WO2020162098A1 - Method for generating metallic material corrosion level prediction model, metallic material corrosion level predicting method, metallic material selecting method, metallic material corrosion level prediction program, and metallic material corrosion level prediction device - Google Patents
Method for generating metallic material corrosion level prediction model, metallic material corrosion level predicting method, metallic material selecting method, metallic material corrosion level prediction program, and metallic material corrosion level prediction device Download PDFInfo
- Publication number
- WO2020162098A1 WO2020162098A1 PCT/JP2020/000519 JP2020000519W WO2020162098A1 WO 2020162098 A1 WO2020162098 A1 WO 2020162098A1 JP 2020000519 W JP2020000519 W JP 2020000519W WO 2020162098 A1 WO2020162098 A1 WO 2020162098A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal material
- corrosion
- amount
- predicting
- prediction model
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Definitions
- the present invention relates to a method for generating a metal material corrosion amount prediction model, a metal material corrosion amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device.
- Non-Patent Document 1 and Patent Documents 1 to 5 an empirical formula is constructed to determine the amount of corrosion.
- Non-Patent Document 2 predicts the amount of corrosion using multiple regression analysis.
- Patent Document 5 proposes a method of predicting a corrosion amount of a steel material after one year and deriving a damping parameter from the corrosion amount to predict a long-term corrosion amount.
- the method proposed in Patent Document 5 when deriving the attenuation parameter, it is not predicted using the actual results of the corrosion amount for a year or longer, and the prediction model is calculated using an empirical formula and manual adjustment. I'm building. Therefore, problems remain in the utilization of the long-term corrosion amount record and the maintenance as described above.
- the method proposed in Patent Document 5 does not consider the SO X concentration that affects corrosion when predicting the amount of corrosion.
- SO X dissolves in the water film on the metal surface, acidifies the water film, and produces sulfite ion HSO 3 ⁇ . Then, this acidification promotes the anode reaction in which the metal is dissolved. Further, the sulfite ion HSO 3 ⁇ also reacts with an oxidizing agent such as NO 2 or O 3 to become SO 4 2 ⁇ , which promotes corrosion. As described above, the SO X concentration has a great influence on the corrosion rate, and is therefore important for predicting the amount of corrosion.
- the present invention has been made in view of the above, has a high prediction accuracy, and a method of generating a corrosion amount prediction model of a metal material capable of performing long-term corrosion prediction in an atmospheric corrosion environment, corrosion of a metal material
- An object of the present invention is to provide an amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device.
- a method of generating a corrosion amount prediction model of a metal material according to the present invention is a plurality of environmental parameters indicating a usage environment of the metal material, and a corrosion amount of the metal material.
- the learning step generates a first prediction model for predicting a corrosion amount of the metal material for a predetermined period set in advance.
- the method may include a first learning step and a second learning step of generating a second prediction model that predicts a damping parameter indicating a decay of the corrosion rate of the metallic material for a period exceeding the predetermined period.
- the method for generating a corrosion amount prediction model of a metal material according to the present invention in the above invention, as the machine learning method, a learning method including decision tree regression, random forest, neural network, support vector regression may be used. Good.
- the corrosion amount prediction method of the metal material includes a prediction step of predicting a corrosion amount of the metal material by inputting a plurality of environmental parameters indicating a usage environment of the metal material to be predicted and a usage period of the metal material.
- the corrosion amount prediction method of the metal material according to the present invention is the first prediction model generated by the generation method of the corrosion amount prediction model of the metal material described above, A plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a predetermined predetermined period as an input, a first prediction step of predicting the corrosion amount of the metal material in the predetermined period, and the above
- the second prediction model generated by the method of generating a corrosion amount prediction model of the metal material a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a period exceeding the predetermined period are input.
- the corrosion amount prediction method of the metal material according to the present invention in the above invention, the plurality of environmental parameters, temperature, relative humidity, absolute humidity, at least one of the wet time and rainfall, flying salt content, At least one of the SO X concentration and the NO X concentration may be included.
- the metal material selection method uses the above-described metal material corrosion amount prediction method to select a metal material according to the usage environment.
- the corrosion amount prediction program of the metal material according to the present invention, a computer, by the prediction model generated by the generation method of the corrosion amount prediction model of the metal material, By inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and the usage period of the metal material, the function is performed as a prediction means for predicting the corrosion amount of the metal material.
- a metal material corrosion amount prediction program causes a computer to perform a first prediction generated by the method for generating a metal material corrosion amount prediction model described above.
- a plurality of environmental parameters indicating the use environment of the metal material to predict the amount of corrosion, and a predetermined predetermined period as an input
- the first prediction means for predicting the corrosion amount of the metal material of the predetermined period
- the second prediction model generated by the method of generating a corrosion amount prediction model of the metal material, a plurality of environmental parameters indicating the usage environment of the metal material to predict the corrosion amount, and a period exceeding the predetermined period.
- a second predicting means for predicting a damping parameter indicating the decay of the corrosion rate of the metal material in a period exceeding the predetermined period, a corrosion amount of the metal material in the predetermined period, and based on the decay parameter.
- Third prediction means for predicting the amount of corrosion of the metal material in a period exceeding the predetermined period.
- a corrosion amount prediction device for a metal material a plurality of environmental parameters indicating the usage environment of the metal material, the corrosion amount of the metal material, the metal Using the data including the usage period of the material, by machine learning, learning means for generating a prediction model for predicting the corrosion amount of the metal material according to the usage period, and by the prediction model, to predict the corrosion amount
- a plurality of environmental parameters indicating a usage environment of the metal material and a usage period of the metal material are input, and a prediction unit that predicts a corrosion amount of the metal material is provided.
- the apparatus for predicting the amount of corrosion of a metallic material is characterized in that the learning means generates a first prediction model for predicting an amount of corrosion of the metallic material for a predetermined period set in advance.
- Learning means, and a second learning means for generating a second prediction model for predicting a damping parameter indicating the decay of the corrosion rate of the metal material for a period exceeding the predetermined period the prediction means, With the first prediction model, a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a predetermined predetermined period are input, and the corrosion amount of the metal material during the predetermined period is predicted.
- One prediction means by the second prediction model, a plurality of environmental parameters indicating the use environment of the metal material to predict the amount of corrosion, and a period exceeding the predetermined period as an input, a period exceeding the predetermined period Second prediction means for predicting a damping parameter indicating the decay of the corrosion rate of the metallic material, the amount of corrosion of the metallic material in the predetermined period, and the damping parameter, based on the decay parameter,
- the third prediction means for predicting the corrosion amount of the metal material may be provided.
- the present invention it is possible to accurately predict long-term corrosion of a metallic material in an atmospheric corrosive environment, and it is possible to select an optimal metallic material according to the usage environment.
- FIG. 1 is a block diagram showing a schematic configuration of a metal material corrosion amount prediction device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing a flow of a method for generating a corrosion amount prediction model for metallic materials according to the first embodiment of the present invention.
- FIG. 3 is a flowchart showing a flow of a method for predicting a corrosion amount of a metal material according to the first embodiment of the present invention.
- FIG. 4 is an example of the method for predicting the amount of corrosion of a metallic material according to the first embodiment of the present invention, and is a graph showing an error between the predicted value and the actual value of the amount of corrosion of the metallic material.
- FIG. 1 is a block diagram showing a schematic configuration of a metal material corrosion amount prediction device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing a flow of a method for generating a corrosion amount prediction model for metallic materials according to the first embodiment of the present invention.
- FIG. 3 is a
- FIG. 5 is a flowchart showing the flow of generation of a corrosion amount prediction model in the method for generating a corrosion amount prediction model of a metal material according to the second embodiment of the present invention.
- FIG. 6 is a flowchart showing a flow of generation of a damping parameter prediction model in the method of generating a corrosion amount prediction model of a metal material according to the second embodiment of the present invention.
- FIG. 7 is a flowchart which shows the flow of the corrosion amount prediction method of the metallic material which concerns on Embodiment 2 of this invention.
- FIG. 8 is an example of the method for predicting the amount of corrosion of a metal material according to the second embodiment of the present invention, and is a graph showing the error between the predicted value and the actual value of the amount of corrosion of the metal material.
- the corrosion amount prediction device 1 includes an input unit 10, an actual result database (actual result DB) 20, a calculation unit 30, and a display unit 40.
- the input unit 10 is an input means for the arithmetic unit 30 and is realized by an input device such as a keyboard, a mouse pointer, a ten-key pad, or the like.
- the actual result database 20 stores actual result data regarding the amount of corrosion of metal materials (for example, steel materials) for each steel type.
- the actual data regarding the amount of corrosion includes a period of use of the metal material, the amount of corrosion of the metal material during the period of use, and a plurality of environmental parameters (for example, annual average) indicating the environment of use of the metal material.
- examples of the above-mentioned "plurality of environmental parameters" include temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall amount, flying salt content, SO X concentration and NO X concentration.
- the actual data of these environmental parameters is, for example, annual average data.
- the arithmetic unit 30 is realized by, for example, a processor including a CPU (Central Processing Unit) and the like, and a memory (main storage unit) including a RAM (Random Access Memory) and a ROM (Read Only Memory).
- a processor including a CPU (Central Processing Unit) and the like
- a memory main storage unit
- RAM Random Access Memory
- ROM Read Only Memory
- the arithmetic unit 30 realizes a function that matches a predetermined purpose by loading and executing a program in the work area of the main storage unit and controlling each component etc. through the execution of the program.
- the arithmetic unit 30 functions as a learning unit (learning unit) 31 and a corrosion amount prediction unit (prediction unit) 32 through the execution of the program.
- learning unit learning unit
- prediction unit corrosion amount prediction unit
- the functions of the learning unit 31 and the corrosion amount prediction unit 32 are realized by one calculation unit ( ⁇ computer), but the learning unit 31 and the corrosion amount prediction are performed by two calculation units ( ⁇ computer). You may implement
- the learning unit 31 uses actual data including a plurality of environmental parameters, the corrosion amount of the metal material, and the usage period of the metal material, and uses a machine learning to predict the corrosion amount of the metal material according to the usage period by using the corrosion amount. Generate a predictive model. A specific method of generating the corrosion amount prediction model in the learning unit 31 will be described later (see “Method of generating corrosion amount prediction model" described later).
- the corrosion amount prediction unit 32 predicts the corrosion amount of the metal material by using the corrosion amount prediction model generated by the learning unit 31 as an input with the environmental parameter of the metal material whose corrosion amount is to be predicted and the usage period of the metal material. .. A specific method of predicting the corrosion amount in the corrosion amount prediction unit 32 will be described later (see “Corrosion amount prediction method" described later).
- the display unit 40 is realized by a display device such as an LCD display or a CRT display, and displays the prediction result of the corrosion amount of the metal material, for example, based on the display signal input from the calculation unit 30.
- Method of generating corrosion prediction model A method for generating a corrosion amount prediction model for a metal material according to the first embodiment of the present invention will be described with reference to FIG.
- the method of generating the corrosion amount prediction model is implemented mainly by the learning unit 31 of the calculation unit 30. It should be noted that the generation of the corrosion amount prediction model is performed in advance before the corrosion amount prediction described below is performed.
- the environmental parameter and the usage period of the metal material are selected (step S11).
- the environment used as an explanatory variable when generating a corrosion amount prediction model from among temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall, flying salt content, SO X concentration and NO X concentration Select parameters.
- step S11 all the environmental parameters may be selected and a corrosion amount prediction model considering all the environmental parameters may be generated.
- some environmental parameters exhibit multicollinearity, such as the relationship between the amount of incoming salt and the SO X concentration. Therefore, in step S13 in the subsequent stage, when a corrosion amount prediction model is generated using a regression model that cannot eliminate the problem of multicollinearity between environmental parameters, in this step, the correlation between environmental parameters is checked in advance and a strong correlation is established. It is preferable to select the environmental parameters so that the environmental parameters that they have are not included.
- the learning unit 31 acquires the corrosion amount of the metal material in the use period selected in step S11 and its environmental parameter from the performance database (step S12).
- the learning unit 31 generates a corrosion amount prediction model by a regression model that can be fitted to the non-linearity of data (specifically, environmental parameter) (step S13), and ends this flow. Since the environmental parameter has non-linearity, the prediction accuracy cannot be improved by the multiple regression analysis used in Non-Patent Document 2, for example. Therefore, in this step, a corrosion amount prediction model that predicts the corrosion amount of the metal material according to the period of use is generated by machine learning using a regression model capable of footing to non-linearity. That is, in this step, a corrosion amount prediction model is generated by learning the regression model by inputting the usage period of the metal material and the environmental parameter in the usage period and using the corrosion amount of the metal material as the output in the usage period. ..
- regression models machine learning methods
- Corrosion amount prediction method A method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG.
- the corrosion amount prediction method is implemented mainly by the corrosion amount prediction unit 32 of the calculation unit 30.
- the corrosion amount prediction method the corrosion amount of the metal material in an arbitrary period of use is predicted by using the corrosion amount prediction model generated by the above-described corrosion amount prediction model generation method.
