WO2020161835A1 - Management system and machine learning device therefor and managing method - Google Patents

Management system and machine learning device therefor and managing method Download PDF

Info

Publication number
WO2020161835A1
WO2020161835A1 PCT/JP2019/004272 JP2019004272W WO2020161835A1 WO 2020161835 A1 WO2020161835 A1 WO 2020161835A1 JP 2019004272 W JP2019004272 W JP 2019004272W WO 2020161835 A1 WO2020161835 A1 WO 2020161835A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
factors
management target
target item
node
Prior art date
Application number
PCT/JP2019/004272
Other languages
French (fr)
Japanese (ja)
Inventor
唐橋 聡
ヨンテ カン
Original Assignee
オーウエル株式会社
コエバー アイ・アンド・ティー カンパニー, リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーウエル株式会社, コエバー アイ・アンド・ティー カンパニー, リミテッド filed Critical オーウエル株式会社
Priority to PCT/JP2019/004272 priority Critical patent/WO2020161835A1/en
Priority to JP2019534768A priority patent/JP6600120B1/en
Priority to KR1020207003132A priority patent/KR102242476B1/en
Publication of WO2020161835A1 publication Critical patent/WO2020161835A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a management system suitable for management of items that can be affected by various factors in the field of manufacturing or service, and a machine learning device and management method therefor.
  • an abnormality whose sign is detected in the above-mentioned prior art is also one item to be managed.
  • a managed item is affected by some factor, if the relationship between the managed item and the factor is known in advance, it is possible to predict the state or numerical value of the managed item from changes in the factor, and vice versa. In addition, it is possible to estimate the factor that is the cause of the change from the state or numerical value of the managed item.
  • the relationship between the management target item and a plurality of factors is modeled, and the sign of abnormality that is the management target item is detected using the learning sensor data and the model corresponding to the factors.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable efficient machine learning of the relationship between a management target item and a plurality of factors at a manufacturing or service site.
  • the present invention in machine learning for associating a managed item with a plurality of factors, expert knowledge of the relationship between the managed item and a plurality of factors is included in the initial modeling. Take advantage of.
  • the expert knowledge is knowledge of an expert who is familiar with the site of manufacturing or service in which items to be managed are set, and is knowledge formalized by a method described later.
  • the present invention provides a management system, a machine learning device therefor, and a management method.
  • the management system provided by the present invention is a system that enables utilization of expert knowledge for machine learning, and the machine learning device for the management system provided by the present invention utilizes machine knowledge to perform machine learning.
  • the management method provided by the present invention is a device that enables utilization of expert knowledge for machine learning.
  • the management system includes a data acquisition means, a characteristic factor diagram creation means, a probability model initial setting means, and a probability model learning means.
  • the data acquisition means acquires data at the manufacturing or service site where the management target item is set.
  • the characteristic factor diagram creating means generates a characteristic factor diagram showing the relationship between the management target item and a plurality of factors that are presumed to affect it, based on the expert knowledge of the relationship between the management target item and the plurality of factors. create.
  • the plurality of factors in the characteristic factor diagram are at least a part of the data acquired by the data acquisition unit, and each of the plurality of factors is given a degree of importance with respect to the management target item.
  • the probabilistic model initial setting means sets the link structure of the probabilistic model based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and sets the probabilistic model based on the importance attached to each of the multiple factors Set the value of each node.
  • the probabilistic model learning means learns the link structure of the probabilistic model or the value of each node using the data acquired by the data acquisition means.
  • the management system may further include characteristic factor diagram updating means for updating the characteristic factor diagram based on the learned link structure of the probabilistic model or the value of each node.
  • the management system further includes a monitoring unit that, when an abnormality is detected in the management target item, identifies a factor that is presumed to be the cause of the abnormality in the management target item based on the probabilistic model, and notifies the operator of the identified factor. You can also
  • a management system in another embodiment, includes a data acquisition device that acquires data at a manufacturing or service site in which items to be managed are set, and a terminal for creating the characteristic factor diagram based on expert knowledge. And a machine learning device that learns a probabilistic model related to the relationship between a managed item and a plurality of factors using data acquired by the data acquisition device. However, the machine learning device initializes the link structure of the probabilistic model based on the relationship between the managed item in the characteristic factor diagram and the plurality of factors, and the probabilistic model based on the importance assigned to each of the plurality of factors. Is configured to initialize the value of each node in the.
  • a machine learning device for a management system is provided with a data input unit to which data acquired at a manufacturing or service site in which a management target item is set and the characteristic factor diagram described above are set.
  • a characteristic factor diagram setting unit, a probabilistic model initial setting unit that initializes a probabilistic model, and a probabilistic model learning unit that learns a probabilistic model are provided.
  • the probabilistic model initial setting unit sets the link structure of the probabilistic model based on the relationship between the managed item and the plurality of factors in the characteristic factor diagram, and based on the importance attached to each of the plurality of factors, It is configured to set the value of each node.
  • the probabilistic model learning unit is configured to learn the link structure or the value of each node using the data input to the data input unit.
  • the management method provided by the present invention includes the following first to fourth steps.
  • the first step is a step of acquiring data at the manufacturing or service site where the management target item is set.
  • the second step is a step of creating the above-mentioned characteristic factor diagram based on expert knowledge of the relationship between the management target item and a plurality of factors.
  • the third step is to set the link structure of the probabilistic model based on the relationship between the managed items in the characteristic factor diagram and the plurality of factors, and to set each of the probabilistic models based on the importance assigned to each of the plurality of factors. This is the step of setting the value of the node.
  • the fourth step is a step of learning the link structure of the probabilistic model or the value of each node using the acquired data.
  • the relationship between the management target item and a plurality of factors in the field of manufacturing or service is represented by a probabilistic model, and the characteristic of formalizing expert knowledge about the relationship between the management target item and a plurality of factors is provided.
  • the present invention is applicable to various manufacturing and service sites.
  • Manufacturing sites include, for example, food and machine manufacturing lines, painting lines, chemical plants, and the like.
  • the service site includes, for example, a distribution center, a cleaning plant, a restaurant, and the like. That is, a suitable site using the present invention is a site where at least one management target item exists and a plurality of factors that may affect the management target item may exist. In this embodiment, an example in which the present invention is applied to a coating line among these sites will be described.
  • FIG. 1 is a diagram showing the overall configuration of the management system according to the present embodiment.
  • the management system 1 is applied to the coating line 10.
  • the coating line 10 includes a pretreatment device 12 for pretreating the product 11, a coating device 14 for coating the product 11, a drying device 16 for drying the coated product 11, and a pretreatment device 12 to the coating device 14.
  • a transport device 13 that transports the product 11, a transport device 15 that transports the product 11 from the coating device 14 to the drying device 16, a utility facility 17, and a mixing chamber 18 that mixes the paint.
  • Each of the equipments 11-18 constituting the coating line 10 is provided with one or more sensors (not shown).
  • the sensor includes various sensors such as a temperature sensor, a pressure sensor, a flow rate sensor, a weight sensor, an atmospheric pressure sensor, an outside air temperature sensor, and a wind speed sensor.
  • sensor data is acquired by these sensors.
  • the data acquisition means is not limited to the sensor.
  • At least some of the facilities 11-18 acquire device data such as the rotation speed of the motor.
  • the operator who manages the site may obtain the manually input data by inputting the data on a tablet terminal or the like.
  • [Xi] in the figure represents various data (including sensor data, device data, and manual input data) acquired at various points of the coating line 10.
  • the management system 1 includes an FBD creation terminal 2, a machine learning device 3, and a monitoring device 4, in addition to the above-described data acquisition device that acquires various data.
  • the FBD creation terminal 2 is a terminal for creating a fishbone diagram (FBD) described later based on expert knowledge.
  • the machine learning device 3 is a device that performs machine learning for finding a relationship between the data acquired by the data acquisition device and the customer task in the coating line 10.
  • the data acquired on the painting line 10 is input to the machine learning device 3. At that time, data obtained at the same time and in the same space are grouped, and the data is managed in group units. Details of machine learning will be described later.
  • the monitoring device 4 is a device that uses the relationship between the data obtained by machine learning and customer issues to identify the factor that caused the abnormality.
  • the monitoring device 4 includes a monitor, and dynamically displays the location and contents of the abnormality and the factor that caused the abnormality.
  • the monitoring device 4 is not essential, and a system including the FBD creation terminal 2 and the machine learning device 3 can also be called the management system 1.
  • a fishbone diagram that is, a characteristic factor diagram is used as a tool for formalizing knowledge possessed by an expert.
  • the FBD is a diagram systematically organizing and associating the relationship between a task (characteristic) and a plurality of factors that are presumed to affect it.
  • a large bone is drawn obliquely with respect to the spine representing the task.
  • Bone means a large classification of factors.
  • 5 major 4M1E that is, 5 major bones of MEN (person), MAC (mechanical equipment), MAT (material), MET (working method), and ENV (environment) are drawn.
  • MEN, MAC, MAT, and MET are work conditions on site
  • ENV is environmental conditions on site.
  • Data acquired from the coating line 10 is classified into any of the above 4M1E.
  • 3 middle bones are drawn with respect to the large bones of MEN. These middle bones mean the factors that influence the MEN, and the corresponding data are given for each middle bone.
  • An expert determines which data (factor) is classified into 4M1E based on his/her own knowledge.
  • the expert decides the importance of each data.
  • the degree of importance is the magnitude of the influence of each data on the task, and the larger the influence, the larger the number assigned.
  • a number from 0 to 5 and X are set as the rank of importance.
  • Ranks 1 to 5 mean that the higher the number, the higher the importance.
  • Rank 0 means that the degree of importance is unknown
  • rank X means that the degree of importance is judged to be zero by an expert.
  • the data of rank X is not displayed on the FBD.
  • the data (2nd_3rd_4th_5th_001) is assigned the importance of rank 5
  • the data (2nd_3rd_4th_5th_002) is assigned the importance of rank 3.
  • the FBD creation terminal 2 creates an FBD in which each factor is ranked, that is, a ranked FBD (R-FBD).
  • the major issues are coating quality, safety, facility maintenance, paints and chemicals, productivity, etc., and specific issues are set under these major issues.
