WO2020162101A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2020162101A1
WO2020162101A1 PCT/JP2020/000619 JP2020000619W WO2020162101A1 WO 2020162101 A1 WO2020162101 A1 WO 2020162101A1 JP 2020000619 W JP2020000619 W JP 2020000619W WO 2020162101 A1 WO2020162101 A1 WO 2020162101A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
side opening
crank chamber
drive shaft
rotating body
Prior art date
Application number
PCT/JP2020/000619
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Priority to CN202080009749.6A priority Critical patent/CN113272555B/en
Publication of WO2020162101A1 publication Critical patent/WO2020162101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons

Definitions

  • the present invention relates to a compressor in which a refrigerant sucked into a cylinder bore from a suction chamber is compressed by a reciprocating motion of a piston accompanying the rotation of a drive shaft that crosses a crank chamber and is discharged to a discharge chamber.
  • the swash plate type compressor described in Patent Document 1 As an example of this type of compressor, the swash plate type compressor described in Patent Document 1 is known.
  • This compressor has a housing having a suction chamber, a crank chamber, a discharge chamber, and a cylinder bore, a drive shaft that traverses the crank chamber, and is fixed to the drive shaft and faces one end wall portion of the housing in the crank chamber.
  • the suction member is provided with a rotating body (lug plate) and a discharge passage (release passage) communicating between the crank chamber and the suction chamber, and reciprocating motion of a piston in the cylinder bore accompanying rotation of the drive shaft.
  • the refrigerant sucked into the cylinder bore from the chamber is compressed and discharged into the discharge chamber.
  • One end of the drive shaft extends in a shaft hole opened in the one end wall of the housing.
  • a radial bearing (a plain bearing) that rotatably supports the drive shaft is provided at an opening portion of the shaft hole on the inner side of the crank chamber, and a shaft sealing device is provided at the opening portion of the shaft hole on the outer side of the crank chamber.
  • An annular space is provided between the rotary body and one end surface of the housing, and a thrust bearing is provided between the rotary body and the one end wall portion of the housing.
  • the discharge passage has a first passage that communicates with a region of the crank chamber that is rich in lubricating oil, and a second passage that communicates with a region of the crank chamber that is low in lubricating oil.
  • the first passage is formed in the one end wall portion of the housing, and an oil guide passage (oil guide groove, oil guide hole) that communicates between the outer peripheral region of the crank chamber and the space, the annular space, An internal passage connected to the space and extending in the drive shaft, and a throttle hole are provided, and a region in the crank chamber rich in lubricating oil and the suction chamber communicate with each other.
  • the internal passage includes a first hole extending in the radial direction at a predetermined angular position in the rotation direction of the drive shaft, a second hole extending in the axial direction, a communication hole, and an outflow hole.
  • the compressor increases the ratio of the first passage in the discharge passage by increasing the rotation speed of the drive shaft, and increases the proportion of the second passage in the discharge passage by decreasing the rotation speed of the drive shaft. It is configured to increase the proportion.
  • the annular space where the first hole, which is one end of the internal passage, is opened is an area having a small volume between the shaft sealing device and the one end surface of the radial bearing. is there.
  • the space and the first hole constitute a part of the discharge passage that communicates between the crank chamber and the suction chamber. Therefore, most of the lubricating oil that has flowed into the annular space with a small volume together with the refrigerant gas flows into the first hole together with the refrigerant gas regardless of the angular position in the rotational direction of the drive shaft, After that, the gas is discharged into the suction chamber via the internal passage including the first hole. In other words, since the first hole is directly connected to the space, the oil in the space always flows out from the first hole toward the suction chamber.
  • Lubricating oil in the room may be excessively reduced, which may lead to insufficient lubrication of sliding members such as the shaft sealing device.
  • an object of the present invention is to provide a compressor capable of maintaining an appropriate amount of lubricating oil in the crank chamber while communicating between the crank chamber and the suction chamber.
  • a compressor including a housing, a drive shaft, a radial bearing, a disk-shaped rotating body, a piston, a discharge passage, and an oil supply passage.
  • the housing has a suction chamber into which the uncompressed refrigerant is introduced, a discharge chamber, and a crank chamber.
  • the drive shaft traverses the crank chamber, and one end thereof extends in a shaft hole opened in one end wall portion in a drive shaft extending direction of a crank chamber forming wall of the housing.
  • the radial bearing is provided in the shaft hole and rotatably supports the drive shaft.
  • the rotating body is fixed to the drive shaft and faces the one end wall portion in the crank chamber.
  • the piston is housed in a cylinder bore formed in the other end wall portion of the crank chamber forming wall.
  • the discharge passage communicates between the crank chamber and the suction chamber.
  • the oil supply passage is a passage for guiding the lubricating oil in the crank chamber to at least the radial bearing.
  • the discharge passage communicates between the crank chamber and the suction chamber via the first passage and the second passage.
  • the first passage extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end of the drive shaft.
  • the second passage is continuous with the first passage and extends toward the other end of the drive shaft.
  • the oil supply passage is provided in the one end wall portion and has an inlet side opening and an outlet side opening.
  • the inlet-side opening opens in the crank chamber at a portion of the one end wall portion that is above the axis of the drive shaft in the gravity direction.
  • the outlet side opening is a portion of the one end wall portion below the inlet side opening in the direction of gravity and at a predetermined angle around the axis of the drive shaft, and the one end surface of the one end wall portion is rotated. It opens in the crank chamber area between one end surface of the body.
  • the lubricating oil that has flowed into the oil supply passage from the crank chamber through the inlet side opening flows out from the outlet side opening toward the one end surface of the rotating body.
  • the compressor includes a receiving portion forming a receiving area for receiving the lubricating oil flowing out from the outlet side opening.
  • the receiving portion is a portion in the radial direction corresponding to the opening position of the outlet side opening on the one end surface of the rotating body and includes at least a portion adjacent to the outer peripheral surface side opening end of the first passage.
  • the receiving area is formed.
  • the outer peripheral surface side opening end of the first passage opens in the adjacent region.
  • the outlet side opening of the oil supply passage is a portion of the one end wall portion that is lower than the inlet side opening in the gravity direction, and has a predetermined circumference around the axis of the drive shaft.
  • the first passage of the discharge passage extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end of the drive shaft. That is, while the rotating body and the drive shaft are rotating, the angular position of the opening end of the outer peripheral surface side of the first passage provided in the drive shaft around the axis of the drive shaft changes, but The angular position of the outlet side opening that is opened in the wall is constant.
  • the angular position of the outer peripheral surface side opening end of the first passage intermittently coincides with the angular position of the outlet side opening. Then, when both angular positions match, the distance between the outlet side opening and the outer peripheral surface side opening end of the first passage becomes the shortest.
  • the oil supply passage is substantially connected to the first passage via the receiving area, and a flow of the refrigerant gas from the inlet side opening of the oil supply passage toward the outlet side opening is generated.
  • the compressor is a receiving portion that forms a receiving region for receiving the lubricating oil that has flowed out from the outlet side opening, and corresponds to an opening position of the outlet side opening on the one end surface of the rotating body.
  • the receiving portion that forms the receiving area in a portion that is located in the radial direction and that includes the adjacent area that is adjacent to at least the outer peripheral surface side opening end of the first passage, and the receiving area is adjacent to the receiving area.
  • the outer peripheral surface side opening end of the first passage is open. Therefore, in the compressor, whether or not the receiving area faces the outlet side opening during rotation of the rotating body, and the angular position of the outer peripheral surface side opening end of the first passage and the outlet side. Depending on the relationship with the angular position of the opening, for example, the following effects are achieved.
  • the receiving area faces the outlet side opening, and the angular position of the outer peripheral surface side opening end (adjacent area) of the first passage is the outlet side opening.
  • the lubricating oil flowing out from the outlet side opening is received in the area adjacent to the receiving area.
  • a centrifugal force associated with the rotation acts on the lubricating oil received in the adjacent region.
  • the lubricating oil received in the adjacent region is a refrigerant gas that flows from the crank chamber through the inlet side opening of the oil supply passage and flows out of the outlet side opening against the centrifugal force.
  • the receiving area faces the outlet side opening, and the angular position of the outer peripheral surface side opening end of the first passage is separated from the angular position of the outlet side opening.
  • the lubricating oil flowing out from the outlet side opening is received in the receiving area when not largely separated (period).
  • the lubricating oil received in the receiving area moves radially outward in the receiving area due to the centrifugal force associated with the rotation, and most of it temporarily stays in the receiving area.
  • the lubricating oil flowing out from the outlet side opening is applied to the one end surface of the rotating body. It collides and is stored at the bottom of the crank chamber via a crank chamber region (gap) between the one end face of the one end wall portion and the one end face of the rotating body.
  • the receiving area is formed so as to surround a wide area in the circumferential direction of the outer peripheral surface of the drive shaft, the receiving area is formed on the outlet side opening during rotation of the rotating body.
  • the compressor during rotation of the rotating body, at a timing at which the angular position of the outer peripheral surface side opening end of the first passage substantially matches the angular position of the outlet side opening, A large amount of the lubricating oil in the crank chamber flows into the suction chamber.
  • the compressor causes the lubricating oil in the crank chamber to intermittently flow into the suction chamber during rotation of the rotary body, or to suck the lubricating oil from the crank chamber during rotation of the rotary body.
  • the flow rate of lubricating oil flowing into the chamber is periodically increased and decreased.
  • FIG. 3 is a cross-sectional view of a main part including a drive shaft and a rotating body of the compressor, showing a state in which a first passage in the drive shaft is located below.
  • FIG. 3 is a cross-sectional view of a main part including the drive shaft and the rotating body of the compressor, showing a state in which the first passage is located above. It is a rear view of the rotating body of the said compressor. It is a conceptual diagram for demonstrating the positional relationship during rotation of the receiving area
  • FIG. 1 is a sectional view of a compressor according to an embodiment of the present invention.
  • the compressor according to the embodiment is configured as a clutchless compressor mainly applied to an air conditioner system (air conditioner system) for vehicles.
  • air conditioner system air conditioner system
  • FIG. 1 a case of a swash plate type variable displacement compressor with variable discharge capacity will be described as an example.
  • the upper side in FIG. 1 is the upper side in the gravity direction when the compressor is installed, and the lower side in FIG. 1 is the lower side in the gravity direction.
  • the vertical relationship in the direction of gravity is also shown in FIGS. 3 to 5 and FIGS. 7 to 16 described later.
  • the compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101 a arranged in an annular shape, a front housing 102 provided at one end of the cylinder block 101, and a cylinder block 101 at the other end.
  • a cylinder head 104 provided via the valve plate 103.
  • the front housing 102, the center gasket (not shown), the cylinder block 101, the cylinder gasket 152, the intake valve forming plate 150, the valve plate 103, the discharge valve forming plate 151, the head gasket 153, and the cylinder head 104 are sequentially connected,
  • the housing of the compressor 100 is formed by being fastened by the through bolts 105.
  • a crank chamber 140 (control pressure chamber) is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 extending in the horizontal direction is provided across the crank chamber 140.
  • the front housing 102 is formed in a cylindrical shape with a bottom, has a substantially cylindrical peripheral wall 102a and one end wall portion 102b that closes one end of the peripheral wall 102a, and the opening at the other end of the peripheral wall 102a is closed by the cylinder block 101. ing.
  • the cylinder bore 101a is formed in the cylinder block 101.
  • the cylinder block 101 and the front housing 102 correspond to the "crank chamber forming wall" of the present invention
  • the one end wall portion 102b of the front housing 102 corresponds to the "crank chamber forming wall of the housing" of the present invention.
  • the cylinder block 101 corresponds to the "other end wall portion of the crank chamber forming wall” according to the present invention.
  • a swash plate 111 is arranged around the axially intermediate portion of the drive shaft 110.
  • the swash plate 111 is connected to a disc-shaped rotating body 112 fixed to the drive shaft 110 via a link mechanism 120, and rotates together with the drive shaft 110. Further, the swash plate 111 is configured such that an angle (an inclination angle of the swash plate 111) with respect to a plane orthogonal to the axis O of the drive shaft 110 can be changed.
  • the rotating body 112 faces the one end wall portion 102b of the front housing 102 in the crank chamber 140.
  • annular projecting portion 112c On the end surface of the rotating body 112 on the side of the one end wall portion 102b, an annular projecting portion 112c having a substantially trapezoidal cross-sectional shape is provided so as to project toward the one end wall portion 102b side.
  • a thrust bearing 133 described later is attached to the outer periphery of the protruding portion 112c.
  • a gap (corresponding to a crank chamber area 140a described below) is provided between the one end surface 102b1 of the one end wall portion 102b of the front housing 102 and the one end surface 112b of the rotating body 112 that face each other.
  • the one end surface 112b of the rotating body 112 is a portion of the end surface of the rotating body 112 on the one end wall portion 102b side between the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110. Is.
  • the link mechanism 120 includes a first arm 112a protruding from the rotating body 112, a second arm 111a protruding from the swash plate 111, and one end side with respect to the first arm 112a via the first connecting pin 122.
  • the link arm 121 is rotatably connected and the other end side is rotatably connected to the second arm 111a via the second connecting pin 123.
  • the through hole 111b of the swash plate 111 is formed in a shape that allows the swash plate 111 to tilt within a range between the maximum tilt angle and the minimum tilt angle.
  • the through hole 111b is formed with a minimum tilt angle restricting portion that comes into contact with the drive shaft 110.
  • the minimum inclination angle restricting portion of the through hole 111b is such that the inclination angle of the swash plate 111 is approximately 0°.
  • a tilt reducing spring 114 that biases the swash plate 111 in a direction that decreases the tilt angle of the swash plate 111
  • a tilt increasing spring 115 that biases the swash plate 111 in a direction that increases the tilt angle of the swash plate 111.
  • the tilt angle reducing spring 114 is arranged between the swash plate 111 and the rotating body 112, and the tilt angle increasing spring 115 is mounted between the swash plate 111 and the spring support member 116 fixed to the drive shaft 110.
  • the biasing force of the tilt angle increasing spring 115 is set to be larger than the biasing force of the tilt angle decreasing spring 114, and the drive shaft 110 is rotating.
  • the swash plate 111 is positioned at an inclination angle that balances the biasing force of the tilt angle decreasing spring 114 and the biasing force of the tilt angle increasing spring 115.
  • One end portion (left end side in FIG. 1) of the drive shaft 110 extends in the shaft hole 102d opened in the one end wall portion 102b of the front housing 102 and extends to the outside of the front housing 102.
  • the shaft hole 102d penetrates through the inside of the protruding portion 102c that partially protrudes outward at the radial center portion of the one end wall portion 102b of the front housing 102.
  • a power transmission device (not shown) is connected to the one end of the drive shaft 110. Rotational power of the drive shaft 110 is input from an external power source via the power transmission device.
  • the inside of the crank chamber 140 is shielded from the external space by the shaft sealing device 130 provided on the protrusion 102c.
  • a first bearing 131 that rotatably supports the drive shaft 110 is provided in the shaft hole 102d (specifically, an opening portion of the shaft hole 102d on the crank chamber inner side).
  • the shaft sealing device 130 is provided in a region outside the crank chamber of the shaft hole 102d with an annular space W between the one end face 131a in the axial direction of the first bearing 131, and the outer peripheral surface of the drive shaft 110 and the shaft.
  • the inner peripheral surface of the hole 102d is hermetically sealed.
  • the first bearing 131 in the present embodiment corresponds to the “radial bearing” according to the present invention.
  • the other end (right end side in FIG. 1) of the drive shaft 110 is inserted through a center bore 101b formed in the cylinder block 101.
  • the center bore 101b penetrates the cylinder block 101 at the center of the plurality of cylinder bores 101a, and has a large diameter portion that opens from the valve plate 103 side toward the crank chamber 140 side to the end surface of the cylinder block 101 on the cylinder head 104 side.
  • 101b1 a small-diameter medium-diameter portion 101b2 smaller than the large-diameter portion 101b1, and a small-diameter portion 101b3 smaller than the medium-diameter portion 101b2.
  • the other end of the drive shaft 110 is rotatably supported by a second bearing 132 provided on the small diameter portion 101b3 of the center bore 101b.
  • the coupling body including the drive shaft 110 and the rotating body 112 fixed to the drive shaft 110 is supported by the first bearing 131 and the second bearing 132 in the radial direction, and is supported by the thrust bearing 133 in the thrust direction. ..
  • the first bearing 131 and the second bearing 132 are slide bearings.
  • the thrust bearing 133 is sandwiched between the rotating body 112 and the one end wall portion 102b of the front housing 102 while being attached to the outer peripheral surface of the protruding portion 112c of the rotating body 112, and the thrust direction load acting on the rotating body 112. Is to support.
  • the drive shaft 110 is configured to rotate in synchronization with the rotation of the power transmission device by transmitting the power from the external drive source to the power transmission device.
  • a piston 136 is housed in each cylinder bore 101a.
  • An outer space of the swash plate 111 and the vicinity thereof are housed in an inner space formed in a protruding portion of the piston 136 that projects into the crank chamber 140.
  • the swash plate 111 includes the piston 136 through a pair of shoes 137. It is configured to work with. Then, the rotation of the swash plate 111 accompanying the rotation of the drive shaft 110 causes each piston 136 to reciprocate within the corresponding cylinder bore 101a.
  • the cylinder head 104 is divided into a suction chamber 141 arranged in the center and a discharge chamber 142 surrounding the suction chamber 141 in an annular shape. That is, the housing of the compressor 100 has the suction chamber 141, the discharge chamber 142, and the crank chamber 140.
  • the suction chamber 141 and each cylinder bore 101a communicate with each other through a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate 150.
  • the discharge chamber 142 and each cylinder bore 101a communicate with each other through a communication hole 103b provided in the valve plate 103 and a discharge valve (not shown) formed in the discharge valve forming plate 151.
  • a discharge check valve 200 is arranged in the discharge chamber 142.
  • the low-pressure side refrigerant (that is, the refrigerant before compression) of the refrigerant circuit of the air conditioner system is introduced into the intake chamber 141 via the intake port 106 and the intake passage 107.
  • the refrigerant in the suction chamber 141 is sucked into the corresponding cylinder bore 101a by the reciprocating motion of each piston 136, compressed, and discharged into the discharge chamber 142. That is, the reciprocating motion of the piston 136 accompanying the rotation of the drive shaft 110 compresses the refrigerant sucked into the cylinder bore 101 a from the suction chamber 141 and discharges it to the discharge chamber 142.
  • the cylinder bore 101a and the piston 136 constitute a compression unit that sucks and compresses the refrigerant in the suction chamber 141. Then, the refrigerant discharged to the discharge chamber 142 is guided to the high pressure side of the refrigerant circuit of the air conditioner system via the discharge passage 108 and the discharge port 109. Further, the discharge check valve 200 blocks the reverse flow of the refrigerant (refrigerant gas) from the high pressure side of the refrigerant circuit of the air conditioner system toward the discharge chamber 142.
  • the compressor 100 includes a supply passage 145 for supplying the refrigerant in the discharge chamber 142 to the crank chamber 140, and a discharge passage 146 for discharging the refrigerant in the crank chamber 140 to the suction chamber 141.
  • FIG. 2 is a diagram schematically showing the supply passage 145 and the discharge passage 146.
  • the supply passage 145 is formed as a passage that communicates between the discharge chamber 142 and the crank chamber 140, and the control valve 300 is provided in the middle of the supply passage 145.
  • the control valve 300 is configured to adjust the opening degree (passage cross-sectional area) of the supply passage 145 and thereby control the supply amount of the refrigerant (discharge refrigerant) in the discharge chamber 142 to the crank chamber 140. ..
  • the discharge passage 146 is formed as a passage that communicates between the crank chamber 140 and the suction chamber 141, and has a throttle portion (a throttle passage 103c described later).
  • the control valve 300 includes a valve unit and a drive unit (solenoid) that opens and closes the valve unit, and introduces the suction chamber 141 through a communication passage 104b (see FIG. 1) formed in the cylinder head 104.
  • the opening degree of the supply passage 145 is controlled in response to the pressure and the electromagnetic force generated by the current flowing through the solenoid in response to the external signal.
  • the coil of the drive unit is connected to a control device (not shown) provided outside the compressor 100 via a signal line or the like.
  • the drive unit generates an electromagnetic force F(I) when the control current I is supplied to the coil from the controller.
  • the valve body of the valve unit moves in the valve closing direction.
  • the valve body increases the discharge capacity by increasing the opening of the valve hole (that is, the supply passage 145) (passage cross-sectional area). ) Is reduced to lower the pressure in the crank chamber 140, and when the pressure in the suction chamber 141 falls below the set pressure, the opening of the valve hole (that is, the supply passage 145) is increased in order to reduce the discharge capacity. Then, the pressure in the crank chamber 140 is increased. That is, the control valve 300 autonomously controls the opening degree of the supply passage 145 so that the pressure in the suction chamber 141 approaches the set pressure.
  • the control device controls energization to the coil of the drive unit by pulse width modulation (PWM control) at a predetermined frequency in the range of 400 Hz to 500 Hz, for example, so that the current value flowing through the coil becomes a desired value. Change the pulse width (duty ratio).
  • PWM control pulse width modulation
  • the discharge chamber 142 and the crank chamber 140 are communicated with each other, and the refrigerant in the discharge chamber 142 is guided into the crank chamber 140 via the supply passage 145.
  • the crank chamber 140 and the suction chamber 141 communicate with each other through the discharge passage 146, but since the discharge passage 146 has the throttle portion, the refrigerant in the crank chamber 140 is discharged to the suction chamber 141.
  • the pressure in the crank chamber 140 increases.
  • the refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 via the supply passage 145 according to the opening degree of the supply passage 145 by the control valve 300, and the pressure of the crank chamber 140 rises.
  • the inclination angle of the swash plate 111 decreases and the stroke of the piston 136 (that is, the discharge capacity of the compressor 100) also decreases.
  • the refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 via the supply passage 145, and the refrigerant in the crank chamber 140 is discharged to the suction chamber 141 via the discharge passage 146.
  • the pressure in the crank chamber 140 is adjusted, whereby the discharge capacity is changed.
  • Lubricating oil for lubricating the sliding surfaces of the shaft sealing device 130, the bearings (131, 132, 133), and the sliding members such as the swash plate 111 is mainly stored in the crank chamber 140. ing.
  • the lubricating oil in the crank chamber 140 is stored below the crank chamber 140 in the direction of gravity when the drive shaft 110 stops rotating.
  • the lubricating oil in the crank chamber 140 is agitated as the drive shaft 110 rotates, and the region on the peripheral wall 102a side in the crank chamber 140 becomes a region with a large amount of lubricating oil.
  • the region on the radial center side (drive shaft 110 side) in the chamber 140 is a region in which the content of lubricating oil is small.
  • FIG. 3 and 4 are cross-sectional views of a main part including the drive shaft 110 and the rotating body 112 of the compressor 100, and FIG. 4 is a state in which the drive shaft 110 and the rotating body 112 are rotated by 180° from the state shown in FIG. It is shown. It should be noted that FIG. 3 shows a state in which a later-described first passage 146a formed in the drive shaft 110 is located below, and FIG. 4 shows a state in which the first passage 146a is located above.
  • the compressor 100 includes an oil supply passage 147 for guiding the lubricating oil in the crank chamber 140 to at least the first bearing 131.
  • the oil supply passage 147 is provided in the one end wall portion 102b of the front housing 102, and has an inlet side opening 147A and an outlet side opening 147B.
  • the lubricating oil that has flowed into the oil supply passage 147 from the crank chamber 140 through the inlet side opening 147A flows out from the outlet side opening 147B toward the one end surface 112b of the rotating body 112.
  • a part of the lubricating oil in the crank chamber 140 is discharged to the suction chamber 141 through the discharge passage 146 as the refrigerant moves, and then sucked into the cylinder bore 101a to slide the piston 136 or the like.
  • the lubricating oil is stirred as the drive shaft 110 rotates, and the lubricating oil moves as the refrigerant moves through the oil supply passage 147 and the discharge passage 146, thereby lubricating the inside of the compressor 100. ..
  • the compressor 100 also includes a receiving portion 148 that forms a receiving region 146c for receiving the lubricating oil that has flowed out from the outlet side opening 147B of the oil supply passage 147.
  • the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112. That is, the receiving area 146c is open to the crank chamber area 140a between the one end surface 102b1 of the one end wall portion 102b of the front housing 102 and the one end surface 112b of the rotating body 112.
