WO2020162429A1 - Eccentric load determination device of vehicle and automatic brake device of vehicle provided with same - Google Patents

Eccentric load determination device of vehicle and automatic brake device of vehicle provided with same Download PDF

Info

Publication number
WO2020162429A1
WO2020162429A1 PCT/JP2020/004049 JP2020004049W WO2020162429A1 WO 2020162429 A1 WO2020162429 A1 WO 2020162429A1 JP 2020004049 W JP2020004049 W JP 2020004049W WO 2020162429 A1 WO2020162429 A1 WO 2020162429A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
braking
wheel
single load
determination device
Prior art date
Application number
PCT/JP2020/004049
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 孝治
千裕 新田
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020162429A1 publication Critical patent/WO2020162429A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present disclosure relates to a vehicle single load determination device, and a vehicle automatic braking device including the determination device.
  • a vehicle speed sensor 4 vehicle speed detecting means for detecting the vehicle speed V of the vehicle 20, and an ECU 6.
  • the ECU 6 has yaw rates ⁇ at different vehicle speeds V during acceleration or deceleration of the vehicle 20.
  • the yaw rate determination unit running state determination unit
  • a single load determination unit (a single load determination means) that determines that the vehicle 20 is in a single load state based on the lateral acceleration Gy when it is determined that the vehicle is traveling substantially straight on a substantially flat road surface, Device.
  • the one-sided load state of the vehicle is determined based on the lateral acceleration detected by the lateral acceleration detecting means. ..
  • the vehicle is traveling straight on a substantially flat road surface means that the absolute values of the yaw rates at a plurality of different vehicle speeds during acceleration or deceleration of the vehicle are all equal to or less than a predetermined threshold yaw rate, or It is determined when the absolute values of the steering angles at a plurality of different vehicle speeds during acceleration or deceleration of the vehicle are all less than or equal to a predetermined threshold steering angle.
  • Lateral acceleration detection means (also called “lateral acceleration sensor”) is equipped in standard rollover prevention device and standard sideslip prevention device.
  • a signal from the lateral acceleration sensor is input to an electronic control unit ECU (also referred to as “controller”) via an AD (analog/digital) conversion circuit.
  • ECU also referred to as “controller”
  • AD analog/digital conversion circuit
  • An object of the present invention is to provide a single load determination device for a vehicle, which can accurately determine the single load state.
  • the vehicle single load determination device determines the single load state in which the load loaded on the vehicle is biased in the vehicle width direction.
  • a single load determination device for a vehicle includes a first direction acquisition unit (DD) for acquiring a road direction (Dd) in which the vehicle is traveling and a second direction acquisition unit (Dd) for acquiring a traveling direction (Vd) of the vehicle.
  • VD) and the deceleration (Ga) of the vehicle are equal to or greater than a predetermined value (gx), the vehicle is in the single load state based on a deviation (Ha) between the road direction (Dd) and the traveling direction (Vd).
  • a controller ECU that determines that there is.
  • each symbol represents the generic name of each of the four wheels. For example, "WH” represents each wheel and "CW” represents each wheel cylinder.
  • the subscripts “f” and “r” added to the end of various symbols are inclusive symbols that indicate which of them in the front-back direction of the vehicle. Specifically, “f” indicates a front wheel and “r” indicates a rear wheel. For example, the front wheels WHf and the rear wheels WHr are described as wheels. Further, the suffixes "f” and "r” at the end of the symbols can be omitted. When the subscripts “f” and “r” are omitted, each symbol represents its generic name. For example, "WH” represents each of the four wheels.
  • the fluid path is a path for moving the brake fluid BF that is the working fluid of the automatic braking device JS, and corresponds to a brake pipe, a fluid unit channel, a hose, and the like.
  • the inside of each fluid path is filled with the braking fluid BF.
  • An automatic braking device JS including a single load determination device KT will be described with reference to the overall configuration diagram of FIG. 1.
  • a vehicle including the automatic braking device JS is provided with a known braking operation member BP, a wheel cylinder CW, and a master cylinder CM.
  • a braking operation member for example, the brake pedal
  • Pw of the wheel cylinder CW is adjusted
  • the braking torque Tq of the wheel WH is adjusted
  • the braking force is generated on the wheel WH. To be done.
  • Each wheel WH of the vehicle is equipped with a wheel speed sensor VW so as to detect the wheel speed Vw.
  • the signal of the wheel speed Vw is used for independent braking control of each wheel such as anti-skid control (anti-lock brake control) for suppressing the lock tendency of the wheel WH (that is, excessive deceleration slip).
  • the steering operation member (eg, steering wheel) is provided with a steering angle sensor SA so as to detect the steering angle Sa.
  • the vehicle body of the vehicle is provided with a yaw rate sensor YR so as to detect a yaw rate (yaw angular velocity) Yr.
  • a longitudinal acceleration sensor GX and a lateral acceleration sensor GX are provided so as to detect acceleration (longitudinal acceleration) Gx in the front-rear direction (travel direction) and acceleration (lateral acceleration) Gy in the lateral direction (direction perpendicular to the traveling direction) of the vehicle.
  • An acceleration sensor GY is provided.
  • a braking operation amount sensor BA is provided so as to detect the operation amount Ba of the braking operation member BP (brake pedal) by the driver.
  • a master cylinder hydraulic pressure sensor PM that detects a hydraulic pressure (master cylinder hydraulic pressure) Pm in the master cylinder CM
  • an operational displacement sensor SP that detects an operational displacement Sp of the braking operation member BP
  • a braking operation At least one of the operating force sensors FP that detects the operating force Fp of the operating member BP is adopted. That is, the operation amount sensor BA detects at least one of the master cylinder hydraulic pressure Pm, the operation displacement Sp, and the operation force Fp as the braking operation amount Ba.
  • the driving support system includes a distance sensor OB and a driving support controller ECJ.
  • the distance sensor OB detects a distance (relative distance) Ob between an object existing in front of the host vehicle (another vehicle, a fixed object, a person, a bicycle, etc.) and the host vehicle.
  • a distance sensor OB detects a distance (relative distance) Ob between an object existing in front of the host vehicle (another vehicle, a fixed object, a person, a bicycle, etc.) and the host vehicle.
  • a distance (relative distance) Ob between an object existing in front of the host vehicle (another vehicle, a fixed object, a person, a bicycle, etc.) and the host vehicle.
  • a camera system KM a fixed object
  • a person a person
  • a bicycle etc.
  • the relative distance Ob is input to the driving support controller ECJ.
  • the driving assist controller ECJ calculates the required deceleration Gs based on the relative distance Ob.
  • the required deceleration Gs is a target value of the deceleration of the vehicle in order to prevent the vehicle from hitting an object. Since the automatic braking control is a braking control that operates urgently, the required deceleration Gs is, for example, "0.7G to 0.8G" as the deceleration corresponding to the vicinity of the limit of the friction coefficient of the road surface with which the wheel WH contacts. “Predetermined value within the range up to” or more.
  • the driving support controller ECJ is connected to the communication bus BS, and the required deceleration Gs is transmitted to the braking controller ECB via the communication bus BS.
  • the driving assistance controller ECJ provides assistance for lane departure prevention.
  • a lane (white line or the like) on the road is recognized based on the image in front of the vehicle acquired by the camera system KM (corresponding to one of the “first direction acquisition means DD”).
  • the electric power steering generates an appropriate steering torque to assist the lane keeping. That is, the driving assistance controller ECJ determines the road direction Dd by recognizing the lane based on the image of the camera system KM.
  • the “road direction Dd” is the direction (direction) the road is heading, and is the direction in which the running vehicle should travel.
  • the camera system KM can recognize the vehicle traveling ahead and determine the road direction Dd.
  • the road direction Dd is transmitted from the driving support controller ECJ to the braking controller ECB via the communication bus BS.
  • the vehicle is equipped with a navigation system NV (corresponding to one of "first direction acquisition means DD").
  • the navigation system NV has a function of electronically grasping the current position of the own vehicle and performing route guidance to a destination based on the own vehicle position.
  • the navigation system NV includes a global positioning system GP and a navigation controller ECN.
  • the Global Positioning System GP is a "Global Positioning System (GPS)", which receives signals from a plurality of GPS satellites and knows the current position Vp of the vehicle (satellite positioning system (measures the current position on the earth). System). The position Vp of the vehicle is output to the navigation controller ECN by the global positioning system GP.
  • GPS Global Positioning System
  • the navigation controller ECN is an electronic control unit for navigation.
  • the navigation controller ECN includes map data (map information) MP including detailed road information.
  • map data map information
  • the vehicle position Vp is associated with the map information MP to determine the direction of the road on which the vehicle is currently traveling and the direction (road direction) Dd in which the vehicle should travel.
  • the navigation controller ECN is connected to the communication bus BS, and the road direction Dd is transmitted from the navigation controller ECN to the braking controller ECB via the communication bus BS.
  • the automatic braking device JS includes a braking controller ECB and a fluid unit HU.
  • the braking controller (also referred to as “electronic control unit for braking") ECB is composed of an electric circuit board on which a microprocessor MC and the like are mounted, and a control algorithm programmed in the microprocessor MC.
  • the braking controller ECB is network-connected to the driving support controller ECJ, the navigation controller ECN, etc. via the vehicle-mounted communication bus BS so as to share signals (detection value, calculation value, etc.).
  • the controllers connected via the communication bus BS are collectively referred to as "controller (electronic control unit) ECU”.
  • the single load determination device KT (a control algorithm described later) may be included in the braking controller ECB.
  • the braking controller ECB (electronic control unit) controls the electric motor ML of the fluid unit HU and the solenoid valves UP, VI, VO. Specifically, drive signals Up, Vi, Vo for controlling the various solenoid valves UP, VI, VO are calculated based on the control algorithm in the microprocessor MC. Similarly, the drive signal Ml for controlling the electric motor ML, which is the drive source of the electric pump DL, is calculated.
  • the braking controller ECB is provided with a drive circuit DR so as to drive the solenoid valves UP, VI, VO and the electric motor ML.
  • a bridge circuit is formed in the drive circuit DR by switching elements (power semiconductor devices such as MOS-FETs and IGBTs) so as to drive the electric motor ML.
  • the energization state of each switching element is controlled based on the motor drive signal Ml, and the electric motor ML is driven. Further, in the drive circuit DR, the energized state (that is, the excited state) to the solenoid valves UP, VI, VO is controlled and they are driven.
  • the fluid unit HU is connected to the front wheel and rear wheel master cylinder fluid passages HMf and HMr. At the portions Btf and Btr (branch portions) in the fluid unit HU, the two master cylinder fluid passages HMf and HMr are branched into four wheel cylinder fluid passages HWi to HWl and connected to the four wheel cylinders CWi to CWl. It
  • the fluid unit HU includes a pressure regulating valve UP, an electric pump DL, a low pressure reservoir RL, a master cylinder hydraulic pressure sensor PM, an inlet valve VI, and an outlet valve VO.
  • a linear solenoid valve also referred to as “proportional valve” or “differential pressure valve” whose valve opening amount (lift amount) is continuously controlled based on the energized state (for example, supply current). Is adopted.
  • normally open solenoid valves are adopted as the front wheel and rear wheel pressure regulating valves UPf and UPr.
  • the front wheel and rear wheel fluid pumps QLf and QLr are integrally rotated and driven.
  • front and rear wheel fluid pumps QLf and QLr from front wheels and rear wheel suction portions Bsf and Bsr located between front wheels and rear wheel pressure regulating valves UPf and UPr and master cylinder CM (that is, above pressure regulating valve UP).
  • the braking fluid BF is pumped up.
  • the pumped braking fluid BF is discharged to the front wheel/rear wheel discharge parts Btf, Btr located below the front wheel/rear wheel pressure regulating valves UPf, UPr.
  • Front and rear wheel low pressure reservoirs RL1 and RL2 are provided on the suction sides of the front and rear wheel fluid pumps QLf and QLr.
  • a flow (circulation) of the circulating braking fluid BF is formed.
  • the pressure regulating valve UP is not energized and the normally open type pressure regulating valve UP is in the fully open state, the hydraulic pressure at the upper portion of the pressure regulating valve UP (that is, the master cylinder hydraulic pressure Pm) and the lower portion of the pressure regulating valve UP are set. And the actual hydraulic pressure Pp (referred to as “adjusted hydraulic pressure”).
  • the energization amount to the normally open front wheel and rear wheel pressure regulating valves UPf and UPr is increased, and the valve opening amount is decreased.
  • the adjusted hydraulic pressure Pp (as a result, the braking hydraulic pressure Pw of the wheel cylinder CW) is higher than the master cylinder hydraulic pressure Pm corresponding to the operation of the braking operation member BP. Will be increased.
  • the wheel cylinder fluid passage HW is connected to the low pressure reservoir RL via a normally closed outlet valve VO below the inlet valve VI (between the inlet valve VI and the wheel cylinder CW).
  • the fluid passage that connects the wheel cylinder fluid passage HW and the low pressure reservoir RL is referred to as "reservoir fluid passage HR". Therefore, each outlet valve VO is provided in each reservoir fluid passage HR.
  • a normally open on/off solenoid valve is adopted as the inlet valve VI.
  • the open state of the inlet valve VI is adjusted by the drive signal Vi calculated based on the duty ratio Du.
  • the “duty ratio” is the ratio of the ON time (energization time) of a pulse in a pulse train that continues at a constant cycle.
  • the outlet valve VO a normally closed on/off solenoid valve is adopted. Similar to the inlet valve VI, the open state of the outlet valve VO is also adjusted by the drive signal Vo calculated based on the duty ratio Du (ratio of energization time per unit time).
  • the configuration related to each wheel WH is the same.
  • the inlet valve VI is closed and the outlet valve VO is opened.
  • Inflow of the brake fluid BF from the inlet valve VI is blocked, the brake fluid BF in the wheel cylinder CW flows out to the low pressure reservoir RL, and the brake fluid pressure Pw is reduced.
  • the inlet valve VI is opened and the outlet valve VO is closed.
  • step S120 the road direction Dd in which the vehicle is traveling is acquired by the first direction acquisition means DD.
  • the road direction Dd is the direction (direction) of the road on which the vehicle is traveling, and is the direction in which the traveling vehicle should travel.
  • step S130 the traveling direction Vd of the vehicle is acquired by the second direction acquisition means VD.
  • the traveling direction Vd of the vehicle is the direction instructed by the operation of the steering operation member SW.
  • a combination example of the first direction acquisition unit DD and the second direction acquisition unit VD will be described.
  • a navigation system NV is adopted as the first direction acquisition means DD.
  • the navigation system NV is provided with a global positioning system GP and map information (road map) MP.
  • the current position Vp of the own vehicle obtained by the global positioning system GP is collated (corresponding) with the map information MP and used as a reference road direction Dd (the direction of the road in front of the vehicle, which is also referred to as “reference direction”). ) Is calculated.
  • a steering angle sensor SA is adopted as the second direction acquisition means VD.
  • the traveling direction Vd of the vehicle is calculated based on the steering angle Sa corresponding to the operation amount of the steering operation member SW. That is, the traveling direction Vd is the traveling direction of the vehicle required by the steering angle Sa of the steering operation member SW.
  • a camera system KM for photographing the front of the vehicle is adopted.
  • the lane (white line or the like) on the road is recognized based on the image in front of the vehicle obtained by the camera system KM.
  • the road direction Dd reference direction
  • the camera system KM can recognize the vehicle traveling ahead and determine the road direction Dd based on the image of the vehicle traveling ahead.
  • the steering angle sensor SA is adopted as the second direction acquisition means VD, and the vehicle traveling direction Vd is calculated based on the steering angle Sa. That is, the traveling direction Vd is the traveling direction of the vehicle indicated by the steering angle Sa.
  • a yaw rate sensor YR is adopted as the first direction acquisition means DD.
  • the actual turning amount Ya is calculated based on the actually generated yaw rate Yr detected by the yaw rate sensor YR. Specifically, the actual turning amount Ya is determined as the road direction Dd (reference direction).
  • a steering angle sensor SA is adopted as the second direction acquisition means VD.
  • a reference turning amount Ys corresponding to the actual turning amount Ya is calculated based on the steering angle Sa.
  • the reference turning amount Ys is determined as the traveling direction Vd of the vehicle required by the steering angle Sa.
  • the reference turning amount Ys is a yaw rate that should occur when the single load state does not occur (when the load is uniform in the vehicle width direction). That is, the reference turning amount Ys is a state amount in the yaw direction, which indicates a case where the vehicle is not deflected due to the single load state.
