WO2020159181A1 - Method for predicting therapeutic response in acute myeloid leukemia by using exosome-derived immunophenotype - Google Patents

Method for predicting therapeutic response in acute myeloid leukemia by using exosome-derived immunophenotype Download PDF

Info

Publication number
WO2020159181A1
WO2020159181A1 PCT/KR2020/001260 KR2020001260W WO2020159181A1 WO 2020159181 A1 WO2020159181 A1 WO 2020159181A1 KR 2020001260 W KR2020001260 W KR 2020001260W WO 2020159181 A1 WO2020159181 A1 WO 2020159181A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosomes
myeloid leukemia
acute myeloid
patient
exosome
Prior art date
Application number
PCT/KR2020/001260
Other languages
French (fr)
Korean (ko)
Inventor
강가원
박용
최연호
김현구
홍성희
박지호
김광표
Original Assignee
고려대학교 산학협력단
경희대학교 산학협력단
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 경희대학교 산학협력단, 한국과학기술원 filed Critical 고려대학교 산학협력단
Publication of WO2020159181A1 publication Critical patent/WO2020159181A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57426Specifically defined cancers leukemia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/54Determining the risk of relapse

Definitions

  • the present invention relates to a method for predicting the recurrence of acute myeloid leukemia using an exosome-derived immunophenotype, and more specifically, by using an immunophenotype overexpressed in exosomes isolated from a patient's sample as a marker, standard therapy It relates to a method for predicting the likelihood of recurrence of a patient who has been cured through application.
  • Acute myeloid leukemia is one of the blood cancers caused by genetic mutations related to proliferation, differentiation, and cell natural death of progenitor cells or stem cells in the early stages of differentiation of myeloid leukocytes. According to the data of the Central Cancer Cancer Register in Korea, as of 2015, the incidence of cancer was 1.0% and the incidence rate of 4.4 cases per 100,000 population, and the number of new diagnoses by year is the most frequent.
  • the present inventors overexpressed CD53 and CD47 in exosomes of patients who relapsed after undergoing a determination of cure of acute myeloid leukemia through cytotoxic anticancer drug treatment through exosome protein analysis.
  • the present invention was completed by discovering that the degree of change in the expression levels of CD53 and CD47 was little.
  • an object of the present invention is to provide a method for predicting the recurrence of acute myelogenous leukemia by measuring the expression level of CD53 and CD47 in exosomes of a patient who has been completely cured of acute myeloid leukemia.
  • Another object of the present invention is to provide a method for providing information for predicting the recurrence of acute myelogenous leukemia by measuring the expression level of CD53 and CD47 in exosomes of a patient who has been judged to cure acute myelogenous leukemia.
  • the patient may be a patient who has been treated with a cytotoxic anticancer agent.
  • the cytotoxic anticancer agent may be at least one selected from the group consisting of anthracycline-based compounds, cytarabine and all-trans-retinoic acid (ATRA).
  • ATRA all-trans-retinoic acid
  • CD53 and CD47 expression levels of the exosomes may be measured by exosome-ELISA.
  • CD53 and CD47 when CD53 and CD47 are overexpressed in the exosome, it can be predicted that the therapeutic response to a cytotoxic anticancer agent is low.
  • CD53 and CD47 when CD53 and CD47 are overexpressed in the exosome, it can be predicted that the likelihood of recurrence after treatment with cytotoxic chemotherapy is high.
  • the method for predicting the recurrence of a patient with acute myeloid leukemia of the present invention is characterized by confirming the level of CD53 and CD47 expression of exosomes in a sample taken from a patient who has been completely cured through treatment with a cytotoxic anticancer drug, which is a standard treatment, and the patient relapses later. You can simply check the possibilities.
  • Figure 1 (A) is a step-by-step schematic of a method for separating exosomes from a sample taken from a patient and a culture medium of a cell
  • Figure 1 (B) is a schematic diagram of multiple columns used for exosome separation
  • 1(C) shows the comparison of the results of separation of exosomes using the existing single column and the multiple columns.
  • Figure 2 shows the separated exosomes by Western blot by performing size exclusion chromatography using multiple columns.
  • LC-MS liquid chromatography-mass spectrometry
  • Figure 4 is a human acute myeloid leukemia cell line derived from the results of protein analysis of the exosomes, respectively, overexpression, confirmed the underexpressed immune phenotype.
  • Figure 5 is a human acute myeloid leukemia cell line lysate and CD53, CD47 expression in exosomes confirmed by Western blot.
  • Figure 6 shows the difference in survival rate according to the difference in the amount of expression of CD53 or CD47 before and after treatment in the two patient groups to which standard therapy was applied.
  • FIG. 7 shows the difference in survival rates when the differences in the expression levels of CD53 and CD47 were combined before and after treatment in the two patient groups to which standard therapy was applied.
  • the present inventors are divided into a large change group (Group 1) and a small change group (Group 2) according to the following examples according to the difference in the expression level of CD53 or CD47 in acute myeloid leukemia patients to which standard treatment is applied.
  • a difference in disease-free survival occurred according to the degree of change in each immunophenotype, and also when comparing the disease-free survival rate by combining the changes in the expression levels of CD53 and CD47, each immunophenotype was used alone.
  • the present invention was completed by discovering that it is possible to accurately distinguish disease-free survival rates.
  • the sample taken from the patient may be blood, lymphatic fluid, cerebrospinal fluid, urine, saliva, cerebrospinal fluid, etc., but serum or plasma is preferred.
  • therapeutic responsiveness in the present invention means that the patient responds preferentially or unfavorably to the standard therapy of acute myeloid leukemia.
  • prediction means that the patient is treated with standard treatment of acute myelogenous leukemia, and it is determined in advance whether the likelihood of recurrence, survival or survivability.
  • exosome is a small size (30-150nm) vesicle secreted from various types of cells, and is known to play a variety of roles, such as delivering membrane components, proteins, and RNA.
  • step 1) the separation of the exosomes is ultracentrifuge, density centrifuge, the use of a column, PEG precipitation, chromatography, immuno-magnetic separation (immuno-magnetic separation, IMS) and acoustic separation (acoustic separation) methods can be used, but the pore size is 20nm to 100nm porous beads a), the porous beads a) laminated on top, the pores It is preferable to perform size exclusion chromatography using multiple columns including a porous bead having a size of 20 nm or less and a separation membrane positioned between the porous bead a) and the porous bead b). As such, by using multiple columns for size exclusion chromatography, only exosomes in which proteins and lipids are not mixed from a patient's sample can be separated with high purity (see FIGS. 1B and 1C).
  • the porous beads a) separate exosomes and lipid proteins from the biological sample, and the porous beads b) separate exosomes and water-soluble proteins from the biological sample, and the porous beads a) and the porous
  • the volume ratio of beads b) may be 95:5 to 5:95.
  • Beads used in multiple columns include agarose, allyl dextran and N, N'-methylene bisacrylamide compounds, methacryl, and dex. It may be to include a polymer consisting of one or more selected from tran (dextran) and polyacrylamide (polyacrylamide), but is not limited thereto.
  • the cytotoxic anti-cancer agent may be one or more selected from the group consisting of anthracycline-based compound compounds, cytarabine and all-trans-retinoic acid (ATRA), which are known to be used in standard therapy for acute myeloid leukemia.
  • ATRA all-trans-retinoic acid
  • the CD53 or CD47 expression level of exosomes in step 2) may be measured by exosome-ELISA.
  • Exosomal-ELISA unlike conventional ELISA, can use the exosome itself as a sample to identify an immunophenotype that is specifically expressed only in exosomes, and is an exosome-ELISA marker that uses the separated exosome itself as a sample Since the expression level is confirmed, the results can be quickly confirmed.
  • step 2 when CD53 or CD47 is overexpressed in the exosome, it can be predicted that the therapeutic reactivity to the cytotoxic anticancer agent is low, and the likelihood of recurrence after the cytotoxic anticancer therapy is high.
  • Human acute myeloid leukemia cell lines HL60, KG-1, THP-1, HDF was purchased from the American Type Culture Collection (Manassasm VA, USA) as a normal cell line in human bone marrow, and human bone marrow derived mesenchymal stem cell as a normal cell line in human bone marrow. (hMSC) was obtained by primary culture in normal human bone marrow.
  • hMSC was cultured using Mesenchymal Stem Cell Growth Medium (Lonza, Walkersville, USA). Removal of exosomes Fetal bovine serum was removed by centrifuging normal fetal bovine serum in an ultracentrifuge 100,000 xg for 3 hours to remove exosomes, which were then filtered through a 0.2 micrometer filter.
  • Example 1 After culturing the HL60, KG-1, THP-1, HDF, and MSC cell lines of Example 1 for 48-72 hours, the culture solution was collected, and 10 minutes at 300 xg, 30 minutes at 5,000 xg, 30 minutes at 10,000 xg Sequential centrifugation was performed for a minute to obtain a supernatant from which cells, cell death, and cell debris were removed (FIG. 1). After concentration using Amicon® ultrafilter 100 kDa (Merch Millipore, Temecula, CA, USA), size exclusion chromatography was performed using the multiple columns prepared in Example 2-1.
  • Amicon® ultrafilter 100 kDa Merch Millipore, Temecula, CA, USA
  • Example 2-2 The exosomes isolated through Example 2-2 were dissolved using PRO-PREP Protein Extraction Solution (Intron Biotech), and then quantified using the BCA Protein Assay method. 30 micrograms of protein were electrophoresed and 5% Sodium dodecyl sulfate (SDS)-polyacrylamide stocjing gel and 8-12% SDS-polyacrylamide separating gel were used.
  • SDS Sodium dodecyl sulfate
  • microcon Ultracel 30kDa (Millipore) was centrifuged for 40 minutes at 14,000 xg, 16 °C, and the prepared sample was FASP-urea buffer (0.2 mL of 8 M urea in 0.1 M Tris-HCl, pH 8.5). Washed and centrifuged 3 times under the same conditions.
  • the peptide was reduced by centrifugation for 14,000 xg, 16°C, and 20 minutes, and further reduced by adding 100 mM TEAB and 75 ⁇ L twice more.
  • the reduced peptide was dried using a SpeedVac concentrator.
  • the dried sample was dissolved in 5% ACN, water containing 180 ⁇ L, 0.1% Formic acid, desalted using a C-18 Spin Column (Thermo Scientific, USA), and then dried again with a SpeedVac concentrator.
  • Tandem Mass Tag (TMT) Labeling Reagents TMT-126, TMT-127, TMT-128, TMT-129, TMT-130 0.8mg vials of Anhydrous ACN were added to 41 ⁇ L and the prepared TMT labeling reagent 41 ⁇ L was prepared in the above example After adding to the peptide sample prepared in 3-1 and reacting for 1 hour, 8 ⁇ L of 5% hydroxylamine was added to each sample and reacted for 15 minutes.
  • Example 3-3 The peptide sample fractionated in Example 3-3 was resuspended in water containing 0.1% formic acid, and then analyzed using a Q-Exactive Orbitrap Hybrid Mass Spectrometry connected with EASY-nLC 1000 system (ThermoScientific, Bremen, Germany). The gradient was as follow: from 5% to 40% of solvent B for 120 min, from 40% to 80% of solvent B for 5 min, maintaining at 80% of solvent B for 10 min, and equilibrating the column at 1% of B for 30% (Sol A: 0.1% formic acid in water, Sol B: 0.1% formic acid in acetonitrile).
  • the peptide was eluted with a trap column, and ionization was performed with an EASY-spray column (50 cm ⁇ 75 ⁇ m ID) filled with 2 ⁇ m C18 particles and an electric spray voltage of 1.8 kV.
  • Mass spectrometry data were collected at an automatic gain control target value of 1.0 x 10 6 , a maximum ion implantation of 120 ms, a resolution of 200-70,000 m/z, and a scan range of 400-2,000 m/z.
  • the maximum ion implantation time of MS/MS was set at a resolution of 17,500 to 60 ms.
  • the dynamic exclusion time was set to 30 seconds.
  • Mass spectrometry data was retrieved against the Uniprot human database (released in June, 2017) using SEQUEST® from Proteome Discoverer 2.1 (Thermo Fisher Scientific Inc., Germany). Carbamidomethylation of cysteine, TMT tag and N-terminal of Lysin, N-acetylation or oxidation of Methionine were used for each search. Peptide spectrum match and 1% False discovery rate standard at the protein level are applied. The tolerance was set to 10 ppm for the precursor mass and 0.8 Da for the fragment mass.
  • human acute myeloid leukemia cell lines HL60, KG-1, THP-1 and marker candidates showing significant differences in expression levels in exosome proteins derived from normal cell lines HDF and MSC in human bone marrow could be selected.
  • Example 4 Analysis of survival rate according to the difference in the expression level of CD53 or CD47 in a patient to which standard therapy is applied
  • ELISA conducted an experiment for predicting treatment response by this method, including Human leukocyte surface antigen CD47 ELISA (Cat.MBS926478, MyBiosource, Inc., CA, USA) , Exo-TESTTM CD53-exosome ELISA (Cat. EKC34422, Lonza) was used. The experiment proceeded according to the protocol provided by the company.
  • disease-free survival was compared by dividing the patients into two groups according to the difference in the expression levels of CD53 or CD47.
  • the independent variable is based on the median value for the difference in the expression level of CD53 or CD47 in the entire patient group, and the difference in the expression level is greater than the median value in the entire patient group (Group 1) and the expression level is less than the median value in the entire patient group. Divided into groups (Group 2) showing differences.
  • the dependent variable was disease-free survival according to each group, and was set as the period from diagnosis of acute myeloid leukemia to relapse or death.
  • CD53 and CD47 expression levels are greater than the median value of the entire patient group, or the difference between CD53 and CD47 expression levels is small and the difference is greater (Group 1), CD53 than the median value of the entire patient group
  • the patients Group 2 had little difference in expression level, and it was confirmed that disease-free survival can be predicted more accurately when both CD53 and CD47 were used.