  • specific problems such as film thickness, coating NV, and dust spots are set under the major problem of coating quality.
  • These specific problems are items to be managed by the management system 1.
  • the ranked FBD is created for each task.
  • the example shown in FIG. 3 indicates that a ranked FBD is created for each of the film thickness, the coating NV, and the dust spots.
  • the problem is a problem that occurs independently for each facility, the ranked FBD is created for each facility and for each problem.
  • FIG. 2 it is shown that a ranked FBD having a preventive maintenance problem is created for each of the three facilities PT11, PT31, and PT01.
  • FIG. 4 and 5 show specific examples of the core of the ranked FBD.
  • two middle bones are drawn with respect to the large bones of MET. These backbones are the factors that experts have determined to affect MET.
  • the chemical surface of the solution of the preliminary degreasing device of the facility PT11 and the free alkalinity of the solution of the preliminary degreasing device of the facility PT11 are listed as factors for MET.
  • two middle bones are drawn with respect to the large bones of MEN.
  • a small bone is drawn diagonally to one middle bone.
  • the data corresponding to the middle bone (PT01-1410) is the clogging
  • the data corresponding to the small bone (PT01-1210) is the pressure.
  • such a ranked FBD is created when an expert determines that clogging and pressure are related to results and factors.
  • creation of a ranked FBD is performed by the FBD creation terminal 2.
  • the FBD creation terminal 2 corresponds to the characteristic factor diagram creation means described in the claims.
  • FIG. 6 is a diagram for explaining the outline of machine learning.
  • the problem corresponding to the product j is represented by Y j
  • the set of data acquired from the coating line 10 is represented by X i
  • the number of data is 100
  • the task Y j is quantified.
  • the set X i corresponding to the task Y j is a group of data acquired at the same time as the task Y j .
  • a parameter ⁇ Y indicating a change in the task Y and a parameter ⁇ X indicating a change in each data X are calculated.
  • a method of calculating the parameters ⁇ Y and ⁇ X there are a method of calculating the differential value shown in Expression 1 and a method of calculating the change rate shown in Expression 2. Either calculation method may be used.
  • ⁇ Y j and ⁇ X i are calculated and grouped for each product. Since products flow on the coating line at regular intervals, calculation for each product is equivalent to calculation for every fixed time.
  • the parameter surrounded by O means that the value exceeds the limit value. For example, for product No. 19, ⁇ X 2 exceeds the limit value.
  • ⁇ Y 20, ⁇ X 2, ⁇ X 3, and ⁇ X 100 exceed the limit values. Since ⁇ Y 20 exceeds the limit value when ⁇ X 3 and ⁇ X 100 exceed the limit values, it can be estimated that X 3 and X 100 affect the task Y.
  • the lower part of FIG. 6 shows the physical structure of the coating line 10.
  • the data acquired from the painting line 10 is also classified by the acquired space.
  • X 1 , X 2 , and X 3 are data obtained by the coating device
  • X 7 , X 8 , and X 9 are data obtained in the mixing chamber
  • X 11 is a transfer device between the coating device and the drying device.
  • the data obtained in, are classified as.
  • the arrow lines connecting the facilities in FIG. 6 indicate the overlap of spaces on the data.
  • the coating device 14 and the mixing chamber 18 are regarded as the same space in terms of data.
  • a set of data obtained at the same time and the same space is created, and the machine learning is performed in units of the set.
  • the logical structure of the painting line 10 is drawn.
  • ⁇ Pro ⁇ , Pro ⁇ is a set of products included in one batch, and, for example, ⁇ Pro19, Pro20 ⁇ represents a set of 19th and 20th products.
  • the frame drawn with a broken line represents the classification of the data X that changed when the task Y changed. In the case of the example shown in FIG.
  • each of the set ⁇ X 1 , X 2 , X 3 ⁇ , the set ⁇ X 7 , X 8 , X 9 ⁇ , and the set ⁇ X 11 ⁇ is a cause of repeated occurrence
  • Set ⁇ X 1 , X 2 , X 3 ⁇ and set ⁇ X 7 , X 8 , X 9 ⁇ are the causes of overlapping in the same space.
  • FIG. 7 shows time-series data of ⁇ Y j and the corresponding set ⁇ X 1 , ⁇ X 2 ... ⁇ X 30 , ⁇ X 31 , ⁇ X 32 ... ⁇ X 99 , ⁇ X 100 ⁇ .
  • a change in ⁇ Y j is determined for each time.
  • ⁇ Y j is Boolean data
  • the change from true to false is determined as the change in ⁇ Y j .
  • ⁇ Y j is a numerical value
  • ⁇ Y j When a change occurs in ⁇ Y j , the set ⁇ X 1 , ⁇ X 2 ... ⁇ X 30 , ⁇ X 31 , ⁇ X 32 ... ⁇ X 99 , ⁇ X 100 ⁇ at that time is searched for an X i that has a difference equal to or larger than the limit value. Counting is performed and the counting result Count(X i
  • a Bayesian network is a physical/chemical phenomenon that has a number of infinite cases, and a computer-understandable structure with a finite number of cases. It is a model represented by. Specifically, although the factors omega i of the actual phenomena in coating line 10 can not be observed and observable factor X i is present, the observable factor X i is a Bayesian network, a causal relationship between the results and the factor , And the causal relationship between factors is represented by a link structure.
  • Figure 8 shows a graphical statistical model of a recurrent neural network.
  • the update structured model in this graphical statistical model is a model for updating the structure of the Bayesian network, that is, the link structure and the value of each node.
  • the set of data obtained at the current time on the painting line 10 and the output of the updated structured model at the previous time are input to the updated structured model.
  • the output of the updated structured model is the previous value of the unobservable factor mentioned above.
  • the above-described belief propagation method is used for learning in the update structured model.
  • the machine learning device 3 performs machine learning by the above method.
  • the number of data is 100 here, the actual number of data is large, and there are many problems to be managed, so that a small computer resource requires a long time for calculation.
  • the machine learning device 3 converts the ranked FBD created by the FBD creation terminal 2 into an orthogonal table.
  • the ranked FBD may be converted into an orthogonal table in advance and the orthogonal table may be input to the machine learning device 3.
  • the orthogonal table in addition to the relationship between the task (result) and the factor (cause), the importance of each factor and the causal relationship between the factors are input.
  • the machine learning device 3 initializes the Bayesian network based on the orthogonal table. Since the orthogonal table is converted from the ranked FBD, the link structure of the Bayesian network is initialized based on the relationship between the issues in the ranked FBD and multiple factors, and the important factors assigned to each of the multiple factors The value of each node of the Bayesian network will be initialized based on the degree. There are many factors that can influence the task, but the factors that the expert judges to have no influence are not displayed in the ranked FBD and are not reflected in the Bayesian network. As a result, the factor is excluded from the target of machine learning, so that machine learning can be efficiently performed and small-scale computer resources can be processed.
  • the learned Bayesian network is used in the monitoring device 4.
  • the monitoring device 4 identifies a factor that is presumed to be the cause of the abnormality in the management target item based on the learned Bayesian network, and notifies the identified factor to the operator. ..
  • the monitoring device 4 corresponds to the monitoring means described in the claims.
  • FIG. 10 is a diagram showing an image of the overall flow of machine learning executed in this embodiment.
  • the expert stores knowledge of the relationship between the observable data (factors) obtained on the painting line 10 and the task (step S1). Then, a ranked FBD is created based on the knowledge. Observable data obtained from the coating line 10 is associated with the middle and small bones of the ranked FBD (step S2).
  • the link structure of the Bayesian network and the value of each node are initialized based on the ranked FBD created by the expert (step S3). Further, learning is performed based on the observable data obtained on the coating line 10 (step S4). Learning is performed by a recursive neural network, and unobservable data is used as a hidden layer. The learning result is reflected in the Bayesian network, and the value of each node changes or the link structure changes according to the learning result (step S5). Furthermore, the learning result is reflected in the ranked FBD via the Bayesian network, and the importance of the bone structure and each factor is updated based on the learned link structure or the value of each node (step S6).
  • the relation between the task Y and each data is statistically calculated.
  • X 2 ) that the task Y changed when the data X 2 changed was 1/3, while the task Y changed when the data X 3 changed.
  • X 3 ) is 2/10. Therefore, the machine learning device 3 determines that the importance of the data X 2 is higher than the importance of the data X 3 . According to this judgment, the values of the nodes corresponding to the data X 2 and X 3 are changed in the Bayesian network. Further, the change in the Bayesian network is also reflected in the ranked FBD, and the importance of the factors corresponding to the data X 2 and X 3 is changed.
  • the probability P that problems Y when the data X 4 is changed (Y
  • the link structure is changed in the Bayesian network so as to add the node corresponding to the data X 4 . Further, the change in the Bayesian network is reflected in the ranked FBD, and a small bone corresponding to the data X 4 is newly added.
  • FIG. 12 is a diagram for more specifically explaining an example of updating a ranked FBD, specifically, an example in which the importance of a factor changes.
  • learning the Bayesian network based on the history of each change of the data X i obtained from the painting line 10 and the history of the evaluation result of the task Y j that is a management target item, each of the data X i and the task Y j. The degree of association with is examined, and the value of each node is reviewed according to the degree of association.
  • the position of the node of the data X 2 and the position of the node of the data X 3 are exchanged before and after the learning. This means that the magnitude relation of the nodes between the data X 2 and the data X 3 has changed before and after the learning.
  • the ranked FBD corrects the importance assigned to the factor corresponding to the node. In the example shown in FIG.
  • FIG. 13 is a diagram for more specifically explaining an example of updating the ranked FBD, specifically, an example in which the result-factor relationship changes.
  • learning the Bayesian network based on the history of each change of the data X i obtained from the painting line 10 and the history of the evaluation result of the task Y j that is a management target item, each of the data X i and the task Y j. The degree of association with is investigated. Then, when the node corresponding to the data having a high degree of association does not exist in the link structure of the Bayesian network, the node is newly added to the link structure.
  • the node of the data X 4 is newly added below the node of the data X 2 .
  • the data X 4 which has a relationship between the result and the factor with respect to the data X 2 , is newly found by machine learning.
  • a factor corresponding to the node is newly added to the ranked FBD.
  • a small bone corresponding to the data (1st_2nd_3rd_4th_5th_004) is newly added to the middle bone corresponding to the data (1st_2nd_3rd_4th_5th_002).
  • the processing described above is performed by the machine learning device 3.
  • the function of the machine learning device 3 to acquire data from the painting line 10 corresponds to the function as a data input unit described in the claims.
  • the function of the machine learning device 3 to accept the ranked FBD created by the FBD creation terminal 2 corresponds to the function as the characteristic factor diagram setting unit described in the claims.
  • the link structure of the Bayesian network and the function of initializing each node value based on the ranked FBD correspond to the probabilistic model initializing unit described in the claims, and also correspond to the probabilistic model initializing unit described in the claims. To do.
  • the function of learning the link structure of the Bayesian network and each node value based on the data acquired from the painting line 10 corresponds to the probabilistic model learning means described in the claims, and the probabilistic model learning unit described in the claims. Equivalent to.
  • the function of updating the ranked FBD based on the Bayesian network after learning corresponds to the characteristic factor diagram updating means described in the claims.
  • Management system 2 FBD creation terminal 3 Machine learning device 4 Monitoring device 10 Painting line

