surface 10Bb, and a non-projection area 10Bbb, which is an area other than the projection area 10Bba.
  • the waveguide element 10B is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10Bbb. This suppresses changes in the optical characteristics of the waveguide element 10 due to stress from the substrate.
  • the waveguide element 10B is bonded with the bonding material 9 in a region apart from the projection region 10Bba by a certain distance among the non-projection regions 10Bbb.
  • the separation distance is preferably at least twice the waveguide width of the waveguides forming the Mach-Zehnder interferometer 10Ba.
  • the optical module according to the second embodiment can suppress changes in optical characteristics of optical elements other than the waveguide element due to stress from the substrate.
  • the optical element 10C is an etalon filter.
  • the optical element 10C has a transmission characteristic that periodically changes with respect to the wavelength, and transmits the input laser light L1 with a transmittance according to the wavelength and outputs the laser light L1.
  • the optical element 10C has a mounting surface 10Cb, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Cb side, and is bonded to the substrate 2a by a bonding material 9.
  • the mounting surface 10Cb includes a projection area 10Cba, which is an area where the optical path of the laser light L1 is projected onto the mounting surface 10Cb, and a non-projection area 10Cbb, which is an area other than the projection area 10Cba.
  • the projection area 10Cba has a width equal to the beam diameter of the laser light L1.
  • the beam diameter can be 1/e 2 full width of the beam profile of the laser beam L1.
  • the optical element 10C is bonded to the substrate 2a with the bonding material 9 in the non-projection area 10Cbb.
  • the optical element 10C is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10Cbb, the change in the optical characteristic due to the stress from the substrate (for example, the change in the transmission characteristic) is suppressed. Further, it is preferable that the optical element 10C be bonded by the bonding material 9 in the non-projection region 10Cbb in a region separated from the projection region 10Cba by a certain distance. As a result, the stress due to the expansion and contraction of the bonding material 9 becomes more difficult to act on the optical element 10C.
  • the separation distance is preferably twice the beam diameter of the laser light L1 or more.
  • FIG. 10 is a schematic diagram illustrating an example of a mounted state of the optical element 10D in the optical module.
  • the optical element 10D is a polarization beam combiner/splitter. When the linearly polarized light beams orthogonal to each other are input, the optical element 10D polarization-synthesizes and outputs the input light beams, or the input light is split into the mutually linearly polarized light beams and output. It is something to do.
  • FIG. 10 shows an example in which the input laser lights L2 and L3 are polarized and combined and output as laser light L4.
  • the optical element 10D has a mounting surface 10Db, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Db side, and is bonded to the substrate 2a by a bonding material 9.
  • the mounting surface 10Db is composed of a projection area, which is an area where the optical paths of the laser beams L2, L3, and L4 are projected onto the mounting surface 10Db, and a non-projection area, which is an area other than the projection area.
  • the projection area has a width equal to the beam diameter of the laser lights L2, L3, and L4.
  • the optical element 10D is bonded to the substrate 2a with the bonding material 9 in the non-projection area.
  • the optical element 10D is bonded to the substrate 2a with the bonding material 9 in the non-projection region, the optical characteristics change due to stress from the substrate (for example, deterioration of loss during polarization multiplexing or polarization during polarization separation). The deterioration of the wave extinction ratio) is suppressed.
  • the optical module according to the third embodiment can suppress changes in optical characteristics due to stress from the substrate of the optical element.
  • FIG. 11 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 which is an optical element in the optical module.
  • the waveguide element 10 has a ring resonator 10a and a mounting surface 10b facing the substrate 26.
  • the waveguide element 10 is bonded to the substrate 26 on the mounting surface 10b by a plurality of bonding materials 9 separated from each other.
  • the substrate 26 replaces the substrate 2a.
  • the size of each bonding material 9 may be set so that the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate is less than or equal to the allowable level.
  • FIG. 12 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 27 which is a substitute for the substrate 2a.
  • the substrate 27 includes a protrusion 27a as a position control unit that positions the bonding material 9 so as to be spaced from each other.
  • the protrusion 27a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. By the protrusion 27a, the bonding material 9 can be kept in a state of being separated from each other even in the state of being cured.
  • FIG. 13 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 28 which is a substitute for the substrate 2a.
  • the substrate 28 is provided with a countersunk portion 28a as a position control portion that positions the bonding material 9 so as to be separated from each other.
  • the counterbore 28a extends longer than the bonding material 9 in the direction perpendicular to the plane of the drawing. Even if the joining material 9 flows out in the middle of curing by the counterbore portion 28a, the joining material 9 does not reach the adjacent joint material 9 by the counterbore portion 28a and is kept in a state of being separated from each other.
  • FIG. 14 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module.
  • This waveguide element 10 is mounted on a substrate 29 which is a substitute for the substrate 2a.
  • the substrate 29 includes a rough surface region 29a as a position control unit that positions the bonding material 9 so as to be separated from each other.
  • the rough surface area 29a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. Since each of the bonding materials 9 stays in the rough surface region 29a during the curing process, the bonding materials 9 are kept apart from each other.
  • the metallized pattern 26a, the protrusion 27a, the counterbore 28a, and the rough surface region 29a which are the position control portions, are strip-shaped, lattice-shaped, concentric, checkered, wavy, and honeycomb-shaped. Is formed. Furthermore, these position control units may be formed in a concentric shape, a concentric polygonal shape, a dot shape, a curved shape, a polygonal shape, or any combination thereof. Further, these shapes may be applied to the metallized pattern 21a, the protrusion 22a, the rough surface area 23a, and the counterbore portion 24a in the modification of the first embodiment.
  • the optical element in the third embodiment is the waveguide element 10
  • the optical element may be an etalon filter, a polarization beam combiner/splitter, or the like.
  • the joining is performed with one joining material, but a plurality of joining materials may be used in the non-projection area.
  • the bonding material may be located in a non-projection region surrounded by the projection region of the ring waveguide or a non-projection region sandwiched by the projection regions of the arm waveguide.
  • the position control unit is provided on the substrate, but it may be provided on the waveguide element or the optical element, or may be provided on both the substrate and the element.
  • the present invention is not limited to the above embodiment.
  • the present invention also includes those configured by appropriately combining the above-described components. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above embodiments, and various modifications can be made.
  • the present invention can be applied to an optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An optical module comprising a substrate, a mounting surface facing the substrate, and a waveguide element having an interference waveguide section that has an optical interference function. The mounting surface comprises: a projection area having the interference waveguide section projected on to the mounting surface; and a non-projection area. The waveguide element is bonded to the substrate by using a bonding material, in the non-projection area. The waveguide element can be bonded to the substrate by using a bonding material, in an area inside the non-projection area separated from the projection area by a distance of at least twice the waveguide width of the interference waveguide section.

Description

光モジュールOptical module
 本発明は、光モジュールに関する。 The present invention relates to an optical module.
 光通信等に使用される光モジュールは、入力された光に所定の作用を与えて出力する光学素子を備えている。光学素子としては、たとえば、干渉導波路部を有する導波路素子が用いられる。干渉導波路部は、導波路で構成されており、入力された光を干渉させる光干渉機能を有する部分である(特許文献1)。 Optical modules used for optical communication, etc. are equipped with optical elements that give a predetermined effect to the input light and output it. As the optical element, for example, a waveguide element having an interference waveguide section is used. The interference waveguide section is a section configured by a waveguide and having an optical interference function of interfering the input light (Patent Document 1).