Abstract

The present invention relates to a method for predicting the relapse of acute myeloid leukemia, the method comprising the steps of: 1) isolating exosomes from a sample collected from a patient confirmed to be completely cured of acute myeloid leukemia; and 2) measuring the expression levels of CD53 and CD47 in the exosomes.

Description

엑소좀 유래 면역표현형을 이용한 급성 골수성 백혈병의 치료 반응성 예측방법Method for predicting treatment responsiveness of acute myeloid leukemia using exosome-derived immunophenotype
본 발명은 엑소좀 유래 면역표현형을 이용한 급성 골수성 백혈병의 재발을 예측하는 방법에 관한 것으로, 보다 상세하게는 환자의 시료에서 분리된 엑소좀에서 과발현되는 면역표현형을 마커로 이용함으로써, 표준 치료요법의 적용을 통해 완치판정을 받은 환자의 재발 가능성을 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting the recurrence of acute myeloid leukemia using an exosome-derived immunophenotype, and more specifically, by using an immunophenotype overexpressed in exosomes isolated from a patient's sample as a marker, standard therapy It relates to a method for predicting the likelihood of recurrence of a patient who has been cured through application.
급성 골수성 백혈병은 골수성 백혈구의 분화 단계 중 초기 단계에 있는 전구세포 (progenitor cell) 또는 줄기세포 (stem cell)의 증식, 분화, 세포자연사 등과 관련된 유전자 변이에 의해 발생하는 혈액암 중 하나이다. 국내 중암암등록본부 자료에 의하면 2015년 기준 전체 암 발생의 1.0%, 인구 10만 명 당 4.4건의 발생률을 보이고 있으며 연도별 신규 진단자가 가장 많은 혈액암으로 최근으로 오면서 전반적으로 그 수가 증가하고 있다. Acute myeloid leukemia is one of the blood cancers caused by genetic mutations related to proliferation, differentiation, and cell natural death of progenitor cells or stem cells in the early stages of differentiation of myeloid leukocytes. According to the data of the Central Cancer Cancer Register in Korea, as of 2015, the incidence of cancer was 1.0% and the incidence rate of 4.4 cases per 100,000 population, and the number of new diagnoses by year is the most frequent.
급성 골수성 백혈병 치료의 기반은 안트라사이클린 (Anthracyclin) 포함 복합 세포독성 항암요법이며, 해당 치료는 약 40년 동안 표준 치료요법으로 인정받고 있다. 한편, 2000년대 중반 저 메틸화 작용제 (Hypotmethylating agents)에 이어 2017년 FLT3 억제제 (fms-like tyrosine kinase 3 inhibitors) 가 미국 FDA의 승인을 받아 임상에서 사용되고 있으며 최근 10년 간 급성 골수성 백혈병에 대한 다양한 표적 치료제 (Targeted therapy) 들이 개발되어 임상 적용을 기다리고 있다. The basis for the treatment of acute myelogenous leukemia is combined cytotoxic chemotherapy with anthracyclin, which has been recognized as a standard therapy for about 40 years. Meanwhile, FLT3 inhibitors (fms-like tyrosine kinase 3 inhibitors) in 2017 were used in clinical trials with approval from the U.S. FDA, followed by hypomethylating agents in the mid-2000s, and various targeted treatments for acute myeloid leukemia in the last 10 years. (Targeted therapies) have been developed and are waiting for clinical application.
표준 치료요법을 받은 환자의 약 70%에서 결국 재발을 경험하게 되며 현재는 재발에 대한 명백한 구제 요법이 없어 재발한 환자의 대부분 사망에 이르게 되는 문제가 있다. 이에, 재발이 일어날 것으로 예상 또는 의심되는 환자들을 선별적으로 확인하여 최적의 치료법을 결정하는 것이 매우 중요하다. 한편, 엑소좀 기반의 바이오 마커를 이용하여 급성 골수성 백혈병을 진단하는 기존의 연구가 있으나, 완치 판정을 받은 환자의 재발 가능성을 예측하는 바이오 마커의 개발은 미흡한 실정이다.About 70% of patients who have undergone standard therapy will eventually experience recurrence, and currently there is no apparent remedy for relapse, leading to the death of most relapsed patients. Therefore, it is very important to determine the optimal treatment method by selectively checking patients who are expected or suspected of recurrence. On the other hand, there is an existing study for diagnosing acute myeloid leukemia using an exosome-based biomarker, but development of a biomarker predicting the likelihood of recurrence of a patient who has been completely cured is insufficient.
이러한 배경 하에, 본 발명자들은 엑소좀의 단백체 분석을 통해 세포독성 항암제 치료를 통해 급성 골수성 백혈병의 완치 판정을 받은 후 재발한 환자의 엑소좀에서 CD53, CD47이 과발현되고, 표준 치료요법 전, 후 엑소좀 내 CD53 및 CD47 발현양의 변화도가 적다는 것을 발견함으로써 본 발명을 완성하게 되었다.Under this background, the present inventors overexpressed CD53 and CD47 in exosomes of patients who relapsed after undergoing a determination of cure of acute myeloid leukemia through cytotoxic anticancer drug treatment through exosome protein analysis. The present invention was completed by discovering that the degree of change in the expression levels of CD53 and CD47 was little.
따라서, 본 발명의 목적은 급성 골수성 백혈병의 완치 판정을 받은 환자의 엑소좀 내 CD53 및 CD47의 발현 수준을 측정하여 급성 골수성 백혈병의 재발을 예측하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for predicting the recurrence of acute myelogenous leukemia by measuring the expression level of CD53 and CD47 in exosomes of a patient who has been completely cured of acute myeloid leukemia.
본 발명의 다른 목적은 급성 골수성 백혈병의 완치 판정을 받은 환자의 엑소좀 내 CD53 및 CD47의 발현 수준을 측정하여 급성 골수성 백혈병의 재발을 예측하기 위한 정보를 제공하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for providing information for predicting the recurrence of acute myelogenous leukemia by measuring the expression level of CD53 and CD47 in exosomes of a patient who has been judged to cure acute myelogenous leukemia.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those having ordinary knowledge in the art from the following description.
본 발명의 일 실시예에 따르면, 1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병의 재발을 예측하는 방법이 제공된다.According to an embodiment of the present invention, 1) separating the exosomes from a sample taken from a patient who has been determined to cure acute myeloid leukemia; And 2) measuring CD53 and CD47 expression levels of the exosomes; A method for predicting the recurrence of acute myeloid leukemia is provided.
일 측에 따르면, 상기 환자는 세포독성 항암제 치료를 받은 환자일 수 있다.According to one side, the patient may be a patient who has been treated with a cytotoxic anticancer agent.
일 측에 따르면, 상기 세포독성 항암제는 안트라사이클린 계열 화합물, 씨타라빈(cytarabine) 및 ATRA(all-trans-retinoic acid)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.According to one side, the cytotoxic anticancer agent may be at least one selected from the group consisting of anthracycline-based compounds, cytarabine and all-trans-retinoic acid (ATRA).
일 측에 따르면, 상기 엑소좀의 CD53 및 CD47 발현 수준은 엑소좀-ELISA로 측정되는 것일 수 있다.According to one side, CD53 and CD47 expression levels of the exosomes may be measured by exosome-ELISA.
일 측에 따르면, 상기 엑소좀에서 CD53 및 CD47이 과발현 되는 경우, 세포독성 항암제에 대한 치료 반응성이 낮을 것으로 예측할 수 있다.According to one side, when CD53 and CD47 are overexpressed in the exosome, it can be predicted that the therapeutic response to a cytotoxic anticancer agent is low.
일 측에 따르면, 상기 엑소좀에서 CD53 및 CD47이 과발현 되는 경우, 세포독성 항암요법 치료 후 재발 가능성이 높을 것으로 예측할 수 있다.According to one side, when CD53 and CD47 are overexpressed in the exosome, it can be predicted that the likelihood of recurrence after treatment with cytotoxic chemotherapy is high.
본 발명의 다른 일 실시예에 따르면, 1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병의 재발을 예측하기 위한 정보를 제공하는 방법이 제공된다.According to another embodiment of the present invention, 1) separating the exosome from a sample taken from a patient who has been determined to cure acute myeloid leukemia; And 2) measuring CD53 and CD47 expression levels of the exosomes; A method of providing information for predicting the recurrence of acute myeloid leukemia is provided.