  • the actual deceleration Ga is calculated based on at least one of the wheel speed Vw and the detected deceleration Gx.
  • the actual deceleration Ga is the deceleration (negative acceleration) in the front-rear direction (travel direction) of the vehicle that is actually occurring.
  • the vehicle body speed Vx is calculated based on the wheel speed Vw
  • the actual deceleration Ga is determined based on the vehicle body speed Vx.
  • the vehicle speed Vx is time-differentiated to calculate the actual deceleration Ga.
  • the actual deceleration Ga is determined based on the longitudinal acceleration Gx (detection value).
  • the actual vehicle deceleration Ga may be calculated based on the differential value (calculated value) of the vehicle body speed Vx and the longitudinal acceleration Gx (detected value) so as to improve robustness.
  • step S150 "whether or not the actual deceleration Ga is equal to or greater than a predetermined deceleration gx" is determined based on the actual deceleration Ga.
  • the predetermined deceleration gx is a threshold value for determination and is a preset constant.
  • the required deceleration Gs is instructed as "quick braking in an emergency (emergency braking)" at or above “the deceleration within the range of 0.7G to 0.8G".
  • the regular braking (service braking) is performed at or below "the deceleration within the range of 0.3G to 0.4G".
  • the predetermined deceleration gx may be set as a deceleration corresponding to the emergency braking and the regular braking. If “Ga ⁇ gx” and step S150 is positive, the process proceeds to step S160. If “Ga ⁇ gx” and step S150 is negative, the process returns to step S110.
  • step S160 the road direction Dd and the traveling direction Vd are compared, and the deviation Ha is calculated.
  • the deviation Ha is a direction difference (azimuth difference) of the vehicle traveling direction Vd with respect to the road direction Dd when the road direction Dd is used as a reference. That is, the azimuth deviation Ha is a state quantity indicating the degree of vehicle deflection during braking.
  • the “direction” is a state variable that indicates which direction the direction is facing with respect to the reference direction (road direction Dd). For example, the "angle" is adopted as the physical quantity of the azimuth. In this case, the deviation Ha is determined as the azimuth deviation.
  • the deviation Ha is a state quantity having a positive or negative sign (“+” or “ ⁇ ”).
  • the sign of the deviation Ha indicates in which of the left and right directions (vehicle width direction) the vehicle deflection is likely to occur.
  • step S170 "whether or not the magnitude (absolute value) of the deviation Ha is a predetermined amount hx or more" is determined based on the deviation Ha of the azimuth angle.
  • the predetermined amount hx is a threshold value for determination, and is a preset constant (value with a positive sign). If “
  • the one-sided load index Kt is calculated based on the magnitude (absolute value) of the azimuth angle deviation Ha.
  • the one-sided load index Kt is an index indicating the degree of the one-sided load state in which the load loaded on the vehicle is biased in the vehicle width direction. Therefore, the larger the absolute value of the one-sided load index Kt, the more easily the vehicle is deflected.
  • the direction in which the vehicle is easily deflected is represented by the sign of the deviation Ha.
  • the one-sided load index Kt is “ ⁇ hx ⁇ Ha ⁇ hx (where the predetermined amount hx corresponds to the threshold value in step S170)” based on the calculation map Zkt. Is determined to be "0". That is, the load is not a single load but a uniformly loaded state. Then, according to the calculation map Zkt, if the deviation Ha is the value “ ⁇ hx” or less, or if the deviation Ha is the value hx or more, it is determined that the one-sided load index Kt increases as the deviation Ha increases. In other words, the larger the deviation Ha is (absolute value), the larger the absolute value of the single-load index Kt is calculated.
  • the positive and negative signs of the one-sided load index Kt indicate which of the left and right sides the load is biased. Therefore, the positive/negative sign of the single load index Kt corresponds to the positive/negative sign of the deviation Ha and indicates the deflection direction of the vehicle. It should be noted that the piece load index Kt is limited to a predetermined upper limit value ka and lower limit value “ ⁇ ka”.
  • the road direction Dd determined by the navigation system NV or the camera system KM and the steering angle Sa.
  • the single load index Kt is calculated based on the result of comparison (difference in azimuth angle) Ha with the traveling direction Vd.
  • the traveling road of the vehicle is a straight road and the road direction Dd (the direction of the road ahead of the vehicle and the reference direction in which the vehicle should travel) is “0 (straight line)”.
  • the steering angle Sa is not “0 (the neutral position corresponding to straight running)” under the condition of “Ga ⁇ gx”, the vehicle is deflected and the load is in the single load state. To be judged.
  • the steering operation member (steering wheel) SW is operated, and the vehicle turning is requested as the traveling direction Vd of the vehicle by "Sa ⁇ 0". Since the road direction Dd, which is the reference of the azimuth angle, is accurately determined based on the navigation system NV and the camera system KM, the unloaded state of the cargo (the unloaded index Kt) can be appropriately determined (calculated). ..
  • the actual turning amount Ya (the actual yaw rate Yr, which corresponds to the “road direction Dd”) and the steering angle Sa are determined.
  • the single load index Kt can be calculated based on the comparison result Ha with the reference turning amount Ys (corresponding to the “traveling direction Vd”).
  • the traveling road of the vehicle is a straight road.
  • the driver operates the steering operation member SW in order to drive the vehicle to travel straight.
  • the actual yaw rate Yr that is, the actual turning amount Ya and the road direction Dd
  • the road direction Dd is a straight line
  • the steering angle Sa is determined based on the steering angle Sa.
  • the calculated standard turning amount Ys that is, the traveling direction Vd
  • the vehicle deflection is compensated by the steering operation by the driver.
  • the load is in a single load state
  • the single load index Kt is calculated.
  • the third combination example is slightly inferior to the first and second combination examples in terms of determination accuracy. However, it is possible to more easily determine the unloaded condition (unloaded index Kt) of the load.
  • ⁇ Automatic braking device JS using the single load index Kt> With reference to the functional block diagram of FIG. 3, the process of automatic braking control using the single load index Kt in the automatic braking device JS will be described.
  • the required deceleration Gs in the automatic braking control is calculated by the driving support controller ECJ.
  • the braking controller ECB controls the fluid unit HU (ML, UP, etc.) so as to adjust the braking hydraulic pressure Pw (that is, the braking torque Tq) of each wheel WH based on the required deceleration Gs.
  • the result of each calculation process is shared via the communication bus BS, and can be calculated by any of the braking controller ECB, the driving support controller ECJ, and the navigation controller ECN.
  • the controller ECU is a general term for the braking controller ECB, the driving support controller ECJ, and the navigation controller ECN.
  • the vehicle detects the distance (relative distance) Ob between the vehicle and an object (another vehicle, a fixed object, a bicycle, a person, an animal, etc.) existing ahead of the vehicle, and A distance sensor OB is provided.
  • a distance sensor OB For example, a radar, a camera system KM, or the like is used as the distance sensor OB.
  • the signal of the navigation system NV is used as the distance sensor OB.
  • the detected relative distance Ob is input to the driving assistance controller ECJ.
  • the driving support controller ECJ includes a collision margin time calculation block TC, a vehicle head time calculation block TW, and a required deceleration calculation block GS.
  • the collision margin time calculation block TC calculates the collision margin time Tc based on the relative distance Ob between the object in front of the vehicle and the host vehicle.
  • the collision surplus time Tc is the time until the collision between the own vehicle and the object.
  • the collision margin time Tc is determined by dividing the relative distance Ob between the object in front of the vehicle and the host vehicle by the speed difference between the obstacle and the host vehicle (that is, the relative speed). It Here, the relative speed is calculated by time-differentiating the relative distance Ob.
  • the vehicle head time Tw is calculated based on the relative distance Ob and the vehicle body speed Vx.
  • the headway time Tw is the time until the vehicle reaches the current position of the object ahead. Specifically, the headway time Tw is calculated by dividing the relative distance Ob by the vehicle body speed Vx. When the object ahead of the host vehicle is stationary, the collision margin time Tc and the headway time Tw match.
  • the vehicle speed Vx is acquired from the vehicle speed calculation block VX of the braking controller ECB via the communication bus BS.
  • the required deceleration Gs is calculated based on the collision margin time Tc and the headway time Tw.
  • the required deceleration Gs is a target value of the deceleration of the host vehicle for avoiding a collision between the host vehicle and a front object.
  • the required deceleration Gs is calculated according to the calculation map Zgs such that the larger the collision margin time Tc is, the smaller it is (or the smaller the collision margin time Tc is, the larger it is). Further, the required deceleration Gs can be adjusted based on the headway time Tw.
  • the requested deceleration Gs is adjusted based on the vehicle head time Tw so that the requested deceleration Gs becomes smaller as the vehicle head time Tw becomes larger (or the requested deceleration Gs becomes larger as the vehicle head time Tw becomes smaller). ..
  • the required deceleration Gs is input to the braking controller ECB via the communication bus BS.
  • Each wheel WH of the vehicle is provided with a wheel speed sensor VW so as to detect the rotation speed (wheel speed) Vw of the wheel WH.
  • the detected wheel speed Vw is input to the braking controller ECB.
  • the braking controller ECB includes a vehicle body speed calculation block VX, an actual deceleration calculation block GA, an automatic braking control block JC, and a drive circuit DR.
  • the vehicle speed Vx is calculated based on the four wheel speeds Vw.
  • the actual deceleration calculation block GA calculates the actual deceleration Ga based on the vehicle body speed Vx. Specifically, the vehicle speed Vx is time-differentiated to calculate the actual deceleration Ga. Further, the actual deceleration Ga may be determined based on the longitudinal acceleration (longitudinal deceleration) Gx. Further, the actual vehicle deceleration Ga may be calculated based on the differential value (calculated value) of the vehicle body speed Vx and the longitudinal acceleration Gx (detected value).
  • automatic braking control is executed based on the required deceleration Gs and the actual deceleration Ga.
  • the necessity of automatic braking is determined.
  • the feedback control (automatic braking control) based on the deceleration of the vehicle is executed so that the actual deceleration Ga matches the required deceleration Gs.
  • the automatic braking control block JC includes a single load index calculation block KT, a front/rear distribution ratio calculation block HX, a left/right distribution ratio calculation block HY, a target hydraulic pressure calculation block PT, and a drive signal calculation block DS.
  • the single load index calculation block KT calculates the single load index Kt based on the deviation (azimuth angle deviation) Ha between the road direction Dd and the traveling direction Vd.
  • the single load index Kt is an index expressing the degree of the single load state of the load. As the one-sided load index Kt is larger, the load is unevenly loaded, and the vehicle is more likely to be deflected during automatic braking. In addition, on the basis of the sign of the one-sided load index Kt, it is identified which of the left and right sides of the load is biased, and the direction in which vehicle deflection is likely to occur is determined.
  • the front-rear distribution ratio Hx is calculated based on the single load index Kt and the calculation map Zhx.
  • the front-rear distribution ratio Hx is a distribution ratio between the front and rear wheels for allocating the total braking force Fv (target value) acting on the entire vehicle for achieving the required deceleration Gs to the braking force of the front and rear wheels WHf, WHr. ..
  • the front-rear distribution ratio Hx is a ratio with respect to the front two wheels WHf (front left and right wheels). Therefore, the ratio of the rear two wheels WHr (left and right rear wheels) is “1-Hx”.
  • the front-rear distribution ratio (ratio of the front two wheels WHf) Hx is calculated based on the calculation map Zhx to a value xo (a value of “0” or more) when the single load index Kt is less than the value kt.
  • the front-rear distribution ratio Hx is calculated to increase as the single load index Kt increases.
  • the front-rear distribution ratio Hx is limited to the value xa (value equal to or less than "1").
  • the value kt, the value xo, and the value xa are predetermined values set in advance for the calculation map Zhx.
  • the automatic braking control is not executed, and the front wheel and rear wheel braking hydraulic pressures Pwf and Pwr are increased by the operation of the braking operation member BP (referred to as “normal braking”).
  • the regular distribution ratio is set as a parameter of the braking device by the pressure receiving area of the wheel cylinder CW, the effective braking radius of the rotating member KT, the friction coefficient of the friction material, and the like.
  • the front wheel load increases and the rear wheel load decreases, so the front wheel WHf has a larger braking force generation capacity than the rear wheel WHr.
  • increasing the braking force Ff of the front wheels WHf secures the rear wheel lateral force rather than increasing the braking force Fr of the rear wheels WHr, so that the effect of suppressing the vehicle deflection is higher. Therefore, the distribution ratio Hx for the front wheels WHf is set to be larger than the normal distribution ratio xo as the piece load index Kt is larger.
  • the braking force Ff (target value) of the front wheels WHf is set large, and the braking force Fr (target value) of the rear wheels WHr is set small.
  • the left/right distribution ratio Hy is calculated based on the single load index Kt and the calculation map Zhy.
  • the left/right distribution ratio Hy is between the left and right wheels for allocating the total braking force Fv of the vehicle for achieving the required deceleration Gs to the braking force for the left and right wheels (that is, the wheels located outside and inside with respect to the deflection direction).
  • the outer and inner wheels with respect to the deflection (turning) are set based on the sign of the single load index Kt. Specifically, when the vehicle is prone to be deflected to the left (that is, to the left), the single load index Kt is determined to be a positive sign.
  • the left/right distribution ratio Hy is a ratio of front and rear wheels on the outside of turning (deflection outside), and a ratio of front and rear wheels on the inside of turning (deflection inside) is “1-Hy”.
  • the left-right distribution ratio (outer front-rear wheel ratio) Hy is calculated based on the calculation map Zhy so that the left-right distribution ratio Hy increases as the single load index Kt increases.
  • the larger the magnitude (absolute value) of the left/right distribution ratio Hy the larger the difference between the left and right braking forces. A yaw moment is generated due to the left-right difference of the braking force, and the deflection can be effectively suppressed.
  • the target braking force Fw of each wheel WH is calculated based on the total braking force (total braking force acting on the vehicle) Fv, the left/right distribution ratio Hy, and the front/rear distribution ratio Hx. It Specifically, the total braking force Fv is calculated based on the required deceleration Gs. Then, the total braking force Fv is distributed to the braking force (target value) Fw of each wheel WH based on the front-rear distribution ratio Hx and the left-right distribution ratio Hy.
  • the target control force of the inner front wheel is “Fwfu”.
  • the target hydraulic pressure Pt is calculated for each wheel WH based on the target braking force Fw. Since the specifications of the braking device (the effective braking radius of the rotating member KT, the friction coefficient of the friction material, the pressure receiving area of the wheel cylinder CW, etc.) are known, the target braking force Fw is converted into hydraulic pressure, and the target hydraulic pressure is converted. Pt is determined.
  • the motor drive signal Ml, the pressure regulating valve drive signal Up, and the inlet valve/outlet valve drive signals Vi, Vo are calculated.
  • the drive signal Ml current instruction value
  • the drive signals Up, Vi, Vo of the solenoid valve are determined based on the target hydraulic pressure Pt.
  • the electric motor ML and the solenoid valves UP, VI, VO are controlled so that the braking force Fw of each wheel is achieved based on the drive signals Ml, Up, Vi, Vo.
  • the single load state is determined with high accuracy, and the braking force (the braking fluid pressure Pw) of each wheel that acts on the vehicle is determined based on the determination result (single load index) Kt.
  • the braking force (the braking fluid pressure Pw) of each wheel that acts on the vehicle is determined based on the determination result (single load index) Kt.
  • At least one of the front-rear distribution ratio Hx of the total braking force) Fv and the left-right distribution ratio Hy is preferably adjusted. Therefore, the vehicle deflection due to the one-sided load can be efficiently suppressed.
  • the front-back type is illustrated as the two-system fluid path.
  • a diagonal fluid path also referred to as "X-type" configuration may be employed.
  • one of the two hydraulic chambers of the master cylinder CM is connected to the wheel cylinders CWi and CWl, and the other side is connected to the wheel cylinders CWj and CWk.
  • a hydraulic type device via the braking liquid BF is illustrated as the device that applies the braking torque (resultingly, the braking force) to the wheels WH.
  • an electric type driven by an electric motor may be adopted.
  • the electric device the rotary power of the electric motor is converted into linear power, and the friction member is pressed against the rotary member KT. Therefore, the braking torque Tq is directly applied by the electric motor irrespective of the braking fluid pressure Pw, and the braking force is generated.
  • it may be a composite type in which a hydraulic type through the braking fluid BF is adopted for the front wheels, and an electric type is adopted for the rear wheels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Regulating Braking Force (AREA)