  • the crank chamber region 140a is a region formed by a gap between the one end face 102b1 of the one end wall portion 102b and the one end face 112b of the rotating body 112, and is a part of the region in the crank chamber 140.
  • the supply passage 145 is formed by a communication passage 104c formed in the cylinder head 104, a passage in the control valve 300, a communication passage 104d extending in the cylinder head 104 and the cylinder block 101. ing.
  • the discharge passage 146 communicates between the crank chamber 140 and the suction chamber 141 via the first passage 146a and the second passage 146b.
  • the first passage 146a extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end (the left side in FIG. 1, the end on the shaft sealing device 130 side) of the drive shaft 110.
  • the second passage 146b is continuous with the first passage 146a and extends to the other end portion side (the right side in FIG. 1, the cylinder head 104 side) of the drive shaft 110.
  • the first passage 146a extends radially from the outer peripheral surface of the drive shaft 110 at a predetermined angular position in the peripheral direction on the outer peripheral surface.
  • the second passage 146b extends from the shaft inner end of the first passage 146a along the axis O so as to penetrate the end surface of the drive shaft 110 on the other end side.
  • An outer peripheral surface side opening end of the first passage 146a is open to a receiving region 146c (specifically, an adjacent region 146c1 described later) formed by the receiving portion 148.
  • the receiving area 146c is open to the crank chamber area 140a which is a part of the crank chamber 140. Therefore, the first passage 146a communicates with the crank chamber 140 via the receiving area 146c. That is, the receiving area 146c constitutes an opening end of the discharge passage 146 on the crank chamber 140 side.
  • the discharge passage 146 that communicates between the crank chamber 140 and the suction chamber 141 has a receiving area 146c, a first passage 146a, a second passage 146b, a medium diameter portion 101b2, and a large diameter portion 101b1. And a throttle passage (fixed throttle) 103c formed in the valve plate 103 (see FIG. 1).
  • the flow passage cross-sectional area of the first passage 146a is set smaller than the flow passage cross-sectional area of the second passage 146b and larger than the flow passage cross-sectional area of the throttle passage 103c.
  • the oil supply passage 147 is provided in the one end wall portion 102b of the front housing 102 and has the inlet side opening 147A and the outlet side opening 147B.
  • the inlet-side opening 147A opens into the crank chamber 140 at a portion of the one end wall portion 102b (one end surface 102b1) above the axis O of the drive shaft 110 in the gravity direction.
  • the outlet side opening 147B is a portion of the one end wall portion 102b (one end surface 102b1) below the inlet side opening 147A in the direction of gravity and at a predetermined angle around the axis O of the drive shaft 110 in the crank chamber region 140a. Open.
  • the oil supply passage 147 extends via the annular space W between the shaft sealing device 130 and the first bearing 131, and has an inlet side oil passage 147a having an inlet side opening 147A, An outlet side oil passage 147b having an outlet side opening 147B is included. That is, the oil supply passage 147 includes the inlet side oil passage 147a, the space W, and the outlet side oil passage 147b. Most of the lubricating oil guided from the crank chamber 140 to the annular space W via the inlet side oil passage 147a flows out from the space W via the outlet side oil passage 147b.
  • the inlet-side oil passage 147a has one end serving as the inlet-side opening 147A, which opens to the crank chamber 140 at a portion of the one-end wall portion 102b that is above the drive shaft 110 in the direction of gravity and radially outside of the thrust bearing 133, and the other end is open. It opens in the upper region in the annular space W.
  • the inlet oil passage 147a is formed by, for example, an oil guide groove portion 147a1, an oil guide hole 147a2, and an end surface of the thrust bearing 133 on the one end wall portion 102b side.
  • the oil guide groove portion 147a1 is a groove that extends downward from a portion of the one end wall portion 102b above the outer edge portion of the thrust bearing 133, and extends downward along the one end surface 102b1 of the one end wall portion 102b.
  • the lower side portion of the oil guide groove portion 147a1 is closed by the end face plate 133a on the one end wall portion 102b side of the thrust bearing 133, and the upper side portion of the oil guide groove portion 147a1 is opened to the crank chamber 140,
  • An inlet side opening 147A of the supply passage 147 is configured.
  • the oil guide hole 147a2 extends obliquely from the lower end portion of the oil guide groove portion 147a1 into the one end wall portion 102b, and opens in the upper region of the annular space W.
  • the lubricating oil in the crank chamber 140 is agitated, and the region on the peripheral wall 102a side in the crank chamber 140 becomes a region with a large amount of lubricating oil.
  • the lubricating oil in the region on the peripheral wall 102a side in the crank chamber 140 is mainly supplied to the shaft sealing device 130 and the first bearing 131 via the oil passage 147a on the inlet side of the oil supply passage 147. Lubricating oil flows into the gap in the thrust bearing 133 from the radially outer edge portion of the thrust bearing 133.
  • the outlet-side oil passage 147b has one end opening to a lower region in the annular space W, and the other end as the outlet-side opening 147B is below the drive shaft 110 in the one end wall portion 102b in the gravity direction and has a diameter of the thrust bearing 133.
  • An opening is made in the crank chamber region 140a at a portion inside the inner edge in the direction.
  • the outlet-side oil passage 147b extends obliquely downward from the one end toward the rotary body 112 side, and then bends toward the axis O of the drive shaft 110 and extends parallel to the axis O.
  • the outlet side opening 147B (the other end) of the outlet side oil passage 147b is opened at an angular position shifted by 180° around the axis O of the drive shaft 110 with respect to the opening angular position of the inlet side opening 147A.
  • the one end of the oil passage 147b is opened at an angular position shifted by 180° around the axis O of the drive shaft 110 with respect to the angular position of the opening of the other end of the inlet-side oil passage 147a.
  • the first bearing 131 is a slide bearing. Therefore, a minute gap, that is, a face-to-face gap, exists between the inner peripheral surface of the first bearing 131 and the outer peripheral surface of the drive shaft 110. Therefore, the lubricating oil that has flowed into the space W from the crank chamber 140 via the inlet-side oil passage 147a of the oil supply passage 147 flows out through the inter-face clearance between the first bearing 131 and the drive shaft 110. obtain.
  • the flow passage cross-sectional area of the oil supply passage 147 is sufficiently larger than the area between the surface gaps, most of the lubricating oil that has flowed into the space W exits via the outlet-side oil passage 147b of the oil supply passage 147. It flows out from the side opening 147B toward the one end surface 112b of the rotating body 112.
  • the receiving portion 148 forms a receiving area 146c for receiving the lubricating oil flowing out from the outlet side opening 147B.
  • the receiving region 146c is a portion in the radial direction corresponding to the opening position of the outlet side opening 147B on the one end surface 112b of the rotating body 112, and at least the adjacent region 146c1 adjacent to the outer peripheral surface side opening end of the first passage 146a. It is formed in the part containing. That is, the receiving portion 148 is a forming wall that forms the receiving region 146c, and is a part of the rotating body 112 on the side of the one end surface 112b.
  • FIG. 5 is a rear view of the rotating body 112 viewed from the one end wall portion 102b side.
  • the receiving area 146c is formed as a recessed area on the one end surface 112b (a part of the back surface) of the rotating body 112.
  • the receiving area 146c is one of the portions (that is, one end surface 112b) between the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110 on the end surface on the one end wall portion 102b side of the rotating body 112. Is formed as a recessed region.
  • the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction. Specifically, a fitting hole for the drive shaft 110 is opened in the radial center of the rotating body 112, and a part of the outer edge of the opening on the one end face 112b side in the fitting hole in the circumferential direction is formed. It is partially widened to be larger than the outer diameter of the drive shaft 110. This partially widened portion constitutes the receiving area 146c.
  • the adjacent region 146c1 adjacent to the outer peripheral surface side opening end of the first passage 146a is located in the end region of the receiving region 146c opposite to the rotation direction R of the rotating body 112.
  • the receiving region 146c has a circumferential width of a predetermined angle (generally 90° in FIG. 5) in the circumferential direction of the rotating body 112 with respect to the first passage 146a, and also has a predetermined radial direction in the radial direction of the rotating body 112. Has a width.
  • the receiving area 146c is formed as an arc groove-shaped space extending in the circumferential direction of the outer peripheral surface of the drive shaft 110 as a whole. That is, the receiving portion 148 cooperates with the outer peripheral surface of the drive shaft 110 to form an arcuate groove-shaped opening that opens to the crank chamber region 140a on the one end surface 112b of the rotating body 112.
  • the receiving portion 148 forming the receiving region 146c has a peripheral wall surface 148a of the enlarged diameter portion of the fitting hole and a bottom wall surface 148b.
  • the peripheral wall surface 148a includes the facing surface 148a1 facing the outer peripheral surface side opening end of the first passage 146a, and further extends from the facing surface 148a1 in the rotation direction R of the rotating body 112.
  • the peripheral wall surface 148a has a constant radius of curvature centered on the axis O of the drive shaft 110, and extends in an arc surface facing the outer peripheral surface of the drive shaft 110.
  • the radius of curvature of the peripheral wall surface 148a is set to be larger than the radius of the drive shaft 110 and smaller than the radius of the radially inner edge portion of the thrust bearing 133.
  • the radius of curvature of the peripheral wall surface 148a is set to be slightly larger than the distance from the axis O of the drive shaft 110 to the lower end of the outlet side opening 147B of the oil supply passage 147 in the vertical direction (FIG. 3). reference).
  • the bottom wall surface 148b is the bottom surface of the receiving area 146c that is recessed from the other portion of the one end surface 112b at the radial portion corresponding to the opening position of the outlet side opening 147B in the one end surface 112b of the rotating body 112, and the first bearing It faces the other end surface 131 b of 131.
  • the bottom wall surface 148b faces the outlet side opening 147B as shown in FIG. 3 or does not face the outlet side opening 147B as shown in FIG.
  • the outlet-side opening 147B is covered with the peripheral wall surface 148a and the bottom wall surface 148b of the receiving portion 148 in the state shown in FIG. 3, and is covered with the one end surface 112b of the rotating body 112 in the state shown in FIG.
  • the gap between the one end surface 102b1 of the one end wall portion 102b and the one end surface 112b of the rotating body 112 (the crank chamber area 140a) is preferably set small, for example, a predetermined value in the range of 0.5 mm to 3 mm. Is set to.
  • FIG. 6 is a conceptual diagram for explaining the positional relationship between the receiving area 146c and the outlet side opening 147B of the oil supply passage 147 during rotation.
  • the absolute position of the outlet side opening 147B is fixed and constant, when viewed from the rotating body 112 during the rotation of the rotating body 112, the angular position of the outlet side opening 147B with respect to the first passage 146a changes.
  • the state of change of the angular position of the outlet side opening 147B viewed from the rotating body 112 is represented by a circle shown by a dotted line in FIG.
  • the oil supply passage 147 is substantially connected to the first passage 146a via the receiving area 146c, and the flow of the refrigerant gas from the inlet side opening 147A of the oil supply passage 147 toward the outlet side opening 147B is generated.
  • the compressor 100 operates and the drive shaft 110 rotates
  • the lubricating oil in the crank chamber 140 is agitated and scattered around.
  • the scattered lubricating oil adheres to the one end surface 102b1 of the one end wall portion 102b.
  • the lubricating oil attached to the upper portion of the one end surface 102b1 in the direction of gravity flows from the inlet side opening 147A of the oil supply passage 147 and flows into the space W via the inlet side oil passage 147a.
  • the lubricating oil that has flowed into the space W flows through the outlet-side oil passage 147b and flows out from the outlet-side opening 147B toward the one end surface 112b of the rotating body 112.
  • the receiving area 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the angular position of the outer peripheral surface side opening end of the first passage 146a and the outlet side opening.
  • the following actions (1) to (3) are achieved.
  • the receiving area 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the outer peripheral surface of the first passage 146a.
  • the angular position of the side opening end coincides with or is close to the angular position of the outlet side opening 147B (period)
  • the lubricating oil flowing out from the outlet side opening 147B collides with the bottom wall surface 148b of the adjacent region 146c1.
  • a centrifugal force associated with the rotation acts on the lubricating oil received in the adjacent region 146c1.
  • the lubricating oil received in the adjacent region 146c1 resists the centrifugal force and flows in from the crank chamber 140 via the inlet side opening 147A of the oil supply passage 147 and flows out from the outlet side opening 147B. Flow vigorously toward the open end on the outer peripheral surface side of the first passage 146a opening in the adjacent region 146c1, and then discharged into the suction chamber 141 via the first passage 146a.
  • the receiving region 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the angle of the outer peripheral surface side opening end of the first passage 146a is increased.
  • the lubricating oil flowing out from the outlet side opening 147B is received in the receiving area 146c.
  • the lubricating oil received in the receiving area 146c moves radially outward in the receiving area 146c due to the centrifugal force associated with the rotation, and most of it temporarily stays in the receiving area 146c.
  • Most of the lubricating oil temporarily retained in the receiving area 146c passes through the receiving area 146c from the crank chamber area 140a between the one end surface 102b1 of the one end wall portion 102b and the one end surface 112b of the rotating body 112.
  • the refrigerant gas flows toward the first passage 146a and is discharged into the suction chamber 141 through the first passage 146a opening to the receiving area 146c. Further, a part of the lubricating oil temporarily staying in the receiving area 146c does not flow into the first passage 146a, but flows out of the receiving area 146c by the centrifugal force, and the one end surface 102b1 of the one end wall portion 102b is removed. It can be stored in the bottom of the crank chamber 140 via a crank chamber region 140a between the one end surface 112b of the rotating body 112 and the crank chamber 140. On the other hand, (3) as indicated by a double-headed arrow C in FIG.
  • the lubrication in the crank chamber 140 is performed at the timing when the angular position of the outer peripheral surface side opening end of the first passage 146a substantially matches the angular position of the outlet side opening 147B.
  • a large amount of oil is made to flow into the suction chamber 141.
  • the lubricating oil in the crank chamber 140 is intermittently discharged to the suction chamber 141 while the rotating body 112 is rotating, or the compressor 100 is sucking from the crank chamber 140 while the rotating body 112 is rotating.
  • the flow rate of lubricating oil flowing out to 141 is periodically increased and decreased.
  • the receiving portion 148 has the peripheral wall surface 148a including the facing surface 148a1 facing the opening end on the outer peripheral surface side of the first passage 146a.
  • the peripheral wall surface 148a further extends from the facing surface 148a1 in the rotation direction R of the rotating body 112.
  • the area of the receiving area 146c can be expanded in the circumferential direction only by appropriately setting the circumferential width of the circumferential wall surface 148a, and the circumferential width of the receiving area 146c can be adjusted.
  • the amount of lubricating oil flowing into the first passage 146a can be easily adjusted.
  • by adjusting the circumferential width of the peripheral wall surface 148a it is possible to adjust the ratio of the amount of lubricating oil that flows into the suction chamber 141 and the amount of lubricating oil that returns to the crank chamber 140.
  • the circumferential width of the receiving area 146c is approximately 90°, but this circumferential width (angle) can be set appropriately.
  • the circumferential width of the receiving area 146c is narrowed, the amount of lubricating oil returned to the crank chamber 140 decreases.
  • the adjacent region 146c1 is located in the end region of the receiving region 146c on the opposite side of the rotation direction R of the rotating body 112. That is, the outer peripheral surface side opening end of the first passage 146a is opened in the end region of the receiving region 146c opposite to the rotation direction R of the rotating body 112.
  • the lubricating oil received and retained in the receiving area 146c can be effectively guided to the first passage 146a.
  • the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112. As a result, it is possible to effectively prevent or suppress the lubricating oil received in the receiving area 146c from scattering outside the receiving area 146c.
  • the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction. Accordingly, a period during which the outlet side opening 147B of the oil supply passage 147 is not directly facing the receiving area 146c and is substantially closed by the one end surface 112b of the rotating body 112 can be provided during the rotation of the rotating body 112. As a result, the amount of lubricating oil flowing from the crank chamber 140 to the suction chamber 141 can be significantly reduced.
  • FIGS. 6 to 11. 7 to 16 are views for explaining modified examples of the compressor 100, respectively.
  • FIG. 7 is a diagram for explaining a modification of the shape of the receiving area 146c of the receiving portion 148.
  • the peripheral wall surface 148a of the receiving portion 148 is assumed to extend with a constant radius of curvature about the axis O of the drive shaft 110, and the radial width of the rotating body 112 in the receiving region 146c. Is assumed to be constant, but is not limited to this.
  • the radial width of the rotating body 112 of the receiving region 146c may be formed so as to become narrower toward the end region (adjacent region 146a1 in FIG. 7) in the circumferential direction of the rotating body 112. As a result, the lubricating oil received and retained in the receiving area 146c can be more effectively guided to the first passage 146a.
  • FIG. 8 is a diagram for explaining a modified example of the number of receiving areas 146c.
  • the number of the receiving region 146c is one, but the number is not limited to this, and may be two or more (two in the figure) as shown in FIG.
  • the first passages 146a are formed at a plurality of angular positions offset in the circumferential direction on the outer peripheral surface of the drive shaft 110, and the receiving regions 146c are formed corresponding to the plurality of first passages 146a, respectively. ..
  • FIG. 9 is a diagram for explaining a modification of the formation range of the receiving area 146c.
  • the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction, but the present invention is not limited to this.
  • the receiving region 146c may be annularly provided so as to surround the entire outer peripheral surface of the drive shaft 110.
  • the receiving portion 148 cooperates with the outer peripheral surface of the drive shaft 110 to form an annular opening on the one end surface 112b of the rotating body 112 that opens to the crank chamber area 140a.
  • the compressor 100 has the same operation as the above-described (1) and (2) in the period shown by the double-headed arrows A and B in FIG. 6, but is shown by the double-headed arrow C in FIG. In the period, for example, the following operation (4) is performed instead of the operation (3) described above.
  • the rotating body 112 is rotating.
  • the receiving region 146c is directly opposed to the outlet side opening 147B, and the angular position of the outer peripheral surface side opening end of the first passage 146a is greatly separated from the angular position of the outlet side opening 147B (period). .. Even at this time (period), the lubricating oil received in the receiving area 146c moves radially outward in the receiving area 146c by the centrifugal force associated with the rotation and temporarily stays in the receiving area 146c.
  • the compressor 100 capable of maintaining the proper amount of lubricating oil in the crank chamber 140 while communicating between the crank chamber 140 and the suction chamber 141 is provided. can do.
  • FIG. 10 is a diagram for explaining a modified example of the oil supply passage 147.
  • the outlet-side oil passage 147b of the oil supply passage 147 extends obliquely downward from the one end toward the rotating body 112 side, and then bends toward the axis O of the drive shaft 110 to form the axis O. Although it is assumed that they extend in parallel, the invention is not limited to this.
  • the outlet side oil passage 147b may extend obliquely downward as it is toward the rotating body 112 side from the one end to the other end.
  • the portion on the other end side is expanded in diameter, and the opening of the expanded diameter enlarged portion 147b1 on the rotor 112 side is closed by the end face plate 133a of the thrust bearing 133 except the upper portion.
  • An upper portion of the opening of the expanded diameter portion 147b1 on the rotor 112 side that is not closed by the end face plate 133a opens to the crank chamber area 140a and constitutes an outlet side opening 147B of the oil supply passage 147. ..
  • the hole for the outlet side oil passage 147b is machined from one direction on the one end face 102b1 side of the one end wall portion 102b, so that the machining cost of the front housing 102 is reduced.
  • FIG. 11 is a diagram for explaining a modified example of the thrust bearing 133 shown in FIG.
  • FIG. 10 when the expanded diameter portion 147b1 is formed at the other end of the outlet side oil passage 147b, a part of the expanded diameter portion 147b1 of the radial inner edge of the end face plate 133a of the thrust bearing 133 is blocked. It is advisable to bend the existing portion 133a1 obliquely toward the receiving area 146c side. The portion 133a1 effectively guides the lubricating oil flowing in the outlet-side oil passage 147b to the receiving area 146c.
  • FIG. 12 is a diagram for explaining another modification of the oil supply passage 147.
  • the outlet-side oil passage 147b extends from the space W toward the crank chamber region 140a, and the space W is provided on the way of the oil supply passage 147, but the present invention is not limited to this.
  • the outlet side oil passage 147b may have one end connected in the middle of the inlet side oil passage 147a and the other end extending parallel to the axis O toward the crank chamber area 140a. ..
  • the outlet-side opening 147B opens in the crank chamber region 140a at a position above the drive shaft 110 in the one end wall portion 102b in the gravity direction and inside the radial inner edge portion of the thrust bearing 133.
  • FIG. 13 is a diagram for explaining still another modified example of the oil supply passage 147.
  • a hole is formed in the one end wall portion 102b of the front housing 102 as the outlet side oil passage 147b, but the present invention is not limited to this.
  • the first bearing 131 as shown in FIGS. 14 and 15, a shell type needle roller bearing is adopted, and as shown in FIG. 13, the first bearing provided in the crank chamber inner opening portion of the shaft hole 102d.
  • the outlet side oil passage 147b may be configured by a gap between the bearing 131 and the outer peripheral surface of the drive shaft 110.
  • the first bearing 131 has a substantially cylindrical outer ring shell 131c and a plurality of needle rollers 131d.
  • One end portion of the outer ring shell 131c is bent inward in the radial direction and is formed as an annular one end surface, and this annular one end surface constitutes one end surface 131a of the first bearing 131.
  • the other end of the outer ring shell 131c is bent inward in the radial direction and is formed as a ring-shaped other end surface, and this ring-shaped other end surface constitutes the other end surface 131b of the first bearing 131.
  • the inner diameter D1 of the annular one end surface 131a is set to be larger than the inner diameter D2 of the annular other end surface 131b.
  • the inner diameter D2 of the annular other end surface 131b is slightly larger than the outer diameter of the drive shaft 110, and the gap between the inner edge end of the annular other end surface 131b and the outer peripheral surface of the drive shaft 110 is small. Is set to. Then, the other end surface 131b having an annular shape (that is, the other end portion of the outer ring shell 131c) has a notch 131c1 which has a predetermined width in the circumferential direction and which is notched in a substantially rectangular shape and opens radially inward. It is provided.
  • the first bearing 131 is incorporated in the shaft hole 102d so that the cutout portion 131c1 is on the lower side in the gravity direction.
  • the cutout portion 131c1 of the first bearing 131 constitutes the outlet side opening 147B of the oil supply passage 147.
  • the outlet-side oil passage 147b and the outlet-side opening 147B can be formed without making holes in the front housing 102 for the outlet-side oil passage 147b.
  • FIG. 16 is a diagram for explaining a modified example of the formation mode of the receiving area 146c.
  • the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112, but is not limited to this.
  • the receiving portion 148 is provided so as to project from the one end surface 112b of the rotating body 112 toward the one end wall portion 102b, and a part of the outer peripheral surface of the projecting receiving portion 148 and the one end surface 112b.
  • the receiving region 146c may be formed by As described above, the one end surface 112b of the rotating body 112 is, more specifically, the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110 among the end surfaces of the rotating body 112 on the one end wall portion 102b side. It is a part between and.
  • a part of the outer peripheral surface thereof opens to the outer peripheral surface side opening end of the first passage 146a in a part of the angular area in the circumferential direction of the one end surface 112b (area indicated by diagonal lines in FIG. 16). So as to be the facing surface 148a1 and project toward the one end wall portion 102b side.
  • the receiving area 146c can be easily formed on the one end surface 112b of the rotating body 112.
  • a gap is provided between the projecting end surface of the receiving portion 148 (the end surface on the one end wall portion 102b side) and the one end surface 102b1 of the one end wall portion 102b.
  • the thrust bearing 133 is provided between the rotating body 112 and the one end wall portion 102b of the front housing 102, but the thrust bearing 133 may not be provided at this portion.
  • the first passage 146a opens at an angular position around the axis O corresponding to the link mechanism 120 (see FIG. 3), but the first passage 146a is not limited to this, and an appropriate angle in consideration of the drainage property of the lubricating oil. The position can be opened.
  • the compressor 100 is described as an example of a swash plate type variable displacement compressor with variable discharge capacity, but the compressor 100 is not limited to this, and may be an oscillating plate type variable capacity compressor, or a fixed discharge capacity. It may be a fixed capacity type compressor.
  • an appropriate power source such as a motor can be applied.
  • Reference numeral 100 Compressor, 101... Cylinder block (housing, crank chamber forming wall, other end wall portion), 101a... Cylinder bore, 102... Front housing (housing, crank chamber forming wall), 102b... One end wall portion, 102b1... One end surface , 102d... Shaft hole, 104... Cylinder head (housing), 110... Drive shaft, 112... Rotating body, 112b... One end face, 131... First bearing (radial bearing), 136... Piston, 140... Crank chamber, 140a... Crank chamber region, 141... Suction chamber, 142... Discharge chamber, 146... Discharge passage, 146a... First passage, 146b... Second passage, 146c... Receiving region, 146c1...
  • Adjacent region 147... Oil supply passage, 147A... Inlet Side opening, 147B... Exit side opening, 148... Receptor, 148a... Peripheral wall surface, 148a1... Opposing surface, O... Shaft center, R... Rotation direction