본 발명의 급성 골수성 백혈병 환자의 재발을 예측하는 방법은 표준 치료요법인 세포독성 항암제 치료를 통해 완치 판정을 받은 환자로부터 채취한 시료 내 엑소좀의 CD53 및CD47 발현 수준을 확인함으로써, 추후 환자의 재발 가능성을 간단하게 확인할 수 있다.The method for predicting the recurrence of a patient with acute myeloid leukemia of the present invention is characterized by confirming the level of CD53 and CD47 expression of exosomes in a sample taken from a patient who has been completely cured through treatment with a cytotoxic anticancer drug, which is a standard treatment, and the patient relapses later. You can simply check the possibilities.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1의 (A)는 세포의 배양액과 환자로부터 채취한 시료에서 엑소좀을 분리하는 방법을 단계적으로 도식화한 것이고, 도 1의 (B)는 엑소좀 분리에 이용되는 다중 컬럼의 모식도이며, 도 1의 (C)는 기존 단일 컬럼과 상기 다중 컬럼을 이용한 엑소좀의 분리 결과를 비교하여 나타낸 것이다. Figure 1 (A) is a step-by-step schematic of a method for separating exosomes from a sample taken from a patient and a culture medium of a cell, Figure 1 (B) is a schematic diagram of multiple columns used for exosome separation, 1(C) shows the comparison of the results of separation of exosomes using the existing single column and the multiple columns.
도 2는 다중 컬럼을 이용한 크기 배제 크로마토그래피를 수행하여 분리된 엑소좀을 웨스턴 블롯으로 확인한 것이다.Figure 2 shows the separated exosomes by Western blot by performing size exclusion chromatography using multiple columns.
도 3은 인간 급성 골수성 백혈병 세포주인 HL60, KG-1, THP-1과 인간 골수 내 정상 세포주인 HDF, MSC 유래 엑소좀의 액체 크로마토그래피-질량분석 (LC-MS)을 이용한 단백체 분석 결과이다.3 is a result of protein analysis using liquid chromatography-mass spectrometry (LC-MS) of exosomes derived from human acute myeloid leukemia cell lines HL60, KG-1, THP-1 and normal cell lines HDF, MSC in human bone marrow.
도 4는 인간 급성 골수성 백혈병 세포주 유래 엑소좀의 단백체 분석 결과로부터 각각 과발현, 저발현된 면역 표현형을 확인한 것이다.Figure 4 is a human acute myeloid leukemia cell line derived from the results of protein analysis of the exosomes, respectively, overexpression, confirmed the underexpressed immune phenotype.
도 5는 인간 급성 골수성 백혈병 세포주의 세포 용해물 및 엑소좀에서의 CD53, CD47 발현을 웨스턴블롯으로 확인한 것이다.Figure 5 is a human acute myeloid leukemia cell line lysate and CD53, CD47 expression in exosomes confirmed by Western blot.
도 6은 표준 치료요법을 적용한 두 환자군에서 치료 전 후 CD53 또는 CD47의 발현양 차이에 따른 생존율 차이를 나타낸 것이다.Figure 6 shows the difference in survival rate according to the difference in the amount of expression of CD53 or CD47 before and after treatment in the two patient groups to which standard therapy was applied.
도 7은 표준 치료요법을 적용한 두 환자군에서 치료 전 후 CD53 및 CD47의 발현양 차이를 종합하였을 때 생존율 차이를 나타낸 것이다.FIG. 7 shows the difference in survival rates when the differences in the expression levels of CD53 and CD47 were combined before and after treatment in the two patient groups to which standard therapy was applied.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. However, various changes may be made to the embodiments, and the scope of the patent application right is not limited or limited by these embodiments. It should be understood that all modifications, equivalents, or substitutes for the embodiments are included in the scope of rights.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the examples are used for illustrative purposes only and should not be construed as limiting. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described on the specification exists, and that one or more other features are present. It should be understood that the existence or addition possibilities of fields or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the embodiment belongs. Terms, such as those defined in a commonly used dictionary, should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application. Does not.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In addition, in the description with reference to the accompanying drawings, the same reference numerals are assigned to the same components regardless of reference numerals, and redundant descriptions thereof will be omitted. In describing the embodiments, when it is determined that detailed descriptions of related known technologies may unnecessarily obscure the subject matter of the embodiments, the detailed descriptions will be omitted.
본 발명자들은 이하의 실시예에 따라 표준 치료요법을 적용한 급성 골수성 백혈병 환자에서CD53 또는 CD47의 발현양 차이에 따라 변화도가 큰 군(Group 1)과 변화도가 작은 군(Group 2) 으로 나누어 무병생존율을 비교하였을 때 각각의 면역표현형 변화도에 따라 무병생존율의 차이가 발생함을 확인하였으며, 또한 CD53 과 CD47의 발현양의 변화를 병합하여 무병생존율 비교 시 각각의 면역표현형을 단독으로 이용하였을 때보다 정확하게 무병생존률을 구분할 수 있다는 것을 발견함으로써 본 발명을 완성하게 되었다. The present inventors are divided into a large change group (Group 1) and a small change group (Group 2) according to the following examples according to the difference in the expression level of CD53 or CD47 in acute myeloid leukemia patients to which standard treatment is applied. When comparing the survival rate, it was confirmed that a difference in disease-free survival occurred according to the degree of change in each immunophenotype, and also when comparing the disease-free survival rate by combining the changes in the expression levels of CD53 and CD47, each immunophenotype was used alone. The present invention was completed by discovering that it is possible to accurately distinguish disease-free survival rates.
따라서, 본 발명의 일 실시예에 따르면, 1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병의 재발을 예측하는 방법이 제공된다.Thus, according to an embodiment of the present invention, 1) separating the exosome from a sample taken from a patient who has been determined to cure acute myeloid leukemia; And 2) measuring CD53 and CD47 expression levels of the exosomes; A method for predicting the recurrence of acute myeloid leukemia is provided.
상기 환자로부터 채취한 시료는 혈액, 림프액, 뇌척수액, 소변, 타액, 뇌척수액 등일 수 있으나, 혈청 또는 혈장이 바람직하다.The sample taken from the patient may be blood, lymphatic fluid, cerebrospinal fluid, urine, saliva, cerebrospinal fluid, etc., but serum or plasma is preferred.
본 발명에서 용어 "치료 반응성"이란 환자가 급성 골수성 백혈병의 표준 치료요법에 대해 선호적으로 또는 비선호적으로 반응하는 것을 의미한다.The term "therapeutic responsiveness" in the present invention means that the patient responds preferentially or unfavorably to the standard therapy of acute myeloid leukemia.
본 발명에서 용어 "예측"이란 환자가 급성 골수성 백혈병의 표준 치료요법으로 치료된 후 재발할 가능성, 생존 여부 또는 생존할 가능성을 미리 판단하는 것을 의미한다. In the present invention, the term "prediction" means that the patient is treated with standard treatment of acute myelogenous leukemia, and it is determined in advance whether the likelihood of recurrence, survival or survivability.
본 발명에서 용어 "엑소좀" 여러 종류의 세포들로부터 분비되는 작은 크기(30-150nm)의 소포로, 막 구성요소, 단백질, RNA를 전달하는 등 다양한 역할을 하는 것으로 알려져 있다.In the present invention, the term "exosome" is a small size (30-150nm) vesicle secreted from various types of cells, and is known to play a variety of roles, such as delivering membrane components, proteins, and RNA.
본 발명의 방법을 이용하는 경우, 표준 치료요법을 적용하여 완치 판정을 받은 환자 중 급성 골수성 백혈병의 재발 가능성이 높은 환자에게 새로운 약제에 대한 임상 실험 참여를 권고하거나 가장 적절한 치료 방법을 선택하도록 도움을 줄 수 있다. In the case of using the method of the present invention, among the patients who are judged to be completely cured by applying standard therapy, recommend a clinical trial for a new drug to a patient with a high probability of recurrence of acute myeloid leukemia or help to select the most appropriate treatment method Can.