Abstract

This eccentric load determination device KT determines an eccentric load state in which a load mounted in a vehicle lies in eccentricity in the vehicle width direction. The eccentric load determination device is provided with: a first direction acquisition means DD which acquires a road direction Dd in which a vehicle travels; a second direction acquisition means VD which acquire a proceeding direction Vd of the vehicle; and a controller ECU which determines an eccentric load state on the basis of a deviation Ha between the road direction Dd and the proceeding direction Vd, when the deceleration Ga is equal to or greater than a prescribed value gx. This automatic brake device JS prevents a collision with an object in front of the vehicle. The controller ECU calculates an eccentric load index Kt, which is the determination result of the eccentric load state, and adjusts, on the basis of the eccentric load index Kt, at least one among a fore and aft distribution ratio Hx and a left and right distribution ratio Hy of a braking force Fv to be applied to the vehicle.

Description

車両の片荷判定装置及び該判定装置を備えた車両の自動制動装置Vehicle single load determination device and vehicle automatic braking device including the determination device
 本開示は、車両の片荷判定装置、及び、該判定装置を備えた車両の自動制動装置に関する。 The present disclosure relates to a vehicle single load determination device, and a vehicle automatic braking device including the determination device.
 トラック、商用バン等で、荷物(載荷)が車幅方向に偏って積載されると、車両の重心位置が偏るため、自動制動制御の実行中に車両偏向が生じることがある。出願人は、車両の片荷状態(積載された積荷が車幅方向に偏っている状態)の判定装置を開発している。例えば、特許文献1に記載されるような、「車両20の車幅方向の加速度Gyを検出するGセンサ2(横加速度検出手段)と、車両20のヨーレイトγを検出するヨーレイトセンサ3(ヨーレイト検出手段)と、車両20の車速Vを検出する車速センサ4(車速検出手段)と、ECU6とを備えており、ECU6は、車両20の加速中又は減速中の相異なる複数の車速Vにおけるヨーレイトγの絶対値が全て所定の閾ヨーレイトγk以下である場合に、車両20が略平坦な路面を略直進していることを判定するヨーレイト判定部(走行状態判定手段)と、ヨーレイト判定部により車両20が略平坦な路面を略直進していることが判定されている場合に、横加速度Gyに基づいて車両20が片荷状態であることを判定する片荷判定部(片荷判定手段)と、を備える」装置である。 When a load (load) is loaded unevenly in the vehicle width direction on a truck, a commercial van, etc., the position of the center of gravity of the vehicle is biased, so vehicle deflection may occur during execution of automatic braking control. The applicant has developed a device for determining the state of one-sided loading of a vehicle (the state where the loaded load is biased in the vehicle width direction). For example, as described in Patent Document 1, "G sensor 2 (lateral acceleration detecting means) that detects the acceleration Gy of the vehicle 20 in the vehicle width direction and yaw rate sensor 3 (yaw rate detection that detects the yaw rate γ of the vehicle 20. Means), a vehicle speed sensor 4 (vehicle speed detecting means) for detecting the vehicle speed V of the vehicle 20, and an ECU 6. The ECU 6 has yaw rates γ at different vehicle speeds V during acceleration or deceleration of the vehicle 20. When all of the absolute values of are equal to or less than a predetermined threshold yaw rate γk, the yaw rate determination unit (running state determination unit) that determines that the vehicle 20 is traveling substantially straight on a substantially flat road surface, and the vehicle 20 is determined by the yaw rate determination unit. A single load determination unit (a single load determination means) that determines that the vehicle 20 is in a single load state based on the lateral acceleration Gy when it is determined that the vehicle is traveling substantially straight on a substantially flat road surface, Device.
 特許文献1の装置では、車両が略平坦な路面を略直進していることが判定されている場合に、横加速度検出手段によって検出された横加速度に基づいて車両の片荷状態が判定される。例えば、「車両が略平坦な路面を略直進している」ことは、車両の加速中又は減速中の相異なる複数の車速におけるヨーレイトの絶対値が全て所定の閾ヨーレイト以下である場合、或いは、車両の加速中又は減速中の相異なる複数の車速における操舵角の絶対値が全て所定の閾操舵角以下である場合に、判定される。 In the device of Patent Document 1, when it is determined that the vehicle is traveling substantially straight on a substantially flat road surface, the one-sided load state of the vehicle is determined based on the lateral acceleration detected by the lateral acceleration detecting means. .. For example, "the vehicle is traveling straight on a substantially flat road surface" means that the absolute values of the yaw rates at a plurality of different vehicle speeds during acceleration or deceleration of the vehicle are all equal to or less than a predetermined threshold yaw rate, or It is determined when the absolute values of the steering angles at a plurality of different vehicle speeds during acceleration or deceleration of the vehicle are all less than or equal to a predetermined threshold steering angle.
 横加速度検出手段(「横加速度センサ」ともいう)は、標準的なロールオーバ防止装置や、標準的な横滑り防止装置に装備されるものである。横加速度センサからの信号は、AD(アナログ・デジタル)変換回路を介して、電子コントロールユニットECU(「コントローラ」ともいう)に入力される。特許文献1の装置では、車両が片荷によって傾いた場合に、重力が横加速度に影響を及ぼすこと基づいて、片荷状態が判定される。しかし、片荷による車両の傾きは然程大きくないため、AD変換回路による横加速度の分解能(最下位ビットLSB)は十分には確保され得ない。このため、より高精度で、片荷状態が判定され得るものが望まれている。 ▽ Lateral acceleration detection means (also called "lateral acceleration sensor") is equipped in standard rollover prevention device and standard sideslip prevention device. A signal from the lateral acceleration sensor is input to an electronic control unit ECU (also referred to as “controller”) via an AD (analog/digital) conversion circuit. In the device of Patent Document 1, when the vehicle is tilted by a single load, the single load state is determined based on the influence of gravity on the lateral acceleration. However, since the inclination of the vehicle due to the single load is not so large, the lateral acceleration resolution (least significant bit LSB) by the AD conversion circuit cannot be sufficiently secured. For this reason, it is desired that the one-sided load state can be determined with higher accuracy.
特開2012-171430号JP2012-171430A
 本発明の目的は、車両の片荷判定装置において、片荷状態が精度良く判定され得る片荷判定装置を提供することである。 An object of the present invention is to provide a single load determination device for a vehicle, which can accurately determine the single load state.
 車両の片荷判定装置は、車両に積載された積荷が車幅方向に偏っている片荷状態を判定する。車両の片荷判定装置は、前記車両が走行している道路方向(Dd)を取得する第1方向取得手段(DD)と、前記車両の進行方向(Vd)を取得する第2方向取得手段(VD)と、前記車両の減速度(Ga)が所定値(gx)以上の場合に、前記道路方向(Dd)と前記進行方向(Vd)との偏差(Ha)に基づいて前記片荷状態であることを判定するコントローラ(ECU)と、を備える。 The vehicle single load determination device determines the single load state in which the load loaded on the vehicle is biased in the vehicle width direction. A single load determination device for a vehicle includes a first direction acquisition unit (DD) for acquiring a road direction (Dd) in which the vehicle is traveling and a second direction acquisition unit (Dd) for acquiring a traveling direction (Vd) of the vehicle. VD) and the deceleration (Ga) of the vehicle are equal to or greater than a predetermined value (gx), the vehicle is in the single load state based on a deviation (Ha) between the road direction (Dd) and the traveling direction (Vd). And a controller (ECU) that determines that there is.
車両の片荷判定装置KTを備える自動制動装置JSを説明するための全体構成図である。It is a whole lineblock diagram for explaining automatic braking device JS provided with single load judging device KT of vehicles. 片荷判定装置KTでの演算処理を説明するためのフロー図である。It is a flowchart for demonstrating the arithmetic processing in single load determination apparatus KT. 片荷判定装置KTでの判定結果Ktを利用した自動制動装置JSを説明するための機能ブロック図である。It is a functional block diagram for demonstrating the automatic braking device JS using the determination result Kt in the single load determination device KT.
<構成部材等の記号、記号末尾の添字>
 以下の説明において、「ECU」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。車輪に係る各種記号の末尾に付された添字「i」~「l」は、それが何れの車輪に関するものであるかを示す包括記号である。具体的には、「i」は右前輪、「j」は左前輪、「k」は右後輪、「l」は左後輪を示す。例えば、4つの各ホイールシリンダにおいて、右前輪ホイールシリンダCWi、左前輪ホイールシリンダCWj、右後輪ホイールシリンダCWk、及び、左後輪ホイールシリンダCWlと表記される。更に、記号末尾の添字「i」~「l」は省略され得る。添字「i」~「l」が省略された場合には、各記号は、4つの各車輪の総称を表す。例えば、「WH」は各車輪、「CW」は各ホイールシリンダを表す。
<Symbols of components, subscripts at the end of the symbol>
In the description below, components such as “ECU” and the like, components, calculation processes, signals, characteristics, and values having the same symbol have the same function. The subscripts "i" to "l" added to the end of the various symbols relating to the wheels are comprehensive symbols indicating which of the wheels it belongs to. Specifically, “i” indicates the right front wheel, “j” indicates the left front wheel, “k” indicates the right rear wheel, and “l” indicates the left rear wheel. For example, in each of the four wheel cylinders, the right front wheel wheel cylinder CWi, the left front wheel wheel cylinder CWj, the right rear wheel wheel cylinder CWk, and the left rear wheel wheel cylinder CWl are described. Furthermore, the subscripts "i" to "l" at the end of the symbols can be omitted. When the subscripts “i” to “l” are omitted, each symbol represents the generic name of each of the four wheels. For example, "WH" represents each wheel and "CW" represents each wheel cylinder.
 各種記号の末尾に付された添字「f」、「r」は、車両の前後方向において、それが何れに関するものであるかを示す包括記号である。具体的には、「f」は前輪、「r」は後輪を示す。例えば、車輪において、前輪WHf、及び、後輪WHrと表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は、その総称を表す。例えば、「WH」は、4つの各車輪を表す。 The subscripts “f” and “r” added to the end of various symbols are inclusive symbols that indicate which of them in the front-back direction of the vehicle. Specifically, “f” indicates a front wheel and “r” indicates a rear wheel. For example, the front wheels WHf and the rear wheels WHr are described as wheels. Further, the suffixes "f" and "r" at the end of the symbols can be omitted. When the subscripts “f” and “r” are omitted, each symbol represents its generic name. For example, "WH" represents each of the four wheels.
 流体路において、リザーバRVに近く、ホイールシリンダCWから離れた側が「上部」と称呼され、ホイールシリンダCWに近く、リザーバRVから離れた側が「下部」と称呼される。ここで、流体路は、自動制動装置JSの作動液体である制動液BFを移動するための経路であり、制動配管、流体ユニットの流路、ホース等が該当する。各流体路の内部は、制動液BFが満たされている。 In the fluid path, the side close to the reservoir RV and away from the wheel cylinder CW is called “upper”, and the side closer to the wheel cylinder CW and far from the reservoir RV is called “lower”. Here, the fluid path is a path for moving the brake fluid BF that is the working fluid of the automatic braking device JS, and corresponds to a brake pipe, a fluid unit channel, a hose, and the like. The inside of each fluid path is filled with the braking fluid BF.
<車両の片荷判定装置KTを備える自動制動装置JS>
 図1の全体構成図を参照して、片荷判定装置KTを備える自動制動装置JSについて説明する。車両には、2系統の流体路(即ち、2つの制動系統)が採用される。具体的には、右前輪、左前輪ホイールシリンダCWi、CWj(=CWf)に接続される前輪系統と、右後輪、左前輪ホイールシリンダCWk、CWl(=CWr)に接続される後輪系統とが設けられる。つまり、車両の2つの制動系統として、所謂、前後型(「II型」ともいう)のものが採用されている。
<Automatic braking device JS equipped with a vehicle single load determination device KT>
An automatic braking device JS including a single load determination device KT will be described with reference to the overall configuration diagram of FIG. 1. The vehicle has two fluid paths (that is, two braking systems). Specifically, a front wheel system connected to the right front wheel and left front wheel wheel cylinders CWi and CWj (=CWf), and a rear wheel system connected to the right rear wheel and left front wheel cylinders CWk and CWl (=CWr). Is provided. That is, a so-called front-rear type (also referred to as "II type") is used as the two braking systems of the vehicle.
 自動制動装置JSを備える車両には、公知である、制動操作部材BP、ホイールシリンダCW、及び、マスタシリンダCMが備えられる。制動操作部材(例えば、ブレーキペダル)BPが操作されることによって、ホイールシリンダCWの液圧(制動液圧)Pwが調整され、車輪WHの制動トルクTqが調整され、車輪WHに制動力が発生される。 A vehicle including the automatic braking device JS is provided with a known braking operation member BP, a wheel cylinder CW, and a master cylinder CM. By operating the braking operation member (for example, the brake pedal) BP, the hydraulic pressure (braking hydraulic pressure) Pw of the wheel cylinder CW is adjusted, the braking torque Tq of the wheel WH is adjusted, and the braking force is generated on the wheel WH. To be done.
 車両の各車輪WHには、車輪速度Vwを検出するよう、車輪速度センサVWが備えられる。車輪速度Vwの信号は、車輪WHのロック傾向(即ち、過大な減速スリップ)を抑制するアンチスキッド制御(アンチロックブレーキ制御)等の各輪独立の制動制御に利用される。 Each wheel WH of the vehicle is equipped with a wheel speed sensor VW so as to detect the wheel speed Vw. The signal of the wheel speed Vw is used for independent braking control of each wheel such as anti-skid control (anti-lock brake control) for suppressing the lock tendency of the wheel WH (that is, excessive deceleration slip).
 操舵操作部材(例えば、ステアリングホイール)には、操舵角Saを検出するように操舵角センサSAが備えられる。車両の車体には、ヨーレイト(ヨー角速度)Yrを検出するよう、ヨーレイトセンサYRが備えられる。また、車両の前後方向(進行方向)の加速度(前後加速度)Gx、及び、横方向(進行方向に直角な方向)の加速度(横加速度)Gyを検出するよう、前後加速度センサGX、及び、横加速度センサGYが設けられる。これらの信号(Sa、Yr等)は、過大なオーバステア挙動、偏向を抑制する車両安定化制御(所謂、ESC)等の車両運動制御に用いられる。 The steering operation member (eg, steering wheel) is provided with a steering angle sensor SA so as to detect the steering angle Sa. The vehicle body of the vehicle is provided with a yaw rate sensor YR so as to detect a yaw rate (yaw angular velocity) Yr. Further, a longitudinal acceleration sensor GX and a lateral acceleration sensor GX are provided so as to detect acceleration (longitudinal acceleration) Gx in the front-rear direction (travel direction) and acceleration (lateral acceleration) Gy in the lateral direction (direction perpendicular to the traveling direction) of the vehicle. An acceleration sensor GY is provided. These signals (Sa, Yr, etc.) are used for vehicle motion control such as vehicle stabilization control (so-called ESC) that suppresses excessive oversteer behavior and deflection.