特開2014-165384号公報JP, 2014-165384, A
 導波路素子や光学素子は、基板と対向する搭載面において、接合材にて基板に接合されて搭載される。この場合、導波路素子や光学素子の搭載面の全面が接合材にて基板に接合されると、基板からの応力によって導波路素子や光学素子が歪み、導波路素子や光学素子の光学特性が変化する場合がある。 ∙ The waveguide element and optical element are mounted by being bonded to the board with a bonding material on the mounting surface facing the board. In this case, when the entire mounting surface of the waveguide element or the optical element is bonded to the substrate with the bonding material, the stress from the substrate distorts the waveguide element or the optical element, and the optical characteristics of the waveguide element or the optical element are changed. It may change.
 本発明は、上記に鑑みてなされたものであって、基板からの応力による導波路素子や光学素子の光学特性の変化が抑制された光モジュールを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an optical module in which a change in optical characteristics of a waveguide element or an optical element due to stress from a substrate is suppressed.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光モジュールは、基板と、前記基板と対向する搭載面と、光干渉機能を有する干渉導波路部とを有する導波路素子と、を備え、前記搭載面は、前記干渉導波路部を前記搭載面に投影した投影領域と非投影領域とからなり、前記導波路素子は前記非投影領域おいて前記基板に接合材にて接合していることを特徴とする。 In order to solve the above-mentioned problems and to achieve the object, an optical module according to an aspect of the present invention includes a substrate, a mounting surface facing the substrate, and an interference waveguide portion having an optical interference function. A waveguide element, wherein the mounting surface comprises a projection area and a non-projection area where the interference waveguide section is projected onto the mounting surface, and the waveguide element is bonded to the substrate in the non-projection area. It is characterized by being joined at.
 本発明の一態様に係る光モジュールは、前記導波路素子は、前記投影領域から前記干渉導波路部を構成する導波路幅の2倍以上の距離だけ離間した前記非投影領域内の領域において、前記基板に接合材にて接合していることを特徴とする。 In the optical module according to the aspect of the present invention, the waveguide element may be arranged in a region within the non-projection region that is separated from the projection region by a distance that is twice or more a width of a waveguide that forms the interference waveguide unit. It is characterized in that it is bonded to the substrate with a bonding material.
 本発明の一態様に係る光モジュールは、前記導波路素子は、半導体またはガラスからなる平面光波回路素子であることを特徴とする。 The optical module according to one aspect of the present invention is characterized in that the waveguide element is a planar lightwave circuit element made of a semiconductor or glass.
 本発明の一態様に係る光モジュールは、前記干渉導波路部は、リング共振器またはマッハツェンダ干渉計であることを特徴とする。 The optical module according to one aspect of the present invention is characterized in that the interference waveguide section is a ring resonator or a Mach-Zehnder interferometer.
 本発明の一態様に係る光モジュールは、前記基板または前記導波路素子は、前記接合材を前記非投影領域に位置させる位置制御部を備えることを特徴とする。 An optical module according to an aspect of the present invention is characterized in that the substrate or the waveguide element includes a position control unit that positions the bonding material in the non-projection region.
 本発明の一態様に係る光モジュールは、基板と、前記基板と対向する搭載面を有し、入力された光に所定の作用を与えて出力する光学素子と、を備え、前記搭載面は、前記光学素子における前記光の光路を前記搭載面に投影した投影領域と非投影領域とからなり、前記光学素子は前記非投影領域において前記基板に接合材にて接合していることを特徴とする。 An optical module according to an aspect of the present invention includes a substrate, an optical element that has a mounting surface facing the substrate, and outputs a given light by applying a predetermined action to the input light, and the mounting surface includes: The optical element is composed of a projection area and a non-projection area where the optical path of the light is projected on the mounting surface, and the optical element is bonded to the substrate by a bonding material in the non-projection area. ..
 本発明の一態様に係る光モジュールは、前記光学素子は、エタロンフィルタまたは偏波ビームコンバイナ/スプリッタであることを特徴とする。 The optical module according to one aspect of the present invention is characterized in that the optical element is an etalon filter or a polarization beam combiner/splitter.
 本発明の一態様に係る光モジュールは、前記基板または前記光学素子は、前記接合材を前記非投影領域に位置させる位置制御部を備えることを特徴とする。 An optical module according to an aspect of the present invention is characterized in that the substrate or the optical element includes a position control unit that positions the bonding material in the non-projection region.
 本発明の一態様に係る光モジュールは、基板と、前記基板と対向する搭載面を有し、入力された光に所定の作用を与えて出力する光学素子と、を備え、前記光学素子は、前記搭載面において、互いに離間した複数の接合材にて前記基板に接合していることを特徴とする。 An optical module according to an aspect of the present invention includes a substrate, an optical element that has a mounting surface facing the substrate, and outputs a light having a predetermined action on the input light. On the mounting surface, a plurality of bonding materials separated from each other are bonded to the substrate.
 本発明の一態様に係る光モジュールは、前記基板または前記光学素子は、前記複数の接合材を互いに離間して位置させる位置制御部を備えることを特徴とする。 An optical module according to an aspect of the present invention is characterized in that the substrate or the optical element includes a position control unit that positions the plurality of bonding materials so as to be separated from each other.
 本発明によれば、基板からの応力による導波路素子や光学素子の光学特性の変化が抑制されるという効果を奏する。 According to the present invention, it is possible to suppress the change in the optical characteristics of the waveguide element or the optical element due to the stress from the substrate.
図1は、実施形態1に係る光モジュールの模式的な一部切欠側面図である。FIG. 1 is a schematic partially cutaway side view of the optical module according to the first embodiment. 図2は、導波路素子の搭載状態を説明する模式図である。FIG. 2 is a schematic diagram for explaining a mounted state of the waveguide element. 図3は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 3 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図4は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 4 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図5は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 5 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図6は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 6 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図7は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 7 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図8は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 8 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図9は、光学素子の搭載状態の一例を説明する模式図である。FIG. 9 is a schematic diagram illustrating an example of a mounted state of the optical element. 図10は、光学素子の搭載状態の一例を説明する模式図である。FIG. 10 is a schematic diagram illustrating an example of a mounted state of the optical element. 図11は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 11 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図12は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 12 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図13は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 13 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図14は、導波路素子の搭載状態の一例を説明する模式図である。FIG. 14 is a schematic diagram illustrating an example of a mounted state of the waveguide element. 図15Aは、パターンの例を説明する模式図である。FIG. 15A is a schematic diagram illustrating an example of a pattern. 図15Bは、パターンの例を説明する模式図である。FIG. 15B is a schematic diagram illustrating an example of a pattern. 図15Cは、パターンの例を説明する模式図である。FIG. 15C is a schematic diagram illustrating an example of a pattern. 図15Dは、パターンの例を説明する模式図である。FIG. 15D is a schematic diagram illustrating an example of a pattern. 図15Eは、パターンの例を説明する模式図である。FIG. 15E is a schematic diagram illustrating an example of a pattern. 図15Fは、パターンの例を説明する模式図である。FIG. 15F is a schematic diagram illustrating an example of a pattern.
 以下、添付図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付し、重複説明を適宜省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合があることに留意する必要がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments described below. In the description of the drawings, the same or corresponding elements will be denoted by the same reference symbols as appropriate and redundant description will be appropriately omitted. Further, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, and the like may be different from reality.