상기 단계 1)에서, 엑소좀의 분리는 초원심분리(ultracentrifuge), 밀도 원심분리(density centrifuge), 컬럼(column)의 이용, PEG 침전(PEG precipitation), 크로마토그래피(chromatography), 면역-자기분리(immuno-magnetic separation, IMS) 및 음향정제(acoustic separation, acoustic purification) 등의 방법을 이용할 수 있으나, 공극의 크기가 20nm 내지 100nm인 다공성 비드 a), 상기 다공성 비드 a) 상부에 적층되고, 공극의 크기가 20nm 이하인 다공성 비드 b) 및 상기 다공성 비드 a) 및 상기 다공성 비드 b) 사이에 위치하는 분리막을 포함하는 다중 컬럼을 이용하여 크기 배제 크로마토그래피를 수행하는 것이 바람직하다. 이와 같이, 크기 배제 크로마토그래피에 다중 컬럼을 사용하는 것으로 환자의 시료로부터 단백질 및 지질이 섞이지 않은 엑소좀 만을 순도 높게 분리할 수 있다(도 1B 및 1C 참조). In step 1), the separation of the exosomes is ultracentrifuge, density centrifuge, the use of a column, PEG precipitation, chromatography, immuno-magnetic separation (immuno-magnetic separation, IMS) and acoustic separation (acoustic separation) methods can be used, but the pore size is 20nm to 100nm porous beads a), the porous beads a) laminated on top, the pores It is preferable to perform size exclusion chromatography using multiple columns including a porous bead having a size of 20 nm or less and a separation membrane positioned between the porous bead a) and the porous bead b). As such, by using multiple columns for size exclusion chromatography, only exosomes in which proteins and lipids are not mixed from a patient's sample can be separated with high purity (see FIGS. 1B and 1C).
보다 구체적으로, 상기 다공성 비드 a)는 생체시료 내 엑소좀과 지질단백질을 분리하는 것이고, 상기 다공성 비드 b)는 생체시료 내 엑소좀과 수용성 단백질을 분리하는 것이며, 상기 다공성 비드 a) 및 상기 다공성 비드 b)의 부피비는 95:5 내지 5:95 일 수 있다. 다중 컬럼에 이용되는 비드로는, 아가로오스(agarose), 알릴 덱스트란(allyl dextran)과 N, N'-메틸렌 비스아크릴아마이드(N, N'-methylene bisacrylamide) 화합물, 메타크릴(methacryl), 덱스트란(dextran) 및 폴리아크릴아마이드(polyacrylamide)로부터 선택된 하나 이상으로 이루어진 중합체를 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다. More specifically, the porous beads a) separate exosomes and lipid proteins from the biological sample, and the porous beads b) separate exosomes and water-soluble proteins from the biological sample, and the porous beads a) and the porous The volume ratio of beads b) may be 95:5 to 5:95. Beads used in multiple columns include agarose, allyl dextran and N, N'-methylene bisacrylamide compounds, methacryl, and dex. It may be to include a polymer consisting of one or more selected from tran (dextran) and polyacrylamide (polyacrylamide), but is not limited thereto.
상기 세포독성 항암제는 급성 골수성 백혈병의 표준 치료요법에 사용되는 것으로 알려진 안트라사이클린 계열 화합물 화합물, 씨타라빈(cytarabine) 및 ATRA(all-trans-retinoic acid)로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The cytotoxic anti-cancer agent may be one or more selected from the group consisting of anthracycline-based compound compounds, cytarabine and all-trans-retinoic acid (ATRA), which are known to be used in standard therapy for acute myeloid leukemia.
상기 단계 2)에서 엑소좀의 CD53 또는 CD47 발현 수준은 엑소좀-ELISA로 측정되는 것일 수 있다. "엑소좀-ELISA"는 기존 ELISA와 달리 엑소좀 자체를 검체로 이용함으로써 엑소좀에서만 특이적으로 발현되는 면역표현형을 확인할 수 있고, 분리된 엑소좀 자체를 검체로 사용하는 엑소좀-ELISA로 마커의 발현 수준을 확인하므로 빠르게 결과를 확인할 수 있다.The CD53 or CD47 expression level of exosomes in step 2) may be measured by exosome-ELISA. "Exosomal-ELISA", unlike conventional ELISA, can use the exosome itself as a sample to identify an immunophenotype that is specifically expressed only in exosomes, and is an exosome-ELISA marker that uses the separated exosome itself as a sample Since the expression level is confirmed, the results can be quickly confirmed.
단계 2)에서 확인된 결과에 따라, 상기 엑소좀에서 CD53 또는 CD47이 과발현 되는 경우, 세포독성 항암제에 대한 치료 반응성이 낮을 것으로 예측할 수 있고, 세포독성 항암요법 이후 재발 가능성이 높을 것으로 예측할 수 있다. According to the result confirmed in step 2), when CD53 or CD47 is overexpressed in the exosome, it can be predicted that the therapeutic reactivity to the cytotoxic anticancer agent is low, and the likelihood of recurrence after the cytotoxic anticancer therapy is high.
본 발명의 다른 일 실시예에 따르면, 1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병의 재발을 예측하기 위한 정보를 제공하는 방법이 제공된다.According to another embodiment of the present invention, 1) separating the exosome from a sample taken from a patient who has been determined to cure acute myeloid leukemia; And 2) measuring CD53 and CD47 expression levels of the exosomes; A method of providing information for predicting the recurrence of acute myeloid leukemia is provided.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 하기 실시예는 본 발명을 예시하기 위한 목적으로 기술된 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. The following examples are described for the purpose of illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예 1: 세포주의 선정 및 배양Example 1: Selection and culture of cell lines
인간 급성 골수성 백혈병 세포주인 HL60, KG-1, THP-1, 인간 골수 내 정상 세포주로 HDF를 American Type Culture Collection (Manassasm VA, USA)에서 구입하였으며 인간 골수 내 정상 세포주로 Human bone marrow derived mesenchymal stem cell (hMSC)은 정상인의 골수에서 초대배양 (primary culture)하여 얻었다. HL60, KG-1 은 IMDM, THP-1 은 RPMI-1640, HDF는 DMEM 배양액에 10% 엑소좀 제거 소태아혈청 (Gibco, CA, USA), 1% 페니실린 (Gibco), 1% 스트렙토마이신 (Gibco)을 혼합하여 배양하였다. hMSC는 Mesenchymal Stem Cell Growth Medium (Lonza, Walkersville, USA)를 이용하여 배양하였다. 엑소좀 제거 소태아혈청은 일반 소태아혈청을 초원심분리기 100,000 xg에서 3시간 동안 원심분리하여 엑소좀을 제거하였으며, 추가로 0.2마이크로미터 필터에 여과한 후 사용하였다.Human acute myeloid leukemia cell lines HL60, KG-1, THP-1, HDF was purchased from the American Type Culture Collection (Manassasm VA, USA) as a normal cell line in human bone marrow, and human bone marrow derived mesenchymal stem cell as a normal cell line in human bone marrow. (hMSC) was obtained by primary culture in normal human bone marrow. HL60, KG-1 for IMDM, THP-1 for RPMI-1640, HDF for 10% exosome removal in DMEM cultures Fetal Bovine Serum (Gibco, CA, USA), 1% Penicillin (Gibco), 1% Streptomycin (Gibco ) And cultured. hMSC was cultured using Mesenchymal Stem Cell Growth Medium (Lonza, Walkersville, USA). Removal of exosomes Fetal bovine serum was removed by centrifuging normal fetal bovine serum in an ultracentrifuge 100,000 xg for 3 hours to remove exosomes, which were then filtered through a 0.2 micrometer filter.
실시예 2: 엑소좀의 분리Example 2: Isolation of exosomes
2-1. 다중 컬럼의 제작2-1. Production of multiple columns
크로마토그래피용 컬럼(직경: 10mm, 높이: 50mm)의 하부에 세파로오스 CL-6B를 70%(v/v)로 충전한 후 상부에 세파크릴 200-HR을 30%(v/v) 충전하여 하부와 상부의 높이 비율이 7:3이 되도록 다중 컬럼을 제작하였다After filling the chromatography column (diameter: 10 mm, height: 50 mm) with Sepharose® CL-6B at 70% (v/v), Sephacryl 200-HR at the top is filled with 30% (v/v) The multi-column was manufactured so that the height ratio between the lower part and the upper part was 7:3.
2-2. 크기 배제 크로마토그래피2-2. Size exclusion chromatography
상기 실시예 1의 HL60, KG-1, THP-1, HDF, MSC 세포주를 48-72시간동안 배양한 뒤 배양액을 채취하고, 300 xg 에서 10분간, 5,000 xg에서 30분 간, 10,000 xg에서 30분 간 순차적인 원심분리를 시행하여 세포 및 세포 사멸체, 세포파편을 제거한 상층액을 얻었다(도 1). 이후 Amicon® ultrafilter 100 kDa (Merch Millipore, Temecula, CA, USA)를 이용하여 농축한 다음, 상기 실시예 2-1에서 제작한 다중 컬럼을 이용하여 크기 배제 크로마토그래피를 수행하였다. After culturing the HL60, KG-1, THP-1, HDF, and MSC cell lines of Example 1 for 48-72 hours, the culture solution was collected, and 10 minutes at 300 xg, 30 minutes at 5,000 xg, 30 minutes at 10,000 xg Sequential centrifugation was performed for a minute to obtain a supernatant from which cells, cell death, and cell debris were removed (FIG. 1). After concentration using Amicon® ultrafilter 100 kDa (Merch Millipore, Temecula, CA, USA), size exclusion chromatography was performed using the multiple columns prepared in Example 2-1.