Abstract

The present invention creates a cause-and-effect diagram on the basis of expert knowledge about association between an item to be managed and a plurality of causes. In the cause-and-effect diagram, the plurality of causes are data acquired in the field of manufacture or service in which the item to be managed is set, and the degree of importance for the item to be managed is imparted to each of the plurality of causes. In machine learning, first, a link structure for a probability model is set on the basis of the relationship between the item to be managed and the plurality of causes in the cause-and-effect diagram, and a value for each node of the probability model is set on the basis of the degree of importance imparted to each of the plurality of causes. Then, the link structure or the value for each node is learned using the data acquired in the field of manufacture or service.

Description

管理システム及びそのための機械学習装置並びに管理方法Management system, machine learning device therefor, and management method
 本発明は、製造又はサービスの現場において様々な要因からの影響を受けうる項目の管理に用いて好適な管理システム及びそのための機械学習装置並びに管理方法に関する。 The present invention relates to a management system suitable for management of items that can be affected by various factors in the field of manufacturing or service, and a machine learning device and management method therefor.
 本発明に関連する先行技術が開示された先行技術文献として、例えば、国際公開第2016/170574号を挙げることができる。国際公開第2016/170574号に開示されたシステムでは、分散した多数の対象拠点の稼働データ(ビックデータ)が中央拠点に集約され、稼働データを利活用して異常予兆の検知が行われる。稼働データは、種々のセンサによって取得されたセンサデータである。このシステムでは、収集した学習用のセンサデータをもとに異常の予兆検知に向けたモデルが構築される。そして、構築したモデル及び予兆分析用のセンサデータを活用して異常の予兆分析が実行されるとともに、異常分析用のセンサデータをもとに異常の原因分析が実行される。 As prior art documents disclosing the prior art related to the present invention, for example, International Publication No. 2016/170574 can be cited. In the system disclosed in International Publication No. 2016/170574, operation data (big data) of a large number of distributed target bases are collected in a central base, and the operation data is utilized to detect anomaly sign. The operation data is sensor data acquired by various sensors. In this system, a model for detecting the sign of abnormality is constructed based on the collected learning sensor data. Then, while utilizing the constructed model and the sensor data for predictive analysis, the predictive analysis of the abnormality is executed, and the cause analysis of the abnormality is executed based on the sensor data for the abnormal analysis.
国際公開第2016/170574号International Publication No. 2016/170574
 今日、製造又はサービスの現場では、様々な管理対象項目が設定されている。例えば上記先行技術において予兆の検知が行われている異常も一つの管理対象項目である。管理対象項目が何らかの要因の影響を受ける場合、管理対象項目と要因との関連が予め把握されていれば、要因の変化から管理対象項目の状態や数値の変化を予測することができるし、逆に、管理対象項目の状態や数値の変化からその原因となっている要因を推定することができる。上記先行技術においては、管理対象項目と複数の要因との関連がモデル化され、要因に相当する学習用センサデータとモデルとを用いて、管理対象項目である異常の予兆が検知されている。 Today, various management target items are set at the manufacturing or service sites. For example, an abnormality whose sign is detected in the above-mentioned prior art is also one item to be managed. When a managed item is affected by some factor, if the relationship between the managed item and the factor is known in advance, it is possible to predict the state or numerical value of the managed item from changes in the factor, and vice versa. In addition, it is possible to estimate the factor that is the cause of the change from the state or numerical value of the managed item. In the above-mentioned prior art, the relationship between the management target item and a plurality of factors is modeled, and the sign of abnormality that is the management target item is detected using the learning sensor data and the model corresponding to the factors.
 ところが、管理対象項目と複数の要因との関連を表すモデルの構築には多くの時間がかかることが知られている。管理対象項目の状態や数値の変化の原因となりうる要因の数が多いほど、モデルの構築に要する時間は長くなる。今日、このようなモデルの構築には機械学習が利用されているが、モデルの構築に要する時間とモデルの精度は機械学習に利用するコンピュータ資源の規模に大きく依存する。大規模なコンピュータ資源を利用できない環境では、管理対象項目と複数の要因との関連が得られるまでに多くの時間がかかってしまう。また、精度の高いモデルを構築するには大規模なデータが必要であり、その大規模なデータを処理するためにはどうしても大規模なコンピュータ資源が必要となる。 However, it is known that it takes a lot of time to build a model that shows the relationship between managed items and multiple factors. The larger the number of factors that can cause the change in the state or numerical value of the managed item, the longer the time required to build the model. Today, machine learning is used to build such models, but the time required for model building and the accuracy of the model depend largely on the scale of computer resources used for machine learning. In an environment where large-scale computer resources cannot be used, it takes a lot of time to obtain the relationship between the managed item and multiple factors. In addition, a large amount of data is required to build a highly accurate model, and a large amount of computer resources are inevitably required to process the large amount of data.
 しかしながら、大規模なコンピュータ資源を用意するには多大なコストが必要となる。製造又はサービスの現場によってはコスト上の制約によって小規模なコンピュータ資源しか用意できないことは多々あるし、同じ結果が得られるのであればコンピュータ資源に投入するコストは少なく抑えたい。このため、小規模なコンピュータ資源であったとしても、短い時間と少ないデータとで成果を得られるようにすることが、製造又はサービスの現場における管理対象項目と複数の要因との関連の機械学習において求められている。 However, preparing a large-scale computer resource requires a great deal of cost. Depending on the manufacturing or service site, it is often the case that only a small computer resource can be prepared due to cost constraints, and if the same result can be obtained, the cost to invest in computer resources should be kept low. For this reason, even if it is a small-scale computer resource, it is necessary to obtain results in a short time and with a small amount of data in order to perform machine learning of the relationship between the management target item and multiple factors in the manufacturing or service site. Is sought in.
 本発明は、上記の課題に鑑みてなされたものであり、製造又はサービスの現場における管理対象項目と複数の要因との関連を効率的に機械学習可能にすることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to enable efficient machine learning of the relationship between a management target item and a plurality of factors at a manufacturing or service site.
 上記目的を達成するための手段として、本発明では、管理対象項目と複数の要因との関連付けのための機械学習において、その初期モデリングに管理対象項目と複数の要因との関連についての専門家知識を活用する。専門家知識とは、管理対象項目が設定された製造又はサービスの現場に精通する専門家の知識であって、後述する方法で形式知化された知識である。本発明は、管理システム及びそのための機械学習装置並びに管理方法を提供する。本発明が提供する管理システムは、機械学習への専門家知識の活用を可能にしたシステムであり、本発明が提供する管理システムのための機械学習装置は、専門家知識を活用して機械学習を行う装置であり、本発明が提供する管理方法は、機械学習への専門家知識の活用を可能にした方法である。 As a means for achieving the above object, in the present invention, in machine learning for associating a managed item with a plurality of factors, expert knowledge of the relationship between the managed item and a plurality of factors is included in the initial modeling. Take advantage of. The expert knowledge is knowledge of an expert who is familiar with the site of manufacturing or service in which items to be managed are set, and is knowledge formalized by a method described later. The present invention provides a management system, a machine learning device therefor, and a management method. The management system provided by the present invention is a system that enables utilization of expert knowledge for machine learning, and the machine learning device for the management system provided by the present invention utilizes machine knowledge to perform machine learning. The management method provided by the present invention is a device that enables utilization of expert knowledge for machine learning.
 本発明が提供する管理システムは、データ取得手段と特性要因図作成手段と確率モデル初期設定手段と確率モデル学習手段とを備える。データ取得手段は、管理対象項目が設定された製造又はサービスの現場においてデータを取得する。特性要因図作成手段は、管理対象項目とそれに影響を与えると推測される複数の要因との関連を表す特性要因図を、管理対象項目と複数の要因との関連についての専門家知識に基づいて作成する。ただし、特性要因図における複数の要因はデータ取得手段により取得されたデータの少なくとも一部であり、且つ、複数の要因のそれぞれには管理対象項目に対する重要度が付されている。確率モデル初期設定手段は、特性要因図における管理対象項目と複数の要因との関係に基づいて確率モデルのリンク構造を設定し、複数の要因のそれぞれに付された重要度に基づいて確率モデルの各ノードの値を設定する。確率モデル学習手段は、データ取得手段によって取得されたデータを用いて確率モデルのリンク構造又は各ノードの値を学習する。 The management system provided by the present invention includes a data acquisition means, a characteristic factor diagram creation means, a probability model initial setting means, and a probability model learning means. The data acquisition means acquires data at the manufacturing or service site where the management target item is set. The characteristic factor diagram creating means generates a characteristic factor diagram showing the relationship between the management target item and a plurality of factors that are presumed to affect it, based on the expert knowledge of the relationship between the management target item and the plurality of factors. create. However, the plurality of factors in the characteristic factor diagram are at least a part of the data acquired by the data acquisition unit, and each of the plurality of factors is given a degree of importance with respect to the management target item. The probabilistic model initial setting means sets the link structure of the probabilistic model based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and sets the probabilistic model based on the importance attached to each of the multiple factors Set the value of each node. The probabilistic model learning means learns the link structure of the probabilistic model or the value of each node using the data acquired by the data acquisition means.
 なお、管理システムは、学習された確率モデルのリンク構造又は各ノードの値に基づいて特性要因図を更新する特性要因図更新手段をさらに備えることもできる。また、管理システムは、管理対象項目に異常が検知された場合、管理対象項目の異常の原因と推定される要因を確率モデルに基づき特定し、特定した要因をオペレータに通知する監視手段をさらに備えることもできる。 The management system may further include characteristic factor diagram updating means for updating the characteristic factor diagram based on the learned link structure of the probabilistic model or the value of each node. In addition, the management system further includes a monitoring unit that, when an abnormality is detected in the management target item, identifies a factor that is presumed to be the cause of the abnormality in the management target item based on the probabilistic model, and notifies the operator of the identified factor. You can also
 別の実施の形態では、管理システムは、管理対象項目が設定された製造又はサービスの現場においてデータを取得するデータ取得装置と、前述の特性要因図を専門家知識に基づいて作成するための端末と、管理対象項目と複数の要因との関係に関する確率モデルをデータ取得装置により取得されたデータを用いて学習する機械学習装置とで構成されてもよい。ただし、機械学習装置は、特性要因図における管理対象項目と複数の要因との関係に基づいて確率モデルのリンク構造を初期設定し、複数の要因のそれぞれに付された重要度に基づいて確率モデルの各ノードの値を初期設定するように構成されている。 In another embodiment, a management system includes a data acquisition device that acquires data at a manufacturing or service site in which items to be managed are set, and a terminal for creating the characteristic factor diagram based on expert knowledge. And a machine learning device that learns a probabilistic model related to the relationship between a managed item and a plurality of factors using data acquired by the data acquisition device. However, the machine learning device initializes the link structure of the probabilistic model based on the relationship between the managed item in the characteristic factor diagram and the plurality of factors, and the probabilistic model based on the importance assigned to each of the plurality of factors. Is configured to initialize the value of each node in the.
 本発明が提供する管理システムのための機械学習装置は、管理対象項目が設定された製造又はサービスの現場において取得されたデータが入力されるデータ入力部と、前述の特性要因図が設定される特性要因図設定部と、確率モデルの初期設定を行う確率モデル初期設定部と、確率モデルを学習する確率モデル学習部とを備える。確率モデル初期設定部は、特性要因図における管理対象項目と複数の要因との関係に基づいて確率モデルのリンク構造を設定し、複数の要因のそれぞれに付された重要度に基づいて確率モデルの各ノードの値を設定するように構成される。確率モデル学習部は、データ入力部に入力されたデータを用いてリンク構造又は各ノードの値を学習するように構成される。 A machine learning device for a management system provided by the present invention is provided with a data input unit to which data acquired at a manufacturing or service site in which a management target item is set and the characteristic factor diagram described above are set. A characteristic factor diagram setting unit, a probabilistic model initial setting unit that initializes a probabilistic model, and a probabilistic model learning unit that learns a probabilistic model are provided. The probabilistic model initial setting unit sets the link structure of the probabilistic model based on the relationship between the managed item and the plurality of factors in the characteristic factor diagram, and based on the importance attached to each of the plurality of factors, It is configured to set the value of each node. The probabilistic model learning unit is configured to learn the link structure or the value of each node using the data input to the data input unit.
