WO2020161968A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2020161968A1
WO2020161968A1 PCT/JP2019/042290 JP2019042290W WO2020161968A1 WO 2020161968 A1 WO2020161968 A1 WO 2020161968A1 JP 2019042290 W JP2019042290 W JP 2019042290W WO 2020161968 A1 WO2020161968 A1 WO 2020161968A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
radar device
signals
signal
unit
Prior art date
Application number
PCT/JP2019/042290
Other languages
French (fr)
Japanese (ja)
Inventor
咲 田中
幸徳 赤峰
晃 北山
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112019006256.5T priority Critical patent/DE112019006256T5/en
Publication of WO2020161968A1 publication Critical patent/WO2020161968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a radar device, for example, a millimeter wave radar device mounted on an automobile.
  • the millimeter-wave radar device installed in automobiles is used, for example, as a sensor for automatic driving, and is used to measure the distance, relative speed, and azimuth with the target object that is the measurement target.
  • the distance to the target is estimated by the delay time of the signal
  • the relative velocity is estimated by the frequency change of the signal due to the Doppler effect.
  • the azimuth is estimated by the phase difference between the signals received between the antennas.
  • radar devices for remote detection that aim for automated driving of level 3 or higher require high-resolution azimuth estimation.
  • a radar device using a plurality of receiving antennas it is possible to widen the antenna aperture length by widening the distance between the receiving antennas arranged most distant from each other.
  • downsizing of the radar device is required.
  • Virtual antenna technology based on MIMO is important as a technology for achieving both miniaturization of radar equipment and high-resolution direction estimation.
  • Patent Document 1 A MIMO radar device using a virtual antenna technology by MIMO is described in Patent Document 1.
  • signals can be transmitted from a plurality of transmitting antennas and received by a plurality of receiving antennas to multiplex the azimuth information of the target and virtually increase the number of receiving antennas. As a result, it is possible to suppress the actual number of receiving antennas, reduce the size of the radar device, and increase the resolution of the direction estimation.
  • the signals transmitted from the transmission antennas are required to be orthogonal to each other and separable.
  • the orthogonality of signals can be achieved by code division, frequency division or time division.
  • code division requires a high calculation cost
  • frequency division makes it difficult to perfectly perform signal separation. Therefore, in this specification, a radar device that employs a time division method will be described.
  • the time division method can be realized by switching the transmission antenna that transmits the signal for each time.
  • the distance of a target having a relative speed is measured by a MIMO radar device adopting a time division method
  • the target moves while switching the transmission antenna, and a distance variation of about several mm occurs. ..
  • the range resolution required for a millimeter wave radar device for automatic driving is about 0.1 m to several m. Therefore, in the distance measurement using the millimeter-wave radar device for automatic driving, the distance fluctuation that occurs while switching the transmission antenna can be ignored.
  • the distance variation of about several mm caused by switching the transmitting antenna is about the same as the wavelength of the transmitted signal. Therefore, the distance variation is detected as a phase variation when measuring the azimuth of the target. As described above, the azimuth of the target is estimated using the phase difference between the received signals. However, if the phase variation occurs due to the distance variation, the accuracy of the orientation estimation deteriorates. Since the distance variation has a value corresponding to the relative velocity of the target, it is possible to suppress the deterioration of the accuracy of the direction estimation by correcting the varied phase using the estimated relative velocity.
  • Patent Document 1 describes a technique for correcting the phase using the estimated relative speed.
  • Patent Document 1 discloses that a chirp signal which is a transmission signal is transmitted at different time intervals for each transmission antenna in order to estimate the relative speed.
  • a chirp signal is transmitted at different time intervals for each transmitting antenna to uniquely estimate a relative velocity, the estimated relative velocity is used to correct the phase, and the corrected phase is used to estimate the direction. Is performed with high resolution.
  • An object of the present invention is to provide a radar device capable of suppressing a long measurement time.
  • the radar device a plurality of transmission antennas for transmitting a plurality of transmission signals, a plurality of reception antennas for receiving as a signal a reflected wave generated by the transmission wave of the plurality of transmission signals being reflected by the target, A plurality of signals received by the receiving antenna are added together so that they are arranged in time series, and a signal processing unit that detects the relative speed of the target by using the signal generated by the addition is provided. ..
  • FIG. 3 is a block diagram showing a configuration of a radar device according to the first embodiment.
  • FIG. FIG. 3 is a diagram for explaining a radar device 1 according to the first embodiment.
  • 3A to 3C are diagrams for explaining the process of the radar unit according to the first embodiment.
  • 3 is a block diagram showing a configuration of a radar device according to the first embodiment.
  • FIG. FIG. 3 is a diagram for explaining a rearrangement unit according to the first embodiment.
  • FIGS. 6A and 6B are views for explaining the rearrangement unit according to the first embodiment.
  • 7 is a block diagram showing a configuration of a radar device according to a modified example of the first embodiment.
  • FIG. FIG. 6 is a waveform diagram for explaining the radar device according to the second embodiment.
  • FIG. 6 is a waveform diagram for explaining the radar device according to the second embodiment.
  • FIG. 9 is a diagram for explaining a radar device according to a third embodiment.
  • the constituent elements are not necessarily essential unless otherwise specified or in principle considered to be essential. Needless to say.
  • the shapes, positional relationships, etc. of constituent elements, etc. when referring to shapes, positional relationships, etc. of constituent elements, etc., the shapes thereof are substantially the same unless explicitly stated otherwise or in principle not apparently. And the like, etc. are included. This also applies to the above numerical values and ranges.
  • FIG. 1 is a block diagram showing the configuration of the radar device according to the first embodiment.
  • reference numeral 1 denotes a radar device
  • 100 denotes a target object to be measured.
  • a wavy line 110 drawn between the radar device 1 and the target 100 indicates that the distance between the radar device 1 and the target 100 is large.
  • the radar device 1 includes a plurality of transmitting antennas 101 and 103, a plurality of receiving antennas 104, and a radar unit 108 connected to the transmitting antennas 101 and 103 and the plurality of receiving antennas 104. Further, in FIG. 1, a plurality of virtual receiving antennas (virtual receiving antennas) generated by the MIMO technique are shown by reference numeral 107. In the figure, the radar apparatus 1 having two transmitting antennas and three receiving antennas is shown, but the number of transmitting antennas and receiving antennas is not limited to this.
  • the radar unit 108 superimposes a chirp signal, which is a transmission signal, on a carrier wave of a predetermined frequency and supplies the chirp signal to the transmission antennas 101 and 103.
  • the transmission waves of the plurality of signals transmitted from the transmission antennas 101 and 103 are reflected by the target 100 to generate reflected waves.
  • the reflected waves are received by the receiving antennas as reflected signals, and the signals received by the respective receiving antennas are supplied to the radar unit 108.
  • the radar unit 108 Since the time division method is adopted, the radar unit 108 operates so that both the transmitting antennas 101 and 103 do not transmit signals at the same time. That is, the radar unit 108 operates such that the transmission antenna 103 does not perform transmission while the transmission antenna 101 is transmitting a signal. Similarly, the radar unit 108 operates so that the transmitting antenna 101 does not transmit during the period when the transmitting antenna 103 is transmitting a signal.
  • the transmitting antennas 101 and 103 are installed apart from each other by a predetermined distance DIL. Since the installation positions are different, a route difference occurs between the route between the target 100 and the transmitting antenna 101 and the route between the target 100 and the transmitting antenna 103.
  • the path difference between the transmitting antennas 101 and 103 is indicated by reference numeral 105.
  • the path difference 105 is about the same as the wavelength of the transmission signal.
  • the path difference 105 causes a phase difference between the signal transmitted from the transmission antenna 101 and the signal transmitted from the transmission antenna 103 with respect to the target 100. This is detected as the phase difference between the transmitting antennas by the antenna array 104AY configured by the plurality of receiving antennas 104.
  • the path length between each receiving antenna 104 and the target 100 differs depending on the installation position where each receiving antenna 104 is installed and the azimuth between the target 100.
  • This path difference is shown as 106 in FIG.
  • a phase difference corresponding to the path difference 106 occurs between the reception signals received by the receiving antenna 104. That is, the azimuth of the target 100 is detected as the phase difference between the received signals.
  • the virtual reception antenna 107 is arranged at the position shown in FIG. Is considered Since the virtual reception antennas 107 are also plural, it can be considered that the antenna array 107YA is configured by the plural virtual reception antennas 107.
  • the antenna array 104YA and the antenna array 107YA are added to each other to form an extended antenna array (extended antenna array), and based on the phase difference between the reception signals received by the extended antenna array, The direction of the target 100 is estimated. ⁇ Target movement when switching the transmitting antenna>
  • FIG. 2 is a diagram for explaining the radar device according to the first embodiment.
  • FIG. 2 only the transmitting antennas 101 and 103 and the target 100 shown in FIG. 1 are shown.
  • the state of the transmission antennas 101 and 103 and the target 100 at time T1 is shown on the upper side of the paper of FIG. 2, and at the lower side of the paper, the time has elapsed from time T1 and is time T2.
  • the states of the transmitting antennas 101, 103 and the target 100 when the target is turned on are shown.
  • the path difference 105 described in FIG. 1 is schematically shown as a block connected to the transmission antennas 101 and 103.
  • the transmitting antenna 101 is transmitting a signal.
  • the target 100 is assumed to be at the position DI_T1 with respect to the radar device 1 shown in FIG.
  • the transmission signal from the transmission antenna 101 is reflected by the target 100 and is received by the extended antenna array shown in FIG.
  • the target 100 has a relative speed, and in the example of FIG. 2, it moves in a direction away from the radar device 1. Therefore, at the time T2, the target has moved by the distance 201 with respect to the position DI_T1 and is present at the position DI_T2. At time T2, the transmitting antenna 103 transmits a signal. Since the target 100 has moved by the distance 201, a path difference corresponding to the distance 201 occurs between the transmitting antenna and the target 100 as compared with the time T1. As for the route between the target 100 and the receiving antenna, a route difference corresponding to the distance 201 occurs as compared with the time T1. That is, the propagation path of the transmission signal from the transmission antenna to the reception antenna changes by twice the distance 201 as compared with the time T1.
  • the change in the propagation path of the transmission signal appears as a phase difference in the reception signal received by the reception antenna because it is near the wavelength of the transmission signal. Since the azimuth of the target 100 is estimated by the phase difference between the received signals, the change in the propagation path of the transmission signal greatly affects the estimation of the azimuth.
  • the propagation path difference between the propagation path of the transmission signal by the transmission antenna 101 at time T1 and the propagation path of the transmission signal by the transmission antenna 103 at time T2 is twice the distance 201, which is twice the distance 201. It is a value obtained by adding a route difference corresponding to.
  • the distance 201 is given by the product of the relative speed of the target 100 and the time interval of the signal that is the transmission signal. Therefore, it is possible to prevent the accuracy of the direction estimation from deteriorating by accurately obtaining the relative velocity of the target 100 and correcting the phase difference with the obtained relative velocity. ⁇ Processing flow in radar unit>
  • FIG. 3 is a diagram for explaining processing in the radar unit according to the first embodiment.
  • FIG. 3 shows a case where three transmitting antennas are used as the transmitting antennas.
  • the transmission antenna 102 (not shown) is installed between the transmission antennas 101 and 103 shown in FIG.
  • the three transmitting antennas 101 to 103 are examples, and the number is not limited to this.
  • FIG. 3A shows a chirp signal which is a transmission signal transmitted by the radar unit 108 using three transmission antennas.
  • 3B and 3C schematically show the processing of the radar unit 108 which processes the reception signal reflected by the target 100 and received by the reception antenna.
  • the radar unit 108 operates so as to perform transmission by switching the three transmission antennas 101 to 103 for each corresponding transmission signal.
  • a solid line 101_S indicates a chirp signal which is a transmission signal transmitted from the transmission antenna 101
  • a two-dot chain line 102_S indicates a chirp signal transmitted from the transmission antenna 102
  • a one-dot chain line 103_S indicates The chirp signal transmitted from the transmission antenna 103 is shown.
  • the chirp signals 101_S to 103_S are the same signals. That is, the inclination of the frequency change and the center frequency when superposed on the carrier wave are the same between the chirp signals 101_S to 103_S.
  • the radar unit 108 Since it is a time division method, the radar unit 108 causes the transmission antenna to transmit the chirp signals 101_S to 103_S so that they do not overlap in time. In the first embodiment, the radar unit 108 operates so that the cycles of the chirp signals transmitted from the respective transmission antennas are the same. In the example of FIG. 3A, the radar unit 108 operates so that the chirp signals 101_S, 102_S, and 103_S are transmitted from the transmitting antennas 101, 102, and 103, respectively, at the same period of 3 Tmm. In this case, the radar unit 108 switches the transmission antennas 101, 102, and 103 so that the chirp signals are transmitted in the order of the chirp signals 101_S, 102_S, and 103_S.
  • each chirp signal for example, the chirp signal 101_S
  • the chirp signal 101_S is a signal which is discontinuous in time.
  • the combined chirp signal is a temporally continuous signal.
  • the transmitted combined chirp signal is reflected by the target 100, and the reflected combined chirp signal is received by the plurality of receiving antennas forming the antenna arrays 104YA and 107YA.
  • the respective receiving antennas receive the combined chirp signals in the order of transmission, that is, in the order of the chirp signals 101_S, 102_S, and 103_S.
  • the radar unit 108 separates the combined chirp signal received by the receiving antenna 104 into chirp signals 101_S and 102_S103_S corresponding to the transmitting antennas 101, 102 and 103.
  • FIG. 3B three chirp signals 101_S, 102_S and 103_S which are discontinuous in time are generated.
  • the path difference 105 described in FIG. 1 is obtained, and the obtained path difference 105 and the phase difference 106 between the receiving antennas 104 (FIG. 1) are shown in FIG.
  • the virtual receiving antenna 107 is formed.
  • the relative speed of the target 100 is estimated by the frequency change of the chirp signal due to the Doppler effect.
  • the relative velocity is estimated by detecting the frequency changes of the chirp signals 101_S, 102_S, and 103_S by sampling. The problem arises that the maximum detectable relative speed decreases.
  • the radar unit 108 multiplies the separated chirp signals 101_S, 102_S, and 103_S by a predetermined coefficient described later in the second embodiment, and The chirp signals 101_S, 102_S, and 103_S are added so that the chirp signals are arranged in series. As a result, as shown in FIG. 3C, the chirp signals 101_S to 103_S are restored so as to be temporally continuous. By sampling the chirp signals 101_S to 103_S arranged so as to be continuous in time, a change in frequency in the recovered chirp signal is detected.
  • the sampling frequency can be increased. As a result, it is possible to suppress a decrease in the maximum detectable relative speed.
  • the sampling target is a chirp signal generated by adding three chirp signals together, it is possible to reduce the deterioration of the signal-to-noise ratio SNR, and it is possible to detect a distant target. ..