Abstract

[Problem] To provide a compressor capable of suitably maintaining an amount of a lubricating oil inside a crank chamber. [Solution] This compressor 100 has a configuration in which a lubricating oil flowed into an oil supply passage 147 via an inlet side opening 147A from a crank chamber 140 flows out toward one end surface 112b of a rotary body 112 from an outlet side opening 147B. The compressor 100 includes an accommodation part 148 in which an accommodating region 146c for accommodating the lubricating oil flowed out from the outlet side opening 147B is formed. In the accommodation part 148, the accommodating region 146c is formed in a radial portion corresponding to the opening position of the outlet side opening 147B on the one end surface 112b of the rotary body 112, that is, in a portion including at least an adjacent region 146c1 that is adjacent to the outer peripheral surface-side opening end of a first passage 146a. In addition, the outer peripheral surface side opening end of the first passage 146a opens to the adjacent region 146c1.

Description

圧縮機Compressor
 本発明は、クランク室を横断する駆動軸の回転に伴うピストンの往復運動によって、吸入室からシリンダボア内に吸入された冷媒が圧縮されて吐出室に吐出される圧縮機に関する。 The present invention relates to a compressor in which a refrigerant sucked into a cylinder bore from a suction chamber is compressed by a reciprocating motion of a piston accompanying the rotation of a drive shaft that crosses a crank chamber and is discharged to a discharge chamber.
 この種の圧縮機の一例として、特許文献1に記載の斜板式の圧縮機が知られている。この圧縮機は、吸入室とクランク室と吐出室とシリンダボアとを有するハウジングと、前記クランク室を横断する駆動軸と、前記駆動軸に固定され前記クランク室内において前記ハウジングの一端壁部に対向する回転体(ラグプレート)と、前記クランク室と前記吸入室との間を連通する排出通路(逃がし通路)とを有し、前記駆動軸の回転に伴う前記シリンダボア内のピストンの往復運動によって前記吸入室から前記シリンダボア内に吸入された冷媒が圧縮されて前記吐出室に吐出されるように構成されている。前記駆動軸の一端部は、前記ハウジングの前記一端壁部に開口される軸孔内を延びている。前記軸孔のクランク室内側開口部位には、前記駆動軸を回転可能に支持するラジアル軸受(プレーンベアリング)が設けられ、前記軸孔のクランク室外側開口部位には、軸封装置が前記ラジアル軸受の一端面との間に環状の空間を空けて設けられ、前記回転体と前記ハウジングの前記一端壁部との間にはスラスト軸受が設けられている。前記排出通路は、前記クランク室内の潤滑油が多い領域に連通する第1通路と、前記クランク室内の潤滑油が少ない領域に連通する第2通路とを有している。前記第1通路は、前記ハウジングの前記一端壁部に形成され、前記クランク室の外周域と前記空間との間を連通する油案内通路(油案内溝、油案内孔)、前記環状の空間、当該空間に接続し前記駆動軸内を延びる内部通路、及び、絞り孔からなり、前記クランク室内の潤滑油が多い領域と前記吸入室との間を連通している。前記内部通路は、駆動軸の回転方向の所定角度位置において径方向に延びる第1孔と、それぞれ軸心方向に延びる第2孔、連通孔及び流出孔とからなる。また、この圧縮機は、前記駆動軸の回転数の増加によって前記排出通路に占める前記第1通路の割合を大きくし、前記駆動軸の回転数の低下によって前記排出通路に占める前記第2通路の割合を大きくするように構成されている。 As an example of this type of compressor, the swash plate type compressor described in Patent Document 1 is known. This compressor has a housing having a suction chamber, a crank chamber, a discharge chamber, and a cylinder bore, a drive shaft that traverses the crank chamber, and is fixed to the drive shaft and faces one end wall portion of the housing in the crank chamber. The suction member is provided with a rotating body (lug plate) and a discharge passage (release passage) communicating between the crank chamber and the suction chamber, and reciprocating motion of a piston in the cylinder bore accompanying rotation of the drive shaft. The refrigerant sucked into the cylinder bore from the chamber is compressed and discharged into the discharge chamber. One end of the drive shaft extends in a shaft hole opened in the one end wall of the housing. A radial bearing (a plain bearing) that rotatably supports the drive shaft is provided at an opening portion of the shaft hole on the inner side of the crank chamber, and a shaft sealing device is provided at the opening portion of the shaft hole on the outer side of the crank chamber. An annular space is provided between the rotary body and one end surface of the housing, and a thrust bearing is provided between the rotary body and the one end wall portion of the housing. The discharge passage has a first passage that communicates with a region of the crank chamber that is rich in lubricating oil, and a second passage that communicates with a region of the crank chamber that is low in lubricating oil. The first passage is formed in the one end wall portion of the housing, and an oil guide passage (oil guide groove, oil guide hole) that communicates between the outer peripheral region of the crank chamber and the space, the annular space, An internal passage connected to the space and extending in the drive shaft, and a throttle hole are provided, and a region in the crank chamber rich in lubricating oil and the suction chamber communicate with each other. The internal passage includes a first hole extending in the radial direction at a predetermined angular position in the rotation direction of the drive shaft, a second hole extending in the axial direction, a communication hole, and an outflow hole. Further, the compressor increases the ratio of the first passage in the discharge passage by increasing the rotation speed of the drive shaft, and increases the proportion of the second passage in the discharge passage by decreasing the rotation speed of the drive shaft. It is configured to increase the proportion.
特開2009-209682号公報JP, 2009-209682, A
 上記従来の圧縮機においては、前記内部通路の一端部である前記第1孔が開口する前記環状の空間は、前記軸封装置と前記ラジアル軸受の前記一端面との間の容積の小さい領域である。 In the above-mentioned conventional compressor, the annular space where the first hole, which is one end of the internal passage, is opened is an area having a small volume between the shaft sealing device and the one end surface of the radial bearing. is there.
 ここで、前記空間及び前記第1孔は、前記クランク室と前記吸入室との間を連通する前記排出通路の一部を構成している。したがって、容積の小さい前記環状の空間に冷媒ガスと伴に流入した潤滑油の大半は、前記駆動軸の回転方向の角度位置によらず、前記冷媒ガスと伴に前記第1孔に流入し、その後、前記第1孔を含む前記内部通路を経由して前記吸入室に排出されることになる。換言すると、前記第1孔は前記空間に直接的に接続されているため、前記空間内のオイルが常に前記第1孔から前記吸入室に向かって流出することになる。その結果、例えば、前記駆動軸が高速で回転されることにより、前記クランク室内の多量に潤滑油を含む冷媒ガスが前記排出通路を介して前記吸入室に排出される状態が継続すると、前記クランク室内における潤滑オイルが過剰に少なくなり、ひいては、前記軸封装置等の摺動部材等の潤滑不足を招くおそれがある。 Here, the space and the first hole constitute a part of the discharge passage that communicates between the crank chamber and the suction chamber. Therefore, most of the lubricating oil that has flowed into the annular space with a small volume together with the refrigerant gas flows into the first hole together with the refrigerant gas regardless of the angular position in the rotational direction of the drive shaft, After that, the gas is discharged into the suction chamber via the internal passage including the first hole. In other words, since the first hole is directly connected to the space, the oil in the space always flows out from the first hole toward the suction chamber. As a result, for example, when the drive shaft is rotated at a high speed and a state in which a large amount of refrigerant gas containing lubricating oil in the crank chamber is continuously discharged to the suction chamber through the discharge passage, Lubricating oil in the room may be excessively reduced, which may lead to insufficient lubrication of sliding members such as the shaft sealing device.
 そこで、本発明は、クランク室と吸入室との間を連通しつつ、クランク室内の潤滑油の油量を適正に維持することのできる圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a compressor capable of maintaining an appropriate amount of lubricating oil in the crank chamber while communicating between the crank chamber and the suction chamber.
 本発明の一側面によると、ハウジングと、駆動軸と、ラジアル軸受と、円板状の回転体と、ピストンと、排出通路と、油供給通路と、を含む、圧縮機が提供される。前記ハウジングは、圧縮前の冷媒が導かれる吸入室と、吐出室と、クランク室とを有する。前記駆動軸は、前記クランク室を横断し、一端部が前記ハウジングのクランク室形成壁における駆動軸延伸方向の一端壁部に開口される軸孔内を延びる。前記ラジアル軸受は、前記軸孔内に設けられ、前記駆動軸を回転可能に支持する。前記回転体は、前記駆動軸に固定され、前記クランク室内において前記一端壁部に対向する。前記ピストンは、前記クランク室形成壁の他端壁部に形成されるシリンダボア内に収容される。前記排出通路は、前記クランク室と前記吸入室との間を連通する。前記油供給通路は、前記クランク室内の潤滑油を少なくとも前記ラジアル軸受に導くための通路である。前記圧縮機では、前記駆動軸の回転に伴う前記ピストンの往復運動によって前記吸入室から前記シリンダボア内に吸入された冷媒が圧縮されて前記吐出室に吐出される。前記排出通路は、第1通路と第2通路とを経由して、前記クランク室と前記吸入室との間を連通する。前記第1通路は、前記駆動軸の前記一端部の外周面における周方向の所定角度位置から軸内に延びる。前記第2通路は前記第1通路に連続して前記駆動軸の他端部側に延びる。前記油供給通路は、前記一端壁部に設けられと共に、入口側開口と出口側開口とを有する。前記入口側開口は、前記一端壁部における前記駆動軸の軸心より重力方向上側の部位にて、前記クランク室に開口する。前記出口側開口は、前記一端壁部における前記入口側開口より重力方向下側の部位であり且つ前記駆動軸の軸心周りの所定角度の部位にて、前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域に開口する。前記圧縮機では、前記クランク室から前記入口側開口を介して前記油供給通路内に流入した潤滑油は、前記出口側開口から前記回転体の前記一端面に向かって流出する構成である。前記圧縮機は、前記出口側開口から流出した前記潤滑油を受け容れるための受容領域を形成する受容部を含む。前記受容部は、前記回転体の前記一端面における前記出口側開口の開口位置に対応した径方向の部位であり且つ少なくとも前記第1通路の外周面側開口端に隣接する隣接領域を含む部位に前記受容領域を形成する。そして、前記第1通路の前記外周面側開口端は、前記隣接領域に開口している。 According to one aspect of the present invention, there is provided a compressor including a housing, a drive shaft, a radial bearing, a disk-shaped rotating body, a piston, a discharge passage, and an oil supply passage. The housing has a suction chamber into which the uncompressed refrigerant is introduced, a discharge chamber, and a crank chamber. The drive shaft traverses the crank chamber, and one end thereof extends in a shaft hole opened in one end wall portion in a drive shaft extending direction of a crank chamber forming wall of the housing. The radial bearing is provided in the shaft hole and rotatably supports the drive shaft. The rotating body is fixed to the drive shaft and faces the one end wall portion in the crank chamber. The piston is housed in a cylinder bore formed in the other end wall portion of the crank chamber forming wall. The discharge passage communicates between the crank chamber and the suction chamber. The oil supply passage is a passage for guiding the lubricating oil in the crank chamber to at least the radial bearing. In the compressor, the reciprocating motion of the piston accompanying the rotation of the drive shaft compresses the refrigerant sucked from the suction chamber into the cylinder bore and discharges the compressed refrigerant to the discharge chamber. The discharge passage communicates between the crank chamber and the suction chamber via the first passage and the second passage. The first passage extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end of the drive shaft. The second passage is continuous with the first passage and extends toward the other end of the drive shaft. The oil supply passage is provided in the one end wall portion and has an inlet side opening and an outlet side opening. The inlet-side opening opens in the crank chamber at a portion of the one end wall portion that is above the axis of the drive shaft in the gravity direction. The outlet side opening is a portion of the one end wall portion below the inlet side opening in the direction of gravity and at a predetermined angle around the axis of the drive shaft, and the one end surface of the one end wall portion is rotated. It opens in the crank chamber area between one end surface of the body. In the compressor, the lubricating oil that has flowed into the oil supply passage from the crank chamber through the inlet side opening flows out from the outlet side opening toward the one end surface of the rotating body. The compressor includes a receiving portion forming a receiving area for receiving the lubricating oil flowing out from the outlet side opening. The receiving portion is a portion in the radial direction corresponding to the opening position of the outlet side opening on the one end surface of the rotating body and includes at least a portion adjacent to the outer peripheral surface side opening end of the first passage. The receiving area is formed. The outer peripheral surface side opening end of the first passage opens in the adjacent region.
 本発明の一側面による前記圧縮機においては、前記油供給通路の前記出口側開口が前記一端壁部における前記入口側開口より重力方向下側の部位であり且つ前記駆動軸の軸心周りの所定角度の部位に開口しており、前記排出通路の前記第1通路は前記駆動軸の前記一端部の外周面における周方向の所定角度位置から軸内に延びている。つまり、前記回転体及び前記駆動軸の回転中において、前記駆動軸内に設けられる前記第1通路の外周面側開口端の前記駆動軸の軸心周りについての角度位置は変化するが、前記一端壁部に開口される前記出口側開口の前記角度位置は一定である。したがって、回転中において、前記第1通路の外周面側開口端の角度位置は、前記出口側開口の角度位置に間欠的に一致する。そして、両角度位置が一致したときに、前記出口側開口と前記第1通路の外周面側開口端との間の距離が最短になる。このとき前記油供給通路は前記受容領域を介して前記第1通路に実質的に接続し、前記油供給通路の前記入口側開口から前記出口側開口に向かう冷媒ガスの流れが発生する。また、前記圧縮機は、前記出口側開口から流出した前記潤滑油を受け容れるための受容領域を形成する受容部であって、前記回転体の前記一端面における前記出口側開口の開口位置に対応した径方向の部位であり且つ少なくとも前記第1通路の外周面側開口端に隣接する隣接領域を含む部位に前記受容領域を形成する前記受容部を、含んでおり、この受容領域の前記隣接領域に、前記第1通路の前記外周面側開口端が開口している。したがって、前記圧縮機では、前記回転体の回転中において、前記受容領域が前記出口側開口に正対しているか否か、及び、前記第1通路の外周面側開口端の角度位置と前記出口側開口の角度位置との関係に応じて、例えば、以下の作用を奏する。 In the compressor according to one aspect of the present invention, the outlet side opening of the oil supply passage is a portion of the one end wall portion that is lower than the inlet side opening in the gravity direction, and has a predetermined circumference around the axis of the drive shaft. The first passage of the discharge passage extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end of the drive shaft. That is, while the rotating body and the drive shaft are rotating, the angular position of the opening end of the outer peripheral surface side of the first passage provided in the drive shaft around the axis of the drive shaft changes, but The angular position of the outlet side opening that is opened in the wall is constant. Therefore, during rotation, the angular position of the outer peripheral surface side opening end of the first passage intermittently coincides with the angular position of the outlet side opening. Then, when both angular positions match, the distance between the outlet side opening and the outer peripheral surface side opening end of the first passage becomes the shortest. At this time, the oil supply passage is substantially connected to the first passage via the receiving area, and a flow of the refrigerant gas from the inlet side opening of the oil supply passage toward the outlet side opening is generated. Further, the compressor is a receiving portion that forms a receiving region for receiving the lubricating oil that has flowed out from the outlet side opening, and corresponds to an opening position of the outlet side opening on the one end surface of the rotating body. The receiving portion that forms the receiving area in a portion that is located in the radial direction and that includes the adjacent area that is adjacent to at least the outer peripheral surface side opening end of the first passage, and the receiving area is adjacent to the receiving area. In addition, the outer peripheral surface side opening end of the first passage is open. Therefore, in the compressor, whether or not the receiving area faces the outlet side opening during rotation of the rotating body, and the angular position of the outer peripheral surface side opening end of the first passage and the outlet side. Depending on the relationship with the angular position of the opening, for example, the following effects are achieved.
 (1)前記回転体の回転中において、前記受容領域が前記出口側開口に正対しており、且つ、前記第1通路の外周面側開口端(前記隣接領域)の角度位置が前記出口側開口の角度位置に一致又は近い時(期間)では、前記出口側開口から流出した潤滑油は前記受容領域の前記隣接領域に受け容れられる。前記隣接領域に受け容れられた潤滑油には、回転に伴う遠心力が作用する。しかし、前記隣接領域に受け容れられた潤滑油は、前記遠心力に抗して、前記クランク室から前記油供給通路の前記入口側開口を介して流入して前記出口側開口から流出する冷媒ガスの流れに乗って、前記隣接領域に開口する前記第1通路の外周面側開口端に向かって勢いよく流れ、その後、前記第1通路を介して前記吸入室に排出される。(2)前記回転体の回転中において、前記受容領域が前記出口側開口に正対しており、且つ、前記第1通路の外周面側開口端の角度位置が前記出口側開口の角度位置から離れているが大きくは離れていない時(期間)では、前記出口側開口から流出した前記潤滑油は、前記受容領域に受け容れられる。この受容領域に受け容れられた潤滑油は、回転に伴う遠心力によって前記受容領域における径方向外側に移動し、その大半が前記受容領域内に一時的に留まる。そして、この受容領域内に一時的に留まっている潤滑油の大半は、前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域から前記受容領域を介して前記第1通路に向かう冷媒ガスの流れに乗って、前記第1通路を介して前記吸入室に排出される。また、前記受容領域内に一時的に留まっている潤滑油の一部は、前記第1通路には流入せず、遠心力により前記受容領域外に流出し、前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域(隙間)を経由して前記クランク室の底部に貯留されうる。(3)前記回転体の回転中において、前記受容領域が前記出口側開口に正対していない時(期間)では、前記出口側開口から流出した前記潤滑油は、前記回転体の前記一端面に衝突して前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域(隙間)を経由して前記クランク室の底部に貯留される。(4)また、前記受容領域が前記駆動軸の前記外周面の周方向に広範囲に囲むように形成されている場合には、前記回転体の回転中において、前記受容領域が前記出口側開口に正対しており、且つ、前記第1通路の外周面側開口端の角度位置が前記出口側開口の角度位置から大きく離れている時(期間)が生じる。この時(期間)においても、前記受容領域に受け容れられた潤滑油は回転に伴う遠心力によって前記受容領域における径方向外側に移動し、前記受容領域内に一時的に留まる。しかし、前記第1通路の外周面側開口端の角度位置が前記出口側開口の角度位置から大きく離れているため、前記出口側開口から流出する冷媒ガスの流れは、前記第1通路の外周面側開口端まで到達しないか、又は、流れの勢いが弱まる。その結果、この受容領域内に一時的に留まった潤滑油の大半は、前記第1通路には流入せず、遠心力により前記受容領域外に流出し、前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域(隙間)を経由して前記クランク室の底部に貯留される。また、受容領域内に一時的に留まった潤滑油の一部は、冷媒ガスの弱い流れに乗って、前記受容領域に開口する前記第1通路を介して前記吸入室に排出されうる。 (1) While the rotating body is rotating, the receiving area faces the outlet side opening, and the angular position of the outer peripheral surface side opening end (adjacent area) of the first passage is the outlet side opening. When it coincides with or is close to the angular position of (period), the lubricating oil flowing out from the outlet side opening is received in the area adjacent to the receiving area. A centrifugal force associated with the rotation acts on the lubricating oil received in the adjacent region. However, the lubricating oil received in the adjacent region is a refrigerant gas that flows from the crank chamber through the inlet side opening of the oil supply passage and flows out of the outlet side opening against the centrifugal force. Flow toward the outer peripheral surface side opening end of the first passage that opens in the adjacent region, and then is discharged into the suction chamber through the first passage. (2) During the rotation of the rotating body, the receiving area faces the outlet side opening, and the angular position of the outer peripheral surface side opening end of the first passage is separated from the angular position of the outlet side opening. However, the lubricating oil flowing out from the outlet side opening is received in the receiving area when not largely separated (period). The lubricating oil received in the receiving area moves radially outward in the receiving area due to the centrifugal force associated with the rotation, and most of it temporarily stays in the receiving area. Most of the lubricating oil temporarily staying in the receiving area passes through the receiving area from the crank chamber area between the one end surface of the one end wall portion and the one end surface of the rotating body. The refrigerant gas flows toward the passage and is discharged into the suction chamber through the first passage. Further, a part of the lubricating oil temporarily retained in the receiving area does not flow into the first passage, but flows out of the receiving area by a centrifugal force, and the one end surface of the one end wall portion and the one end surface It can be stored at the bottom of the crank chamber via a crank chamber region (gap) between the one end face of the rotating body. (3) During the rotation of the rotating body, when the receiving area does not face the outlet side opening (period), the lubricating oil flowing out from the outlet side opening is applied to the one end surface of the rotating body. It collides and is stored at the bottom of the crank chamber via a crank chamber region (gap) between the one end face of the one end wall portion and the one end face of the rotating body. (4) Further, when the receiving area is formed so as to surround a wide area in the circumferential direction of the outer peripheral surface of the drive shaft, the receiving area is formed on the outlet side opening during rotation of the rotating body. There is a time (period) when they are facing each other and the angular position of the outer peripheral surface side opening end of the first passage is largely apart from the angular position of the outlet side opening. Also at this time (period), the lubricating oil received in the receiving area moves to the outside in the radial direction in the receiving area by the centrifugal force accompanying the rotation, and temporarily stays in the receiving area. However, since the angular position of the outer peripheral surface side opening end of the first passage is largely apart from the angular position of the outlet side opening, the flow of the refrigerant gas flowing out from the outlet side opening is the outer peripheral surface of the first passage. The side open end is not reached or the flow momentum is weakened. As a result, most of the lubricating oil temporarily retained in the receiving area does not flow into the first passage, but flows out of the receiving area due to centrifugal force, and the one end surface of the one end wall portion and the rotation of the one end wall portion rotate. It is stored at the bottom of the crank chamber through a crank chamber region (gap) between the one end surface of the body. Further, a part of the lubricating oil that has temporarily stayed in the receiving area may be discharged into the suction chamber via the first passage opening to the receiving area, along with the weak flow of the refrigerant gas.
 つまり、本発明の一側面による前記圧縮機においては、前記回転体の回転中において、前記第1通路の外周面側開口端の角度位置が前記出口側開口の角度位置に概ね一致するタイミングで、前記クランク室内の前記潤滑油が前記吸入室に多量に流出されるようになっている。換言すると、前記圧縮機は、前記回転体の回転中において、前記クランク室内の前記潤滑油が間欠的に前記吸入室に流出され、又は、前記回転体の回転中において、前記クランク室から前記吸入室に流出する潤滑油の流量が周期的に増減するようになっている。このように、前記クランク室から前記吸入室に多量の潤滑油を流出させるタイミング又は期間を制限することにより、前記クランク室から前記吸入室に流出する潤滑油の油量を制限することができる。その結果、クランク室内の潤滑油の油量を適正に維持することができる。 That is, in the compressor according to one aspect of the present invention, during rotation of the rotating body, at a timing at which the angular position of the outer peripheral surface side opening end of the first passage substantially matches the angular position of the outlet side opening, A large amount of the lubricating oil in the crank chamber flows into the suction chamber. In other words, the compressor causes the lubricating oil in the crank chamber to intermittently flow into the suction chamber during rotation of the rotary body, or to suck the lubricating oil from the crank chamber during rotation of the rotary body. The flow rate of lubricating oil flowing into the chamber is periodically increased and decreased. In this way, by limiting the timing or period of time during which a large amount of lubricating oil flows from the crank chamber to the suction chamber, it is possible to limit the amount of lubricating oil that flows from the crank chamber to the suction chamber. As a result, the amount of lubricating oil in the crank chamber can be appropriately maintained.
 このようにして、クランク室と吸入室との間を連通しつつ、クランク室内の潤滑油の油量を適正に維持することのできる圧縮機を提供することができる。 In this way, it is possible to provide a compressor that can maintain an appropriate amount of lubricating oil in the crank chamber while communicating between the crank chamber and the suction chamber.
本発明の一実施形態に係る圧縮機の概略の断面図である。It is a schematic sectional drawing of a compressor concerning one embodiment of the present invention. 前記圧縮機の供給通路及び排出通路を模式的に示す図である。It is a figure which shows typically the supply passage and discharge passage of the said compressor. 前記圧縮機の駆動軸及び回転体を含む要部断面図であり、前記駆動軸内の第1通路が下方に位置している状態が示されている。FIG. 3 is a cross-sectional view of a main part including a drive shaft and a rotating body of the compressor, showing a state in which a first passage in the drive shaft is located below. 前記圧縮機の前記駆動軸及び前記回転体を含む要部断面図であり、前記第1通路が上方に位置している状態が示されている。FIG. 3 is a cross-sectional view of a main part including the drive shaft and the rotating body of the compressor, showing a state in which the first passage is located above. 前記圧縮機の回転体の背面図である。It is a rear view of the rotating body of the said compressor. 前記回転体に設けられる受容領域と油供給通路の出口側開口との回転中における位置関係を説明するための概念図である。It is a conceptual diagram for demonstrating the positional relationship during rotation of the receiving area|region provided in the said rotary body, and the outlet side opening of an oil supply passage. 前記圧縮機の受容部の受容領域の形状の変形例を説明するための図である。It is a figure for demonstrating the modification of the shape of the receiving area of the receiving part of the said compressor. 前記受容領域の個数の変形例を説明するための図である。It is a figure for demonstrating the modification of the number of the said receiving areas. 前記受容部の前記受容領域の形成範囲の変形例を説明するための図である。It is a figure for demonstrating the modification of the formation range of the said receiving area of the said receiving part. 前記圧縮機の油供給通路の変形例を説明するための図である。It is a figure for demonstrating the modification of the oil supply passage of the said compressor. 図10に示すスラスト軸受の変形例を説明するための図である。It is a figure for demonstrating the modification of the thrust bearing shown in FIG. 前記油供給通路の別の変形例を説明するための図である。It is a figure for demonstrating another modification of the said oil supply passage. 前記油供給通路の更に別の変形例を説明するための図である。It is a figure for demonstrating another modification of the oil supply passage. 図13に示すラジアル軸受の断面図である。It is sectional drawing of the radial bearing shown in FIG. 図13に示すラジアル軸受の斜視図である。It is a perspective view of the radial bearing shown in FIG. 前記受容領域の形成態様の変形例を説明するための図である。It is a figure for demonstrating the modification of the formation mode of the said receiving area.
 以下、添付図面を参照しつつ本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る圧縮機の断面図である。実施形態に係る圧縮機は、主に車両用のエアコンシステム(エア・コンディショナー・システム)に適用されるクラッチレス圧縮機として構成されている。なお、本実施形態では、斜板式の吐出容量可変の可変容量圧縮機の場合を一例に挙げて説明する。図1における上側が圧縮機設置状態における重力方向の上側であり、図1における下側が重力方向の下側である。後述する図3~図5、図7~図16においても同様に重力方向の上下関係が示されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view of a compressor according to an embodiment of the present invention. The compressor according to the embodiment is configured as a clutchless compressor mainly applied to an air conditioner system (air conditioner system) for vehicles. In this embodiment, a case of a swash plate type variable displacement compressor with variable discharge capacity will be described as an example. The upper side in FIG. 1 is the upper side in the gravity direction when the compressor is installed, and the lower side in FIG. 1 is the lower side in the gravity direction. Similarly, the vertical relationship in the direction of gravity is also shown in FIGS. 3 to 5 and FIGS. 7 to 16 described later.
 図1に示されるように、圧縮機100は、環状に配列された複数のシリンダボア101aを有するシリンダブロック101と、シリンダブロック101の一端に設けられたフロントハウジング102と、シリンダブロック101の他端にバルブプレート103を介して設けられたシリンダヘッド104と、を含む。 As shown in FIG. 1, the compressor 100 includes a cylinder block 101 having a plurality of cylinder bores 101 a arranged in an annular shape, a front housing 102 provided at one end of the cylinder block 101, and a cylinder block 101 at the other end. A cylinder head 104 provided via the valve plate 103.