 運転者による制動操作部材BP(ブレーキペダル)の操作量Baを検出するよう、制動操作量センサBAが設けられる。制動操作量センサBAとして、マスタシリンダCM内の液圧(マスタシリンダ液圧)Pmを検出するマスタシリンダ液圧センサPM、制動操作部材BPの操作変位Spを検出する操作変位センサSP、及び、制動操作部材BPの操作力Fpを検出する操作力センサFPのうちの少なくとも1つが採用される。つまり、操作量センサBAによって、制動操作量Baとして、マスタシリンダ液圧Pm、操作変位Sp、及び、操作力Fpのうちの少なくとも1つが検出される。 A braking operation amount sensor BA is provided so as to detect the operation amount Ba of the braking operation member BP (brake pedal) by the driver. As the braking operation amount sensor BA, a master cylinder hydraulic pressure sensor PM that detects a hydraulic pressure (master cylinder hydraulic pressure) Pm in the master cylinder CM, an operational displacement sensor SP that detects an operational displacement Sp of the braking operation member BP, and a braking operation. At least one of the operating force sensors FP that detects the operating force Fp of the operating member BP is adopted. That is, the operation amount sensor BA detects at least one of the master cylinder hydraulic pressure Pm, the operation displacement Sp, and the operation force Fp as the braking operation amount Ba.
 上記の各センサ(VW等)によって検出された車輪速度Vw、操舵角Sa、実ヨーレイトYr、前後加速度(減速度)Gx、横加速度Gy、制動操作量Ba(Pm、Sp、Fp)等の信号は、制動コントローラECBに入力される。 Signals of wheel speed Vw, steering angle Sa, actual yaw rate Yr, longitudinal acceleration (deceleration) Gx, lateral acceleration Gy, braking operation amount Ba (Pm, Sp, Fp), etc. detected by the above-mentioned respective sensors (VW etc.) Is input to the braking controller ECB.
 車両には、障害物との衝突を回避、又は、衝突時の被害を軽減するよう、運転支援システムが備えられる。運転支援システムは、距離センサOB、及び、運転支援コントローラECJを含んで構成される。距離センサOBによって、自車両の前方に存在する物体(他車両、固定物、人、自転車、等)と、自車両との間の距離(相対距離)Obが検出される。例えば、距離センサOBとして、カメラシステムKM、レーダ等が採用される。相対距離Obは、運転支援コントローラECJに入力される。運転支援コントローラECJでは、相対距離Obに基づいて、要求減速度Gsが演算される。要求減速度Gsは、車両が物体にぶつかることを回避するための、車両の減速度の目標値である。自動制動制御は、緊急的に作動する制動制御であるため、例えば、要求減速度Gsは、車輪WHが接する路面の摩擦係数の限界近傍に相当する減速度として、「0.7Gから0.8Gまでの範囲内の所定値」以上にて指示される。運転支援コントローラECJは通信バスBSに接続されており、この通信バスBSを介して、要求減速度Gsは、制動コントローラECBに送信される。 -Vehicles will be equipped with a driving support system to avoid collisions with obstacles or reduce damage during collisions. The driving support system includes a distance sensor OB and a driving support controller ECJ. The distance sensor OB detects a distance (relative distance) Ob between an object existing in front of the host vehicle (another vehicle, a fixed object, a person, a bicycle, etc.) and the host vehicle. For example, as the distance sensor OB, a camera system KM, a radar or the like is adopted. The relative distance Ob is input to the driving support controller ECJ. The driving assist controller ECJ calculates the required deceleration Gs based on the relative distance Ob. The required deceleration Gs is a target value of the deceleration of the vehicle in order to prevent the vehicle from hitting an object. Since the automatic braking control is a braking control that operates urgently, the required deceleration Gs is, for example, "0.7G to 0.8G" as the deceleration corresponding to the vicinity of the limit of the friction coefficient of the road surface with which the wheel WH contacts. “Predetermined value within the range up to” or more. The driving support controller ECJ is connected to the communication bus BS, and the required deceleration Gs is transmitted to the braking controller ECB via the communication bus BS.
 加えて、運転支援コントローラECJでは、車線逸脱防止の支援が行われる。例えば、カメラシステムKM(「第1方向取得手段DD」の1つに相当)によって取得された車両前方の映像に基づいて、道路上の車線(白線等)が認識される。そして、車両が車線を逸脱する蓋然性が高い場合には、電動パワーステアリングによって適切な操舵トルクが発生され、車線維持がアシストされる。つまり、運転支援コントローラECJでは、カメラシステムKMの映像に基づいて、車線が認識されることによって、道路方向Ddが決定される。ここで、「道路方向Dd」は、道路が向かっている方向(方位)であり、走行中の車両が進むべき方向である。 In addition, the driving assistance controller ECJ provides assistance for lane departure prevention. For example, a lane (white line or the like) on the road is recognized based on the image in front of the vehicle acquired by the camera system KM (corresponding to one of the “first direction acquisition means DD”). When the probability of the vehicle deviating from the lane is high, the electric power steering generates an appropriate steering torque to assist the lane keeping. That is, the driving assistance controller ECJ determines the road direction Dd by recognizing the lane based on the image of the camera system KM. Here, the “road direction Dd” is the direction (direction) the road is heading, and is the direction in which the running vehicle should travel.
 また、車線の認識が不十分であっても、カメラシステムKMによって、前方を走行する車両が認識され、道路方向Ddが決定され得る。道路方向Ddは、通信バスBSを介して、運転支援コントローラECJから制動コントローラECBに送信される。 Even if the lane recognition is insufficient, the camera system KM can recognize the vehicle traveling ahead and determine the road direction Dd. The road direction Dd is transmitted from the driving support controller ECJ to the braking controller ECB via the communication bus BS.
 車両には、ナビゲーションシステムNV(「第1方向取得手段DD」の1つに相当)が備えられる。ナビゲーションシステムNVは、電子的に自車両の現在位置を把握し、この自車位置に基づいて目的地への経路案内を行なう機能を有する。ナビゲーションシステムNVは、全地球測位システムGP、及び、ナビゲーションコントローラECNを含んで構成される。 The vehicle is equipped with a navigation system NV (corresponding to one of "first direction acquisition means DD"). The navigation system NV has a function of electronically grasping the current position of the own vehicle and performing route guidance to a destination based on the own vehicle position. The navigation system NV includes a global positioning system GP and a navigation controller ECN.
 全地球測位システムGPは、「グローバル・ポジショニング・システム(GPS)」であり、複数のGPS衛星の信号を受信し、自車両の現在位置Vpを知る衛星測位システム(地球上における現在位置を測定するためのシステム)である。全地球測位システムGPによって、車両の位置Vpが、ナビゲーションコントローラECNに出力される。 The Global Positioning System GP is a "Global Positioning System (GPS)", which receives signals from a plurality of GPS satellites and knows the current position Vp of the vehicle (satellite positioning system (measures the current position on the earth). System). The position Vp of the vehicle is output to the navigation controller ECN by the global positioning system GP.
 ナビゲーションコントローラECNは、ナビゲーション用の電子制御ユニットである。ナビゲーションコントローラECNには、詳細な道路情報を含んだ地図データ(地図情報)MPが含まれている。ナビゲーションコントローラECNでは、車両位置Vpが、地図情報MPに対応付けされて、現在、車両が走行している道路の向きであり、車両が進むべき方向(道路方向)Ddが決定される。ナビゲーションコントローラECNは、通信バスBSに接続されており、通信バスBSを介して、道路方向Ddは、ナビゲーションコントローラECNから制動コントローラECBに送信される。 The navigation controller ECN is an electronic control unit for navigation. The navigation controller ECN includes map data (map information) MP including detailed road information. In the navigation controller ECN, the vehicle position Vp is associated with the map information MP to determine the direction of the road on which the vehicle is currently traveling and the direction (road direction) Dd in which the vehicle should travel. The navigation controller ECN is connected to the communication bus BS, and the road direction Dd is transmitted from the navigation controller ECN to the braking controller ECB via the communication bus BS.
≪制動コントローラECB≫
 自動制動装置JSは、制動コントローラECB、及び、流体ユニットHUにて構成される。制動コントローラ(「制動用の電子制御ユニット」ともいう)ECBは、マイクロプロセッサMC等が実装された電気回路基板と、マイクロプロセッサMCにプログラムされた制御アルゴリズムにて構成されている。制動コントローラECBは、車載の通信バスBSを介して、信号(検出値、演算値等)を共有するよう、運転支援コントローラECJ、ナビゲーションコントローラECN等とネットワーク接続されている。通信バスBSを介して接続されたコントローラが、総称して「コントローラ(電子制御ユニット)ECU」と称呼される。例えば、片荷判定装置KT(後述する制御アルゴリズム)は、制動コントローラECBに含まれ得る。
<<Brake Controller ECB>>
The automatic braking device JS includes a braking controller ECB and a fluid unit HU. The braking controller (also referred to as "electronic control unit for braking") ECB is composed of an electric circuit board on which a microprocessor MC and the like are mounted, and a control algorithm programmed in the microprocessor MC. The braking controller ECB is network-connected to the driving support controller ECJ, the navigation controller ECN, etc. via the vehicle-mounted communication bus BS so as to share signals (detection value, calculation value, etc.). The controllers connected via the communication bus BS are collectively referred to as "controller (electronic control unit) ECU". For example, the single load determination device KT (a control algorithm described later) may be included in the braking controller ECB.
 制動コントローラECB(電子制御ユニット)によって、流体ユニットHUの電気モータML、及び、電磁弁UP、VI、VOが制御される。具体的には、マイクロプロセッサMC内の制御アルゴリズムに基づいて、各種電磁弁UP、VI、VOを制御するための駆動信号Up、Vi、Voが演算される。同様に、電動ポンプDLの駆動源である電気モータMLを制御するための駆動信号Mlが演算される。 The braking controller ECB (electronic control unit) controls the electric motor ML of the fluid unit HU and the solenoid valves UP, VI, VO. Specifically, drive signals Up, Vi, Vo for controlling the various solenoid valves UP, VI, VO are calculated based on the control algorithm in the microprocessor MC. Similarly, the drive signal Ml for controlling the electric motor ML, which is the drive source of the electric pump DL, is calculated.
 制動コントローラECBには、電磁弁UP、VI、VO、及び、電気モータMLを駆動するよう、駆動回路DRが備えられる。駆動回路DRには、電気モータMLを駆動するよう、スイッチング素子(MOS-FET、IGBT等のパワー半導体デバイス)によってブリッジ回路が形成される。モータ駆動信号Mlに基づいて、各スイッチング素子の通電状態が制御され、電気モータMLが駆動される。また、駆動回路DRでは、電磁弁UP、VI、VOへの通電状態(即ち、励磁状態)が制御され、それらが駆動される。 The braking controller ECB is provided with a drive circuit DR so as to drive the solenoid valves UP, VI, VO and the electric motor ML. A bridge circuit is formed in the drive circuit DR by switching elements (power semiconductor devices such as MOS-FETs and IGBTs) so as to drive the electric motor ML. The energization state of each switching element is controlled based on the motor drive signal Ml, and the electric motor ML is driven. Further, in the drive circuit DR, the energized state (that is, the excited state) to the solenoid valves UP, VI, VO is controlled and they are driven.
≪流体ユニットHU≫
 流体ユニットHUは、前輪、後輪マスタシリンダ流体路HMf、HMrに接続される。流体ユニットHU内の部位Btf、Btr(分岐部)にて、2つのマスタシリンダ流体路HMf、HMrは、4つのホイールシリンダ流体路HWi~HWlに分岐され、4つのホイールシリンダCWi~CWlに接続される。流体ユニットHUは、調圧弁UP、電動ポンプDL、低圧リザーバRL、マスタシリンダ液圧センサPM、インレット弁VI、及び、アウトレット弁VOにて構成される。
<<Fluid unit HU>>
The fluid unit HU is connected to the front wheel and rear wheel master cylinder fluid passages HMf and HMr. At the portions Btf and Btr (branch portions) in the fluid unit HU, the two master cylinder fluid passages HMf and HMr are branched into four wheel cylinder fluid passages HWi to HWl and connected to the four wheel cylinders CWi to CWl. It The fluid unit HU includes a pressure regulating valve UP, an electric pump DL, a low pressure reservoir RL, a master cylinder hydraulic pressure sensor PM, an inlet valve VI, and an outlet valve VO.
 前輪、後輪調圧弁UPf、UPr(=UP)が、前輪、後輪マスタシリンダ流体路HMf、HMr(=HM)に設けられる。調圧弁UPとして、通電状態(例えば、供給電流)に基づいて開弁量(リフト量)が連続的に制御されるリニア型の電磁弁(「比例弁」、又は、「差圧弁」ともいう)が採用される。調圧弁UPは、コントローラECBによって、前輪、後輪駆動信号Upf、Upr(=Up)に基づいて制御される。ここで、前輪、後輪調圧弁UPf、UPrとして、常開型の電磁弁が採用される。 The front and rear wheel pressure regulating valves UPf and UPr (=UP) are provided in the front and rear wheel master cylinder fluid passages HMf and HMr (=HM). As the pressure regulating valve UP, a linear solenoid valve (also referred to as “proportional valve” or “differential pressure valve”) whose valve opening amount (lift amount) is continuously controlled based on the energized state (for example, supply current). Is adopted. The pressure regulating valve UP is controlled by the controller ECB based on the front wheel and rear wheel drive signals Upf, Upr (=Up). Here, normally open solenoid valves are adopted as the front wheel and rear wheel pressure regulating valves UPf and UPr.
 電動ポンプDLは、1つの電気モータML、及び、2つの流体ポンプQLf、QLr(=QL)にて構成される。電気モータMLによって、前輪、後輪流体ポンプQLf、QLrが一体となって回転され、駆動される。前輪、後輪流体ポンプQLf、QLrによって、前輪、後輪調圧弁UPf、UPrとマスタシリンダCMとの間(即ち、調圧弁UPの上部)に位置する、前輪、後輪吸込部Bsf、Bsrから制動液BFが汲み上げられる。汲み上げられた制動液BFは、前輪、後輪調圧弁UPf、UPrの下部に位置する、前輪、後輪吐出部Btf、Btrに吐出される。前輪、後輪流体ポンプQLf、QLrの吸込み側には、前輪、後輪低圧リザーバRL1、RL2(=RL)が設けられる。 The electric pump DL is composed of one electric motor ML and two fluid pumps QLf and QLr (=QL). By the electric motor ML, the front wheel and rear wheel fluid pumps QLf and QLr are integrally rotated and driven. By front and rear wheel fluid pumps QLf and QLr, from front wheels and rear wheel suction portions Bsf and Bsr located between front wheels and rear wheel pressure regulating valves UPf and UPr and master cylinder CM (that is, above pressure regulating valve UP). The braking fluid BF is pumped up. The pumped braking fluid BF is discharged to the front wheel/rear wheel discharge parts Btf, Btr located below the front wheel/rear wheel pressure regulating valves UPf, UPr. Front and rear wheel low pressure reservoirs RL1 and RL2 (=RL) are provided on the suction sides of the front and rear wheel fluid pumps QLf and QLr.
 流体ポンプQLが駆動されると、循環する制動液BFの流れ(還流)が形成される。調圧弁UPへの通電が行われず、常開型の調圧弁UPが全開状態である場合には、調圧弁UPの上部の液圧(即ち、マスタシリンダ液圧Pm)と、調圧弁UPの下部の実際の液圧Pp(「調整液圧」という)とは一致する。常開型の前輪、後輪調圧弁UPf、UPrへの通電量が増加され、その開弁量が減少される。前輪、後輪調圧弁UPf、UPrによって、制動液BFの還流が絞られ、オリフィス効果によって、前輪、後輪調整液圧(実液圧)Ppf、Ppr(=Pp)は、前輪、後輪マスタシリンダ液圧Pmf、Pmr(=Pm)から増加される(従って、「Pp>Pm」)。つまり、電動ポンプDL、及び、調圧弁UPによって、マスタシリンダ液圧Pmと調整液圧Ppとの間の差圧が調整される。電動ポンプDL、及び、調圧弁UPが制御されることによって、制動操作部材BPの操作に応じたマスタシリンダ液圧Pmよりも、調整液圧Pp(結果、ホイールシリンダCWの制動液圧Pw)が増加される。 When the fluid pump QL is driven, a flow (circulation) of the circulating braking fluid BF is formed. When the pressure regulating valve UP is not energized and the normally open type pressure regulating valve UP is in the fully open state, the hydraulic pressure at the upper portion of the pressure regulating valve UP (that is, the master cylinder hydraulic pressure Pm) and the lower portion of the pressure regulating valve UP are set. And the actual hydraulic pressure Pp (referred to as “adjusted hydraulic pressure”). The energization amount to the normally open front wheel and rear wheel pressure regulating valves UPf and UPr is increased, and the valve opening amount is decreased. The front and rear wheel pressure regulating valves UPf and UPr restrict the circulation of the braking fluid BF, and the orifice effect causes the front and rear wheel adjusting fluid pressures (actual fluid pressures) Ppf and Ppr (=Pp) to be the front and rear wheel masters. The cylinder hydraulic pressures Pmf and Pmr (=Pm) are increased (hence "Pp>Pm"). That is, the electric pump DL and the pressure regulating valve UP adjust the differential pressure between the master cylinder hydraulic pressure Pm and the adjusted hydraulic pressure Pp. By controlling the electric pump DL and the pressure regulating valve UP, the adjusted hydraulic pressure Pp (as a result, the braking hydraulic pressure Pw of the wheel cylinder CW) is higher than the master cylinder hydraulic pressure Pm corresponding to the operation of the braking operation member BP. Will be increased.