 本発明が提供する管理方法は、以下の第1乃至第4のステップを含む。第1のステップは、管理対象項目が設定された製造又はサービスの現場においてデータを取得するステップである。第2のステップは、前述の特性要因図を管理対象項目と複数の要因との関連についての専門家知識に基づいて作成するステップである。第3のステップは、特性要因図における管理対象項目と複数の要因との関係に基づいて確率モデルのリンク構造を設定し、複数の要因のそれぞれに付された重要度に基づいて確率モデルの各ノードの値を設定するステップである。そして、第4のステップは、取得されたデータを用いて確率モデルのリンク構造又は各ノードの値を学習するステップである。 The management method provided by the present invention includes the following first to fourth steps. The first step is a step of acquiring data at the manufacturing or service site where the management target item is set. The second step is a step of creating the above-mentioned characteristic factor diagram based on expert knowledge of the relationship between the management target item and a plurality of factors. The third step is to set the link structure of the probabilistic model based on the relationship between the managed items in the characteristic factor diagram and the plurality of factors, and to set each of the probabilistic models based on the importance assigned to each of the plurality of factors. This is the step of setting the value of the node. The fourth step is a step of learning the link structure of the probabilistic model or the value of each node using the acquired data.
 本発明によれば、製造又はサービスの現場における管理対象項目と複数の要因との関係を確率モデルで表すとともに、管理対象項目と複数の要因との関連についての専門家知識を形式知化した特性要因図を確率モデルの初期モデリングに活用したことによって、管理対象項目と複数の要因との関連を効率的に機械学習することができる。効果の詳細については、以下に簡単に説明する図面と、それに関連して詳細に説明される実施の形態とから明らかになるであろう。 According to the present invention, the relationship between the management target item and a plurality of factors in the field of manufacturing or service is represented by a probabilistic model, and the characteristic of formalizing expert knowledge about the relationship between the management target item and a plurality of factors is provided. By utilizing the factor diagram for the initial modeling of the probabilistic model, it is possible to efficiently machine-learn the relationship between the management target item and a plurality of factors. Details of the effects will be apparent from the drawings briefly described below and the embodiments described in detail in connection with the drawings.
本発明の実施の形態に係る管理システムの全体構成を示す図である。It is a figure which shows the whole structure of the management system which concerns on embodiment of this invention. フィッシュボーンダイアグラムの構造を説明するための図である。It is a figure for demonstrating the structure of a fish bone diagram. フィッシュボーンダイアグラムの作成方法を説明するための図である。It is a figure for explaining a creation method of a fishbone diagram. フィッシュボーンダイアグラムの作成方法を説明するための図である。It is a figure for explaining a creation method of a fishbone diagram. フィッシュボーンダイアグラムの作成方法を説明するための図である。It is a figure for explaining a creation method of a fishbone diagram. 機械学習の概要を説明するための図である。It is a figure for explaining the outline of machine learning. 潜在要因の探索方法を説明するための図である。It is a figure for demonstrating the search method of a latent factor. ベイジアンネットワークの学習方法を説明するための図である。It is a figure for demonstrating the learning method of a Bayesian network. 機械学習用データの作成方法を説明するための図である。It is a figure for demonstrating the creation method of the data for machine learning. 本発明の実施の形態において実行される機械学習の全体の流れをイメージで表した図である。It is the figure which represented the whole flow of the machine learning performed in the embodiment of this invention with the image. フィッシュボーンダイアグラムの更新方法を説明するための図である。It is a figure for demonstrating the update method of a fish bone diagram. フィッシュボーンダイアグラムの更新例を説明するための図である。It is a figure for demonstrating the update example of a fishbone diagram. フィッシュボーンダイアグラムの更新例を説明するための図である。It is a figure for demonstrating the update example of a fishbone diagram.
 以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、以下に示す実施の形態において説明する構造や工程は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, in the following embodiments, when reference is made to the number of each element, the number, the amount, the range, etc., the reference is made unless otherwise specified or in principle clearly specified by the number. The present invention is not limited to the number. Further, the structures and processes described in the following embodiments are not necessarily essential to the present invention, unless otherwise specified or clearly specified in principle.
1.管理システムの構成
 本発明は様々な製造及びサービスの現場に適用可能である。製造の現場には、例えば、食品や機械の製造ラインや、塗装ラインや、化学プラントなどが含まれる。サービスの現場には、例えば、配送センターや、クリーニング工場や、レストランなどが含まれる。つまり、本発明を用いて好適な現場とは、少なくとも一つの管理対象項目が存在し、且つ、管理対象項目に影響を与えうる複数の要因が存在しうる現場である。本実施の形態では、これらの現場のうち、特に塗装ラインに本発明を適用した例について説明する。
1. Configuration of Management System The present invention is applicable to various manufacturing and service sites. Manufacturing sites include, for example, food and machine manufacturing lines, painting lines, chemical plants, and the like. The service site includes, for example, a distribution center, a cleaning plant, a restaurant, and the like. That is, a suitable site using the present invention is a site where at least one management target item exists and a plurality of factors that may affect the management target item may exist. In this embodiment, an example in which the present invention is applied to a coating line among these sites will be described.
 図1は、本実施の形態に係る管理システムの全体構成を示す図である。管理システム1は、塗装ライン10に適用される。塗装ライン10は、製品11に対して前処理を行う前処理装置12、製品11に塗装を施す塗装装置14、塗装した製品11を乾燥させる乾燥装置16、前処理装置12から塗装装置14へ製品11を搬送する搬送装置13、塗装装置14から乾燥装置16へ製品11を搬送する搬送装置15、ユーティリティ設備17、及び、塗料の混合を行う混合室18を備える。 FIG. 1 is a diagram showing the overall configuration of the management system according to the present embodiment. The management system 1 is applied to the coating line 10. The coating line 10 includes a pretreatment device 12 for pretreating the product 11, a coating device 14 for coating the product 11, a drying device 16 for drying the coated product 11, and a pretreatment device 12 to the coating device 14. A transport device 13 that transports the product 11, a transport device 15 that transports the product 11 from the coating device 14 to the drying device 16, a utility facility 17, and a mixing chamber 18 that mixes the paint.
 塗装ライン10を構成する設備11-18には、それぞれ1又は複数のセンサ(図示略)が配置されている。センサには、温度センサ、圧力センサ、流量センサ、重量センサ、大気圧センサ、外気温センサ、風速センサ等の種々のセンサが含まれる。各設備11-18では、これらセンサによってセンサデータが取得される。ただし、データ取得手段は、センサだけではない。少なくとも一部の設備11-18では、例えばモータの回転数等のデバイスデータが取得される。さらに、現場を管理するオペレータがタブレット端末等に入力することによって手入力データが取得される場合もある。図中の[Xi]は塗装ライン10の各所で取得された各種データ(センサデータとデバイスデータと手入力データとを含む)を表している。 Each of the equipments 11-18 constituting the coating line 10 is provided with one or more sensors (not shown). The sensor includes various sensors such as a temperature sensor, a pressure sensor, a flow rate sensor, a weight sensor, an atmospheric pressure sensor, an outside air temperature sensor, and a wind speed sensor. In each facility 11-18, sensor data is acquired by these sensors. However, the data acquisition means is not limited to the sensor. At least some of the facilities 11-18 acquire device data such as the rotation speed of the motor. Further, the operator who manages the site may obtain the manually input data by inputting the data on a tablet terminal or the like. [Xi] in the figure represents various data (including sensor data, device data, and manual input data) acquired at various points of the coating line 10.
 管理システム1は、前述の各種データを取得するデータ取得装置に加え、FBD作成端末2と機械学習装置3と監視装置4とを備える。FBD作成端末2は、専門家知識に基づいて後述するフィッシュボーンダイアグラム(FBD)を作成するための端末である。機械学習装置3は、塗装ライン10においてデータ取得装置により取得されたデータと顧客課題との間に関連を見出すための機械学習を行う装置である。塗装ライン10で取得されたデータは機械学習装置3に入力される。その際、同一時刻及び同一空間で得られたデータはグルーピングされ、グループ単位でデータの管理が行われる。機械学習の詳細については後述する。 The management system 1 includes an FBD creation terminal 2, a machine learning device 3, and a monitoring device 4, in addition to the above-described data acquisition device that acquires various data. The FBD creation terminal 2 is a terminal for creating a fishbone diagram (FBD) described later based on expert knowledge. The machine learning device 3 is a device that performs machine learning for finding a relationship between the data acquired by the data acquisition device and the customer task in the coating line 10. The data acquired on the painting line 10 is input to the machine learning device 3. At that time, data obtained at the same time and in the same space are grouped, and the data is managed in group units. Details of machine learning will be described later.
 監視装置4は、機械学習で得られたデータと顧客課題との関連を利用し、異常発生の原因となった要因を特定する装置である。監視装置4はモニターを備え、このモニターに異常の発生個所や内容、その原因となった要因を動的に表示する。ただし、監視装置4は必須ではなく、FBD作成端末2と機械学習装置3とからなるシステムを管理システム1と呼ぶこともできる。 The monitoring device 4 is a device that uses the relationship between the data obtained by machine learning and customer issues to identify the factor that caused the abnormality. The monitoring device 4 includes a monitor, and dynamically displays the location and contents of the abnormality and the factor that caused the abnormality. However, the monitoring device 4 is not essential, and a system including the FBD creation terminal 2 and the machine learning device 3 can also be called the management system 1.
2.フィッシュボーンダイアグラムの構造及び作成方法
 本実施の形態では、専門家が有する知識を形式知化するツールとしてフィッシュボーンダイアグラム(以下、FBDと表記する)、すなわち、特性要因図を用いる。FBDは、課題(特性)と、それに影響を与えると推測される複数の要因との関連を整理し、体系的にまとめた図である。図2に示すように、FBDでは、課題を表す背骨に対して斜めに大骨が描かれる。大骨は要因の大分類を意味する。本実施の形態では、4M1Eの5本、すなわち、MEN(人)、MAC(機械設備)、MAT(材料)、MET(作業方法)、及びENV(環境)の5本の大骨が描かれている。MEN、MAC、MAT、METは現場の作業条件であり、ENVは現場の環境条件である。
2. Structure and Creation Method of Fishbone Diagram In the present embodiment, a fishbone diagram (hereinafter, referred to as FBD), that is, a characteristic factor diagram is used as a tool for formalizing knowledge possessed by an expert. The FBD is a diagram systematically organizing and associating the relationship between a task (characteristic) and a plurality of factors that are presumed to affect it. As shown in FIG. 2, in the FBD, a large bone is drawn obliquely with respect to the spine representing the task. Bone means a large classification of factors. In this embodiment, 5 major 4M1E, that is, 5 major bones of MEN (person), MAC (mechanical equipment), MAT (material), MET (working method), and ENV (environment) are drawn. There is. MEN, MAC, MAT, and MET are work conditions on site, and ENV is environmental conditions on site.
 塗装ライン10から取得されるデータは、上記4M1Eの何れかに分類される。例えば、図2に示す例では、MENの大骨に対して3本の中骨が描かれている。これらの中骨は、MENに影響を与える要因を意味し、中骨毎に対応するデータが与えられている。どのデータ(要因)が4M1Eのどれに分類されるかは、専門家が自身の知識に基づいて判断する。 Data acquired from the coating line 10 is classified into any of the above 4M1E. For example, in the example shown in FIG. 2, three middle bones are drawn with respect to the large bones of MEN. These middle bones mean the factors that influence the MEN, and the corresponding data are given for each middle bone. An expert determines which data (factor) is classified into 4M1E based on his/her own knowledge.
 さらに、専門家は、それぞれのデータの重要度を決定する。重要度とは、各データの課題に対する影響の大きさであり、与える影響が大きいほど大きい数字が付与される。本実施の形態では、重要度のランクとして0から5までの数字とXが設定されている。ランク1から5までは数字が大きいほど重要度が大きいことを意味する。ランク0は重要度が不明であることを意味し、ランクXは専門家により重要度がゼロと判断されたことを意味する。ただし、ランクXのデータについてはFBDには表示されない。図2に示す例では、データ(2nd_3rd_4th_5th_001)にランク5の重要度が付され、データ(2nd_3rd_4th_5th_002)にはランク3の重要度が付されている。FBD作成端末2では、各要因に対してランク付けがなされたFBD、すなわち、ランク付きFBD(R-FBD)が作成される。 Furthermore, the expert decides the importance of each data. The degree of importance is the magnitude of the influence of each data on the task, and the larger the influence, the larger the number assigned. In this embodiment, a number from 0 to 5 and X are set as the rank of importance. Ranks 1 to 5 mean that the higher the number, the higher the importance. Rank 0 means that the degree of importance is unknown, and rank X means that the degree of importance is judged to be zero by an expert. However, the data of rank X is not displayed on the FBD. In the example shown in FIG. 2, the data (2nd_3rd_4th_5th_001) is assigned the importance of rank 5, and the data (2nd_3rd_4th_5th_002) is assigned the importance of rank 3. The FBD creation terminal 2 creates an FBD in which each factor is ranked, that is, a ranked FBD (R-FBD).
 ランク付きFBDにおいて、課題とは、大きくは、塗装品質、安全、設備保全、塗料及び薬品、生産性等であり、その大きな課題の下に細分化された具体的な課題が設定されている。例えば、図3に示すように、塗装品質という大きな課題の下には、膜厚、塗着NV、ゴミブツといった具体的な課題が設定されている。これらの具体的な課題が管理システム1による管理対象項目である。ランク付きFBDは、課題毎に作成される。図3に示す例では、膜厚、塗着NV、ゴミブツのそれぞれについてランク付きFBDが作成されることが示されている。また、課題が設備毎に独立して発生する課題である場合には、ランク付きFBDは、設備毎且つ課題毎に作成される。図2に示す例では、3つの設備PT11、PT31、PT01のそれぞれについて、予防保全を課題とするランク付きFBDが作成されることが示されている。 In the ranked FBD, the major issues are coating quality, safety, facility maintenance, paints and chemicals, productivity, etc., and specific issues are set under these major issues. For example, as shown in FIG. 3, specific problems such as film thickness, coating NV, and dust spots are set under the major problem of coating quality. These specific problems are items to be managed by the management system 1. The ranked FBD is created for each task. The example shown in FIG. 3 indicates that a ranked FBD is created for each of the film thickness, the coating NV, and the dust spots. Further, when the problem is a problem that occurs independently for each facility, the ranked FBD is created for each facility and for each problem. In the example shown in FIG. 2, it is shown that a ranked FBD having a preventive maintenance problem is created for each of the three facilities PT11, PT31, and PT01.