 そして、フロントハウジング102、センターガスケット(図示省略)、シリンダブロック101、シリンダガスケット152、吸入弁形成板150、バルブプレート103、吐出弁形成板151、ヘッドガスケット153、シリンダヘッド104が順次接続され、複数の通しボルト105によって締結されて圧縮機100のハウジングが形成されている。また、シリンダブロック101とフロントハウジング102とによってクランク室140(制御圧室)が形成されており、水平方向に延びる駆動軸110がクランク室140を横断して設けられている。フロントハウジング102は、有底筒状に形成され、概ね円筒状の周壁102aと周壁102aの一端を閉止する一端壁部102bとを有し、周壁102aの他端の開口がシリンダブロック101によって閉止されている。シリンダボア101aはシリンダブロック101に形成されている。なお、本実施形態において、シリンダブロック101とフロントハウジング102が本発明に係る「クランク室形成壁」に相当し、フロントハウジング102の一端壁部102bが本発明に係る「前記ハウジングのクランク室形成壁における駆動軸延伸方向の一端壁部」に相当し、シリンダブロック101が本発明に係る「前記クランク室形成壁の他端壁部」に相当する。 The front housing 102, the center gasket (not shown), the cylinder block 101, the cylinder gasket 152, the intake valve forming plate 150, the valve plate 103, the discharge valve forming plate 151, the head gasket 153, and the cylinder head 104 are sequentially connected, The housing of the compressor 100 is formed by being fastened by the through bolts 105. A crank chamber 140 (control pressure chamber) is formed by the cylinder block 101 and the front housing 102, and a drive shaft 110 extending in the horizontal direction is provided across the crank chamber 140. The front housing 102 is formed in a cylindrical shape with a bottom, has a substantially cylindrical peripheral wall 102a and one end wall portion 102b that closes one end of the peripheral wall 102a, and the opening at the other end of the peripheral wall 102a is closed by the cylinder block 101. ing. The cylinder bore 101a is formed in the cylinder block 101. In the present embodiment, the cylinder block 101 and the front housing 102 correspond to the "crank chamber forming wall" of the present invention, and the one end wall portion 102b of the front housing 102 corresponds to the "crank chamber forming wall of the housing" of the present invention. In the drive shaft extending direction", and the cylinder block 101 corresponds to the "other end wall portion of the crank chamber forming wall" according to the present invention.
 駆動軸110の軸方向の中間部の周囲には、斜板111が配置されている。斜板111は、駆動軸110に固定された円板状の回転体112にリンク機構120を介して連結され、駆動軸110と伴に回転する。また、斜板111は、駆動軸110の軸心Oに直交する平面に対する角度(斜板111の傾角)が変更可能に構成されている。回転体112は、クランク室140内においてフロントハウジング102の一端壁部102bに対向する。回転体112における一端壁部102b側の端面には、概ね台形状の断面形状を有する円環状の突設部112cが一端壁部102b側に向って突設されている。この突設部112cの外周に後述するスラスト軸受133が取り付けられる。互いに対向するフロントハウジング102の一端壁部102bの一端面102b1と回転体112の一端面112bとの間には、隙間(後述するクランク室内領域140aに相当)が設けられている。回転体112の一端面112bとは、詳しくは、回転体112における一端壁部102b側の端面のうちの、円環状の突設部112cの内壁面と駆動軸110の外周面との間の部位である。 A swash plate 111 is arranged around the axially intermediate portion of the drive shaft 110. The swash plate 111 is connected to a disc-shaped rotating body 112 fixed to the drive shaft 110 via a link mechanism 120, and rotates together with the drive shaft 110. Further, the swash plate 111 is configured such that an angle (an inclination angle of the swash plate 111) with respect to a plane orthogonal to the axis O of the drive shaft 110 can be changed. The rotating body 112 faces the one end wall portion 102b of the front housing 102 in the crank chamber 140. On the end surface of the rotating body 112 on the side of the one end wall portion 102b, an annular projecting portion 112c having a substantially trapezoidal cross-sectional shape is provided so as to project toward the one end wall portion 102b side. A thrust bearing 133 described later is attached to the outer periphery of the protruding portion 112c. A gap (corresponding to a crank chamber area 140a described below) is provided between the one end surface 102b1 of the one end wall portion 102b of the front housing 102 and the one end surface 112b of the rotating body 112 that face each other. Specifically, the one end surface 112b of the rotating body 112 is a portion of the end surface of the rotating body 112 on the one end wall portion 102b side between the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110. Is.
 リンク機構120は、回転体112から突設された第1アーム112aと、斜板111から突設された第2アーム111aと、一端側が第1連結ピン122を介して第1アーム112aに対して回動自在に連結され、他端側が第2連結ピン123を介して第2アーム111aに対して回動自在に連結されたリンクアーム121と、を含む。 The link mechanism 120 includes a first arm 112a protruding from the rotating body 112, a second arm 111a protruding from the swash plate 111, and one end side with respect to the first arm 112a via the first connecting pin 122. The link arm 121 is rotatably connected and the other end side is rotatably connected to the second arm 111a via the second connecting pin 123.
 駆動軸110が挿通される斜板111の貫通孔111bは、斜板111が最大傾角と最小傾角の範囲で傾動可能な形状に形成されている。貫通孔111bには駆動軸110と当接する最小傾角規制部が形成されている。斜板111が駆動軸110の軸心Oに直交するときの斜板111の傾角を0°とした場合、貫通孔111bの前記最小傾角規制部は、斜板111の傾角がほぼ0°となると駆動軸110に当接し、斜板111のそれ以上の傾動を規制するように形成されている。斜板111は、その傾角が最大傾角となると回転体112に当接してそれ以上の傾動が規制される。 The through hole 111b of the swash plate 111, through which the drive shaft 110 is inserted, is formed in a shape that allows the swash plate 111 to tilt within a range between the maximum tilt angle and the minimum tilt angle. The through hole 111b is formed with a minimum tilt angle restricting portion that comes into contact with the drive shaft 110. When the inclination angle of the swash plate 111 when the swash plate 111 is orthogonal to the axis O of the drive shaft 110 is 0°, the minimum inclination angle restricting portion of the through hole 111b is such that the inclination angle of the swash plate 111 is approximately 0°. It is formed so as to come into contact with the drive shaft 110 and to restrict further tilting of the swash plate 111. When the tilt angle of the swash plate 111 reaches the maximum tilt angle, the swash plate 111 contacts the rotating body 112 and further tilting is restricted.
 駆動軸110には、斜板111の傾角を減少させる方向に斜板111を付勢する傾角減少バネ114と、斜板111の傾角を増大させる方向に斜板111を付勢する傾角増大バネ115とが装着されている。傾角減少バネ114は、斜板111と回転体112との間に配置され、傾角増大バネ115は、斜板111と駆動軸110に固定されたバネ支持部材116との間に装着されている。 On the drive shaft 110, a tilt reducing spring 114 that biases the swash plate 111 in a direction that decreases the tilt angle of the swash plate 111, and a tilt increasing spring 115 that biases the swash plate 111 in a direction that increases the tilt angle of the swash plate 111. And are installed. The tilt angle reducing spring 114 is arranged between the swash plate 111 and the rotating body 112, and the tilt angle increasing spring 115 is mounted between the swash plate 111 and the spring support member 116 fixed to the drive shaft 110.
 ここで、斜板111の傾角が最小傾角であるとき、傾角増大バネ115の付勢力の方が傾角減少バネ114の付勢力よりも大きくなるように設定されており、駆動軸110が回転していないとき、斜板111は、傾角減少バネ114の付勢力と傾角増大バネ115の付勢力とがバランスする傾角に位置決めされる。 Here, when the tilt angle of the swash plate 111 is the minimum tilt angle, the biasing force of the tilt angle increasing spring 115 is set to be larger than the biasing force of the tilt angle decreasing spring 114, and the drive shaft 110 is rotating. When not present, the swash plate 111 is positioned at an inclination angle that balances the biasing force of the tilt angle decreasing spring 114 and the biasing force of the tilt angle increasing spring 115.
 駆動軸110の一端部(図1における左端側)は、フロントハウジング102の一端壁部102bに開口される軸孔102d内を延び、フロントハウジング102の外側まで延在している。詳しくは、軸孔102dは、フロントハウジング102の一端壁部102bの径方向中央部において外側に部分的に突出する突出部102c内を貫通している。駆動軸110の前記一端部には、図示省略の動力伝達装置が連結される。前記動力伝達装置を介して駆動軸110の回転動力が外部動力源から入力される。クランク室140の内部は、突出部102cに設けられた軸封装置130によって外部空間から遮断されている。軸孔102d内(詳しくは、軸孔102dのクランク室内側開口部位)には、駆動軸110を回転可能に支持する第1軸受131が設けられている。軸封装置130は、軸孔102dのクランク室外側の部位において第1軸受131の軸方向の一端面131aとの間に円環状の空間Wを空けて設けられ、駆動軸110の外周面と軸孔102dの内周面との間を気密に封止するものである。なお、本実施形態において第1軸受131が本発明に係る「ラジアル軸受」に相当する。 One end portion (left end side in FIG. 1) of the drive shaft 110 extends in the shaft hole 102d opened in the one end wall portion 102b of the front housing 102 and extends to the outside of the front housing 102. Specifically, the shaft hole 102d penetrates through the inside of the protruding portion 102c that partially protrudes outward at the radial center portion of the one end wall portion 102b of the front housing 102. A power transmission device (not shown) is connected to the one end of the drive shaft 110. Rotational power of the drive shaft 110 is input from an external power source via the power transmission device. The inside of the crank chamber 140 is shielded from the external space by the shaft sealing device 130 provided on the protrusion 102c. A first bearing 131 that rotatably supports the drive shaft 110 is provided in the shaft hole 102d (specifically, an opening portion of the shaft hole 102d on the crank chamber inner side). The shaft sealing device 130 is provided in a region outside the crank chamber of the shaft hole 102d with an annular space W between the one end face 131a in the axial direction of the first bearing 131, and the outer peripheral surface of the drive shaft 110 and the shaft. The inner peripheral surface of the hole 102d is hermetically sealed. The first bearing 131 in the present embodiment corresponds to the “radial bearing” according to the present invention.
 駆動軸110の他端部(図1における右端側)は、シリンダブロック101に形成されたセンターボア101bに挿通されている。センターボア101bは、複数のシリンダボア101aの中央においてシリンダブロック101を貫通しており、バルブプレート103側からクランク室140側に向かって、シリンダブロック101のシリンダヘッド104側の端面に開口する大径部101b1と、大径部101b1よりも小径の中径部101b2及び中径部101b2よりも小径の小径部101b3を有している。駆動軸110の他端部はセンターボア101bの小径部101b3に設けられる第2軸受132により回転可能に支持される。 The other end (right end side in FIG. 1) of the drive shaft 110 is inserted through a center bore 101b formed in the cylinder block 101. The center bore 101b penetrates the cylinder block 101 at the center of the plurality of cylinder bores 101a, and has a large diameter portion that opens from the valve plate 103 side toward the crank chamber 140 side to the end surface of the cylinder block 101 on the cylinder head 104 side. 101b1, a small-diameter medium-diameter portion 101b2 smaller than the large-diameter portion 101b1, and a small-diameter portion 101b3 smaller than the medium-diameter portion 101b2. The other end of the drive shaft 110 is rotatably supported by a second bearing 132 provided on the small diameter portion 101b3 of the center bore 101b.
 駆動軸110と駆動軸110に固定された回転体112とからなる連結体は、ラジアル方向においては第1軸受131、第2軸受132で支持され、スラスト方向においてはスラスト軸受133で支持されている。本実施形態では、第1軸受131及び第2軸受132はすべり軸受からなる。スラスト軸受133は、回転体112の突設部112cの外周面に取り付けられた状態で回転体112とフロントハウジング102の一端壁部102bとの間に挟み込まれ、回転体112に作用するスラスト方向荷重を支持するものである。そして、駆動軸110は、外部駆動源からの動力が前記動力伝達装置に伝達されることにより、前記動力伝達装置の回転と同期して回転するように構成されている。 The coupling body including the drive shaft 110 and the rotating body 112 fixed to the drive shaft 110 is supported by the first bearing 131 and the second bearing 132 in the radial direction, and is supported by the thrust bearing 133 in the thrust direction. .. In this embodiment, the first bearing 131 and the second bearing 132 are slide bearings. The thrust bearing 133 is sandwiched between the rotating body 112 and the one end wall portion 102b of the front housing 102 while being attached to the outer peripheral surface of the protruding portion 112c of the rotating body 112, and the thrust direction load acting on the rotating body 112. Is to support. The drive shaft 110 is configured to rotate in synchronization with the rotation of the power transmission device by transmitting the power from the external drive source to the power transmission device.
 各シリンダボア101a内には、ピストン136が収容されている。ピストン136のクランク室140内に突出する突出部に形成された内側空間には、斜板111の外周部及びその近傍が収容されており、斜板111は、一対のシュー137を介してピストン136と連動するように構成されている。そして、駆動軸110の回転に伴う斜板111の回転によって各ピストン136が対応するシリンダボア101a内を往復動する。 A piston 136 is housed in each cylinder bore 101a. An outer space of the swash plate 111 and the vicinity thereof are housed in an inner space formed in a protruding portion of the piston 136 that projects into the crank chamber 140. The swash plate 111 includes the piston 136 through a pair of shoes 137. It is configured to work with. Then, the rotation of the swash plate 111 accompanying the rotation of the drive shaft 110 causes each piston 136 to reciprocate within the corresponding cylinder bore 101a.
 シリンダヘッド104には、中央部に配置された吸入室141と、吸入室141を環状に取り囲む吐出室142とが区画形成されている。つまり、圧縮機100の前記ハウジングは、吸入室141と、吐出室142と、クランク室140とを有する。吸入室141と各シリンダボア101aとは、バルブプレート103に設けられた連通孔103a及び吸入弁形成板150に形成された吸入弁(図示省略)を介して連通している。吐出室142と各シリンダボア101aとは、バルブプレート103に設けられた連通孔103b及び吐出弁形成板151に形成された吐出弁(図示省略)を介して連通している。また、吐出室142には、吐出逆止弁200が配置されている。 The cylinder head 104 is divided into a suction chamber 141 arranged in the center and a discharge chamber 142 surrounding the suction chamber 141 in an annular shape. That is, the housing of the compressor 100 has the suction chamber 141, the discharge chamber 142, and the crank chamber 140. The suction chamber 141 and each cylinder bore 101a communicate with each other through a communication hole 103a provided in the valve plate 103 and a suction valve (not shown) formed in the suction valve forming plate 150. The discharge chamber 142 and each cylinder bore 101a communicate with each other through a communication hole 103b provided in the valve plate 103 and a discharge valve (not shown) formed in the discharge valve forming plate 151. A discharge check valve 200 is arranged in the discharge chamber 142.
 吸入室141には、吸入ポート106及び吸入通路107を介して前記エアコンシステムの冷媒回路の低圧側の冷媒(つまり、圧縮前の冷媒)が導かれる。吸入室141内の冷媒は、各ピストン136の往復運動によって対応するシリンダボア101a内に吸入され、圧縮されて吐出室142に吐出される。つまり、駆動軸110の回転に伴うピストン136の往復運動によって吸入室141からシリンダボア101a内に吸入された冷媒が圧縮されて吐出室142に吐出される。シリンダボア101a及びピストン136によって吸入室141内の冷媒を吸入して圧縮する圧縮部が構成されている。そして、吐出室142に吐出された冷媒は、吐出通路108及び吐出ポート109を介して前記エアコンシステムの前記冷媒回路の高圧側へと導かれる。また、吐出逆止弁200によって前記エアコンシステムの前記冷媒回路の高圧側から吐出室142に向かう冷媒(冷媒ガス)の逆流が阻止される。 The low-pressure side refrigerant (that is, the refrigerant before compression) of the refrigerant circuit of the air conditioner system is introduced into the intake chamber 141 via the intake port 106 and the intake passage 107. The refrigerant in the suction chamber 141 is sucked into the corresponding cylinder bore 101a by the reciprocating motion of each piston 136, compressed, and discharged into the discharge chamber 142. That is, the reciprocating motion of the piston 136 accompanying the rotation of the drive shaft 110 compresses the refrigerant sucked into the cylinder bore 101 a from the suction chamber 141 and discharges it to the discharge chamber 142. The cylinder bore 101a and the piston 136 constitute a compression unit that sucks and compresses the refrigerant in the suction chamber 141. Then, the refrigerant discharged to the discharge chamber 142 is guided to the high pressure side of the refrigerant circuit of the air conditioner system via the discharge passage 108 and the discharge port 109. Further, the discharge check valve 200 blocks the reverse flow of the refrigerant (refrigerant gas) from the high pressure side of the refrigerant circuit of the air conditioner system toward the discharge chamber 142.
 本実施形態において、圧縮機100は、吐出室142内の冷媒をクランク室140に供給するための供給通路145と、クランク室140内の冷媒を吸入室141に排出するための排出通路146と、を有している。図2は、供給通路145及び排出通路146を模式的に示す図である。 In the present embodiment, the compressor 100 includes a supply passage 145 for supplying the refrigerant in the discharge chamber 142 to the crank chamber 140, and a discharge passage 146 for discharging the refrigerant in the crank chamber 140 to the suction chamber 141. have. FIG. 2 is a diagram schematically showing the supply passage 145 and the discharge passage 146.
 図2に示すように、供給通路145は、吐出室142とクランク室140との間を連通する通路として形成されており、供給通路145の途中には、制御弁300が設けられている。制御弁300は、供給通路145の開度(通路断面積)を調整し、これにより、吐出室142内の冷媒(吐出冷媒)のクランク室140への供給量を制御するように構成されている。 As shown in FIG. 2, the supply passage 145 is formed as a passage that communicates between the discharge chamber 142 and the crank chamber 140, and the control valve 300 is provided in the middle of the supply passage 145. The control valve 300 is configured to adjust the opening degree (passage cross-sectional area) of the supply passage 145 and thereby control the supply amount of the refrigerant (discharge refrigerant) in the discharge chamber 142 to the crank chamber 140. ..
 排出通路146は、クランク室140と吸入室141との間を連通する通路として形成されており、絞り部(後述する絞り通路103c)を有している。 The discharge passage 146 is formed as a passage that communicates between the crank chamber 140 and the suction chamber 141, and has a throttle portion (a throttle passage 103c described later).
 制御弁300は、弁ユニットと、弁ユニットを開閉作動させる駆動ユニット(ソレノイド)と、を含み、シリンダヘッド104に形成された連通路104b(図1参照)を介して導入される吸入室141の圧力と、外部信号に応じてソレノイドに流れる電流によって発生する電磁力と、に応答して供給通路145の開度を制御するように構成されている。具体的には、前記駆動ユニットのコイルは、信号線等を介して、圧縮機100の外部に設けられた制御装置(図示せず)に接続されている。前記駆動ユニットは、前記制御装置から前記コイルに制御電流Iが供給されると、電磁力F(I)を発生する。前記駆動ユニットが電磁力F(I)を発生すると、前記弁ユニットの弁体が閉弁方向に移動する。また、前記弁体は、吸入室141の圧力が制御電流Iにより設定された設定圧力より高くなると、吐出容量を増大させるために、弁孔(すなわち、供給通路145)の開度(通路断面積)を小さくしてクランク室140の圧力を低下させ、吸入室141の圧力が前記設定圧力を下回ると、吐出容量を減少するために、前記弁孔(すなわち、供給通路145)の開度を大きくしてクランク室140の圧力を上昇させる。つまり、制御弁300は、吸入室141の圧力が前記設定圧力に近づくように供給通路145の開度を自律制御する。前記弁体には、前記駆動ユニットの電磁力が閉弁方向に作用するので、前記コイルの通電量が増加すると供給通路145の開度を小さくする方向(すなわち、閉弁方向)の力が増大し、設定圧力が低下する方向に変化する。前記制御装置は、例えば400Hz~500Hzの範囲の所定の周波数でパルス幅変調(PWM制御)により前記駆動ユニットのコイルへの通電を制御し、前記コイルを流れる電流値が所望の値となるようにパルス幅(デューティ比)を変更する。 The control valve 300 includes a valve unit and a drive unit (solenoid) that opens and closes the valve unit, and introduces the suction chamber 141 through a communication passage 104b (see FIG. 1) formed in the cylinder head 104. The opening degree of the supply passage 145 is controlled in response to the pressure and the electromagnetic force generated by the current flowing through the solenoid in response to the external signal. Specifically, the coil of the drive unit is connected to a control device (not shown) provided outside the compressor 100 via a signal line or the like. The drive unit generates an electromagnetic force F(I) when the control current I is supplied to the coil from the controller. When the drive unit generates an electromagnetic force F(I), the valve body of the valve unit moves in the valve closing direction. Further, when the pressure in the suction chamber 141 becomes higher than the set pressure set by the control current I, the valve body increases the discharge capacity by increasing the opening of the valve hole (that is, the supply passage 145) (passage cross-sectional area). ) Is reduced to lower the pressure in the crank chamber 140, and when the pressure in the suction chamber 141 falls below the set pressure, the opening of the valve hole (that is, the supply passage 145) is increased in order to reduce the discharge capacity. Then, the pressure in the crank chamber 140 is increased. That is, the control valve 300 autonomously controls the opening degree of the supply passage 145 so that the pressure in the suction chamber 141 approaches the set pressure. Since the electromagnetic force of the drive unit acts on the valve body in the valve closing direction, when the energization amount of the coil increases, the force in the direction of decreasing the opening degree of the supply passage 145 (that is, the valve closing direction) increases. However, the set pressure changes so as to decrease. The control device controls energization to the coil of the drive unit by pulse width modulation (PWM control) at a predetermined frequency in the range of 400 Hz to 500 Hz, for example, so that the current value flowing through the coil becomes a desired value. Change the pulse width (duty ratio).
 制御弁300が閉弁すると、吐出室142とクランク室140との連通は遮断され、クランク室140内の冷媒が排出通路146を介して吸入室141に排出されてクランク室140の圧力が低下する。クランク室140の圧力が低下すると斜板111の傾角が増加し、ピストン136のストローク(すなわち、圧縮機100の吐出容量)も増加する。 When the control valve 300 is closed, the communication between the discharge chamber 142 and the crank chamber 140 is cut off, the refrigerant in the crank chamber 140 is discharged to the suction chamber 141 via the discharge passage 146, and the pressure in the crank chamber 140 is reduced. .. When the pressure in the crank chamber 140 decreases, the inclination angle of the swash plate 111 increases, and the stroke of the piston 136 (that is, the discharge capacity of the compressor 100) also increases.
 一方、制御弁300が開弁すると、吐出室142とクランク室140との間が連通されて、吐出室142内の冷媒が供給通路145を介してクランク室140内に導かれる。このとき、クランク室140と吸入室141とは排出通路146によって連通しているが、排出通路146は前記絞り部を有しているため、クランク室140内の冷媒が吸入室141に排出されることが制限されてクランク室140の圧力が上昇する。そして、制御弁300による供給通路145の開度に応じて吐出室142内の冷媒が供給通路145を介してクランク室140に供給されてクランク室140の圧力が上昇する。クランク室140の圧力が上昇すると、斜板111の傾角が減少してピストン136のストローク(すなわち、圧縮機100の吐出容量)も減少する。 On the other hand, when the control valve 300 is opened, the discharge chamber 142 and the crank chamber 140 are communicated with each other, and the refrigerant in the discharge chamber 142 is guided into the crank chamber 140 via the supply passage 145. At this time, the crank chamber 140 and the suction chamber 141 communicate with each other through the discharge passage 146, but since the discharge passage 146 has the throttle portion, the refrigerant in the crank chamber 140 is discharged to the suction chamber 141. As a result, the pressure in the crank chamber 140 increases. Then, the refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 via the supply passage 145 according to the opening degree of the supply passage 145 by the control valve 300, and the pressure of the crank chamber 140 rises. When the pressure in the crank chamber 140 increases, the inclination angle of the swash plate 111 decreases and the stroke of the piston 136 (that is, the discharge capacity of the compressor 100) also decreases.
 このように、圧縮機100は、供給通路145を介して吐出室142内の冷媒がクランク室140に供給されると共に、排出通路146を介してクランク室140内の冷媒が吸入室141に排出されることでクランク室140の圧力が調整され、これによって、吐出容量が変化するように構成されている。 As described above, in the compressor 100, the refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 via the supply passage 145, and the refrigerant in the crank chamber 140 is discharged to the suction chamber 141 via the discharge passage 146. As a result, the pressure in the crank chamber 140 is adjusted, whereby the discharge capacity is changed.
 ここで、クランク室140内には、主に軸封装置130、各軸受(131,132,133)、斜板111等の摺動部材等の摺動面を潤滑するための潤滑油が貯留されている。このクランク室140内の潤滑油は、駆動軸110の回転が停止しているときには、クランク室140内の重力方向下方に貯留されている。また、駆動軸110が回転すると、クランク室140内の潤滑油は駆動軸110の回転に伴って撹拌され、クランク室140内における周壁102a側の領域は潤滑油の含有量の多い領域となり、クランク室140内における径方向中心側(駆動軸110側)の領域は潤滑油の含有量の少ない領域となる。 Lubricating oil for lubricating the sliding surfaces of the shaft sealing device 130, the bearings (131, 132, 133), and the sliding members such as the swash plate 111 is mainly stored in the crank chamber 140. ing. The lubricating oil in the crank chamber 140 is stored below the crank chamber 140 in the direction of gravity when the drive shaft 110 stops rotating. When the drive shaft 110 rotates, the lubricating oil in the crank chamber 140 is agitated as the drive shaft 110 rotates, and the region on the peripheral wall 102a side in the crank chamber 140 becomes a region with a large amount of lubricating oil. The region on the radial center side (drive shaft 110 side) in the chamber 140 is a region in which the content of lubricating oil is small.
 図3及び図4は、圧縮機100の駆動軸110及び回転体112を含む要部断面図であり、図4は、図3に示す状態から駆動軸110及び回転体112が180°回転した状態が示されている。なお、図3では駆動軸110に形成される後述する第1通路146aが下方に位置した状態が示され、図4では、第1通路146aが上方に位置した状態が示されている。 3 and 4 are cross-sectional views of a main part including the drive shaft 110 and the rotating body 112 of the compressor 100, and FIG. 4 is a state in which the drive shaft 110 and the rotating body 112 are rotated by 180° from the state shown in FIG. It is shown. It should be noted that FIG. 3 shows a state in which a later-described first passage 146a formed in the drive shaft 110 is located below, and FIG. 4 shows a state in which the first passage 146a is located above.
 圧縮機100は、クランク室140内の潤滑油を少なくとも第1軸受131に導くための油供給通路147を含む。油供給通路147は、フロントハウジング102の一端壁部102bに設けられると共に、入口側開口147Aと出口側開口147Bとを有している。クランク室140から入口側開口147Aを介して油供給通路147内に流入した潤滑油は、出口側開口147Bから回転体112の一端面112bに向かって流出する。また、クランク室140内の潤滑油の一部は、冷媒の移動に伴って排出通路146を介して吸入室141に排出され、その後、例えば、シリンダボア101a内に吸入されてピストン136等の摺動部材等に供給される。つまり、駆動軸110の回転に伴って潤滑油が撹拌されると共に冷媒の移動に伴って潤滑油が油供給通路147や排出通路146を介して移動することによって、圧縮機100内部が潤滑される。 The compressor 100 includes an oil supply passage 147 for guiding the lubricating oil in the crank chamber 140 to at least the first bearing 131. The oil supply passage 147 is provided in the one end wall portion 102b of the front housing 102, and has an inlet side opening 147A and an outlet side opening 147B. The lubricating oil that has flowed into the oil supply passage 147 from the crank chamber 140 through the inlet side opening 147A flows out from the outlet side opening 147B toward the one end surface 112b of the rotating body 112. A part of the lubricating oil in the crank chamber 140 is discharged to the suction chamber 141 through the discharge passage 146 as the refrigerant moves, and then sucked into the cylinder bore 101a to slide the piston 136 or the like. It is supplied to members and the like. That is, the lubricating oil is stirred as the drive shaft 110 rotates, and the lubricating oil moves as the refrigerant moves through the oil supply passage 147 and the discharge passage 146, thereby lubricating the inside of the compressor 100. ..
 また、圧縮機100は、油供給通路147の出口側開口147Bから流出した潤滑油を受け容れるための受容領域146cを形成する受容部148を含む。本実施形態では、受容領域146cは、回転体112の一端面112bに凹んだ領域として形成されている。つまり、受容領域146cは、フロントハウジング102の一端壁部102bの一端面102b1と回転体112の一端面112bとの間のクランク室内領域140aに開口している。クランク室内領域140aは、一端壁部102bの一端面102b1と回転体112の一端面112bとの間の隙間からなる領域であり、クランク室140内の領域の一部である。 The compressor 100 also includes a receiving portion 148 that forms a receiving region 146c for receiving the lubricating oil that has flowed out from the outlet side opening 147B of the oil supply passage 147. In the present embodiment, the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112. That is, the receiving area 146c is open to the crank chamber area 140a between the one end surface 102b1 of the one end wall portion 102b of the front housing 102 and the one end surface 112b of the rotating body 112. The crank chamber region 140a is a region formed by a gap between the one end face 102b1 of the one end wall portion 102b and the one end face 112b of the rotating body 112, and is a part of the region in the crank chamber 140.