- the corrosion amount prediction unit 32 calculates a predicted value of the corrosion amount in the environmental parameter to be predicted from the corrosion amount prediction model generated by the above-described method of generating the corrosion amount prediction model (step S21), and End the flow. Then, the corrosion amount prediction unit 32 displays the corrosion amount prediction result on the display unit 40.
- the corrosion amount prediction model is used to predict the corrosion amount of the metal material by inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and the usage period of the metal material. That is, in this step, by inputting the period of use of the metal material and the environmental parameter in the period of use to the corrosion amount prediction model, the amount of corrosion of the metal material in the period of use and the environmental parameter is obtained as an output. Further, in this step, the corrosion amount in the arbitrary usage period can be obtained by inputting the arbitrary usage period into the corrosion amount prediction model.
- FIG. 1 An example of the method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG.
- This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge.
- (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above.
- (b) to (d) of the same figure are examples of the present invention.
- a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
- the objective variable is predicted using a rule expressed in a tree format based on the value of the explanatory variable.
- this rule include “corrosion amount y when the temperature is x° C. or higher, and corrosion amount z when the temperature is lower than x° C.”.
- the amount of corrosion of a metal material increases as the temperature rises, but when the temperature rises to some extent, the amount of corrosion decreases. Therefore, by using such a rule for prediction, it is possible to improve the prediction accuracy as compared with linear regression such as multiple regression.
- the decision tree regression has a feature that the prediction process is very easy to understand because the prediction is performed using rules. In the verification (see FIG. 4B) in this embodiment, the depth of the decision tree is “6”.
- support vector regression non-linear transformation of explanatory variables is performed by the kernel to create new variables, and a prediction model is constructed using the new variables.
- Support vector regression is characterized in that a noise-resistant model can be created by ignoring errors smaller than a predetermined value when constructing a prediction model.
- the amount of corrosion of a metallic material has a factor that cannot be explained only by the explanatory variables, and the environmental parameters of the same explanatory variable have slightly different amounts of corrosion. Therefore, it is possible to improve the prediction accuracy by applying the support vector regression, which is a noise-resistant regression model that allows such an error, in advance.
- a Gaussian kernel is used for the nonlinear conversion.
- Random forest creates multiple decision trees by randomly omitting samples. Then, prediction is performed by taking the average of the prediction results of each decision tree. By combining a plurality of decision trees in this way, it is more resistant to data noise than the decision tree alone, and the prediction accuracy is improved.
- 500 decision trees are created and two samples are randomly omitted for each decision tree. The depth of each decision tree is "6".
- a regression model was trained to generate a corrosion amount prediction model.
- the average amount of incoming salt and the average SO X concentration are data on a daily basis as described above, but the value used for prediction is the average value in a predetermined period, such as the annual average value of each value.
- the annual average value is used.
- a corrosion amount prediction model is generated by machine learning, and the corrosion amount prediction is performed.
- the corrosion amount prediction method it is possible to accurately predict long-term corrosion of metallic materials in an atmospheric corrosive environment.
- the corrosion amount prediction method according to the present embodiment the corrosion amount of the metal material during an arbitrary use period can be predicted with a simple configuration and process. Further, by using the corrosion amount prediction method according to the present embodiment, it becomes possible to select an optimum metal material according to the usage environment.
- Embodiment 2 (Corrosion amount prediction device) The configuration of the metal material corrosion amount prediction device according to the second embodiment of the present invention will be described. As shown in FIG. 1, the corrosion amount prediction device 1A according to the present embodiment has the same hardware configuration as the corrosion amount prediction device 1 described above, and is different only in the processing performed by the calculation unit 30. Therefore, description other than the processing in the arithmetic unit 30 will be omitted.
- the learning unit 31 generates two prediction models by machine learning using a regression model.
- the first prediction model is a corrosion amount prediction model that predicts the corrosion amount of a metal material in a predetermined period (for example, one year)
- the second prediction model is the above-described predetermined amount.
- It is a damping parameter prediction model that predicts a damping parameter that indicates the decay of the corrosion rate of a metallic material for a period exceeding the period (for example, more than one year).
- the learning unit 31 generates a corrosion amount prediction model and a decay parameter prediction model by machine learning using actual data including a plurality of environmental parameters, the corrosion amount of the metal material, and the usage period of the metal material.
- a specific method of generating the two prediction models in the learning unit 31 will be described later (see “Method of generating corrosion amount prediction model" described later).
- the corrosion amount prediction unit 32 uses the corrosion amount prediction model (first prediction model) generated by the learning unit 31 to determine the environmental parameter of the metal material whose corrosion amount is to be predicted and the usage period (for example, one year) of the metal material. Is input to predict the corrosion amount of the metal material for a predetermined period.
- the corrosion amount prediction unit 32 uses the attenuation parameter prediction model (second prediction model) generated by the learning unit 31 and the environmental parameter of the metal material whose corrosion amount is to be predicted, and a period exceeding a predetermined period (for example, one year). (Above) is input to predict the decay parameter of the corrosion amount of the metallic material over a predetermined period. Then, the corrosion amount prediction unit 32 predicts the corrosion amount of the metal material in the period exceeding the predetermined period based on the corrosion amount of the metal material in the predetermined period and the attenuation parameter. A specific method of predicting the corrosion amount in the corrosion amount prediction unit 32 will be described later (see “Corrosion amount prediction method" described later).
- Method of generating corrosion prediction model A method of generating a corrosion prediction model for metallic materials according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6.
- the method of generating the corrosion amount prediction model is implemented mainly by the learning unit 31 of the calculation unit 30.
- the generation of a corrosion amount prediction model that predicts the corrosion amount of the metal material in a predetermined period (for example, one year) (see FIG. 5) and the corrosion of the metal material in the period exceeding the predetermined period are performed.
- the generation of the attenuation parameter of the amount is performed, but the generation of the attenuation parameter may be performed only when it is desired to predict the corrosion amount of the metal material over a predetermined period. It may not be performed when only predicting. Further, the generation of the corrosion amount prediction model and the generation of the deceleration parameter are performed in advance before the corrosion amount prediction described below is performed.
- a corrosion amount prediction model is generated from the temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall, flying salt content, SO X concentration, and NO X concentration.
- An environment parameter used as an explanatory variable is selected (step S31). The method of selecting the environment parameter in this step is the same as that in step S11 (see FIG. 2) described above, and thus the description thereof is omitted.
- the learning unit 31 acquires the corrosion amount of the metal material for a predetermined period and the environmental parameter thereof from the performance database (step S32).
- the learning unit 31 generates a corrosion amount prediction model by a regression model that can be fitted to the nonlinearity of the data (specifically, environmental parameter) (step S33), and ends this flow. Since the method of generating the corrosion amount prediction model in this step is the same as that in step S13 (see FIG. 2) described above, the description thereof will be omitted.
- the learning unit 31 determines the amount of corrosion of the metal material and its environmental parameter for a predetermined period, and the amount of corrosion of the metal material and its environmental parameter for a period exceeding the predetermined period. Is acquired from the performance database (step S41).
- the learning unit 31 generates a damping parameter prediction model by a regression model that can be fitted to the non-linearity of data (specifically, environmental parameter) (step S42), and ends this flow.
- Non-Patent Document 1 it is known that the corrosion amount of a metal material in an atmospheric corrosive environment is expressed by the following formula (1) as an empirical formula.
- Y is the amount of corrosion of the metal material after X years of use
- A is the amount of corrosion of the metal material for one year
- X is the period of use of the metal material
- B is formed by corrosion. It is a damping parameter indicating the decay of corrosion rate due to the effect of the rust layer.
- step S42 described above the prediction model (Y prediction model of the above formula (1)) that directly predicts the corrosion amount of the metal material in the period exceeding the predetermined period is not directly generated, but is described above.
- a prediction model for predicting B in Expression (1) is generated. That is, the value of “logY ⁇ logA” in the above equation (2) is obtained for each actual data acquired in step S41, and the value of A prediction model for predicting the value of "logY-logA” is generated.
- This prediction model is the attenuation parameter prediction model in this embodiment. A value obtained by multiplying logX is used for each environment parameter used in the regression model.
- Corrosion amount prediction method A method of predicting the amount of corrosion of a metal material according to Embodiment 2 of the present invention will be described with reference to FIG. 7.
- the corrosion amount prediction method is mainly performed by the corrosion amount prediction unit 32. Further, in the following description, the predetermined period determined in advance will be described as “one year”.
- the corrosion amount prediction unit 32 calculates the predicted value of the corrosion amount in the environmental parameter to be predicted from the corrosion amount prediction model generated in step S33 described above (step S51).
- the corrosion amount prediction unit 32 determines whether or not to predict the corrosion amount for which the usage period is one year (step S52). When it is determined in step S52 that the corrosion amount for one year is to be predicted (Yes in step S52), the corrosion amount prediction unit 32 ends this flow and displays the corrosion amount prediction result on the display unit 40. ..
- step S52 when it is determined in step S52 that the corrosion amount for which the usage period exceeds one year is predicted (No in step S52), the corrosion amount prediction unit 32 predicts the attenuation parameter in the environmental parameter to be predicted from the attenuation parameter prediction model. A value is calculated (step S53).
- FIG. 1 An example of the method for predicting the amount of corrosion of a metal material according to the second embodiment of the present invention will be described with reference to FIG.
- This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge.
- (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above.
- (b) to (d) of the same figure are examples of the present invention.
- a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
- the depth of the decision tree is “6”.
- the Gaussian kernel is used for the non-linear conversion.
- 500 decision trees are created and two samples are randomly omitted for each decision tree. The depth of each decision tree is "6".
- a regression model was trained to generate a corrosion amount prediction model.
- the average flying salt content and the average SO X concentration are data on a daily basis as described above, but the value used for prediction is the average value in a predetermined period, such as the annual average value of each value.
- the annual average value is used.
- the long-term corrosion prediction of a metal material can be performed more accurately in an atmospheric corrosive environment. It can be carried out. Further, by using the corrosion amount prediction method according to the present embodiment, it becomes possible to select an optimum metal material according to the usage environment.
- the invention relates to a method for generating a corrosion amount prediction model for a metal material, a metal material corrosion amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device according to the present invention.
- Step S21 of FIG. 3 may be performed after steps S11 to S13 of FIG.
- a method for generating a corrosion amount prediction model see FIG. 5
- a method for generating a damping parameter prediction model see FIG. 6
- a corrosion amount prediction method using these prediction models see FIG. 7.
- steps S51 and S52 of FIG. 7 are performed after step S31 to S33 of FIG. 5 and a negative determination is made in step S52
- step S41 of FIG. S42 may be performed
- steps S53 and S54 of FIG. 7 may be performed after step S42.
- the initial corrosion amount A of the metal material in the initial year and the attenuation parameter B indicating the attenuation of the corrosion rate of the metal material are separately predicted, and the corrosion amount of the initial year is calculated.
- the long-term corrosion amount was predicted as a standard, the standard for predicting the long-term corrosion amount is not limited to the corrosion amount in the initial year.
- the corrosion amount of the metal material in any predetermined predetermined period is predicted
- the long-term corrosion amount prediction step the long-term corrosion amount is calculated based on the corrosion amount in the predetermined period described above. You may predict.
- the following equation (4) can be obtained by setting the corrosion amount in a certain initial period X 0 year as A′ and the damping parameter with reference to X 0 year as B′.
- the corrosion amount in the period of X>X 0 can be calculated as the corrosion amount based on X 0 years.
- the initial corrosion amount A′ of the metal material in an arbitrary initial period and the attenuation parameter B′ are separately predicted, and the elapsed years X′ after the initial period is calculated as the attenuation parameter B′ as shown in the above formula (4).
- the long-term corrosion amount after the initial period can be predicted by raising to the power of.
- the initial corrosion amount A in the above equation (1) is based on the corrosion amount for one year. Therefore, the period of X 0 in the above formula (4) is not assumed to be greatly deviated from one year, and it is considered that the practical range is about half a year to two years.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
This method for generating a corrosion level prediction model comprises a learning step for generating a prediction model for predicting the corrosion level of a metallic material in accordance with usage duration, by means of machine learning using data including: a plurality of environmental parameters indicating the environment in which a metallic material is used; the corrosion level of the metallic material; and the usage duration of the metallic material.
Description
本発明は、金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法、金属材料の選定方法、金属材料の腐食量予測プログラムおよび金属材料の腐食量予測装置に関する。
The present invention relates to a method for generating a metal material corrosion amount prediction model, a metal material corrosion amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device.
金属材料の使用環境を示す環境パラメータを用いて金属材料の腐食量を予測する手法は過去に複数提案されており、例えば非特許文献1および特許文献1~5では経験式を構築して腐食量を予測しており、非特許文献2では重回帰分析を用いて腐食量を予測している。
Several methods have been proposed in the past for predicting the amount of corrosion of a metal material by using an environmental parameter indicating the usage environment of the metal material. For example, in Non-Patent Document 1 and Patent Documents 1 to 5, an empirical formula is constructed to determine the amount of corrosion. Non-Patent Document 2 predicts the amount of corrosion using multiple regression analysis.