환자 혈장 (plasma) 또는 혈청 (serum) 시료를 이용하는 경우에는 농축 과정 없이 실시예 2-1에서 제작한 다중 컬럼을 이용하여 크기 배제 크로마토그래피를 수행하였다.When using a patient plasma or serum sample, size exclusion chromatography was performed using the multiple columns prepared in Example 2-1 without concentration.
2-3. 엑소좀 분리 결과 확인2-3. Exosome separation result confirmation
상기 실시예 2-2를 통해 분리한 엑소좀은 PRO-PREP Protein Extraction Solution (Intron Biotech)를 이용하여 용해한 다음, BCA Protein Assay 방법으로 정량 하였다. 단백질 30 마이크로그램을 전기영동하였으며 5% Sodium dodecyl sulfate (SDS)-polyacrylamide stocjing gel 과 8-12% SDS-polyacrylamide separating gel을 이용하였다. Mouse monoclonal anti-CD4 antibody (1:1000), Mouse monoclonal anti-CD9 antibody (1:1000), Mouse monoclonal anti-CD33 antibody (1:1000), Mouse monoclonal anti-CD47 antibody (1:1000), Mouse monoclonal anti-CD53 antibody (1:1000)(모두 Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit monoclonal anti-calnexin antibody (1:1000)(Cell Signaling Technology, Beverly, MA, USA)를 일차 항체로 사용하였으며 peroxidase-conjugated anti-mouse (1:2000), anti-rabbit (1:2000)을 이차 항체로 사용하였다.The exosomes isolated through Example 2-2 were dissolved using PRO-PREP Protein Extraction Solution (Intron Biotech), and then quantified using the BCA Protein Assay method. 30 micrograms of protein were electrophoresed and 5% Sodium dodecyl sulfate (SDS)-polyacrylamide stocjing gel and 8-12% SDS-polyacrylamide separating gel were used. Mouse monoclonal anti-CD4 antibody (1:1000), Mouse monoclonal anti-CD9 antibody (1:1000), Mouse monoclonal anti-CD33 antibody (1:1000), Mouse monoclonal anti-CD47 antibody (1:1000), Mouse monoclonal Anti-CD53 antibody (1:1000) (all Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit monoclonal anti-calnexin antibody (1:1000) (Cell Signaling Technology, Beverly, MA, USA) as primary antibody Peroxidase-conjugated anti-mouse (1:2000) and anti-rabbit (1:2000) were used as secondary antibodies.
그 결과, 도 2에 나타낸 바와 같이 엑소좀이 순수하게 분리된 것을 확인할 수 있었다.As a result, it was confirmed that the exosomes were purely separated as shown in FIG. 2.
실시예 3: 엑소좀의 단백체 분석Example 3: Protein analysis of exosomes
3-1. FASP 방법을 이용한 Tryptic digestion3-1. Tryptic digestion using FASP method
상기 실시예 1에서 배양한 인간 급성 골수성 백혈병 세포주 HL60, KG-1, THP-1, 인간 골수 내 정상 세포주 HDF, MSC 유래 엑소좀 단백질의 30 μg을 FASP 방법을 이용하여 펩티드로 분해하였다. FASP 방법을 간략히 요약하면 다음과 같다. 30 μg의 엑소좀 단백질을 0.1 M Tris-HCl, pH 7.6에서 4 % SDS 및 0.1 M DTT로 분해하여 환원시킨 후 37 °C에서 45 분 동안 배양하였으며 약한 진동 하에 7 분간 끓였다. 그 다음, Microcon Ultracel 30kDa (Millipore)을 이용하여 14,000 x g, 16 °C 조건에서 40 분간 원심 분리하였으며, 준비된 시료는 FASP-urea 완충액 (0.2 mL of 8 M urea in 0.1 M Tris-HCl, pH 8.5)으로 세척하고 같은 조건으로 3 번 원심 분리하였다. 다음으로 55 mM IAA, 0.1 mL를 함유한 UA 용액에서 알킬화시키고 빛을 차단한 상태로 20 분 동안 배양한 후 14,000 x g, 16 °C, 40 분 동안 원심 분리하였으며, 준비된 시료는 FASP-urea 완충액 (0.2 mL of 8 M urea in 0.1 M Tris-HCl, pH 8.5)으로 세척하고 같은 조건으로 3 번 원심 분리하였다. 트립신을 위한 완충 조건을 준비하기 위해 100 mM TEAB 0.2 mL 를 시료에 첨가하였다. Protein digestion 은 100 mM TEAB, 37 °C, overnight 조건 하 Sequencing grade trypsin 필터를 사용하여 수행하였다. 이후, 펩티드는 14,000 xg, 16°C, 20분 간 원심 분리하여 환원하였으며, 100 mM TEAB, 75μL를 첨가하여 2 회 더 추가 환원하였다. 환원된 펩티드는 SpeedVac concentrator 를 이용하여 건조시켰다. 건조된 샘플은 5% ACN, 180 μL를 포함한 물, 0.1 % Formic acid 로 용해시키고, C-18 Spin Column (Thermo Scientific, USA)을 사용하여 탈염 후 SpeedVac concentrator 로 다시 건조시켰다.30 μg of human acute myeloid leukemia cell lines HL60, KG-1, THP-1, normal cell lines HDF in human bone marrow and MSC-derived exosome proteins cultured in Example 1 were digested with peptides using the FASP method. The FASP method is briefly summarized as follows. 30 μg of exosome protein was reduced by decomposition with 0.1 M Tris-HCl, pH 7.6 to 4% SDS and 0.1 M DTT, incubated at 37 °C for 45 min, and boiled for 7 min under mild vibration. Then, the microcon Ultracel 30kDa (Millipore) was centrifuged for 40 minutes at 14,000 xg, 16 °C, and the prepared sample was FASP-urea buffer (0.2 mL of 8 M urea in 0.1 M Tris-HCl, pH 8.5). Washed and centrifuged 3 times under the same conditions. Next, alkylated in a UA solution containing 55 mM IAA, 0.1 mL, incubated for 20 minutes in a state of blocking light, and then centrifuged for 14,000 xg, 16 °C, 40 minutes, and the prepared sample was prepared in FASP-urea buffer ( 0.2 mL of 8 M urea in 0.1 M Tris-HCl, pH 8.5) and centrifuged 3 times under the same conditions. To prepare buffer conditions for trypsin, 0.2 mL of 100 mM TEAB was added to the sample. Protein digestion was performed using a sequencing grade trypsin filter under 100 mM TEAB, 37 °C, overnight. Subsequently, the peptide was reduced by centrifugation for 14,000 xg, 16°C, and 20 minutes, and further reduced by adding 100 mM TEAB and 75 μL twice more. The reduced peptide was dried using a SpeedVac concentrator. The dried sample was dissolved in 5% ACN, water containing 180 μL, 0.1% Formic acid, desalted using a C-18 Spin Column (Thermo Scientific, USA), and then dried again with a SpeedVac concentrator.
3-2. TMT 5 plex labeling3-2. TMT 5 plex labeling
Tandem Mass Tag (TMT) 라벨 시약 TMT-126, TMT-127, TMT-128, TMT-129, TMT-130의 0.8mg 바이알에 Anhydrous ACN 41 μL를 추가하였으며 제작된 TMT 라벨 시약 41 μL을 상기 실시예 3-1에서 준비한 펩티드 샘플에 첨가하고 1 시간 동안 반응시킨 다음, 각 샘플에 5 % hydroxylamine 8 μL를 넣고 15 분 동안 반응시켰다. Tandem Mass Tag (TMT) Labeling Reagents TMT-126, TMT-127, TMT-128, TMT-129, TMT-130 0.8mg vials of Anhydrous ACN were added to 41 μL and the prepared TMT labeling reagent 41 μL was prepared in the above example After adding to the peptide sample prepared in 3-1 and reacting for 1 hour, 8 μL of 5% hydroxylamine was added to each sample and reacted for 15 minutes.
3-3. High pH fractionation3-3. High pH fractionation
시료에서 확인된 펩티드의 수를 증가시키고 액체 크로마토그래피-질량분석 (LC-MS) 시 Hydrophobicity를 이용하여 각 펩티드를 분리하기 위해 High pH fractionation을 시행하였다. 각 펩티드 시료는 Waters, XBridge BEH C18 컬럼, 3.5 μm, 1.0 x 100 mm를 사용하는 Agilent 1100 series HPLC system (Agilent Technologies, Santa Clara, CA, USA)을 이용하여 12 개의 분획으로 분리하였다. 구체적으로, 시료 주입 전에 완충액 A (10mM Ammonium formate in water (pH 10.0))에서 평형을 유지시켰으며, 0-70 % 의 완충액 B (10mM Ammonium formate in 90% ACN (pH 10))를 사용하여 분리하였다 (The gradient followed as : 0-10 min, 5% B; 10-20 min, 5% B; 20-80 min, 35% B; 80-95 min, 70% B; 95-105 min, 70% B; 105-115 min, 0% B). High pH fractionation was performed to increase the number of peptides identified in the sample and to separate each peptide using hydrophobicity during liquid chromatography-mass spectrometry (LC-MS). Each peptide sample was separated into 12 fractions using an Agilent 1100 series HPLC system (Agilent Technologies, Santa Clara, CA, USA) using Waters, XBridge BEH C18 column, 3.5 μm, 1.0×100 mm. Specifically, equilibrium was maintained in buffer A (10 mM Ammonium formate in water (pH 10.0)) before sample injection, and separated using 0-70% of buffer B (10 mM Ammonium formate in 90% ACN (pH 10)). (The gradient followed as: 0-10 min, 5% B; 10-20 min, 5% B; 20-80 min, 35% B; 80-95 min, 70% B; 95-105 min, 70% B; 105-115 min, 0% B).
3-4. 질량분석기를 이용한 단백질의 확인3-4. Identification of proteins using mass spectrometry