 以下では、供給通路145、排出通路146、油供給通路147及び受容部148について詳細に説明する。 In the following, the supply passage 145, the discharge passage 146, the oil supply passage 147, and the receiving portion 148 will be described in detail.
「供給通路145」
 制御弁300が開弁すると、吐出室142とクランク室140とは供給通路145によって連通し、供給通路145を介して吐出室142内の冷媒がクランク室140に供給される。図1に示すように、本実施形態では、供給通路145は、シリンダヘッド104に形成された連通路104c、制御弁300内通路、シリンダヘッド104及びシリンダブロック101内を延びる連通路104dによって形成されている。
"Supply passage 145"
When the control valve 300 is opened, the discharge chamber 142 and the crank chamber 140 communicate with each other through the supply passage 145, and the refrigerant in the discharge chamber 142 is supplied to the crank chamber 140 via the supply passage 145. As shown in FIG. 1, in the present embodiment, the supply passage 145 is formed by a communication passage 104c formed in the cylinder head 104, a passage in the control valve 300, a communication passage 104d extending in the cylinder head 104 and the cylinder block 101. ing.
「排出通路146」
 排出通路146は、第1通路146aと、第2通路146bとを経由して、クランク室140と吸入室141との間を連通する。第1通路146aは、駆動軸110の前記一端部(図1中左側、軸封装置130側端部)の外周面における周方向の所定角度位置から軸内に延びる。第2通路146bは第1通路146aに連続して駆動軸110の他端部側(図1中右側、シリンダヘッド104側)に延びる。例えば、第1通路146aは、駆動軸110の外周面における周方向の所定角度位置において前記外周面から径方向に延びている。第2通路146bは第1通路146aの軸内側端部から軸心Oに沿って駆動軸110の前記他端部側の端面を貫通するように延びている。第1通路146aの外周面側開口端は、受容部148により形成される受容領域146c(詳しくは、後述する隣接領域146c1)に開口している。受容領域146cは、クランク室140内の領域の一部であるクランク室内領域140aに開口している。したがって、第1通路146aは、受容領域146cを介してクランク室140に連通している。つまり、受容領域146cは、排出通路146のクランク室140側の開口端部を構成している。本実施形態において、クランク室140と吸入室141との間を連通する排出通路146は、受容領域146cと、第1通路146aと、第2通路146bと、中径部101b2と、大径部101b1と、バルブプレート103に形成された絞り通路(固定絞り)103cとにより形成されている(図1参照)。なお、排出通路146において、第1通路146aの流路断面積は、第2通路146bの流路断面積より小さく、且つ、絞り通路103cの流路断面積より大きく設定されている。
"Discharge passage 146"
The discharge passage 146 communicates between the crank chamber 140 and the suction chamber 141 via the first passage 146a and the second passage 146b. The first passage 146a extends into the shaft from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end (the left side in FIG. 1, the end on the shaft sealing device 130 side) of the drive shaft 110. The second passage 146b is continuous with the first passage 146a and extends to the other end portion side (the right side in FIG. 1, the cylinder head 104 side) of the drive shaft 110. For example, the first passage 146a extends radially from the outer peripheral surface of the drive shaft 110 at a predetermined angular position in the peripheral direction on the outer peripheral surface. The second passage 146b extends from the shaft inner end of the first passage 146a along the axis O so as to penetrate the end surface of the drive shaft 110 on the other end side. An outer peripheral surface side opening end of the first passage 146a is open to a receiving region 146c (specifically, an adjacent region 146c1 described later) formed by the receiving portion 148. The receiving area 146c is open to the crank chamber area 140a which is a part of the crank chamber 140. Therefore, the first passage 146a communicates with the crank chamber 140 via the receiving area 146c. That is, the receiving area 146c constitutes an opening end of the discharge passage 146 on the crank chamber 140 side. In the present embodiment, the discharge passage 146 that communicates between the crank chamber 140 and the suction chamber 141 has a receiving area 146c, a first passage 146a, a second passage 146b, a medium diameter portion 101b2, and a large diameter portion 101b1. And a throttle passage (fixed throttle) 103c formed in the valve plate 103 (see FIG. 1). In the discharge passage 146, the flow passage cross-sectional area of the first passage 146a is set smaller than the flow passage cross-sectional area of the second passage 146b and larger than the flow passage cross-sectional area of the throttle passage 103c.
「油供給通路147」
 油供給通路147は、前述したように、フロントハウジング102の一端壁部102bに設けられると共に、入口側開口147Aと出口側開口147Bとを有している。入口側開口147Aは、一端壁部102b(一端面102b1)における駆動軸110の軸心Oより重力方向上側の部位にてクランク室140に開口する。出口側開口147Bは、一端壁部102b(一端面102b1)における入口側開口147Aより重力方向下側の部位であり且つ駆動軸110の軸心O周りの所定角度の部位にてクランク室内領域140aに開口する。本実施形態では、油供給通路147は、軸封装置130と第1軸受131との間の円環状の空間Wを経由して延びており、入口側開口147Aを有する入口側油通路147aと、出口側開口147Bを有する出口側油通路147bとを含んで構成されている。つまり、油供給通路147は、入口側油通路147aと、空間Wと、出口側油通路147bとにより構成される。クランク室140から入口側油通路147aを介して円環状の空間Wに導かれた潤滑油の大半は、空間Wから出口側油通路147bを介して流出する。
"Oil supply passage 147"
As described above, the oil supply passage 147 is provided in the one end wall portion 102b of the front housing 102 and has the inlet side opening 147A and the outlet side opening 147B. The inlet-side opening 147A opens into the crank chamber 140 at a portion of the one end wall portion 102b (one end surface 102b1) above the axis O of the drive shaft 110 in the gravity direction. The outlet side opening 147B is a portion of the one end wall portion 102b (one end surface 102b1) below the inlet side opening 147A in the direction of gravity and at a predetermined angle around the axis O of the drive shaft 110 in the crank chamber region 140a. Open. In the present embodiment, the oil supply passage 147 extends via the annular space W between the shaft sealing device 130 and the first bearing 131, and has an inlet side oil passage 147a having an inlet side opening 147A, An outlet side oil passage 147b having an outlet side opening 147B is included. That is, the oil supply passage 147 includes the inlet side oil passage 147a, the space W, and the outlet side oil passage 147b. Most of the lubricating oil guided from the crank chamber 140 to the annular space W via the inlet side oil passage 147a flows out from the space W via the outlet side oil passage 147b.
 入口側油通路147aは、入口側開口147Aとしての一端が一端壁部102bにおける駆動軸110より重力方向上側で且つスラスト軸受133より径方向外側の部位にてクランク室140に開口し、他端が円環状の空間Wにおける上部領域に開口する。入口側油通路147aは、例えば、油案内溝部147a1と、油案内孔147a2と、スラスト軸受133の一端壁部102b側の端面とにより形成されている。油案内溝部147a1は、一端壁部102bにおけるスラスト軸受133の外縁部より上方の部位から下方に向かって、一端壁部102bの一端面102b1に沿って下方に延びる溝である。油案内溝部147a1の下方側の部位は、スラスト軸受133の一端壁部102b側の端面板133aにより塞がれており、油案内溝部147a1の上方側の部位は、クランク室140に開口し、油供給通路147の入口側開口147Aを構成している。油案内孔147a2は、油案内溝部147a1の下端部から一端壁部102b内を斜めに延伸し円環状の空間Wにおける上部領域に開口している。駆動軸110が回転すると、クランク室140内の潤滑油は撹拌され、クランク室140内における周壁102a側の領域は潤滑油の含有量の多い領域となる。このクランク室140内における周壁102a側の領域の潤滑油は、主に油供給通路147の入口側油通路147aを介して軸封装置130や第1軸受131に供給されるが、その一部の潤滑油はスラスト軸受133の径方向外縁部からスラスト軸受133内の隙間に流入する。 The inlet-side oil passage 147a has one end serving as the inlet-side opening 147A, which opens to the crank chamber 140 at a portion of the one-end wall portion 102b that is above the drive shaft 110 in the direction of gravity and radially outside of the thrust bearing 133, and the other end is open. It opens in the upper region in the annular space W. The inlet oil passage 147a is formed by, for example, an oil guide groove portion 147a1, an oil guide hole 147a2, and an end surface of the thrust bearing 133 on the one end wall portion 102b side. The oil guide groove portion 147a1 is a groove that extends downward from a portion of the one end wall portion 102b above the outer edge portion of the thrust bearing 133, and extends downward along the one end surface 102b1 of the one end wall portion 102b. The lower side portion of the oil guide groove portion 147a1 is closed by the end face plate 133a on the one end wall portion 102b side of the thrust bearing 133, and the upper side portion of the oil guide groove portion 147a1 is opened to the crank chamber 140, An inlet side opening 147A of the supply passage 147 is configured. The oil guide hole 147a2 extends obliquely from the lower end portion of the oil guide groove portion 147a1 into the one end wall portion 102b, and opens in the upper region of the annular space W. When the drive shaft 110 rotates, the lubricating oil in the crank chamber 140 is agitated, and the region on the peripheral wall 102a side in the crank chamber 140 becomes a region with a large amount of lubricating oil. The lubricating oil in the region on the peripheral wall 102a side in the crank chamber 140 is mainly supplied to the shaft sealing device 130 and the first bearing 131 via the oil passage 147a on the inlet side of the oil supply passage 147. Lubricating oil flows into the gap in the thrust bearing 133 from the radially outer edge portion of the thrust bearing 133.
 出口側油通路147bは、一端が円環状の空間Wにおける下部領域に開口し、出口側開口147Bとしての他端が一端壁部102bにおける駆動軸110より重力方向下側で且つスラスト軸受133の径方向内縁部の内側の部位にてクランク室内領域140aに開口する。出口側油通路147bは、前記一端から回転体112側に向って斜め下方に延び、その後、駆動軸110の軸心O側に屈曲して軸心Oと平行に延びている。例えば、出口側油通路147bの出口側開口147B(他端)は、入口側開口147Aの開口角度位置に対して駆動軸110の軸心O周りに180°ずらした角度位置に開口され、出口側油通路147bの前記一端は、入口側油通路147aの前記他端の開口の角度位置に対して駆動軸110の軸心O周りに180°ずらした角度位置に開口されている。 The outlet-side oil passage 147b has one end opening to a lower region in the annular space W, and the other end as the outlet-side opening 147B is below the drive shaft 110 in the one end wall portion 102b in the gravity direction and has a diameter of the thrust bearing 133. An opening is made in the crank chamber region 140a at a portion inside the inner edge in the direction. The outlet-side oil passage 147b extends obliquely downward from the one end toward the rotary body 112 side, and then bends toward the axis O of the drive shaft 110 and extends parallel to the axis O. For example, the outlet side opening 147B (the other end) of the outlet side oil passage 147b is opened at an angular position shifted by 180° around the axis O of the drive shaft 110 with respect to the opening angular position of the inlet side opening 147A. The one end of the oil passage 147b is opened at an angular position shifted by 180° around the axis O of the drive shaft 110 with respect to the angular position of the opening of the other end of the inlet-side oil passage 147a.
 本実施形態では、前述したように、第1軸受131はすべり軸受からなる。そのため、第1軸受131の内周面と駆動軸110の外周面との間には微小な隙間、つまり、面間隙間が存在する。したがって、クランク室140から油供給通路147の入口側油通路147aを介して空間Wに流入した潤滑油は、第1軸受131と駆動軸110との間の前記面間隙間を経由して流出し得る。しかし、油供給通路147の流路断面積は、前記面間隙間の面積より十分に大きいため、空間Wに流入した潤滑油の大半は油供給通路147の出口側油通路147bを経由して出口側開口147Bから回転体112の一端面112bに向かって流出する。 In this embodiment, as described above, the first bearing 131 is a slide bearing. Therefore, a minute gap, that is, a face-to-face gap, exists between the inner peripheral surface of the first bearing 131 and the outer peripheral surface of the drive shaft 110. Therefore, the lubricating oil that has flowed into the space W from the crank chamber 140 via the inlet-side oil passage 147a of the oil supply passage 147 flows out through the inter-face clearance between the first bearing 131 and the drive shaft 110. obtain. However, since the flow passage cross-sectional area of the oil supply passage 147 is sufficiently larger than the area between the surface gaps, most of the lubricating oil that has flowed into the space W exits via the outlet-side oil passage 147b of the oil supply passage 147. It flows out from the side opening 147B toward the one end surface 112b of the rotating body 112.
「受容部148」
 受容部148は、出口側開口147Bから流出した潤滑油を受け容れるための受容領域146cを形成するものである。受容領域146cは、回転体112の一端面112bにおける出口側開口147Bの開口位置に対応した径方向の部位であり、且つ、少なくとも第1通路146aの外周面側開口端に隣接する隣接領域146c1を含む部位に形成される。つまり、受容部148とは、受容領域146cを形成する形成壁であり、回転体112の一端面112b側の一部の部位である。
"Receptor 148"
The receiving portion 148 forms a receiving area 146c for receiving the lubricating oil flowing out from the outlet side opening 147B. The receiving region 146c is a portion in the radial direction corresponding to the opening position of the outlet side opening 147B on the one end surface 112b of the rotating body 112, and at least the adjacent region 146c1 adjacent to the outer peripheral surface side opening end of the first passage 146a. It is formed in the part containing. That is, the receiving portion 148 is a forming wall that forms the receiving region 146c, and is a part of the rotating body 112 on the side of the one end surface 112b.
 図5は、一端壁部102b側から視た回転体112の背面図である。図1及び図3~図5に示すように、本実施形態では、前述したように、受容領域146cは、回転体112の一端面112b(背面の一部)に、凹んだ領域として形成されている。詳しくは、受容領域146cは、回転体112における一端壁部102b側の端面における円環状の突設部112cの内壁面と駆動軸110の外周面との間の部位(つまり一端面112b)の一部に、凹んだ領域として形成されている。 FIG. 5 is a rear view of the rotating body 112 viewed from the one end wall portion 102b side. As shown in FIGS. 1 and 3 to 5, in the present embodiment, as described above, the receiving area 146c is formed as a recessed area on the one end surface 112b (a part of the back surface) of the rotating body 112. There is. Specifically, the receiving area 146c is one of the portions (that is, one end surface 112b) between the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110 on the end surface on the one end wall portion 102b side of the rotating body 112. Is formed as a recessed region.
 また、本実施形態では、受容領域146cは、駆動軸110の外周面を周方向に部分的に囲むように形成されている。具体的には、回転体112の径方向中央部には、駆動軸110用の嵌合孔が開口されており、前記嵌合孔における一端面112b側の開口部外縁の周方向の一部が駆動軸110の外径よりも大きく部分的に拡幅されている。この部分的に拡幅された部分が受容領域146cを構成している。本実施形態では、第1通路146aの外周面側開口端に隣接する隣接領域146c1は、受容領域146cにおける回転体112の回転方向Rと反対側の端部領域に位置している。したがって、第1通路146aの外周面側開口端は、受容領域146cにおける回転体112の回転方向Rと反対側の端部領域に開口されている。受容領域146cは、第1通路146aを基準とすると回転体112の周方向について所定の角度(図5では概ね90°)の周方向幅を有すると共に、回転体112の径方向について所定の径方向幅を有する。受容領域146cは、全体として、駆動軸110の外周面の周方向に延びる円弧溝状の空間として形成されている。つまり、受容部148は、駆動軸110の外周面と協働して回転体112の一端面112bにクランク室内領域140aに開口する円弧溝状開口を形成している。 Further, in the present embodiment, the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction. Specifically, a fitting hole for the drive shaft 110 is opened in the radial center of the rotating body 112, and a part of the outer edge of the opening on the one end face 112b side in the fitting hole in the circumferential direction is formed. It is partially widened to be larger than the outer diameter of the drive shaft 110. This partially widened portion constitutes the receiving area 146c. In the present embodiment, the adjacent region 146c1 adjacent to the outer peripheral surface side opening end of the first passage 146a is located in the end region of the receiving region 146c opposite to the rotation direction R of the rotating body 112. Therefore, the outer peripheral surface side opening end of the first passage 146a is opened in the end region of the receiving region 146c opposite to the rotation direction R of the rotating body 112. The receiving region 146c has a circumferential width of a predetermined angle (generally 90° in FIG. 5) in the circumferential direction of the rotating body 112 with respect to the first passage 146a, and also has a predetermined radial direction in the radial direction of the rotating body 112. Has a width. The receiving area 146c is formed as an arc groove-shaped space extending in the circumferential direction of the outer peripheral surface of the drive shaft 110 as a whole. That is, the receiving portion 148 cooperates with the outer peripheral surface of the drive shaft 110 to form an arcuate groove-shaped opening that opens to the crank chamber region 140a on the one end surface 112b of the rotating body 112.
 図3~図5に示すように、受容領域146cを形成する受容部148は、前記嵌合孔における前記拡径された部分の周壁面148aと、底壁面148bとを有する。 As shown in FIGS. 3 to 5, the receiving portion 148 forming the receiving region 146c has a peripheral wall surface 148a of the enlarged diameter portion of the fitting hole and a bottom wall surface 148b.
 本実施形態では、周壁面148aは、第1通路146aの外周面側開口端に対向する対向面148a1を含み、対向面148a1から回転体112の回転方向Rに向って更に延びている。本実施形態では、周壁面148aは、駆動軸110の軸心Oを中心とした一定の曲率半径を有して、駆動軸110の外周面に対向して円弧面状に延びている。周壁面148aの前記曲率半径は、駆動軸110の半径より大きく、且つ、スラスト軸受133の径方向内縁部の半径より小さくなるように設定されている。そして、周壁面148aの前記曲率半径は、駆動軸110の軸心Oから油供給通路147の出口側開口147Bにおける上下方向の下端までの距離より僅かに大きくなるように設定されている(図3参照)。底壁面148bは、回転体112の一端面112bにおける出口側開口147Bの開口位置に対応した径方向の部位において、一端面112bの他の部位より凹んだ受容領域146cの底面であり、第1軸受131の他端面131bと対向している。また、底壁面148bは、回転体112の回転中において、図3に示すように出口側開口147Bと対向したり、図4に示すように出口側開口147Bと大きく離れて対向しなかったりする。出口側開口147Bは、図3に示す状態では、受容部148の周壁面148a及び底壁面148bによって覆われ、図4に示す状態では、回転体112の一端面112bによって覆われている。なお、一端壁部102bの一端面102b1と回転体112の一端面112bとの間の隙間(クランク室内領域140a)は、小さく設定することが望ましく、例えば、0.5mm~3mmの範囲の所定値に設定されている。 In the present embodiment, the peripheral wall surface 148a includes the facing surface 148a1 facing the outer peripheral surface side opening end of the first passage 146a, and further extends from the facing surface 148a1 in the rotation direction R of the rotating body 112. In the present embodiment, the peripheral wall surface 148a has a constant radius of curvature centered on the axis O of the drive shaft 110, and extends in an arc surface facing the outer peripheral surface of the drive shaft 110. The radius of curvature of the peripheral wall surface 148a is set to be larger than the radius of the drive shaft 110 and smaller than the radius of the radially inner edge portion of the thrust bearing 133. The radius of curvature of the peripheral wall surface 148a is set to be slightly larger than the distance from the axis O of the drive shaft 110 to the lower end of the outlet side opening 147B of the oil supply passage 147 in the vertical direction (FIG. 3). reference). The bottom wall surface 148b is the bottom surface of the receiving area 146c that is recessed from the other portion of the one end surface 112b at the radial portion corresponding to the opening position of the outlet side opening 147B in the one end surface 112b of the rotating body 112, and the first bearing It faces the other end surface 131 b of 131. The bottom wall surface 148b faces the outlet side opening 147B as shown in FIG. 3 or does not face the outlet side opening 147B as shown in FIG. 4 while the rotor 112 is rotating. The outlet-side opening 147B is covered with the peripheral wall surface 148a and the bottom wall surface 148b of the receiving portion 148 in the state shown in FIG. 3, and is covered with the one end surface 112b of the rotating body 112 in the state shown in FIG. The gap between the one end surface 102b1 of the one end wall portion 102b and the one end surface 112b of the rotating body 112 (the crank chamber area 140a) is preferably set small, for example, a predetermined value in the range of 0.5 mm to 3 mm. Is set to.
 次に、本実施形態に係る圧縮機100の作用について、クランク室140内の潤滑油の流れを、図3、図4及び図6を参照して説明する。図6は、受容領域146cと油供給通路147の出口側開口147Bとの回転中における位置関係を説明するための概念図である。出口側開口147Bの絶対的な位置は固定され一定であるが、回転体112の回転中において回転体112から視ると、出口側開口147Bの第1通路146aに対する角度位置は変化している。この回転体112から視た出口側開口147Bの角度位置の変化状況が図6に点線で示した丸で表されている。 Next, the operation of the compressor 100 according to the present embodiment will be described with reference to FIGS. 3, 4 and 6 regarding the flow of lubricating oil in the crank chamber 140. FIG. 6 is a conceptual diagram for explaining the positional relationship between the receiving area 146c and the outlet side opening 147B of the oil supply passage 147 during rotation. Although the absolute position of the outlet side opening 147B is fixed and constant, when viewed from the rotating body 112 during the rotation of the rotating body 112, the angular position of the outlet side opening 147B with respect to the first passage 146a changes. The state of change of the angular position of the outlet side opening 147B viewed from the rotating body 112 is represented by a circle shown by a dotted line in FIG.
 図3及び図4に示すように、圧縮機100において、回転体112及び駆動軸110の回転中において、駆動軸110内に設けられる第1通路146aの外周面側開口端の軸心O周りについての角度位置は変化するが、フロントハウジング102の一端壁部102bに開口される出口側開口147Bの前記角度位置は一定である。したがって、回転中において、第1通路146aの外周面側開口端の角度位置は、出口側開口147Bの角度位置に間欠的に一致する。そして、これらの両角度位置が一致したときに、出口側開口147Bと第1通路146aの外周面側開口端との間の距離が最短になる。このとき油供給通路147は受容領域146cを介して第1通路146aに実質的に接続し、油供給通路147の入口側開口147Aから出口側開口147Bに向かう冷媒ガスの流れが発生する。具体的には、圧縮機100が作動して、駆動軸110が回転すると、クランク室140内の潤滑油は撹拌されて、周囲に飛散する。そして、飛散した潤滑油は一端壁部102bの一端面102b1に付着する。一端面102b1における重力方向上側の部分に付着した潤滑油は、油供給通路147の入口側開口147Aから流入して入口側油通路147aを介して空間Wに流入する。空間Wに流入した潤滑油は、出口側油通路147b内を流通して出口側開口147Bから回転体112の一端面112bに向かって流出する。そして、圧縮機100では、回転体112の回転中において、受容領域146cが出口側開口147Bに正対しているか否か、及び、第1通路146aの外周面側開口端の角度位置と出口側開口147Bの角度位置との関係に応じて、例えば、以下の(1)~(3)の作用を奏する。 As shown in FIGS. 3 and 4, in the compressor 100, while the rotating body 112 and the drive shaft 110 are rotating, about the axis O of the outer peripheral surface side opening end of the first passage 146 a provided in the drive shaft 110. However, the angular position of the outlet side opening 147B opened in the one end wall portion 102b of the front housing 102 is constant. Therefore, during rotation, the angular position of the outer peripheral surface side opening end of the first passage 146a intermittently coincides with the angular position of the outlet side opening 147B. When these two angular positions match, the distance between the outlet side opening 147B and the outer peripheral surface side opening end of the first passage 146a becomes the shortest. At this time, the oil supply passage 147 is substantially connected to the first passage 146a via the receiving area 146c, and the flow of the refrigerant gas from the inlet side opening 147A of the oil supply passage 147 toward the outlet side opening 147B is generated. Specifically, when the compressor 100 operates and the drive shaft 110 rotates, the lubricating oil in the crank chamber 140 is agitated and scattered around. Then, the scattered lubricating oil adheres to the one end surface 102b1 of the one end wall portion 102b. The lubricating oil attached to the upper portion of the one end surface 102b1 in the direction of gravity flows from the inlet side opening 147A of the oil supply passage 147 and flows into the space W via the inlet side oil passage 147a. The lubricating oil that has flowed into the space W flows through the outlet-side oil passage 147b and flows out from the outlet-side opening 147B toward the one end surface 112b of the rotating body 112. In the compressor 100, whether or not the receiving area 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the angular position of the outer peripheral surface side opening end of the first passage 146a and the outlet side opening. Depending on the relationship with the angular position of 147B, for example, the following actions (1) to (3) are achieved.
 圧縮機100では、(1)図6に両矢印Aで示すように、回転体112の回転中において、受容領域146cが出口側開口147Bに正対しており、且つ、第1通路146aの外周面側開口端(隣接領域146c1)の角度位置が出口側開口147Bの角度位置に一致又は近い時(期間)では、出口側開口147Bから流出した潤滑油は隣接領域146c1の底壁面148bに衝突して受け容れられる。隣接領域146c1に受け容れられた潤滑油には、回転に伴う遠心力が作用する。しかし、隣接領域146c1に受け容れられた潤滑油は、前記遠心力に抗して、クランク室140から油供給通路147の入口側開口147Aを介して流入して出口側開口147Bから流出する冷媒ガスの流れに乗って、隣接領域146c1に開口する第1通路146aの外周面側開口端に向かって勢いよく流れ、その後、第1通路146aを介して吸入室141に排出される。(2)図6に両矢印Bで示すように、回転体112の回転中において、受容領域146cが出口側開口147Bに正対しており、且つ、第1通路146aの外周面側開口端の角度位置が出口側開口147Bの角度位置から離れているが大きくは離れていない時(期間)では、出口側開口147Bから流出した潤滑油は、受容領域146cに受け容れられる。この受容領域146cに受け容れられた潤滑油は、回転に伴う遠心力によって受容領域146cにおける径方向外側に移動し、その大半が受容領域146c内に一時的に留まる。そして、この受容領域146c内に一時的に留まっている潤滑油の大半は、一端壁部102bの一端面102b1と回転体112の一端面112bとの間のクランク室内領域140aから受容領域146cを介して第1通路146aに向かう冷媒ガスの流れに乗って、受容領域146cに開口する第1通路146aを介して吸入室141に排出される。また、受容領域146c内に一時的に留まっている潤滑油の一部は、第1通路146aには流入せず、遠心力により受容領域146c外に流出し、一端壁部102bの一端面102b1と回転体112の一端面112bとの間のクランク室内領域140aを経由してクランク室140の底部に貯留されうる。一方、(3)図6に両矢印Cで示すように、回転体112の回転中において、受容領域146cが出口側開口147Bに正対していない時(期間)では、出口側開口147Bから流出した潤滑油は、回転体112の一端面112bに衝突して一端壁部102bの一端面102b1と回転体112の一端面112bとの間のクランク室内領域140aを経由してクランク室140の底部に貯留される。 In the compressor 100, (1) as indicated by a double-headed arrow A in FIG. 6, the receiving area 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the outer peripheral surface of the first passage 146a. When the angular position of the side opening end (adjacent region 146c1) coincides with or is close to the angular position of the outlet side opening 147B (period), the lubricating oil flowing out from the outlet side opening 147B collides with the bottom wall surface 148b of the adjacent region 146c1. Acceptable. A centrifugal force associated with the rotation acts on the lubricating oil received in the adjacent region 146c1. However, the lubricating oil received in the adjacent region 146c1 resists the centrifugal force and flows in from the crank chamber 140 via the inlet side opening 147A of the oil supply passage 147 and flows out from the outlet side opening 147B. Flow vigorously toward the open end on the outer peripheral surface side of the first passage 146a opening in the adjacent region 146c1, and then discharged into the suction chamber 141 via the first passage 146a. (2) As indicated by a double-headed arrow B in FIG. 6, the receiving region 146c faces the outlet side opening 147B while the rotating body 112 is rotating, and the angle of the outer peripheral surface side opening end of the first passage 146a is increased. When the position is apart from the angular position of the outlet side opening 147B but is not largely apart (period), the lubricating oil flowing out from the outlet side opening 147B is received in the receiving area 146c. The lubricating oil received in the receiving area 146c moves radially outward in the receiving area 146c due to the centrifugal force associated with the rotation, and most of it temporarily stays in the receiving area 146c. Most of the lubricating oil temporarily retained in the receiving area 146c passes through the receiving area 146c from the crank chamber area 140a between the one end surface 102b1 of the one end wall portion 102b and the one end surface 112b of the rotating body 112. The refrigerant gas flows toward the first passage 146a and is discharged into the suction chamber 141 through the first passage 146a opening to the receiving area 146c. Further, a part of the lubricating oil temporarily staying in the receiving area 146c does not flow into the first passage 146a, but flows out of the receiving area 146c by the centrifugal force, and the one end surface 102b1 of the one end wall portion 102b is removed. It can be stored in the bottom of the crank chamber 140 via a crank chamber region 140a between the one end surface 112b of the rotating body 112 and the crank chamber 140. On the other hand, (3) as indicated by a double-headed arrow C in FIG. 6, while the rotating body 112 is rotating, when the receiving area 146c does not directly face the outlet side opening 147B (period), it flows out from the outlet side opening 147B. The lubricating oil collides with the one end surface 112b of the rotating body 112 and is stored in the bottom of the crank chamber 140 via the crank chamber area 140a between the one end surface 102b1 of the one end wall portion 102b and the one end surface 112b of the rotating body 112. To be done.