 図4及び図5には、ランク付きFBDの中骨の具体例が示されている。図4に示す例では、METの大骨に対して2本の中骨が描かれている。これらの中骨は、専門家がMETに対して影響を与えると判断した要因である。ここでは、設備PT11の予備脱脂装置の溶液の薬品面と、設備PT11の予備脱脂装置の溶液の遊離アルカリ度とが、METに対する要因として挙げられている。一方、図5に示す例では、MENの大骨に対して2本の中骨が描かれている。そして、一つの中骨に対して斜めに小骨が描かれている。中骨に対応するデータ(PT01-1410)は詰まりであり、小骨に対応するデータ(PT01-1210)は圧力である。表に示すように、詰まりと圧力とは結果と要因との関係にあると専門家が判断した場合、このようなランク付きFBDが作成される。 4 and 5 show specific examples of the core of the ranked FBD. In the example shown in FIG. 4, two middle bones are drawn with respect to the large bones of MET. These backbones are the factors that experts have determined to affect MET. Here, the chemical surface of the solution of the preliminary degreasing device of the facility PT11 and the free alkalinity of the solution of the preliminary degreasing device of the facility PT11 are listed as factors for MET. On the other hand, in the example shown in FIG. 5, two middle bones are drawn with respect to the large bones of MEN. Then, a small bone is drawn diagonally to one middle bone. The data corresponding to the middle bone (PT01-1410) is the clogging, and the data corresponding to the small bone (PT01-1210) is the pressure. As shown in the table, such a ranked FBD is created when an expert determines that clogging and pressure are related to results and factors.
 前述の通り、本実施の形態では、ランク付きFBDの作成はFBD作成端末2で行われる。請求項との対応関係では、FBD作成端末2は、請求項に記載の特性要因図作成手段に相当する。 As described above, in the present embodiment, creation of a ranked FBD is performed by the FBD creation terminal 2. In correspondence with the claims, the FBD creation terminal 2 corresponds to the characteristic factor diagram creation means described in the claims.
3.機械学習の内容
 本実施の形態の機械学習では、時空間に基づいて因果関係を探索する方法が用いられる。図6は、機械学習の概要を説明するための図である。ここで製品jに対応する課題をY、塗装ライン10から取得されるデータの集合をXと表記し、データの個数を100個とすると、課題Yは集合X={X,X,X…X35,X36…X99,X100}で構成される。課題Yは数値化されている。課題Yに対応する集合Xは、課題Yと同時刻で取得されたデータがグルーピングされたものである。
3. Contents of Machine Learning In the machine learning of the present embodiment, a method of searching for a causal relationship based on space-time is used. FIG. 6 is a diagram for explaining the outline of machine learning. Here, the problem corresponding to the product j is represented by Y j , the set of data acquired from the coating line 10 is represented by X i, and the number of data is 100, the problem Y j is the set X i ={X 1 , X 2 , X 3 ... X 35 , X 36 ... X 99 , X 100 }. The task Y j is quantified. The set X i corresponding to the task Y j is a group of data acquired at the same time as the task Y j .
 機械学習では、課題Yの変化を示すパラメータΔYと各データXの変化を示すパラメータΔXとが計算される。パラメータΔY及びΔXの計算方法としては、式1に示す微分値を計算する方法と、式2に示す変化率を計算する方法とがある。どちらの計算方法が用いられてもよい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In machine learning, a parameter ΔY indicating a change in the task Y and a parameter ΔX indicating a change in each data X are calculated. As a method of calculating the parameters ΔY and ΔX, there are a method of calculating the differential value shown in Expression 1 and a method of calculating the change rate shown in Expression 2. Either calculation method may be used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 図6の上段に示すように、ΔYとΔXとは製品毎に計算されてグループ化される。製品は塗装ライン上を一定の間隔で流れているので、製品毎に計算を行うことは一定の時刻毎に計算を行うことに等しい。図において、〇印で囲まれたパラメータは、その値が限界値を超えたことを意味している。例えば、19番の製品についてはΔXが限界値を超えている。一方、20番の製品については、ΔY20、ΔX2、ΔX3、ΔX100が限界値を超えている。ΔXとΔX100とが限界値を超えたときにΔY20が限界値を超えていることから、XとX100とは課題Yに影響していることが推定できる。 As shown in the upper part of FIG. 6, ΔY j and ΔX i are calculated and grouped for each product. Since products flow on the coating line at regular intervals, calculation for each product is equivalent to calculation for every fixed time. In the figure, the parameter surrounded by O means that the value exceeds the limit value. For example, for product No. 19, ΔX 2 exceeds the limit value. On the other hand, for the 20th product, ΔY 20, ΔX 2, ΔX 3, and ΔX 100 exceed the limit values. Since ΔY 20 exceeds the limit value when ΔX 3 and ΔX 100 exceed the limit values, it can be estimated that X 3 and X 100 affect the task Y.
 図6の下段には塗装ライン10の物理構造が描かれている。塗装ライン10から取得されたデータは、取得された空間によっても分類される。例えば、X,X,Xは塗装装置で得られたデータ、X,X,Xは混合室で得られたデータ、X11は塗装装置と乾燥装置との間の搬送装置で得られたデータ、のように分類される。また、図6中において設備間をつないでいる矢印線は、データ上での空間の重なりを示している。図6に示す例では、塗装装置14と混合室18とはデータ上同一空間とみなされる。前述のように、本実施の形態の機械学習では、同一時刻及び同一空間で得られたデータの集合が作成され、その集合の単位で機械学習が行われる。 The lower part of FIG. 6 shows the physical structure of the coating line 10. The data acquired from the painting line 10 is also classified by the acquired space. For example, X 1 , X 2 , and X 3 are data obtained by the coating device, X 7 , X 8 , and X 9 are data obtained in the mixing chamber, and X 11 is a transfer device between the coating device and the drying device. The data obtained in, are classified as. In addition, the arrow lines connecting the facilities in FIG. 6 indicate the overlap of spaces on the data. In the example shown in FIG. 6, the coating device 14 and the mixing chamber 18 are regarded as the same space in terms of data. As described above, in the machine learning of the present embodiment, a set of data obtained at the same time and the same space is created, and the machine learning is performed in units of the set.
 図6の中段には塗装ライン10の論理構造が描かれている。論理構造において、{Pro〇〇,Pro△△}は一つのバッチに含まれる製品の集合であり、例えば{Pro19,Pro20}は19番と20番の製品の集合を表している。破線で描かれた枠は、課題Yに変化が生じた時に変化があったデータXの分類を表している。図6に示す例の場合、{Pro19,Pro20}では集合{X,X,X}と集合{X,X,X}と集合{X11}とに変化が生じ、{Pro44,Pro45}では集合{X,X,X}と集合{X,X,X}と集合{X11}とに変化が生じ、{Pro102,Pro103}では集合{X,X,X}と集合{X11}とに変化が生じている。図6に示す例からは、集合{X,X,X}と集合{X,X,X}と集合{X11}のそれぞれは反復して発生する原因であり、且つ、集合{X,X,X}と集合{X,X,X}とは同一空間において重畳する原因であることが分かる。 In the middle of FIG. 6, the logical structure of the painting line 10 is drawn. In the logical structure, {Pro○, ProΔ△} is a set of products included in one batch, and, for example, {Pro19, Pro20} represents a set of 19th and 20th products. The frame drawn with a broken line represents the classification of the data X that changed when the task Y changed. In the case of the example shown in FIG. 6, in {Pro19, Pro20}, changes occur in the set {X 1 , X 2 , X 3 }, the set {X 7 , X 8 , X 9 }, and the set {X 11 }, and { In Pro44, Pro45}, the set {X 1 , X 2 , X 3 } and the set {X 7 , X 8 , X 9 } and the set {X 11 } change, and in {Pro 102, Pro 103}, the set {X 7 , X 8 , X 9 } and the set {X 11 } have changed. From the example shown in FIG. 6, each of the set {X 1 , X 2 , X 3 }, the set {X 7 , X 8 , X 9 }, and the set {X 11 } is a cause of repeated occurrence, and , Set {X 1 , X 2 , X 3 } and set {X 7 , X 8 , X 9 } are the causes of overlapping in the same space.
 以上のような機械学習を塗装ライン10から得られたデータに対して行うことにより、課題と複数の要因との関連が整理されていき、課題に対する原因となっている要因を探索することが可能となる。ここで、機械学習における確率モデルの学習方法と潜在要因の探索方法とについて図7を用いてより詳細に説明する。図7において示されているのは、ΔYとそれに対応する集合{ΔX,ΔX…ΔX30,ΔX31,ΔX32…ΔX99,ΔX100}の時系列データである。機械学習では、時刻毎にΔYの変化が判定される。ΔYがブールデータである場合は、真から偽への変化をΔYの変化として判定される。ΔYが数値である場合は、その数値(測定値)に限界以上の差異が生じたことをΔYの変化として判定される。 By performing the machine learning as described above on the data obtained from the painting line 10, the relationship between the problem and a plurality of factors can be sorted out, and the factor causing the problem can be searched. Becomes Here, a learning method of a probabilistic model and a searching method of latent factors in machine learning will be described in more detail with reference to FIG. 7. FIG. 7 shows time-series data of ΔY j and the corresponding set {ΔX 1 , ΔX 2 ... ΔX 30 , ΔX 31 , ΔX 32 ... ΔX 99 , ΔX 100 }. In machine learning, a change in ΔY j is determined for each time. If ΔY j is Boolean data, the change from true to false is determined as the change in ΔY j . When ΔY j is a numerical value, it is determined that the numerical value (measured value) exceeds the limit as a change in ΔY j .
 ΔYに変化が生じた場合、その時刻における集合{ΔX,ΔX…ΔX30,ΔX31,ΔX32…ΔX99,ΔX100}の中で限界値以上の差異が生じたXを探して計数し、その計数結果Count(X|Y)を得る。そして、Count(X|Y)を離散データに変換し、それに基づいて確率モデルを学習する。本実施の形態では、確率モデルとしてベイジアンネットワークモデルが用いられる。ベイジアンネットワークモデルにおけるリンク構造と各ノードの値を求める問題は整数計画法で解くことができる。また、機械学習では、ベイジアンネットワークモデルを用いた潜在要因の探索が行われる。この場合、空間に基づくタイムラグ効果に基づき、確率伝搬法によって新規要因(変数)が探索される。 When a change occurs in ΔY j , the set {ΔX 1 , ΔX 2 ... ΔX 30 , ΔX 31 , ΔX 32 ... ΔX 99 , ΔX 100 } at that time is searched for an X i that has a difference equal to or larger than the limit value. Counting is performed and the counting result Count(X i |Y j ) is obtained. Then, Count(X i |Y j ) is converted into discrete data, and the probabilistic model is learned based on it. In this embodiment, a Bayesian network model is used as the probabilistic model. The problem of finding the link structure and the value of each node in the Bayesian network model can be solved by integer programming. In machine learning, latent factors are searched using a Bayesian network model. In this case, a new factor (variable) is searched by the belief propagation method based on the time lag effect based on space.
 次に、機械学習装置3によるベイジアンネットワークの学習方法について図8を用いて説明する。ベイジアンパターン認識アルゴリズムの欄に記載されているように、ベイジアンネットワークは、無限大の場合の数を有する物理/化学的である実際の現象を、場合の数を有限にしてコンピュータが理解可能な構造で表したモデルである。具体的には、塗装ライン10における実際の現象には観測可能な要因Xと観測できない要因ωとが存在するが、ベイジアンネットワークでは観測可能な要因Xについて、結果と要因との因果関係、及び、要因間の因果関係がリンク構造で表されている。 Next, a method for learning a Bayesian network by the machine learning device 3 will be described with reference to FIG. As described in the section of Bayesian pattern recognition algorithm, a Bayesian network is a physical/chemical phenomenon that has a number of infinite cases, and a computer-understandable structure with a finite number of cases. It is a model represented by. Specifically, although the factors omega i of the actual phenomena in coating line 10 can not be observed and observable factor X i is present, the observable factor X i is a Bayesian network, a causal relationship between the results and the factor , And the causal relationship between factors is represented by a link structure.
 図8には、再帰型ニューラルネットワークのグラフィカル統計モデルが描かれている。このグラフィカル統計モデルにおける更新構造化モデルは、ベイジアンネットワークの構造、すなわち、リンク構造と各ノードの値を更新するためのモデルである。更新構造化モデルには、塗装ライン10において今回時刻に得られたデータの集合と、前時刻での更新構造化モデルの出力とが入力される。更新構造化モデルの出力は前述の観測できない要因の前回値である。更新構造化モデルにおける学習には前述の確率伝搬法が用いられる。 Figure 8 shows a graphical statistical model of a recurrent neural network. The update structured model in this graphical statistical model is a model for updating the structure of the Bayesian network, that is, the link structure and the value of each node. The set of data obtained at the current time on the painting line 10 and the output of the updated structured model at the previous time are input to the updated structured model. The output of the updated structured model is the previous value of the unobservable factor mentioned above. The above-described belief propagation method is used for learning in the update structured model.
 機械学習装置3は、以上のような方法で機械学習を行う。しかし、ここではデータ数を100として説明したが実際のデータ数は多大であり、また、管理対象項目である課題も多数あるため、小規模なコンピュータ資源では計算に長い時間を要してしまう。そこで活用されるのが、専門家によって作成された前述のランク付きFBDである。機械学習装置3は、図9に示すように、FBD作成端末2で作成されたランク付きFBDを直交表に変換する。或いは、予めランク付きFBDを直交表に変換しておき、直交表を機械学習装置3に入力してもよい。直交表には、課題(結果)と要因(原因)との関連の他にも、各要因の重要度と要因間の因果関係も入力される。 The machine learning device 3 performs machine learning by the above method. However, although the number of data is 100 here, the actual number of data is large, and there are many problems to be managed, so that a small computer resource requires a long time for calculation. What is used there is the above-mentioned ranked FBD created by an expert. As shown in FIG. 9, the machine learning device 3 converts the ranked FBD created by the FBD creation terminal 2 into an orthogonal table. Alternatively, the ranked FBD may be converted into an orthogonal table in advance and the orthogonal table may be input to the machine learning device 3. In the orthogonal table, in addition to the relationship between the task (result) and the factor (cause), the importance of each factor and the causal relationship between the factors are input.