상기 실시예 3-3에서 분획화한 펩티드 샘플을 0.1% formic acid를 포함한 물에 재현탁 한 후 Q-Exactive Orbitrap Hybrid Mass Spectrometry connected with EASY-nLC 1000 system (ThermoScientific, Bremen, Germany)를 이용하여 분석 하였다(The gradient was as follow: from 5% to 40% of solvent B for 120 min, from 40% to 80% of solvent B for 5 min, maintaining at 80% of solvent B for 10 min, and equilibrating the column at 1% of B for 30% (Sol A: 0.1% formic acid in water, Sol B: 0.1% formic acid in acetonitrile)). 펩티드는 Trap column 으로 용리하고, 이온화는 2μm C18 입자로 충전된 EASY-spray column (50cm×75μm ID), 전기 스프레이 전압 1.8kV으로 수행하였다. 질량분석 데이터는 1.0 x 10 6의 자동 이득 제어 목표 값, 120 ms의 최대 이온 주입, m/z 200-70,000의 분해능, 400-2,000 m/z의 스캔 범위에서 수집되었다. MS/MS의 최대 이온 주입 시간은 해상도 17,500에서 60ms로 설정되었다. 동적 배제 시간은 30 초로 설정되었다.The peptide sample fractionated in Example 3-3 was resuspended in water containing 0.1% formic acid, and then analyzed using a Q-Exactive Orbitrap Hybrid Mass Spectrometry connected with EASY-nLC 1000 system (ThermoScientific, Bremen, Germany). The gradient was as follow: from 5% to 40% of solvent B for 120 min, from 40% to 80% of solvent B for 5 min, maintaining at 80% of solvent B for 10 min, and equilibrating the column at 1% of B for 30% (Sol A: 0.1% formic acid in water, Sol B: 0.1% formic acid in acetonitrile). The peptide was eluted with a trap column, and ionization was performed with an EASY-spray column (50 cm×75 μm ID) filled with 2 μm C18 particles and an electric spray voltage of 1.8 kV. Mass spectrometry data were collected at an automatic gain control target value of 1.0 x 10 6 , a maximum ion implantation of 120 ms, a resolution of 200-70,000 m/z, and a scan range of 400-2,000 m/z. The maximum ion implantation time of MS/MS was set at a resolution of 17,500 to 60 ms. The dynamic exclusion time was set to 30 seconds.
질량분석 데이터는 Proteome Discoverer 2.1 (Thermo Fisher Scientific Inc., Germany)의 SEQUEST®를 사용하여 Uniprot human database (released in June, 2017)에 대해 검색되었다. 시스테인의 Carbamidomethylation, Lysin의 TMT tag 및 N-말단, Methionine의 N-아세틸화 또는 산화를 각각의 탐색에 사용하였다. Peptide spectrum match와 단백질 수준에서 1 %의 False discovery rate 기준이 적용되다. 허용 오차는 전구체 질량에 대해 10ppm 및 단편 질량에 대해 0.8Da로 설정되었다.Mass spectrometry data was retrieved against the Uniprot human database (released in June, 2017) using SEQUEST® from Proteome Discoverer 2.1 (Thermo Fisher Scientific Inc., Germany). Carbamidomethylation of cysteine, TMT tag and N-terminal of Lysin, N-acetylation or oxidation of Methionine were used for each search. Peptide spectrum match and 1% False discovery rate standard at the protein level are applied. The tolerance was set to 10 ppm for the precursor mass and 0.8 Da for the fragment mass.
그 결과, 도 3 및 도 4에 나타낸 바와 같이 인간 급성 골수성 백혈병 세포주 HL60, KG-1, THP-1와 인간 골수 내 정상 세포주 HDF, MSC 유래 엑소좀 단백질에서 유의한 발현양의 차이를 나타내는 마커 후보를 선정할 수 있었다.As a result, as shown in Figures 3 and 4, human acute myeloid leukemia cell lines HL60, KG-1, THP-1 and marker candidates showing significant differences in expression levels in exosome proteins derived from normal cell lines HDF and MSC in human bone marrow Could be selected.
실시예 4: 표준 치료요법을 적용한 환자에서 CD53 또는 CD47의 발현양 차이에 따른 생존율 분석Example 4: Analysis of survival rate according to the difference in the expression level of CD53 or CD47 in a patient to which standard therapy is applied
급성 골수성 백혈병 유래 엑소좀 단백질 중 과발현 된 면역표현형을 선정하여 ELISA는 방법으로 치료 반응 예측에 대한 실험을 진행하였으며 이에는 Human leukocyte surface antigen CD47 ELISA (Cat. MBS926478, MyBiosource, Inc., CA, USA), Exo-TESTTM CD53-exosome ELISA (Cat. EKC34422, Lonza) 를 사용하였다. 실험 진행은 해당 회사에서 제공하는 프로토콜에 따라 진행하였다.By selecting an overexpressed immunophenotype among acute myeloid leukemia-derived exosome proteins, ELISA conducted an experiment for predicting treatment response by this method, including Human leukocyte surface antigen CD47 ELISA (Cat.MBS926478, MyBiosource, Inc., CA, USA) , Exo-TESTTM CD53-exosome ELISA (Cat. EKC34422, Lonza) was used. The experiment proceeded according to the protocol provided by the company.
표준 치료요법을 적용한 급성 골수성 백혈병 환자를 대상으로 CD53 또는 CD47의 발현양 차이에 따라 두 환자 군으로 나누어 무병생존율을 비교하였다. 독립변수는 전체 환자군의 CD53 또는 CD47의 발현양 차이에 대한 중위 값을 기준으로, 전체 환자군의 중위 값 보다 큰 발현양의 차이를 보이는 군 (Group 1)과 전체 환자군의 중위 값 보다 작은 발현양의 차이를 보이는 군 (Group 2) 로 나누었다. 종속변수는 각 군에 따른 무병생존율로, 급성 골수성 백혈병의 진단 시부터 재발 또는 사망까지의 기간으로 설정하였다. For patients with acute myeloid leukemia to which standard therapy was applied, disease-free survival was compared by dividing the patients into two groups according to the difference in the expression levels of CD53 or CD47. The independent variable is based on the median value for the difference in the expression level of CD53 or CD47 in the entire patient group, and the difference in the expression level is greater than the median value in the entire patient group (Group 1) and the expression level is less than the median value in the entire patient group. Divided into groups (Group 2) showing differences. The dependent variable was disease-free survival according to each group, and was set as the period from diagnosis of acute myeloid leukemia to relapse or death.
그 결과, 도 6에 나타낸 바와 같이 CD53 또는 CD47의 발현양 차이에 따라 표준 치료요법으로 완치 판정을 받은 후 무병생존율에 차이가 발생함을 확인하였다. As a result, as shown in FIG. 6, it was confirmed that a difference in disease-free survival occurred after being judged as a cure by standard treatment according to a difference in the expression level of CD53 or CD47.
다음으로, CD53과 CD47를 함께 이용하여 무병생존율에 대해 분석한 결과를 도7에 나타냈다. 도 7을 참고하면, 전체 환자군의 중위 값보다 CD53 과 CD47 발현양 차이가 모두 크거나 CD53또는 CD47의 발현양의 차이가 적고 큼이 서로 다르게 나타나는 환자 (Group 1), 전체 환자군의 중위 값보다 CD53 과 CD47 발현양 차이가 모두 적은 환자 (Group 2)를 비교하였을 때, CD53과 CD47를 모두 이용한 경우 무병생존율을 보다 정확하게 예측할 수 있음을 확인할 수 있었다.Next, the results of analyzing the disease-free survival rate using CD53 and CD47 together are shown in FIG. 7. Referring to FIG. 7, CD53 and CD47 expression levels are greater than the median value of the entire patient group, or the difference between CD53 and CD47 expression levels is small and the difference is greater (Group 1), CD53 than the median value of the entire patient group When comparing the CD47 and CD47 expressions, the patients (Group 2) had little difference in expression level, and it was confirmed that disease-free survival can be predicted more accurately when both CD53 and CD47 were used.
이러한 결과는 CD53 및 CD47의 발현양 차이가 전체 환자군의 중위 값 보다 모두 적은 환자는 표준 치료요법 적용 후에도 CD53 및 CD47이 과발현되고 있음을 시사한다. These results suggest that CD53 and CD47 are overexpressed even after standard therapy is applied to patients whose CD53 and CD47 expression levels are less than the median value of the entire patient group.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described by the limited drawings, those skilled in the art can apply various technical modifications and variations based on the above. For example, even if the described techniques are performed in a different order than the described method, and/or the described components are combined or combined in a different form from the described method, or replaced or replaced by another component or equivalent Appropriate results can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are also within the scope of the following claims.