 つまり、圧縮機100においては、回転体112の回転中において、第1通路146aの外周面側開口端の角度位置が出口側開口147Bの角度位置に概ね一致するタイミングで、クランク室140内の潤滑油が吸入室141に多量に流出されるようになっている。換言すると、圧縮機100は、回転体112の回転中において、クランク室140内の潤滑油が間欠的に吸入室141に流出され、又は、回転体112の回転中において、クランク室140から吸入室141に流出する潤滑油の流量が周期的に増減するようになっている。このように、クランク室140から吸入室141に多量の潤滑油を流出させるタイミング又は期間を制限することにより、クランク室140から吸入室141に流出する潤滑油の油量を制限することができる。その結果、クランク室140内の潤滑油の油量を適正に維持することができる。 That is, in the compressor 100, during rotation of the rotating body 112, the lubrication in the crank chamber 140 is performed at the timing when the angular position of the outer peripheral surface side opening end of the first passage 146a substantially matches the angular position of the outlet side opening 147B. A large amount of oil is made to flow into the suction chamber 141. In other words, in the compressor 100, the lubricating oil in the crank chamber 140 is intermittently discharged to the suction chamber 141 while the rotating body 112 is rotating, or the compressor 100 is sucking from the crank chamber 140 while the rotating body 112 is rotating. The flow rate of lubricating oil flowing out to 141 is periodically increased and decreased. Thus, by limiting the timing or period during which a large amount of lubricating oil flows from the crank chamber 140 to the suction chamber 141, it is possible to limit the amount of lubricating oil that flows from the crank chamber 140 to the suction chamber 141. As a result, the amount of lubricating oil in the crank chamber 140 can be appropriately maintained.
 このようにして、クランク室140と吸入室141との間を連通しつつ、クランク室140内の潤滑油の油量を適正に維持することのできる圧縮機100を提供することができる。 In this way, it is possible to provide the compressor 100 capable of maintaining an appropriate amount of lubricating oil in the crank chamber 140 while communicating between the crank chamber 140 and the suction chamber 141.
 このようにクランク室140から多量の潤滑油が排出されることは制限されているが、例えば、ピストン136等に潤滑油を供給するために適量(少量)の潤滑油を吸入室141に排出する必要性がある。この点、本実施形態では、受容部148は、第1通路146aの外周面側開口端に対向する対向面148a1を含む周壁面148aを有する。これにより、受容領域146cに受け容れられた潤滑油が遠心力により受容領域146c外に飛散することを効果的に防止又は抑制することができる。その結果、油供給通路147の出口側開口147Bから流出した潤滑油を、受容領域146c内に確実に受け止め、吸入室141へ排出することができる。 Although the discharge of a large amount of lubricating oil from the crank chamber 140 is limited in this way, for example, a suitable amount (a small amount) of lubricating oil is discharged to the suction chamber 141 in order to supply the lubricating oil to the piston 136 and the like. There is a need. In this regard, in the present embodiment, the receiving portion 148 has the peripheral wall surface 148a including the facing surface 148a1 facing the opening end on the outer peripheral surface side of the first passage 146a. As a result, it is possible to effectively prevent or suppress the lubricating oil received in the receiving area 146c from scattering to the outside of the receiving area 146c due to the centrifugal force. As a result, the lubricating oil flowing out from the outlet side opening 147B of the oil supply passage 147 can be reliably received in the receiving area 146c and discharged to the suction chamber 141.
 本実施形態では、周壁面148aは、対向面148a1から回転体112の回転方向Rに向って更に延びている。これにより、周壁面148aの周方向幅を適切に設定するだけで、受容領域146cの領域を周方向に拡張でき、受容領域146cの周方向幅を調整することができる。その結果、第1通路146aに流入する潤滑油の油量を容易に調整することができる。換言すると、周壁面148aの周方向幅を調整することにより、吸入室141に流出する潤滑油の油量と、クランク室140に戻す潤滑油の油量の比率を調整することができる。なお、本実施形態では、図5に示すように、受容領域146cの周方向幅は概ね90°であるものとしたが、この周方向幅(角度)は適宜に設定することができる。受容領域146cの周方向幅を狭くするとクランク室140に戻す潤滑油の油量が少なくなる。 In the present embodiment, the peripheral wall surface 148a further extends from the facing surface 148a1 in the rotation direction R of the rotating body 112. With this, the area of the receiving area 146c can be expanded in the circumferential direction only by appropriately setting the circumferential width of the circumferential wall surface 148a, and the circumferential width of the receiving area 146c can be adjusted. As a result, the amount of lubricating oil flowing into the first passage 146a can be easily adjusted. In other words, by adjusting the circumferential width of the peripheral wall surface 148a, it is possible to adjust the ratio of the amount of lubricating oil that flows into the suction chamber 141 and the amount of lubricating oil that returns to the crank chamber 140. In the present embodiment, as shown in FIG. 5, the circumferential width of the receiving area 146c is approximately 90°, but this circumferential width (angle) can be set appropriately. When the circumferential width of the receiving area 146c is narrowed, the amount of lubricating oil returned to the crank chamber 140 decreases.
 本実施形態では、隣接領域146c1は、受容領域146cにおける回転体112の回転方向Rと反対側の端部領域に位置している。つまり、第1通路146aの外周面側開口端は、受容領域146cにおける回転体112の回転方向Rと反対側の端部領域に開口されている。これにより、受容領域146cに受け容れて保持された潤滑油を効果的に第1通路146aに導くことができる。 In the present embodiment, the adjacent region 146c1 is located in the end region of the receiving region 146c on the opposite side of the rotation direction R of the rotating body 112. That is, the outer peripheral surface side opening end of the first passage 146a is opened in the end region of the receiving region 146c opposite to the rotation direction R of the rotating body 112. As a result, the lubricating oil received and retained in the receiving area 146c can be effectively guided to the first passage 146a.
 本実施形態では、受容領域146cは、回転体112の一端面112bに凹んだ領域として形成されている。これにより、受容領域146cに受け容れた潤滑油が受容領域146c外に飛散することを効果的に防止又は抑制することができる。 In the present embodiment, the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112. As a result, it is possible to effectively prevent or suppress the lubricating oil received in the receiving area 146c from scattering outside the receiving area 146c.
 本実施形態では、受容領域146cは、駆動軸110の外周面を周方向に部分的に囲むように形成されている。これにより、油供給通路147の出口側開口147Bが、受容領域146cに正対せず、回転体112の一端面112bによって概ね閉じられる期間を、回転体112の回転中に設けることができる。その結果、クランク室140から吸入室141に流出する潤滑油の油量を大幅に低減することができる。 In the present embodiment, the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction. Accordingly, a period during which the outlet side opening 147B of the oil supply passage 147 is not directly facing the receiving area 146c and is substantially closed by the one end surface 112b of the rotating body 112 can be provided during the rotation of the rotating body 112. As a result, the amount of lubricating oil flowing from the crank chamber 140 to the suction chamber 141 can be significantly reduced.
 以下では、本実施形態に係る圧縮機100についての幾つかの変形例を図6~図11を参照して説明する。図7~図16はそれぞれ圧縮機100の変形例について説明するための図である。 In the following, some modified examples of the compressor 100 according to the present embodiment will be described with reference to FIGS. 6 to 11. 7 to 16 are views for explaining modified examples of the compressor 100, respectively.
 図7は、受容部148の受容領域146cの形状の変形例を説明するための図である。本実施形態では、受容部148の周壁面148aは、駆動軸110の軸心Oを中心とした一定の曲率半径を有して延びているものとし、受容領域146cの回転体112の径方向幅は一定であるものとしたが、これに限らない。例えば、受容領域146cの回転体112の径方向幅は、回転体112の周方向において前記端部領域(図7では隣接領域146a1)に近づくほど狭くなるように形成されてもよい。これにより、受容領域146cに受け容れて保持された潤滑油をより効果的に第1通路146aに導くことができる。 FIG. 7 is a diagram for explaining a modification of the shape of the receiving area 146c of the receiving portion 148. In the present embodiment, the peripheral wall surface 148a of the receiving portion 148 is assumed to extend with a constant radius of curvature about the axis O of the drive shaft 110, and the radial width of the rotating body 112 in the receiving region 146c. Is assumed to be constant, but is not limited to this. For example, the radial width of the rotating body 112 of the receiving region 146c may be formed so as to become narrower toward the end region (adjacent region 146a1 in FIG. 7) in the circumferential direction of the rotating body 112. As a result, the lubricating oil received and retained in the receiving area 146c can be more effectively guided to the first passage 146a.
 図8は、受容領域146cの個数の変形例を説明するための図である。本実施形態では、受容領域146cは一つであるものとしたが、これに限らず、図8に示すように、複数(図では二つ)であってもよい。この場合、第1通路146aは、駆動軸110の外周面において周方向にずらした複数の角度位置に形成され、受容領域146cは、複数の第1通路146aのそれぞれに対応して形成されている。これにより、回転体112の一回転中において、第1通路146aの外周面側開口端の軸心O周りの角度位置が出口側開口147Bの軸心O周りの角度位置に一致する回数を増やすことができる。その結果、クランク室140から吸入室141に多量の潤滑油を流出させる時又は期間を、回転体112の一回転中に複数回設けることができる。 FIG. 8 is a diagram for explaining a modified example of the number of receiving areas 146c. In the present embodiment, the number of the receiving region 146c is one, but the number is not limited to this, and may be two or more (two in the figure) as shown in FIG. In this case, the first passages 146a are formed at a plurality of angular positions offset in the circumferential direction on the outer peripheral surface of the drive shaft 110, and the receiving regions 146c are formed corresponding to the plurality of first passages 146a, respectively. .. Thereby, the number of times that the angular position of the outer peripheral surface side opening end of the first passage 146a around the axis O is coincident with the angular position of the outlet side opening 147B around the axis O during one rotation of the rotating body 112 is increased. You can As a result, it is possible to provide a plurality of times or periods during which a large amount of lubricating oil flows from the crank chamber 140 to the suction chamber 141 during one rotation of the rotating body 112.
 図9は、受容領域146cの形成範囲の変形例を説明するための図である。本実施形態では、受容領域146cは、駆動軸110の外周面を周方向に部分的に囲むように形成されるものとしたが、これに限らない。例えば、図9に示すように、受容領域146cは、駆動軸110の外周面の全周を囲むように環状に設けられてもよい。この場合、受容部148は駆動軸110の外周面と協働して回転体112の一端面112bにクランク室内領域140aに開口する円環状の開口を形成している。受容領域146cが環状に設けられる場合は、図6に両矢印Cで示した期間においても、受容領域146cが出口側開口147Bに正対している。この変形例において、圧縮機100は、図6に両矢印A及びBで示した期間では、前述した(1)及び(2)と同様の作用を奏するが、図6に両矢印Cで示した期間では、前述した(3)の作用に替えて、例えば、以下の(4)の作用を奏する。 FIG. 9 is a diagram for explaining a modification of the formation range of the receiving area 146c. In the present embodiment, the receiving area 146c is formed so as to partially surround the outer peripheral surface of the drive shaft 110 in the circumferential direction, but the present invention is not limited to this. For example, as shown in FIG. 9, the receiving region 146c may be annularly provided so as to surround the entire outer peripheral surface of the drive shaft 110. In this case, the receiving portion 148 cooperates with the outer peripheral surface of the drive shaft 110 to form an annular opening on the one end surface 112b of the rotating body 112 that opens to the crank chamber area 140a. When the receiving area 146c is provided in an annular shape, the receiving area 146c faces the outlet side opening 147B even in the period shown by the double-headed arrow C in FIG. In this modified example, the compressor 100 has the same operation as the above-described (1) and (2) in the period shown by the double-headed arrows A and B in FIG. 6, but is shown by the double-headed arrow C in FIG. In the period, for example, the following operation (4) is performed instead of the operation (3) described above.
 つまり、(4)受容領域146cが駆動軸110の外周面の周方向に広範囲に囲むように(図9では、全周を囲むように)形成されている場合には、回転体112の回転中において、受容領域146cが出口側開口147Bに正対しており、且つ、第1通路146aの外周面側開口端の角度位置が出口側開口147Bの角度位置から大きく離れている時(期間)が生じる。この時(期間)においても、受容領域146cに受け容れられた潤滑油は回転に伴う遠心力によって受容領域146cにおける径方向外側に移動し、受容領域146c内に一時的に留まる。しかし、第1通路146aの外周面側開口端の角度位置が出口側開口147Bの角度位置から大きく離れているため、出口側開口147Bから流出する冷媒ガスの流れは、第1通路146aの外周面側開口端まで到達しないか、又は、流れの勢いが弱まる。その結果、この受容領域146c内に一時的に留まった潤滑油の大半は、第1通路146aには流入せず、遠心力により受容領域146c外に流出し、クランク室内領域140aを経由してクランク室140の底部に貯留される。したがって、この変形例(図9)においても、クランク室140と吸入室141との間を連通しつつ、クランク室140内の潤滑油の油量を適正に維持することのできる圧縮機100を提供することができる。 That is, (4) when the receiving area 146c is formed so as to surround the outer peripheral surface of the drive shaft 110 in a wide range in the circumferential direction (encloses the entire circumference in FIG. 9), the rotating body 112 is rotating. , The receiving region 146c is directly opposed to the outlet side opening 147B, and the angular position of the outer peripheral surface side opening end of the first passage 146a is greatly separated from the angular position of the outlet side opening 147B (period). .. Even at this time (period), the lubricating oil received in the receiving area 146c moves radially outward in the receiving area 146c by the centrifugal force associated with the rotation and temporarily stays in the receiving area 146c. However, since the angular position of the outer peripheral surface side opening end of the first passage 146a is largely apart from the angular position of the outlet side opening 147B, the flow of the refrigerant gas flowing out from the outlet side opening 147B is the same as the outer peripheral surface of the first passage 146a. The side open end is not reached or the flow momentum is weakened. As a result, most of the lubricating oil temporarily retained in the receiving area 146c does not flow into the first passage 146a, but flows out of the receiving area 146c by the centrifugal force, and flows through the crank chamber area 140a to the crank chamber. It is stored at the bottom of the chamber 140. Therefore, also in this modification (FIG. 9), the compressor 100 capable of maintaining the proper amount of lubricating oil in the crank chamber 140 while communicating between the crank chamber 140 and the suction chamber 141 is provided. can do.
 図10は、油供給通路147の変形例を説明するための図である。本実施形態では、油供給通路147の出口側油通路147bは、前記一端から回転体112側に向って斜め下方に延び、その後、駆動軸110の軸心O側に屈曲して軸心Oと平行に延びるものとしたが、これに限らない。例えば、図10に示すように、出口側油通路147bは、前記一端から他端に亘って、回転体112側に向ってそのまま斜め下方に延びてもよい。この場合、例えば、前記他端側の部分は拡径され、この拡径された拡径部147b1の回転体112側の開口は、その上部以外の部分がスラスト軸受133の端面板133aにより塞がれている。そして、拡径部147b1の回転体112側の開口における端面板133aにより塞がれていない上部の部分が、クランク室内領域140aに開口し、油供給通路147の出口側開口147Bを構成している。これにより、出口側油通路147bの孔加工が一端壁部102bの一端面102b1側の一方向から加工となるため、フロントハウジング102の加工費が低減される。 FIG. 10 is a diagram for explaining a modified example of the oil supply passage 147. In the present embodiment, the outlet-side oil passage 147b of the oil supply passage 147 extends obliquely downward from the one end toward the rotating body 112 side, and then bends toward the axis O of the drive shaft 110 to form the axis O. Although it is assumed that they extend in parallel, the invention is not limited to this. For example, as shown in FIG. 10, the outlet side oil passage 147b may extend obliquely downward as it is toward the rotating body 112 side from the one end to the other end. In this case, for example, the portion on the other end side is expanded in diameter, and the opening of the expanded diameter enlarged portion 147b1 on the rotor 112 side is closed by the end face plate 133a of the thrust bearing 133 except the upper portion. Has been. An upper portion of the opening of the expanded diameter portion 147b1 on the rotor 112 side that is not closed by the end face plate 133a opens to the crank chamber area 140a and constitutes an outlet side opening 147B of the oil supply passage 147. .. As a result, the hole for the outlet side oil passage 147b is machined from one direction on the one end face 102b1 side of the one end wall portion 102b, so that the machining cost of the front housing 102 is reduced.
 図11は、図10に示すスラスト軸受133の変形例を説明するための図である。図10に示すように、出口側油通路147bの他端に拡径部147b1を形成した場合は、スラスト軸受133の端面板133aの径方向内縁端のうち拡径部147b1の一部を塞いでいる部分133a1は、受容領域146c側に向って斜めに屈曲させるとよい。この部分133a1により、出口側油通路147b内を流通する潤滑油が受容領域146cに効果的に案内される。 FIG. 11 is a diagram for explaining a modified example of the thrust bearing 133 shown in FIG. As shown in FIG. 10, when the expanded diameter portion 147b1 is formed at the other end of the outlet side oil passage 147b, a part of the expanded diameter portion 147b1 of the radial inner edge of the end face plate 133a of the thrust bearing 133 is blocked. It is advisable to bend the existing portion 133a1 obliquely toward the receiving area 146c side. The portion 133a1 effectively guides the lubricating oil flowing in the outlet-side oil passage 147b to the receiving area 146c.
 図12は、油供給通路147の別の変形例を説明するための図である。本実施形態では、出口側油通路147bは空間Wからクランク室内領域140aに向かって延び、油供給通路147の途上に空間Wが設けられるものとしたが、これに限らない。例えば、図12に示すように、出口側油通路147bは、一端が入口側油通路147aの途上に接続され、他端が、クランク室内領域140aに向かって軸心Oと平行に延びてもよい。この場合、出口側開口147Bは、一端壁部102bにおける駆動軸110より重力方向上側で且つスラスト軸受133の径方向内縁部の内側の部位にてクランク室内領域140aに開口する。 FIG. 12 is a diagram for explaining another modification of the oil supply passage 147. In the present embodiment, the outlet-side oil passage 147b extends from the space W toward the crank chamber region 140a, and the space W is provided on the way of the oil supply passage 147, but the present invention is not limited to this. For example, as shown in FIG. 12, the outlet side oil passage 147b may have one end connected in the middle of the inlet side oil passage 147a and the other end extending parallel to the axis O toward the crank chamber area 140a. .. In this case, the outlet-side opening 147B opens in the crank chamber region 140a at a position above the drive shaft 110 in the one end wall portion 102b in the gravity direction and inside the radial inner edge portion of the thrust bearing 133.
 図13は、油供給通路147の更に別の変形例を説明するための図である。本実施形態では、出口側油通路147bとして、フロントハウジング102の一端壁部102bに孔が形成されたが、これに限らない。例えば、第1軸受131として、図14及び図15に示すように、シェル型針状ころ軸受を採用し、図13に示すように、軸孔102dのクランク室内側開口部位に設けられた第1軸受131と、駆動軸110の外周面との間の隙間により、出口側油通路147bを構成してもよい。詳しくは、第1軸受131は、概ね円筒状の外輪シェル131cと、複数の針状ころ131dとを有する。外輪シェル131cの一端部は、径方向内側に折り曲げられ、円環状の一端面として形成され、この円環状の一端面が第1軸受131の一端面131aを構成する。同じく、外輪シェル131cの他端部は、径方向内側に折り曲げられ、円環状の他端面として形成され、この円環状の他端面が第1軸受131の他端面131bを構成する。円環状の一端面131aの内径D1は、円環状の他端面131bの内径D2より大きくなるように設定されている。また、円環状の他端面131bの内径D2は、駆動軸110の外径より僅かに大きく、円環状の他端面131bの内縁端部と駆動軸110の外周面との間の隙間は小さくなるように設定されている。そして、円環状の他端面131b(つまり、外輪シェル131cの他端部)には、周方向に所定幅を有して径方向内側に開口する概ね矩形状に切り欠かれた切り欠き部131c1が設けられている。第1軸受131は、切り欠き部131c1が重力方向下側になるように軸孔102d内に組込まれている。これにより、第1軸受131の切り欠き部131c1が油供給通路147の出口側開口147Bを構成する。このようにして、出口側油通路147b用にフロントハウジング102に孔加工を施すことなく、出口側油通路147b及び出口側開口147Bを形成することができる。 FIG. 13 is a diagram for explaining still another modified example of the oil supply passage 147. In the present embodiment, a hole is formed in the one end wall portion 102b of the front housing 102 as the outlet side oil passage 147b, but the present invention is not limited to this. For example, as the first bearing 131, as shown in FIGS. 14 and 15, a shell type needle roller bearing is adopted, and as shown in FIG. 13, the first bearing provided in the crank chamber inner opening portion of the shaft hole 102d. The outlet side oil passage 147b may be configured by a gap between the bearing 131 and the outer peripheral surface of the drive shaft 110. Specifically, the first bearing 131 has a substantially cylindrical outer ring shell 131c and a plurality of needle rollers 131d. One end portion of the outer ring shell 131c is bent inward in the radial direction and is formed as an annular one end surface, and this annular one end surface constitutes one end surface 131a of the first bearing 131. Similarly, the other end of the outer ring shell 131c is bent inward in the radial direction and is formed as a ring-shaped other end surface, and this ring-shaped other end surface constitutes the other end surface 131b of the first bearing 131. The inner diameter D1 of the annular one end surface 131a is set to be larger than the inner diameter D2 of the annular other end surface 131b. Further, the inner diameter D2 of the annular other end surface 131b is slightly larger than the outer diameter of the drive shaft 110, and the gap between the inner edge end of the annular other end surface 131b and the outer peripheral surface of the drive shaft 110 is small. Is set to. Then, the other end surface 131b having an annular shape (that is, the other end portion of the outer ring shell 131c) has a notch 131c1 which has a predetermined width in the circumferential direction and which is notched in a substantially rectangular shape and opens radially inward. It is provided. The first bearing 131 is incorporated in the shaft hole 102d so that the cutout portion 131c1 is on the lower side in the gravity direction. As a result, the cutout portion 131c1 of the first bearing 131 constitutes the outlet side opening 147B of the oil supply passage 147. In this way, the outlet-side oil passage 147b and the outlet-side opening 147B can be formed without making holes in the front housing 102 for the outlet-side oil passage 147b.
 図16は、受容領域146cの形成態様の変形例を説明するための図である。本実施形態では、受容領域146cは、回転体112の一端面112bに凹んだ領域として形成されているものとしたが、これに限らない。例えば、図16に示すように、受容部148が回転体112の一端面112bから一端壁部102bに向かって突設され、この突設させた受容部148の外周面の一部と一端面112bとにより、受容領域146cを形成してもよい。前述したように、回転体112の一端面112bとは、詳しくは、回転体112における一端壁部102b側の端面のうちの、円環状の突設部112cの内壁面と駆動軸110の外周面との間の部位である。受容部148は、この一端面112bにおける周方向の一部の角度領域(図16に斜線で示した領域)において、その外周面の一部が第1通路146aの外周面側開口端と開口して対向面148a1となるように、一端壁部102b側に向って突設されている。これにより、受容領域146cを回転体112の一端面112bに容易に形成することができる。なお、この場合は、受容部148の突設端面(一端壁部102b側の端面)と一端壁部102bの一端面102b1との間に隙間が設けられるように設定されている。 FIG. 16 is a diagram for explaining a modified example of the formation mode of the receiving area 146c. In the present embodiment, the receiving area 146c is formed as a recessed area in the one end surface 112b of the rotating body 112, but is not limited to this. For example, as shown in FIG. 16, the receiving portion 148 is provided so as to project from the one end surface 112b of the rotating body 112 toward the one end wall portion 102b, and a part of the outer peripheral surface of the projecting receiving portion 148 and the one end surface 112b. The receiving region 146c may be formed by As described above, the one end surface 112b of the rotating body 112 is, more specifically, the inner wall surface of the annular projecting portion 112c and the outer peripheral surface of the drive shaft 110 among the end surfaces of the rotating body 112 on the one end wall portion 102b side. It is a part between and. In the receiving portion 148, a part of the outer peripheral surface thereof opens to the outer peripheral surface side opening end of the first passage 146a in a part of the angular area in the circumferential direction of the one end surface 112b (area indicated by diagonal lines in FIG. 16). So as to be the facing surface 148a1 and project toward the one end wall portion 102b side. Accordingly, the receiving area 146c can be easily formed on the one end surface 112b of the rotating body 112. In this case, a gap is provided between the projecting end surface of the receiving portion 148 (the end surface on the one end wall portion 102b side) and the one end surface 102b1 of the one end wall portion 102b.
 なお、本実施形態では、回転体112とフロントハウジング102の一端壁部102bとの間にスラスト軸受133を有するものとしたが、この部位にスラスト軸受133を設けない構成であってもよい。また、第1通路146aは、リンク機構120に対応する軸心O周りの角度位置に開口しているが(図3参照)、これに限らず、潤滑油の排出性を考慮して適宜の角度位置に開口させることができる。そして、圧縮機100は、斜板式の吐出容量可変の可変容量圧縮機の場合を一例に挙げて説明したが、これに限らず、揺動板式の可変容量圧縮機でもよく、また、吐出容量固定の固定容量タイプの圧縮機であってもよい。また、駆動軸110の回転動力の動力源はモータ等の適宜の動力源を適用できる。 In the present embodiment, the thrust bearing 133 is provided between the rotating body 112 and the one end wall portion 102b of the front housing 102, but the thrust bearing 133 may not be provided at this portion. Further, the first passage 146a opens at an angular position around the axis O corresponding to the link mechanism 120 (see FIG. 3), but the first passage 146a is not limited to this, and an appropriate angle in consideration of the drainage property of the lubricating oil. The position can be opened. The compressor 100 is described as an example of a swash plate type variable displacement compressor with variable discharge capacity, but the compressor 100 is not limited to this, and may be an oscillating plate type variable capacity compressor, or a fixed discharge capacity. It may be a fixed capacity type compressor. Further, as the power source of the rotary power of the drive shaft 110, an appropriate power source such as a motor can be applied.
 以上、本発明の実施形態及びその変形例について説明したが、本発明は上述の実施形態や変形例に限定されるものではなく、本発明の技術的思想に基づいて更なる変形や変更が可能である。 Although the embodiment of the present invention and the modified example thereof have been described above, the present invention is not limited to the above-described embodiment and the modified example, and further modifications and changes can be made based on the technical idea of the present invention. Is.
 100…圧縮機、101…シリンダブロック(ハウジング、クランク室形成壁、他端壁部)、101a…シリンダボア、102…フロントハウジング(ハウジング、クランク室形成壁)、102b…一端壁部、102b1…一端面、102d…軸孔、104…シリンダヘッド(ハウジング)、110…駆動軸、112…回転体、112b…一端面、131…第1軸受(ラジアル軸受)、136…ピストン、140…クランク室、140a…クランク室内領域、141…吸入室、142…吐出室、146…排出通路、146a…第1通路、146b…第2通路、146c…受容領域、146c1…隣接領域、147…油供給通路、147A…入口側開口、147B…出口側開口、148…受容部、148a…周壁面、148a1…対向面、O…軸心、R…回転方向 Reference numeral 100... Compressor, 101... Cylinder block (housing, crank chamber forming wall, other end wall portion), 101a... Cylinder bore, 102... Front housing (housing, crank chamber forming wall), 102b... One end wall portion, 102b1... One end surface , 102d... Shaft hole, 104... Cylinder head (housing), 110... Drive shaft, 112... Rotating body, 112b... One end face, 131... First bearing (radial bearing), 136... Piston, 140... Crank chamber, 140a... Crank chamber region, 141... Suction chamber, 142... Discharge chamber, 146... Discharge passage, 146a... First passage, 146b... Second passage, 146c... Receiving region, 146c1... Adjacent region, 147... Oil supply passage, 147A... Inlet Side opening, 147B... Exit side opening, 148... Receptor, 148a... Peripheral wall surface, 148a1... Opposing surface, O... Shaft center, R... Rotation direction