  • Relative velocity is detected by the change in the center frequency of the chirp signal due to the Doppler effect.
  • This change in center frequency is detected by sampling with each chirp signal as a sampling point.
  • the maximum detectable speed is determined by the time interval of the chirp signal.
  • the millimeter-wave radar device When a target moving at a relative speed higher than the maximum detection speed is detected, the millimeter-wave radar device outputs a value obtained by subtracting a constant multiple of the maximum detection speed as a result of estimating the relative speed.
  • the transmission antennas are switched and used at each time, so that the time interval of the chirp signal transmitted from the same transmission antenna becomes long in proportion to the total number of transmission antennas. Therefore, there is a problem that the maximum detection speed decreases in inverse proportion to the total number of transmitting antennas and decreases.
  • Patent Document 1 by making the time interval of the chirp signal ambiguous, the maximum detection speed at which the aliasing display occurs is ambiguous, thereby improving the speed estimation accuracy. Due to the ambiguity of the maximum detection speed, the relative speeds displayed after being folded back have different values even for the same target. Therefore, the relative speed of the target above the maximum detected speed is estimated by performing matching processing on the speed estimation result obtained from the chirp signal from each transmitting antenna. However, in this method, it is necessary to lengthen the time interval between the chirp signals in order to maintain the orthogonality of the signals, which reduces the maximum detection speed. In addition, in the speed estimation by the matching process, there is a concern that the relative speed is not uniquely determined in addition to the increase in the calculation amount.
  • each of the chirp signals 101_S to 103_S has the same period 3Tmm, and the time interval of the chirp signals has no ambiguity and is constant. Therefore, when the same target is measured, the same relative velocity is obtained. Therefore, it is not required to perform the matching process, and it is possible to suppress an increase in the calculation amount in the radar unit 108. ⁇ Structure of radar unit>
  • FIG. 4 is a block diagram showing the configuration of the radar device according to the first embodiment.
  • the radar unit 108 includes a switch unit 200, a memory unit 207, and a signal processing unit.
  • the signal processing unit includes a rearrangement unit 201, a correction unit 202, a time/frequency FFT (Fast Fourier Transform) unit 203, a distance/speed estimation unit 204, a correction unit 205, and an orientation estimation unit 206.
  • FFT Fast Fourier Transform
  • the operation of the radar unit 108 differs depending on whether the distance, relative speed, and azimuth of the target 100 (FIG. 1) have not been measured in advance, or when the relative speed of the target 100 has been measured in advance.
  • the first measurement the case where the distance, the relative speed, and the azimuth are not measured in advance
  • the second measurement the case where the relative speed is measured in advance. For example, when the radar device 1 is powered on, the first measurement is executed, and at the next timing, the second measurement is executed.
  • the switch unit 200 connects the receiving antenna 104 to the rearrangement unit 021.
  • the rearrangement unit 201 rearranges the chirp signals received by the receiving antennas 104 into a two-dimensional data array, further divides the obtained two-dimensional data array into transmitting antennas, rearranges them, and outputs the two-dimensional data to each transmitting antenna. Form a dimensional data array.
  • the rearrangement unit 201 will be described in detail with reference to the drawings. 5 and 6 are diagrams for explaining the sorting unit according to the first embodiment.
  • the reception unit 350 includes a local oscillator circuit 352, a mixer 351, and an analog/digital conversion circuit (ADC) 353.
  • ADC analog/digital conversion circuit
  • the local oscillator circuit 352 generates a local signal having a frequency corresponding to the carrier wave of the transmission signal.
  • the mixer 351 mixes the received signal received by the receiving antenna 104 and the local signal. Due to this mixing, the mixer 351 outputs the chirp signal mixed with the carrier wave. Since the chirp signal output from the mixer 351 is analog, the ADC 353 converts the analog chirp signal into a digital chirp signal.
  • the digital chirp signal obtained by the conversion is supplied to the rearrangement unit 201 via the switch unit 200.
  • FIG. 6 is a diagram for explaining sorting performed in the sorting unit 201.
  • Digital chirp signals are sequentially supplied to the rearrangement unit 201 via the switch unit 200. That is, the plurality of chirp signals transmitted from the plurality of transmission antennas and reflected by the target 100 are supplied to the rearrangement unit 201 in time series.
  • the time series chirp signals from the ADC 353 are indicated by reference numerals 101_S to 103_S.
  • the rearrangement unit 201 converts the time-series chirp signals shown in FIG. 6A into a two-dimensional data array. That is, as shown in FIG. 6B, the chirp signals are arranged in the two-dimensional data array while changing the row in the two-dimensional data array for each chirp signal.
  • the row direction of the two-dimensional data array is shown as a distance
  • the column direction is shown as a velocity.
  • the rearrangement unit 201 further generates a two-dimensional data array corresponding to each transmitting antenna from the two-dimensional data array shown in FIG. 6(B).
  • the two-dimensional data array corresponding to the transmitting antenna is also similar to the two-dimensional data array shown in FIG. The difference is that in the two-dimensional data array corresponding to the transmitting antennas, a plurality of chirp signals discontinuously transmitted from the same transmitting antenna are sequentially arranged in the transmission order along the column direction of the two-dimensional data array. It is that you are.
  • the time/frequency FFT unit 203 performs a fast Fourier transform on the chirp signal of the two-dimensional data array generated by the rearrangement unit 201, and the distance/speed estimation unit 204 detects a peak to detect the target 100.
  • Distance and relative velocity can be estimated.
  • the estimated distance and relative velocity are recorded in the memory unit 207. If the estimated relative velocity of the target 100 is not “0”, the correction unit 205 corrects the phase of the chirp signal for each transmitting antenna using the previously estimated relative velocity.
  • the orientation estimation unit 206 estimates the orientation of the target 100 using the corrected phase.
  • the estimated azimuth is recorded in the memory 207.
  • the reception antenna 104 is connected to the correction unit 202 via the switch unit 200.
  • the correction unit 202 reads the azimuth of the target 100 recorded in the memory unit 207 and multiplies the chirp signal for each transmitting antenna by the correction term shown in Expression (1) to update the phase of the chirp signal. ..
  • i is an imaginary number
  • k is a number that specifies the transmitting antenna.
  • is represented by Expression (2).
  • Nrx is the number of receiving antennas
  • d is the distance between the receiving antennas
  • is the wavelength of the transmission signal
  • is the azimuth of the target.
  • the time/frequency FFT unit 203 performs calculation and the distance/speed estimation unit 204 performs peak detection on the chirp signal updated by the correction unit 202, and the distance and relative distance of the target 100 are measured.
  • Speed estimation is performed. That is, in the second measurement, the orientation recorded in the memory 207 is fed back to the correction unit 202. Using the fed-back bearing, the correction unit 202 updates the chirp signal to a state corresponding to the maximum detected speed. The distance and the relative speed of the target 100 are estimated based on the updated chirp signal.
  • the addition of the chirp signals and the sampling of the chirp signals described in FIG. 3 are performed in the time/frequency FFT 203.
  • the decrease in the maximum speed detected by the distance/speed estimation unit 204 is suppressed.
  • the matching process is not required, it is possible to reduce the amount of calculation in the time/frequency FFT unit 203 and suppress the measurement time from becoming long.
  • the addition of the chirp signals and the sampling of the chirp signals are performed in the time/frequency FFT unit 203, but the present invention is not limited to this.
  • FIG. 7 is a block diagram showing the configuration of the radar device according to the modification of the first embodiment.
  • the radar device 108_1 includes a signal processing unit and a memory unit 207.
  • the signal processing unit includes a correction unit 202, a time/frequency FFT speed estimation unit 203_4, a speed result correction unit 205, and an orientation estimation unit 206.
  • the correction unit 205 performs the correction by multiplying the value of the expression (3).
  • Equation (3) i is an imaginary unit, c is the speed of light, Vest is the center frequency of the transmission signal including the carrier wave, fc is the center frequency of the chirp signal, and Tm is the sampling period.
  • the correction unit 205 based on the speed result corrects the phase of each transmission antenna based on the relative speed of the target 100 output from the speed estimation unit 203_4 based on the time/frequency FFT.
  • the azimuth estimation unit 206 estimates the azimuth of the target 100 using the corrected phase, as in FIG. 4. The estimated azimuth is recorded in the memory 207.
  • the orientation of the target 100 recorded in the memory unit 207 or the orientation of the target 100 from the outside 208 is supplied to the correction unit 202.
  • the correction unit 202 updates the chirp signal to a state corresponding to the maximum detection speed, using the supplied orientation, as in FIG. 4.
  • the azimuth of the target 100 is externally supplied to the correction unit 202 at the time of the first measurement, and the azimuth recorded in the memory unit 207 at the time of the second measurement is the correction unit 202. Is supplied to.
  • the addition and sampling of the chirp signal described in FIG. 3 is performed in the speed estimation unit 203_4 by the time/frequency FFT.
  • the units except the memory unit 207 may be realized by software, or may be realized by a combination of hardware and software. (Embodiment 2) In the second embodiment, the predetermined coefficient described in FIG. 3B will be described.
  • the difference in the position of the transmitting antenna appears as a phase difference. Due to this phase difference, a virtual receiving antenna can be realized in MIMO technology.
  • the transmission antennas are switched for each time, so that the reception antenna receives the signal of each transmission antenna at each time. Since there is a phase difference according to the path difference 105 (FIG. 1) between the chirp signals transmitted from each transmitting antenna, it is necessary to separate the chirp signals for each transmitting antenna for processing.
  • the radar device detects the frequency change of the chirp signal caused by the Doppler effect.
  • the period of the sampling pulse for detecting the frequency change decreases in inverse proportion to the number of transmitting antennas as described above, and the maximum detection speed decreases.
  • the chirp signals 101_S to 103_S are time-series data, it is possible to prevent the cycle of the sampling pulse from becoming long.
  • a phase difference corresponding to the path difference 105 exists between the chirp signals. Due to the existence of the phase difference, the amplitude of the chirp signal obtained at the time of sampling changes irregularly, which affects the estimation of the relative velocity of the target.
  • FIG. 8 is a waveform diagram for explaining the radar device according to the second embodiment.
  • FIG. 8 shows a case where there is a phase difference between the chirp signals according to the path difference 105.
  • the chirp signals 101_S to 103_S are sampled in the cycle of the sampling pulse, that is, the sampling cycle Tm
  • the chirp signals at the sampling timings indicated by the marks become signals that change in amplitude different from 101_S to 103_S, and different from 101_S to 103_S It becomes a wave containing frequency components. Therefore, it is not suitable for detecting the frequency change with the passage of time.
  • the separated chirp signals 101_S, 102_S and 103_S are multiplied by a predetermined coefficient so that the chirp signals are arranged in time series.
  • the addition of 101_S, 102_S, and 103_S is being performed.
  • a column including the coefficient CK and the coefficient “1” represented by the equation (2) is used as a predetermined coefficient.
  • the time series data of the chirp signal adjusted by the coefficient can be obtained.
  • FIG. 9 is a waveform diagram for explaining the radar device according to the second embodiment. 9 is similar to FIG. 8, but shows the waveforms of the chirp signals 101_S to 103_S in which the phase difference between the chirp signals due to the path difference 105 is adjusted by multiplying by a predetermined coefficient. Since the waveforms of 101_S to 103_S are superposed, as shown in FIG. 9, the change in the amplitude at the sampling timing indicated by X is regular, and even if the chirp signals are transmitted from the transmitting antennas whose installation positions are different from each other. , It is possible to treat as a chirp signal transmitted from the same transmitting antenna.
  • the sampling period can be shortened even if the time interval between the chirp signals becomes long. Furthermore, at the sampling timing, it is possible to handle the chirp signals from the same transmitting antenna as if they were being sampled, and the maximum detection speed can be improved.
  • a test method for testing whether or not the time/frequency FFT unit 203 that performs addition of chirp signals and sampling of chirp signals is operating normally will be described.
  • a predetermined test signal is supplied to the time/frequency FFT unit 203, and it is checked whether or not the estimated relative speed is equal to or higher than the maximum detection speed Vmax shown in the equation (4). By doing so, it is possible to execute.
  • the estimated relative speed is equal to or higher than the maximum detection speed Vmax when the predetermined test signal is supplied, it is possible to determine that the time/frequency FFT unit 203 is operating normally.
  • the predetermined test signal is a signal corresponding to a state where the velocity is V and the bearing is not “0”.
  • the speed V at this time is set so as to satisfy the condition of Expression (5).
  • N Tx is the number of transmit antennas and Nc is the number of chirp signals in one frame.
  • the radar device described in the first or second embodiment is used to perform tracking for estimating the relative speed of the target 100. Tracking estimates the relative speed of a target that moves faster than the maximum detection speed of the radar device.
  • tracking the relative speed of the target is estimated using the past detection results.
  • the distance and relative speed of the target are estimated by discretely executing digital signal processing at regular time intervals. Therefore, the measured time and the estimated distance and relative velocity are also discretized, and the minimum unit exists.
  • the minimum unit of distance measurement is ⁇ R and the minimum unit of measured time is Tc
  • the relative speed is given by a value obtained by dividing time by distance change.
  • the past relative speed can be calculated by using the minimum unit ⁇ R and Tc which are the past measurement results, but the calculated relative speed is also discretized, and the minimum unit exists.
  • the result of distance measurement at any time can be used, and the time to see the distance change is given by the product nTc of an arbitrary integer n and the minimum unit Tc.
  • the maximum detection speed is larger in the speed estimation using the past measurement results, but the minimum unit of the estimated speed.
  • the speed estimation value using the past measurement result is larger. Therefore, considering the minimum unit of the estimated speed, a general radar device has a problem in terms of accuracy.
  • FIG. 10 is a diagram for explaining the radar device according to the third embodiment.
  • the horizontal axis indicates the relative speed of the target.
  • the rough relative velocity MVmax of the target is estimated by the velocity estimation using the above-described past measurement result, and then the relative velocity V of the target is estimated by the velocity estimation using the Doppler effect.
  • the relative speed Vest of the target is obtained by adding the relative speed estimated by the speed estimation using the past measurement result and the relative speed estimated by the speed estimation using the Doppler effect.
  • the maximum detection speed of the radar device 1 according to the embodiments is improved. Therefore, in the speed estimation using the past measurement result, the equation (6) can be established even if the integer n that determines the time to see the distance change is small. That is, it is possible to uniquely obtain the relative speed of the target in a short time nTc.
  • M is an integer indicating the number of turns
  • Vmax is the maximum detection speed of the radar device
  • Tm is the time taken to measure one chirp signal
  • N is an arbitrary integer.
  • Rset represents an estimated value of the distance, and, for example, Rest(t0) represents an estimated value of the distance at time t0.
  • radar device 100 target 101, 103 transmission antenna 101_S to 103_S chirp signal 104 reception antenna 108 radar unit 200 switch unit 201 rearrangement unit 202, 205 correction unit 203 time/frequency FFT unit 204 distance/speed estimation unit 206 azimuth estimation unit 207 Memory unit CK coefficient