 機械学習装置3は、直交表に基づいてベイジアンネットワークを初期設定する。直交表はランク付きFBDから変換されたものであるので、ランク付きFBDにおける課題と複数の要因との関係に基づいてベイジアンネットワークのリンク構造が初期設定され、複数の要因のそれぞれに付された重要度に基づいてベイジアンネットワークの各ノードの値が初期設定されることになる。課題に影響しうる要因は多数存在するが、専門家が全く影響はないと判断した要因についてはランク付きFBDには表示されず、ベイジアンネットワークにも反映されない。結果、その要因については機械学習の対象から除外されることとなるので、機械学習を効率的に行うことが可能となり、小規模なコンピュータ資源でも処理可能となる。 The machine learning device 3 initializes the Bayesian network based on the orthogonal table. Since the orthogonal table is converted from the ranked FBD, the link structure of the Bayesian network is initialized based on the relationship between the issues in the ranked FBD and multiple factors, and the important factors assigned to each of the multiple factors The value of each node of the Bayesian network will be initialized based on the degree. There are many factors that can influence the task, but the factors that the expert judges to have no influence are not displayed in the ranked FBD and are not reflected in the Bayesian network. As a result, the factor is excluded from the target of machine learning, so that machine learning can be efficiently performed and small-scale computer resources can be processed.
 学習されたベイジアンネットワークは、監視装置4において利用される。監視装置4は、管理対象項目(課題)に異常が検知された場合、管理対象項目の異常の原因と推定される要因を学習済みのベイジアンネットワークに基づき特定し、特定した要因をオペレータに通知する。請求項との対応関係では、監視装置4は、請求項に記載の監視手段に相当する。 The learned Bayesian network is used in the monitoring device 4. When an abnormality is detected in the management target item (issue), the monitoring device 4 identifies a factor that is presumed to be the cause of the abnormality in the management target item based on the learned Bayesian network, and notifies the identified factor to the operator. .. In correspondence with the claims, the monitoring device 4 corresponds to the monitoring means described in the claims.
4.フィッシュボーンダイアグラムの更新
 以上説明した通り、本実施の形態では、専門家知識が形式知化されたランク付きFBDがベイジアンネットワークを用いた機械学習に適用される。機械学習によって管理対象項目である課題と種々の要因との関連が明らかになるとともに、機械学習の結果をランク付きFBDにフィードバックすることによって、ランク付きFBDの精度をさらに向上させることも可能になる。図10は、本実施の形態において実行される機械学習の全体の流れをイメージで表した図である。
4. Updating of Fishbone Diagram As described above, in the present embodiment, the ranked FBD in which expert knowledge is formalized is applied to machine learning using Bayesian network. Machine learning will clarify the relationship between the issues that are the items to be managed and various factors, and by feeding back the results of machine learning to the ranked FBD, it is possible to further improve the accuracy of the ranked FBD. .. FIG. 10 is a diagram showing an image of the overall flow of machine learning executed in this embodiment.
 専門家は、塗装ライン10で得られた観測可能なデータ(要因)と課題との関係を知識として蓄える(ステップS1)。そして、その知識に基づいてランク付きFBDを作成する。ランク付きFBDの中骨及び小骨には、塗装ライン10から得られる観測可能なデータが対応付けられる(ステップS2)。 The expert stores knowledge of the relationship between the observable data (factors) obtained on the painting line 10 and the task (step S1). Then, a ranked FBD is created based on the knowledge. Observable data obtained from the coating line 10 is associated with the middle and small bones of the ranked FBD (step S2).
 機械学習装置3では、専門家により作成されたランク付きFBDに基づいて、ベイジアンネットワークのリンク構造と各ノードの値が初期設定される(ステップS3)。また、塗装ライン10で得られた観測可能なデータに基づいて学習がなされる(ステップS4)。学習は再帰型ニューラルネットワークによって行われ、観測できないデータは隠れ層として用いられる。学習結果はベイジアンネットワークに反映され、学習結果に応じて各ノードの値が変化したりリンク構造が変化したりする(ステップS5)。さらに、学習結果はベイジアンネットワークを介してランク付きFBDに反映され、学習されたリンク構造又は各ノードの値に基づいて骨構造や各要因の重要度が更新される(ステップS6)。 In the machine learning device 3, the link structure of the Bayesian network and the value of each node are initialized based on the ranked FBD created by the expert (step S3). Further, learning is performed based on the observable data obtained on the coating line 10 (step S4). Learning is performed by a recursive neural network, and unobservable data is used as a hidden layer. The learning result is reflected in the Bayesian network, and the value of each node changes or the link structure changes according to the learning result (step S5). Furthermore, the learning result is reflected in the ranked FBD via the Bayesian network, and the importance of the bone structure and each factor is updated based on the learned link structure or the value of each node (step S6).
 ここで、ランク付きFBDの更新方法について図11を用いて具体的に説明する。課題Yに変化が生じた所定時間において合計で100のデータに変化があり、そのうちデータXは4個、データX2は3個、データX3は10個、データX4は3個含まれていたとする。課題Yとの関連を考慮しなければ、データX3の確率の方がデータX2の確率よりも高いため、一般的には、データX3の重要度の方がデータX2の重要度よりも高いと判断される。また、データX4の確率は高くないため、一般的には、データX4の重要度は低いと判断される。ここでは、このような判断に従って専門家によるランク付きFBDの作成が行われていたとする。 Here, a method of updating the ranked FBD will be specifically described with reference to FIG. There are a total of 100 data changes in the predetermined time when the task Y has changed, of which 4 data X 1 , 3 data X 2 , 10 data X 3, and 3 data X 4 are included. It was supposed to be. Unless the relation with the task Y is taken into consideration, the probability of the data X 3 is higher than the probability of the data X 2 , so that the importance of the data X 3 is generally higher than that of the data X 2. Is also considered high. Moreover, since the probability of the data X 4 is not high, it is generally judged that the importance of the data X 4 is low. Here, it is assumed that the expert has created the ranked FBD according to such a determination.
 しかし、ベイジアンネットワークを用いた機械学習では、課題Yと各データとの関連が統計的に計算される。図11によれば、データX2が変化したときに課題Yが変化した確率P(Y|X2)は1/3であるのに対し、データX3が変化したときに課題Yが変化した確率P(Y|X3)は2/10である。よって、機械学習装置3はデータX2の重要度の方がデータX3の重要度よりも高いと判断する。この判断に従い、ベイジアンネットワークではデータX2,X3に対応するノードの値が変更される。さらに、ベイジアンネットワークの変更はランク付きFBDにも反映され、データX2,X3に対応する要因の重要度が変更される。 However, in machine learning using the Bayesian network, the relation between the task Y and each data is statistically calculated. According to FIG. 11, the probability P(Y|X 2 ) that the task Y changed when the data X 2 changed was 1/3, while the task Y changed when the data X 3 changed. The probability P(Y|X 3 ) is 2/10. Therefore, the machine learning device 3 determines that the importance of the data X 2 is higher than the importance of the data X 3 . According to this judgment, the values of the nodes corresponding to the data X 2 and X 3 are changed in the Bayesian network. Further, the change in the Bayesian network is also reflected in the ranked FBD, and the importance of the factors corresponding to the data X 2 and X 3 is changed.
 また、データX4が変化したときに課題Yが変化した確率P(Y|X4)は、統計的には、データX2が変化したときに課題Yが変化した確率P(Y|X2)と、データX4が変化したときにデータX2が変化した確率P(X2|X4)との積で表すことができる。ゆえに、確率P(Y|X4)は、ゼロではなく1/9となる。この判断に従い、ベイジアンネットワークではデータX4に対応するノードを追加するようにリンク構造が変更される。さらに、ベイジアンネットワークの変更はランク付きFBDにも反映され、データX4に対応する小骨が新たに追加される。 Also, the probability P that problems Y when the data X 4 is changed is changed (Y | X 4) is the statistical probability problems Y when the data X 2 is changed is changed P (Y | X 2 ) And the probability P(X 2 |X 4 ) that the data X 2 changes when the data X 4 changes. Therefore, the probability P(Y|X 4 ) is 1/9 instead of zero. According to this judgment, the link structure is changed in the Bayesian network so as to add the node corresponding to the data X 4 . Further, the change in the Bayesian network is reflected in the ranked FBD, and a small bone corresponding to the data X 4 is newly added.
 図12は、ランク付きFBDの更新例、詳しくは、要因の重要度が変化する例をより具体的に説明するための図である。ベイジアンネットワークの学習では、塗装ライン10から得られたデータXiのそれぞれの変化の履歴と管理対象項目である課題Yjの評価結果の履歴とに基づいて、データXiのそれぞれと課題Yjとの関連度合いが調べられ、その関連度合いに応じて各ノードの値が見直される。 FIG. 12 is a diagram for more specifically explaining an example of updating a ranked FBD, specifically, an example in which the importance of a factor changes. In learning the Bayesian network, based on the history of each change of the data X i obtained from the painting line 10 and the history of the evaluation result of the task Y j that is a management target item, each of the data X i and the task Y j. The degree of association with is examined, and the value of each node is reviewed according to the degree of association.
 図12に示す例では、学習の前後において、データX2のノードの位置とデータX3のノードの位置とが入れ替わっている。これは、学習の前後において、データX2とデータX3との間のノードの大小関係が変化したことを意味する。ベイジアンネットワークにおいてノードの値が見直された場合、ランク付きFBDでは、そのノードに対応する要因に付された重要度が修正される。図12に示す例では、学習の前後において、中骨に対応するデータ(1st_2nd_3rd_4th_5th_003)の重要度がランク5からランク3に変更され、結果、ランク4のデータ(1st_2nd_3rd_4th_5th_002)よりも重要度が下がっている。 In the example shown in FIG. 12, the position of the node of the data X 2 and the position of the node of the data X 3 are exchanged before and after the learning. This means that the magnitude relation of the nodes between the data X 2 and the data X 3 has changed before and after the learning. When the value of a node is reviewed in the Bayesian network, the ranked FBD corrects the importance assigned to the factor corresponding to the node. In the example shown in FIG. 12, the importance of the data (1st_2nd_3rd_4th_5th_003) corresponding to the middle bone is changed from rank 5 to rank 3 before and after the learning, and as a result, the importance is lower than the data of rank 4 (1st_2nd_3rd_4th_5th_002). There is.
 図13は、ランク付きFBDの更新例、詳しくは、結果-要因の関係が変化する例をより具体的に説明するための図である。ベイジアンネットワークの学習では、塗装ライン10から得られたデータXiのそれぞれの変化の履歴と管理対象項目である課題Yjの評価結果の履歴とに基づいて、データXiのそれぞれと課題Yjとの関連度合いが調べられる。そして、関連度合いの高いデータに対応するノードがベイジアンネットワークのリンク構造に存在しない場合、当該ノードがリンク構造に新たに追加される。 FIG. 13 is a diagram for more specifically explaining an example of updating the ranked FBD, specifically, an example in which the result-factor relationship changes. In learning the Bayesian network, based on the history of each change of the data X i obtained from the painting line 10 and the history of the evaluation result of the task Y j that is a management target item, each of the data X i and the task Y j. The degree of association with is investigated. Then, when the node corresponding to the data having a high degree of association does not exist in the link structure of the Bayesian network, the node is newly added to the link structure.
 図13に示す例では、学習後、データX2のノードの下位にデータX4のノードが新たに追加されている。これは、データX2に対して結果と要因との関係にあるデータX4が機械学習によって新たに見つかったことを意味する。リンク構造に新たなノードが追加された場合、当該ノードに対応する要因がランク付きFBDに新たに追加される。図13に示す例では、学習後、データ(1st_2nd_3rd_4th_5th_002)に対応する中骨に対して、データ(1st_2nd_3rd_4th_5th_004)に対応する小骨が新たに追加されている。 In the example shown in FIG. 13, after learning, the node of the data X 4 is newly added below the node of the data X 2 . This means that the data X 4, which has a relationship between the result and the factor with respect to the data X 2 , is newly found by machine learning. When a new node is added to the link structure, a factor corresponding to the node is newly added to the ranked FBD. In the example shown in FIG. 13, after learning, a small bone corresponding to the data (1st_2nd_3rd_4th_5th_004) is newly added to the middle bone corresponding to the data (1st_2nd_3rd_4th_5th_002).
 以上説明した処理は機械学習装置3によって行われる。請求項との対応関係では、機械学習装置3が塗装ライン10からデータを取得する機能は、請求項に記載のデータ入力部としての機能に相当する。また、機械学習装置3がFBD作成端末2で作成されたランク付きFBDを受け付ける機能は、請求項に記載の特性要因図設定部としての機能に相当する。ランク付きFBDに基づいてベイジアンネットワークのリンク構造及び各ノード値を初期設定する機能は、請求項に記載の確率モデル初期設定手段に相当し、且つ、請求項に記載の確率モデル初期設定部に相当する。塗装ライン10から取得されたデータに基づいてベイジアンネットワークのリンク構造及び各ノード値を学習する機能は、請求項に記載の確率モデル学習手段に相当し、且つ、請求項に記載の確率モデル学習部に相当する。また、学習後のベイジアンネットワークに基づいてランク付きFBDを更新する機能は、請求項に記載の特性要因図更新手段に相当する。 The processing described above is performed by the machine learning device 3. In correspondence with the claims, the function of the machine learning device 3 to acquire data from the painting line 10 corresponds to the function as a data input unit described in the claims. The function of the machine learning device 3 to accept the ranked FBD created by the FBD creation terminal 2 corresponds to the function as the characteristic factor diagram setting unit described in the claims. The link structure of the Bayesian network and the function of initializing each node value based on the ranked FBD correspond to the probabilistic model initializing unit described in the claims, and also correspond to the probabilistic model initializing unit described in the claims. To do. The function of learning the link structure of the Bayesian network and each node value based on the data acquired from the painting line 10 corresponds to the probabilistic model learning means described in the claims, and the probabilistic model learning unit described in the claims. Equivalent to. The function of updating the ranked FBD based on the Bayesian network after learning corresponds to the characteristic factor diagram updating means described in the claims.
5.その他の実施の形態
 上記実施の形態において機械学習装置3が備える機能の一部を他のコンピュータに移すこともできる。また、機械学習装置3が備える機能の一部或いは全部をクラウド上にあるサーバに移すこともできる。
5. Other Embodiments Some of the functions of the machine learning device 3 in the above embodiments may be transferred to another computer. Further, some or all of the functions of the machine learning device 3 can be transferred to a server on the cloud.
1 管理システム
2 FBD作成端末
3 機械学習装置
4 監視装置
10 塗装ライン
1 Management system 2 FBD creation terminal 3 Machine learning device 4 Monitoring device 10 Painting line