Claims (9)

  1.  圧縮前の冷媒が導かれる吸入室と、吐出室と、クランク室とを有するハウジングと、
     前記クランク室を横断する駆動軸であって、一端部が前記ハウジングのクランク室形成壁における駆動軸延伸方向の一端壁部に開口される軸孔内を延びる前記駆動軸と、
     前記軸孔内に設けられ、前記駆動軸を回転可能に支持するラジアル軸受と、
     前記駆動軸に固定され、前記クランク室内において前記一端壁部に対向する円板状の回転体と、
     前記クランク室形成壁の他端壁部に形成されるシリンダボア内に収容されるピストンと、
     前記クランク室と前記吸入室との間を連通する排出通路と、
     前記クランク室内の潤滑油を少なくとも前記ラジアル軸受に導くための油供給通路と、
     を含み、前記駆動軸の回転に伴う前記ピストンの往復運動によって前記吸入室から前記シリンダボア内に吸入された冷媒が圧縮されて前記吐出室に吐出される、圧縮機であって、
     前記排出通路は、前記駆動軸の前記一端部の外周面における周方向の所定角度位置から軸内に延びる第1通路と該第1通路に連続して前記駆動軸の他端部側に延びる第2通路とを経由して、前記クランク室と前記吸入室との間を連通し、
     前記油供給通路は、前記一端壁部に設けられと共に、前記一端壁部における前記駆動軸の軸心より重力方向上側の部位にて前記クランク室に開口する入口側開口と、前記一端壁部における前記入口側開口より重力方向下側の部位であり且つ前記駆動軸の軸心周りの所定角度の部位にて前記一端壁部の一端面と前記回転体の一端面との間のクランク室内領域に開口する出口側開口とを有し、
     前記クランク室から前記入口側開口を介して前記油供給通路内に流入した潤滑油は、前記出口側開口から前記回転体の前記一端面に向かって流出する構成とし、
     前記出口側開口から流出した前記潤滑油を受け容れるための受容領域を形成する受容部であって、前記回転体の前記一端面における前記出口側開口の開口位置に対応した径方向の部位であり且つ少なくとも前記第1通路の外周面側開口端に隣接する隣接領域を含む部位に前記受容領域を形成する前記受容部を、
     含み、
     前記第1通路の前記外周面側開口端は、前記隣接領域に開口している、圧縮機。
    A housing having a suction chamber into which the refrigerant before compression is guided, a discharge chamber, and a crank chamber;
    A drive shaft that traverses the crank chamber, the one end portion extending in a shaft hole that is opened in one end wall portion of the crank chamber forming wall of the housing in the drive shaft extending direction,
    A radial bearing provided in the shaft hole and rotatably supporting the drive shaft,
    A disc-shaped rotating body that is fixed to the drive shaft and faces the one end wall portion in the crank chamber;
    A piston housed in a cylinder bore formed in the other end wall portion of the crank chamber forming wall,
    A discharge passage that communicates between the crank chamber and the suction chamber,
    An oil supply passage for guiding the lubricating oil in the crank chamber to at least the radial bearing;
    A compressor, comprising: the refrigerant sucked from the suction chamber into the cylinder bore by the reciprocating motion of the piston in accordance with the rotation of the drive shaft to be discharged to the discharge chamber,
    The discharge passage has a first passage extending inward from a predetermined angular position in the circumferential direction on the outer peripheral surface of the one end of the drive shaft, and a first passage extending continuously from the first passage to the other end of the drive shaft. Via the two passages, to communicate between the crank chamber and the suction chamber,
    The oil supply passage is provided in the one end wall portion, and an inlet side opening that opens into the crank chamber at a portion of the one end wall portion above the axis of the drive shaft in the direction of gravity is provided. In a crank chamber region between one end face of the one end wall portion and one end face of the rotating body, which is a portion below the inlet side opening in the direction of gravity and at a predetermined angle around the axis of the drive shaft. And an outlet side opening that opens,
    Lubricating oil that has flowed into the oil supply passage from the crank chamber through the inlet side opening is configured to flow out from the outlet side opening toward the one end surface of the rotating body,
    A receiving portion that forms a receiving region for receiving the lubricating oil that has flowed out from the outlet side opening, and is a radial portion corresponding to the opening position of the outlet side opening on the one end surface of the rotating body. And at least the receiving portion forming the receiving area at a portion including an adjacent area adjacent to the outer peripheral surface side opening end of the first passage,
    Including,
    The compressor, wherein the outer peripheral surface side opening end of the first passage is open to the adjacent region.
  2.  前記受容部は、前記第1通路の前記外周面側開口端に対向する対向面を含む周壁面を有する、請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the receiving portion has a peripheral wall surface including a facing surface facing the outer peripheral surface side opening end of the first passage.
  3.  前記周壁面は、前記対向面から前記回転体の回転方向に向って更に延びている、請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the peripheral wall surface further extends from the facing surface in a rotation direction of the rotating body.
  4.  前記受容領域は、前記駆動軸の前記外周面を周方向に部分的に囲むように形成されている、請求項1~3のいずれか一つに記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the receiving area is formed so as to partially surround the outer peripheral surface of the drive shaft in a circumferential direction.
  5.  前記隣接領域は、前記受容領域における前記回転体の回転方向と反対側の端部領域に位置している、請求項4に記載の圧縮機。 The compressor according to claim 4, wherein the adjacent region is located in an end region of the receiving region opposite to a rotation direction of the rotating body.
  6.  前記受容領域の前記回転体の径方向幅は、前記回転体の周方向において前記端部領域に近づくほど狭くなるように形成されている、請求項5に記載の圧縮機。 The compressor according to claim 5, wherein the radial width of the rotating body of the receiving area is formed so as to become narrower toward the end area in the circumferential direction of the rotating body.
  7.  前記第1通路は、前記駆動軸の前記外周面において周方向にずらした複数の角度位置に形成され、
     前記受容領域は、複数の前記第1通路のそれぞれに対応して形成されている、請求項1~6のいずれか一つに記載の圧縮機。
    The first passage is formed at a plurality of angular positions offset in the circumferential direction on the outer peripheral surface of the drive shaft,
    The compressor according to any one of claims 1 to 6, wherein the receiving area is formed corresponding to each of the plurality of first passages.
  8.  前記受容領域は、前記回転体の前記一端面に凹んだ領域として形成されている、請求項1~7のいずれか一つに記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the receiving area is formed as a recessed area in the one end surface of the rotating body.
  9.  前記受容部は、前記回転体の前記一端面から前記一端壁部に向かって突設されている、請求項1~7のいずれか一つに記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the receiving portion is provided so as to project from the one end surface of the rotating body toward the one end wall portion.
PCT/JP2020/000619 2019-02-06 2020-01-10 Compressor WO2020162101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080009749.6A CN113272555B (en) 2019-02-06 2020-01-10 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-019814 2019-02-06
JP2019019814A JP7213709B2 (en) 2019-02-06 2019-02-06 compressor