Claims (8)

1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 1) separating the exosomes from a sample taken from a patient who has been determined to have completely cured acute myeloid leukemia; And
2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병의 재발을 예측하는 방법.2) measuring CD53 and CD47 expression levels of the exosomes; A method of predicting the recurrence of acute myeloid leukemia, which includes.
제1항에 있어서,According to claim 1,
상기 환자는 세포독성 항암제 치료를 받은 환자인, 방법.The patient is a patient who has been treated with a cytotoxic anticancer agent.
제2항에 있어서,According to claim 2,
상기 세포독성 항암제는 안트라사이클린 계열 화합물, 씨타라빈(cytarabine) 및 ATRA(all-trans-retinoic acid)로 이루어진 군으로부터 선택되는 1종 이상인, 방법.The cytotoxic anticancer agent is at least one member selected from the group consisting of anthracycline-based compounds, cytarabine and all-trans-retinoic acid (ATRA).
제1항에 있어서,According to claim 1,
상기 엑소좀의 CD53 및 CD47 발현 수준은 엑소좀-ELISA로 측정되는 것인, 방법.The level of CD53 and CD47 expression of the exosomes is measured by exosome-ELISA, method.
제1항에 있어서,According to claim 1,
상기 엑소좀에서 CD53 및 CD47이 과발현 되는 경우, 세포독성 항암제에 대한 치료 반응성이 낮을 것으로 예측하는, 방법.If CD53 and CD47 are overexpressed in the exosome, the method predicts that the therapeutic response to a cytotoxic anticancer agent is low.
제1항에 있어서,According to claim 1,
상기 엑소좀에서 CD53 및 CD47이 과발현 되는 경우, 세포독성 항암요법 치료 후 재발 가능성이 높을 것으로 예측하는, 방법.If CD53 and CD47 are overexpressed in the exosomes, the method is predicted to have a high probability of recurrence after treatment with cytotoxic chemotherapy.
1) 급성 골수성 백혈병의 완치 판정을 받은 환자로부터 채취한 시료에서 엑소좀을 분리하는 단계; 및 1) separating the exosomes from a sample taken from a patient who has been determined to have completely cured acute myeloid leukemia; And
2) 상기 엑소좀의 CD53 및 CD47 발현 수준을 측정하는 단계; 를 포함하는, 급성 골수성 백혈병 환자의 재발을 예측하기 위한 정보를 제공하는 방법.2) measuring CD53 and CD47 expression levels of the exosomes; A method of providing information for predicting the recurrence of a patient with acute myeloid leukemia comprising a.
제7항에 있어서,The method of claim 7,
상기 환자는 세포독성 항암제 치료를 받은 환자인, 방법.The patient is a patient who has been treated with a cytotoxic anticancer agent.
PCT/KR2020/001260 2019-01-28 2020-01-28 Method for predicting therapeutic response in acute myeloid leukemia by using exosome-derived immunophenotype WO2020159181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190010393A KR102176419B1 (en) 2019-01-28 2019-01-28 Method for prediction of treatment response in acute myelogenous leukemia using CD markers derived from exosomes
KR10-2019-0010393 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020159181A1 true WO2020159181A1 (en) 2020-08-06