しかしながら、非特許文献1および特許文献1~5で提案された方法では、経験式を用いて金属材料の腐食量を求めているため、例えば環境の変化に対応させたい場合や、異なる金属材料の腐食量を予測したい場合は、その都度、モデル式を修正する必要がある。従って、メンテナンス面において現実的ではないという問題があった。また、非特許文献2で提案された方法では、金属材料の使用期間の年数を用いた予測モデルを構築していないため、長期の腐食量を予測できないという問題があった。
However, in the methods proposed in Non-Patent Document 1 and Patent Documents 1 to 5, since the amount of corrosion of a metal material is obtained using an empirical formula, for example, when it is desired to respond to changes in the environment or when different metal materials are used. To predict the amount of corrosion, it is necessary to modify the model formula each time. Therefore, there is a problem that it is not realistic in terms of maintenance. Further, in the method proposed in Non-Patent Document 2, there is a problem that a long-term corrosion amount cannot be predicted because a prediction model using the years of use of the metal material is not constructed.
また、特許文献5では、鋼材の一年後の腐食量を予測し、その腐食量から減衰パラメータを導出することで長期の腐食量を予測する方法を提案している。しかし、特許文献5で提案された方法では、減衰パラメータの導出の際に、一年より長期の腐食量の実績を用いて予測しておらず、経験式および人手による調整を用いて予測モデルを構築している。そのため、長期腐食量実績の活用面および前記のようなメンテナンス面において課題が残る。更に、特許文献5で提案された方法では、腐食量の予測の際に、腐食に影響を与えるSOX濃度が考慮されていない。
Further, Patent Document 5 proposes a method of predicting a corrosion amount of a steel material after one year and deriving a damping parameter from the corrosion amount to predict a long-term corrosion amount. However, in the method proposed in Patent Document 5, when deriving the attenuation parameter, it is not predicted using the actual results of the corrosion amount for a year or longer, and the prediction model is calculated using an empirical formula and manual adjustment. I'm building. Therefore, problems remain in the utilization of the long-term corrosion amount record and the maintenance as described above. Furthermore, the method proposed in Patent Document 5 does not consider the SO X concentration that affects corrosion when predicting the amount of corrosion.
SOXは、金属表面の水膜に溶け込み、当該水膜を酸性化して亜硫酸イオンHSO3
-を生成する。そして、この酸性化により、金属が溶解するアノード反応が促進される。また、亜硫酸イオンHSO3
-も、NO2やO3等の酸化剤と反応してSO4
2-となり、腐食を促進する。このように、SOX濃度は、腐食速度に大きな影響を与えるため、腐食量の予測には重要となる。
SO X dissolves in the water film on the metal surface, acidifies the water film, and produces sulfite ion HSO 3 − . Then, this acidification promotes the anode reaction in which the metal is dissolved. Further, the sulfite ion HSO 3 − also reacts with an oxidizing agent such as NO 2 or O 3 to become SO 4 2− , which promotes corrosion. As described above, the SO X concentration has a great influence on the corrosion rate, and is therefore important for predicting the amount of corrosion.
本発明は、上記に鑑みてなされたものであって、高い予測精度を有し、かつ大気腐食環境における長期腐食予測を行うことができる金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法、金属材料の選定方法、金属材料の腐食量予測プログラムおよび金属材料の腐食量予測装置を提供することを目的とする。
The present invention has been made in view of the above, has a high prediction accuracy, and a method of generating a corrosion amount prediction model of a metal material capable of performing long-term corrosion prediction in an atmospheric corrosion environment, corrosion of a metal material An object of the present invention is to provide an amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測モデルの生成方法は、金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の腐食量と、前記金属材料の使用期間とを含むデータを用い、機械学習により、前記使用期間に応じた前記金属材料の腐食量を予測する予測モデルを生成する学習ステップを含む。
In order to solve the above problems and achieve the object, a method of generating a corrosion amount prediction model of a metal material according to the present invention is a plurality of environmental parameters indicating a usage environment of the metal material, and a corrosion amount of the metal material. A learning step of generating a prediction model for predicting a corrosion amount of the metal material according to the usage period by machine learning using data including the usage period of the metal material.
また、本発明に係る金属材料の腐食量予測モデルの生成方法は、上記発明において、前記学習ステップが、予め定めた所定期間の前記金属材料の腐食量を予測する第一の予測モデルを生成する第一の学習ステップと、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測モデルを生成する第二の学習ステップと、を含んでもよい。
Further, in the method of generating a corrosion amount prediction model for a metal material according to the present invention, in the above invention, the learning step generates a first prediction model for predicting a corrosion amount of the metal material for a predetermined period set in advance. The method may include a first learning step and a second learning step of generating a second prediction model that predicts a damping parameter indicating a decay of the corrosion rate of the metallic material for a period exceeding the predetermined period.
また、本発明に係る金属材料の腐食量予測モデルの生成方法は、上記発明において、前記機械学習の手法として、決定木回帰、ランダムフォレスト、ニューラルネットワーク、サポートベクター回帰を含む学習方法を用いてもよい。
Further, the method for generating a corrosion amount prediction model of a metal material according to the present invention, in the above invention, as the machine learning method, a learning method including decision tree regression, random forest, neural network, support vector regression may be used. Good.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測方法は、上記の金属材料の腐食量予測モデルの生成方法により生成された予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測ステップを含む。
In order to solve the above-mentioned problems and achieve the object, the corrosion amount prediction method of the metal material according to the present invention, the prediction amount generated by the generation method of the corrosion amount prediction model of the metal material, the corrosion amount The method includes a prediction step of predicting a corrosion amount of the metal material by inputting a plurality of environmental parameters indicating a usage environment of the metal material to be predicted and a usage period of the metal material.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測方法は、上記の金属材料の腐食量予測モデルの生成方法により生成された第一の予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測ステップと、上記の金属材料の腐食量予測モデルの生成方法より生成された第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測ステップと、前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測ステップと、を含む。
In order to solve the above-mentioned problems and achieve the object, the corrosion amount prediction method of the metal material according to the present invention is the first prediction model generated by the generation method of the corrosion amount prediction model of the metal material described above, A plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a predetermined predetermined period as an input, a first prediction step of predicting the corrosion amount of the metal material in the predetermined period, and the above By the second prediction model generated by the method of generating a corrosion amount prediction model of the metal material, a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a period exceeding the predetermined period are input. The second prediction step of predicting a damping parameter indicating the decay of the corrosion rate of the metal material in a period exceeding the predetermined period, the corrosion amount of the metal material in the predetermined period, and the damping parameter, A third prediction step of predicting a corrosion amount of the metal material for a period exceeding the predetermined period.
また、本発明に係る金属材料の腐食量予測方法は、上記発明において、前記複数の環境パラメータが、温度、相対湿度、絶対湿度、濡れ時間および降雨量のうちの少なくとも一つと、飛来塩分量、SOX濃度およびNOX濃度のうちの少なくとも一つと、を含んでもよい。
Further, the corrosion amount prediction method of the metal material according to the present invention, in the above invention, the plurality of environmental parameters, temperature, relative humidity, absolute humidity, at least one of the wet time and rainfall, flying salt content, At least one of the SO X concentration and the NO X concentration may be included.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の選定方法は、上記の金属材料の腐食量予測方法を用いて、使用環境に応じた金属材料を選定する。
In order to solve the above-mentioned problems and to achieve the object, the metal material selection method according to the present invention uses the above-described metal material corrosion amount prediction method to select a metal material according to the usage environment.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測プログラムは、コンピュータを、上記の金属材料の腐食量予測モデルの生成方法により生成された予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測手段として機能させる。
In order to solve the above problems and achieve the object, the corrosion amount prediction program of the metal material according to the present invention, a computer, by the prediction model generated by the generation method of the corrosion amount prediction model of the metal material, By inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and the usage period of the metal material, the function is performed as a prediction means for predicting the corrosion amount of the metal material.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測プログラムは、コンピュータを、上記の金属材料の腐食量予測モデルの生成方法により生成された第一の予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測手段、上記の金属材料の腐食量予測モデルの生成方法により生成された第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測手段、前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測手段、として機能させる。
In order to solve the above-mentioned problems and to achieve the object, a metal material corrosion amount prediction program according to the present invention causes a computer to perform a first prediction generated by the method for generating a metal material corrosion amount prediction model described above. By the model, a plurality of environmental parameters indicating the use environment of the metal material to predict the amount of corrosion, and a predetermined predetermined period as an input, the first prediction means for predicting the corrosion amount of the metal material of the predetermined period, The second prediction model generated by the method of generating a corrosion amount prediction model of the metal material, a plurality of environmental parameters indicating the usage environment of the metal material to predict the corrosion amount, and a period exceeding the predetermined period. As an input, a second predicting means for predicting a damping parameter indicating the decay of the corrosion rate of the metal material in a period exceeding the predetermined period, a corrosion amount of the metal material in the predetermined period, and based on the decay parameter. , Third prediction means for predicting the amount of corrosion of the metal material in a period exceeding the predetermined period.
上述した課題を解決し、目的を達成するために、本発明に係る金属材料の腐食量予測装置は、金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の腐食量と、前記金属材料の使用期間とを含むデータを用い、機械学習により、前記使用期間に応じた前記金属材料の腐食量を予測する予測モデルを生成する学習手段と、前記予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測手段と、を備える。
In order to solve the above-mentioned problems and achieve the object, a corrosion amount prediction device for a metal material according to the present invention, a plurality of environmental parameters indicating the usage environment of the metal material, the corrosion amount of the metal material, the metal Using the data including the usage period of the material, by machine learning, learning means for generating a prediction model for predicting the corrosion amount of the metal material according to the usage period, and by the prediction model, to predict the corrosion amount A plurality of environmental parameters indicating a usage environment of the metal material and a usage period of the metal material are input, and a prediction unit that predicts a corrosion amount of the metal material is provided.
また、本発明に係る金属材料の腐食量予測装置は、上記発明において、前記学習手段が、予め定めた所定期間の前記金属材料の腐食量を予測する第一の予測モデルを生成する第一の学習手段と、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測モデルを生成する第二の学習手段と、を備え、前記予測手段が、前記第一の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測手段と、前記第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測手段と、前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測手段と、を備えてもよい。
Further, in the above-described invention, the apparatus for predicting the amount of corrosion of a metallic material according to the present invention is characterized in that the learning means generates a first prediction model for predicting an amount of corrosion of the metallic material for a predetermined period set in advance. Learning means, and a second learning means for generating a second prediction model for predicting a damping parameter indicating the decay of the corrosion rate of the metal material for a period exceeding the predetermined period, the prediction means, With the first prediction model, a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted, and a predetermined predetermined period are input, and the corrosion amount of the metal material during the predetermined period is predicted. One prediction means, by the second prediction model, a plurality of environmental parameters indicating the use environment of the metal material to predict the amount of corrosion, and a period exceeding the predetermined period as an input, a period exceeding the predetermined period Second prediction means for predicting a damping parameter indicating the decay of the corrosion rate of the metallic material, the amount of corrosion of the metallic material in the predetermined period, and the damping parameter, based on the decay parameter, The third prediction means for predicting the corrosion amount of the metal material may be provided.
本発明によれば、大気腐食環境において、金属材料の長期腐食予測を精度高く行うことができ、使用環境に応じた最適な金属材料を選定することが可能となる。
According to the present invention, it is possible to accurately predict long-term corrosion of a metallic material in an atmospheric corrosive environment, and it is possible to select an optimal metallic material according to the usage environment.
本発明の実施形態に係る金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法、金属材料の選定方法、金属材料の腐食量予測プログラムおよび金属材料の腐食量予測装置について、図面を参照しながら説明する。以下では、腐食量予測装置、腐食量予測モデルの生成方法および腐食量予測方法を実施形態ごとに説明する。なお、本発明は以下で説明する実施形態に限定されるものではない。
Drawing about the generation method of the corrosion amount prediction model of the metal material, the corrosion amount prediction method of the metal material, the selection method of the metal material, the corrosion amount prediction program of the metal material, and the corrosion amount prediction device of the metal material according to the embodiment of the present invention Will be described with reference to. Hereinafter, a corrosion amount prediction device, a corrosion amount prediction model generation method, and a corrosion amount prediction method will be described for each embodiment. The present invention is not limited to the embodiments described below.
[実施形態1]
(腐食量予測装置)
本発明の実施形態1に係る金属材料の腐食量予測装置の構成について、図1を参照しながら説明する。腐食量予測装置1は、入力部10と、実績データベース(実績DB)20と、演算部30と、表示部40と、を備えている。 [Embodiment 1]
(Corrosion amount prediction device)
The configuration of the metal material corrosion amount prediction device according to the first embodiment of the present invention will be described with reference to FIG. The corrosionamount prediction device 1 includes an input unit 10, an actual result database (actual result DB) 20, a calculation unit 30, and a display unit 40.
(腐食量予測装置)
本発明の実施形態1に係る金属材料の腐食量予測装置の構成について、図1を参照しながら説明する。腐食量予測装置1は、入力部10と、実績データベース(実績DB)20と、演算部30と、表示部40と、を備えている。 [Embodiment 1]
(Corrosion amount prediction device)
The configuration of the metal material corrosion amount prediction device according to the first embodiment of the present invention will be described with reference to FIG. The corrosion
入力部10は、演算部30に対する入力手段であり、例えばキーボード、マウスポインタ、テンキー等の入力装置によって実現される。
The input unit 10 is an input means for the arithmetic unit 30 and is realized by an input device such as a keyboard, a mouse pointer, a ten-key pad, or the like.
実績データベース20には、金属材料(例えば鉄鋼材料)の腐食量に関する実績データが鋼種ごとに保存されている。腐食量に関する実績データには、金属材料の使用期間と、当該使用期間における金属材料の腐食量と、当該金属材料の使用環境を示す複数の環境パラメータ(例えば年平均)と、が含まれる。また、前記した「複数の環境パラメータ」としては、例えば温度(気温)、相対湿度、絶対湿度、濡れ時間、降雨量、飛来塩分量、SOX濃度およびNOX濃度が挙げられる。これらの環境パラメータの実績データは、例えば年平均のデータである。
The actual result database 20 stores actual result data regarding the amount of corrosion of metal materials (for example, steel materials) for each steel type. The actual data regarding the amount of corrosion includes a period of use of the metal material, the amount of corrosion of the metal material during the period of use, and a plurality of environmental parameters (for example, annual average) indicating the environment of use of the metal material. In addition, examples of the above-mentioned "plurality of environmental parameters" include temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall amount, flying salt content, SO X concentration and NO X concentration. The actual data of these environmental parameters is, for example, annual average data.
演算部30は、例えばCPU(Central Processing Unit)等からなるプロセッサと、RAM(Random Access Memory)やROM(Read Only Memory)等からなるメモリ(主記憶部)と、によって実現される。
The arithmetic unit 30 is realized by, for example, a processor including a CPU (Central Processing Unit) and the like, and a memory (main storage unit) including a RAM (Random Access Memory) and a ROM (Read Only Memory).
演算部30は、プログラムを主記憶部の作業領域にロードして実行し、プログラムの実行を通じて各構成部等を制御することにより、所定の目的に合致した機能を実現する。演算部30は、プログラムの実行を通じて、学習部(学習手段)31および腐食量予測部(予測手段)32として機能する。なお、本実施形態では、一つの演算部(≒コンピュータ)によって学習部31および腐食量予測部32の機能を実現しているが、二つの演算部(≒コンピュータ)により学習部31および腐食量予測部32の機能をそれぞれ実現してもよい。
The arithmetic unit 30 realizes a function that matches a predetermined purpose by loading and executing a program in the work area of the main storage unit and controlling each component etc. through the execution of the program. The arithmetic unit 30 functions as a learning unit (learning unit) 31 and a corrosion amount prediction unit (prediction unit) 32 through the execution of the program. In the present embodiment, the functions of the learning unit 31 and the corrosion amount prediction unit 32 are realized by one calculation unit (≈computer), but the learning unit 31 and the corrosion amount prediction are performed by two calculation units (≈computer). You may implement|achieve the function of the part 32, respectively.
学習部31は、複数の環境パラメータと、金属材料の腐食量と、金属材料の使用期間とを含む実績データを用い、機械学習により、使用期間に応じた金属材料の腐食量を予測する腐食量予測モデルを生成する。学習部31における腐食量予測モデルの具体的な生成方法は後記する(後記する「腐食量予測モデルの生成方法」参照)。
The learning unit 31 uses actual data including a plurality of environmental parameters, the corrosion amount of the metal material, and the usage period of the metal material, and uses a machine learning to predict the corrosion amount of the metal material according to the usage period by using the corrosion amount. Generate a predictive model. A specific method of generating the corrosion amount prediction model in the learning unit 31 will be described later (see "Method of generating corrosion amount prediction model" described later).
腐食量予測部32は、学習部31によって生成された腐食量予測モデルにより、腐食量を予測したい金属材料の環境パラメータと、金属材料の使用期間とを入力として、金属材料の腐食量を予測する。腐食量予測部32における腐食量の具体的な予測方法は後記する(後記する「腐食量予測方法」参照)。
The corrosion amount prediction unit 32 predicts the corrosion amount of the metal material by using the corrosion amount prediction model generated by the learning unit 31 as an input with the environmental parameter of the metal material whose corrosion amount is to be predicted and the usage period of the metal material. .. A specific method of predicting the corrosion amount in the corrosion amount prediction unit 32 will be described later (see "Corrosion amount prediction method" described later).
表示部40は、例えばLCDディスプレイ、CRTディスプレイ等の表示装置によって実現され、演算部30から入力される表示信号をもとに、例えば金属材料の腐食量の予測結果を表示する。
The display unit 40 is realized by a display device such as an LCD display or a CRT display, and displays the prediction result of the corrosion amount of the metal material, for example, based on the display signal input from the calculation unit 30.
(腐食量予測モデルの生成方法)
本発明の実施形態1に係る金属材料の腐食量予測モデルの生成方法について、図2を参照しながら説明する。腐食量予測モデルの生成方法は、演算部30の学習部31が主体となって実施される。なお、腐食量予測モデルの生成は、後記する腐食量予測を実施する前に事前に実施しておく。 (Method of generating corrosion prediction model)
A method for generating a corrosion amount prediction model for a metal material according to the first embodiment of the present invention will be described with reference to FIG. The method of generating the corrosion amount prediction model is implemented mainly by thelearning unit 31 of the calculation unit 30. It should be noted that the generation of the corrosion amount prediction model is performed in advance before the corrosion amount prediction described below is performed.
本発明の実施形態1に係る金属材料の腐食量予測モデルの生成方法について、図2を参照しながら説明する。腐食量予測モデルの生成方法は、演算部30の学習部31が主体となって実施される。なお、腐食量予測モデルの生成は、後記する腐食量予測を実施する前に事前に実施しておく。 (Method of generating corrosion prediction model)
A method for generating a corrosion amount prediction model for a metal material according to the first embodiment of the present invention will be described with reference to FIG. The method of generating the corrosion amount prediction model is implemented mainly by the
まず、環境パラメータおよび金属材料の使用期間を選択する(ステップS11)。本ステップでは、温度(気温)、相対湿度、絶対湿度、濡れ時間、降雨量、飛来塩分量、SOX濃度およびNOX濃度の中から、腐食量予測モデルの生成の際の説明変数として用いる環境パラメータを選択する。
First, the environmental parameter and the usage period of the metal material are selected (step S11). In this step, the environment used as an explanatory variable when generating a corrosion amount prediction model from among temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall, flying salt content, SO X concentration and NO X concentration Select parameters.
ステップS11では、全ての環境パラメータを選択し、全ての環境パラメータを考慮した腐食量予測モデルを生成してもよい。但し、前記した環境パラメータの中には、例えば飛来塩分量とSOX濃度との関係のように、環境パラメータ同士が多重共線性を示すものも存在する。そのため、後段のステップS13において、環境パラメータ同士の多重共線性の問題を排除できない回帰モデルを用いて腐食量予測モデルを生成する場合、本ステップでは、予め環境パラメータ同士の相関を調べ、強い相関を持つ環境パラメータが含まれないように、環境パラメータを選択することが好ましい。
In step S11, all the environmental parameters may be selected and a corrosion amount prediction model considering all the environmental parameters may be generated. However, among the environmental parameters described above, some environmental parameters exhibit multicollinearity, such as the relationship between the amount of incoming salt and the SO X concentration. Therefore, in step S13 in the subsequent stage, when a corrosion amount prediction model is generated using a regression model that cannot eliminate the problem of multicollinearity between environmental parameters, in this step, the correlation between environmental parameters is checked in advance and a strong correlation is established. It is preferable to select the environmental parameters so that the environmental parameters that they have are not included.
続いて、学習部31は、ステップS11で選択した使用期間の金属材料の腐食量と、その環境パラメータとを実績データベースから取得する(ステップS12)。
Subsequently, the learning unit 31 acquires the corrosion amount of the metal material in the use period selected in step S11 and its environmental parameter from the performance database (step S12).
続いて、学習部31は、データ(具体的には環境パラメータ)の非線形性にフィッティング可能な回帰モデルにより、腐食量予測モデルを生成し(ステップS13)、本フローを終了する。環境パラメータは、非線形性を有しているため、例えば非特許文献2で用いられていた重回帰分析では、予測精度を高めることができない。そこで、本ステップでは、非線形性にフッティング可能な回帰モデルを用いた機械学習により、使用期間に応じた金属材料の腐食量を予測する腐食量予測モデルを生成する。すなわち、本ステップでは、金属材料の使用期間および当該使用期間における環境パラメータを入力とし、当該使用期間における金属材料の腐食量を出力として、回帰モデルを学習させることにより、腐食量予測モデルを生成する。
Subsequently, the learning unit 31 generates a corrosion amount prediction model by a regression model that can be fitted to the non-linearity of data (specifically, environmental parameter) (step S13), and ends this flow. Since the environmental parameter has non-linearity, the prediction accuracy cannot be improved by the multiple regression analysis used in Non-Patent Document 2, for example. Therefore, in this step, a corrosion amount prediction model that predicts the corrosion amount of the metal material according to the period of use is generated by machine learning using a regression model capable of footing to non-linearity. That is, in this step, a corrosion amount prediction model is generated by learning the regression model by inputting the usage period of the metal material and the environmental parameter in the usage period and using the corrosion amount of the metal material as the output in the usage period. ..
ここで、非線形性にフィッティング可能な回帰モデル(機械学習の手法)としては、例えば決定木回帰、ランダムフォレスト、ニューラルネットワーク、サポートベクター回帰、勾配ブースティング等が挙げられる。
Here, examples of regression models (machine learning methods) that can be fitted to non-linearity include decision tree regression, random forest, neural network, support vector regression, and gradient boosting.
(腐食量予測方法)
本発明の実施形態1に係る金属材料の腐食量予測方法について、図3を参照しながら説明する。腐食量予測方法は、演算部30の腐食量予測部32が主体となって実施される。また、腐食量予測方法では、前記した腐食量予測モデルの生成方法によって生成された腐食量予測モデルを用いて任意の使用期間における金属材料の腐食量を予測する。 (Corrosion amount prediction method)
A method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG. The corrosion amount prediction method is implemented mainly by the corrosionamount prediction unit 32 of the calculation unit 30. In addition, in the corrosion amount prediction method, the corrosion amount of the metal material in an arbitrary period of use is predicted by using the corrosion amount prediction model generated by the above-described corrosion amount prediction model generation method.
本発明の実施形態1に係る金属材料の腐食量予測方法について、図3を参照しながら説明する。腐食量予測方法は、演算部30の腐食量予測部32が主体となって実施される。また、腐食量予測方法では、前記した腐食量予測モデルの生成方法によって生成された腐食量予測モデルを用いて任意の使用期間における金属材料の腐食量を予測する。 (Corrosion amount prediction method)
A method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG. The corrosion amount prediction method is implemented mainly by the corrosion
腐食量予測部32は、具体的には、前記した腐食量予測モデルの生成方法によって生成された腐食量予測モデルから、予測したい環境パラメータにおける腐食量の予測値を算出し(ステップS21)、本フローを終了する。そして、腐食量予測部32は、腐食量の予測結果を表示部40に表示する。
Specifically, the corrosion amount prediction unit 32 calculates a predicted value of the corrosion amount in the environmental parameter to be predicted from the corrosion amount prediction model generated by the above-described method of generating the corrosion amount prediction model (step S21), and End the flow. Then, the corrosion amount prediction unit 32 displays the corrosion amount prediction result on the display unit 40.
ステップS21では、前記した腐食量予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、金属材料の使用期間とを入力として、金属材料の腐食量を予測する。すなわち、本ステップでは、腐食量予測モデルに対して、金属材料の使用期間および当該使用期間における環境パラメータを入力することにより、当該使用期間および環境パラメータにおける金属材料の腐食量を出力として得る。また、本ステップでは、任意の使用期間を腐食量予測モデルに入力することにより、任意の使用期間における腐食量を得ることができる。
In step S21, the corrosion amount prediction model is used to predict the corrosion amount of the metal material by inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and the usage period of the metal material. That is, in this step, by inputting the period of use of the metal material and the environmental parameter in the period of use to the corrosion amount prediction model, the amount of corrosion of the metal material in the period of use and the environmental parameter is obtained as an output. Further, in this step, the corrosion amount in the arbitrary usage period can be obtained by inputting the arbitrary usage period into the corrosion amount prediction model.
(実施例)
本発明の実施形態1に係る金属材料の腐食量予測方法の実施例について、図4を参照しながら説明する。同図は、橋梁に使用されている腐食量予測モデルを用いて得た、金属材料の腐食量の予測値と実績値との間の誤差を示すグラフである。同図の(a)は比較例であり、前記した学習ステップにおいて重回帰分析を用いて腐食量予測モデルを生成し、この腐食量予測モデルによって腐食量を予測した結果を示している。また、同図の(b)~(d)は本発明例であり、前記した学習ステップにおいて、決定木回帰、サポートベクター回帰、ランダムフォレストを用いて腐食量予測モデルを生成し、これらの腐食量予測モデルによって腐食量を予測した結果を示している。 (Example)
An example of the method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG. This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge. (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above. Further, (b) to (d) of the same figure are examples of the present invention. In the learning step described above, a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
本発明の実施形態1に係る金属材料の腐食量予測方法の実施例について、図4を参照しながら説明する。同図は、橋梁に使用されている腐食量予測モデルを用いて得た、金属材料の腐食量の予測値と実績値との間の誤差を示すグラフである。同図の(a)は比較例であり、前記した学習ステップにおいて重回帰分析を用いて腐食量予測モデルを生成し、この腐食量予測モデルによって腐食量を予測した結果を示している。また、同図の(b)~(d)は本発明例であり、前記した学習ステップにおいて、決定木回帰、サポートベクター回帰、ランダムフォレストを用いて腐食量予測モデルを生成し、これらの腐食量予測モデルによって腐食量を予測した結果を示している。 (Example)
An example of the method of predicting the amount of corrosion of a metal material according to the first embodiment of the present invention will be described with reference to FIG. This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge. (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above. Further, (b) to (d) of the same figure are examples of the present invention. In the learning step described above, a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
ここで、前記した決定木回帰は、説明変数の値を基にツリー形式で表現されたルールを用いて目的変数の予測を行う。このルールの例としては、例えば「気温x℃以上であれば腐食量y、気温x℃未満であれば腐食量z」等が挙げられる。金属材料の腐食量は、一般的には気温が高いほど大きくなるが、気温がある程度高くなると、腐食量は逆に小さくなる。そのため、このようなルールを用いて予測することにより、重回帰等の線形回帰よりも予測精度を向上させることができる。また、決定木回帰では、ルールを用いて予測するため、予測の過程が非常に分かりやすいという特徴がある。なお、本実施例における検証(図4の(b)参照)では、決定木の深さは「6」としている。
Here, in the decision tree regression described above, the objective variable is predicted using a rule expressed in a tree format based on the value of the explanatory variable. Examples of this rule include “corrosion amount y when the temperature is x° C. or higher, and corrosion amount z when the temperature is lower than x° C.”. Generally, the amount of corrosion of a metal material increases as the temperature rises, but when the temperature rises to some extent, the amount of corrosion decreases. Therefore, by using such a rule for prediction, it is possible to improve the prediction accuracy as compared with linear regression such as multiple regression. In addition, the decision tree regression has a feature that the prediction process is very easy to understand because the prediction is performed using rules. In the verification (see FIG. 4B) in this embodiment, the depth of the decision tree is “6”.
サポートベクター回帰は、カーネルによって説明変数の非線形変換を行って新たな変数を作成し、その新しい変数によって予測モデルを構築する。サポートベクター回帰では、予測モデルの構築の際に、所定の値より小さい誤差を無視することにより、ノイズに強いモデルを作成できるという特徴がある。金属材料の腐食量は、説明変数だけでは説明しきれない要因があり、同じ説明変数の環境パラメータも腐食量が少し異なる。そのため、予めこのような誤差を許容する、ノイズに強い回帰モデルであるサポートベクター回帰を適用することにより、予測精度を向上させることができる。なお、本実施例における検証(図4の(c)参照)では、非線形変換にガウスカーネルを用いている。
In support vector regression, non-linear transformation of explanatory variables is performed by the kernel to create new variables, and a prediction model is constructed using the new variables. Support vector regression is characterized in that a noise-resistant model can be created by ignoring errors smaller than a predetermined value when constructing a prediction model. The amount of corrosion of a metallic material has a factor that cannot be explained only by the explanatory variables, and the environmental parameters of the same explanatory variable have slightly different amounts of corrosion. Therefore, it is possible to improve the prediction accuracy by applying the support vector regression, which is a noise-resistant regression model that allows such an error, in advance. In the verification in this embodiment (see (c) of FIG. 4), a Gaussian kernel is used for the nonlinear conversion.
ランダムフォレストはサンプルをランダムに省いた決定木を複数作成する。そして、各決定木の予測結果の平均をとることにより予測する。このように複数の決定木を組み合わせることにより、決定木単体と比較してデータのノイズに強くなり、予測精度が向上する。なお、本実施例における検証(図4の(d)参照)では、決定木を500個作成し、決定木ごとに二つのサンプルをランダムに省いている。また、各決定木の深さは「6」としている。
Random forest creates multiple decision trees by randomly omitting samples. Then, prediction is performed by taking the average of the prediction results of each decision tree. By combining a plurality of decision trees in this way, it is more resistant to data noise than the decision tree alone, and the prediction accuracy is improved. In the verification in this embodiment (see (d) of FIG. 4), 500 decision trees are created and two samples are randomly omitted for each decision tree. The depth of each decision tree is "6".
また、比較例および本発明例では、金属材料の使用期間(年)、年平均気温(℃)、年平均湿度(%)、日単位での平均飛来塩分量(mg/m2/day(=mmd)(Cl-換算))、日単位での平均SOX濃度(mg/m2/day(=mmd)(So2換算))を説明変数とし、金属材料の腐食量(μm)を予測変数として、回帰モデルを学習させて腐食量予測モデルを生成した。なお、平均飛来塩分量および平均SOX濃度は上記のように日単位のデータであるが、予測に使用する値は、各値の年間平均値のように、所定期間での平均値を用いる。ここでは、年平均値を用いている。
In addition, in the comparative example and the example of the present invention, the usage period (year) of the metal material, the annual average temperature (°C), the annual average humidity (%), and the average amount of flying salt in daily units (mg/m 2 /day(= mmd) (Cl − conversion)), and the average SO X concentration (mg/m 2 /day (=mmd) (So 2 conversion)) on a daily basis are used as explanatory variables, and the corrosion amount (μm) of the metal material is a predictor variable. As a result, a regression model was trained to generate a corrosion amount prediction model. Note that the average amount of incoming salt and the average SO X concentration are data on a daily basis as described above, but the value used for prediction is the average value in a predetermined period, such as the annual average value of each value. Here, the annual average value is used.
図4に示すように、非線形性に対応不可能な重回帰分析((a)参照)を用いた例と、非線形性に対応可能な回帰モデル((b)~(d)参照)を用いた例とを比較すると、後者の回帰モデルを用いることにより、rRMSE(relative root means square of error:相対平均二乗誤差)が小さくなり、金属材料の腐食量の予測精度が高くなることを確認できた。
As shown in FIG. 4, an example using multiple regression analysis (see (a)) that cannot deal with nonlinearity and a regression model (see (b) to (d)) that can deal with nonlinearity were used. Comparing with the example, it was confirmed that the latter regression model reduces the rRMSE (relative root mean square of error) and improves the prediction accuracy of the corrosion amount of metal materials.
以上説明したような本発明の実施形態1に係る金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法によれば、機械学習によって腐食量予測モデルを生成し、当該腐食量予測モデルを用いることにより、大気腐食環境において、金属材料の長期腐食予測を精度高く行うことができる。また、本実施形態に係る腐食量予測方法によれば、任意の使用期間における金属材料の腐食量を、簡易な構成およびプロセスにより予測することができる。また、本実施形態に係る腐食量予測方法を用いることにより、使用環境に応じた最適な金属材料を選定することが可能となる。
According to the method for generating a corrosion amount prediction model for a metal material and the corrosion amount prediction method for a metal material according to the first embodiment of the present invention as described above, a corrosion amount prediction model is generated by machine learning, and the corrosion amount prediction is performed. By using the model, it is possible to accurately predict long-term corrosion of metallic materials in an atmospheric corrosive environment. Further, according to the corrosion amount prediction method according to the present embodiment, the corrosion amount of the metal material during an arbitrary use period can be predicted with a simple configuration and process. Further, by using the corrosion amount prediction method according to the present embodiment, it becomes possible to select an optimum metal material according to the usage environment.
[実施形態2]
(腐食量予測装置)
本発明の実施形態2に係る金属材料の腐食量予測装置の構成について説明する。本実施形態に係る腐食量予測装置1Aは、図1に示すように、前記した腐食量予測装置1とハードウェア構成が同じであり、演算部30で行われる処理のみが異なる。従って、演算部30における処理以外の説明は省略する。 [Embodiment 2]
(Corrosion amount prediction device)
The configuration of the metal material corrosion amount prediction device according to the second embodiment of the present invention will be described. As shown in FIG. 1, the corrosionamount prediction device 1A according to the present embodiment has the same hardware configuration as the corrosion amount prediction device 1 described above, and is different only in the processing performed by the calculation unit 30. Therefore, description other than the processing in the arithmetic unit 30 will be omitted.
(腐食量予測装置)
本発明の実施形態2に係る金属材料の腐食量予測装置の構成について説明する。本実施形態に係る腐食量予測装置1Aは、図1に示すように、前記した腐食量予測装置1とハードウェア構成が同じであり、演算部30で行われる処理のみが異なる。従って、演算部30における処理以外の説明は省略する。 [Embodiment 2]
(Corrosion amount prediction device)
The configuration of the metal material corrosion amount prediction device according to the second embodiment of the present invention will be described. As shown in FIG. 1, the corrosion
学習部31は、回帰モデルを用いた機械学習により、二つの予測モデルを生成する。二つの予測モデルのうち、第一の予測モデルは、予め定めた所定期間(例えば一年間)の金属材料の腐食量を予測する腐食量予測モデルであり、第二の予測モデルは、前記した所定期間を超える期間(例えば一年超)の金属材料の腐食速度の減衰を示す減衰パラメータを予測する減衰パラメータ予測モデルである。
The learning unit 31 generates two prediction models by machine learning using a regression model. Of the two prediction models, the first prediction model is a corrosion amount prediction model that predicts the corrosion amount of a metal material in a predetermined period (for example, one year), and the second prediction model is the above-described predetermined amount. It is a damping parameter prediction model that predicts a damping parameter that indicates the decay of the corrosion rate of a metallic material for a period exceeding the period (for example, more than one year).
学習部31は、複数の環境パラメータと、金属材料の腐食量と、金属材料の使用期間とを含む実績データを用い、機械学習により、腐食量予測モデルおよび減衰パラメータ予測モデルを生成する。学習部31における二つの予測モデルの具体的な生成方法は後記する(後記する「腐食量予測モデルの生成方法」参照)。
The learning unit 31 generates a corrosion amount prediction model and a decay parameter prediction model by machine learning using actual data including a plurality of environmental parameters, the corrosion amount of the metal material, and the usage period of the metal material. A specific method of generating the two prediction models in the learning unit 31 will be described later (see "Method of generating corrosion amount prediction model" described later).
腐食量予測部32は、学習部31によって生成された腐食量予測モデル(第一の予測モデル)により、腐食量を予測したい金属材料の環境パラメータと、金属材料の使用期間(例えば一年間)とを入力として、所定期間の金属材料の腐食量を予測する。
The corrosion amount prediction unit 32 uses the corrosion amount prediction model (first prediction model) generated by the learning unit 31 to determine the environmental parameter of the metal material whose corrosion amount is to be predicted and the usage period (for example, one year) of the metal material. Is input to predict the corrosion amount of the metal material for a predetermined period.
また、腐食量予測部32は、学習部31によって生成された減衰パラメータ予測モデル(第二の予測モデル)により、腐食量を予測したい金属材料の環境パラメータと、所定期間を超える期間(例えば一年超)とを入力として、所定期間を超える期間の金属材料の腐食量の減衰パラメータを予測する。そして、腐食量予測部32は、所定期間の金属材料の腐食量と、減衰パラメータとに基づいて、所定期間を超える期間の金属材料の腐食量を予測する。腐食量予測部32における腐食量の具体的な予測方法は後記する(後記する「腐食量予測方法」参照)。
In addition, the corrosion amount prediction unit 32 uses the attenuation parameter prediction model (second prediction model) generated by the learning unit 31 and the environmental parameter of the metal material whose corrosion amount is to be predicted, and a period exceeding a predetermined period (for example, one year). (Above) is input to predict the decay parameter of the corrosion amount of the metallic material over a predetermined period. Then, the corrosion amount prediction unit 32 predicts the corrosion amount of the metal material in the period exceeding the predetermined period based on the corrosion amount of the metal material in the predetermined period and the attenuation parameter. A specific method of predicting the corrosion amount in the corrosion amount prediction unit 32 will be described later (see "Corrosion amount prediction method" described later).
(腐食量予測モデルの生成方法)
本発明の実施形態2に係る金属材料の腐食量予測モデルの生成方法について、図5および図6を参照しながら説明する。腐食量予測モデルの生成方法は、演算部30の学習部31が主体となって実施される。 (Method of generating corrosion prediction model)
A method of generating a corrosion prediction model for metallic materials according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. The method of generating the corrosion amount prediction model is implemented mainly by thelearning unit 31 of the calculation unit 30.
本発明の実施形態2に係る金属材料の腐食量予測モデルの生成方法について、図5および図6を参照しながら説明する。腐食量予測モデルの生成方法は、演算部30の学習部31が主体となって実施される。 (Method of generating corrosion prediction model)
A method of generating a corrosion prediction model for metallic materials according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. The method of generating the corrosion amount prediction model is implemented mainly by the
なお、腐食量予測モデルの生成方法では、所定期間(例えば一年間)の金属材料の腐食量を予測する腐食量予測モデルの生成(図5参照)と、所定期間を超える期間の金属材料の腐食量の減衰パラメータの生成(図6参照)とを行うが、減衰パラメータの生成は、所定期間を超える金属材料の腐食量を予測したい場合にのみ実施すればよく、所定期間の金属材料の腐食量のみを予測する場合は実施しなくてもよい。また、腐食量予測モデルの生成および減速パラメータの生成は、後記する腐食量予測を実施する前に事前に実施しておく。
In the method of generating the corrosion amount prediction model, the generation of a corrosion amount prediction model that predicts the corrosion amount of the metal material in a predetermined period (for example, one year) (see FIG. 5) and the corrosion of the metal material in the period exceeding the predetermined period are performed. The generation of the attenuation parameter of the amount (see FIG. 6) is performed, but the generation of the attenuation parameter may be performed only when it is desired to predict the corrosion amount of the metal material over a predetermined period. It may not be performed when only predicting. Further, the generation of the corrosion amount prediction model and the generation of the deceleration parameter are performed in advance before the corrosion amount prediction described below is performed.
(1)腐食量予測モデルの生成
まず、温度(気温)、相対湿度、絶対湿度、濡れ時間、降雨量、飛来塩分量、SOX濃度およびNOX濃度の中から、腐食量予測モデルの生成の際の説明変数として用いる環境パラメータを選択する(ステップS31)。本ステップにおける環境パラメータの選択方法は、前記したステップS11(図2参照)と同様であるため、説明を省略する。 (1) Generation of Corrosion Prediction Model First, a corrosion amount prediction model is generated from the temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall, flying salt content, SO X concentration, and NO X concentration. An environment parameter used as an explanatory variable is selected (step S31). The method of selecting the environment parameter in this step is the same as that in step S11 (see FIG. 2) described above, and thus the description thereof is omitted.
まず、温度(気温)、相対湿度、絶対湿度、濡れ時間、降雨量、飛来塩分量、SOX濃度およびNOX濃度の中から、腐食量予測モデルの生成の際の説明変数として用いる環境パラメータを選択する(ステップS31)。本ステップにおける環境パラメータの選択方法は、前記したステップS11(図2参照)と同様であるため、説明を省略する。 (1) Generation of Corrosion Prediction Model First, a corrosion amount prediction model is generated from the temperature (temperature), relative humidity, absolute humidity, wetting time, rainfall, flying salt content, SO X concentration, and NO X concentration. An environment parameter used as an explanatory variable is selected (step S31). The method of selecting the environment parameter in this step is the same as that in step S11 (see FIG. 2) described above, and thus the description thereof is omitted.
続いて、学習部31は、予め定めた所定期間の金属材料の腐食量と、その環境パラメータとを実績データベースから取得する(ステップS32)。
Subsequently, the learning unit 31 acquires the corrosion amount of the metal material for a predetermined period and the environmental parameter thereof from the performance database (step S32).
続いて、学習部31は、データ(具体的には環境パラメータ)の非線形性にフィッティング可能な回帰モデルにより、腐食量予測モデルを生成し(ステップS33)、本フローを終了する。本ステップにおける腐食量予測モデルの生成方法は、前記したステップS13(図2参照)と同様であるため、説明を省略する。
Subsequently, the learning unit 31 generates a corrosion amount prediction model by a regression model that can be fitted to the nonlinearity of the data (specifically, environmental parameter) (step S33), and ends this flow. Since the method of generating the corrosion amount prediction model in this step is the same as that in step S13 (see FIG. 2) described above, the description thereof will be omitted.
(2)減衰パラメータ予測モデルの生成
まず、学習部31は、予め定めた所定期間の金属材料の腐食量およびその環境パラメータと、所定期間を超える期間の金属材料の腐食量およびその環境パラメータと、を実績データベースから取得する(ステップS41)。 (2) Generation of Attenuation Parameter Prediction Model First, thelearning unit 31 determines the amount of corrosion of the metal material and its environmental parameter for a predetermined period, and the amount of corrosion of the metal material and its environmental parameter for a period exceeding the predetermined period. Is acquired from the performance database (step S41).
まず、学習部31は、予め定めた所定期間の金属材料の腐食量およびその環境パラメータと、所定期間を超える期間の金属材料の腐食量およびその環境パラメータと、を実績データベースから取得する(ステップS41)。 (2) Generation of Attenuation Parameter Prediction Model First, the
続いて、学習部31は、データ(具体的には環境パラメータ)の非線形性にフィッティング可能な回帰モデルにより、減衰パラメータ予測モデルを生成し(ステップS42)、本フローを終了する。
Subsequently, the learning unit 31 generates a damping parameter prediction model by a regression model that can be fitted to the non-linearity of data (specifically, environmental parameter) (step S42), and ends this flow.
ここで、非特許文献1に示すように、大気腐食環境における金属材料の腐食量は、経験式として以下の式(1)で表されることが知られている。
Here, as shown in Non-Patent Document 1, it is known that the corrosion amount of a metal material in an atmospheric corrosive environment is expressed by the following formula (1) as an empirical formula.
上記式(1)において、Yは使用期間X年後の金属材料の腐食量、Aは使用期間が一年の金属材料の腐食量、Xは金属材料の使用期間、Bは腐食により形成されるさび層の効果による腐食速度の減衰を示す減衰パラメータである。
In the above formula (1), Y is the amount of corrosion of the metal material after X years of use, A is the amount of corrosion of the metal material for one year, X is the period of use of the metal material, and B is formed by corrosion. It is a damping parameter indicating the decay of corrosion rate due to the effect of the rust layer.
上記式(1)の対数をとり、整理すると下記式(2)に示すように変形することができる。
By taking the logarithm of the above formula (1) and rearranging it, it can be transformed as shown in the following formula (2).
ここで、前記したステップS42では、予め定めた所定期間を超える期間の金属材料の腐食量を直接予測する予測モデル(上記式(1)のYの予測モデル)を直接生成するのではなく、上記式(1)のBを予測する予測モデルを生成する。すなわち、ステップS41で取得した各実績データについて、上記式(2)の「logY-logA」の値を求め、金属材料の使用期間(所定期間を超える期間)および当該使用期間における環境パラメータから、「logY-logA」の値を予測する予測モデルを生成する。この予測モデルが、本実施形態における減衰パラメータ予測モデルである。なお、回帰モデルに用いる各環境パラメータには、logXを掛けた値を使用する。
Here, in step S42 described above, the prediction model (Y prediction model of the above formula (1)) that directly predicts the corrosion amount of the metal material in the period exceeding the predetermined period is not directly generated, but is described above. A prediction model for predicting B in Expression (1) is generated. That is, the value of “logY−logA” in the above equation (2) is obtained for each actual data acquired in step S41, and the value of A prediction model for predicting the value of "logY-logA" is generated. This prediction model is the attenuation parameter prediction model in this embodiment. A value obtained by multiplying logX is used for each environment parameter used in the regression model.
(腐食量予測方法)
本発明の実施形態2に係る金属材料の腐食量予測方法について、図7を参照しながら説明する。腐食量予測方法は、腐食量予測部32が主体となって実施される。また、以下では、予め定める所定期間を「一年間」として説明を行う。 (Corrosion amount prediction method)
A method of predicting the amount of corrosion of a metal material according toEmbodiment 2 of the present invention will be described with reference to FIG. 7. The corrosion amount prediction method is mainly performed by the corrosion amount prediction unit 32. Further, in the following description, the predetermined period determined in advance will be described as “one year”.
本発明の実施形態2に係る金属材料の腐食量予測方法について、図7を参照しながら説明する。腐食量予測方法は、腐食量予測部32が主体となって実施される。また、以下では、予め定める所定期間を「一年間」として説明を行う。 (Corrosion amount prediction method)
A method of predicting the amount of corrosion of a metal material according to
まず、腐食量予測部32は、前記したステップS33で生成された腐食量予測モデルから、予測したい環境パラメータにおける腐食量の予測値を算出する(ステップS51)。本ステップでは、前記した腐食量予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータを入力として、一年間の金属材料の腐食量を予測する。すなわち、本ステップでは、腐食量予測モデルに対して、金属材料の使用期間(=一年間)における環境パラメータを入力することにより、当該使用期間および環境パラメータにおける金属材料の腐食量を出力として得る。
First, the corrosion amount prediction unit 32 calculates the predicted value of the corrosion amount in the environmental parameter to be predicted from the corrosion amount prediction model generated in step S33 described above (step S51). In this step, the corrosion amount prediction model described above is used to predict the corrosion amount of the metal material for one year by inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted. That is, in this step, by inputting the environmental parameter in the usage period (=one year) of the metal material to the corrosion amount prediction model, the corrosion amount of the metal material in the usage period and the environmental parameter is obtained as an output.
続いて、腐食量予測部32は、使用期間が一年の腐食量を予測するか否かを判定する(ステップS52)。ステップS52において、使用期間が一年の腐食量を予測すると判定した場合(ステップS52でYes)、腐食量予測部32は、本フローを終了し、腐食量の予測結果を表示部40に表示する。
Subsequently, the corrosion amount prediction unit 32 determines whether or not to predict the corrosion amount for which the usage period is one year (step S52). When it is determined in step S52 that the corrosion amount for one year is to be predicted (Yes in step S52), the corrosion amount prediction unit 32 ends this flow and displays the corrosion amount prediction result on the display unit 40. ..
一方、ステップS52において、使用期間が一年超の腐食量を予測すると判定した場合(ステップS52でNo)、腐食量予測部32は、減衰パラメータ予測モデルから、予測したい環境パラメータにおける減衰パラメータの予測値を算出する(ステップS53)。
On the other hand, when it is determined in step S52 that the corrosion amount for which the usage period exceeds one year is predicted (No in step S52), the corrosion amount prediction unit 32 predicts the attenuation parameter in the environmental parameter to be predicted from the attenuation parameter prediction model. A value is calculated (step S53).
ステップS52では、前記した減衰パラメータ予測モデルに対して、腐食量を予測したい金属材料の環境を示す複数の環境パラメータと、金属材料の使用期間(=一年超)とを入力することにより、上記式(2)の「logY-logA」の値を出力として得る。そして、当該「logY-logA」の値からlogXを割ることにより、当該使用期間および環境パラメータにおける金属材料の腐食量の減衰パラメータを予測する。
In step S52, by inputting a plurality of environmental parameters indicating the environment of the metal material whose corrosion amount is to be predicted and the usage period (=more than one year) of the metal material into the above-described attenuation parameter prediction model, The value of "logY-logA" in equation (2) is obtained as the output. Then, by dividing logX from the value of “logY−logA”, the attenuation parameter of the corrosion amount of the metal material in the use period and the environmental parameter is predicted.
続いて、腐食量予測部32は、ステップS51で算出した金属材料の腐食量の予測値(使用期間:一年)と、ステップS53で算出した減衰パラメータの予測値とから、予測したい使用期間(=一年超)における腐食量の予測値を算出し(ステップS54)、本フローを終了する。そして、腐食量予測部32は、腐食量の予測結果を表示部40に表示する。
Subsequently, the corrosion amount prediction unit 32 uses the predicted value of the corrosion amount of the metallic material calculated in step S51 (use period: one year) and the predicted value of the attenuation parameter calculated in step S53 to predict the use period ( =the predicted value of the corrosion amount in more than one year) is calculated (step S54), and this flow ends. Then, the corrosion amount prediction unit 32 displays the corrosion amount prediction result on the display unit 40.
(実施例)
本発明の実施形態2に係る金属材料の腐食量予測方法の実施例について、図8を参照しながら説明する。同図は、橋梁に使用されている腐食量予測モデルを用いて得た、金属材料の腐食量の予測値と実績値との間の誤差を示すグラフである。同図の(a)は比較例であり、前記した学習ステップにおいて重回帰分析を用いて腐食量予測モデルを生成し、この腐食量予測モデルによって腐食量を予測した結果を示している。また、同図の(b)~(d)は本発明例であり、前記した学習ステップにおいて、決定木回帰、サポートベクター回帰、ランダムフォレストを用いて腐食量予測モデルを生成し、これらの腐食量予測モデルによって腐食量を予測した結果を示している。 (Example)
An example of the method for predicting the amount of corrosion of a metal material according to the second embodiment of the present invention will be described with reference to FIG. This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge. (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above. Further, (b) to (d) of the same figure are examples of the present invention. In the learning step described above, a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
本発明の実施形態2に係る金属材料の腐食量予測方法の実施例について、図8を参照しながら説明する。同図は、橋梁に使用されている腐食量予測モデルを用いて得た、金属材料の腐食量の予測値と実績値との間の誤差を示すグラフである。同図の(a)は比較例であり、前記した学習ステップにおいて重回帰分析を用いて腐食量予測モデルを生成し、この腐食量予測モデルによって腐食量を予測した結果を示している。また、同図の(b)~(d)は本発明例であり、前記した学習ステップにおいて、決定木回帰、サポートベクター回帰、ランダムフォレストを用いて腐食量予測モデルを生成し、これらの腐食量予測モデルによって腐食量を予測した結果を示している。 (Example)
An example of the method for predicting the amount of corrosion of a metal material according to the second embodiment of the present invention will be described with reference to FIG. This figure is a graph showing the error between the predicted value and the actual value of the corrosion amount of the metal material, obtained using the corrosion amount prediction model used for the bridge. (A) of the same figure is a comparative example, and shows the result of predicting the corrosion amount by using this corrosion amount prediction model to generate a corrosion amount prediction model using the multiple regression analysis in the learning step described above. Further, (b) to (d) of the same figure are examples of the present invention. In the learning step described above, a corrosion amount prediction model is generated using decision tree regression, support vector regression, and random forest, and these corrosion amounts are calculated. The result of having predicted the amount of corrosion by a prediction model is shown.
また、決定木回帰を用いた検証(図8の(b)参照)では、決定木の深さは「6」としている。また、サポートベクター回帰を用いた検証(図8の(c)参照)では、非線形変換にガウスカーネルを用いている。また、ランダムフォレストを用いた検証(図8の(d)参照)では、決定木を500個作成し、決定木ごとに二つのサンプルをランダムに省いている。また、各決定木の深さは「6」としている。
Also, in the verification using the decision tree regression (see (b) of FIG. 8), the depth of the decision tree is “6”. In the verification using the support vector regression (see (c) of FIG. 8), the Gaussian kernel is used for the non-linear conversion. Further, in the verification using the random forest (see (d) of FIG. 8), 500 decision trees are created and two samples are randomly omitted for each decision tree. The depth of each decision tree is "6".
また、比較例および本発明例では、金属材料の使用期間(年)、年平均気温(℃)、年平均湿度(%)、日単位での平均飛来塩分量(mg/m2/day(=mmd)(Cl-換算))、日単位での平均SOX濃度(mg/m2/day(=mmd)(So2換算))を説明変数とし、金属材料の腐食量(μm)を予測変数として、回帰モデルを学習させて腐食量予測モデルを生成した。なお、平均飛来塩分量および平均SOX濃度は上記のように日単位のデータであるが、予測に使用する値は、各値の年間平均値のように、所定期間での平均値を用いる。ここでは、年平均値を用いている。
In addition, in the comparative example and the example of the present invention, the usage period (year) of the metal material, the annual average temperature (°C), the annual average humidity (%), and the average amount of flying salt in days (mg/m 2 /day(= mmd) (Cl − conversion)), and the average SO X concentration (mg/m 2 /day (=mmd) (So 2 conversion)) on a daily basis are used as explanatory variables, and the corrosion amount (μm) of the metal material is a predictor variable. As a result, a regression model was trained to generate a corrosion amount prediction model. The average flying salt content and the average SO X concentration are data on a daily basis as described above, but the value used for prediction is the average value in a predetermined period, such as the annual average value of each value. Here, the annual average value is used.
図8に示すように、非線形性に対応不可能な重回帰分析((a)参照)を用いた例と、非線形性に対応可能な回帰モデル((b)~(d)参照)を用いた例とを比較すると、後者の回帰モデルを用いることにより、rRMSEが小さくなり、金属材料の腐食量の予測精度が高くなることを確認できた。また、前記した実施形態1の実施例における結果(図4参照)と比較すると、全ての回帰モデルにおいて相対平均二乗誤差が小さくなり、金属材料の腐食量の予測精度がより一層向上することが確認できた。
As shown in FIG. 8, an example using multiple regression analysis (see (a)) that cannot deal with nonlinearity and a regression model (see (b) to (d)) that can deal with nonlinearity were used. Comparing with the example, it was confirmed that the latter regression model reduces the rRMSE and improves the prediction accuracy of the corrosion amount of the metal material. In addition, as compared with the results of the example of Embodiment 1 described above (see FIG. 4 ), it was confirmed that the relative mean square error is reduced in all regression models, and the accuracy of predicting the corrosion amount of the metal material is further improved. did it.
以上説明したような本発明の実施形態2に係る金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法によれば、大気腐食環境において、金属材料の長期腐食予測をより精度高く行うことができる。また、本実施形態に係る腐食量予測方法を用いることにより、使用環境に応じた最適な金属材料を選定することが可能となる。
According to the method of generating the corrosion amount prediction model of a metal material and the corrosion amount prediction method of a metal material according to the second embodiment of the present invention as described above, the long-term corrosion prediction of a metal material can be performed more accurately in an atmospheric corrosive environment. It can be carried out. Further, by using the corrosion amount prediction method according to the present embodiment, it becomes possible to select an optimum metal material according to the usage environment.
以上、本発明に係る金属材料の腐食量予測モデルの生成方法、金属材料の腐食量予測方法、金属材料の選定方法、金属材料の腐食量予測プログラムおよび金属材料の腐食量予測装置について、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。
As described above, the invention relates to a method for generating a corrosion amount prediction model for a metal material, a metal material corrosion amount prediction method, a metal material selection method, a metal material corrosion amount prediction program, and a metal material corrosion amount prediction device according to the present invention. Although the embodiments and the examples for carrying out the present invention have been specifically described, the gist of the present invention is not limited to these descriptions and should be broadly construed based on the description of the claims. Further, it goes without saying that various changes and modifications based on these descriptions are also included in the spirit of the present invention.
例えば、前記した実施形態1では、腐食量予測モデルの生成方法(図2参照)とこの予測モデルを用いた腐食量予測方法(図3参照)とをそれぞれ別のタイミングで行っていたが、例えば図2のステップS11~S13の後に図3のステップS21を行ってもよい。
For example, in the above-described first embodiment, the method for generating a corrosion amount prediction model (see FIG. 2) and the corrosion amount prediction method using this prediction model (see FIG. 3) are performed at different timings. Step S21 of FIG. 3 may be performed after steps S11 to S13 of FIG.
同様に、前記した実施形態2では、腐食量予測モデルの生成方法(図5参照)と減衰パラメータ予測モデルの生成方法(図6参照)とこれらの予測モデルを用いた腐食量予測方法(図7参照)とをそれぞれ別のタイミングで行っていたが、例えば図5のステップS31~S33の後に図7のステップS51,S52を行い、ステップS52で否定判定がなされた場合に図6のステップS41,S42を行い、ステップS42の後に図7のステップS53,S54を行ってもよい。
Similarly, in the above-described second embodiment, a method for generating a corrosion amount prediction model (see FIG. 5), a method for generating a damping parameter prediction model (see FIG. 6), and a corrosion amount prediction method using these prediction models (see FIG. 7). However, for example, when steps S51 and S52 of FIG. 7 are performed after step S31 to S33 of FIG. 5 and a negative determination is made in step S52, step S41 of FIG. S42 may be performed, and steps S53 and S54 of FIG. 7 may be performed after step S42.
ここで、前記した実施形態2では、金属材料の初期一年間の初期腐食量Aと、金属材料の腐食速度の減衰を示す減衰パラメータBとをそれぞれ分けて予測し、初期一年間の腐食量を基準として長期腐食量を予測していたが、長期腐食量を予測する際の基準は初期一年間の腐食量には限定されない。
Here, in the above-described Embodiment 2, the initial corrosion amount A of the metal material in the initial year and the attenuation parameter B indicating the attenuation of the corrosion rate of the metal material are separately predicted, and the corrosion amount of the initial year is calculated. Although the long-term corrosion amount was predicted as a standard, the standard for predicting the long-term corrosion amount is not limited to the corrosion amount in the initial year.
すなわち、初期腐食量予測ステップにおいて、予め定める任意の所定期間(初期期間)における金属材料の腐食量を予測し、長期腐食量予測ステップにおいて、前記した所定期間の腐食量を基準として長期腐食量を予測してもよい。
That is, in the initial corrosion amount prediction step, the corrosion amount of the metal material in any predetermined predetermined period (initial period) is predicted, and in the long-term corrosion amount prediction step, the long-term corrosion amount is calculated based on the corrosion amount in the predetermined period described above. You may predict.
例えば初期腐食量として1.5年の腐食量がA’として与えられた場合、そこからX年後の腐食量の予測式は、上記式(1)を拡張して、下記式(3)のように記述可能と考えられる。
For example, when the corrosion amount of 1.5 years is given as A'as the initial corrosion amount, the formula for predicting the corrosion amount after X years is expanded from the above formula (1) to obtain the following formula (3). It can be described as follows.
これを一般化すれば、ある初期期間X0年の腐食量をA’、X0年を基準とした減衰パラメータをB’として、下記式(4)を得ることができる。この式(4)を用いることにより、X0年間を基準とした腐食量として、X>X0の期間の腐食量を算出することができる。
If this is generalized, the following equation (4) can be obtained by setting the corrosion amount in a certain initial period X 0 year as A′ and the damping parameter with reference to X 0 year as B′. By using this formula (4), the corrosion amount in the period of X>X 0 can be calculated as the corrosion amount based on X 0 years.
金属材料の任意の初期期間の初期腐食量A’と、減衰パラメータB’とをそれぞれ分けて予測し、上記式(4)に示すように、初期期間以降の経過年数X’を減衰パラメータB’で累乗することにより、初期期間以降の長期腐食量を予測することができる。但し、上記式(1)の初期腐食量Aは、1年間の腐食量を前提としている。そのため、上記式(4)のX0の期間は、1年間から大きくずれた場合は想定しておらず、半年間から2年間程度であることが現実的な実用範囲と考えられる。
The initial corrosion amount A′ of the metal material in an arbitrary initial period and the attenuation parameter B′ are separately predicted, and the elapsed years X′ after the initial period is calculated as the attenuation parameter B′ as shown in the above formula (4). The long-term corrosion amount after the initial period can be predicted by raising to the power of. However, the initial corrosion amount A in the above equation (1) is based on the corrosion amount for one year. Therefore, the period of X 0 in the above formula (4) is not assumed to be greatly deviated from one year, and it is considered that the practical range is about half a year to two years.
1,1A 腐食量予測装置
10 入力部
20 実績データベース
30 演算部
31 学習部
32 腐食量予測部
40 表示部 1, 1A Corrosionamount prediction device 10 Input unit 20 Result database 30 Calculation unit 31 Learning unit 32 Corrosion amount prediction unit 40 Display unit
10 入力部
20 実績データベース
30 演算部
31 学習部
32 腐食量予測部
40 表示部 1, 1A Corrosion
Claims (11)
- 金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の腐食量と、前記金属材料の使用期間と、を含むデータを用い、機械学習により、前記使用期間に応じた前記金属材料の腐食量を予測する予測モデルを生成する学習ステップを含む金属材料の腐食量予測モデルの生成方法。 Corrosion of the metal material according to the usage period by machine learning using a plurality of environmental parameters indicating the usage environment of the metal material, the amount of corrosion of the metal material, and the data including the usage period of the metal material. A method for generating a corrosion amount prediction model for a metal material, the method including a learning step for generating a prediction model for predicting the amount of corrosion.
- 前記学習ステップは、
予め定めた所定期間の前記金属材料の腐食量を予測する第一の予測モデルを生成する第一の学習ステップと、
前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測モデルを生成する第二の学習ステップと、
を含む請求項1に記載の金属材料の腐食量予測モデルの生成方法。 The learning step is
A first learning step of generating a first prediction model for predicting the amount of corrosion of the metal material for a predetermined period of time,
A second learning step of generating a second prediction model for predicting a damping parameter indicating the decay of the corrosion rate of the metallic material for a period exceeding the predetermined period,
A method of generating a corrosion amount prediction model for a metal material according to claim 1, including: - 前記機械学習の手法として、決定木回帰、ランダムフォレスト、ニューラルネットワーク、サポートベクター回帰を含む学習方法を用いる請求項1または請求項2に記載の金属材料の腐食量予測モデルの生成方法。 The method for generating a corrosion amount prediction model for a metal material according to claim 1 or 2, wherein a learning method including decision tree regression, random forest, neural network, and support vector regression is used as the machine learning method.
- 請求項1に記載の方法により生成された予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測ステップを含む金属材料の腐食量予測方法。 The corrosion amount of the metal material is input by inputting a plurality of environmental parameters indicating a use environment of the metal material whose corrosion amount is to be predicted by the prediction model generated by the method according to claim 1 and a usage period of the metal material. A method of predicting the amount of corrosion of a metal material, the method including a prediction step of predicting.
- 請求項2に記載の方法により生成された第一の予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測ステップと、
請求項2に記載の方法により生成された第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測ステップと、
前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測ステップと、
を含む金属材料の腐食量予測方法。 With the first prediction model generated by the method according to claim 2, a plurality of environmental parameters indicating a usage environment of a metal material whose corrosion amount is to be predicted and a predetermined predetermined period are input, and the predetermined period of the predetermined period is input. A first prediction step of predicting the amount of corrosion of the metal material,
With the second prediction model generated by the method according to claim 2, a plurality of environmental parameters indicating a usage environment of the metal material whose corrosion amount is to be predicted, and a period exceeding the predetermined period are input, and the predetermined period is set. A second predicting step of predicting a damping parameter indicative of a decay of the corrosion rate of said metallic material over a period of time,
Corrosion amount of the metal material of the predetermined period, based on the attenuation parameter, a third prediction step of predicting the corrosion amount of the metal material in a period exceeding the predetermined period,
A method for predicting the amount of corrosion of metallic materials including. - 前記複数の環境パラメータは、温度、相対湿度、絶対湿度、濡れ時間および降雨量のうちの少なくとも一つと、飛来塩分量、SOX濃度およびNOX濃度のうちの少なくとも一つと、を含む請求項4または請求項5に記載の金属材料の腐食量予測方法。 The environmental parameters include at least one of temperature, relative humidity, absolute humidity, wetting time, and rainfall, and at least one of flying salt content, SO X concentration, and NO X concentration. Alternatively, the method of predicting the corrosion amount of a metal material according to claim 5.
- 請求項4または請求項5に記載の金属材料の腐食量予測方法を用いて、使用環境に応じた金属材料を選定する金属材料の選定方法。 A method of selecting a metal material that selects the metal material according to the usage environment by using the corrosion amount prediction method of the metal material according to claim 4 or claim 5.
- コンピュータを、請求項1に記載の方法により生成された予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測手段として機能させるための金属材料の腐食量予測プログラム。 The metal material is input by a computer using a plurality of environmental parameters indicating a usage environment of the metal material whose corrosion amount is to be predicted by the prediction model generated by the method according to claim 1 and a usage period of the metal material. A corrosion amount prediction program for metallic materials that functions as a prediction means for predicting the corrosion amount of metal.
- コンピュータを、
請求項2に記載の方法により生成された第一の予測モデルにより、腐食量を予測したい金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測手段、
請求項2に記載の方法により生成された第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測手段と、
前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測手段、
として機能させるための金属材料の腐食量予測プログラム。 Computer,
With the first prediction model generated by the method according to claim 2, a plurality of environmental parameters indicating a usage environment of a metal material whose corrosion amount is to be predicted and a predetermined predetermined period are input, and the predetermined period of the predetermined period is input. A first prediction means for predicting the amount of corrosion of the metal material,
With the second prediction model generated by the method according to claim 2, a plurality of environmental parameters indicating a usage environment of the metal material whose corrosion amount is to be predicted, and a period exceeding the predetermined period are input, and the predetermined period is set. A second predicting means for predicting a damping parameter indicating the decay of the corrosion rate of the metallic material over a period of time,
Corrosion amount of the metal material in the predetermined period, based on the attenuation parameter, a third predicting means for predicting the corrosion amount of the metal material in a period exceeding the predetermined period,
A program to predict the amount of corrosion of metallic materials to function as. - 金属材料の使用環境を示す複数の複数の環境パラメータと、前記金属材料の腐食量と、前記金属材料の使用期間と、を含むデータを用い、機械学習により、前記使用期間に応じた前記金属材料の腐食量を予測する予測モデルを生成する学習手段と、
前記予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記金属材料の使用期間とを入力として、前記金属材料の腐食量を予測する予測手段と、
を備える金属材料の腐食量予測装置。 A plurality of environmental parameters indicating the usage environment of the metal material, the amount of corrosion of the metal material, and the usage period of the metal material are used, and the metal material is used according to the usage period by machine learning. Learning means for generating a prediction model for predicting the amount of corrosion of
With the prediction model, a plurality of environmental parameters indicating the use environment of the metal material to predict the amount of corrosion, and a period of use of the metal material as an input, a prediction means for predicting the amount of corrosion of the metal material,
An apparatus for predicting the amount of corrosion of metallic materials. - 前記学習手段は、
予め定めた所定期間の前記金属材料の腐食量を予測する第一の予測モデルを生成する第一の学習手段と、
前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測モデルを生成する第二の学習手段と、
を備え、
前記予測手段は、
前記第一の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、予め定めた所定期間とを入力として、前記所定期間の前記金属材料の腐食量を予測する第一の予測手段と、
前記第二の予測モデルにより、腐食量を予測したい前記金属材料の使用環境を示す複数の環境パラメータと、前記所定期間を超える期間とを入力として、前記所定期間を超える期間の前記金属材料の腐食速度の減衰を示す減衰パラメータを予測する第二の予測手段と、
前記所定期間の前記金属材料の腐食量と、前記減衰パラメータとに基づいて、前記所定期間を超える期間の前記金属材料の腐食量を予測する第三の予測手段と、
を備える請求項10に記載の金属材料の腐食量予測装置。 The learning means is
A first learning means for generating a first prediction model for predicting the amount of corrosion of the metal material for a predetermined period of time,
Second learning means for generating a second prediction model for predicting a damping parameter indicating the decay of the corrosion rate of the metal material in a period exceeding the predetermined period,
Equipped with
The prediction means is
By the first prediction model, by inputting a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and a predetermined predetermined period, the corrosion amount of the metal material during the predetermined period is predicted. A first predictor,
By the second prediction model, a plurality of environmental parameters indicating the usage environment of the metal material whose corrosion amount is to be predicted and a period exceeding the predetermined period are input, and the corrosion of the metal material during the period exceeding the predetermined period is input. A second predicting means for predicting a damping parameter indicating speed damping,
Corrosion amount of the metal material in the predetermined period, based on the attenuation parameter, a third predicting means for predicting the corrosion amount of the metal material in a period exceeding the predetermined period,
The corrosion amount prediction device for a metal material according to claim 10, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020522089A JP6939995B2 (en) | 2019-02-08 | 2020-01-09 | Metal material corrosion amount prediction model generation method, metal material corrosion amount prediction method, metal material selection method, metal material corrosion amount prediction program and metal material corrosion amount prediction device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-021602 | 2019-02-08 | ||
JP2019021602 | 2019-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162098A1 true WO2020162098A1 (en) | 2020-08-13 |
Family
ID=71947820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/000519 WO2020162098A1 (en) | 2019-02-08 | 2020-01-09 | Method for generating metallic material corrosion level prediction model, metallic material corrosion level predicting method, metallic material selecting method, metallic material corrosion level prediction program, and metallic material corrosion level prediction device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6939995B2 (en) |
WO (1) | WO2020162098A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112348264A (en) * | 2020-11-10 | 2021-02-09 | 南京钢铁股份有限公司 | Carbon steel corrosion rate prediction method based on random forest algorithm |
WO2021055296A1 (en) * | 2019-09-20 | 2021-03-25 | Ams Trace Metals, Inc. | Techniques for forecasting and/or preventing degradation and corrosion |
US11579586B2 (en) * | 2019-09-30 | 2023-02-14 | Saudi Arabian Oil Company | Robot dispatch and remediation of localized metal loss following estimation across piping structures |
WO2023019078A1 (en) * | 2021-08-09 | 2023-02-16 | Baker Hughes Holdings Llc | Machine learning based techniques for predicting component corrosion likelihood |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7104326B2 (en) * | 2018-09-27 | 2022-07-21 | 日本電信電話株式会社 | Corrosion assessment device and its method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1021211A (en) * | 1996-06-28 | 1998-01-23 | Taisei Corp | Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure |
JP2006053122A (en) * | 2003-12-26 | 2006-02-23 | Jfe Steel Kk | Life prediction method for steel material, and design method for steel material and structure |
JP3909057B2 (en) * | 2001-07-12 | 2007-04-25 | 新日本製鐵株式会社 | Corrosion prediction method for weathering steel |
JP2012008152A (en) * | 2011-10-14 | 2012-01-12 | Shikoku Electric Power Co Inc | Method for estimating corrosion and deterioration process of reinforced concrete structure |
JP2012251846A (en) * | 2011-06-02 | 2012-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Corrosion analysis system and method |
WO2019135361A1 (en) * | 2018-01-05 | 2019-07-11 | Jfeスチール株式会社 | Method for predicting corrosion amount of metal material, method for selecting metal material, and device for predicting corrosion amount of metal material |
-
2020
- 2020-01-09 WO PCT/JP2020/000519 patent/WO2020162098A1/en active Application Filing
- 2020-01-09 JP JP2020522089A patent/JP6939995B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1021211A (en) * | 1996-06-28 | 1998-01-23 | Taisei Corp | Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure |
JP3909057B2 (en) * | 2001-07-12 | 2007-04-25 | 新日本製鐵株式会社 | Corrosion prediction method for weathering steel |
JP2006053122A (en) * | 2003-12-26 | 2006-02-23 | Jfe Steel Kk | Life prediction method for steel material, and design method for steel material and structure |
JP2012251846A (en) * | 2011-06-02 | 2012-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Corrosion analysis system and method |
JP2012008152A (en) * | 2011-10-14 | 2012-01-12 | Shikoku Electric Power Co Inc | Method for estimating corrosion and deterioration process of reinforced concrete structure |
WO2019135361A1 (en) * | 2018-01-05 | 2019-07-11 | Jfeスチール株式会社 | Method for predicting corrosion amount of metal material, method for selecting metal material, and device for predicting corrosion amount of metal material |
Non-Patent Citations (1)
Title |
---|
KATAYAMA HIDEKI: "Analysis with machine learning of atmosheric corrosion behavior in carbon steel", PROCEEDINGS OF THE 65TH JAPAN CONFERENCE ON MATERIALS AND ENVIROMENTS, 12 October 2018 (2018-10-12), pages 347 - 348 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021055296A1 (en) * | 2019-09-20 | 2021-03-25 | Ams Trace Metals, Inc. | Techniques for forecasting and/or preventing degradation and corrosion |
US11579586B2 (en) * | 2019-09-30 | 2023-02-14 | Saudi Arabian Oil Company | Robot dispatch and remediation of localized metal loss following estimation across piping structures |
CN112348264A (en) * | 2020-11-10 | 2021-02-09 | 南京钢铁股份有限公司 | Carbon steel corrosion rate prediction method based on random forest algorithm |
WO2023019078A1 (en) * | 2021-08-09 | 2023-02-16 | Baker Hughes Holdings Llc | Machine learning based techniques for predicting component corrosion likelihood |
Also Published As
Publication number | Publication date |
---|---|
JP6939995B2 (en) | 2021-09-22 |
JPWO2020162098A1 (en) | 2021-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020162098A1 (en) | Method for generating metallic material corrosion level prediction model, metallic material corrosion level predicting method, metallic material selecting method, metallic material corrosion level prediction program, and metallic material corrosion level prediction device | |
Wan et al. | Probabilistic forecasting of wind power generation using extreme learning machine | |
Hameed et al. | Prediction of high-strength concrete: high-order response surface methodology modeling approach | |
Taylor | Smooth transition exponential smoothing | |
Lima et al. | Time series forecasting using Holt-Winters exponential smoothing: An application to economic data | |
US11467082B2 (en) | Method for predicting corrosion loss of metal material, method for selecting metal material, and device for predicting corrosion loss of metal material | |
Howarth et al. | Risk mitigation and the social cost of carbon | |
CN107563542A (en) | Data predication method and device and electronic equipment | |
Fathian et al. | Multiple streamflow time series modeling using VAR–MGARCH approach | |
Naess et al. | Statistics of extreme wind speeds and wave heights by the bivariate ACER method | |
Di Nola et al. | Rescue policies for small businesses in the COVID-19 recession | |
Victoria et al. | Carbon and cost critical elements: a comparative analysis of two office buildings | |
Tuhkuri | Big data: Google searches predict unemployment in Finland | |
Loscos et al. | Short-term real-time forecasting model for spanish GDP (Spain-STING): new specification and reassessment of its predictive power | |
Fertig | Rare breakthroughs vs. incremental development in R&D strategy for an early-stage energy technology | |
Wu et al. | Assessment of allowable sea states for offshore wind turbine blade installation using time-domain numerical models and considering weather forecast uncertainty | |
JP6694124B1 (en) | Pre-processing program and pre-processing method for time series data | |
CN113239562B (en) | Method for predicting mechanical property of whole plate surface of strip steel | |
JP2020071493A (en) | Result prediction device, result prediction method and program | |
JP7448854B2 (en) | Prediction device, prediction method, and program | |
Desikan et al. | Time series analysis and forecasting methods for temporal mining of interlinked documents | |
De Matteis et al. | Simplified assessment of the seismic vulnerability of churches after the 2009 L’Aquila Earthquake | |
Kočí et al. | Determination of moisture-dependent moisture diffusivity using smoothed experimental data | |
Makananisa et al. | Predicting South African personal income tax–using Holt–Winters and SARIMA | |
Popescu | Proposal for a decision support system to predict financial distress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020522089 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20752066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20752066 Country of ref document: EP Kind code of ref document: A1 |