Publications (1)

Publication Number Publication Date
WO2020162101A1 true WO2020162101A1 (en) 2020-08-13

Family

ID=71947807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000619 WO2020162101A1 (en) 2019-02-06 2020-01-10 Compressor

Country Status (3)

Country Link
JP (1) JP7213709B2 (en)
CN (1) CN113272555B (en)
WO (1) WO2020162101A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145827A (en) * 2016-02-15 2017-08-24 株式会社豊田自動織機 Variable displacement swash plate compressor
WO2018207724A1 (en) * 2017-05-11 2018-11-15 株式会社ヴァレオジャパン Compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10281060A (en) * 1996-12-10 1998-10-20 Toyota Autom Loom Works Ltd Variable displacement compressor
JP2002005010A (en) * 2000-06-19 2002-01-09 Toyota Industries Corp Variable displacement compressor
JP2001355570A (en) * 2000-06-14 2001-12-26 Toyota Industries Corp Piston type variable displacement compressor
JP2002013474A (en) * 2000-06-28 2002-01-18 Toyota Industries Corp Variable displacement compressor
JP4399994B2 (en) * 2000-11-17 2010-01-20 株式会社豊田自動織機 Variable capacity compressor
JP3855940B2 (en) * 2003-02-04 2006-12-13 株式会社豊田自動織機 Lubrication structure in a compressor
JP2006307700A (en) * 2005-04-27 2006-11-09 Toyota Industries Corp Compressor
JP5140402B2 (en) * 2007-12-06 2013-02-06 カルソニックカンセイ株式会社 Swash plate compressor
JP4924464B2 (en) * 2008-02-05 2012-04-25 株式会社豊田自動織機 Swash plate compressor
JP5999622B2 (en) * 2012-02-06 2016-09-28 サンデンホールディングス株式会社 Variable capacity compressor
EP3176433B1 (en) * 2014-06-27 2020-09-02 Valeo Japan Co., Ltd. Variable displacement swash plate compressor
JP6498405B2 (en) * 2014-09-24 2019-04-10 株式会社ヴァレオジャパン Compressor
JP2017160818A (en) * 2016-03-08 2017-09-14 株式会社豊田自動織機 Compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145827A (en) * 2016-02-15 2017-08-24 株式会社豊田自動織機 Variable displacement swash plate compressor
WO2018207724A1 (en) * 2017-05-11 2018-11-15 株式会社ヴァレオジャパン Compressor

Also Published As

Publication number Publication date
CN113272555B (en) 2022-12-20
JP2020125746A (en) 2020-08-20
JP7213709B2 (en) 2023-01-27
CN113272555A (en) 2021-08-17

Similar Documents

Publication Publication Date Title
KR100428822B1 (en) variable capacity type compressor
JPWO2019159998A1 (en) Capacity control valve
WO2020162101A1 (en) Compressor
WO2020158344A1 (en) Compressor
JPWO2020013155A1 (en) Capacity control valve
US20150252797A1 (en) Variable-Capacity Compressor
WO2021241477A1 (en) Capacity control valve
JP7185560B2 (en) variable capacity compressor
EP1983191B1 (en) Variable displacement-type clutchless compressor
WO2020204136A1 (en) Capacity control valve
JP6097051B2 (en) Compressor
WO2020189604A1 (en) Variable capacity compressor
JPWO2020013156A1 (en) Capacity control valve
WO2022009795A1 (en) Capacity control valve
JP2002005010A (en) Variable displacement compressor
WO2020004168A1 (en) Variable-capacity compressor
WO2021241478A1 (en) Capacity control valve
JP7048177B2 (en) Variable capacity compressor
KR970004812B1 (en) Clutchless mechanism in a variable capacity single sided piston swash plate type compressor
WO2020026699A1 (en) Variable capacity compressor
JP2021017884A (en) Capacity control valve
JP4529868B2 (en) One side swash plate type variable capacity compressor
JP2021038703A (en) Reciprocation type compressor
WO2014073668A1 (en) Compressor
WO2003060325A1 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752268

Country of ref document: EP

Kind code of ref document: A1