Claims (10)

  1.  管理対象項目が設定された製造又はサービスの現場においてデータを取得するデータ取得手段と、
     前記管理対象項目とそれに影響を与えると推測される複数の要因との関連を表す特性要因図であって、前記複数の要因は前記データ取得手段により取得された前記データの少なくとも一部であり、且つ、前記複数の要因のそれぞれには前記管理対象項目に対する重要度が付されている特性要因図を、前記管理対象項目と前記複数の要因との関連についての専門家知識に基づいて作成するための特性要因図作成手段と、
     前記特性要因図における前記管理対象項目と前記複数の要因との関係に基づいて確率モデルのリンク構造を設定し、前記複数の要因のそれぞれに付された前記重要度に基づいて前記確率モデルの各ノードの値を設定する確率モデル初期設定手段と、
     前記データ取得手段によって取得された前記データを用いて前記リンク構造又は前記各ノードの値を学習する確率モデル学習手段と、を備える
    ことを特徴とする管理システム。
    Data acquisition means for acquiring data at the manufacturing or service site where the management target items are set,
    It is a characteristic factor diagram showing the relationship between the management target item and a plurality of factors that are presumed to affect it, wherein the plurality of factors is at least a part of the data acquired by the data acquiring unit, In addition, in order to create a characteristic factor diagram in which each of the plurality of factors is given a degree of importance with respect to the management target item, based on expert knowledge of the relationship between the management target item and the plurality of factors. Characteristic factor diagram creation means of
    A link structure of a probabilistic model is set based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and each of the probabilistic models is based on the importance assigned to each of the plurality of factors. Probabilistic model initial setting means for setting the value of the node,
    A probabilistic model learning unit that learns the value of the link structure or each node using the data acquired by the data acquisition unit.
  2.  学習された前記リンク構造又は前記各ノードの値に基づいて前記特性要因図を更新する特性要因図更新手段をさらに備える
    ことを特徴とする請求項1に記載の管理システム。
    The management system according to claim 1, further comprising characteristic factor diagram updating means for updating the characteristic factor diagram based on the learned link structure or the value of each node.
  3.  前記確率モデル学習手段は、前記データ取得手段により取得された前記データのそれぞれの変化の履歴と前記管理対象項目の評価結果の履歴とに基づいて前記データのそれぞれと前記管理対象項目との関連度合いを調べ、前記関連度合いに応じて前記各ノードの値を見直すように構成され、
     前記特性要因図更新手段は、前記各ノードの値が見直された場合、見直された前記各ノードの値に基づいて前記複数の要因のそれぞれに付された前記重要度を修正するように構成されている
    ことを特徴とする請求項2に記載の管理システム。
    The probabilistic model learning means, based on the history of each change of the data acquired by the data acquisition means and the history of the evaluation result of the management target item, the degree of association between each of the data and the management target item. And configured to review the value of each node according to the degree of association,
    When the value of each node is reviewed, the characteristic factor diagram updating means is configured to correct the importance assigned to each of the plurality of factors based on the reviewed value of each node. The management system according to claim 2, wherein:
  4.  前記確率モデル学習手段は、前記データ取得手段により取得された前記データのそれぞれの変化の履歴と前記管理対象項目の評価結果の履歴とに基づいて前記データのそれぞれと前記管理対象項目との関連度合いを調べ、前記関連度合いの高いデータに対応するノードが前記リンク構造に存在しない場合、当該ノードを前記リンク構造に新たに追加するように構成され、
     前記特性要因図更新手段は、前記リンク構造に新たなノードが追加された場合、当該ノードに対応する要因を前記特性要因図に新たに追加するように構成されている
    ことを特徴とする請求項2又は3に記載の管理システム。
    The probabilistic model learning means, based on the history of each change of the data acquired by the data acquisition means and the history of the evaluation result of the management target item, the degree of association between each of the data and the management target item. And if a node corresponding to the highly related data does not exist in the link structure, the node is newly added to the link structure,
    The characteristic factor diagram updating means is configured to, when a new node is added to the link structure, newly add a factor corresponding to the node to the characteristic factor diagram. The management system according to 2 or 3.
  5.  前記管理対象項目に異常が検知された場合、前記管理対象項目の異常の原因と推定される要因を前記確率モデルに基づき特定し、特定した要因をオペレータに通知する監視手段をさらに備える
    ことを特徴とする請求項1乃至4の何れか1項に記載の管理システム。
    When an abnormality is detected in the management target item, a factor that is presumed to be the cause of the abnormality in the management target item is specified based on the probabilistic model, and a monitoring unit that notifies the operator of the specified factor is further provided. The management system according to any one of claims 1 to 4.
  6.  前記データ取得手段により取得される前記データには、前記管理対象項目の評価に関するデータと、前記現場の作業条件に関するデータと、前記現場の環境条件に関するデータとが含まれる
    ことを特徴とする請求項1乃至5の何れか1項に記載の管理システム。
    The data acquired by the data acquisition unit includes data on evaluation of the management target item, data on work conditions on the site, and data on environmental conditions on the site. The management system according to any one of 1 to 5.
  7.  前記確率モデルはベイジアンネットワークである
    ことを特徴とする請求項1乃至6の何れか1項に記載の管理システム。
    The management system according to claim 1, wherein the probabilistic model is a Bayesian network.
  8.  管理対象項目が設定された製造又はサービスの現場においてデータを取得するデータ取得装置と、
     前記管理対象項目とそれに影響を与えると推測される複数の要因との関連を表す特性要因図であって、前記複数の要因は前記データ取得装置により取得された前記データの少なくとも一部であり、且つ、前記複数の要因のそれぞれには前記管理対象項目に対する重要度が付されている特性要因図を、前記管理対象項目と前記複数の要因との関連についての専門家知識に基づいて作成するための端末と、
     前記管理対象項目と前記複数の要因との関係に関する確率モデルを、前記データ取得装置により取得された前記データを用いて学習する機械学習装置と、を備え、
     前記機械学習装置は、前記特性要因図における前記管理対象項目と前記複数の要因との関係に基づいて前記確率モデルのリンク構造を初期設定し、前記複数の要因のそれぞれに付された前記重要度に基づいて前記確率モデルの各ノードの値を初期設定するように構成されている
    ことを特徴とする管理システム。
    A data acquisition device that acquires data at the manufacturing or service site where the management target items are set,
    It is a characteristic factor diagram showing the relationship between the management target item and a plurality of factors that are presumed to affect it, wherein the plurality of factors is at least a part of the data acquired by the data acquisition device, In addition, in order to create a characteristic factor diagram in which each of the plurality of factors is given a degree of importance with respect to the management target item, based on expert knowledge of the relationship between the management target item and the plurality of factors. Terminal of
    A machine learning device that learns a probabilistic model regarding the relationship between the management target item and the plurality of factors using the data acquired by the data acquisition device,
    The machine learning device initializes the link structure of the probabilistic model based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and the importance assigned to each of the plurality of factors. The management system is configured to initialize the value of each node of the probabilistic model based on the above.
  9.  管理対象項目が設定された製造又はサービスの現場において取得されたデータが入力されるデータ入力部と、
     前記管理対象項目とそれに影響を与えると推測される複数の要因との関連についての専門家知識に基づいて作成された特性要因図であって、前記複数の要因は前記データ入力部に入力された前記データの少なくとも一部であり、且つ、前記複数の要因のそれぞれには前記管理対象項目に対する重要度が付されている特性要因図が設定される特性要因図設定部と、
     前記特性要因図における前記管理対象項目と前記複数の要因との関係に基づいて確率モデルのリンク構造を設定し、前記複数の要因のそれぞれに付された前記重要度に基づいて前記確率モデルの各ノードの値を設定する確率モデル初期設定部と、
     前記データ入力部に入力された前記データを用いて前記リンク構造又は前記各ノードの値を学習する確率モデル学習部と、を備える
    ことを特徴とする管理システムのための機械学習装置。
    A data input section for inputting data acquired at the manufacturing or service site where the management target items are set,
    It is a characteristic factor diagram created based on expert knowledge about the relationship between the management target item and a plurality of factors that are presumed to affect it, and the plurality of factors are input to the data input unit. A characteristic factor diagram setting unit for setting a characteristic factor diagram, which is at least a part of the data, and each of the plurality of factors is assigned a degree of importance to the management target item
    A link structure of a probabilistic model is set based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and each of the probabilistic models is based on the importance assigned to each of the plurality of factors. Probabilistic model initial setting part that sets the value of the node,
    A probabilistic model learning unit that learns the link structure or the value of each node using the data input to the data input unit, the machine learning device for a management system.
  10.  管理対象項目が設定された製造又はサービスの現場においてデータを取得するステップと、
     前記管理対象項目とそれに影響を与えると推測される複数の要因との関連を表す特性要因図であって、前記複数の要因は取得された前記データの少なくとも一部であり、且つ、前記複数の要因のそれぞれには前記管理対象項目に対する重要度が付されている特性要因図を、前記管理対象項目と前記複数の要因との関連についての専門家知識に基づいて作成するステップと、
     前記特性要因図における前記管理対象項目と前記複数の要因との関係に基づいて確率モデルのリンク構造を設定し、前記複数の要因のそれぞれに付された前記重要度に基づいて前記確率モデルの各ノードの値を設定するステップと、
     取得された前記データを用いて前記リンク構造又は前記各ノードの値を学習するステップと、を含む
    ことを特徴とする管理方法。
    Acquiring data at the manufacturing or service site where the management target items are set,
    It is a characteristic factor diagram showing a relation between the management target item and a plurality of factors that are presumed to affect it, wherein the plurality of factors are at least a part of the acquired data, and A step of creating a characteristic factor diagram in which each of the factors is given a degree of importance with respect to the management target item based on expert knowledge about the relationship between the management target item and the plurality of factors;
    A link structure of a probabilistic model is set based on the relationship between the management target item and the plurality of factors in the characteristic factor diagram, and each of the probabilistic models is based on the importance assigned to each of the plurality of factors. Setting the value of the node,
    Learning the link structure or the value of each node using the acquired data.
PCT/JP2019/004272 2019-02-06 2019-02-06 Management system and machine learning device therefor and managing method WO2020161835A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/004272 WO2020161835A1 (en) 2019-02-06 2019-02-06 Management system and machine learning device therefor and managing method
JP2019534768A JP6600120B1 (en) 2019-02-06 2019-02-06 Management system, machine learning apparatus and management method therefor
KR1020207003132A KR102242476B1 (en) 2019-02-06 2019-02-06 Management system and machine learning device and management method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004272 WO2020161835A1 (en) 2019-02-06 2019-02-06 Management system and machine learning device therefor and managing method