 調圧弁UPの上部(マスタシリンダCMに近い側)には、前輪、後輪マスタシリンダ液圧Pmf、Pmrを検出するよう、前輪、後輪マスタシリンダ液圧センサPM1、PM2が設けられる。なお、基本的には、「Pmf=Pmr」であるため、前輪、後輪マスタシリンダ液圧センサPM1、PM2のうちの一方は、省略可能である。 The front and rear wheel master cylinder hydraulic pressure sensors PM1 and PM2 are provided above the pressure regulating valve UP (on the side close to the master cylinder CM) so as to detect the front and rear wheel master cylinder hydraulic pressures Pmf and Pmr. Basically, since “Pmf=Pmr”, one of the front wheel and rear wheel master cylinder hydraulic pressure sensors PM1 and PM2 can be omitted.
 ホイールシリンダ流体路HWi~HWl(=HW)には、インレット弁VIi~VIl(=VI)が設けられる。ホイールシリンダ流体路HWは、インレット弁VIの下部(インレット弁VIとホイールシリンダCWとの間)にて、常閉型のアウトレット弁VOを介して、低圧リザーバRLに接続される。なお、ホイールシリンダ流体路HWと低圧リザーバRLとを接続する流体路が、「リザーバ流体路HR」と称呼される。従って、各アウトレット弁VOは、各リザーバ流体路HRに設けられる。 Inlet valves VIi to VIl (=VI) are provided in the wheel cylinder fluid passages HWi to HWl (=HW). The wheel cylinder fluid passage HW is connected to the low pressure reservoir RL via a normally closed outlet valve VO below the inlet valve VI (between the inlet valve VI and the wheel cylinder CW). The fluid passage that connects the wheel cylinder fluid passage HW and the low pressure reservoir RL is referred to as "reservoir fluid passage HR". Therefore, each outlet valve VO is provided in each reservoir fluid passage HR.
 インレット弁VIとして、常開型のオン・オフ電磁弁が採用される。インレット弁VIの開弁状態は、デューティ比Duに基づいて演算された駆動信号Viによって調整される。ここで、「デューティ比」は、一定の周期で連続するパルス列において、パルスのオン時間(通電時間)の比率である。また、アウトレット弁VOとして、常閉型のオン・オフ電磁弁が採用される。インレット弁VIと同様に、アウトレット弁VOの開弁状態も、デューティ比Du(単位時間当たりの通電時間の割合)に基づいて演算された駆動信号Voによって調整される。 A normally open on/off solenoid valve is adopted as the inlet valve VI. The open state of the inlet valve VI is adjusted by the drive signal Vi calculated based on the duty ratio Du. Here, the “duty ratio” is the ratio of the ON time (energization time) of a pulse in a pulse train that continues at a constant cycle. Further, as the outlet valve VO, a normally closed on/off solenoid valve is adopted. Similar to the inlet valve VI, the open state of the outlet valve VO is also adjusted by the drive signal Vo calculated based on the duty ratio Du (ratio of energization time per unit time).
 インレット弁VI、及び、アウトレット弁VOにおいて、各車輪WHに係る構成は同じである。例えば、ホイールシリンダCW内の液圧Pwを減少するためには、インレット弁VIが閉位置にされ、アウトレット弁VOが開位置される。制動液BFのインレット弁VIからの流入が阻止され、ホイールシリンダCW内の制動液BFは、低圧リザーバRLに流出し、制動液圧Pwは減少される。また、制動液圧Pwを増加するため、インレット弁VIが開位置にされ、アウトレット弁VOが閉位置される。制動液BFの低圧リザーバRLへの流出が阻止され、調圧弁UPによって調節された調整液圧Ppが、ホイールシリンダCWに導入され、制動液圧Pwが増加される。更に、ホイールシリンダCW内の液圧(制動液圧)Pwを保持するためには、インレット弁VI、及び、アウトレット弁VOが、共に閉位置にされる。つまり、インレット弁VI、及び、アウトレット弁VOが制御されることによって、ホイールシリンダCWの制動液圧Pwは、個別に調整され得る。 In the inlet valve VI and the outlet valve VO, the configuration related to each wheel WH is the same. For example, in order to reduce the hydraulic pressure Pw in the wheel cylinder CW, the inlet valve VI is closed and the outlet valve VO is opened. Inflow of the brake fluid BF from the inlet valve VI is blocked, the brake fluid BF in the wheel cylinder CW flows out to the low pressure reservoir RL, and the brake fluid pressure Pw is reduced. Further, since the braking hydraulic pressure Pw is increased, the inlet valve VI is opened and the outlet valve VO is closed. The outflow of the braking fluid BF to the low pressure reservoir RL is blocked, the adjustment fluid pressure Pp adjusted by the pressure adjustment valve UP is introduced into the wheel cylinder CW, and the braking fluid pressure Pw is increased. Further, in order to maintain the hydraulic pressure (braking hydraulic pressure) Pw in the wheel cylinder CW, both the inlet valve VI and the outlet valve VO are closed. That is, the brake fluid pressure Pw of the wheel cylinder CW can be individually adjusted by controlling the inlet valve VI and the outlet valve VO.
<片荷判定装置KTでの処理>
 図2のフロー図を参照して、片荷判定装置KTでの処理について説明する。例えば、この片荷判定処理(「片荷指標演算処理KT」ともいう)は、コントローラECU(=ECB、ECJ、ECN)内のマイクロプロセッサにプログラムされたアルゴリズムである。なお、各種信号は、通信バスBSを介して共有されているため、片荷判定処理KTは、コントローラECB、ECJ、ECN等の何れにおいて処理されてもよい。
<Processing by the single load determination device KT>
With reference to the flowchart of FIG. 2, the processing in the single load determination device KT will be described. For example, this single load determination processing (also referred to as “single load index calculation processing KT”) is an algorithm programmed in the microprocessor in the controller ECU (=ECB, ECJ, ECN). Since various signals are shared via the communication bus BS, the single load determination process KT may be processed by any of the controllers ECB, ECJ, ECN and the like.
 ステップS110にて、信号(各種センサの検出値、及び、コントローラECB、ECN、ECJ(=ECU)での演算値)が読み込まれる。具体的には、前後加速度(前後減速度)Gx、操舵角Sa、車輪速度Vwに基づいて演算された車体速度Vx等が読み込まれる。 In step S110, signals (detected values of various sensors and calculated values of controllers ECB, ECN, ECJ (=ECU)) are read. Specifically, the vehicle body speed Vx calculated based on the longitudinal acceleration (forward/backward deceleration) Gx, the steering angle Sa, the wheel speed Vw, and the like are read.
 ステップS120にて、第1方向取得手段DDによって、車両が走行している道路方向Ddが取得される。ここで、道路方向Ddは、車両が走行している道路が向かっている方向(方位)であり、走行中の車両が進むべき方向である。 In step S120, the road direction Dd in which the vehicle is traveling is acquired by the first direction acquisition means DD. Here, the road direction Dd is the direction (direction) of the road on which the vehicle is traveling, and is the direction in which the traveling vehicle should travel.
 ステップS130にて、第2方向取得手段VDによって、車両の進行方向Vdが取得される。ここで、車両の進行方向Vdは、操舵操作部材SWの操作によって指示されている方向である。以下、第1方向取得手段DDと第2方向取得手段VDとの組み合わせ例について説明する。 In step S130, the traveling direction Vd of the vehicle is acquired by the second direction acquisition means VD. Here, the traveling direction Vd of the vehicle is the direction instructed by the operation of the steering operation member SW. Hereinafter, a combination example of the first direction acquisition unit DD and the second direction acquisition unit VD will be described.
 (1)第1の組み合わせ例
 第1方向取得手段DDとして、ナビゲーションシステムNVが採用される。ナビゲーションシステムNVには、全地球測位システムGP、及び、地図情報(道路マップ)MPが設けられる。全地球測位システムGPによって得られた自車両の現在位置Vpが、地図情報MPに照合(対応)されて、基準とする道路方向Dd(車両前方の道路の方位であり、「基準方向」ともいう)が演算される。
(1) First combination example A navigation system NV is adopted as the first direction acquisition means DD. The navigation system NV is provided with a global positioning system GP and map information (road map) MP. The current position Vp of the own vehicle obtained by the global positioning system GP is collated (corresponding) with the map information MP and used as a reference road direction Dd (the direction of the road in front of the vehicle, which is also referred to as “reference direction”). ) Is calculated.
 第2方向取得手段VDとして、操舵角センサSAが採用される。車両の進行方向Vdは、操舵操作部材SWの操作量に対応する操舵角Saに基づいて演算される。つまり、進行方向Vdは、操舵操作部材SWの操舵角Saによって要求されている車両の進行方向である。 A steering angle sensor SA is adopted as the second direction acquisition means VD. The traveling direction Vd of the vehicle is calculated based on the steering angle Sa corresponding to the operation amount of the steering operation member SW. That is, the traveling direction Vd is the traveling direction of the vehicle required by the steering angle Sa of the steering operation member SW.
 (2)第2の組み合わせ例
 第1方向取得手段DDとして、車両の前方を撮影するカメラシステムKMが採用される。カメラシステムKMによって得られた車両前方の映像に基づいて、道路上の車線(白線等)が認識される。そして、車線に基づいて、道路方向Dd(基準方向)が演算される。また、車線の認識が不十分であっても、カメラシステムKMによって、前方を走行する車両が認識され、前方走行車両の映像に基づいて、道路方向Ddが決定され得る。
(2) Second combination example As the first direction acquisition means DD, a camera system KM for photographing the front of the vehicle is adopted. The lane (white line or the like) on the road is recognized based on the image in front of the vehicle obtained by the camera system KM. Then, the road direction Dd (reference direction) is calculated based on the lane. Even if the lane is not recognized sufficiently, the camera system KM can recognize the vehicle traveling ahead and determine the road direction Dd based on the image of the vehicle traveling ahead.
 第1の例と同様に、第2方向取得手段VDとして、操舵角センサSAが採用され、車両進行方向Vdが、操舵角Saに基づいて演算される。つまり、進行方向Vdは、操舵角Saによって示される車両の進行方向である。 Similar to the first example, the steering angle sensor SA is adopted as the second direction acquisition means VD, and the vehicle traveling direction Vd is calculated based on the steering angle Sa. That is, the traveling direction Vd is the traveling direction of the vehicle indicated by the steering angle Sa.
 (3)第3の組み合わせ例
 第1方向取得手段DDとして、ヨーレイトセンサYRが採用される。ヨーレイトセンサYRによって検出された、実際に発生しているヨーレイトYrに基づいて、実旋回量Yaが演算される。具体的には、実旋回量Yaが、道路方向Dd(基準方向)として決定される。
(3) Third Example of Combination A yaw rate sensor YR is adopted as the first direction acquisition means DD. The actual turning amount Ya is calculated based on the actually generated yaw rate Yr detected by the yaw rate sensor YR. Specifically, the actual turning amount Ya is determined as the road direction Dd (reference direction).
 第2方向取得手段VDとして、操舵角センサSAが採用される。操舵角Saに基づいて、実旋回量Yaに対応する規範旋回量Ysが演算される。規範旋回量Ysが、操舵角Saによって要求される車両の進行方向Vdとして決定される。規範旋回量Ysは、片荷状態が生じていない場合(車幅方向で積荷が、偏っておらず、均等な状態である場合)に発生するはずのヨーレイトである。つまり、規範旋回量Ysは片荷状態によって車両偏向が生じていない場合を示すヨー方向の状態量である。 A steering angle sensor SA is adopted as the second direction acquisition means VD. A reference turning amount Ys corresponding to the actual turning amount Ya is calculated based on the steering angle Sa. The reference turning amount Ys is determined as the traveling direction Vd of the vehicle required by the steering angle Sa. The reference turning amount Ys is a yaw rate that should occur when the single load state does not occur (when the load is uniform in the vehicle width direction). That is, the reference turning amount Ys is a state amount in the yaw direction, which indicates a case where the vehicle is not deflected due to the single load state.
 ステップS140にて、車輪速度Vw、及び、検出された減速度Gxのうちの少なくとも1つに基づいて、実減速度Gaが演算される。実減速度Gaは、実際に発生している車両の前後方向(進行方向)の減速度(負の加速度)である。例えば、車輪速度Vwに基づいて、車体速度Vxが演算され、車体速度Vxに基づいて、実減速度Gaが決定される。具体的には、車体速度Vxが時間微分されて、実減速度Gaが演算される。また、前後加速度Gx(検出値)に基づいて、実減速度Gaが決定される。更に、ロバスト性を向上するよう、車体速度Vxの微分値(演算値)、及び、前後加速度Gx(検出値)に基づいて、実際の車両減速度Gaが演算されてもよい。 In step S140, the actual deceleration Ga is calculated based on at least one of the wheel speed Vw and the detected deceleration Gx. The actual deceleration Ga is the deceleration (negative acceleration) in the front-rear direction (travel direction) of the vehicle that is actually occurring. For example, the vehicle body speed Vx is calculated based on the wheel speed Vw, and the actual deceleration Ga is determined based on the vehicle body speed Vx. Specifically, the vehicle speed Vx is time-differentiated to calculate the actual deceleration Ga. Further, the actual deceleration Ga is determined based on the longitudinal acceleration Gx (detection value). Further, the actual vehicle deceleration Ga may be calculated based on the differential value (calculated value) of the vehicle body speed Vx and the longitudinal acceleration Gx (detected value) so as to improve robustness.
 ステップS150にて、実減速度Gaに基づいて、「実減速度Gaが所定減速度gx以上であるか、否か」が判定される。ここで、所定減速度gxは、判定用のしきい値であり、予め設定された定数である。自動制動制御では、緊急時の急制動(緊急制動)として、要求減速度Gsが「0.7Gから0.8Gまでの範囲内の減速度」以上で指示される。また、常用制動(サービスブレーキ)は、「0.3Gから0.4Gまでの範囲内の減速度」以下で行われる。従って、所定減速度gxは、緊急制動時と常用制動時との間に対応した減速度として設定されるとよい。「Ga≧gx」であり、ステップS150が肯定される場合には、処理は、ステップS160に進められる。「Ga<gx」であり、ステップS150が否定される場合には、処理は、ステップS110に戻される。 In step S150, "whether or not the actual deceleration Ga is equal to or greater than a predetermined deceleration gx" is determined based on the actual deceleration Ga. Here, the predetermined deceleration gx is a threshold value for determination and is a preset constant. In the automatic braking control, the required deceleration Gs is instructed as "quick braking in an emergency (emergency braking)" at or above "the deceleration within the range of 0.7G to 0.8G". The regular braking (service braking) is performed at or below "the deceleration within the range of 0.3G to 0.4G". Therefore, the predetermined deceleration gx may be set as a deceleration corresponding to the emergency braking and the regular braking. If “Ga≧gx” and step S150 is positive, the process proceeds to step S160. If “Ga<gx” and step S150 is negative, the process returns to step S110.
 ステップS160にて、道路方向Ddと進行方向Vdとが比較されて、偏差Haが演算される。偏差Haは、道路方向Ddを基準にした場合に、道路方向Ddに対する、車両進行方向Vdの方向差(方位差)である。つまり、方位の偏差Haは、制動時に車両偏向の程度を表す状態量である。なお、「方位」は、基準とした方向(道路方向Dd)に対して、どの方向を向いているかを示す状態変数である。例えば、方位の物理量は、「角度」が採用される。この場合、偏差Haは、方位角偏差として決定される。 In step S160, the road direction Dd and the traveling direction Vd are compared, and the deviation Ha is calculated. The deviation Ha is a direction difference (azimuth difference) of the vehicle traveling direction Vd with respect to the road direction Dd when the road direction Dd is used as a reference. That is, the azimuth deviation Ha is a state quantity indicating the degree of vehicle deflection during braking. The “direction” is a state variable that indicates which direction the direction is facing with respect to the reference direction (road direction Dd). For example, the "angle" is adopted as the physical quantity of the azimuth. In this case, the deviation Ha is determined as the azimuth deviation.