Family

ID=71840071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001260 WO2020159181A1 (en) 2019-01-28 2020-01-28 Method for predicting therapeutic response in acute myeloid leukemia by using exosome-derived immunophenotype

Country Status (2)

Country Link
KR (1) KR102176419B1 (en)
WO (1) WO2020159181A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031809A (en) * 2003-06-09 2006-04-13 더 리젠츠 오브 더 유니버시티 오브 미시간 Compositions and methods for treating and diagnosing cancer
US20140274788A1 (en) * 2009-03-24 2014-09-18 Riken Leukemia stem cell markers
JP2017526938A (en) * 2014-07-11 2017-09-14 アンセルム(アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) Method for diagnosing hematological cancer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060031809A (en) * 2003-06-09 2006-04-13 더 리젠츠 오브 더 유니버시티 오브 미시간 Compositions and methods for treating and diagnosing cancer
US20140274788A1 (en) * 2009-03-24 2014-09-18 Riken Leukemia stem cell markers
JP2017526938A (en) * 2014-07-11 2017-09-14 アンセルム(アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) Method for diagnosing hematological cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOYIADZIS, M.: "Plasma-derived exosomes carrying leukemia-associated antigens associate with leukemia relapse in AML patients after chemotherapy", BLOOD, vol. 130, no. 1, 2017, pages 3921, Retrieved from the Internet <URL:https://ashpublications.org/blood/article/130/Supplement%201/3921/71631/Plasma-Derived-Exosomes-Carrying-Leukemia> *
KIBRIA, G.: "A rapid, automated surface protein profiling of single circulating exosomes in human blood", SCIENTIFIC REPORTS, vol. 6, 7 November 2016 (2016-11-07), XP055728037 *

Also Published As

Publication number Publication date
KR102176419B1 (en) 2020-11-09
KR20200093205A (en) 2020-08-05

Similar Documents

Publication Publication Date Title
Xiang et al. Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma
Huang et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells
Baberg et al. Secretome analysis of human bone marrow derived mesenchymal stromal cells
Jiao et al. Characterization and proteomic profiling of pancreatic cancer‐derived serum exosomes
WO2010038974A9 (en) Composition and kit for diagnosing immunoglobulin a nephropathy and tgbm nephropathy
Wang et al. miRNA-21 expression in the serum of elderly patients with acute myocardial infarction
WO2019093717A2 (en) Marker composition for diagnosing or predicting prognosis of lung cancer based on exosome overexpressing gcc2 gene or protein
Losada-Barragán et al. Thymic microenvironment is modified by malnutrition and Leishmania infantum infection
Taguchi et al. Proteomic signatures associated with p53 mutational status in lung adenocarcinoma
WO2017082562A1 (en) Stem cell with suppressed socs and improved immunosuppressive ability and use thereof
Lukic et al. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis
Chen et al. Two-layer regulation of TRAF6 mediated by both TLR4/NF-kB signaling and miR-589-5p increases proinflammatory cytokines in the pathology of severe acute pancreatitis
Su et al. Methylation of dual-specificity phosphatase 4 controls cell differentiation
Mai et al. Proteomic analysis of hypoxia-induced senescence of human bone marrow mesenchymal stem cells
WO2020159181A1 (en) Method for predicting therapeutic response in acute myeloid leukemia by using exosome-derived immunophenotype
Zhi et al. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast
Khan et al. LDHA-regulated tumor-macrophage symbiosis promotes glioblastoma progression
WO2022102885A1 (en) Technique for diagnosing stress associated with atopic dermatitis using exosome-derived mirnas
Sang et al. Mitochondrial Deoxyguanosine Kinase Regulates NAD+ Biogenesis Independent of Mitochondria Complex I Activity
WO2020204665A1 (en) Marker composition for diagnosing cancer or predicting prognosis on basis of exosome overexpressing tuba1c protein
Teilum et al. Binding mitochondria to cryogel monoliths allows detection of proteins specifically released following permeability transition
Ferdoushi et al. Proteomic profile of human Schwann cells
JPH11507435A (en) Analytical and therapeutic agents
Jayaram et al. Identification of a novel splice variant of neural cell adhesion molecule in glioblastoma through proteogenomics analysis
Kang et al. Comparative proteomic profiling of extracellular proteins between normal and gastric cancer cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748068

Country of ref document: EP

Kind code of ref document: A1