Publications (1)

Publication Number Publication Date
WO2020161835A1 true WO2020161835A1 (en) 2020-08-13

Family

ID=68383294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004272 WO2020161835A1 (en) 2019-02-06 2019-02-06 Management system and machine learning device therefor and managing method

Country Status (3)

Country Link
JP (1) JP6600120B1 (en)
KR (1) KR102242476B1 (en)
WO (1) WO2020161835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176464A1 (en) * 2022-03-16 2023-09-21 Jfeスチール株式会社 Cause inference device, cause inference method, cause inference system, and terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469229B1 (en) * 2020-12-22 2022-11-24 한솔코에버 주식회사 Fishbone diagram management system based on artifical intelligence and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219996A (en) * 1998-02-02 1999-08-10 Hitachi Ltd Thin film quality comprehensive analysis support system
WO2011036809A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Abnormality identification system and method thereof
JP2015534179A (en) * 2012-09-17 2015-11-26 シーメンス コーポレーションSiemens Corporation A logic-based approach for system behavior diagnosis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533185A (en) * 2001-06-08 2004-10-28 コンコード・コミュニケーションズ・インコーポレーテッド Display conversational hierarchy status
US7720774B2 (en) * 2005-10-31 2010-05-18 Sony Corporation Learning method and apparatus utilizing genetic algorithms
WO2016170574A1 (en) 2015-04-20 2016-10-27 株式会社日立製作所 Operation management system and operation management method
JP2018116545A (en) * 2017-01-19 2018-07-26 オムロン株式会社 Prediction model creating device, production facility monitoring system, and production facility monitoring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219996A (en) * 1998-02-02 1999-08-10 Hitachi Ltd Thin film quality comprehensive analysis support system
WO2011036809A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Abnormality identification system and method thereof
JP2015534179A (en) * 2012-09-17 2015-11-26 シーメンス コーポレーションSiemens Corporation A logic-based approach for system behavior diagnosis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176464A1 (en) * 2022-03-16 2023-09-21 Jfeスチール株式会社 Cause inference device, cause inference method, cause inference system, and terminal device

Also Published As

Publication number Publication date
JP6600120B1 (en) 2019-10-30
KR20200098471A (en) 2020-08-20
JPWO2020161835A1 (en) 2021-02-18
KR102242476B1 (en) 2021-04-19

Similar Documents

Publication Publication Date Title
Diez-Olivan et al. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
Colledani et al. Integrated analysis of quality and production logistics performance in manufacturing lines
Abd Rahman et al. Enhancement of overall equipment effectiveness (OEE) data by using simulation as decision making tools for line balancing
WO2020161835A1 (en) Management system and machine learning device therefor and managing method
Jain et al. Evaluating the intensity of variables affecting flexibility in FMS by graph theory and matrix approach
Stricker et al. Supporting multi-level and robust production planning and execution
Blum et al. Towards a data-oriented optimization of manufacturing processes
CN113189942A (en) Intelligent industrial data analysis system and method
Kazakov et al. Development of the concept of management of economic systems processes through construction and calling of machine learning models
Böhner et al. Integrating digitization technologies into resource efficiency driven industrial learning environments
Ucal Sari et al. Machine efficiency measurement in industry 4.0 using fuzzy data envelopment analysis
Sara et al. Design of autonomous production using deep neural network for complex job
Shanoun et al. Optimisation of the process control in a semiconductor company: model and case study of defectivity sampling
Yee et al. Weighted grey relational analysis to evaluate multilevel dispatching rules in wafer fabrication
Anderer et al. Meta Heuristics for Dynamic Machine Scheduling: A Review of Research Efforts and Industrial Requirements.
TWI787640B (en) Portability judging device, portability judging method, and portability judging program
Yazdankhah et al. Optimizing new product concept selection decisions considering life cycle design attributes
Qingmeng et al. Evaluating the maturity of CPS in discrete manufacturing shop-floor: A group AHP method with fuzzy grade approach
Arora et al. Methodology for the assessment of potentials, selection, and design of Predictive Maintenance solutions
Vinod et al. Development and analysis of scheduling decision rules for a dynamic flexible job shop production system: a simulation study
Akano et al. Productivity forecast of a manufacturing system through intelligent modelling
Bubnicki Learning process in a class of computer integrated manufacturing systems with parametric uncertainties
Seidel et al. Productivity improvement in job shop production
Anbumalar et al. Intelligent VSM Model: A way to adopt Industry 4.0 Technologies in Manufacturing Industry
Hedman et al. Identification of relationships between operator utilization and real process capacity in automated manufacturing

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019534768

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914281

Country of ref document: EP

Kind code of ref document: A1