 偏差(方位角偏差)Haは、進行方向Vdから道路方向Dd(基準方向)が減算されて決定される(即ち、「Ha=Vd-Dd」)。偏差Haは、正負の符号(「+」又は「-」)を有する状態量である。偏差Haの符号によって、車両偏向が、左右(車幅方向)のうちの何れの方向に発生し易いかを表す。 The deviation (azimuth deviation) Ha is determined by subtracting the road direction Dd (reference direction) from the traveling direction Vd (that is, “Ha=Vd−Dd”). The deviation Ha is a state quantity having a positive or negative sign (“+” or “−”). The sign of the deviation Ha indicates in which of the left and right directions (vehicle width direction) the vehicle deflection is likely to occur.
 ステップS170にて、方位角の偏差Haに基づいて、「偏差Haの大きさ(絶対値)が所定量hx以上であるか、否か」が判定される。ここで、所定量hxは、判定用のしきい値であり、予め設定された定数(正符号の値)である。「|Ha|≧hx」であり、ステップS170が肯定される場合には、処理は、ステップS180に進められる。「|Ha|<hx」であり、ステップS170が否定される場合には、車両偏向は発生しておらず(即ち、片荷状態ではなく)、処理は、ステップS110に戻される。 In step S170, "whether or not the magnitude (absolute value) of the deviation Ha is a predetermined amount hx or more" is determined based on the deviation Ha of the azimuth angle. Here, the predetermined amount hx is a threshold value for determination, and is a preset constant (value with a positive sign). If “|Ha|≧hx” and step S170 is affirmative, the process proceeds to step S180. If “|Ha|<hx” and step S170 is denied, vehicle deflection has not occurred (that is, not a single load state), and the process returns to step S110.
 ステップS180にて、方位角の偏差Haの大きさ(絶対値)に基づいて片荷指標Ktが演算される。片荷指標Ktは、車両に積載された積荷が車幅方向に偏っている片荷状態の程度を表す指標である。従って、片荷指標Ktの絶対値が大きいほど、車両偏向が発生し易い。なお、車両が偏向し易い方向は、偏差Haの正負符号によって表現される。 In step S180, the one-sided load index Kt is calculated based on the magnitude (absolute value) of the azimuth angle deviation Ha. The one-sided load index Kt is an index indicating the degree of the one-sided load state in which the load loaded on the vehicle is biased in the vehicle width direction. Therefore, the larger the absolute value of the one-sided load index Kt, the more easily the vehicle is deflected. The direction in which the vehicle is easily deflected is represented by the sign of the deviation Ha.
 例えば、ブロックX180に示すように、片荷指標Ktは、演算マップZktに基づいて、「-hx<Ha<hx(ここで、所定量hxは、ステップS170のしきい値に対応)」の場合には、「0」に決定される。つまり、積荷は、片荷状態ではなく、均一に積載された状態である。そして、演算マップZktに従って、偏差Haが値「-hx」以下、又は、偏差Haが値hx以上では、偏差Haが増加するに従って、片荷指標Ktが増加するように決定される。換言すれば、偏差Haの大きさ(絶対値)が大きいほど、片荷指標Ktの大きさ(絶対値)が増加するよう演算される。片荷指標Ktの正負の符号は、積荷が左右の何れ側に偏っているかを表す。従って、片荷指標Ktの正負符号は、偏差Haの正負符号に対応し、車両の偏向方向を示している。なお、片荷指標Ktは、所定の上限値ka、下限値「-ka」に制限される。 For example, as shown in block X180, the one-sided load index Kt is “−hx<Ha<hx (where the predetermined amount hx corresponds to the threshold value in step S170)” based on the calculation map Zkt. Is determined to be "0". That is, the load is not a single load but a uniformly loaded state. Then, according to the calculation map Zkt, if the deviation Ha is the value “−hx” or less, or if the deviation Ha is the value hx or more, it is determined that the one-sided load index Kt increases as the deviation Ha increases. In other words, the larger the deviation Ha is (absolute value), the larger the absolute value of the single-load index Kt is calculated. The positive and negative signs of the one-sided load index Kt indicate which of the left and right sides the load is biased. Therefore, the positive/negative sign of the single load index Kt corresponds to the positive/negative sign of the deviation Ha and indicates the deflection direction of the vehicle. It should be noted that the piece load index Kt is limited to a predetermined upper limit value ka and lower limit value “−ka”.
 第1、第2の組み合わせ例(上記の(1)(2)を参照)で説明したように、ナビゲーションシステムNV、又は、カメラシステムKMによって決定された道路方向Ddと、操舵角Saによって決定された進行方向Vdとの比較結果(方位角の差)Haに基づいて片荷指標Ktが演算される。例えば、車両の走行道路が直線路であり、道路方向Dd(車両前方道路の向きであり、車両が進行すべき基準方位)が「0(直線)」である場合を想定する。このとき、「Ga≧gx」の状況で、操舵角Saが「0(直進走行に対応する中立位置)」ではない場合には、車両は偏向しており、積荷が片荷状態であることが判定される。つまり、操舵操作部材(ステアリングホイール)SWが操作され、「Sa≠0」によって、車両の進行方向Vdとして、車両旋回が要求されている。ナビゲーションシステムNV、及び、カメラシステムKMに基づいて、方位角の基準とする道路方向Ddが精度良く決定されるため、積荷の片荷状態(片荷指標Kt)が適切に判定(演算)され得る。 As described in the first and second combination examples (see (1) and (2) above), it is determined by the road direction Dd determined by the navigation system NV or the camera system KM and the steering angle Sa. The single load index Kt is calculated based on the result of comparison (difference in azimuth angle) Ha with the traveling direction Vd. For example, it is assumed that the traveling road of the vehicle is a straight road and the road direction Dd (the direction of the road ahead of the vehicle and the reference direction in which the vehicle should travel) is “0 (straight line)”. At this time, when the steering angle Sa is not “0 (the neutral position corresponding to straight running)” under the condition of “Ga≧gx”, the vehicle is deflected and the load is in the single load state. To be judged. That is, the steering operation member (steering wheel) SW is operated, and the vehicle turning is requested as the traveling direction Vd of the vehicle by "Sa≠0". Since the road direction Dd, which is the reference of the azimuth angle, is accurately determined based on the navigation system NV and the camera system KM, the unloaded state of the cargo (the unloaded index Kt) can be appropriately determined (calculated). ..
 また、第3の組み合わせ例(上記の(3)を参照)で説明したように、実旋回量Ya(実ヨーレイトYrであり、「道路方向Dd」に相当)と、操舵角Saによって決定された規範旋回量Ys(「進行方向Vd」に相当)との比較結果Haに基づいて片荷指標Ktが演算され得る。同様に、車両の走行道路が直線路である場合を想定する。このとき、「Ga≧gx」の状況で車両偏向が発生すると、運転者は車両を直進走行させるために操舵操作部材SWを操作する。従って、実ヨーレイトYr(即ち、実旋回量Yaであり、道路方向Dd)が「0(道路方向Ddが直線)」にもかかわらず、「Sa≠0」であって、操舵角Saに基づいて演算された規範旋回量Ys(即ち、進行方向Vd)が「0」ではない場合には、運転者による操舵操作によって車両偏向が補償されている。この様な場合には、積荷が片荷状態であることが判定され、片荷指標Ktが演算される。第3の組み合わせ例は、第1、第2の組み合わせ例に比較して、判定精度の面では少々劣る。しかしながら、より簡易的に積荷の片荷状態(片荷指標Kt)が判定され得る。 In addition, as described in the third combination example (see (3) above), the actual turning amount Ya (the actual yaw rate Yr, which corresponds to the “road direction Dd”) and the steering angle Sa are determined. The single load index Kt can be calculated based on the comparison result Ha with the reference turning amount Ys (corresponding to the “traveling direction Vd”). Similarly, it is assumed that the traveling road of the vehicle is a straight road. At this time, when the vehicle is deflected under the condition of “Ga≧gx”, the driver operates the steering operation member SW in order to drive the vehicle to travel straight. Therefore, although the actual yaw rate Yr (that is, the actual turning amount Ya and the road direction Dd) is “0 (the road direction Dd is a straight line)”, “Sa≠0” and the steering angle Sa is determined based on the steering angle Sa. When the calculated standard turning amount Ys (that is, the traveling direction Vd) is not "0", the vehicle deflection is compensated by the steering operation by the driver. In such a case, it is determined that the load is in a single load state, and the single load index Kt is calculated. The third combination example is slightly inferior to the first and second combination examples in terms of determination accuracy. However, it is possible to more easily determine the unloaded condition (unloaded index Kt) of the load.
<片荷指標Ktを利用した自動制動装置JS>
 図3の機能ブロック図を参照して、自動制動装置JSにおける、片荷指標Ktを利用した自動制動制御の処理について説明する。自動制動制御での要求減速度Gsは、運転支援コントローラECJによって演算される。そして、制動コントローラECBによって、要求減速度Gsに基づいて、各車輪WHの制動液圧Pw(即ち、制動トルクTq)を調整するよう、流体ユニットHU(ML、UP等)が制御される。なお、各演算処理の結果は、通信バスBSを介して共有されているため、制動コントローラECB、運転支援コントローラECJ、及び、ナビゲーションコントローラECNの何れでも演算可能である。コントローラECUは、制動コントローラECB、運転支援コントローラECJ、及び、ナビゲーションコントローラECNの総称である。
<Automatic braking device JS using the single load index Kt>
With reference to the functional block diagram of FIG. 3, the process of automatic braking control using the single load index Kt in the automatic braking device JS will be described. The required deceleration Gs in the automatic braking control is calculated by the driving support controller ECJ. Then, the braking controller ECB controls the fluid unit HU (ML, UP, etc.) so as to adjust the braking hydraulic pressure Pw (that is, the braking torque Tq) of each wheel WH based on the required deceleration Gs. The result of each calculation process is shared via the communication bus BS, and can be calculated by any of the braking controller ECB, the driving support controller ECJ, and the navigation controller ECN. The controller ECU is a general term for the braking controller ECB, the driving support controller ECJ, and the navigation controller ECN.
 車両には、自車両が走行している先に存在する物体(他の車両、固定物、自転車、人、動物等)と、自車両との間の距離(相対距離)Obを検出するよう、距離センサOBが設けられる。例えば、距離センサOBとして、レーダ、カメラシステムKM等が利用される。また、固定物が地図情報に記憶されている場合には、距離センサOBとして、ナビゲーションシステムNVの信号が利用される。検出された相対距離Obは、運転支援コントローラECJに入力される。運転支援コントローラECJには、衝突余裕時間演算ブロックTC、車頭時間演算ブロックTW、及び、要求減速度演算ブロックGSが含まれる。 The vehicle detects the distance (relative distance) Ob between the vehicle and an object (another vehicle, a fixed object, a bicycle, a person, an animal, etc.) existing ahead of the vehicle, and A distance sensor OB is provided. For example, a radar, a camera system KM, or the like is used as the distance sensor OB. When the fixed object is stored in the map information, the signal of the navigation system NV is used as the distance sensor OB. The detected relative distance Ob is input to the driving assistance controller ECJ. The driving support controller ECJ includes a collision margin time calculation block TC, a vehicle head time calculation block TW, and a required deceleration calculation block GS.
 衝突余裕時間演算ブロックTCにて、車両前方の物体と自車両との相対的な距離Obに基づいて、衝突余裕時間Tcが演算される。衝突余裕時間Tcは、自車両と物体とが衝突に至るまでの時間である。具体的には、衝突余裕時間Tcは、車両前方の物体と自車両との相対的な距離Obが、障害物と自車両との速度差(即ち、相対速度)によって除算されることによって決定される。ここで、相対速度は、相対距離Obが時間微分されて演算される。 The collision margin time calculation block TC calculates the collision margin time Tc based on the relative distance Ob between the object in front of the vehicle and the host vehicle. The collision surplus time Tc is the time until the collision between the own vehicle and the object. Specifically, the collision margin time Tc is determined by dividing the relative distance Ob between the object in front of the vehicle and the host vehicle by the speed difference between the obstacle and the host vehicle (that is, the relative speed). It Here, the relative speed is calculated by time-differentiating the relative distance Ob.
 車頭時間演算ブロックTWにて、相対距離Ob、及び、車体速度Vxに基づいて、車頭時間Twが演算される。車頭時間Twは、前方の物体の現在位置に自車両が到達するまでの時間である。具体的には、車頭時間Twは、相対距離Obが、車体速度Vxにて除算されて演算される。なお、自車両前方の物体が静止している場合には、衝突余裕時間Tcと車頭時間Twとは一致する。車体速度Vxは、制動コントローラECBの車体速度演算ブロックVXから、通信バスBSを介して取得される。 In the vehicle head time calculation block TW, the vehicle head time Tw is calculated based on the relative distance Ob and the vehicle body speed Vx. The headway time Tw is the time until the vehicle reaches the current position of the object ahead. Specifically, the headway time Tw is calculated by dividing the relative distance Ob by the vehicle body speed Vx. When the object ahead of the host vehicle is stationary, the collision margin time Tc and the headway time Tw match. The vehicle speed Vx is acquired from the vehicle speed calculation block VX of the braking controller ECB via the communication bus BS.
 要求減速度演算ブロックGSにて、衝突余裕時間Tc、及び、車頭時間Twに基づいて、要求減速度Gsが演算される。要求減速度Gsは、自車両と前方物体との衝突を回避するための自車両の減速度の目標値である。要求減速度Gsは、演算マップZgsに従って、衝突余裕時間Tcが大きいほど、小さくなるよう(又は、衝突余裕時間Tcが小さいほど、大きくなるよう)、演算される。また、要求減速度Gsは、車頭時間Twに基づいて調整され得る。車頭時間Twが大きいほど、要求減速度Gsが小さくなるよう(又は、車頭時間Twが小さいほど、要求減速度Gsが大きくなるよう)、車頭時間Twに基づいて、要求減速度Gsが調整される。要求減速度Gsは、通信バスBSを介して、制動コントローラECBに入力される。 In the required deceleration calculation block GS, the required deceleration Gs is calculated based on the collision margin time Tc and the headway time Tw. The required deceleration Gs is a target value of the deceleration of the host vehicle for avoiding a collision between the host vehicle and a front object. The required deceleration Gs is calculated according to the calculation map Zgs such that the larger the collision margin time Tc is, the smaller it is (or the smaller the collision margin time Tc is, the larger it is). Further, the required deceleration Gs can be adjusted based on the headway time Tw. The requested deceleration Gs is adjusted based on the vehicle head time Tw so that the requested deceleration Gs becomes smaller as the vehicle head time Tw becomes larger (or the requested deceleration Gs becomes larger as the vehicle head time Tw becomes smaller). .. The required deceleration Gs is input to the braking controller ECB via the communication bus BS.
 車両の各車輪WHには、車輪WHの回転速度(車輪速度)Vwを検出するよう、車輪速度センサVWが設けられる。検出された車輪速度Vwは、制動コントローラECBに入力される。制動コントローラECBには、車体速度演算ブロックVX、実減速度演算ブロックGA、自動制動制御ブロックJC、及び、駆動回路DRが含まれる。 Each wheel WH of the vehicle is provided with a wheel speed sensor VW so as to detect the rotation speed (wheel speed) Vw of the wheel WH. The detected wheel speed Vw is input to the braking controller ECB. The braking controller ECB includes a vehicle body speed calculation block VX, an actual deceleration calculation block GA, an automatic braking control block JC, and a drive circuit DR.
 車体速度演算ブロックVXにて、4つの車輪速度Vwに基づいて、車体速度Vxが演算される。実減速度演算ブロックGAにて、車体速度Vxに基づいて、実減速度Gaが演算される。具体的には、車体速度Vxが時間微分されて、実減速度Gaが演算される。また、前後加速度(前後減速度)Gxに基づいて、実減速度Gaが決定されてもよい。更に、車体速度Vxの微分値(演算値)、及び、前後加速度Gx(検出値)に基づいて、実際の車両減速度Gaが演算されてもよい。 In the vehicle speed calculation block VX, the vehicle speed Vx is calculated based on the four wheel speeds Vw. The actual deceleration calculation block GA calculates the actual deceleration Ga based on the vehicle body speed Vx. Specifically, the vehicle speed Vx is time-differentiated to calculate the actual deceleration Ga. Further, the actual deceleration Ga may be determined based on the longitudinal acceleration (longitudinal deceleration) Gx. Further, the actual vehicle deceleration Ga may be calculated based on the differential value (calculated value) of the vehicle body speed Vx and the longitudinal acceleration Gx (detected value).