(実施形態1)
 図1は、実施形態1に係る光モジュールの模式的な一部切欠側面図である。この光モジュール100は、筐体1を備えている。筐体1は、底板部1aと、側壁部1bと、上蓋部1cと、光出力部1dとを備えている。底板部1aは板状の部材である。側壁部1bは、4面を有する枠板状の部材であり、各面は底板部1aと略直交している。上蓋部1cは、底板部1aと対向して配置された板状の部材である。光出力部1dは円管状の部材であり、側壁部1bの1面に設けられている。側壁部1bには透光性の窓が設けられており、筐体1内部から窓および光出力部1dを通って光が通過可能となっている。
(Embodiment 1)
FIG. 1 is a schematic partially cutaway side view of the optical module according to the first embodiment. The optical module 100 includes a housing 1. The housing 1 includes a bottom plate portion 1a, a side wall portion 1b, an upper lid portion 1c, and a light output portion 1d. The bottom plate portion 1a is a plate-shaped member. The side wall portion 1b is a frame plate-shaped member having four surfaces, and each surface is substantially orthogonal to the bottom plate portion 1a. The upper lid portion 1c is a plate-shaped member that is arranged so as to face the bottom plate portion 1a. The light output portion 1d is a tubular member, and is provided on one surface of the side wall portion 1b. A translucent window is provided in the side wall portion 1b, and light can pass from the inside of the housing 1 through the window and the light output portion 1d.
 底板部1aは、銅タングステン(CuW)、銅モリブデン(CuMo)、アルミナ(Al)などの熱伝導率が高い材料からなる。側壁部1b、上蓋部1c、光出力部1dは、Fe-Ni-Co合金、アルミナなどの熱膨張係数が低い材料からなる。 The bottom plate portion 1a is made of a material having high thermal conductivity such as copper tungsten (CuW), copper molybdenum (CuMo), and alumina (Al 2 O 3 ). The side wall portion 1b, the upper lid portion 1c, and the light output portion 1d are made of a material having a low coefficient of thermal expansion such as Fe—Ni—Co alloy or alumina.
 光モジュール100の内部には、以下のコンポーネントが収容されている:熱電冷却素子(TEC)2、キャリア3、半導体レーザ素子4、レンズ5、光アイソレータ6、レンズホルダ7、レンズ8、導波路素子10、受光素子ホルダ11、受光素子ユニット12である。 The following components are housed inside the optical module 100: thermoelectric cooling element (TEC) 2, carrier 3, semiconductor laser element 4, lens 5, optical isolator 6, lens holder 7, lens 8, waveguide element. 10, a light receiving element holder 11, and a light receiving element unit 12.
 光モジュール100では、筐体1の内部にこれらのコンポーネントが実装され、上蓋部1cを取り付けて気密封止されて構成されている。 The optical module 100 is configured such that these components are mounted inside the housing 1 and the upper lid portion 1c is attached and hermetically sealed.
 光モジュール100は、半導体レーザモジュールとして構成されている。以下、各コンポーネントの構成および機能について説明する。 The optical module 100 is configured as a semiconductor laser module. The configuration and function of each component will be described below.
 熱電冷却素子2は、底板部1aに固定されている。熱電冷却素子2は、外部から不図示のリードを介して電力を供給されて、電流を流す方向に応じて吸熱または発熱を行う。本実施形態では、熱電冷却素子2は公知のペルチェモジュールであって、2枚の絶縁性の基板の間に半導体素子が配置された構成を有する。2枚の基板のうち、上蓋部1c側の基板を基板2aとする。なお、2枚の基板は、たとえばセラミックである窒化アルミニウム、アルミナ、窒化シリコン(Si)のいずれか一つを含む。2枚の基板は、窒化アルミニウム基板、アルミナ基板、または窒化シリコン基板でもよい。 The thermoelectric cooling element 2 is fixed to the bottom plate portion 1a. The thermoelectric cooling element 2 is supplied with electric power from the outside through a lead (not shown) and absorbs heat or generates heat according to the direction in which a current flows. In the present embodiment, the thermoelectric cooling element 2 is a known Peltier module, and has a configuration in which a semiconductor element is arranged between two insulating substrates. Of the two substrates, the substrate on the upper lid 1c side is referred to as the substrate 2a. The two substrates include, for example, any one of ceramics such as aluminum nitride, alumina, and silicon nitride (Si 3 N 4 ). The two substrates may be aluminum nitride substrates, alumina substrates, or silicon nitride substrates.
 キャリア3、半導体レーザ素子4、レンズ5、光アイソレータ6、レンズホルダ7、レンズ8、導波路素子10、受光素子ホルダ11、受光素子ユニット12は、熱電冷却素子2における基板2aに搭載されている。これらのコンポーネントは、熱電冷却素子2に電流を流すことによって所望の温度に制御される。 The carrier 3, the semiconductor laser element 4, the lens 5, the optical isolator 6, the lens holder 7, the lens 8, the waveguide element 10, the light receiving element holder 11, and the light receiving element unit 12 are mounted on the substrate 2 a of the thermoelectric cooling element 2. .. These components are controlled to the desired temperature by passing an electric current through the thermoelectric cooling element 2.
 半導体レーザ素子4は、キャリア3に搭載されており、たとえば波長可変レーザ素子である。キャリア3は、サブマウントとも呼ばれ、熱伝導性が高い絶縁性の材料からなり、半導体レーザ素子4が発する熱を熱電冷却素子2に効率良く輸送する。 The semiconductor laser device 4 is mounted on the carrier 3 and is, for example, a wavelength tunable laser device. The carrier 3, which is also called a submount, is made of an insulating material having high thermal conductivity, and efficiently transfers the heat generated by the semiconductor laser element 4 to the thermoelectric cooling element 2.
 半導体レーザ素子4は、外部から不図示のリードを介して電力を供給されて、レーザ光L1をレンズ5側に出力する。レーザ光L1の波長は、たとえば光通信の波長として好適な900nm以上1650nm以下である。 The semiconductor laser element 4 is supplied with power from outside via a lead (not shown) and outputs the laser light L1 to the lens 5 side. The wavelength of the laser light L1 is, for example, 900 nm or more and 1650 nm or less, which is suitable as a wavelength for optical communication.
 レンズ5は、キャリア3に搭載されている。レンズ5は、レーザ光L1が入力され、レーザ光L1をコリメートして出力する。 The lens 5 is mounted on the carrier 3. The laser light L1 is input to the lens 5, and the laser light L1 is collimated and output.
 光アイソレータ6は、コリメートされたレーザ光L1が入力されて、レーザ光L1を通過させて光出力部1d側へ出力する。光アイソレータ6は、光出力部1d側から進行してきた光の通過を阻止する。これにより、光アイソレータ6は、外部から反射光などが半導体レーザ素子4に入力することを阻止する。 The optical isolator 6 receives the collimated laser beam L1, passes the laser beam L1, and outputs it to the optical output unit 1d side. The optical isolator 6 blocks passage of light traveling from the side of the light output unit 1d. As a result, the optical isolator 6 blocks reflected light or the like from entering the semiconductor laser element 4 from the outside.
 半導体レーザ素子4は、レンズ5と対向してレーザ光L1を出力する端面(出力端面)とは反対側の端面(後端面)からも、比較的パワーが弱いレーザ光L2を出力する。レンズ8は、レンズホルダ7に搭載されており、レーザ光L2を集光し、導波路素子10に出力する。 The semiconductor laser element 4 also outputs the laser light L2 having relatively weak power from the end face (rear end face) opposite to the end face (output end face) that outputs the laser light L1 facing the lens 5. The lens 8 is mounted on the lens holder 7, collects the laser light L2, and outputs the laser light L2 to the waveguide element 10.