Abstract

Provided is a radar device that can mitigate lengthening of a measurement time. This radar device comprises: a plurality of transmission antennas that transmit a plurality of transmission signals; a plurality of reception antennas that receive, as signals, reflected waves generated as a result of transmission waves of the plurality of signals being reflected by a target; and a radar unit that adds chirp signals 101_S to 103_S received by the reception antennas such that the chirp signals are arranged in chronological order, and that, using a signal generated by adding the chirp signals, detects the relative speed of the target.

Description

レーダ装置Radar equipment
 本発明は、レーダ装置に関し、例えば、自動車に搭載されるミリ波レーダ装置に関する。 The present invention relates to a radar device, for example, a millimeter wave radar device mounted on an automobile.
 自動車に搭載されるミリ波レーダ装置は、例えば自動運転向けのセンサとして用いられ、測定対象である物標との距離、相対速度および方位を計測するのに用いられる。この場合、物標との距離は、信号の遅延時間により推定され、相対速度はドップラー効果による信号の周波数変化により推定される。また、方位は、アンテナ間で受信した信号間の位相差により推定される。 ㆍThe millimeter-wave radar device installed in automobiles is used, for example, as a sensor for automatic driving, and is used to measure the distance, relative speed, and azimuth with the target object that is the measurement target. In this case, the distance to the target is estimated by the delay time of the signal, and the relative velocity is estimated by the frequency change of the signal due to the Doppler effect. The azimuth is estimated by the phase difference between the signals received between the antennas.
 特に、自動運転レベル3以上の自動運転を目標とした遠方検知向けのレーダ装置では、高分解能方位推定が求められる。方位推定の高分解能化を図るためには、受信アンテナのアンテナ開口長を広くすることが望ましい。複数の受信アンテナを用いるレーダ装置においては、最も離れて配置されている受信アンテナ間の距離を広くすることにより、アンテナ開口長を広くすることが可能である。一方、自動車の見栄えを損なわないようにするためには、レーダ装置の小型化が求められている。  In particular, radar devices for remote detection that aim for automated driving of level 3 or higher require high-resolution azimuth estimation. In order to increase the resolution of azimuth estimation, it is desirable to widen the antenna aperture length of the receiving antenna. In a radar device using a plurality of receiving antennas, it is possible to widen the antenna aperture length by widening the distance between the receiving antennas arranged most distant from each other. On the other hand, in order not to spoil the appearance of the automobile, downsizing of the radar device is required.
 レーダ装置の小型化と高分解能方位推定の両立を図る技術として、MIMO(Multi-Input&Multi-Output)による仮想アンテナ技術が重要となっている。 Virtual antenna technology based on MIMO (Multi-Input & Multi-Output) is important as a technology for achieving both miniaturization of radar equipment and high-resolution direction estimation.
 MIMOによる仮想アンテナ技術を用いたMIMOレーダ装置が、特許文献1に記載されている。 A MIMO radar device using a virtual antenna technology by MIMO is described in Patent Document 1.
特表2017-522576号公報Japanese Patent Publication No. 2017-522576
 MIMOレーダ装置では、複数の送信アンテナから信号を送信し、複数の受信アンテナで受信を行うことにより、物標の方位情報を多重化し、仮想的に受信アンテナの数を増加させることができる。これにより、実際の受信アンテナの数を抑制して、レーダ装置の小型化を図りながら、方位推定の高分解能化を図ることが可能である。 In a MIMO radar device, signals can be transmitted from a plurality of transmitting antennas and received by a plurality of receiving antennas to multiplex the azimuth information of the target and virtually increase the number of receiving antennas. As a result, it is possible to suppress the actual number of receiving antennas, reduce the size of the radar device, and increase the resolution of the direction estimation.
 MIMOレーダ装置においては、送信アンテナから送信される信号は、互いに直交し、分離可能であることが必要とされる。信号の直交性は、符号分割、周波数分割あるいは時間分割によって達成することが可能である。しかしながら、符号分割では、高い計算コストが要求され、周波数分割では、信号分離を完璧に行うことが困難である。そのため、本明細書では、時間分割方式を採用したレーダ装置を説明する。 In the MIMO radar device, the signals transmitted from the transmission antennas are required to be orthogonal to each other and separable. The orthogonality of signals can be achieved by code division, frequency division or time division. However, code division requires a high calculation cost, and frequency division makes it difficult to perfectly perform signal separation. Therefore, in this specification, a radar device that employs a time division method will be described.
 時間分割方式は、信号を送信する送信アンテナを時間ごとに切り替えることにより実現することができる。時間分割方式を採用したMIMOレーダ装置によって、相対速度を有する物標の距離を計測する場合、送信アンテナを切り替えている間に、物標が移動し、数mm程度の距離変動が生じることになる。しかしながら、自動運転向けのミリ波レーダ装置に要求される距離分解能は、0.1m~数m程度である。そのため、自動運転向けのミリ波レーダ装置を用いた距離計測では、送信アンテナを切り替えている間に生じる距離変動は、無視することができる。 The time division method can be realized by switching the transmission antenna that transmits the signal for each time. When the distance of a target having a relative speed is measured by a MIMO radar device adopting a time division method, the target moves while switching the transmission antenna, and a distance variation of about several mm occurs. .. However, the range resolution required for a millimeter wave radar device for automatic driving is about 0.1 m to several m. Therefore, in the distance measurement using the millimeter-wave radar device for automatic driving, the distance fluctuation that occurs while switching the transmission antenna can be ignored.
 一方、送信アンテナの切り替えにより生じる数mm程度の距離変動は、送信される信号の波長と同程度の大きさである。そのため、距離変動は、物標の方位を計測する際の位相変動として検知されることになる。前記したように、物標の方位は受信した信号間の位相差を用いて推定するが、距離変動によって位相変動が生じると、方位推定の精度が劣化することになる。距離変動は、物標の相対速度に応じた値であるため、推定した相対速度を用いて、変動した位相を補正することにより、方位推定の精度の劣化を抑制することが可能である。 On the other hand, the distance variation of about several mm caused by switching the transmitting antenna is about the same as the wavelength of the transmitted signal. Therefore, the distance variation is detected as a phase variation when measuring the azimuth of the target. As described above, the azimuth of the target is estimated using the phase difference between the received signals. However, if the phase variation occurs due to the distance variation, the accuracy of the orientation estimation deteriorates. Since the distance variation has a value corresponding to the relative velocity of the target, it is possible to suppress the deterioration of the accuracy of the direction estimation by correcting the varied phase using the estimated relative velocity.
 特許文献1には、推定した相対速度を用いて、位相を補正する技術が記載されている。特許文献1では、相対速度を推定するために、送信アンテナごとに異なる時間間隔で送信信号であるチャープ信号を送信することが示されている。特許文献1では、送信アンテナごとに異なる時間間隔でチャープ信号を送信することにより、相対速度を一意に推定し、推定した相対速度を用いて位相を補正し、補正された位相を用いて方位推定を高分解能で行っている。 Patent Document 1 describes a technique for correcting the phase using the estimated relative speed. Patent Document 1 discloses that a chirp signal which is a transmission signal is transmitted at different time intervals for each transmission antenna in order to estimate the relative speed. In Patent Document 1, a chirp signal is transmitted at different time intervals for each transmitting antenna to uniquely estimate a relative velocity, the estimated relative velocity is used to correct the phase, and the corrected phase is used to estimate the direction. Is performed with high resolution.
 しかしながら、時間分割方式を採用したMIMOレーダ装置において、チャープ信号の多様性を確保するためには、送信アンテナごとに送信されるチャープ信号が、時間的に重複しないように、十分な時間を確保することが要求される。すなわち、異なる時間間隔で送信されるチャープ信号が、時間的に重複しないように、十分な時間を確保することが要求される。これにより、特許文献1に記載されている技術では、チャープ信号を送信する期間が長くなり、レーダ装置による計測の時間および推定を行うための演算に要する時間が長くなると言う課題が生じる。 However, in the MIMO radar device adopting the time division method, in order to secure the diversity of the chirp signal, a sufficient time is secured so that the chirp signals transmitted by the respective transmission antennas do not overlap in time. Is required. That is, it is required to secure sufficient time so that the chirp signals transmitted at different time intervals do not overlap in time. As a result, the technique disclosed in Patent Document 1 has a problem in that the period for transmitting the chirp signal becomes long, and the measurement time by the radar device and the time required for the calculation for performing the estimation become long.
 本発明の目的は、計測時間が長くなるのを抑制することが可能なレーダ装置を提供することにある。 An object of the present invention is to provide a radar device capable of suppressing a long measurement time.
 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Among the inventions disclosed in the present application, a brief description of the outline of typical ones is as follows.
 すなわち、レーダ装置は、複数の送信信号を送信する複数の送信アンテナと、複数の送信信号による送信波が物標によって反射されることにより発生する反射波を信号として受信する複数の受信アンテナと、受信アンテナによって受信された複数の信号が、時系列に並ぶように、複数の信号を足し合わせ、足し合わせにより生成された信号を用いて、物標の相対速度を検出する信号処理部とを備える。 That is, the radar device, a plurality of transmission antennas for transmitting a plurality of transmission signals, a plurality of reception antennas for receiving as a signal a reflected wave generated by the transmission wave of the plurality of transmission signals being reflected by the target, A plurality of signals received by the receiving antenna are added together so that they are arranged in time series, and a signal processing unit that detects the relative speed of the target by using the signal generated by the addition is provided. ..
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。 The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
 物標の相対速度を計測する時間が長くなるのを抑制することが可能であるため、計測時間が長くなるのを抑制することが可能なレーダ装置を提供することができる。 Since it is possible to suppress an increase in the time for measuring the relative speed of the target, it is possible to provide a radar device capable of suppressing an increase in the measurement time.
実施の形態1に係わるレーダ装置の構成を示すブロック図である。3 is a block diagram showing a configuration of a radar device according to the first embodiment. FIG. 実施の形態1に係わるレーダ装置1を説明するための図である。FIG. 3 is a diagram for explaining a radar device 1 according to the first embodiment. 図3(A)から(C)は、実施の形態1に係わるレーダユニットの処理を説明するための図である。3A to 3C are diagrams for explaining the process of the radar unit according to the first embodiment. 実施の形態1に係わるレーダ装置の構成を示すブロック図である。3 is a block diagram showing a configuration of a radar device according to the first embodiment. FIG. 実施の形態1に係わる並び替えユニットを説明するための図である。FIG. 3 is a diagram for explaining a rearrangement unit according to the first embodiment. 図6(A)および(B)は、実施の形態1に係わる並び替えユニットを説明するための図である。FIGS. 6A and 6B are views for explaining the rearrangement unit according to the first embodiment. 実施の形態1の変形例に係わるレーダ装置の構成を示すブロック図である。7 is a block diagram showing a configuration of a radar device according to a modified example of the first embodiment. FIG. 実施の形態2に係わるレーダ装置を説明するための波形図である。FIG. 6 is a waveform diagram for explaining the radar device according to the second embodiment. 実施の形態2に係わるレーダ装置を説明するための波形図である。FIG. 6 is a waveform diagram for explaining the radar device according to the second embodiment. 実施の形態3に係わるレーダ装置を説明するための図である。FIG. 9 is a diagram for explaining a radar device according to a third embodiment.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 In the following embodiments, when there is a need for convenience, they will be described by dividing them into a plurality of sections or embodiments, but unless otherwise specified, they are not unrelated to each other, and one is not There are some or all of the modifications, details, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, amount, range, etc.) of the elements, the case where it is particularly specified, and the case where the number is clearly limited to a specific number in principle, etc. However, the number is not limited to the specific number, and may be more than or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Furthermore, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily essential unless otherwise specified or in principle considered to be essential. Needless to say. Similarly, in the following embodiments, when referring to shapes, positional relationships, etc. of constituent elements, etc., the shapes thereof are substantially the same unless explicitly stated otherwise or in principle not apparently. And the like, etc. are included. This also applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は原則として省略する。また、実施の形態は、自動運転向けのセンサとして用いられるミリ波レーダ装置を例として説明する。
 (実施の形態1)
 <レーダ装置の構成>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for explaining the embodiments, the same members are designated by the same reference symbols in principle, and their repeated description will be omitted in principle. Further, the embodiment will be described by taking a millimeter wave radar device used as a sensor for automatic driving as an example.
(Embodiment 1)
<Structure of radar device>
 図1は、実施の形態1に係わるレーダ装置の構成を示すブロック図である。図1において、1はレーダ装置を示し、100は測定対象である物標を示している。図1において、レーダ装置1と物標100との間に描かれている波線110は、レーダ装置1と物標100との間の距離が離れていることを示している。 FIG. 1 is a block diagram showing the configuration of the radar device according to the first embodiment. In FIG. 1, reference numeral 1 denotes a radar device, and 100 denotes a target object to be measured. In FIG. 1, a wavy line 110 drawn between the radar device 1 and the target 100 indicates that the distance between the radar device 1 and the target 100 is large.
 レーダ装置1は、複数の送信アンテナ101、103と、複数の受信アンテナ104と、送信アンテナ101、103と複数の受信アンテナ104とに接続されたレーダユニット108とを備えている。また、図1には、MIMO技術によって生成された複数の仮想的な受信アンテナ(仮想受信アンテナ)が、符号107によって示されている。同図では、送信アンテナが2本で、受信アンテナが3本のレーダ装置1が示されているが、送信アンテナおよび受信アンテナの本数は、これに限定されるものではない。 The radar device 1 includes a plurality of transmitting antennas 101 and 103, a plurality of receiving antennas 104, and a radar unit 108 connected to the transmitting antennas 101 and 103 and the plurality of receiving antennas 104. Further, in FIG. 1, a plurality of virtual receiving antennas (virtual receiving antennas) generated by the MIMO technique are shown by reference numeral 107. In the figure, the radar apparatus 1 having two transmitting antennas and three receiving antennas is shown, but the number of transmitting antennas and receiving antennas is not limited to this.
 レーダユニット108は、所定の周波数の搬送波に送信信号であるチャープ信号を重畳し、送信アンテナ101、103に供給する。送信アンテナ101、103から送信された複数の信号による送信波は、物標100によって反射されて、反射波が発生する。反射波は、反射信号として受信アンテナによって受信され、それぞれの受信アンテナによって受信された信号が、レーダユニット108に供給される。 The radar unit 108 superimposes a chirp signal, which is a transmission signal, on a carrier wave of a predetermined frequency and supplies the chirp signal to the transmission antennas 101 and 103. The transmission waves of the plurality of signals transmitted from the transmission antennas 101 and 103 are reflected by the target 100 to generate reflected waves. The reflected waves are received by the receiving antennas as reflected signals, and the signals received by the respective receiving antennas are supplied to the radar unit 108.
 時間分割方式を採用しているため、レーダユニット108は、送信アンテナ101と103の両方が、同時に信号を送信しないように動作する。すなわち、レーダユニット108は、送信アンテナ101が、信号を送信している期間、送信アンテナ103は送信を行わないように動作する。同様に、レーダユニット108は、送信アンテナ103が信号を送信している期間、送信アンテナ101が送信を行わないように、動作する。 Since the time division method is adopted, the radar unit 108 operates so that both the transmitting antennas 101 and 103 do not transmit signals at the same time. That is, the radar unit 108 operates such that the transmission antenna 103 does not perform transmission while the transmission antenna 101 is transmitting a signal. Similarly, the radar unit 108 operates so that the transmitting antenna 101 does not transmit during the period when the transmitting antenna 103 is transmitting a signal.