 自動制動制御ブロックJCにて、要求減速度Gs、及び、実減速度Gaに基づいて、自動制動制御が実行される。先ず、自動制動制御ブロックJCでは、自動制動の要否が判定される。運転者が既に制動操作部材BPを操作しており、実減速度Gaが要求減速度Gsよりも大きい場合には、自動制動制御は不要である。一方、実減速度Gaが要求減速度Gsよりも小さい場合に、実減速度Gaが、要求減速度Gsに一致するよう、車両の減速度に基づくフィードバック制御(自動制動制御)が実行される。 In the automatic braking control block JC, automatic braking control is executed based on the required deceleration Gs and the actual deceleration Ga. First, in the automatic braking control block JC, the necessity of automatic braking is determined. When the driver has already operated the braking operation member BP and the actual deceleration Ga is higher than the required deceleration Gs, the automatic braking control is not necessary. On the other hand, when the actual deceleration Ga is smaller than the required deceleration Gs, the feedback control (automatic braking control) based on the deceleration of the vehicle is executed so that the actual deceleration Ga matches the required deceleration Gs.
 自動制動制御ブロックJCには、片荷指標演算ブロックKT、前後配分比演算ブロックHX、左右配分比演算ブロックHY、目標液圧演算ブロックPT、及び、駆動信号演算ブロックDSを含んで構成される。 The automatic braking control block JC includes a single load index calculation block KT, a front/rear distribution ratio calculation block HX, a left/right distribution ratio calculation block HY, a target hydraulic pressure calculation block PT, and a drive signal calculation block DS.
 片荷指標演算ブロックKTにて、図2のフロー図を参照して説明したように、道路方向Ddと進行方向Vdとの偏差(方位角偏差)Haに基づいて、片荷指標Ktが演算される。片荷指標Ktは、積荷の片荷状態の度合いを表現する指標である。片荷指標Ktが大きいほど、積荷は偏って積載され、自動制動時に車両の偏向が生じ易い。加えて、片荷指標Ktの符号に基づいて、積荷が左右の何れの側に偏っているかが識別され、車両偏向が生じ易い方向が決定される。 As described with reference to the flow chart of FIG. 2, the single load index calculation block KT calculates the single load index Kt based on the deviation (azimuth angle deviation) Ha between the road direction Dd and the traveling direction Vd. It The single load index Kt is an index expressing the degree of the single load state of the load. As the one-sided load index Kt is larger, the load is unevenly loaded, and the vehicle is more likely to be deflected during automatic braking. In addition, on the basis of the sign of the one-sided load index Kt, it is identified which of the left and right sides of the load is biased, and the direction in which vehicle deflection is likely to occur is determined.
 前後配分比演算ブロックHXにて、片荷指標Kt、及び、演算マップZhxに基づいて、前後配分比Hxが演算される。前後配分比Hxは、要求減速度Gsを達成するための車両全体に作用する総制動力Fv(目標値)を、前後車輪WHf、WHrの制動力に割り振るための前後車輪間の配分比率である。ここで、前後配分比Hxは、前2輪WHf(左右前輪)に対する比率である。従って、後2輪WHr(左右後輪)の比率は、「1-Hx」である。 In the front-rear distribution ratio calculation block HX, the front-rear distribution ratio Hx is calculated based on the single load index Kt and the calculation map Zhx. The front-rear distribution ratio Hx is a distribution ratio between the front and rear wheels for allocating the total braking force Fv (target value) acting on the entire vehicle for achieving the required deceleration Gs to the braking force of the front and rear wheels WHf, WHr. .. Here, the front-rear distribution ratio Hx is a ratio with respect to the front two wheels WHf (front left and right wheels). Therefore, the ratio of the rear two wheels WHr (left and right rear wheels) is “1-Hx”.
 前後配分比(前2輪WHfの比率)Hxは、演算マップZhxに基づいて、片荷指標Ktが、値kt未満では、値xo(「0」以上の値)に演算される。片荷指標Ktが、値kt以上の場合には、片荷指標Ktの増加に従って、前後配分比Hxが増加するように演算される。そして、前後配分比Hxは、値xa(「1」以下の値)に制限される。ここで、値kt、値xo、及び、値xaは、演算マップZhx用に、予め設定された所定値である。前後配分比Hxが所定値xoの場合は、自動制動制御が実行されず、制動操作部材BPの操作によって前輪、後輪制動液圧Pwf、Pwrが増加された場合(「常用制動」という)に対応する。従って、「Hx=xo」の場合が、「常用配分比」と称呼される。なお、常用配分比は、ホイールシリンダCWの受圧面積、回転部材KTの有効制動半径、摩擦材の摩擦係数等によって、制動装置の諸元として設定されている。 The front-rear distribution ratio (ratio of the front two wheels WHf) Hx is calculated based on the calculation map Zhx to a value xo (a value of “0” or more) when the single load index Kt is less than the value kt. When the single load index Kt is greater than or equal to the value kt, the front-rear distribution ratio Hx is calculated to increase as the single load index Kt increases. The front-rear distribution ratio Hx is limited to the value xa (value equal to or less than "1"). Here, the value kt, the value xo, and the value xa are predetermined values set in advance for the calculation map Zhx. When the front/rear distribution ratio Hx is the predetermined value xo, the automatic braking control is not executed, and the front wheel and rear wheel braking hydraulic pressures Pwf and Pwr are increased by the operation of the braking operation member BP (referred to as “normal braking”). Correspond. Therefore, the case of "Hx=xo" is referred to as "common distribution ratio". The regular distribution ratio is set as a parameter of the braking device by the pressure receiving area of the wheel cylinder CW, the effective braking radius of the rotating member KT, the friction coefficient of the friction material, and the like.
 制動時には、前輪荷重が増加し、後輪荷重が減少するため、後輪WHrよりも前輪WHfの方が制動力の発生容量が大である。加えて、前輪WHfの制動力Ffを増加した方が、後輪WHrの制動力Frを増加するよりも、後輪横力が確保されるため、車両の偏向を抑制する効果が高い。このため、片荷指標Ktが大きいほど、前輪WHf用の配分比Hxが常用配分比xoよりも大きく設定される。結果、前輪WHfの制動力Ff(目標値)が大きく設定され、後輪WHrの制動力Fr(目標値)が小さく設定される。 During braking, the front wheel load increases and the rear wheel load decreases, so the front wheel WHf has a larger braking force generation capacity than the rear wheel WHr. In addition, increasing the braking force Ff of the front wheels WHf secures the rear wheel lateral force rather than increasing the braking force Fr of the rear wheels WHr, so that the effect of suppressing the vehicle deflection is higher. Therefore, the distribution ratio Hx for the front wheels WHf is set to be larger than the normal distribution ratio xo as the piece load index Kt is larger. As a result, the braking force Ff (target value) of the front wheels WHf is set large, and the braking force Fr (target value) of the rear wheels WHr is set small.
 左右配分比演算ブロックHYにて、片荷指標Kt、及び、演算マップZhyに基づいて、左右配分比Hyが演算される。左右配分比Hyは、要求減速度Gsを達成するための車両の総制動力Fvを、左右車輪の制動力に割り振るための左右車輪間(つまり、偏向方向に対して外側、内側に位置する車輪間)の配分比率である。ここで、偏向(旋回)に対する外側、内側車輪は、片荷指標Ktの符号に基づいて設定される。具体的には、車両が左方向(即ち、左旋回)に偏向し易い場合には、片荷指標Ktが正符号に決定される。一方、車両が右方向(右旋回)に偏向し易い場合には、片荷指標Ktが負符号に決定される。左右配分比Hyは、旋回外側(偏向外側)の前後車輪に対する比率であり、旋回内側(偏向内側)の前後車輪に対する比率は、「1-Hy」である。 In the left/right distribution ratio calculation block HY, the left/right distribution ratio Hy is calculated based on the single load index Kt and the calculation map Zhy. The left/right distribution ratio Hy is between the left and right wheels for allocating the total braking force Fv of the vehicle for achieving the required deceleration Gs to the braking force for the left and right wheels (that is, the wheels located outside and inside with respect to the deflection direction). Is the distribution ratio of Here, the outer and inner wheels with respect to the deflection (turning) are set based on the sign of the single load index Kt. Specifically, when the vehicle is prone to be deflected to the left (that is, to the left), the single load index Kt is determined to be a positive sign. On the other hand, when the vehicle is easily deflected to the right (right turn), the single-load index Kt is determined to have a negative sign. The left/right distribution ratio Hy is a ratio of front and rear wheels on the outside of turning (deflection outside), and a ratio of front and rear wheels on the inside of turning (deflection inside) is “1-Hy”.
 左右配分比(外側の前後車輪の比率)Hyは、演算マップZhyに基づいて、片荷指標Ktが増加するに従って、左右配分比Hyが増加するように演算される。「Kt=0」であって、積荷が均等である場合には、「Hy=0.5」が決定され、左右車輪で同じ制動力が発生される(即ち、自動制動制御が実行されていない場合の常用配分比)。そして、左右配分比Hyに基づいて、偏向外側車輪の制動力(目標値)が増加され、偏向内側車輪の制動力(目標値)が減少される。加えて、左右配分比Hyの大きさ(絶対値)が大きいほど、制動力の左右差が大きくなるように演算される。制動力の左右差によるヨーモーメントが発生され、偏向が効果的に抑制され得る。 The left-right distribution ratio (outer front-rear wheel ratio) Hy is calculated based on the calculation map Zhy so that the left-right distribution ratio Hy increases as the single load index Kt increases. When “Kt=0” and the load is uniform, “Hy=0.5” is determined, and the same braking force is generated at the left and right wheels (that is, automatic braking control is not executed). If normal distribution ratio). Then, based on the left/right distribution ratio Hy, the braking force (target value) of the deflection outer wheel is increased and the braking force (target value) of the deflection inner wheel is decreased. In addition, the larger the magnitude (absolute value) of the left/right distribution ratio Hy, the larger the difference between the left and right braking forces. A yaw moment is generated due to the left-right difference of the braking force, and the deflection can be effectively suppressed.
 目標液圧演算ブロックPTにて、総制動力(車両に作用する制動力の合計)Fv、左右配分比Hy、及び、前後配分比Hxに基づいて、各車輪WHの目標制動力Fwが演算される。具体的には、要求減速度Gsに基づいて、総制動力Fvが演算される。そして、総制動力Fvが、前後配分比Hx、及び、左右配分比Hyに基づいて、各車輪WHの制動力(目標値)Fwに配分される。例えば、外側前輪の目標制動力Fwfsは、「Fwfs=Fv×Hx×Hy」、外側後輪の目標制動力Fwrsは、「Fwrs=Fv×(1-Hx)×Hy」、内側前輪の目標制動力Fwfuは、「Fwfu=Fv×Hx×(1-Hy)」、内側後輪の目標制動力Fwruは、「Fwru=Fv×(1-Hx)×(1-Hy)」にて、夫々、演算される。なお、上述した制動力の前後配分、及び、左右配分のうちの1つは省略可能である。換言すれば、制動トルク(結果、制動力)について、前後配分、及び、左右配分のうちの少なくとも1つが、片荷指標Kt(片荷の程度を表す特性値)に基づいて行われる。 In the target hydraulic pressure calculation block PT, the target braking force Fw of each wheel WH is calculated based on the total braking force (total braking force acting on the vehicle) Fv, the left/right distribution ratio Hy, and the front/rear distribution ratio Hx. It Specifically, the total braking force Fv is calculated based on the required deceleration Gs. Then, the total braking force Fv is distributed to the braking force (target value) Fw of each wheel WH based on the front-rear distribution ratio Hx and the left-right distribution ratio Hy. For example, the target braking force Fwfs of the outer front wheel is “Fwfs=Fv×Hx×Hy”, the target braking force Fwrs of the outer rear wheel is “Fwrs=Fv×(1-Hx)×Hy”, the target control force of the inner front wheel. The power Fwfu is “Fwfu=Fv×Hx×(1-Hy)”, and the target braking force Fwru of the inner rear wheel is “Fwru=Fv×(1-Hx)×(1-Hy)”. Is calculated. It should be noted that one of the front-rear distribution and the left-right distribution of the braking force described above can be omitted. In other words, with respect to the braking torque (result, braking force), at least one of the front-rear distribution and the left-right distribution is performed based on the single load index Kt (characteristic value indicating the degree of single load).
 目標液圧演算ブロックPTにて、各車輪WHにおいて、目標制動力Fwに基づいて目標液圧Ptが演算される。制動装置の諸元(回転部材KTの制動有効半径、摩擦材の摩擦係数、ホイールシリンダCWの受圧面積等)は、既知であるため、目標制動力Fwが液圧に変換されて、目標液圧Ptが決定される。 In the target hydraulic pressure calculation block PT, the target hydraulic pressure Pt is calculated for each wheel WH based on the target braking force Fw. Since the specifications of the braking device (the effective braking radius of the rotating member KT, the friction coefficient of the friction material, the pressure receiving area of the wheel cylinder CW, etc.) are known, the target braking force Fw is converted into hydraulic pressure, and the target hydraulic pressure is converted. Pt is determined.
 駆動信号演算ブロックDSでは、モータ駆動信号Ml、調圧弁駆動信号Up、及び、インレット弁、アウトレット弁駆動信号Vi、Voが演算される。例えば、目標液圧Ptに基づいて、電気モータMLへの通電量(電流値)を指示する駆動信号Ml(電流指示値)が演算される。また、目標液圧Ptに基づいて、電磁弁の駆動信号Up、Vi、Voが決定される。駆動回路DRでは、駆動信号Ml、Up、Vi、Voに基づいて、各車輪の制動力Fwが達成されるよう、電気モータML、及び、電磁弁UP、VI、VOが制御される。 In the drive signal calculation block DS, the motor drive signal Ml, the pressure regulating valve drive signal Up, and the inlet valve/outlet valve drive signals Vi, Vo are calculated. For example, based on the target hydraulic pressure Pt, the drive signal Ml (current instruction value) that indicates the amount of electricity (current value) to the electric motor ML is calculated. Further, the drive signals Up, Vi, Vo of the solenoid valve are determined based on the target hydraulic pressure Pt. In the drive circuit DR, the electric motor ML and the solenoid valves UP, VI, VO are controlled so that the braking force Fw of each wheel is achieved based on the drive signals Ml, Up, Vi, Vo.
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果を奏する。即ち、片荷状態が高精度に判定されるとともに、その判定結果(片荷指標)Ktに基づいて、各車輪の制動トルクTq(例えば、制動液圧Pw)について、車両に作用する制動力(総制動力)Fvの前後配分比Hx、及び、左右配分比Hyのうちの少なくとも1つが好適に調整される。このため、積荷の片荷に起因する車両偏向が効率的に抑制され得る。
<Other Embodiments>
Hereinafter, other embodiments will be described. In other embodiments, the same effect as above can be obtained. That is, the single load state is determined with high accuracy, and the braking force (the braking fluid pressure Pw) of each wheel that acts on the vehicle is determined based on the determination result (single load index) Kt. At least one of the front-rear distribution ratio Hx of the total braking force) Fv and the left-right distribution ratio Hy is preferably adjusted. Therefore, the vehicle deflection due to the one-sided load can be efficiently suppressed.
 上記実施形態では、2系統流体路として、前後型が例示された。これに代えて、ダイアゴナル型流体路(「X型」ともいう)の構成が採用され得る。ダイアゴナル型流体路では、マスタシリンダCMの2つの液圧室のうちで、一方側が、ホイールシリンダCWi、CWlに接続され、他方側が、ホイールシリンダCWj、CWkに接続される。 In the above embodiment, the front-back type is illustrated as the two-system fluid path. Alternatively, a diagonal fluid path (also referred to as "X-type") configuration may be employed. In the diagonal type fluid passage, one of the two hydraulic chambers of the master cylinder CM is connected to the wheel cylinders CWi and CWl, and the other side is connected to the wheel cylinders CWj and CWk.
 上記実施形態では、車輪WHに制動トルク(結果、制動力)を付与する装置として、制動液BFを介した液圧式のものが例示された。これに代えて、電気モータによって駆動される、電動式のものが採用され得る。電動式装置では、電気モータの回転動力が、直線動力に変換され、これによって、摩擦部材が回転部材KTに押し付けられる。従って、制動液圧Pwに依らず、電気モータによって、直接、制動トルクTqが付与され、制動力が発生される。さらに、前輪用として、制動液BFを介した液圧式のものが採用され、後輪用として、電動式のものが採用された、複合型であってもよい。
 