 導波路素子10は、たとえば石英系ガラスや、シリコン等の半導体からなる平面光波回路素子である。導波路素子10は、光干渉機能を有する干渉導波路部として、1つのリング共振器10aを有している。ただし、導波路素子は複数のリング共振器を有していても良い。リング共振器10aは、リング導波路と、リング導波路に光の入出力する2つの光カプラ導波路とで構成される部分である。光カプラ導波路としては、例えば多モード干渉導波路型や方向性結合器を用いることができる。また、導波路素子10は、一方の主表面である搭載面10bが基板2aと対向しており、搭載面10b側において基板2aに搭載され、接合材9にて基板2aに接合している。リング共振器10aは搭載面10bの反対側の面近傍に形成されている。接合材9は、たとえば、エポキシ樹脂、アクリル樹脂、ゴム接着剤、シリコーン樹脂接着剤または半田である。 The waveguide element 10 is a planar lightwave circuit element made of, for example, silica glass or a semiconductor such as silicon. The waveguide element 10 has one ring resonator 10a as an interference waveguide section having an optical interference function. However, the waveguide element may have a plurality of ring resonators. The ring resonator 10a is a portion including a ring waveguide and two optical coupler waveguides that input and output light to and from the ring waveguide. As the optical coupler waveguide, for example, a multimode interference waveguide type or a directional coupler can be used. The waveguide element 10 has a mounting surface 10b, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10b side, and is bonded to the substrate 2a by a bonding material 9. The ring resonator 10a is formed near the surface opposite to the mounting surface 10b. The joining material 9 is, for example, an epoxy resin, an acrylic resin, a rubber adhesive, a silicone resin adhesive, or solder.
 リング共振器10aは、波長に対して透過特性が周期的に変化する。導波路素子10は、入力されたレーザ光L2を2分割し、その1つを出力し、他の1つを、リング共振器10aを透過させて出力する。 The ring resonator 10a has a transmission characteristic that changes periodically with respect to the wavelength. The waveguide element 10 splits the input laser light L2 into two, outputs one of them, and outputs the other one through the ring resonator 10a.
 受光素子ユニット12は、受光素子ホルダ11に搭載されており、2つの受光素子を備えている。2つの受光素子は、それぞれ、導波路素子10から出力された2つのレーザ光のそれぞれを受光する。2つの受光素子のそれぞれから出力された電流信号は、外部の制御器に出力され、公知技術と同様にレーザ光L1の波長制御に使用される。 The light receiving element unit 12 is mounted on the light receiving element holder 11 and has two light receiving elements. The two light receiving elements respectively receive the two laser beams output from the waveguide element 10. The current signal output from each of the two light receiving elements is output to an external controller and used for wavelength control of the laser light L1 as in the known technique.
 図2に示すように、搭載面10bは、リング共振器10aを搭載面10bに投影した領域である投影領域10baと、投影領域10ba以外の領域である非投影領域10bbとからなる。投影領域10baはリング共振器10aを構成する導波路を投影したものであるから、たとえばリング導波路の投影領域で囲まれる領域は投影領域10baではなく、非投影領域10bbである。そして、導波路素子10は、非投影領域10bbおいて基板2aに接合材9にて接合している。 As shown in FIG. 2, the mounting surface 10b includes a projection area 10ba, which is an area where the ring resonator 10a is projected on the mounting surface 10b, and a non-projection area 10bb, which is an area other than the projection area 10ba. Since the projection area 10ba is a projection of the waveguides forming the ring resonator 10a, the area surrounded by the projection area of the ring waveguide is not the projection area 10ba but the non-projection area 10bb. The waveguide element 10 is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10bb.
 光モジュール100が環境温度の変化を受けたり、熱電冷却素子2が温度調節を行ったりすると、接合材9が膨張や収縮するために、導波路素子10に応力が掛かる。しかし、導波路素子10が、非投影領域10bbおいて基板2aに接合材9にて接合しているので、応力が、応力によって光学特性が変化しやすいリング共振器10aに作用しにくくなる。その結果、基板からの応力による導波路素子10の光学特性の変化が抑制される。 When the optical module 100 undergoes a change in environmental temperature or the thermoelectric cooling element 2 adjusts the temperature, the bonding material 9 expands or contracts, so that the waveguide element 10 is stressed. However, since the waveguide element 10 is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10bb, stress is less likely to act on the ring resonator 10a whose optical characteristics are likely to change due to stress. As a result, changes in the optical characteristics of the waveguide element 10 due to stress from the substrate are suppressed.
 さらに、導波路素子10は、非投影領域10bbのなかでも、投影領域10baからある程度の距離(図2における距離D)だけ離間している領域にて、接合材9にて接合していることが好ましい。これにより、接合材9の膨張や収縮による応力が、より一層、リング共振器10aに作用しにくくなる。離間距離としては、リング共振器10aを構成する導波路の導波路幅の2倍以上が好ましい。導波路幅とは、リング共振器10aに平行かつ導波路の延伸方向に直交する方向における幅である。一般に、導波路において導波光がしみ出す幅は、導波路幅の2倍より小さいので、離間距離が導波路幅の2倍以上であれば、応力のリング共振器10aへの作用をより確実に抑制できる。 Further, the waveguide element 10 may be bonded by the bonding material 9 in a region apart from the projection region 10ba by a certain distance (distance D in FIG. 2) among the non-projection regions 10bb. preferable. As a result, the stress due to the expansion and contraction of the bonding material 9 becomes more difficult to act on the ring resonator 10a. The separation distance is preferably at least twice the waveguide width of the waveguides forming the ring resonator 10a. The waveguide width is the width in the direction parallel to the ring resonator 10a and orthogonal to the extending direction of the waveguide. In general, the width of guided light exuding in the waveguide is smaller than twice the width of the waveguide. Therefore, if the separation distance is twice or more the width of the waveguide, the action of the stress on the ring resonator 10a can be more reliably achieved. Can be suppressed.
 以上説明したように、光モジュール100では、基板からの応力による導波路素子10の光学特性の変化が抑制される。また、光モジュール100のように、導波路素子10の一方の端面側の非投影領域10bbを基板に固定すると、当該基板からの応力による導波路素子10の光学特性の変化をより一層抑制できるという利点が得られる。 As described above, in the optical module 100, the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate is suppressed. Further, like the optical module 100, when the non-projection region 10bb on one end face side of the waveguide element 10 is fixed to the substrate, it is possible to further suppress the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate. Benefits are obtained.
 以下、実施形態1の変形例について説明する。図3は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板21に搭載されている。基板21は、接合材9を非投影領域に位置させる位置制御部としてのメタライズパターン21aを備えている。メタライズパターン21aは、紙面と垂直方向において、接合材9よりも長く延伸している。接合材9は、硬化の途中の状態においてメタライズパターン21aによって投影領域10baへの流出が防止されるので、非投影領域10bbに位置させることができる。 A modification of the first embodiment will be described below. FIG. 3 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 21 which is a substitute for the substrate 2a. The substrate 21 includes a metallized pattern 21a as a position control unit that positions the bonding material 9 in the non-projection area. The metallized pattern 21a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. The bonding material 9 can be located in the non-projection area 10bb because the metallization pattern 21a prevents the bonding material 9 from flowing out to the projection area 10ba in the course of curing.
 図4は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板22に搭載されている。基板22は、接合材9を非投影領域に位置させる位置制御部としての突起22aを備えている。突起22aは、紙面と垂直方向において、接合材9よりも長く延伸している。接合材9は、硬化の途中の状態において突起22aによって投影領域10baへの流出が防止されるので、非投影領域10bbに位置させることができる。 FIG. 4 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 22 which is a substitute for the substrate 2a. The substrate 22 includes a protrusion 22a as a position control unit that positions the bonding material 9 in the non-projection area. The protrusion 22a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. The bonding material 9 can be positioned in the non-projection area 10bb because the protrusion 22a prevents the bonding material 9 from flowing out to the projection area 10ba in the course of curing.
 図5は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板23に搭載されている。基板23は、接合材9を非投影領域に位置させる位置制御部としての粗面領域23aを備えている。粗面領域23aは、紙面と垂直方向において、接合材9よりも長く延伸している。接合材9は、硬化の途中の状態において粗面領域23aに滞留するため、投影領域10baへの流出が防止されるので、非投影領域10bbに位置させることができる。 FIG. 5 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 23 which is a replacement of the substrate 2a. The substrate 23 includes a rough surface area 23a as a position control section that positions the bonding material 9 in the non-projection area. The rough surface region 23a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. Since the bonding material 9 stays in the rough surface area 23a in the course of hardening, the bonding material 9 is prevented from flowing out to the projection area 10ba, and thus can be positioned in the non-projection area 10bb.
 図6は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板24に搭載されている。基板24は、接合材9を非投影領域に位置させる位置制御部としての座繰り部24aを備えている。座繰り部24aは、紙面と垂直方向において、接合材9よりも長く延伸している。接合材9は、硬化の途中の状態において流れる場合は、座繰り部24aに流れやすい。これにより、接合材9は、投影領域10baへの流出が防止されるので、非投影領域10bbに位置させることができる。 FIG. 6 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 24 which is a substitute for the substrate 2a. The substrate 24 includes a countersink portion 24a as a position control portion that positions the bonding material 9 in the non-projection area. The counterbore 24a extends longer than the joining material 9 in the direction perpendicular to the plane of the drawing. When the joining material 9 flows in the state of being cured, the joining material 9 easily flows into the counterbore portion 24a. As a result, the bonding material 9 is prevented from flowing out to the projection area 10ba, and thus can be positioned in the non-projection area 10bb.
 図7は、光モジュールにおける導波路素子10Aの搭載状態の一例を説明する模式図である。この導波路素子10Aは、リング共振器10Aaを備えている。導波路素子10Aは、搭載面10Abがリング共振器10Aaと非平行である。導波路素子10Aは、基板25に搭載されている。この導波路素子10Aについても、搭載面10Abは、リング共振器10aを搭載面10bに投影した領域である投影領域10Abaと、投影領域10Aba以外の領域である非投影領域10Abbとからなる。そして、導波路素子10Aは、非投影領域10Abbおいて基板25に接合材9にて接合している。これにより、基板からの応力による導波路素子10Aの光学特性の変化が抑制される。 FIG. 7 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10A in the optical module. The waveguide element 10A includes a ring resonator 10Aa. The mounting surface 10Ab of the waveguide element 10A is not parallel to the ring resonator 10Aa. The waveguide element 10A is mounted on the substrate 25. Also in this waveguide element 10A, the mounting surface 10Ab includes a projection area 10Aba, which is an area where the ring resonator 10a is projected on the mounting surface 10b, and a non-projection area 10Abb, which is an area other than the projection area 10Aba. The waveguide element 10A is bonded to the substrate 25 with the bonding material 9 in the non-projection area 10Abb. This suppresses changes in the optical characteristics of the waveguide element 10A due to stress from the substrate.
 図8は、光モジュールにおける導波路素子10Bの搭載状態の一例を説明する模式図である。導波路素子10Bは、たとえば石英系ガラスやシリコン等の半導体からなるマッハツェンダ干渉計素子である。ただし、導波路素子10Bは、光干渉機能を有する干渉導波路部として、一段のマッハツェンダ干渉計10Baを有している。ただし、導波路素子は複数のマッハツェンダ干渉計を有していても良い。マッハツェンダ干渉計10Baは、2つの光カプラ導波路と、2つの光カプラ導波路に接続されたアーム導波路とで構成される部分である。導波路素子10Bは、一方の主表面である搭載面10Bbが基板2aと対向しており、搭載面10Bb側において基板2aに搭載され、接合材9にて基板2aに接合している。マッハツェンダ干渉計10Baは搭載面10Bbの反対側の面近傍に形成されている。 FIG. 8 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10B in the optical module. The waveguide element 10B is a Mach-Zehnder interferometer element made of a semiconductor such as silica glass or silicon. However, the waveguide element 10B has a one-stage Mach-Zehnder interferometer 10Ba as an interference waveguide portion having an optical interference function. However, the waveguide element may have a plurality of Mach-Zehnder interferometers. The Mach-Zehnder interferometer 10Ba is a part including two optical coupler waveguides and an arm waveguide connected to the two optical coupler waveguides. The waveguide element 10B has a mounting surface 10Bb, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Bb side, and is bonded to the substrate 2a by a bonding material 9. The Mach-Zehnder interferometer 10Ba is formed near the surface opposite to the mounting surface 10Bb.
 搭載面10Bbは、マッハツェンダ干渉計10Baを搭載面10Bbに投影した領域である投影領域10Bbaと、投影領域10Bba以外の領域である非投影領域10Bbbとからなる。そして、導波路素子10Bは、非投影領域10Bbbおいて基板2aに接合材9にて接合している。これにより、基板からの応力による導波路素子10の光学特性の変化が抑制される。 The mounting surface 10Bb includes a projection area 10Bba, which is an area where the Mach-Zehnder interferometer 10Ba is projected on the mounting surface 10Bb, and a non-projection area 10Bbb, which is an area other than the projection area 10Bba. The waveguide element 10B is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10Bbb. This suppresses changes in the optical characteristics of the waveguide element 10 due to stress from the substrate.
 さらに、導波路素子10Bは、非投影領域10Bbbのなかでも、投影領域10Bbaからある程度の距離だけ離間している領域にて、接合材9にて接合していることが好ましい。離間距離としては、マッハツェンダ干渉計10Baを構成する導波路の導波路幅の2倍以上が好ましい。 Further, it is preferable that the waveguide element 10B is bonded with the bonding material 9 in a region apart from the projection region 10Bba by a certain distance among the non-projection regions 10Bbb. The separation distance is preferably at least twice the waveguide width of the waveguides forming the Mach-Zehnder interferometer 10Ba.
(実施形態2)
 実施形態2に係る光モジュールは、導波路素子以外の光学素子について、基板からの応力による光学特性の変化を抑制することができるものである。
(Embodiment 2)
The optical module according to the second embodiment can suppress changes in optical characteristics of optical elements other than the waveguide element due to stress from the substrate.
 図9は、光モジュールにおける光学素子の搭載状態の一例を説明する模式図であり、図9(a)が上面図であり、図9(b)が側面図である。 9A and 9B are schematic diagrams illustrating an example of a mounted state of an optical element in an optical module, FIG. 9A is a top view, and FIG. 9B is a side view.
 光学素子10Cは、エタロンフィルタである。光学素子10Cは、波長に対して透過特性が周期的に変化するものであり、入力されたレーザ光L1を、その波長に応じた透過率で透過して出力する。光学素子10Cは、一方の主表面である搭載面10Cbが基板2aと対向しており、搭載面10Cb側において基板2aに搭載され、接合材9にて基板2aに接合している。 The optical element 10C is an etalon filter. The optical element 10C has a transmission characteristic that periodically changes with respect to the wavelength, and transmits the input laser light L1 with a transmittance according to the wavelength and outputs the laser light L1. The optical element 10C has a mounting surface 10Cb, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Cb side, and is bonded to the substrate 2a by a bonding material 9.
 搭載面10Cbは、レーザ光L1の光路を搭載面10Cbに投影した領域である投影領域10Cbaと、投影領域10Cba以外の領域である非投影領域10Cbbとからなる。投影領域10Cbaは、レーザ光L1のビーム径と等しい幅を有する。ビーム径は、レーザ光L1のビームプロファイルの1/e全幅とすることができる。そして、光学素子10Cは、非投影領域10Cbbおいて基板2aに接合材9にて接合している。 The mounting surface 10Cb includes a projection area 10Cba, which is an area where the optical path of the laser light L1 is projected onto the mounting surface 10Cb, and a non-projection area 10Cbb, which is an area other than the projection area 10Cba. The projection area 10Cba has a width equal to the beam diameter of the laser light L1. The beam diameter can be 1/e 2 full width of the beam profile of the laser beam L1. The optical element 10C is bonded to the substrate 2a with the bonding material 9 in the non-projection area 10Cbb.
 光学素子10Cは、非投影領域10Cbbにおいて基板2aに接合材9にて接合しているので、基板からの応力による光学特性の変化(たとえば透過特性の変化)が抑制される。さらに、光学素子10Cは、非投影領域10Cbbのなかでも、投影領域10Cbaからある程度の距離だけ離間している領域にて、接合材9にて接合していることが好ましい。これにより、接合材9の膨張や収縮による応力が、より一層、光学素子10Cに作用しにくくなる。離間距離としては、レーザ光L1のビーム径の2倍以上が好ましい。 Since the optical element 10C is bonded to the substrate 2a with the bonding material 9 in the non-projection region 10Cbb, the change in the optical characteristic due to the stress from the substrate (for example, the change in the transmission characteristic) is suppressed. Further, it is preferable that the optical element 10C be bonded by the bonding material 9 in the non-projection region 10Cbb in a region separated from the projection region 10Cba by a certain distance. As a result, the stress due to the expansion and contraction of the bonding material 9 becomes more difficult to act on the optical element 10C. The separation distance is preferably twice the beam diameter of the laser light L1 or more.
 図10は、光モジュールにおける光学素子10Dの搭載状態の一例を説明する模式図である。光学素子10Dは、偏波ビームコンバイナ/スプリッタである。光学素子10Dは、互いに直交する直線偏波の光が入力されると、これを偏波合成して出力したり、入力した光を、互いに直交する直線偏波の光に偏波分離して出力したりするものである。図10では、入力されたレーザ光L2、L3を偏波合成してレーザ光L4として出力する例を示している。光学素子10Dは、一方の主表面である搭載面10Dbが基板2aと対向しており、搭載面10Db側において基板2aに搭載され、接合材9にて基板2aに接合している。 FIG. 10 is a schematic diagram illustrating an example of a mounted state of the optical element 10D in the optical module. The optical element 10D is a polarization beam combiner/splitter. When the linearly polarized light beams orthogonal to each other are input, the optical element 10D polarization-synthesizes and outputs the input light beams, or the input light is split into the mutually linearly polarized light beams and output. It is something to do. FIG. 10 shows an example in which the input laser lights L2 and L3 are polarized and combined and output as laser light L4. The optical element 10D has a mounting surface 10Db, which is one main surface, facing the substrate 2a, is mounted on the substrate 2a on the mounting surface 10Db side, and is bonded to the substrate 2a by a bonding material 9.
 搭載面10Dbは、レーザ光L2、L3、L4の光路を搭載面10Dbに投影した領域である投影領域と、投影領域以外の領域である非投影領域とからなる。投影領域は、レーザ光L2、L3、L4のビーム径と等しい幅を有する。そして、光学素子10Dは、非投影領域において基板2aに接合材9にて接合している。 The mounting surface 10Db is composed of a projection area, which is an area where the optical paths of the laser beams L2, L3, and L4 are projected onto the mounting surface 10Db, and a non-projection area, which is an area other than the projection area. The projection area has a width equal to the beam diameter of the laser lights L2, L3, and L4. The optical element 10D is bonded to the substrate 2a with the bonding material 9 in the non-projection area.
 光学素子10Dは、非投影領域において基板2aに接合材9にて接合しているので、基板からの応力による光学特性の変化(たとえば偏波合波時の損失の劣化や偏波分離時の偏波消光比の劣化)が抑制される。 Since the optical element 10D is bonded to the substrate 2a with the bonding material 9 in the non-projection region, the optical characteristics change due to stress from the substrate (for example, deterioration of loss during polarization multiplexing or polarization during polarization separation). The deterioration of the wave extinction ratio) is suppressed.
(実施形態3)
 実施形態3に係る光モジュールは、光学素子の基板からの応力による光学特性の変化を抑制することができるものである。
(Embodiment 3)
The optical module according to the third embodiment can suppress changes in optical characteristics due to stress from the substrate of the optical element.
 図11は、光モジュールにおける、光学素子である導波路素子10の搭載状態の一例を説明する模式図である。導波路素子10は、リング共振器10aと、基板26に対向する搭載面10bとを有している。導波路素子10は、搭載面10bにおいて、互いに離間した複数の接合材9にて基板26に接合している。基板26は基板2aを置き換えたものである。これにより、各接合材9が個別に導波路素子10に及ぼす応力が小さくなるので、基板からの応力による導波路素子10の光学特性の変化が抑制される。各接合材9のサイズは、基板からの応力による導波路素子10の光学特性の変化が許容程度以下になるように設定すればよい。 FIG. 11 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 which is an optical element in the optical module. The waveguide element 10 has a ring resonator 10a and a mounting surface 10b facing the substrate 26. The waveguide element 10 is bonded to the substrate 26 on the mounting surface 10b by a plurality of bonding materials 9 separated from each other. The substrate 26 replaces the substrate 2a. As a result, the stress exerted on the waveguide element 10 by each of the bonding materials 9 is reduced, so that the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate is suppressed. The size of each bonding material 9 may be set so that the change in the optical characteristics of the waveguide element 10 due to the stress from the substrate is less than or equal to the allowable level.
 ここで、基板26は、各接合材9を互いに離間して位置させる位置制御部としてのメタライズパターン26aを備えている。メタライズパターン26aは、紙面と垂直方向において、接合材9のよりも長く延伸している。メタライズパターン21aによって、接合材9は、硬化の途中の状態においても互いに離間した状態を維持できる。 Here, the substrate 26 is provided with a metallized pattern 26a as a position control unit that positions the respective bonding materials 9 so as to be separated from each other. The metallized pattern 26a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. By the metallized pattern 21a, the bonding materials 9 can be kept in a state of being separated from each other even in the state of being cured.
 図12は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板27に搭載されている。基板27は、接合材9を互いに離間して位置させる位置制御部としての突起27aを備えている。突起27aは、紙面と垂直方向において、接合材9よりも長く延伸している。突起27aによって、接合材9は、硬化の途中の状態においても互いに離間した状態を維持できる。 FIG. 12 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 27 which is a substitute for the substrate 2a. The substrate 27 includes a protrusion 27a as a position control unit that positions the bonding material 9 so as to be spaced from each other. The protrusion 27a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. By the protrusion 27a, the bonding material 9 can be kept in a state of being separated from each other even in the state of being cured.
 図13は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板28に搭載されている。基板28は、接合材9を互いに離間して位置させる位置制御部としての座繰り部28aを備えている。座繰り部28aは、紙面と垂直方向において、接合材9よりも長く延伸している。座繰り部28aによって、接合材9は、硬化の途中の状態において流出しても、座繰り部28aによって隣接する接合材9に到達せず、互いに離間した状態が維持される。 FIG. 13 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 28 which is a substitute for the substrate 2a. The substrate 28 is provided with a countersunk portion 28a as a position control portion that positions the bonding material 9 so as to be separated from each other. The counterbore 28a extends longer than the bonding material 9 in the direction perpendicular to the plane of the drawing. Even if the joining material 9 flows out in the middle of curing by the counterbore portion 28a, the joining material 9 does not reach the adjacent joint material 9 by the counterbore portion 28a and is kept in a state of being separated from each other.
 図14は、光モジュールにおける導波路素子10の搭載状態の一例を説明する模式図である。この導波路素子10は、基板2aを置き換えたものである基板29に搭載されている。基板29は、接合材9を互いに離間して位置させる位置制御部としての粗面領域29aを備えている。粗面領域29aは、紙面と垂直方向において、接合材9よりも長く延伸している。各接合材9は、硬化の途中の状態において粗面領域29aに滞留するため、互いに離間した状態が維持される。 FIG. 14 is a schematic diagram illustrating an example of a mounted state of the waveguide element 10 in the optical module. This waveguide element 10 is mounted on a substrate 29 which is a substitute for the substrate 2a. The substrate 29 includes a rough surface region 29a as a position control unit that positions the bonding material 9 so as to be separated from each other. The rough surface area 29a extends longer than the bonding material 9 in the direction perpendicular to the paper surface. Since each of the bonding materials 9 stays in the rough surface region 29a during the curing process, the bonding materials 9 are kept apart from each other.
 位置制御部であるメタライズパターン26a、突起27a、座繰り部28a、粗面領域29aは、たとえば図15A~図15Fに示すように、短冊状、格子状、同心円状、チェッカー状、波状、ハニカム形状に形成される。さらには、これらの位置制御部は同心方形状、同心多角形状、ドット状、曲線状、多角形状、またはこれらの任意の組み合わせの形状に形成されてもよい。また、これらの形状は、実施形態1の変形例におけるメタライズパターン21a、突起22a、粗面領域23a、座繰り部24aにも適用してもよい。 As shown in FIGS. 15A to 15F, the metallized pattern 26a, the protrusion 27a, the counterbore 28a, and the rough surface region 29a, which are the position control portions, are strip-shaped, lattice-shaped, concentric, checkered, wavy, and honeycomb-shaped. Is formed. Furthermore, these position control units may be formed in a concentric shape, a concentric polygonal shape, a dot shape, a curved shape, a polygonal shape, or any combination thereof. Further, these shapes may be applied to the metallized pattern 21a, the protrusion 22a, the rough surface area 23a, and the counterbore portion 24a in the modification of the first embodiment.
 なお、実施形態3における光学素子は導波路素子10であるが、光学素子はエタロンフィルタや偏波ビームコンバイナ/スプリッタなどでもよい。 Although the optical element in the third embodiment is the waveguide element 10, the optical element may be an etalon filter, a polarization beam combiner/splitter, or the like.
 また、実施形態1、2では、1つの接合材で接合がなされているが、非投影領域であれば、接合材は複数でもよい。また、接合材は、リング導波路の投影領域で囲まれた非投影領域やアーム導波路の投影領域で挟まれた非投影領域に位置してもよい。 In addition, in Embodiments 1 and 2, the joining is performed with one joining material, but a plurality of joining materials may be used in the non-projection area. Further, the bonding material may be located in a non-projection region surrounded by the projection region of the ring waveguide or a non-projection region sandwiched by the projection regions of the arm waveguide.
 また、実施形態1、3では、位置制御部が基板に設けられているが、導波路素子または光学素子に設けられていてもよいし、基板と素子の両方に設けられていてもよい。 Further, in Embodiments 1 and 3, the position control unit is provided on the substrate, but it may be provided on the waveguide element or the optical element, or may be provided on both the substrate and the element.
 また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited to the above embodiment. The present invention also includes those configured by appropriately combining the above-described components. Further, further effects and modified examples can be easily derived by those skilled in the art. Therefore, the broader aspects of the present invention are not limited to the above embodiments, and various modifications can be made.
 本発明は、光モジュールに利用することができる。 The present invention can be applied to an optical module.
1 筐体
1a 底板部
1b 側壁部
1c 上蓋部
1d 光出力部
2 熱電冷却素子
2a、21、22、24、25、26、27、28、29 基板
3 キャリア
4 半導体レーザ素子
5、8 レンズ
6 光アイソレータ
7 レンズホルダ
9 接合材
10、10A、10B 導波路素子
10a、10Aa リング共振器
10b、10Ab、10Bb、10Cb、10Db 搭載面
10ba、10Aba、10Bba、10Cba 投影領域
10bb、10Abb、10Bbb、10Cbb 非投影領域
10Ba マッハツェンダ干渉計
10C、10D 光学素子
11 受光素子ホルダ
12 受光素子ユニット
21a、26a メタライズパターン
22a、27a 突起
23a、29a 粗面領域
24a、28a 座繰り部
100 光モジュール
L1、L2、L3、L4 レーザ光
DESCRIPTION OF SYMBOLS 1 case 1a bottom plate part 1b side wall part 1c upper lid part 1d light output part 2 thermoelectric cooling elements 2a, 21, 22, 24, 25, 26, 27, 28, 29 substrate 3 carrier 4 semiconductor laser element 5, 8 lens 6 light Isolator 7 Lens holder 9 Bonding material 10, 10A, 10B Waveguide element 10a, 10Aa Ring resonator 10b, 10Ab, 10Bb, 10Cb, 10Db Mounting surface 10ba, 10Aba, 10Bba, 10Cba Projection area 10bb, 10Abb, 10Bbb, 10Cbb Non-projection Area 10Ba Mach- Zehnder interferometer 10C, 10D Optical element 11 Light-receiving element holder 12 Light-receiving element unit 21a, 26a Metallized pattern 22a, 27a Protrusions 23a, 29a Rough surface area 24a, 28a Countersunk part 100 Optical module L1, L2, L3, L4 Laser light

Claims (10)

  1.  基板と、
     前記基板と対向する搭載面と、光干渉機能を有する干渉導波路部とを有する導波路素子と、
     を備え、
     前記搭載面は、前記干渉導波路部を前記搭載面に投影した投影領域と非投影領域とからなり、前記導波路素子は前記非投影領域おいて前記基板に接合材にて接合していることを特徴とする光モジュール。
    Board,
    A waveguide element having a mounting surface facing the substrate, and an interference waveguide section having an optical interference function,
    Equipped with
    The mounting surface includes a projection area and a non-projection area where the interference waveguide portion is projected onto the mounting surface, and the waveguide element is bonded to the substrate with a bonding material in the non-projection area. An optical module characterized by.
  2.  前記導波路素子は、前記投影領域から前記干渉導波路部を構成する導波路幅の2倍以上の距離だけ離間した前記非投影領域内の領域において、前記基板に接合材にて接合していることを特徴とする請求項1に記載の光モジュール。 The waveguide element is bonded to the substrate with a bonding material in a region in the non-projection region that is separated from the projection region by a distance that is at least twice the width of the waveguide forming the interference waveguide portion. The optical module according to claim 1, wherein:
  3.  前記導波路素子は、半導体またはガラスからなる平面光波回路素子であることを特徴とする請求項1または2に記載の光モジュール。 The optical module according to claim 1 or 2, wherein the waveguide element is a planar lightwave circuit element made of semiconductor or glass.
  4.  前記干渉導波路部は、リング共振器またはマッハツェンダ干渉計であることを特徴とする請求項1~3のいずれか一つに記載の光モジュール。 The optical module according to any one of claims 1 to 3, wherein the interference waveguide section is a ring resonator or a Mach-Zehnder interferometer.
  5.  前記基板または前記導波路素子は、前記接合材を前記非投影領域に位置させる位置制御部を備えることを特徴とする請求項1~4のいずれか一つに記載の光モジュール。 The optical module according to any one of claims 1 to 4, wherein the substrate or the waveguide element includes a position control unit that positions the bonding material in the non-projection region.
  6.  基板と、
     前記基板と対向する搭載面を有し、入力された光に所定の作用を与えて出力する光学素子と、
     を備え、
     前記搭載面は、前記光学素子における前記光の光路を前記搭載面に投影した投影領域と非投影領域とからなり、前記光学素子は前記非投影領域において前記基板に接合材にて接合していることを特徴とする光モジュール。
    Board,
    An optical element that has a mounting surface facing the substrate and outputs a given input light with a predetermined action;
    Equipped with
    The mounting surface includes a projection area and a non-projection area where the optical path of the light in the optical element is projected onto the mounting surface, and the optical element is bonded to the substrate with a bonding material in the non-projection area. An optical module characterized in that
  7.  前記光学素子は、エタロンフィルタまたは偏波ビームコンバイナ/スプリッタであることを特徴とする請求項6に記載の光モジュール。 The optical module according to claim 6, wherein the optical element is an etalon filter or a polarization beam combiner/splitter.
  8.  前記基板または前記光学素子は、前記接合材を前記非投影領域に位置させる位置制御部を備えることを特徴とする請求項6または7に記載の光モジュール。 The optical module according to claim 6 or 7, wherein the substrate or the optical element includes a position control unit that positions the bonding material in the non-projection region.
  9.  基板と、
     前記基板と対向する搭載面を有し、入力された光に所定の作用を与えて出力する光学素子と、
     を備え、
     前記光学素子は、前記搭載面において、互いに離間した複数の接合材にて前記基板に接合していることを特徴とする光モジュール。
    Board,
    An optical element that has a mounting surface facing the substrate and outputs a given input light with a predetermined action;
    Equipped with
    The optical module is characterized in that the optical element is bonded to the substrate by a plurality of bonding materials that are separated from each other on the mounting surface.
  10.  前記基板または前記光学素子は、前記複数の接合材を互いに離間して位置させる位置制御部を備えることを特徴とする請求項9に記載の光モジュール。 The optical module according to claim 9, wherein the substrate or the optical element includes a position control unit that positions the plurality of bonding materials so as to be separated from each other.
PCT/JP2020/004095 2019-02-08 2020-02-04 Optical module WO2020162446A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020571210A JPWO2020162446A1 (en) 2019-02-08 2020-02-04 Optical module
CN202080012889.9A CN113424087B (en) 2019-02-08 2020-02-04 Optical module
US17/393,957 US20210364697A1 (en) 2019-02-08 2021-08-04 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-021916 2019-02-08
JP2019021916 2019-02-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/393,957 Continuation US20210364697A1 (en) 2019-02-08 2021-08-04 Optical module

Publications (1)

Publication Number Publication Date
WO2020162446A1 true WO2020162446A1 (en) 2020-08-13

Family

ID=71948321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004095 WO2020162446A1 (en) 2019-02-08 2020-02-04 Optical module

Country Status (4)

Country Link
US (1) US20210364697A1 (en)
JP (1) JPWO2020162446A1 (en)
CN (1) CN113424087B (en)
WO (1) WO2020162446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230130999A (en) * 2022-03-04 2023-09-12 국방과학연구소 Distributed Bragg Reflector Laser Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162564A1 (en) * 2019-02-08 2020-08-13 古河電気工業株式会社 Optical module
TWM616310U (en) * 2020-11-17 2021-09-01 香港商雲暉科技有限公司 Optical transceiver module and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159110A (en) * 1983-02-28 1984-09-08 Sumitomo Electric Ind Ltd Structure for sticking optical parts
US20020110335A1 (en) * 2001-02-14 2002-08-15 Wagner David K. Packaging and alignment methods for optical components, and optical apparatus employing same
JP2002352465A (en) * 2001-05-24 2002-12-06 Olympus Optical Co Ltd Combination prism for optical pickup
JP2005037444A (en) * 2003-07-15 2005-02-10 Hitachi Maxell Ltd Optical module, method of releasing thermal stress of optical module, and optical substrate for optical module
JP2008193003A (en) * 2007-02-07 2008-08-21 Nec Corp Optical module
JP2011099928A (en) * 2009-11-04 2011-05-19 Hitachi Cable Ltd Waveguide type optical delay interferometer
JP2014134689A (en) * 2013-01-10 2014-07-24 Ntt Electornics Corp Optical module
JP2017130508A (en) * 2016-01-19 2017-07-27 セイコーエプソン株式会社 Electronic unit, electronic apparatus, and substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464438B2 (en) * 1991-08-05 2003-11-10 日本電信電話株式会社 Waveguide optical components
US7046868B2 (en) * 2000-03-28 2006-05-16 Oki Electric Industry Co., Ltd. Optical waveguide transmitter-receiver module
JP2008251673A (en) * 2007-03-29 2008-10-16 Nec Corp Optical device and manufacturing method therefor
JP2010092904A (en) * 2008-10-03 2010-04-22 Nec Corp Optical module
JP2012068399A (en) * 2010-09-22 2012-04-05 Nec Corp Optical module and method of producing the same
JP5390562B2 (en) * 2011-06-22 2014-01-15 日本電信電話株式会社 Planar lightwave circuit
JP2013205494A (en) * 2012-03-27 2013-10-07 Furukawa Electric Co Ltd:The Optical element module
JP2016142755A (en) * 2015-01-29 2016-08-08 富士通オプティカルコンポーネンツ株式会社 Optical modulator
DE102015122768A1 (en) * 2015-12-23 2017-06-29 Temicon Gmbh Plate-shaped optical element for coupling out light
JP7322784B2 (en) * 2020-03-31 2023-08-08 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using the same, and optical transmitter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159110A (en) * 1983-02-28 1984-09-08 Sumitomo Electric Ind Ltd Structure for sticking optical parts
US20020110335A1 (en) * 2001-02-14 2002-08-15 Wagner David K. Packaging and alignment methods for optical components, and optical apparatus employing same
JP2002352465A (en) * 2001-05-24 2002-12-06 Olympus Optical Co Ltd Combination prism for optical pickup
JP2005037444A (en) * 2003-07-15 2005-02-10 Hitachi Maxell Ltd Optical module, method of releasing thermal stress of optical module, and optical substrate for optical module
JP2008193003A (en) * 2007-02-07 2008-08-21 Nec Corp Optical module
JP2011099928A (en) * 2009-11-04 2011-05-19 Hitachi Cable Ltd Waveguide type optical delay interferometer
JP2014134689A (en) * 2013-01-10 2014-07-24 Ntt Electornics Corp Optical module
JP2017130508A (en) * 2016-01-19 2017-07-27 セイコーエプソン株式会社 Electronic unit, electronic apparatus, and substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230130999A (en) * 2022-03-04 2023-09-12 국방과학연구소 Distributed Bragg Reflector Laser Device
KR102613998B1 (en) * 2022-03-04 2023-12-13 국방과학연구소 Distributed Bragg Reflector Laser Device

Also Published As

Publication number Publication date
CN113424087A (en) 2021-09-21
CN113424087B (en) 2023-10-10
US20210364697A1 (en) 2021-11-25
JPWO2020162446A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2020162446A1 (en) Optical module
JP2008193003A (en) Optical module
WO2019193706A1 (en) Optical module
WO2020004637A1 (en) Optical modulator and optical module using this
JP2017032629A (en) Optical module
JP4715872B2 (en) Delay interferometer
JP5830398B2 (en) Laser module
JP7421840B2 (en) optical module
WO2019117044A1 (en) Optical module
US20210367399A1 (en) Optical module and thermoelectric module
WO2021199502A1 (en) Optical control element, optical modulation device using same, and optical transmission apparatus
JP2021196478A (en) Optical module
JP2006072171A (en) Optical module
WO2020059250A1 (en) Optical modulator and optical module using same
EP2133657B1 (en) Optical phase shifting plate
JP2005352230A (en) Optical module
JP3326761B2 (en) Variable frequency light source module
US6724784B2 (en) Optical wavelength locker module having a high thermal conductive material
JP2008197500A (en) Optical module
CN112912779B (en) Optical module
JP3112105B2 (en) WDM light source
JP5182602B2 (en) Variable dispersion compensator
JP2004093742A (en) Multi-port optical module
JP2019106442A (en) Optical module
JP2010011102A (en) Delay interferometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752184

Country of ref document: EP

Kind code of ref document: A1