 送信アンテナ101と103とは、所定の距離DILだけ離れて設置されている。設置位置が異なるため、物標100と送信アンテナ101との間の経路と、物標100と送信アンテナ103との間の経路との間で経路差が生じる。同図では、送信アンテナ101、103間の経路差が、符号105として示されている。この経路差105は、送信信号の波長と同程度である。経路差105が生じることにより、物標100に対して送信アンテナ101から送信された信号と送信アンテナ103から送信された信号との間に位相差が生じる。これが送信アンテナ間位相差として、複数の受信アンテナ104により構成されたアンテナアレイ104AYにより検知される。 The transmitting antennas 101 and 103 are installed apart from each other by a predetermined distance DIL. Since the installation positions are different, a route difference occurs between the route between the target 100 and the transmitting antenna 101 and the route between the target 100 and the transmitting antenna 103. In the figure, the path difference between the transmitting antennas 101 and 103 is indicated by reference numeral 105. The path difference 105 is about the same as the wavelength of the transmission signal. The path difference 105 causes a phase difference between the signal transmitted from the transmission antenna 101 and the signal transmitted from the transmission antenna 103 with respect to the target 100. This is detected as the phase difference between the transmitting antennas by the antenna array 104AY configured by the plurality of receiving antennas 104.
 アンテナアレイ104AYにおいては、各受信アンテナ104が設置された設置位置と物標100との間の方位とによって、各受信アンテナ104と物標100との間の経路の長さに差が生じる。この経路差が、同図では106として示されている。経路差106が生じることにより、受信アンテナ104で受信した受信信号間に、経路差106に応じた位相差が生じる。すなわち、物標100の方位が、受信信号間の位相差として検知される。 In the antenna array 104AY, the path length between each receiving antenna 104 and the target 100 differs depending on the installation position where each receiving antenna 104 is installed and the azimuth between the target 100. This path difference is shown as 106 in FIG. When the path difference 106 occurs, a phase difference corresponding to the path difference 106 occurs between the reception signals received by the receiving antenna 104. That is, the azimuth of the target 100 is detected as the phase difference between the received signals.
 送信アンテナ101、103の設置位置により生じる経路差105と、受信アンテナ104間に生じる経路差106とを足し合わせることで、図1に示すような位置に仮想受信アンテナ107が配置されているように見なされる。仮想受信アンテナ107も複数であるため、複数の仮想受信アンテナ107によってアンテナアレイ107YAが構成されていると見なすことができる。レーダ装置1においては、アンテナアレイ104YAとアンテナアレイ107YAとが足し合わされて、拡張されたアンテナアレイ(拡張アンテナアレイ)が構成され、拡張アンテナアレイで受信された受信信号間の位相差に基づいて、物標100の方位が推定される。
 <送信アンテナ切り替え時の物標移動>
By adding the path difference 105 caused by the installation positions of the transmission antennas 101 and 103 and the path difference 106 generated between the reception antennas 104, the virtual reception antenna 107 is arranged at the position shown in FIG. Is considered Since the virtual reception antennas 107 are also plural, it can be considered that the antenna array 107YA is configured by the plural virtual reception antennas 107. In the radar device 1, the antenna array 104YA and the antenna array 107YA are added to each other to form an extended antenna array (extended antenna array), and based on the phase difference between the reception signals received by the extended antenna array, The direction of the target 100 is estimated.
<Target movement when switching the transmitting antenna>
 図2は、実施の形態1に係わるレーダ装置を説明するための図である。図2には、図1に示した送信アンテナ101、103と物標100のみが示されている。図2の紙面上側には、時刻T1のときの送信アンテナ101、103と物標100との状態が示されており、紙面下側には、時刻T1から時間が経過して、時刻T2になったときの送信アンテナ101、103と物標100との状態が示されている。また、図2には、図1で説明した経路差105が、送信アンテナ101、103に接続されたブロックとして模式的に示されている。 FIG. 2 is a diagram for explaining the radar device according to the first embodiment. In FIG. 2, only the transmitting antennas 101 and 103 and the target 100 shown in FIG. 1 are shown. The state of the transmission antennas 101 and 103 and the target 100 at time T1 is shown on the upper side of the paper of FIG. 2, and at the lower side of the paper, the time has elapsed from time T1 and is time T2. The states of the transmitting antennas 101, 103 and the target 100 when the target is turned on are shown. Further, in FIG. 2, the path difference 105 described in FIG. 1 is schematically shown as a block connected to the transmission antennas 101 and 103.
 時刻T1では、送信アンテナ101が信号を送信している。このとき、物標100は、図1に示したレーダ装置1に対して位置DI_T1の位置にあるものとする。時刻T1において、送信アンテナ101からの送信信号は、物標100によって反射し、図1に示した拡張アンテナアレイで受信される。 At time T1, the transmitting antenna 101 is transmitting a signal. At this time, the target 100 is assumed to be at the position DI_T1 with respect to the radar device 1 shown in FIG. At time T1, the transmission signal from the transmission antenna 101 is reflected by the target 100 and is received by the extended antenna array shown in FIG.
 物標100は、相対速度を有しており、図2の例では、レーダ装置1に対して離れる方向に移動する。そのため、時刻T2において、物標は、位置DI_T1に対して距離201だけ移動し、位置DI_T2に存在している。時刻T2においては、送信アンテナ103が信号を送信する。物標100が、距離201だけ移動しているため、時刻T1のときに比べて、送信アンテナと物標100との間に、距離201に対応する経路差が生じる。物標100と受信アンテナとの間の経路についても、時刻T1のときに比べて、距離201に対応する経路差が生じる。すなわち、送信アンテナから受信アンテナに至る送信信号の伝播経路が、時刻T1のときに比べて、距離201の2倍だけ変化することになる。 The target 100 has a relative speed, and in the example of FIG. 2, it moves in a direction away from the radar device 1. Therefore, at the time T2, the target has moved by the distance 201 with respect to the position DI_T1 and is present at the position DI_T2. At time T2, the transmitting antenna 103 transmits a signal. Since the target 100 has moved by the distance 201, a path difference corresponding to the distance 201 occurs between the transmitting antenna and the target 100 as compared with the time T1. As for the route between the target 100 and the receiving antenna, a route difference corresponding to the distance 201 occurs as compared with the time T1. That is, the propagation path of the transmission signal from the transmission antenna to the reception antenna changes by twice the distance 201 as compared with the time T1.
 この送信信号の伝播経路の変化は、送信信号の波長に近いため、受信アンテナで受信した受信信号に位相差として表れる。物標100の方位は、受信信号間の位相差で推定されるため、送信信号の伝播経路の変化は、方位の推定に大きな影響を与えることになる。なお、時刻T1のときに送信アンテナ101による送信信号の伝播経路と、時刻T2のときの送信アンテナ103による送信信号の伝播経路との間の伝播経路差は、経路差105に距離201の2倍に相当する経路差を加えた値である。 -The change in the propagation path of the transmission signal appears as a phase difference in the reception signal received by the reception antenna because it is near the wavelength of the transmission signal. Since the azimuth of the target 100 is estimated by the phase difference between the received signals, the change in the propagation path of the transmission signal greatly affects the estimation of the azimuth. The propagation path difference between the propagation path of the transmission signal by the transmission antenna 101 at time T1 and the propagation path of the transmission signal by the transmission antenna 103 at time T2 is twice the distance 201, which is twice the distance 201. It is a value obtained by adding a route difference corresponding to.
 距離201は、物標100の相対速度と送信信号である信号の時間間隔の積で与えられる。そのため、物標100の相対速度を正確に求め、求めた相対速度によって位相差を補正することにより、方位推定の精度が劣化するのを防ぐことが可能である。
 <レーダユニットにおける処理の流れ>
The distance 201 is given by the product of the relative speed of the target 100 and the time interval of the signal that is the transmission signal. Therefore, it is possible to prevent the accuracy of the direction estimation from deteriorating by accurately obtaining the relative velocity of the target 100 and correcting the phase difference with the obtained relative velocity.
<Processing flow in radar unit>
 図3は、実施の形態1に係わるレーダユニットにおける処理を説明するための図である。図3には、送信アンテナとして3本の送信アンテナを用いる場合が示されている。ここでは、説明の都合上、図1に示した送信アンテナ101と103との間に、図示しない送信アンテナ102が設置されているものとして説明する。勿論、3本の送信アンテナ101~103は、例であって、この数に限定されるものではない。 FIG. 3 is a diagram for explaining processing in the radar unit according to the first embodiment. FIG. 3 shows a case where three transmitting antennas are used as the transmitting antennas. Here, for convenience of explanation, it is assumed that the transmission antenna 102 (not shown) is installed between the transmission antennas 101 and 103 shown in FIG. Of course, the three transmitting antennas 101 to 103 are examples, and the number is not limited to this.
 図3(A)は、レーダユニット108が、3本の送信アンテナを用いて、送信した送信信号であるチャープ信号を示している。図3(B)および図3(C)は、物標100により反射され、受信アンテナで受信した受信信号を処理するレーダユニット108の処理を模式的に示している。 FIG. 3A shows a chirp signal which is a transmission signal transmitted by the radar unit 108 using three transmission antennas. 3B and 3C schematically show the processing of the radar unit 108 which processes the reception signal reflected by the target 100 and received by the reception antenna.
 レーダユニット108は、3本の送信アンテナ101~103を、対応する送信信号ごとに切り替えて、送信を行うように動作する。図3(A)において、実線101_Sは、送信アンテナ101から送信された送信信号であるチャープ信号を示し、二点鎖線102_Sは、送信アンテナ102から送信されたチャープ信号を示し、一点鎖線103_Sは、送信アンテナ103から送信されたチャープ信号を示している。チャープ信号101_S~103_Sは、互いに同じ信号である。すなわち、周波数変化の傾きおよび搬送波に重畳されたときの中心周波数が、チャープ信号101_S~103_S間で同じになっている。 The radar unit 108 operates so as to perform transmission by switching the three transmission antennas 101 to 103 for each corresponding transmission signal. In FIG. 3A, a solid line 101_S indicates a chirp signal which is a transmission signal transmitted from the transmission antenna 101, a two-dot chain line 102_S indicates a chirp signal transmitted from the transmission antenna 102, and a one-dot chain line 103_S indicates The chirp signal transmitted from the transmission antenna 103 is shown. The chirp signals 101_S to 103_S are the same signals. That is, the inclination of the frequency change and the center frequency when superposed on the carrier wave are the same between the chirp signals 101_S to 103_S.
 時間分割方式であるため、レーダユニット108は、チャープ信号101_S~103_Sが、時間的には重ならないように、送信アンテナから送信させる。実施の形態1においては、それぞれの送信アンテナから送信するチャープ信号の周期が同一となるように、レーダユニット108は動作している。図3(A)の例では、レーダユニット108は、送信アンテナ101、102および103のそれぞれから、同じ周期3Tmmでチャープ信号101_S、102_Sおよび103_Sが送信されるように動作する。この場合、レーダユニット108は、チャープ信号101_S、102_S、103_Sの順に、チャープ信号が送信されるように、送信アンテナ101、102および103を切り替える。 Since it is a time division method, the radar unit 108 causes the transmission antenna to transmit the chirp signals 101_S to 103_S so that they do not overlap in time. In the first embodiment, the radar unit 108 operates so that the cycles of the chirp signals transmitted from the respective transmission antennas are the same. In the example of FIG. 3A, the radar unit 108 operates so that the chirp signals 101_S, 102_S, and 103_S are transmitted from the transmitting antennas 101, 102, and 103, respectively, at the same period of 3 Tmm. In this case, the radar unit 108 switches the transmission antennas 101, 102, and 103 so that the chirp signals are transmitted in the order of the chirp signals 101_S, 102_S, and 103_S.
 同一の周期3Tmmで、チャープ信号101_S、102_S、103_Sが繰り返し送信されるため、図3(A)に示すように、個々のチャープ信号、例えばチャープ信号101_Sは、時間的には非連続な信号であるが、3つのチャープ信号101_S~103_Sを1つの合成チャープ信号として見なした場合、合成チャープ信号は、時間的に連続した信号である。送信された合成チャープ信号は、物標100によって反射し、反射した合成チャープ信号が、アンテナアレイ104YAおよび107YAを構成する複数の受信アンテナによって受信される。この場合、それぞれの受信アンテナは、合成チャープ信号として、送信された順、すなわちチャープ信号101_S、102_S、103_Sの順に受信する。 Since the chirp signals 101_S, 102_S, and 103_S are repeatedly transmitted with the same period of 3 Tmm, as shown in FIG. 3A, each chirp signal, for example, the chirp signal 101_S, is a signal which is discontinuous in time. However, when the three chirp signals 101_S to 103_S are regarded as one combined chirp signal, the combined chirp signal is a temporally continuous signal. The transmitted combined chirp signal is reflected by the target 100, and the reflected combined chirp signal is received by the plurality of receiving antennas forming the antenna arrays 104YA and 107YA. In this case, the respective receiving antennas receive the combined chirp signals in the order of transmission, that is, in the order of the chirp signals 101_S, 102_S, and 103_S.
 レーダユニット108は、受信アンテナ104で受信した合成チャープ信号を、送信アンテナ101、102および103に対応したチャープ信号101_S、102_S103_Sに分離する。これにより、図3(B)に示すように、時間的には不連続の3つのチャープ信号101_S、102_Sおよび103_Sが生成される。生成したチャープ信号間の位相差を基にして、図1で説明した経路差105を求め、求めた経路差105と受信アンテナ104間の位相差106(図1)とによって、図1に示した仮想受信アンテナ107を形成する。 The radar unit 108 separates the combined chirp signal received by the receiving antenna 104 into chirp signals 101_S and 102_S103_S corresponding to the transmitting antennas 101, 102 and 103. As a result, as shown in FIG. 3B, three chirp signals 101_S, 102_S and 103_S which are discontinuous in time are generated. Based on the phase difference between the generated chirp signals, the path difference 105 described in FIG. 1 is obtained, and the obtained path difference 105 and the phase difference 106 between the receiving antennas 104 (FIG. 1) are shown in FIG. The virtual receiving antenna 107 is formed.
 物標100の相対速度は、ドップラー効果によるチャープ信号の周波数変化により推定する。この場合、後で<<相対速度の推定に係わる課題>>で詳しく説明するが、サンプリングによって、チャープ信号101_S、102_Sおよび103_Sのそれぞれの周波数変化を検出して、相対速度を推定する構成では、検知できる最大相対速度が低下すると言う課題が生じる。 The relative speed of the target 100 is estimated by the frequency change of the chirp signal due to the Doppler effect. In this case, as will be described later in detail in <<Problems related to relative velocity estimation>>, in the configuration in which the relative velocity is estimated by detecting the frequency changes of the chirp signals 101_S, 102_S, and 103_S by sampling. The problem arises that the maximum detectable relative speed decreases.
 実施の形態1に係わるレーダユニット108は、図3(B)に示すように、分離したチャープ信号101_S、102_Sおよび103_Sに対して、後で実施の形態2で説明する所定の係数を掛け、時系列的にチャープ信号が並ぶように、チャープ信号101_S、102_S、および103_Sの足し合わせを実行する。これにより、図3(C)に示すように、チャープ信号101_S~103_Sが、時間的に連続するように回復される。時間的に連続するように配列されたチャープ信号101_S~103_Sを、サンプリングすることにより、回復されたチャープ信号における周波数の変化が、検知される。この場合、時間的に連続したチャープ信号をサンプリングすることになるため、サンプリング周波数を高くすることが可能である。その結果、検知できる最大相対速度が低下するのを抑制することが可能である。また、サンプリング対象が、3つのチャープ信号を足し合わせることにより生成したチャープ信号であるため、信号対雑音比SNRの劣化を低減することが可能であり、より遠方の標物の検知も可能となる。 As shown in FIG. 3B, the radar unit 108 according to the first embodiment multiplies the separated chirp signals 101_S, 102_S, and 103_S by a predetermined coefficient described later in the second embodiment, and The chirp signals 101_S, 102_S, and 103_S are added so that the chirp signals are arranged in series. As a result, as shown in FIG. 3C, the chirp signals 101_S to 103_S are restored so as to be temporally continuous. By sampling the chirp signals 101_S to 103_S arranged so as to be continuous in time, a change in frequency in the recovered chirp signal is detected. In this case, since a chirp signal that is continuous in time is sampled, the sampling frequency can be increased. As a result, it is possible to suppress a decrease in the maximum detectable relative speed. In addition, since the sampling target is a chirp signal generated by adding three chirp signals together, it is possible to reduce the deterioration of the signal-to-noise ratio SNR, and it is possible to detect a distant target. ..
 検知できる最大相対速度の劣化を抑制することが可能であるため、物標100の移動により生じる距離201(図2)を高精度に求めることが可能である。求めた距離201を用いて位相差を補正することにより、物標100の方位推定が劣化するのを抑制することが可能である。
 <<相対速度の推定の課題>>
Since it is possible to suppress deterioration of the maximum detectable relative speed, it is possible to obtain the distance 201 (FIG. 2) caused by the movement of the target 100 with high accuracy. By correcting the phase difference using the obtained distance 201, it is possible to suppress deterioration of the orientation estimation of the target 100.
<<Issues of relative velocity estimation>>
 相対速度は、ドップラー効果によるチャープ信号の中心周波数の変化によって検知される。この中心周波数の変化は、各チャープ信号をサンプリング点としたサンプリングによって検知される。このとき、ナイキストの標本化定理より、検知可能な最大検知速度は、チャープ信号の時間間隔によって定まることになる。勿論、チャープ信号が発信される時間周期が短いほど、最大検知速度が大きくなる。 Relative velocity is detected by the change in the center frequency of the chirp signal due to the Doppler effect. This change in center frequency is detected by sampling with each chirp signal as a sampling point. At this time, according to the Nyquist sampling theorem, the maximum detectable speed is determined by the time interval of the chirp signal. Of course, the shorter the time period in which the chirp signal is transmitted, the higher the maximum detection speed.
 最大検知速度よりも大きな相対速度で移動している物標を検知したとき、ミリ波レーダ装置は、最大検知速度の定数倍を差し引いた値を、相対速度の推定の結果として出力する。時間分割方式のMIMOレーダ装置では、時刻ごとに送信アンテナを切り替えて利用するため、同一の送信アンテナから送信されるチャープ信号の時間間隔は、送信アンテナ総数に比例して長くなる。そのため、最大検知速度は、送信アンテナの総数に反比例して小さくなり、減少すると言う課題がある。 When a target moving at a relative speed higher than the maximum detection speed is detected, the millimeter-wave radar device outputs a value obtained by subtracting a constant multiple of the maximum detection speed as a result of estimating the relative speed. In the time-division type MIMO radar device, the transmission antennas are switched and used at each time, so that the time interval of the chirp signal transmitted from the same transmission antenna becomes long in proportion to the total number of transmission antennas. Therefore, there is a problem that the maximum detection speed decreases in inverse proportion to the total number of transmitting antennas and decreases.
 特許文献1では、チャープ信号の時間間隔に多義性を持たせることにより、折り返し表示が起きる最大検知速度を多義化することで、速度推定精度を向上させている。最大検知速度の多義性により折り返された後に表示される相対速度は、同一物標であっても異なる値となってしまう。そのため、各送信アンテナからのチャープ信号により得られた速度推定の結果をマッチング処理することで、最大検知速度以上の物標の相対速度を推定する。しかし、この手法では信号の直行性を維持するためにチャープ信号間の時間間隔を長くとる必要があり、最大検知速度を低下させることになる。また、マッチング処理による速度推定は、計算量が増加することに加えて、相対速度が一意に定まらないと言う懸念がある。 In Patent Document 1, by making the time interval of the chirp signal ambiguous, the maximum detection speed at which the aliasing display occurs is ambiguous, thereby improving the speed estimation accuracy. Due to the ambiguity of the maximum detection speed, the relative speeds displayed after being folded back have different values even for the same target. Therefore, the relative speed of the target above the maximum detected speed is estimated by performing matching processing on the speed estimation result obtained from the chirp signal from each transmitting antenna. However, in this method, it is necessary to lengthen the time interval between the chirp signals in order to maintain the orthogonality of the signals, which reduces the maximum detection speed. In addition, in the speed estimation by the matching process, there is a concern that the relative speed is not uniquely determined in addition to the increase in the calculation amount.
 これに対して、実施の形態1においては、各チャープ信号101_S~103_Sは、同一の周期3Tmmであり、チャープ信号の時間間隔は多義性を持たず、一定である。そのため、同一の物標を計測したときには、同じ値の相対速度が得られる。従って、マッチング処理を実施することは要求されず、レーダユニット108における計算量が増加するのを抑制することが可能である。
 <レーダユニットの構成>
On the other hand, in the first embodiment, each of the chirp signals 101_S to 103_S has the same period 3Tmm, and the time interval of the chirp signals has no ambiguity and is constant. Therefore, when the same target is measured, the same relative velocity is obtained. Therefore, it is not required to perform the matching process, and it is possible to suppress an increase in the calculation amount in the radar unit 108.
<Structure of radar unit>
 図4は、実施の形態1に係わるレーダ装置の構成を示すブロック図である。図4には、図1に示したアンテナアレイ104YAを構成する受信アンテナのうち、1つの受信アンテナ104が例として示されている。レーダユニット108は、スイッチユニット200と、メモリユニット207と、信号処理部とを備えている。信号処理部は、並べ替えユニット201、補正ユニット202、時間/周波数FFT(Fast Fourier Transform)ユニット203、距離・速度推定ユニット204、補正ユニット205および方位推定ユニット206を備えている。 FIG. 4 is a block diagram showing the configuration of the radar device according to the first embodiment. In FIG. 4, one receiving antenna 104 among the receiving antennas forming the antenna array 104YA shown in FIG. 1 is shown as an example. The radar unit 108 includes a switch unit 200, a memory unit 207, and a signal processing unit. The signal processing unit includes a rearrangement unit 201, a correction unit 202, a time/frequency FFT (Fast Fourier Transform) unit 203, a distance/speed estimation unit 204, a correction unit 205, and an orientation estimation unit 206.
 レーダユニット108の動作は、物標100(図1)の距離、相対速度および方位が事前に計測されていない場合と、物標100の相対速度が事前に計測されている場合とで、異なる。ここでは、距離、相対速度および方位が事前に計測されていない場合を1回目の計測とし、相対速度が事前に計測されている場合を2回目の計測として説明する。例えば、レーダ装置1に電源が投入されたとき、1回目の計測が実行され、次のタイミングでは2回目の計測が実行される。 The operation of the radar unit 108 differs depending on whether the distance, relative speed, and azimuth of the target 100 (FIG. 1) have not been measured in advance, or when the relative speed of the target 100 has been measured in advance. Here, the case where the distance, the relative speed, and the azimuth are not measured in advance will be described as the first measurement, and the case where the relative speed is measured in advance will be described as the second measurement. For example, when the radar device 1 is powered on, the first measurement is executed, and at the next timing, the second measurement is executed.
 1回目の計測のとき、スイッチユニット200は、受信アンテナ104を並び替えユニット021に接続する。並び替えユニット201は、受信アンテナ104によって受信されたチャープ信号を、2次元データ配列に並び替え、さらに得られた2次元データ配列を、送信アンテナごとに分け、並び替えて、送信アンテナごとの2次元データ配列を形成する。この並び替えユニット201を、図面を用いて詳しく説明する。図5および図6は、実施の形態1に係わる並び替えユニットを説明するための図である。 At the first measurement, the switch unit 200 connects the receiving antenna 104 to the rearrangement unit 021. The rearrangement unit 201 rearranges the chirp signals received by the receiving antennas 104 into a two-dimensional data array, further divides the obtained two-dimensional data array into transmitting antennas, rearranges them, and outputs the two-dimensional data to each transmitting antenna. Form a dimensional data array. The rearrangement unit 201 will be described in detail with reference to the drawings. 5 and 6 are diagrams for explaining the sorting unit according to the first embodiment.
 図4では省略されているが、受信アンテナ104とスイッチユニット200との間には、受信ユニット350が接続されている。この受信ユニット350の構成が、図5に示されている。受信ユニット350は、ローカル発信回路352と、ミキサー351と、アナログ/デジタル変換回路(ADC)353を備えている。特に制限されないが、ローカル発信回路352は、送信信号の搬送波に対応した周波数のローカル信号を発生する。ミキサー351により、受信アンテナ104によって受信された受信信号とローカル信号とがミキシングされる。このミキシングにより、ミキサー351からは、搬送波に混合されていたチャープ信号が出力される。ミキサー351から出力されるチャープ信号はアナログであるため、ADC353によって、アナログのチャープ信号は、デジタルのチャープ信号に変換される。変換により得られたデジタルのチャープ信号が、スイッチユニット200を介して、並べ替えユニット201へ供給される。 Although not shown in FIG. 4, a receiving unit 350 is connected between the receiving antenna 104 and the switch unit 200. The configuration of this receiving unit 350 is shown in FIG. The reception unit 350 includes a local oscillator circuit 352, a mixer 351, and an analog/digital conversion circuit (ADC) 353. Although not particularly limited, the local oscillator circuit 352 generates a local signal having a frequency corresponding to the carrier wave of the transmission signal. The mixer 351 mixes the received signal received by the receiving antenna 104 and the local signal. Due to this mixing, the mixer 351 outputs the chirp signal mixed with the carrier wave. Since the chirp signal output from the mixer 351 is analog, the ADC 353 converts the analog chirp signal into a digital chirp signal. The digital chirp signal obtained by the conversion is supplied to the rearrangement unit 201 via the switch unit 200.
 図6は、並び替えユニット201において実施される並び替えを説明する図である。スイッチユニット200を介して並べ替えユニット201に、デジタルのチャープ信号が、順次供給される。すなわち、複数の送信アンテナから送信され、物標100で反射された複数のチャープ信号が、時系列的に並び替えユニット201に供給される。図6(A)では、ADC353からの時系列のチャープ信号が、符号101_S~103_Sで示されている。 FIG. 6 is a diagram for explaining sorting performed in the sorting unit 201. Digital chirp signals are sequentially supplied to the rearrangement unit 201 via the switch unit 200. That is, the plurality of chirp signals transmitted from the plurality of transmission antennas and reflected by the target 100 are supplied to the rearrangement unit 201 in time series. In FIG. 6A, the time series chirp signals from the ADC 353 are indicated by reference numerals 101_S to 103_S.
 並べ替えユニット201においては、図6(A)に示した時系列のチャープ信号を2次元データ配列に変換する。すなわち、図6(B)に示すように、チャープ信号ごとに、2次元データ配列における行を変更しながら、チャープ信号を、2次元データ配列に並べる。図6(B)では、2次元データ配列の行方向が、距離として示され、列方向が、速度として示されている。 The rearrangement unit 201 converts the time-series chirp signals shown in FIG. 6A into a two-dimensional data array. That is, as shown in FIG. 6B, the chirp signals are arranged in the two-dimensional data array while changing the row in the two-dimensional data array for each chirp signal. In FIG. 6B, the row direction of the two-dimensional data array is shown as a distance, and the column direction is shown as a velocity.
 並び替えユニット201においては、図6(B)に示した2次元データ配列から、さらに、各送信アンテナに対応した2次元データ配列を生成する。送信アンテナに対応した2次元データ配列も、図6(B)に示した2次元データ配列と類似している。相異点は、送信アンテナに対応した2次元データ配列では、同じ送信アンテナから非連続的に送信された複数のチャープ信号が、2次元データ配列の列方向に沿って、送信順に順次配列されていることである。 The rearrangement unit 201 further generates a two-dimensional data array corresponding to each transmitting antenna from the two-dimensional data array shown in FIG. 6(B). The two-dimensional data array corresponding to the transmitting antenna is also similar to the two-dimensional data array shown in FIG. The difference is that in the two-dimensional data array corresponding to the transmitting antennas, a plurality of chirp signals discontinuously transmitted from the same transmitting antenna are sequentially arranged in the transmission order along the column direction of the two-dimensional data array. It is that you are.
 並べ替えユニット201で生成した2次元データ配列のチャープ信号に対して、時間/周波数FFTユニット203により、高速フーリエ変換を行い、距離・速度推定ユニット204においてピークを検知することにより、物標100の距離および相対速度を推定することができる。推定された距離および相対速度は、メモリユニット207に記録される。推定された物標100の相対速度が、“0”でなければ、補正ユニット205が、先に推定された相対速度を用いて、送信アンテナごとのチャープ信号の位相を補正する。方位推定ユニット206では、補正された位相を用いて、物標100の方位を推定する。この推定された方位は、メモリ207に記録される。 The time/frequency FFT unit 203 performs a fast Fourier transform on the chirp signal of the two-dimensional data array generated by the rearrangement unit 201, and the distance/speed estimation unit 204 detects a peak to detect the target 100. Distance and relative velocity can be estimated. The estimated distance and relative velocity are recorded in the memory unit 207. If the estimated relative velocity of the target 100 is not “0”, the correction unit 205 corrects the phase of the chirp signal for each transmitting antenna using the previously estimated relative velocity. The orientation estimation unit 206 estimates the orientation of the target 100 using the corrected phase. The estimated azimuth is recorded in the memory 207.
 物標100の相対速度が測定済みである2回目の計測では、スイッチユニット200を介して、受信アンテナ104が補正ユニット202に接続される。補正ユニット202は、メモリユニット207に記録されている物標100の方位を読み出し、送信アンテナごとのチャープ信号に、式(1)で示す補正項を乗算することにより、チャープ信号の位相を更新する。式(1)において、iは虚数、kは送信アンテナを特定する番号である。また、式(1)において、φは、式(2)によって表される。この式(2)において、Nrxは受信アンテナの数、dは受信アンテナ間の距離、λは送信信号の波長、θは物標の方位である。 In the second measurement in which the relative speed of the target 100 has been measured, the reception antenna 104 is connected to the correction unit 202 via the switch unit 200. The correction unit 202 reads the azimuth of the target 100 recorded in the memory unit 207 and multiplies the chirp signal for each transmitting antenna by the correction term shown in Expression (1) to update the phase of the chirp signal. .. In Expression (1), i is an imaginary number, and k is a number that specifies the transmitting antenna. Further, in Expression (1), φ is represented by Expression (2). In this equation (2), Nrx is the number of receiving antennas, d is the distance between the receiving antennas, λ is the wavelength of the transmission signal, and θ is the azimuth of the target.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 2回目の計測では、補正ユニット202によって更新されたチャープ信号に対して、時間/周波数FFTユニット203による演算と、距離・速度推定ユニット204によるピーク検知とが行われ、物標100の距離および相対速度の推定が行われる。すなわち、2回目の計測では、補正ユニット202に、メモリ207に記録されている方位がフィードバックされる。フィードバックされた方位を用いて、補正ユニット202は、チャープ信号を、最大検知速度に対応するような状態に更新する。更新されたチャープ信号に基づいて、物標100の距離および相対速度の推定が行われる。 In the second measurement, the time/frequency FFT unit 203 performs calculation and the distance/speed estimation unit 204 performs peak detection on the chirp signal updated by the correction unit 202, and the distance and relative distance of the target 100 are measured. Speed estimation is performed. That is, in the second measurement, the orientation recorded in the memory 207 is fed back to the correction unit 202. Using the fed-back bearing, the correction unit 202 updates the chirp signal to a state corresponding to the maximum detected speed. The distance and the relative speed of the target 100 are estimated based on the updated chirp signal.
 図3で説明したチャープ信号の足し合わせおよびチャープ信号のサンプリングは、時間/周波数FFT203において実行される。これにより、距離・速度推定ユニット204において、検知する最大速度の低下が抑制されている。その結果として、方位推定の精度が低下するのを抑制することが可能である。また、マッチング処理が必要とされないため、時間/周波数FFTユニット203における演算量を低減し、計測時間が長くなるのを抑制することが可能である。ここでは、チャープ信号の足し合わせおよびチャープ信号のサンプリングが、時間/周波数FFTユニット203において実行されるように説明したが、これに限定されるものではない。
 <変形例>
The addition of the chirp signals and the sampling of the chirp signals described in FIG. 3 are performed in the time/frequency FFT 203. As a result, the decrease in the maximum speed detected by the distance/speed estimation unit 204 is suppressed. As a result, it is possible to suppress a decrease in the accuracy of orientation estimation. Further, since the matching process is not required, it is possible to reduce the amount of calculation in the time/frequency FFT unit 203 and suppress the measurement time from becoming long. Here, it is described that the addition of the chirp signals and the sampling of the chirp signals are performed in the time/frequency FFT unit 203, but the present invention is not limited to this.
<Modification>
 図7は、実施の形態1の変形例に係わるレーダ装置の構成を示すブロック図である。レーダ装置108_1は、信号処理部とメモリユニット207とを備えている。信号処理部は、補正ユニット202、時間/周波数FFTによる速度推定ユニット203_4、速度結果による補正ユニット205、方位推定ユニット206を備えている。補正ユニット205では式(3)の値を乗算ことにより補正を実施する。 FIG. 7 is a block diagram showing the configuration of the radar device according to the modification of the first embodiment. The radar device 108_1 includes a signal processing unit and a memory unit 207. The signal processing unit includes a correction unit 202, a time/frequency FFT speed estimation unit 203_4, a speed result correction unit 205, and an orientation estimation unit 206. The correction unit 205 performs the correction by multiplying the value of the expression (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(3)において、iは虚数単位、cは光速、Vestは搬送波を含めた送信信号の中心周波数、fcはチャープ信号の中心周波数、Tmはサンプリング周期である。 In Equation (3), i is an imaginary unit, c is the speed of light, Vest is the center frequency of the transmission signal including the carrier wave, fc is the center frequency of the chirp signal, and Tm is the sampling period.
 速度結果による補正ユニット205は、時間/周波数FFTによる速度推定ユニット203_4から出力された物標100の相対速度によって、送信アンテナごとの位相を補正する。方位推定ユニット206は、図4と同様に、補正された位相を用いて、物標100の方位を推定する。この推定された方位は、メモリ207に記録される。 The correction unit 205 based on the speed result corrects the phase of each transmission antenna based on the relative speed of the target 100 output from the speed estimation unit 203_4 based on the time/frequency FFT. The azimuth estimation unit 206 estimates the azimuth of the target 100 using the corrected phase, as in FIG. 4. The estimated azimuth is recorded in the memory 207.
 変形例においては、メモリユニット207に記録された物標100の方位、または外部208から物標100の方位が、補正ユニット202に供給される。補正ユニット202は、図4と同様に、供給された方位を用いて、チャープ信号を、最大検知速度に対応するような状態へ更新する。 In the modification, the orientation of the target 100 recorded in the memory unit 207 or the orientation of the target 100 from the outside 208 is supplied to the correction unit 202. The correction unit 202 updates the chirp signal to a state corresponding to the maximum detection speed, using the supplied orientation, as in FIG. 4.
 変形例においては、例えば、1回目の計測のとき、外部から物標100の方位が補正ユニット202に供給され、2回目の計測のときには、メモリユニット207に記録されている方位が、補正ユニット202に供給される。図3で説明したチャープ信号の足し合わせおよびサンプリングは、時間/周波数FFTによる速度推定ユニット203_4において実行される。 In the modification, for example, the azimuth of the target 100 is externally supplied to the correction unit 202 at the time of the first measurement, and the azimuth recorded in the memory unit 207 at the time of the second measurement is the correction unit 202. Is supplied to. The addition and sampling of the chirp signal described in FIG. 3 is performed in the speed estimation unit 203_4 by the time/frequency FFT.
 図4および図7で説明したレーダ装置108、108_1において、メモリユニット207を除くユニットは、ソフトウェアにより実現してもよいし、ハードウェアとソフトウェアの組み合わせにより実現してもよい。
 (実施の形態2)
 実施の形態2においては、図3(B)で述べた所定の係数を説明する。
In the radar devices 108 and 108_1 described with reference to FIGS. 4 and 7, the units except the memory unit 207 may be realized by software, or may be realized by a combination of hardware and software.
(Embodiment 2)
In the second embodiment, the predetermined coefficient described in FIG. 3B will be described.
 各送信アンテナから送信された信号は、送信アンテナの位置の違いが位相差として現れる。この位相差により、MIMO技術では仮想受信アンテナの実現が可能となっている。時間分割方式のMIMOレーダ装置では、送信アンテナを時刻ごとに切り替えるため、受信アンテナでは各時刻で各送信アンテナの信号を受信することになる。各送信アンテナから送信されたチャープ信号間には、経路差105(図1)に応じた位相差があるため、送信アンテナごとにチャープ信号を分離して処理をすることが必要である。 ▽ In the signal transmitted from each transmitting antenna, the difference in the position of the transmitting antenna appears as a phase difference. Due to this phase difference, a virtual receiving antenna can be realized in MIMO technology. In the time division type MIMO radar device, the transmission antennas are switched for each time, so that the reception antenna receives the signal of each transmission antenna at each time. Since there is a phase difference according to the path difference 105 (FIG. 1) between the chirp signals transmitted from each transmitting antenna, it is necessary to separate the chirp signals for each transmitting antenna for processing.
 一方、時分割方式のMIMOレーダ装置において、物標の相対速度を推定するためにドップラー効果を利用する場合、ドップラー効果により生じるチャープ信号の周波数変化を、レーダ装置は検出することになる。周波数変化を検出するためのサンプリングパルスの周期は、前記したように送信アンテナの数に反比例して低下し、最大検知速度が低下する。 On the other hand, in a time division MIMO radar device, when the Doppler effect is used to estimate the relative velocity of a target, the radar device detects the frequency change of the chirp signal caused by the Doppler effect. The period of the sampling pulse for detecting the frequency change decreases in inverse proportion to the number of transmitting antennas as described above, and the maximum detection speed decreases.
 実施の形態1で説明したように、チャープ信号101_S~103_Sが、時系列のデータとなるように、足し合わせることで、サンプリングパルスの周期が、長くなることを抑制することが可能である。しかしながら、チャープ信号間には、経路差105に応じた位相差が存在する。位相差が存在するため、サンプリングしたときに得られるチャープ信号の振幅が不規則に変化し、物標の相対速度を推定するうえで影響がある。 As described in the first embodiment, by adding the chirp signals 101_S to 103_S so that the chirp signals 101_S to 103_S are time-series data, it is possible to prevent the cycle of the sampling pulse from becoming long. However, a phase difference corresponding to the path difference 105 exists between the chirp signals. Due to the existence of the phase difference, the amplitude of the chirp signal obtained at the time of sampling changes irregularly, which affects the estimation of the relative velocity of the target.
 サンプリングしたときに得られるチャープ信号の振幅が不規則に変化する例を、図面を用いて説明する。図8は、実施の形態2に係わるレーダ装置を説明するための波形図である。図8は、チャープ信号間に、経路差105に応じた位相差がある場合を示している。サンプリングパルスの周期、すなわちサンプリング周期Tmで、チャープ信号101_S~103_Sをサンプリングすると、×印で示したサンプリングタイミングにおけるチャープ信号は101_S~103_Sとは異なる振幅変化をする信号となり、101_S~103_Sとは異なる周波数成分を含む波となる。そのため、時間の経過に伴う周波数変化を検出するのには不適切である。 An example in which the amplitude of the chirp signal obtained when sampling changes irregularly will be explained using the drawings. FIG. 8 is a waveform diagram for explaining the radar device according to the second embodiment. FIG. 8 shows a case where there is a phase difference between the chirp signals according to the path difference 105. When the chirp signals 101_S to 103_S are sampled in the cycle of the sampling pulse, that is, the sampling cycle Tm, the chirp signals at the sampling timings indicated by the marks become signals that change in amplitude different from 101_S to 103_S, and different from 101_S to 103_S It becomes a wave containing frequency components. Therefore, it is not suitable for detecting the frequency change with the passage of time.
 実施の形態2においては、図3(B)に示したように、分離したチャープ信号101_S、102_Sおよび103_Sに対して、所定の係数を掛け、時系列的にチャープ信号が並ぶように、チャープ信号101_S、102_Sおよび103_Sの足し合わせを実行している。具体的に述べると、チャープ信号101_S、102_Sおよび103_Sの2次元データ配列に対して、式(2)で表される係数CKと係数“1”とを備えた列が所定の係数として用いられている。この係数列と2次元データ配列の積を求めることにより、係数で調整されたチャープ信号の時系列データを取得することができる。 In the second embodiment, as shown in FIG. 3B, the separated chirp signals 101_S, 102_S and 103_S are multiplied by a predetermined coefficient so that the chirp signals are arranged in time series. The addition of 101_S, 102_S, and 103_S is being performed. Specifically, for the two-dimensional data array of the chirp signals 101_S, 102_S, and 103_S, a column including the coefficient CK and the coefficient “1” represented by the equation (2) is used as a predetermined coefficient. There is. By obtaining the product of this coefficient string and the two-dimensional data array, the time series data of the chirp signal adjusted by the coefficient can be obtained.
 図9は、実施の形態2に係わるレーダ装置を説明するための波形図である。図9は、図8と類似しているが、所定の係数を掛けることにより、経路差105に伴うチャープ信号間の位相差が調整されたチャープ信号101_S~103_Sの波形が示されている。101_S~103_Sの波形は重畳するため、図9に示すように、×印で示すサンプリングタイミングにおける振幅の変化は、規則的となり、互いに設置位置が異なる送信アンテナから送信されたチャープ信号であっても、同一の送信アンテナから送信されたチャープ信号として扱うことが可能となる。これにより、時分割方式を採用することによってチャープ信号間の時間間隔が長くなっても、サンプリング周期を短くすることが可能である。さらに、サンプリングタイミングでは、あたかも同一の送信アンテナからのチャープ信号をサンプリングしているように取り扱うことが可能となり、最大検知速度の向上を図ることが可能である。
 <テスト方法>
FIG. 9 is a waveform diagram for explaining the radar device according to the second embodiment. 9 is similar to FIG. 8, but shows the waveforms of the chirp signals 101_S to 103_S in which the phase difference between the chirp signals due to the path difference 105 is adjusted by multiplying by a predetermined coefficient. Since the waveforms of 101_S to 103_S are superposed, as shown in FIG. 9, the change in the amplitude at the sampling timing indicated by X is regular, and even if the chirp signals are transmitted from the transmitting antennas whose installation positions are different from each other. , It is possible to treat as a chirp signal transmitted from the same transmitting antenna. Thus, by adopting the time division method, the sampling period can be shortened even if the time interval between the chirp signals becomes long. Furthermore, at the sampling timing, it is possible to handle the chirp signals from the same transmitting antenna as if they were being sampled, and the maximum detection speed can be improved.
<Test method>
 チャープ信号の足し合わせおよびチャープ信号のサンプリングを実行する時間/周波数FFTユニット203が正常に動作しているか否かをテストするテスト方法を説明しておく。時間/周波数FFTユニット203のテストは、所定のテスト信号を時間/周波数FFTユニット203に供給し、推定された相対速度が、式(4)で示す最大検知速度Vmax以上になるか否かを調べることにより、実行することが可能である。所定のテスト信号が供給されたときに、推定された相対速度が、最大検知速度Vmax以上になっていれば、時間/周波数FFTユニット203は正常に動作していると判定することができる。 A test method for testing whether or not the time/frequency FFT unit 203 that performs addition of chirp signals and sampling of chirp signals is operating normally will be described. In the test of the time/frequency FFT unit 203, a predetermined test signal is supplied to the time/frequency FFT unit 203, and it is checked whether or not the estimated relative speed is equal to or higher than the maximum detection speed Vmax shown in the equation (4). By doing so, it is possible to execute. When the estimated relative speed is equal to or higher than the maximum detection speed Vmax when the predetermined test signal is supplied, it is possible to determine that the time/frequency FFT unit 203 is operating normally.
 所定のテスト信号としては、速度Vで、方位が“0”でない状態に相当する信号である。このときの速度Vは、式(5)の条件を満たすようにする。 The predetermined test signal is a signal corresponding to a state where the velocity is V and the bearing is not “0”. The speed V at this time is set so as to satisfy the condition of Expression (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(4)および(5)において、NTxは送信アンテナの数、Ncは1フレーム内のチャープ信号の数である。
 (実施の形態3)
In equations (4) and (5), N Tx is the number of transmit antennas and Nc is the number of chirp signals in one frame.
(Embodiment 3)
 実施の形態3では、実施の形態1または2で説明したレーダ装置を用いて、物標100の相対速度を推定するトラッキングを行う場合を説明する。トラッキングは、レーダ装置の最大検知速度よりも早く移動する物標の相対速度を推定するものである。 In the third embodiment, a case will be described in which the radar device described in the first or second embodiment is used to perform tracking for estimating the relative speed of the target 100. Tracking estimates the relative speed of a target that moves faster than the maximum detection speed of the radar device.
 まず、トラッキングについて、概要を説明する。トラッキングでは、過去の検知結果を用いて、物標の相対速度を推定する。 First, we will explain the outline of tracking. In tracking, the relative speed of the target is estimated using the past detection results.
 一般なレーダ装置では、一定の時間間隔で離散的にデジタル信号処理を実行することにより、物標の距離、相対速度を推定する。そのため、測定した時間および推定した距離および相対速度も離散化され、最小単位が存在する。距離計測の最小単位をΔRとし、測定した時間の最小単位をTcとすると、相対速度は、距離変化より時間を除算した値で与えられる。過去の計測結果である最小単位ΔRとTcを用いて、過去の相対速度を算出することができるが、算出された相対速度も離散化され、最小単位が存在することになる。 In general radar equipment, the distance and relative speed of the target are estimated by discretely executing digital signal processing at regular time intervals. Therefore, the measured time and the estimated distance and relative velocity are also discretized, and the minimum unit exists. When the minimum unit of distance measurement is ΔR and the minimum unit of measured time is Tc, the relative speed is given by a value obtained by dividing time by distance change. The past relative speed can be calculated by using the minimum unit ΔR and Tc which are the past measurement results, but the calculated relative speed is also discretized, and the minimum unit exists.
 過去であれば、任意の時刻のときの距離計測の結果が利用可能であり、距離変化を見る時間は、任意の整数nと、最小単位Tcの積nTcで与えられる。また、距離変化の最小単位は距離計測の最小単位ΔRとなる。そのため、過去の計測結果を用いて相対速度を推定する場合、推定される相対速度の最小単位はΔVr=ΔR/nとなり、nを大きくすることで速度の精度を改善することが可能となる。すなわち、最大検知速度を向上させることが可能である。 In the past, the result of distance measurement at any time can be used, and the time to see the distance change is given by the product nTc of an arbitrary integer n and the minimum unit Tc. The minimum unit of distance change is the minimum unit of distance measurement ΔR. Therefore, when the relative speed is estimated using the past measurement result, the minimum unit of the estimated relative speed is ΔVr=ΔR/n, and the accuracy of the speed can be improved by increasing n. That is, it is possible to improve the maximum detection speed.
 前記した過去の計測結果を用いた速度推定とドップラー効果を用いた速度推定とを比較すると、最大検知速度は、過去の計測結果を用いた速度推定の方が大きくなるが、推定速度の最小単位も、過去の計測結果を用いた速度推定値の方が大きくなる。そのため、推定速度の最小単位を考慮すると、一般的なレーダ装置には精度面で課題がある。 Comparing the speed estimation using the past measurement results with the speed estimation using the Doppler effect, the maximum detection speed is larger in the speed estimation using the past measurement results, but the minimum unit of the estimated speed. However, the speed estimation value using the past measurement result is larger. Therefore, considering the minimum unit of the estimated speed, a general radar device has a problem in terms of accuracy.
 実施の形態3に係わるレーダ装置においては、過去の計測結果を用いた速度推定とドップラー効果を用いた速度推定とが相補的に用いられる。これにより、前記した課題は解決することが可能である。図10は、実施の形態3に係わるレーダ装置を説明するための図である。図10において、横軸は物標の相対速度を示している。実施の形態3においては、前記した過去の計測結果を用いた速度推定によって、物標のおおまかな相対速度MVmaxが推定され、その後、ドップラー効果を用いた速度推定により物標の相対速度Vが推定される。過去の計測結果を用いた速度推定により推定された相対速度と、ドップラー効果を用いた速度推定により推定された相対速度とを足し合わせることにより、物標の相対速度Vestを求める。これにより、広範囲の速度を、細かい最小単位で精度よく求めることが可能となる。このとき、相対速度を一意に求めるためには式(6)を満たす必要がある。実施の形態1および2で述べたように、実施の形態に係わるレーダ装置1の最大検知速度は、向上されている。そのため、過去の計測結果を用いた速度推定において、距離変化を見る時間を定める整数nが小さくても式(6)が成り立つようにすることができる。すなわち短い時間nTcで、物標の相対速度を一意に求めることが可能である。 In the radar device according to the third embodiment, velocity estimation using past measurement results and velocity estimation using Doppler effect are used complementarily. Thereby, the above-mentioned problems can be solved. FIG. 10 is a diagram for explaining the radar device according to the third embodiment. In FIG. 10, the horizontal axis indicates the relative speed of the target. In the third embodiment, the rough relative velocity MVmax of the target is estimated by the velocity estimation using the above-described past measurement result, and then the relative velocity V of the target is estimated by the velocity estimation using the Doppler effect. To be done. The relative speed Vest of the target is obtained by adding the relative speed estimated by the speed estimation using the past measurement result and the relative speed estimated by the speed estimation using the Doppler effect. This makes it possible to accurately obtain a wide range of speeds with a fine minimum unit. At this time, it is necessary to satisfy the equation (6) in order to uniquely obtain the relative speed. As described in the first and second embodiments, the maximum detection speed of the radar device 1 according to the embodiments is improved. Therefore, in the speed estimation using the past measurement result, the equation (6) can be established even if the integer n that determines the time to see the distance change is small. That is, it is possible to uniquely obtain the relative speed of the target in a short time nTc.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、Mは折返し回数を示す整数、Vmaxはレーダ装置の最大検知速度、Tmは1チャープ信号の計測に掛かる時間、Nは任意の整数を示している。また、Rsetは、距離の推定値を示しており、例えば、Rest(t0)は、時刻t0における距離の推定値を示している。 Here, M is an integer indicating the number of turns, Vmax is the maximum detection speed of the radar device, Tm is the time taken to measure one chirp signal, and N is an arbitrary integer. Further, Rset represents an estimated value of the distance, and, for example, Rest(t0) represents an estimated value of the distance at time t0.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the invention made by the inventor has been specifically described based on the embodiment, the invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
1 レーダ装置
100 物標
101、103 送信アンテナ
101_S~103_S チャープ信号
104 受信アンテナ
108 レーダユニット
200 スイッチユニット
201 並び替えユニット
202、205 補正ユニット
203 時間/周波数FFTユニット
204 距離・速度推定ユニット
206 方位推定ユニット
207 メモリユニット
CK 係数
1 radar device 100 target 101, 103 transmission antenna 101_S to 103_S chirp signal 104 reception antenna 108 radar unit 200 switch unit 201 rearrangement unit 202, 205 correction unit 203 time/frequency FFT unit 204 distance/speed estimation unit 206 azimuth estimation unit 207 Memory unit CK coefficient

Claims (6)

  1.  複数の送信信号を送信する複数の送信アンテナと、
     前記複数の送信信号による送信波が物標によって反射されることにより発生する反射波を信号として受信する複数の受信アンテナと、
     前記複数の受信アンテナにより受信された信号が、時系列に並ぶように、前記受信された信号を足し合わせ、足し合わせにより生成された信号を用いて、前記物標の相対速度を推定する信号処理部と、
     を備えた、レーダ装置。
    A plurality of transmission antennas for transmitting a plurality of transmission signals,
    A plurality of receiving antennas for receiving as a signal a reflected wave generated by the transmission wave by the plurality of transmission signals being reflected by the target,
    Signal processing in which the signals received by the plurality of receiving antennas are added together so that they are arranged in time series, and the signals generated by the addition are used to estimate the relative speed of the target. Department,
    A radar device equipped with.
  2.  請求項1に記載のレーダ装置において、
     前記信号処理部には、前記複数の受信アンテナにより受信された信号間の位相差に基づいて推定された前記物標の方位が供給され、
     前記信号処理部は、供給された前記物標の方位と前記複数の受信アンテナによって受信された信号とを用いて、前記物標の相対速度を推定する、レーダ装置。
    The radar device according to claim 1,
    The signal processing unit is supplied with the azimuth of the target estimated based on the phase difference between the signals received by the plurality of receiving antennas,
    The signal processing unit is a radar device that estimates a relative velocity of the target using the supplied azimuth of the target and the signals received by the plurality of receiving antennas.
  3.  請求項2に記載のレーダ装置において、
     前記信号処理部は、前記複数の受信アンテナにより受信された信号間の位相差を用いて、前記物標の方位を推定し、推定した前記物標の方位をメモリに記録し、前記メモリに記録された前記物標の方位が、前記信号処理部に供給される、レーダ装置。
    The radar device according to claim 2,
    The signal processing unit estimates the orientation of the target by using the phase difference between the signals received by the plurality of receiving antennas, records the estimated orientation of the target in a memory, and records the orientation in the memory. The radar device, wherein the azimuth of the target is supplied to the signal processing unit.
  4.  請求項3に記載のレーダ装置において、
     前記信号処理部は、前記推定した物標の相対速度を用いて、前記複数の受信アンテナにより受信された信号の位相を補正し、補正した位相を用いて、前記物標の方位を推定する、レーダ装置。
    The radar device according to claim 3,
    The signal processing unit uses the estimated relative velocity of the target to correct the phase of the signal received by the plurality of receiving antennas, and uses the corrected phase to estimate the azimuth of the target, Radar equipment.
  5.  請求項3に記載のレーダ装置において、
     前記信号処理部は、前記メモリに記録された前記物標の方位を用いて、前記受信アンテナにより受信された信号の位相を更新する、レーダ装置。
    The radar device according to claim 3,
    The said signal processing part is a radar apparatus which updates the phase of the signal received by the said receiving antenna using the direction of the said target recorded on the said memory.
  6.  請求項1に記載のレーダ装置において、
     前記受信された信号の足し合わせは、前記受信された信号に対して、所定の係数列を掛けることにより実行される、レーダ装置。
    The radar device according to claim 1,
    The radar device, wherein the addition of the received signals is performed by multiplying the received signals by a predetermined coefficient sequence.
PCT/JP2019/042290 2019-02-04 2019-10-29 Radar device WO2020161968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019006256.5T DE112019006256T5 (en) 2019-02-04 2019-10-29 RADAR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-017823 2019-02-04
JP2019017823A JP7023247B2 (en) 2019-02-04 2019-02-04 Radar device

Publications (1)

Publication Number Publication Date
WO2020161968A1 true WO2020161968A1 (en) 2020-08-13

Family

ID=71946977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042290 WO2020161968A1 (en) 2019-02-04 2019-10-29 Radar device

Country Status (3)

Country Link
JP (1) JP7023247B2 (en)
DE (1) DE112019006256T5 (en)
WO (1) WO2020161968A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238860B2 (en) * 2020-07-23 2023-03-14 株式会社三洋物産 game machine
JP7238862B2 (en) * 2020-07-23 2023-03-14 株式会社三洋物産 game machine
JP7238863B2 (en) * 2020-07-23 2023-03-14 株式会社三洋物産 game machine
JP7238864B2 (en) * 2020-07-23 2023-03-14 株式会社三洋物産 game machine
JP2022053185A (en) * 2020-09-24 2022-04-05 パナソニックIpマネジメント株式会社 Radar device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131752A1 (en) * 2014-11-11 2016-05-12 Nxp, B.V. Mimo radar system
JP2017522576A (en) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング MIMO radar measurement method
US20180011170A1 (en) * 2016-07-09 2018-01-11 Texas Instruments Incorporated Methods and Apparatus for Velocity Detection in MIMO Radar Including Velocity Ambiguity Resolution
JP2018072014A (en) * 2016-10-25 2018-05-10 ソニーセミコンダクタソリューションズ株式会社 Radar device, signal processing device and signal processing method
US20180172813A1 (en) * 2016-12-15 2018-06-21 Texas Instruments Incorporated Maximum Measurable Velocity in Frequency Modulated Continuous Wave (FMCW) Radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017522576A (en) * 2014-06-26 2017-08-10 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング MIMO radar measurement method
US20160131752A1 (en) * 2014-11-11 2016-05-12 Nxp, B.V. Mimo radar system
US20180011170A1 (en) * 2016-07-09 2018-01-11 Texas Instruments Incorporated Methods and Apparatus for Velocity Detection in MIMO Radar Including Velocity Ambiguity Resolution
JP2018072014A (en) * 2016-10-25 2018-05-10 ソニーセミコンダクタソリューションズ株式会社 Radar device, signal processing device and signal processing method
US20180172813A1 (en) * 2016-12-15 2018-06-21 Texas Instruments Incorporated Maximum Measurable Velocity in Frequency Modulated Continuous Wave (FMCW) Radar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHASHI, SUGURU ET AL.: "DOA estimation error analysis of moving target by TDM-MIMO radar", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS. B, vol. J101-B, no. 7, 1 July 2018 (2018-07-01), pages 528 - 538, ISSN: 1881-0209 *

Also Published As

Publication number Publication date
DE112019006256T5 (en) 2021-09-09
JP7023247B2 (en) 2022-02-21
JP2020125948A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2020161968A1 (en) Radar device
CN106796283B (en) MIMO radar measurement method
CN109061620B (en) Method for operating a multiple-input multiple-output radar
Hakobyan et al. A novel intercarrier-interference free signal processing scheme for OFDM radar
US10914818B2 (en) Angle-resolving FMCW radar sensor
JP6035165B2 (en) Radar equipment
JP2021183985A (en) Mimo radar sensor for automobile
CN107076835B (en) Radar measuring method with different sight distances
JP6148622B2 (en) Radar equipment
JP5617334B2 (en) Radar apparatus and target detection method
JP5912879B2 (en) Radar equipment
US20170115384A1 (en) Method for finding the position of objects using an fmcw radar
EP2200384B1 (en) Ranging diversity-reception method and receiver
JP2013120144A (en) Detection distance measurement device and angle estimation method
CN112470023B (en) Positioning method and positioning system for positioning at least one object by using wave-based signals
CN114814817B (en) Moving object speed deblurring method and device, electronic equipment and storage medium
Gonzalez et al. Doppler ambiguity resolution for binary-phase-modulated MIMO FMCW radars
JP2021513657A (en) Angle-resolved, wideband radar sensor for automobiles
JP2021152531A (en) MIMO radar system
US11175380B2 (en) Estimating device and estimating method
JP2011257376A (en) Rader device
US20220268876A1 (en) Spatial position calculation device
US11846700B2 (en) On-field phase calibration
JP2021135298A (en) MIMO radar system
US20240069186A1 (en) On-field phase calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914230

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19914230

Country of ref document: EP

Kind code of ref document: A1