 
In the above-described embodiment, as the device that applies the braking torque (resultingly, the braking force) to the wheels WH, a hydraulic type device via the braking liquid BF is illustrated. Alternatively, an electric type driven by an electric motor may be adopted. In the electric device, the rotary power of the electric motor is converted into linear power, and the friction member is pressed against the rotary member KT. Therefore, the braking torque Tq is directly applied by the electric motor irrespective of the braking fluid pressure Pw, and the braking force is generated. Further, it may be a composite type in which a hydraulic type through the braking fluid BF is adopted for the front wheels, and an electric type is adopted for the rear wheels.

Claims (4)

  1.  車両に積載された積荷が車幅方向に偏っている片荷状態を判定する車両の片荷判定装置であって、
     前記車両が走行している道路方向を取得する第1方向取得手段と、
     前記車両の進行方向を取得する第2方向取得手段と、
     前記車両の減速度が所定値以上の場合に、前記道路方向と前記進行方向との偏差に基づいて前記片荷状態であることを判定するコントローラと、
     を備えた、車両の片荷判定装置。
    A load determination device for a vehicle that determines a load condition in which a load loaded on the vehicle is biased in the vehicle width direction,
    First direction acquisition means for acquiring a road direction in which the vehicle is traveling,
    Second direction acquisition means for acquiring the traveling direction of the vehicle,
    When the deceleration of the vehicle is equal to or greater than a predetermined value, a controller that determines that the vehicle is in the single-load state based on a deviation between the road direction and the traveling direction,
    A single load determination device for a vehicle, comprising:
  2.  請求項1に記載の車両の片荷判定装置において、
     前記第1方向取得手段は、全地球測位システム、及び、地図情報を有するナビゲーションシステムであり、
     前記第2方向取得手段は、前記車両の操舵角を検出する操舵角センサであり、
     前記コントローラは、
     前記全地球測位システムによって得られた前記車両の位置を前記地図情報に対応させて前記道路方向を決定し、
     前記操舵角に基づいて前記進行方向を演算する、車両の片荷判定装置。
    The single load determination device for a vehicle according to claim 1,
    The first direction acquisition means is a global positioning system and a navigation system having map information,
    The second direction acquisition means is a steering angle sensor that detects a steering angle of the vehicle,
    The controller is
    Determining the road direction by associating the position of the vehicle obtained by the global positioning system with the map information,
    A single load determination device for a vehicle, which calculates the traveling direction based on the steering angle.
  3.  請求項1に記載の車両の片荷判定装置において、
     前記第1方向取得手段は、前記車両の前方を撮影するカメラシステムであり、
     前記第2方向取得手段は、前記車両の操舵角を検出する操舵角センサであり、
     前記コントローラは、
     前記カメラシステムの映像に基づいて前記道路方向を決定し、
     前記操舵角に基づいて前記進行方向を演算する、車両の片荷判定装置。
    The single load determination device for a vehicle according to claim 1,
    The first direction acquisition means is a camera system for photographing the front of the vehicle,
    The second direction acquisition means is a steering angle sensor that detects a steering angle of the vehicle,
    The controller is
    Determining the road direction based on the image of the camera system,
    A single load determination device for a vehicle, which calculates the traveling direction based on the steering angle.
  4.  請求項1乃至請求項3の何れか一項に記載の前記車両の片荷判定装置を備え、前記車両の前方の物体との衝突を抑制する車両の自動制動装置において、
     前記コントローラは、
     前記片荷状態の判定結果である片荷指標を演算し、
     前記片荷指標に基づいて、前記車両に作用する制動力の前後配分比、及び、前記車両に作用する制動力の左右配分比のうちの少なくとも1つを調整する、車両の自動制動装置。
     
    An automatic braking device for a vehicle, comprising the single load determination device for the vehicle according to any one of claims 1 to 3, which suppresses a collision with an object in front of the vehicle,
    The controller is
    Compute a single load index that is the determination result of the single load state,
    An automatic braking device for a vehicle, which adjusts at least one of a front-rear distribution ratio of a braking force acting on the vehicle and a left-right distribution ratio of a braking force acting on the vehicle based on the one-sided load index.
PCT/JP2020/004049 2019-02-04 2020-02-04 Eccentric load determination device of vehicle and automatic brake device of vehicle provided with same WO2020162429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-017568 2019-02-04
JP2019017568 2019-02-04

Publications (1)

Publication Number Publication Date
WO2020162429A1 true WO2020162429A1 (en) 2020-08-13

Family

ID=71947694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004049 WO2020162429A1 (en) 2019-02-04 2020-02-04 Eccentric load determination device of vehicle and automatic brake device of vehicle provided with same

Country Status (1)

Country Link
WO (1) WO2020162429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107318A1 (en) * 2020-11-20 2022-05-27 三菱電機株式会社 Brake control system and brake control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166745A (en) * 2000-11-29 2002-06-11 Nissan Diesel Motor Co Ltd Roll over prevention device for vehicle
GB2424961A (en) * 2005-04-04 2006-10-11 Pm Group Plc Methods of load and axle measurement
JP2012136182A (en) * 2010-12-27 2012-07-19 Hino Motors Ltd Centroid position estimating device, vehicle, and centroid position estimating method and program
JP2012171430A (en) * 2011-02-18 2012-09-10 Advics Co Ltd One-sided load determination apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166745A (en) * 2000-11-29 2002-06-11 Nissan Diesel Motor Co Ltd Roll over prevention device for vehicle
GB2424961A (en) * 2005-04-04 2006-10-11 Pm Group Plc Methods of load and axle measurement
JP2012136182A (en) * 2010-12-27 2012-07-19 Hino Motors Ltd Centroid position estimating device, vehicle, and centroid position estimating method and program
JP2012171430A (en) * 2011-02-18 2012-09-10 Advics Co Ltd One-sided load determination apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107318A1 (en) * 2020-11-20 2022-05-27 三菱電機株式会社 Brake control system and brake control method

Similar Documents

Publication Publication Date Title
JP7345720B2 (en) Vehicle automatic braking system
US20100324823A1 (en) Vehicle operation supporting device and vehicle operation supporting method
JP7395996B2 (en) Vehicle automatic braking system
JP2005271846A (en) Behavior control device for vehicle
JP2005343399A (en) Turning run control device for vehicle
JP2600876B2 (en) Vehicle turning control device
WO2020162429A1 (en) Eccentric load determination device of vehicle and automatic brake device of vehicle provided with same
US7097262B2 (en) Braking force control apparatus and method for vehicle
US10077048B2 (en) Lane departure prevention apparatus
JP2008162456A (en) Automatic braking device
WO2020162433A1 (en) Automatic braking device of vehicle
JP7363572B2 (en) Vehicle braking control device
US20220289173A1 (en) Steering Control Apparatus, Steering Control Method, and Steering Control System
JP7259335B2 (en) vehicle automatic braking system
JP3527748B2 (en) Vehicle motion control device
JP7205164B2 (en) vehicle automatic braking system
JP7139890B2 (en) vehicle automatic braking system
JP2005008110A (en) Braking force control device for vehicle
US20230304804A1 (en) Travel route generation device, vehicle controller, and computer-readable medium storing travel route generation program
JP3876487B2 (en) Vehicle behavior control device
JP7452087B2 (en) Vehicle braking control device
JP2019182050A (en) Brake control device and brake control method
JP7251249B2 (en) vehicle automatic braking system
WO2020084915A1 (en) Vehicle braking method
JPH06144072A (en) Vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20751937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20751937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP