WO2020159017A1 - Medical multi-laser amplification output device - Google Patents

Medical multi-laser amplification output device Download PDF

Info

Publication number
WO2020159017A1
WO2020159017A1 PCT/KR2019/009032 KR2019009032W WO2020159017A1 WO 2020159017 A1 WO2020159017 A1 WO 2020159017A1 KR 2019009032 W KR2019009032 W KR 2019009032W WO 2020159017 A1 WO2020159017 A1 WO 2020159017A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
output
laser cavity
optical
cavity
Prior art date
Application number
PCT/KR2019/009032
Other languages
French (fr)
Korean (ko)
Inventor
김정현
백영준
문준영
조성철
Original Assignee
원텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원텍 주식회사 filed Critical 원텍 주식회사
Publication of WO2020159017A1 publication Critical patent/WO2020159017A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20553Beam shaping or redirecting; Optical components therefor with special lens or reflector arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/208Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with multiple treatment beams not sharing a common path, e.g. non-axial or parallel

Definitions

  • the present invention relates to a medical multi-laser amplification output device that amplifies laser output with a plurality of laser cavities and outputs laser light capable of hemostasis simultaneously with incision.
  • the laser which is recognized as a basic tool in medical procedures, is hundreds of milliseconds (10 -3 ) seconds in short pulses of femto (10 -15 ) seconds depending on various wavelengths, high energy density, and operation method.
  • a method for selectively treating pigmented lesions or vascular lesions by utilizing the characteristics of a laser providing a pulse width ranging from is introduced, it is actively applied in medical applications.
  • the laser is an argon laser that incinerates human tissues according to the wavelength and energy characteristics, a CO 2 laser using properties such as a helium neon laser used for laser acupuncture or blood flow velocity measurement, and a tissue removed with a knife, which can be identified with the eye. It is classified as a yag (YAG) laser used for treatment by using incision properties.
  • YAG yag
  • the surgical laser Compared to the need to open a large field of view in order to perform a mechanical surgery, the surgical laser enters the human body through a very narrow hole and connects it with an optical fiber or a small endoscope camera, thereby providing the advantage of minimally invasive surgery.
  • Examples of the application include prostate treatment, laryngeal cancer treatment, heart laser treatment, and disc surgery.
  • Surgical laser equipment has been actively applied in all medical fields due to the spread of minimally invasive surgical methods, and research on improving shorter pulses and high-power laser equipment has been actively conducted.
  • an Andy Yag (Nd:YAG) laser was mainly used. Since the Andy Yag laser is a low-power method, the power of the laser is weak, so it is unable to vaporize unnecessary tissue properly. When the laser is cut on the prostate tissue, the surrounding normal tissue burns or swells. Andiyag lasers have been treated with urine for more than two weeks because of prostate swelling after the procedure. Thereafter, the KTP laser technique was introduced.
  • the KTP laser had the advantage of accurately targeting only the prostate enlarged by a high-power method with strong power and burning it. However, KTP lasers also showed limitations when the prostate tissue was greatly enlarged.
  • a prostate procedure using a holmium laser having a wavelength of about 2100 nm has attracted attention.
  • Holmium lasers insert instruments through the urethra and tear tissue from the inside out.
  • Holmium laser has the advantage of being able to completely remove the enlarged prostate tissue with fewer side effects than conventional laser techniques for crushing and removing tissue.
  • a multi-laser amplification output device that can be applied to the above-mentioned treatment laser, in particular, holmium laser equipment.
  • Medical laser equipment uses light pumping means to excite the solid-state gain medium into the laser state.
  • the gain medium may be a cylindrical laser rod and the light pumping means may be a flash lamp positioned parallel to the rod and extending in the longitudinal direction.
  • Most gain media must be maintained at a high temperature during the razing operation.
  • U.S. Patent No. 999631 discloses a device having a plurality of laser cavities that are sequentially pumped.
  • the preceding patent suggests a control configuration for controlling the output lasers of the plurality of laser cavities to the center point of the servo mirror.
  • Surgical laser equipment used for medical purposes requires a high degree of precision in the process of forming an output laser.
  • Great sensitivity is required in the arrangement, angle, and curvature of the optical system mirror for laser focusing, and adjustment of the offset is also a very difficult technical problem due to the characteristics of the optical resonator having a multi-channel laser cavity.
  • the temperature control of the laser cavity affects the performance of the laser and, unlike the conventional gain medium maintained at a high temperature, the holmium laser equipment must be properly equipped with a cooling system for maintaining a low temperature.
  • stability in the event of equipment failure must also be ensured.
  • the present applicant has devised a medical multi-laser amplification output device capable of controlling the optical system configuration, precise offset adjustment, and stable sequence control that are advantageous for laser focusing of the servo mirror, and capable of appropriately controlling the temperature of the optical resonator.
  • Patent Document 1 U.S. Registered Patent No. 9939631
  • the present invention is to provide a medical multi-laser amplification output device having an optical system configuration that is advantageously incident on the optical fiber by minimizing the divergence angle of the laser resonating in the laser cavity.
  • the present invention is to provide a medical multi-laser amplification output device capable of controlling the offset to eliminate errors that may be sensitive to output pulses such as overshoot depending on the environment such as equipment and temperature.
  • the present invention is to provide a medical multi-laser amplification output device that can ensure the continuity of output even if an error occurs in any one optical resonance system in a multi-channel laser cavity.
  • the present invention is to provide a cooling system having a high cooling efficiency with a minimum volume to provide a medical multi-laser amplification output device capable of maintaining the optical resonator at a low temperature.
  • the present invention in a medical multi-laser amplification output device, a plurality of laser cavities, and the optical system to form a single output laser by guiding the light sequentially output by the plurality of laser cavities in a single path
  • An optical resonator configured;
  • a processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity;
  • a cooling unit that controls the temperature of the optical resonance unit, and the processor unit, when controlling an initial pulse of the laser cavity, applies an offset signal that gradually increases in pulse width to reach a set output value of the laser cavity.
  • the offset of the optical resonator is adjusted by fixing the pulse width of the offset signal.
  • the processor may gradually increase the pulse width of the offset signal while the voltage of the offset signal is fixed.
  • the optical system each of the laser cavity, a pair of reflector mirrors provided before and after the laser rod; And a relay mirror for focusing light output through the pair of reflector mirrors, and further guiding a light reflected from each relay mirror provided in each laser cavity to an output line
  • the servo mirror while being rotated under the control of the processor unit, focuses light output by each laser cavity sequentially into a single path of the output line
  • the reflector mirror includes a rear reflector mirror positioned at the rear side of the laser rod.
  • a front surface reflector mirror having a negative curvature surface and located on the front surface of the laser rod may have a flat surface.
  • the output order of the laser cavity in which the error occurs is excluded from the sequence, and the sequence is skipped to the next laser cavity to output the output.
  • the optical resonator may be controlled to ensure continuity.
  • the cooling unit is connected to the optical resonance unit, a cooling pump for supplying cooling water; And a supply line connected to the optical resonator unit of the cooling pump, and a radiator having a line through which some of the cooling water supplied to the optical resonator unit is introduced.
  • the present invention is a medical multi-laser amplifying output device, comprising: a plurality of laser cavities and an optical resonator comprising an optical system that guides light sequentially output by the plurality of laser cavities into a single path to form a single output laser; A processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity; And a cooling unit that controls the temperature of the optical resonator, and the processor unit, when an error occurs in any one of the laser cavities of each of the laser cavities, excludes an output sequence of the laser cavity in which the error occurred in a sequence, and the next laser.
  • Another feature is to control the optical resonator to ensure continuity of output by instructing the cavity to skip the sequence.
  • the present invention has an optical system structure in which incident on the output line is advantageous by minimizing the divergence angle of the resonant laser.
  • the present invention can provide high cooling efficiency in a small volume by providing a cooling system in which cooling water flows in parallel by a supply line connected to an optical resonator branch.
  • the present invention controls to ensure the continuity of the output by excluding the output order of the laser cavity in which the error occurred from the sequence and skipping the order to the next laser cavity. Accordingly, the present invention can provide a medical multi-laser amplification output device capable of precise laser output and stable control.
  • FIG. 1 shows a medical multi-laser amplification output device according to an embodiment of the present invention.
  • FIG 2 shows an optical resonator according to an embodiment of the present invention.
  • FIG 3 shows an optical system according to an embodiment of the present invention.
  • 4 shows a control driving state of a servo mirror according to an embodiment of the present invention and an optical path accordingly.
  • 4A shows an optical path when a first laser cavity is output among four laser cavities according to this embodiment.
  • 4B shows the optical path when the second laser cavity is output among the four laser cavities according to the present embodiment.
  • FIG. 5 shows a cooling unit according to an embodiment of the present invention.
  • FIG. 6 shows a cooling water circulation path of a cooling unit according to an embodiment of the present invention.
  • FIG. 7 shows a control screen of a processor unit according to an embodiment of the present invention.
  • 8 shows the offset control principle of the processor unit according to an embodiment of the present invention.
  • 8A shows a conventional offset signal and thus an output waveform.
  • 8B shows an offset signal and a corresponding output waveform of the processor unit according to an embodiment of the present invention.
  • FIG. 9 illustrates a sequence control principle of a processor unit according to an embodiment of the present invention.
  • the multi-laser amplification output device 1 may include an optical resonance unit 10, a processor unit 30, a cooling unit 50, and a display unit 70.
  • the cooling unit 50 is located on the opposite side of the body where the processor unit 30 is located. Therefore, the shape of the cooling unit 50 will be described later with reference to FIGS. 5 and 6.
  • the medical multi-laser amplifying output device 1 is a device having a plurality of laser rods that are sequentially pumped, and combining the outputs of each laser bar with a single pulse laser for output.
  • the optical resonator 10 is composed of multi-channels that implement a plurality of laser cavities 101 for optical resonance.
  • the output laser of the optical resonator 10 is the sum of the laser rod outputs in the laser cavity 101, and the speed of the output pulse and the average energy level are high.
  • the laser cavity 101 is composed of four, Ho:YAG laser rod may be used. Each laser cavity 101 is pulsed at 10 Hz, and the four cavity 101 outputs are combined and interleaved into a single output laser.
  • the interleaved output laser has a pulse frequency of 40 Hz.
  • the optical resonator unit 10 guides a plurality of laser cavities 101 and light sequentially output by the plurality of laser cavities 101 in a single path to form a single output laser 103 , 105, 107, 109).
  • the plurality of laser cavities 101 are fixed to the fourth quadrant.
  • the first laser cavity 101(a) and the second laser cavity 101(b) are a pair of laser cavities arranged on the same x-axis.
  • the third laser cavity 101(c) and the fourth laser cavity 101(d) are also a pair of laser cavities arranged on the same x-axis.
  • the first laser cavity 101(a) and the third laser cavity 101(c), the second laser cavity 101(b) and the fourth laser cavity 101(d) are each on the same y-axis. Is placed.
  • the laser cavity 101 may be provided with a gain medium for laser excitation and an optical pump.
  • the first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) are sequentially pumped to oscillate the laser.
  • the first to fourth laser cavities 101(a), 101(b), 101(c), 101(d) are pulsed at 10 Hz, respectively.
  • the lasers sequentially output from the first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) at a pulse frequency of 10 Hz are optical systems 103, 105, 107, and 109. Through, they are combined into a single laser, and the pulse frequency of the output laser is amplified to 40 Hz.
  • Figure 3 shows the optical system (103, 105, 107, 109) according to an embodiment of the present invention.
  • the optical systems 103, 105, 107, and 109 may include a plurality of reflector mirrors 103, a plurality of relay mirrors 105, and a servo mirror 107.
  • 3 shows an optical path of a laser output from one laser cavity 101 together.
  • the reflector mirror 103 may be amplified by resonating the output laser of the laser cavity 101 with a reflector disposed before and after the laser cavity 101.
  • the reflector mirror 103 includes a rear reflector mirror 103(b) located at the rear of the laser cavity 101 and a front reflector mirror 103(a) located at the front of the laser cavity 101.
  • the front reflector mirror 103(a) and the rear reflector mirror 103(b) are optical systems that configure a resonator to oscillate a laser, and are configured to determine a resonance system.
  • the front reflector mirror 103(a) is partially reflective coated to resonate some of the output lasers of the laser cavity 101, and to output some of them.
  • the rear reflector mirror 103(b) is coated with a front reflection.
  • the front reflector mirror 103(a) and the rear reflector mirror 103(b) are provided for each pair of laser cavities 101.
  • the optical resonator 10 includes first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d), so that the reflector mirror 103 A total of eight are arranged in four laser cavities 101(a), 101(b), 101(c), and 101(d) with one pair of front-rear.
  • the rear reflector mirror 103(b) has a negative curvature surface
  • the front reflector mirror 103(a) is configured to have a flat surface.
  • the curvature of the front reflector mirror 103(a) and the rear reflector mirror 103(b) is closely related to the output of the resonant laser.
  • the configuration corresponding to the rear reflector mirror 103(b) of the present embodiment has been disclosed as a high reflector mirror in FIG. 1 of U.S. Patent No.9939631 described above, and corresponds to the front reflector mirror 103(a)
  • the configuration to be started was described as an output coupler (partial reflector).
  • the high reflector mirror has a flat surface
  • the output coupler (partial reflector) has a concave surface. Note that this is in contrast to Figure 3 of the Examples.
  • the rear reflector mirror 103(b) of total reflection is configured as a concave surface to minimize the divergence angle of the resonant laser. Accordingly, it is designed to advantageously enter the optical fiber of the output line. Further, the front reflector mirror 103(a) has a flat mirror surface. If the surface of the front reflector mirror 103(a) is concave, the divergence angle increases when the laser is emitted, which may cause more technical difficulties in adjusting the incident of the optical fiber.
  • the plurality of relay mirrors 105 collectively refers to a configuration of an optical system that transmits a laser oscillated from the reflector mirror 103 to the servo mirror 107 and transmits light incident on the servo mirror 107 to the output line.
  • the plurality of relay mirrors 105 are first relay mirrors 105(a) through which an oscillation laser of the front reflector mirror 103(a) is directly incident and reflected at a predetermined angle. ).
  • the first relay mirror 105(a) is disposed coaxially with the front reflector mirror 103(a).
  • the first relay mirror 105(a) may be configured as a concave surface to minimize the divergence of the laser.
  • the plurality of relay mirrors 105 includes a second relay mirror 105(b) that causes the laser reflected from the first relay mirror 105(a) to enter the servo mirror 107.
  • the plurality of relay mirrors 105 includes a third relay mirror 105(c) that causes the laser reflected from the servo mirror 107 to enter the output line. Both the first relay mirror 105(a) and the second relay mirror 105(b) are disposed in the laser cavity 101, one pair each.
  • the paths of the lasers sequentially output from the first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) are servo mirrors 107 Since it was unified by ), only one can be disposed in the optical system.
  • the servo mirror 107 may rotate under the control of the processor unit 30 and focus light output from each laser cavity 101 in a single path of the output line.
  • the servo mirror 107 is a reflector that is rotated 360°, and a servo motor that rotates the servo mirror 107 and an encoder that controls the rotation angle of the mirror 107 may be modularized together.
  • the servo mirror 107 is rotated to reflect the sequential laser outputs of the four laser cavities 101(a), 101(b), 101(c), 101(d) in a single path. Therefore, the rotation angle of the servo mirror 107 is adjusted in the range of 90° for each laser cavity 101(a), 101(b), 101(c), 101(d).
  • an optical path is formed through the third relay mirror 105(c) to the output line of the optical resonator 10 where the optical fiber is provided.
  • the optical system of the output line is collectively designated by reference numeral 109.
  • a plurality of reflection mirrors may be additionally provided in the optical system 109 of the output line according to the characteristics of the arrangement and design of the optical fiber.
  • FIG. 4 shows a control driving state of the servo mirror 107 according to an embodiment of the present invention and an optical path accordingly.
  • FIG. 4A shows the first laser cavity 101(a) among the four laser cavities 101(a), 101(b), 101(c), and 101(d) according to the present embodiment.
  • FIG. 4B shows the second laser cavity 101(b) among the four laser cavities 101(a), 101(b), 101(c), and 101(d), according to the present embodiment.
  • the optical path of the optical resonator 10 is summarized as follows.
  • the laser rod of the laser cavity 101 is excited, and the outputted laser oscillates through the front reflector mirror 103(a) and the rear reflector mirror 103(b).
  • the pumped laser is a front reflector mirror (103(a))-a first relay mirror (105(a))-a second relay mirror (105(b))-a servo mirror 107-a third relay mirror (105(c) )) to the optical system 109 of the output line.
  • the optical resonator 10 is formed with a considerable distance of the optical path of the laser to the optical fiber of the output line.
  • the optical resonator unit 10 configures the front reflector mirror 103(a) as a flat surface, and configures the first relay mirror 105(a) as a concave surface.
  • the multi-laser amplifying output device 1 has been described above as a Holmium Yag (Ho:YAG) laser that needs to be maintained at a relatively low temperature.
  • the cooling system of the multi-laser amplifying output device 1 can be one of the main technical challenges to improve the overall laser output. Therefore, a cooling unit 50 system is provided in a configuration for cooling the heat generated by the optical resonator unit 10 generated in the pumping process.
  • the cooling unit 50 includes a temperature sensor to control the temperature of the optical resonance unit 10.
  • the cooling unit 50 includes a cooling pump 51, a cavity cooling line 52, a filter 53, a branch line 54, a radiator 55, a cooling tank 57, a supply line 58, and a fan ( 59).
  • the cooling pump 51 is connected to the optical resonator 10 to supply cooling water.
  • the cooling pump 51 is connected to the cooling tank 57 through a supply line 58. Cooling water from the cooling tank 57 flows into the cooling pump 51, and the cooling pump 51 flows the cooling water through the cavity cooling line 52 into the optical resonator 10, and the optical resonator 10 is constant. Controlled by temperature.
  • the cavity cooling line 52 may include one or more filters 53.
  • the filter 53 may include a micro filter 53(a) and a DI filter 53(b).
  • the radiator 55 is composed of vertical pillar folds.
  • the radiator 55 forms a circulation path of the cooling water therein and discharges heat energy of the cooling water to the outside during the circulation process of the cooling water.
  • a fan 59 is disposed on the rear of the radiator 55 to increase the cooling efficiency of the radiator 55.
  • the radiator 55 has a line through which a supply line connected to the optical resonator 10 of the cooling pump 51 branches, and a portion of cooling water supplied to the optical resonator 10 flows in.
  • the configuration in which a part of the cooling water supplied to the optical resonator 10 is branched into a line flowing into the radiator 55 is referred to as a branching line 54.
  • the branch line 54 is formed in the cavity cooling line 52.
  • the branch line 54 is connected to the radiator 55. Cooling water is introduced into the radiator 55 through the branch line 54 to release heat energy.
  • the inflow path of the radiator 55 is a branch line 54 branched from the cavity cooling line 52.
  • the line of cooling water discharged by circulating the optical resonator 10 is connected to the cooling tank 57. That is, the cavity cooling line 52 is connected to the cooling tank 57 via the optical resonator 10.
  • the multi-laser amplification output device 1 is required to be controlled in a certain range by minimizing the displacement of temperature.
  • the cooling water whose temperature has increased through the optical resonator 10 is collected into the cooling tank 57 through the cavity cooling line 52.
  • the displacement of the temperature is lowered and the temperature value of the cooling water becomes constant.
  • the cooling water whose temperature is lowered through the radiator 55 also flows into the cooling tank 57. That is, in the cooling unit 50 system as in the present embodiment, the radiator 55 not only lowers the temperature of the cooling water, but also the cooling tank 57 also lowers the temperature of the cooling water and equalizes the temperature value.
  • FIG. 6 shows a cooling water circulation path of the cooling unit 50 according to an embodiment of the present invention.
  • the cooling unit 50 according to an embodiment of the present invention is divided into a cooling water path of C1 and a cooling water path of C2.
  • the cooling water path of C1 flows through the cooling water from the cooling tank 57 through the cooling pump 51 and the cavity cooling line 52 sequentially to the optical resonator 10.
  • the cooling water path of C2 flows into the radiator 55 through the branch line 54 in which the cavity cooling line 52 supplied from the cooling pump 51 to the optical resonator 10 is branched. Cooling water circulated through the radiator 55 flows into the cooling tank 57 again.
  • the path of C1 is a path for cooling the laser of the optical resonator 10
  • the path of C2 is a path for cooling the cooling water.
  • a path discharged from the cooling tank 57 to the cooling pump 51 is common. Accordingly, the laser is cooled on the cooling tank 57 to be combined with the cooling water having a high temperature and the cooled cooling water, and the temperature is evenly leveled to enable more stable temperature control.
  • FIG. 7 shows a control screen of the processor unit 30 according to an embodiment of the present invention.
  • the control screen of the processor unit 30 according to FIG. 7 may be displayed through the display unit 70.
  • the display unit 70 is provided as a control panel, and can change the operating conditions of the processor unit 30 or display the operation status of the equipment.
  • the display unit 70 includes a status window (READY), a guide beam UI (PILOT), an information button (i), a system power button, a frequency control UI (FREQUENCY), an energy control UI (ENERGY), and power A status window (POWER), an offset parameter load UI (DEFAULT) of the equipment, a main alarm UI (FIBER, SAFETY GLASS, LAMP, TEMP), a temperature display (TEMP), and other alarm and equipment information windows may be provided.
  • the status window provides a function that can be switched between standby and ready mode to provide safe eye laser output operation. In ready mode, the laser is emitted when the user presses a separate foot switch.
  • the guide beam UI PILOT
  • the information button i) provides information such as S/N of the system, lamp usage, time, and manufacturing date.
  • the system power button can display a button operation sequence or an image together to safely shut down the device.
  • the frequency control UI allows you to set the number of shots per second of the laser.
  • the user can set the pulse frequency of the output laser by operating the buttons (+) and (-).
  • the frequency of the output laser is 40 Hz, where the four laser cavities 101 (a), 101 (b), 101 (c), and 101 (d) each output a laser of 10 Hz. do.
  • the energy control UI allows the energy of the output laser to be set.
  • the power status window (POWER) displays the power (Frequency x Energy) set by the frequency control UI (FREQUENCY) and the energy control UI (ENERGY).
  • the main alarm UI FIBER, SAFETY GLASS, LAMP, TEMP
  • the temperature display displays the current instrument temperature.
  • Loading the offset parameter of the device UI loads the set parameter of the device that is offset.
  • the offset parameter can be set by selecting the administrator mode on the display unit 70.
  • the processor unit 30 controls the optical resonator unit 10 by determining energy to excite the medium of the laser cavity 101. In the process of controlling the initial pulse of the laser cavity 101, the processor unit 30 applies an offset signal that gradually increases in pulse width to fix the pulse width of the offset signal when reaching the set output value of the laser cavity 101. The offset of the optical resonator 10 can be adjusted. When the offset signal is applied, the processor unit 30 may gradually increase the pulse width of the offset signal while the voltage of the offset signal is fixed.
  • 8 shows the offset control principle of the processor unit according to an embodiment of the present invention.
  • 8A shows a conventional offset signal and thus an output waveform.
  • 8B shows an offset signal and a corresponding output waveform of the processor unit according to an embodiment of the present invention.
  • the conventional offset control is set to output a predetermined output value of the laser by applying an offset signal having a constant pulse width (for example, 600 ⁇ s).
  • a constant pulse width for example, 600 ⁇ s.
  • the pulse width of the offset signal for outputting the laser output 1J is 600 Hz.
  • the laser is an extremely sensitive device and cannot accurately derive the theoretical value of the offset setting due to hardware characteristics, temperature of the installed place, and the like.
  • the laser power may exceed 1J and may not reach 1J.
  • the processor unit 30 applies an offset signal having a variable pulse width as shown in FIG. 8B.
  • the voltage value of the offset signal is fixed.
  • the offset signal applied by the processor unit 30 has the shortest pulse width of the initial signal, and the pulse width increases as time passes.
  • the processor unit 30 checks the energy of the output laser and subsequently determines an offset signal having a pulse width at that time when it reaches a set value (for example, 1J).
  • the processor 30 performing the offset control process in the above-described form, the initial energy is stabilized, and the system is prevented from being damaged by excessive overshoot even in the output stabilization section.
  • the user can set an initial pulse width of the offset signal and an increase amount of the pulse width at the start.
  • 9 shows a sequence control principle of the processor unit 30 according to an embodiment of the present invention.
  • 9 shows the operation signals of the four laser cavities 101(a), 101(b), 101(c), and 101(d) controlled by the processor unit 30 as time (x-axis) lines.
  • the processor unit 30 sequentially from the operation signal of the first laser cavity 101(a), the second laser cavity 101(b), the third laser cavity 101(c), and the fourth laser cavity ( 101(d)).
  • the processor unit 30 each of the laser cavity (101 (a), 101 (b), 101 (c), 101 (d)) of any one of the laser cavity (101 (b)) when an error occurs,
  • the optical resonator 10 so as to ensure the continuity of the output by instructing to skip the order of the output of the laser cavity 101(b) in which the error occurred in the sequence, and to skip the order to the next laser cavity 101(c) Can be controlled.
  • the processor unit 30 detects an error of the second laser cavity 101(b). When the above error signal is detected, the processor unit 30 omits the operation signal of the second laser cavity 101(b).
  • the processor unit 30 outputs the output sequence to the first laser cavity 101(a)-the second laser cavity 101(b)-the third laser cavity 101(c)-the fourth laser cavity 101 In (d)), the first laser cavity 101(a)-third laser cavity 101(c)-fourth laser cavity 101(d) is changed, and the sequence at this time is stored, Continuous control is performed in the above order.
  • the operation time may be extended, but at least the continuity of the output is maintained, so that it is possible to systematically prevent medical accidents that may occur. There will be.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lasers (AREA)

Abstract

The present invention relates to a medical multi-laser amplification output device comprising: an optical resonance unit including a plurality of laser cavities, and an optical system for forming a single output laser beam by guiding, in a single path, lights sequentially outputted from the plurality of laser cavities; a processor unit for controlling the optical resonance unit by determining the energy that excites a medium of the laser cavity; and a cooling unit for controlling the temperature of the optical resonance unit, wherein, in a step of controlling an initial pulse of the laser cavity, the processor unit applies an offset signal of which a pulse width gradually increases so as to fix the pulse width of the offset signal when approaching a set output value of the laser cavity, thereby adjusting the offset of the optical resonance unit.

Description

의료용 멀티 레이저 증폭 출력 장치Medical multi-laser amplification output device
본 발명은 복수개의 레이저 캐비티로 레이저 출력을 증폭하여, 절개와 동시에 지혈이 가능한 레이저 광을 출력하는 의료용 멀티 레이저 증폭 출력 장치에 관한 것이다.The present invention relates to a medical multi-laser amplification output device that amplifies laser output with a plurality of laser cavities and outputs laser light capable of hemostasis simultaneously with incision.
의료 시술에 있어서 기본적인 도구로 인식되고 있는 레이저는 다양한 파장(Wavelength)과 높은 에너지밀도(Fluence), 그리고 동작 방식에 따라 펨토(10-15)초 동안의 짧은 펄스에서 수백 밀리(10-3)초에 이르는 펄스폭을 제공하는 레이저의 특성을 활용하여 색소병변이나 혈관병변 등을 선택적으로 치료할 수 있는 방법이 소개되면서 의학적 응용에 활발히 적용되고 있다. 레이저는 파장과 에너지 특성에 따라, 인체 조직을 소각시키는 아르곤 레이저, 눈으로 식별이 가능하여 레이저 침술이나 혈류 속도 측정에 사용되는 헬륨네온 레이저, 칼로 조직을 떼어내는 것과 같은 성질을 이용한 CO2레이저, 절개하는 성질을 이용하여 치료에 이용되는 야그(YAG) 레이저 등으로 분류된다.The laser, which is recognized as a basic tool in medical procedures, is hundreds of milliseconds (10 -3 ) seconds in short pulses of femto (10 -15 ) seconds depending on various wavelengths, high energy density, and operation method. As a method for selectively treating pigmented lesions or vascular lesions by utilizing the characteristics of a laser providing a pulse width ranging from is introduced, it is actively applied in medical applications. The laser is an argon laser that incinerates human tissues according to the wavelength and energy characteristics, a CO 2 laser using properties such as a helium neon laser used for laser acupuncture or blood flow velocity measurement, and a tissue removed with a knife, which can be identified with the eye. It is classified as a yag (YAG) laser used for treatment by using incision properties.
기계적인 수술을 하기 위해서 시야가 크게 확보되는 개복을 필요로 하는 것에 비하여, 수술용 레이저는 매우 좁은 구멍을 통해서 인체 내부로 입사시키고 이를 광섬유 내지는 소형 내시경 카메라와 연계함으로써 최소 침습으로 수술이 가능한 장점을 갖는다. 적용의 예시로는, 전립선 시술, 후두암 시술, 심장 레이저 시술, 디스크 수술 등이 있다. 수술용 레이저 장비는 최소 침습 시술법의 확산으로 전 의학 분야에서 활발히 적용되고 있으며 더욱 짧은 펄스, 및 높은 출력의 레이저 장비 개량에 연구가 활발한 실정이다. Compared to the need to open a large field of view in order to perform a mechanical surgery, the surgical laser enters the human body through a very narrow hole and connects it with an optical fiber or a small endoscope camera, thereby providing the advantage of minimally invasive surgery. Have Examples of the application include prostate treatment, laryngeal cancer treatment, heart laser treatment, and disc surgery. Surgical laser equipment has been actively applied in all medical fields due to the spread of minimally invasive surgical methods, and research on improving shorter pulses and high-power laser equipment has been actively conducted.
전립선 시술에 적용되는 수술용 레이저를 예시로 설명하면, 종래의 경우 앤디야그(Nd:YAG) 레이저가 주로 사용되었다. 앤디야그 레이저는 저출력 방식이라 레이저의 파워가 약해 불필요한 조직을 제대로 기화시키지 못했으며, 전립선 조직에 레이저를 쪼이면 주변의 정상 조직이 타거나 붓는 불편이 발생했다. 앤디야그 레이저는 시술 후 부어오른 전립선 때문에 환자가 2주 이상 소변줄을 지니고 요양을 하기도 하였다. 이후, KTP 레이저 기법이 도입되었다. KTP 레이저는 파워가 강한 고출력 방식으로 비대해진 전립선만 정확하게 표적으로 삼아 태워 없앨 수 있는 강점이 있었다. 하지만, KTP 레이저도 전립선 조직이 엄청나게 비대해진 경우에는 한계를 보였다. 최근에는, 한층 더 진보된 기법으로 약 2100nm의 파장을 갖는 홀뮴레이저를 이용한 전립선 시술(HoLEP 기법)이 주목받고 있다. 홀뮴레이저는 요도를 통해 기구를 삽입한 후 안쪽에서부터 바깥쪽으로 조직을 뜯어낸다. 홀뮴레이저는 조직을 파쇄하여 제거하는 종래의 레이저 기법보다 부작용이 적고 비대해진 전립선 조직의 완전 제거가 가능한 강점을 갖는다.When describing the surgical laser applied to the prostate procedure as an example, in the conventional case, an Andy Yag (Nd:YAG) laser was mainly used. Since the Andy Yag laser is a low-power method, the power of the laser is weak, so it is unable to vaporize unnecessary tissue properly. When the laser is cut on the prostate tissue, the surrounding normal tissue burns or swells. Andiyag lasers have been treated with urine for more than two weeks because of prostate swelling after the procedure. Thereafter, the KTP laser technique was introduced. The KTP laser had the advantage of accurately targeting only the prostate enlarged by a high-power method with strong power and burning it. However, KTP lasers also showed limitations when the prostate tissue was greatly enlarged. Recently, as a more advanced technique, a prostate procedure (HoLEP technique) using a holmium laser having a wavelength of about 2100 nm has attracted attention. Holmium lasers insert instruments through the urethra and tear tissue from the inside out. Holmium laser has the advantage of being able to completely remove the enlarged prostate tissue with fewer side effects than conventional laser techniques for crushing and removing tissue.
본 명세서에서는 전술한 치료용 레이저로서, 특히 홀뮴레이저 장비에 적용 가능한 멀티 레이저 증폭 출력 장치를 개시한다. 의료용 레이저 장비는 고체 상태의 이득 매체를 레이저 상태로 여기시키기 위해 광 펌핑 수단을 사용한다. 예를 들어, 이득 매체는 원통형 레이저 로드이고 광 펌핑 수단은 로드에 평행하게 위치되어 길이 방향으로 연장된 플래시 램프일 수 있다. 대부분의 이득 매체는 레이징 동작 중에 높은 온도에서 유지되어야 한다. 그러나, Ho:YAG(홀뮴야그) 또는 Ho:YLF 재료 및 다른 Holmium이 도핑된 이득 매체는 레이징 동작 동안 낮은 온도에서 유지되는 것이 바람직하다. 대부분의 광 펌핑 수단은 온도를 높은 레벨로 증가시키므로 상기의 레이저 시스템에서는 냉각 시스템이 필요하며, 대략 섭씨 +10℃에서 -10℃ 범위를 유지시켜야 한다.In the present specification, a multi-laser amplification output device that can be applied to the above-mentioned treatment laser, in particular, holmium laser equipment is disclosed. Medical laser equipment uses light pumping means to excite the solid-state gain medium into the laser state. For example, the gain medium may be a cylindrical laser rod and the light pumping means may be a flash lamp positioned parallel to the rod and extending in the longitudinal direction. Most gain media must be maintained at a high temperature during the razing operation. However, it is desirable that the Ho:YAG (holmium yag) or Ho:YLF material and other Holmium doped gain media be kept at a low temperature during the razing operation. Since most light pumping means increase the temperature to a high level, a cooling system is required in the above laser system, and should be maintained in the range of approximately +10°C to -10°C.
관련 종래기술로 미국등록특허 제9939631호(이하 '선행특허'라 약칭한다)는 순차적으로 펌핑되는 복수의 레이저 캐비티를 갖는 장치를 개시한다. 상기의 선행특허는 복수개의 레이저 캐비티의 출력 레이저를 서보 미러의 중심점에 컨트롤하기 위한 제어 구성을 시사한다. As a related art, U.S. Patent No. 999631 (hereinafter abbreviated as'prior patent') discloses a device having a plurality of laser cavities that are sequentially pumped. The preceding patent suggests a control configuration for controlling the output lasers of the plurality of laser cavities to the center point of the servo mirror.
의료용으로 사용되는 수술용 레이저 장비는 출력 레이저를 형성하는 과정에서 고도의 정밀함이 시스템적으로 요구된다. 레이저 집속을 위한 광학계 미러의 배치, 각도, 곡률에 있어서 대단한 민감성이 요구되고, 다채널의 레이저 캐비티를 갖는 광 공진부의 특성상 오프셋의 조정 또한 대단히 어려운 기술적 문제가 된다. 뿐만 아니라, 레이저 캐비티의 온도 조절도 레이저의 성능에 영향을 미치며 높은 온도에서 유지되는 종래의 이득매체와 달리 홀뮴레이저 장비는 낮은 온도 유지를 위한 냉각 시스템이 적절하게 구비되어야 한다. 또한, 의료장비의 특성상 장비의 고장시의 안정성도 보장될 수 있어야 한다.Surgical laser equipment used for medical purposes requires a high degree of precision in the process of forming an output laser. Great sensitivity is required in the arrangement, angle, and curvature of the optical system mirror for laser focusing, and adjustment of the offset is also a very difficult technical problem due to the characteristics of the optical resonator having a multi-channel laser cavity. In addition, the temperature control of the laser cavity affects the performance of the laser and, unlike the conventional gain medium maintained at a high temperature, the holmium laser equipment must be properly equipped with a cooling system for maintaining a low temperature. In addition, due to the nature of medical equipment, stability in the event of equipment failure must also be ensured.
이에, 본 출원인은 서보 미러의 레이저 집속에 유리한 광학계의 구성과 정밀한 오프셋의 조정 및 안정적인 시퀀스 제어가 가능하고, 광 공진부의 적절 온도 제어가 가능한 의료용 멀티 레이저 증폭 출력 장치를 고안하게 되었다.Accordingly, the present applicant has devised a medical multi-laser amplification output device capable of controlling the optical system configuration, precise offset adjustment, and stable sequence control that are advantageous for laser focusing of the servo mirror, and capable of appropriately controlling the temperature of the optical resonator.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
특허문헌 1. 미국등록특허 제9939631호 Patent Document 1. U.S. Registered Patent No. 9939631
본 발명은 레이저 캐비티에서 공진되어 나가는 레이저의 발산각을 최소화하여 광 섬유에 입사가 유리한 광학계 구성을 갖는 의료용 멀티 레이저 증폭 출력 장치를 제공하고자 한다.The present invention is to provide a medical multi-laser amplification output device having an optical system configuration that is advantageously incident on the optical fiber by minimizing the divergence angle of the laser resonating in the laser cavity.
또한, 본 발명은 장비 및 온도 등의 환경에 따라 오버슈트와 같이 출력 펄스에 민감하게 발생될 수 있는 오차를 없앨 수 있도록 오프셋의 제어가 가능한 의료용 멀티 레이저 증폭 출력 장치를 제공하고자 한다. In addition, the present invention is to provide a medical multi-laser amplification output device capable of controlling the offset to eliminate errors that may be sensitive to output pulses such as overshoot depending on the environment such as equipment and temperature.
또한, 본 발명은 다채널의 레이저 캐비티에 있어서 어느 한 광 공진 시스템에 에러가 발생되어도 출력의 연속성이 보장될 수 있는 의료용 멀티 레이저 증폭 출력 장치를 제공하고자 한다.In addition, the present invention is to provide a medical multi-laser amplification output device that can ensure the continuity of output even if an error occurs in any one optical resonance system in a multi-channel laser cavity.
또한, 본 발명은 최소한의 부피로 높은 냉각 효율을 갖는 냉각 시스템을 제공하여 광 공진부를 낮은 온도로 유지시킬 수 있는 의료용 멀티 레이저 증폭 출력 장치를 제공하고자 한다.In addition, the present invention is to provide a cooling system having a high cooling efficiency with a minimum volume to provide a medical multi-laser amplification output device capable of maintaining the optical resonator at a low temperature.
상기 목적을 달성하기 위하여 본 발명은, 의료용 멀티 레이저 증폭 출력 장치에 있어서, 복수개의 레이저 캐비티와, 상기 복수개의 레이저 캐비티가 순차적으로 출력한 광을 단일 경로로 가이드하여 단일 출력 레이저를 형성시키는 광학계로 구성된 광 공진부; 상기 레이저 캐비티의 매질을 여기시키는 에너지를 결정하여 상기 광 공진부를 제어하는 프로세서부; 및 상기 광 공진부의 온도를 제어하는 냉각부를 포함하고, 상기 프로세서부는, 상기 레이저 캐비티의 초기 펄스를 제어하는 과정에서, 펄스폭이 점진적으로 커지는 오프셋 신호를 인가하여 상기 레이저 캐비티의 설정된 출력값에 도달시 상기 오프셋 신호의 펄스폭을 고정함으로써 상기 광 공진부의 오프셋을 조정하는 것을 일 특징으로 한다.In order to achieve the above object, the present invention, in a medical multi-laser amplification output device, a plurality of laser cavities, and the optical system to form a single output laser by guiding the light sequentially output by the plurality of laser cavities in a single path An optical resonator configured; A processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity; And a cooling unit that controls the temperature of the optical resonance unit, and the processor unit, when controlling an initial pulse of the laser cavity, applies an offset signal that gradually increases in pulse width to reach a set output value of the laser cavity. The offset of the optical resonator is adjusted by fixing the pulse width of the offset signal.
바람직하게, 상기 프로세서부는 상기 오프셋 신호의 인가시, 상기 오프셋 신호의 전압을 고정한 상태에서 상기 오프셋 신호의 펄스폭을 점진적으로 증가시킬 수 있다.Preferably, when the offset signal is applied, the processor may gradually increase the pulse width of the offset signal while the voltage of the offset signal is fixed.
바람직하게, 상기 광학계는, 각각의 상기 레이저 캐비티에, 레이저 로드의 전후로 마련되는 한 쌍의 리플렉터 미러; 및 상기 한 쌍의 리플렉터 미러를 통해 출력된 광을 집속시키는 릴레이 미러를 포함하고, 각각의 상기 레이저 캐비티에 마련된 각각의 상기 릴레이 미러에서 반사된 광을 출력라인으로 가이드 하는 서보 미러를 더 포함하며, 상기 서보 미러는, 상기 프로세서부의 제어 아래 회동되면서 각각의 상기 레이저 캐비티가 순차적으로 출력한 광을 출력라인의 단일 경로로 집속시키고, 상기 리플렉터 미러는, 상기 레이저 로드의 후면에 위치된 후면 리플렉터 미러가 음의 곡률 면을 갖고, 상기 레이저 로드의 전면에 위치된 전면 리플렉터 미러가 편평한 면을 갖을 수 있다.Preferably, the optical system, each of the laser cavity, a pair of reflector mirrors provided before and after the laser rod; And a relay mirror for focusing light output through the pair of reflector mirrors, and further guiding a light reflected from each relay mirror provided in each laser cavity to an output line, The servo mirror, while being rotated under the control of the processor unit, focuses light output by each laser cavity sequentially into a single path of the output line, and the reflector mirror includes a rear reflector mirror positioned at the rear side of the laser rod. A front surface reflector mirror having a negative curvature surface and located on the front surface of the laser rod may have a flat surface.
바람직하게, 상기 프로세서부는, 각각의 상기 레이저 캐비티 중 어느 한 레이저 캐비티에 에러가 발생시, 에러가 발생된 레이저 캐비티의 출력 순서를 시퀀스 상에서 제외하고, 다음 레이저 캐비티로 순서를 건너뛰도록 명령하여 출력의 연속성을 보장하도록 상기 광 공진부를 제어할 수 있다.Preferably, when an error occurs in any one of the laser cavities of each of the laser cavities, the output order of the laser cavity in which the error occurs is excluded from the sequence, and the sequence is skipped to the next laser cavity to output the output. The optical resonator may be controlled to ensure continuity.
바람직하게, 상기 냉각부는, 상기 광 공진부에 연결되고, 냉각수를 공급하는 냉각펌프; 및 상기 냉각펌프의 상기 광 공진부에 연결된 공급 라인이 분기되어, 상기 광 공진부로 공급되는 냉각수 중 일부가 유입되는 라인을 갖는 라지에이터를 포함할 수 있다.Preferably, the cooling unit is connected to the optical resonance unit, a cooling pump for supplying cooling water; And a supply line connected to the optical resonator unit of the cooling pump, and a radiator having a line through which some of the cooling water supplied to the optical resonator unit is introduced.
또한, 본 발명은 의료용 멀티 레이저 증폭 출력 장치에 있어서, 복수개의 레이저 캐비티와, 상기 복수개의 레이저 캐비티가 순차적으로 출력한 광을 단일 경로로 가이드하여 단일 출력 레이저를 형성시키는 광학계로 구성된 광 공진부; 상기 레이저 캐비티의 매질을 여기시키는 에너지를 결정하여 상기 광 공진부를 제어하는 프로세서부; 및 상기 광 공진부의 온도를 제어하는 냉각부를 포함하고, 상기 프로세서부는, 각각의 상기 레이저 캐비티 중 어느 한 레이저 캐비티에 에러가 발생시, 에러가 발생된 레이저 캐비티의 출력 순서를 시퀀스 상에서 제외하고, 다음 레이저 캐비티로 순서를 건너뛰도록 명령하여 출력의 연속성을 보장하도록 상기 광 공진부를 제어하는 것을 다른 특징으로 한다.In addition, the present invention is a medical multi-laser amplifying output device, comprising: a plurality of laser cavities and an optical resonator comprising an optical system that guides light sequentially output by the plurality of laser cavities into a single path to form a single output laser; A processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity; And a cooling unit that controls the temperature of the optical resonator, and the processor unit, when an error occurs in any one of the laser cavities of each of the laser cavities, excludes an output sequence of the laser cavity in which the error occurred in a sequence, and the next laser. Another feature is to control the optical resonator to ensure continuity of output by instructing the cavity to skip the sequence.
본 발명에 따르면, 레이저의 안정화 구간 및 오버슈트의 문제로 이론적으로 계산된 오프셋 값이 실제 출력값에 정밀하게 반영되지 못했던 문제점을 해결한다. 또한, 본 발명은 공진되어 나가는 레이저의 발산각을 최소화하여 출력라인에 입사가 유리한 광학계 구조를 갖는다. 또한, 본 발명은 광 공진부에 연결된 공급 라인이 분기되어 냉각수가 병렬로 유입되는 냉각 시스템을 제공하여 소형의 부피로 높은 냉각 효율을 기대할 수 있다. 또한, 본 발명은 에러가 발생된 레이저 캐비티의 출력 순서를 시퀀스에서 제외하고 다음 레이저 캐비티로 순서를 건너뛰도록 제어하여 출력의 연속성을 보장하도록 제어한다. 이에 따라, 본 발명은 정밀한 레이저 출력과 안정적인 제어가 가능한 의료용 멀티 레이저 증폭 출력 장치를 제공할 수 있다.According to the present invention, the problem that the offset value theoretically calculated due to the problem of the stabilization section and overshoot of the laser was not accurately reflected in the actual output value is solved. In addition, the present invention has an optical system structure in which incident on the output line is advantageous by minimizing the divergence angle of the resonant laser. In addition, the present invention can provide high cooling efficiency in a small volume by providing a cooling system in which cooling water flows in parallel by a supply line connected to an optical resonator branch. In addition, the present invention controls to ensure the continuity of the output by excluding the output order of the laser cavity in which the error occurred from the sequence and skipping the order to the next laser cavity. Accordingly, the present invention can provide a medical multi-laser amplification output device capable of precise laser output and stable control.
도 1은 본 발명의 실시예에 따른 의료용 멀티 레이저 증폭 출력 장치를 나타낸다.1 shows a medical multi-laser amplification output device according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 광 공진부를 나타낸다.2 shows an optical resonator according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 광학계를 나타낸다.3 shows an optical system according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 서보 미러의 제어 구동 모습과 그에 따른 광학 경로를 도시한다. 도 4a는 본 실시예에 따른, 4개의 레이저 캐비티중 제1 레이저 캐비티가 출력될 때의 광학 경로를 나타낸다. 도 4b는 본 실시예에 따른, 4개의 레이저 캐비티 중 제2 레이저 캐비티가 출력될 때의 광학 경로를 나타낸다.4 shows a control driving state of a servo mirror according to an embodiment of the present invention and an optical path accordingly. 4A shows an optical path when a first laser cavity is output among four laser cavities according to this embodiment. 4B shows the optical path when the second laser cavity is output among the four laser cavities according to the present embodiment.
도 5는 본 발명의 실시예에 따른 냉각부를 나타낸다.5 shows a cooling unit according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 냉각부의 냉각수 순환 경로를 나타낸다.6 shows a cooling water circulation path of a cooling unit according to an embodiment of the present invention.
도 7는 본 발명의 실시예에 따른 프로세서부의 제어 화면을 나타낸다.7 shows a control screen of a processor unit according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 프로세서부의 오프셋 제어 원리를 나타낸다. 도 8a는 종래의 오프셋 신호와 이에 따른 출력 파형을 나타낸다. 도 8b는 본 발명의 실시예에 따른 프로세서부의 오프셋 신호와 이에 따른 출력 파형을 나타낸다.8 shows the offset control principle of the processor unit according to an embodiment of the present invention. 8A shows a conventional offset signal and thus an output waveform. 8B shows an offset signal and a corresponding output waveform of the processor unit according to an embodiment of the present invention.
도 9은 본 발명의 실시예에 따른 프로세서부의 시퀀스 제어 원리를 나타낸다.9 illustrates a sequence control principle of a processor unit according to an embodiment of the present invention.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명을 상세히 설명한다. 다만, 본 발명이 예시적 실시 예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일 참조부호는 실질적으로 동일한 기능을 수행하는 부재를 나타낸다.Hereinafter, the present invention will be described in detail with reference to the contents described in the accompanying drawings. However, the present invention is not limited or limited by the exemplary embodiments. The same reference numerals in each drawing denote members that perform substantially the same function.
본 발명의 목적 및 효과는 하기의 설명에 의해서 자연스럽게 이해되거나 보다 분명해 질 수 있으며, 하기의 기재만으로 본 발명의 목적 및 효과가 제한되는 것은 아니다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.The objects and effects of the present invention may be naturally understood or more apparent by the following description, and the objects and effects of the present invention are not limited only by the following description. In addition, in the description of the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
도 1은 본 발명의 실시예에 따른 의료용 멀티 레이저 증폭 출력 장치(1)를 나타낸다. 도 1을 참조하면, 멀티 레이저 증폭 출력 장치(1)는 광 공진부(10), 프로세서부(30), 냉각부(50) 및 디스플레이부(70)를 포함할 수 있다. 도 1에서, 냉각부(50)는 프로세서부(30)가 위치한 본체의 반대편에 위치된다. 따라서, 냉각부(50)의 모습은 도 5 및 도 6을 통해 후술한다.1 shows a medical multi-laser amplifying output device 1 according to an embodiment of the present invention. Referring to FIG. 1, the multi-laser amplification output device 1 may include an optical resonance unit 10, a processor unit 30, a cooling unit 50, and a display unit 70. In FIG. 1, the cooling unit 50 is located on the opposite side of the body where the processor unit 30 is located. Therefore, the shape of the cooling unit 50 will be described later with reference to FIGS. 5 and 6.
본 실시예에 따른 의료용 멀티 레이저 증폭 출력 장치(1)는 순차적으로 펌핑되는 레이저 로드를 복수개로 구비하고, 각 레이저 막대의 출력을 하나의 펄스 레이저로 결합하여 출력하는 장치이다. The medical multi-laser amplifying output device 1 according to the present embodiment is a device having a plurality of laser rods that are sequentially pumped, and combining the outputs of each laser bar with a single pulse laser for output.
하나의 레이저 로드를 높은 반복 속도로 펌핑하여 출력시, 시스템에는 높은 냉각 효율이 요구된다. 반면, 복수의 레이저 막대를 사용할 경우, 각 캐비티를 펌핑하여 출력하는 반복 속도가 감소될 수 있으며, 단일 캐비티 시스템에 비하여 열적 축적이 저감되므로 공냉/수냉의 시스템으로 온도 제어가 가능할 수 있다. 본 실시예는 광 공진을 위한 레이저 캐비티(101)를 복수개로 구현하는 멀티 채널로 광 공진부(10)가 구성된다.When pumping and outputting one laser rod at a high repetition rate, the system requires high cooling efficiency. On the other hand, when a plurality of laser rods are used, the repetition rate of pumping and outputting each cavity may be reduced, and thermal accumulation may be reduced compared to a single cavity system, so temperature control may be possible with an air/water cooling system. In the present embodiment, the optical resonator 10 is composed of multi-channels that implement a plurality of laser cavities 101 for optical resonance.
광 공진부(10)의 출력 레이저는 레이저 캐비티(101)에 있는 레이저 로드 출력의 총합으로, 출력 펄스의 속도와 평균 에너지 수준이 높다. 본 실시예로, 레이저 캐비티(101)는 4개로 구성되며, Ho:YAG 레이저 로드가 사용될 수 있다. 각각의 레이저 캐비티(101)는 10Hz로 펄싱되고, 4개의 캐비티(101) 출력이 결합되어 단일 출력 레이저로 인터리빙된다. 인터리브 된 출력 레이저는 40Hz의 펄스 주파수를 갖는다.The output laser of the optical resonator 10 is the sum of the laser rod outputs in the laser cavity 101, and the speed of the output pulse and the average energy level are high. In this embodiment, the laser cavity 101 is composed of four, Ho:YAG laser rod may be used. Each laser cavity 101 is pulsed at 10 Hz, and the four cavity 101 outputs are combined and interleaved into a single output laser. The interleaved output laser has a pulse frequency of 40 Hz.
도 2는 본 발명의 실시예에 따른 광 공진부(10)를 나타낸다. 도 2를 참조하면, 광 공진부(10)는 복수개의 레이저 캐비티(101)와, 복수개의 레이저 캐비티(101)가 순차적으로 출력한 광을 단일 경로로 가이드하여 단일 출력 레이저를 형성시키는 광학계(103, 105, 107, 109)로 구성될 수 있다.2 shows an optical resonator 10 according to an embodiment of the present invention. Referring to FIG. 2, the optical resonator unit 10 guides a plurality of laser cavities 101 and light sequentially output by the plurality of laser cavities 101 in a single path to form a single output laser 103 , 105, 107, 109).
복수개의 레이저 캐비티(101)는 4분면의 분위로 4개가 고정된다. 제1 레이저 캐비티(101(a))와 제2 레이저 캐비티(101(b))는 같은 x축 상으로 배치되는 1쌍의 레이저 캐비티이다. 제3 레이저 캐비티(101(c))와 제4 레이저 캐비티(101(d))도 같은 x축 상으로 배치되는 1쌍의 레이저 캐비티이다. 제1 레이저 캐비티(101(a))와 제3 레이저 캐비티(101(c)), 제2 레이저 캐비티(101(b))와 제4 레이저 캐비티(101(d))는 각각 같은 y축 상으로 배치된다. 레이저 캐비티(101)에는 레이저 여기용 이득 매체와 광학 펌프가 마련될 수 있다. The plurality of laser cavities 101 are fixed to the fourth quadrant. The first laser cavity 101(a) and the second laser cavity 101(b) are a pair of laser cavities arranged on the same x-axis. The third laser cavity 101(c) and the fourth laser cavity 101(d) are also a pair of laser cavities arranged on the same x-axis. The first laser cavity 101(a) and the third laser cavity 101(c), the second laser cavity 101(b) and the fourth laser cavity 101(d) are each on the same y-axis. Is placed. The laser cavity 101 may be provided with a gain medium for laser excitation and an optical pump.
제1 내지 제4 레이저 캐비티(101(a), 101(b), 101(c), 101(d))는 순차적으로 펌핑되어 레이저를 발진한다. 본 실시예로, 제1 내지 제4 레이저 캐비티(101(a), 101(b), 101(c), 101(d))는 각각 10Hz로 펄싱된다. 펄스 주파수가 10Hz로 제1 내지 제4 레이저 캐비티(101(a), 101(b), 101(c), 101(d))가 순차적으로 출력한 레이저는 광학계(103, 105, 107, 109)를 통해 단일 레이저로 합쳐지고, 출력 레이저의 펄스 주파수는 증폭되어 40Hz가 된다. The first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) are sequentially pumped to oscillate the laser. In this embodiment, the first to fourth laser cavities 101(a), 101(b), 101(c), 101(d) are pulsed at 10 Hz, respectively. The lasers sequentially output from the first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) at a pulse frequency of 10 Hz are optical systems 103, 105, 107, and 109. Through, they are combined into a single laser, and the pulse frequency of the output laser is amplified to 40 Hz.
도 3은 본 발명의 실시예에 따른 광학계(103, 105, 107, 109)를 나타낸다. 도 3을 참조하면, 광학계(103, 105, 107, 109)는 복수개의 리플렉터 미러(103), 복수개의 릴레이 미러(105), 및 서보 미러(107)를 포함할 수 있다. 도 3에는 어느 한 레이저 캐비티(101)에서 출력되는 레이저의 광학 경로를 함께 도시하였다.Figure 3 shows the optical system (103, 105, 107, 109) according to an embodiment of the present invention. Referring to FIG. 3, the optical systems 103, 105, 107, and 109 may include a plurality of reflector mirrors 103, a plurality of relay mirrors 105, and a servo mirror 107. 3 shows an optical path of a laser output from one laser cavity 101 together.
리플렉터 미러(103)는 레이저 캐비티(101)의 전후로 배치된 반사경으로 레이저 캐비티(101)의 출력 레이저를 공진하여 증폭시킬 수 있다. 리플렉터 미러(103)는 레이저 캐비티(101)의 후면에 위치된 후면 리플렉터 미러(103(b))와, 레이저 캐비티(101)의 전면에 위치된 전면 리플렉터 미러(103(a))를 포함한다. The reflector mirror 103 may be amplified by resonating the output laser of the laser cavity 101 with a reflector disposed before and after the laser cavity 101. The reflector mirror 103 includes a rear reflector mirror 103(b) located at the rear of the laser cavity 101 and a front reflector mirror 103(a) located at the front of the laser cavity 101.
전면 리플렉터 미러(103(a))와 후면 리플렉터 미러(103(b))는 공진기를 구성하여 레이저를 발진시키는 광학계로서, 공진 시스템을 결정하는 구성이 된다. 전면 리플렉터 미러(103(a))는 부분 반사 코팅되어 레이저 캐비티(101)의 출력 레이저 중 일부를 공진시키며, 일부를 출력시킨다. 반면, 후면 리플렉터 미러(103(b))는 전면 반사 코팅된다. 전면 리플렉터 미러(103(a))와 후면 리플렉터 미러(103(b))는 레이저 캐비티(101)마다 1쌍씩 마련된다. 본 실시예로, 광 공진부(10)는 제1 내지 4의 레이저 캐비티(101(a), 101(b), 101(c), 101(d))가 구성되므로, 리플렉터 미러(103)가 전면-후면을 1쌍으로 4개의 레이저 캐비티(101(a), 101(b), 101(c), 101(d))에 총 8개가 배치된다.The front reflector mirror 103(a) and the rear reflector mirror 103(b) are optical systems that configure a resonator to oscillate a laser, and are configured to determine a resonance system. The front reflector mirror 103(a) is partially reflective coated to resonate some of the output lasers of the laser cavity 101, and to output some of them. On the other hand, the rear reflector mirror 103(b) is coated with a front reflection. The front reflector mirror 103(a) and the rear reflector mirror 103(b) are provided for each pair of laser cavities 101. In this embodiment, the optical resonator 10 includes first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d), so that the reflector mirror 103 A total of eight are arranged in four laser cavities 101(a), 101(b), 101(c), and 101(d) with one pair of front-rear.
본 실시예로, 후면 리플렉터 미러(103(b))는 음의 곡률 면을 갖고, 전면 리플렉터 미러(103(a))는 편평한 면을 갖도록 구성된다. 전면 리플렉터 미러(103(a))와 후면 리플렉터 미러(103(b))의 곡률은 공진되는 레이저의 출력과 밀접하게 관련된다. 종래기술로, 전술한 미국등록특허 제9939631호의 도 1에서는 본 실시예의 후면 리플렉터 미러(103(b))와 대응되는 구성이 High reflector mirror로 개시되었고, 전면 리플렉터 미러(103(a))와 대응되는 구성이 Output coupler(partial reflector)로 개시되었다. 미국등록특허 제9939631호의 도 1에서는 High reflector mirror 가 편평한 면을 갖고, Output coupler(partial reflector)가 오목한 면을 갖도록 구현된다. 본원 실시예의 도 3과 대조됨에 주목한다. In this embodiment, the rear reflector mirror 103(b) has a negative curvature surface, and the front reflector mirror 103(a) is configured to have a flat surface. The curvature of the front reflector mirror 103(a) and the rear reflector mirror 103(b) is closely related to the output of the resonant laser. In the prior art, the configuration corresponding to the rear reflector mirror 103(b) of the present embodiment has been disclosed as a high reflector mirror in FIG. 1 of U.S. Patent No.9939631 described above, and corresponds to the front reflector mirror 103(a) The configuration to be started was described as an output coupler (partial reflector). In FIG. 1 of U.S. Patent No. 9939631, the high reflector mirror has a flat surface and the output coupler (partial reflector) has a concave surface. Note that this is in contrast to Figure 3 of the Examples.
본 실시예에 따른 광학계는 전반사의 후면 리플렉터 미러(103(b))가 오목한 면으로 구성되어 공진되어 나가는 레이저의 발산각을 최소화할 수 있다. 이에 따라 출력라인 광섬유에 입사가 유리하도록 설계된다. 또한, 전면 리플렉터 미러(103(a))는 편평한 미러면을 갖는다. 만약, 전면 리플렉터 미러(103(a))의 면을 오목하게 구성되면, 레이저가 발진되어 나갈 때 발산각이 커지기 때문에 광섬유의 입사 조정에 보다 기술적인 어려움을 야기할 수 있다.In the optical system according to the present embodiment, the rear reflector mirror 103(b) of total reflection is configured as a concave surface to minimize the divergence angle of the resonant laser. Accordingly, it is designed to advantageously enter the optical fiber of the output line. Further, the front reflector mirror 103(a) has a flat mirror surface. If the surface of the front reflector mirror 103(a) is concave, the divergence angle increases when the laser is emitted, which may cause more technical difficulties in adjusting the incident of the optical fiber.
복수개의 릴레이 미러(105)는 리플렉터 미러(103)로부터 발진된 레이저를 서보 미러(107)로 전달시키고, 서보 미러(107)로 입사된 광을 출력라인으로 전달하는 광학계의 구성을 총칭한다. 본 실시예로, 도 3과 같이 복수개의 릴레이 미러(105)는 전면 리플렉터 미러(103(a))의 발진 레이저가 다이렉트로 입사되고, 소정의 각도로 반사시키는 제1 릴레이 미러(105(a))를 포함한다. 제1 릴레이 미러(105(a))는 전면 리플렉터 미러(103(a))와 동축 상에 배치된다. 본 실시예로, 제1 릴레이 미러(105(a))는 레이저의 발산을 최소화할 수 있도록 오목한 면으로 구성될 수 있다.The plurality of relay mirrors 105 collectively refers to a configuration of an optical system that transmits a laser oscillated from the reflector mirror 103 to the servo mirror 107 and transmits light incident on the servo mirror 107 to the output line. In this embodiment, as shown in FIG. 3, the plurality of relay mirrors 105 are first relay mirrors 105(a) through which an oscillation laser of the front reflector mirror 103(a) is directly incident and reflected at a predetermined angle. ). The first relay mirror 105(a) is disposed coaxially with the front reflector mirror 103(a). In this embodiment, the first relay mirror 105(a) may be configured as a concave surface to minimize the divergence of the laser.
또한, 복수개의 릴레이 미러(105)는 제1 릴레이 미러(105(a))로부터 반사된 레이저를 서보 미러(107)로 입사시키는 제2 릴레이 미러(105(b))를 포함한다. 또한, 복수개의 릴레이 미러(105)는 서보 미러(107)에서 반사된 레이저를 출력 라인으로 입사시키는 제3 릴레이 미러(105(c))를 포함한다. 제1 릴레이 미러(105(a))와 제2 릴레이 미러(105(b))는 모두 레이저 캐비티(101)에 각각 1쌍씩 배치된다. 제3 릴레이 미러(107)는, 제1 내지 4의 레이저 캐비티(101(a), 101(b), 101(c), 101(d))가 순차적으로 출력한 레이저의 경로가 서보 미러(107)에 의해서 통일되었기 때문에, 광학계에 1개만 배치되어도 무방하다. In addition, the plurality of relay mirrors 105 includes a second relay mirror 105(b) that causes the laser reflected from the first relay mirror 105(a) to enter the servo mirror 107. In addition, the plurality of relay mirrors 105 includes a third relay mirror 105(c) that causes the laser reflected from the servo mirror 107 to enter the output line. Both the first relay mirror 105(a) and the second relay mirror 105(b) are disposed in the laser cavity 101, one pair each. In the third relay mirror 107, the paths of the lasers sequentially output from the first to fourth laser cavities 101(a), 101(b), 101(c), and 101(d) are servo mirrors 107 Since it was unified by ), only one can be disposed in the optical system.
서보 미러(107)는 프로세서부(30)의 제어 아래 회동되면서 각각의 레이저 캐비티(101)가 순차적으로 출력한 광을 출력라인의 단일 경로로 집속시킬 수 있다. 서보 미러(107)는 360°회동되는 반사경으로, 서보 미러(107)를 회동시키는 서보 모터와 미러(107)의 회동각을 제어하는 인코더가 함께 모듈화 될 수 있다. 서보 미러(107)는 4개의 레이저 캐비티(101(a), 101(b), 101(c), 101(d))의 순차적인 레이저 출력을 단일 경로로 반사시키도록 회동된다. 따라서, 서보 미러(107)는 각 레이저 캐비티(101(a), 101(b), 101(c), 101(d)) 마다 90°의 범위에서 회동각이 조절된다. The servo mirror 107 may rotate under the control of the processor unit 30 and focus light output from each laser cavity 101 in a single path of the output line. The servo mirror 107 is a reflector that is rotated 360°, and a servo motor that rotates the servo mirror 107 and an encoder that controls the rotation angle of the mirror 107 may be modularized together. The servo mirror 107 is rotated to reflect the sequential laser outputs of the four laser cavities 101(a), 101(b), 101(c), 101(d) in a single path. Therefore, the rotation angle of the servo mirror 107 is adjusted in the range of 90° for each laser cavity 101(a), 101(b), 101(c), 101(d).
서보 미러(107)를 통해서 순차적인 레이저 출력이 단일 경로로 통합된 이후, 제3 릴레이 미러(105(c))를 통해서 광섬유가 마련되는 광 공진부(10)의 출력 라인으로 광학 경로가 형성된다. 도 3에서 출력 라인의 광학계는 도면 부호 109로 총칭한다. 출력 라인의 광학계(109)에는 광섬유의 배치 및 설계의 특성에 따라 복수개의 반사 미러가 추가적으로 마련될 수 있다. After the sequential laser output is integrated into a single path through the servo mirror 107, an optical path is formed through the third relay mirror 105(c) to the output line of the optical resonator 10 where the optical fiber is provided. . In FIG. 3, the optical system of the output line is collectively designated by reference numeral 109. A plurality of reflection mirrors may be additionally provided in the optical system 109 of the output line according to the characteristics of the arrangement and design of the optical fiber.
도 4는 본 발명의 실시예에 따른 서보 미러(107)의 제어 구동 모습과 그에 따른 광학 경로를 도시한다. 도 4a는 본 실시예에 따른, 4개의 레이저 캐비티(101(a), 101(b), 101(c), 101(d)) 중 제1 레이저 캐비티(101(a))가 출력될 때의 광학 경로를 나타낸다. 도 4b는 본 실시예에 따른, 4개의 레이저 캐비티(101(a), 101(b), 101(c), 101(d)) 중 제2 레이저 캐비티(101(b))가 출력될 때의 광학 경로를 나타낸다.4 shows a control driving state of the servo mirror 107 according to an embodiment of the present invention and an optical path accordingly. FIG. 4A shows the first laser cavity 101(a) among the four laser cavities 101(a), 101(b), 101(c), and 101(d) according to the present embodiment. Optical path. FIG. 4B shows the second laser cavity 101(b) among the four laser cavities 101(a), 101(b), 101(c), and 101(d), according to the present embodiment. Optical path.
본 실시예에 따른 광 공진부(10)의 광 경로를 정리하면 다음과 같다. 레이저 캐비티(101)의 레이저 로드가 여기되어 출력된 레이저는 전면 리플렉터 미러(103(a)) 및 후면 리플렉터 미러(103(b))를 통해 공진되어 발진한다. 펌핑 된 레이저는 전면 리플렉터 미러(103(a))-제1 릴레이 미러(105(a))-제2 릴레이 미러(105(b))-서보 미러(107)-제3 릴레이 미러(105(c))를 통해 출력 라인의 광학계(109)로 입사된다. 이 경우, 광 공진부(10)는 출력 라인의 광섬유까지 레이저의 광학 경로가 상당한 거리로 형성된다. 레이저의 특성상 긴 거리를 릴레이 할 때 레이저의 사이즈가 커지기 때문에 레이저의 발산을 최소화하는 것이 요구된다. 핵심은 레이저의 발산을 최소화하여 서보 미러(107)의 중심점에 출력 레이저를 집속시키는 것이다. 이 과정에서 본 실시예에 따른 광 공진부(10)는 전면 리플렉터 미러(103(a))를 편평한 면으로 구성하고, 제1 릴레이 미러(105(a))를 오목한 면으로 구성한다.The optical path of the optical resonator 10 according to this embodiment is summarized as follows. The laser rod of the laser cavity 101 is excited, and the outputted laser oscillates through the front reflector mirror 103(a) and the rear reflector mirror 103(b). The pumped laser is a front reflector mirror (103(a))-a first relay mirror (105(a))-a second relay mirror (105(b))-a servo mirror 107-a third relay mirror (105(c) )) to the optical system 109 of the output line. In this case, the optical resonator 10 is formed with a considerable distance of the optical path of the laser to the optical fiber of the output line. Due to the nature of the laser, it is required to minimize the divergence of the laser because the size of the laser increases when relaying a long distance. The key is to minimize the divergence of the laser and focus the output laser on the center point of the servo mirror 107. In this process, the optical resonator unit 10 according to the present embodiment configures the front reflector mirror 103(a) as a flat surface, and configures the first relay mirror 105(a) as a concave surface.
도 5는 본 발명의 실시예에 따른 냉각부(50)를 나타낸다. 본 실시예에 따른 멀티 레이저 증폭 출력 장치(1)는 홀뮴야그(Ho:YAG) 레이저로서 상대적 저온 유지가 필요함을 전술한 바 있다. 멀티 레이저 증폭 출력 장치(1)의 냉각 시스템은 전반적인 레이저의 출력을 향상시키는 주요 기술적 해결과제 중 하나가 될 수 있다. 따라서, 펌핑 과정에서 발생되는 광 공진부(10)의 발열을 냉각하기 위한 구성으로 냉각부(50) 시스템이 제공된다. 냉각부(50)는 온도센서를 포함하여 광 공진부(10)의 온도를 제어한다. 5 shows a cooling unit 50 according to an embodiment of the present invention. The multi-laser amplifying output device 1 according to the present embodiment has been described above as a Holmium Yag (Ho:YAG) laser that needs to be maintained at a relatively low temperature. The cooling system of the multi-laser amplifying output device 1 can be one of the main technical challenges to improve the overall laser output. Therefore, a cooling unit 50 system is provided in a configuration for cooling the heat generated by the optical resonator unit 10 generated in the pumping process. The cooling unit 50 includes a temperature sensor to control the temperature of the optical resonance unit 10.
냉각부(50)는 냉각펌프(51), 캐비티 냉각라인(52), 필터(53), 분기라인(54), 라지에이터(55), 냉각탱크(57), 공급라인(58), 및 팬(59)을 포함할 수 있다. The cooling unit 50 includes a cooling pump 51, a cavity cooling line 52, a filter 53, a branch line 54, a radiator 55, a cooling tank 57, a supply line 58, and a fan ( 59).
냉각펌프(51)는 광 공진부(10)에 연결되어 냉각수를 공급한다. 냉각펌프(51)는 공급라인(58)을 통해 냉각탱크(57)와 연결된다. 냉각탱크(57)로부터 냉각수가 냉각펌프(51)로 유입되고, 냉각펌프(51)는 캐비티 냉각라인(52)을 통해 냉각수를 광 공진부(10)로 유입시켜 광 공진부(10)를 일정한 온도로 제어한다. 캐비티 냉각라인(52)은 하나 이상의 필터(53)를 포함할 수 있다. 본 실시예로, 필터(53)는 마이크로 필터(53(a))와 DI 필터(53(b))를 포함할 수 있다. The cooling pump 51 is connected to the optical resonator 10 to supply cooling water. The cooling pump 51 is connected to the cooling tank 57 through a supply line 58. Cooling water from the cooling tank 57 flows into the cooling pump 51, and the cooling pump 51 flows the cooling water through the cavity cooling line 52 into the optical resonator 10, and the optical resonator 10 is constant. Controlled by temperature. The cavity cooling line 52 may include one or more filters 53. In this embodiment, the filter 53 may include a micro filter 53(a) and a DI filter 53(b).
라지에이터(55)는 수직 기둥 주름으로 구성된다. 라지에이터(55)는 내부에 냉각수의 순환 경로를 형성하며 냉각수의 순환 과정에서 냉각수의 열 에너지를 외부로 방출한다. 라지에이터(55)의 후면에는 팬(59)이 배치되어 라지에이터(55)의 냉각 효율을 증가시킬 수 있다.The radiator 55 is composed of vertical pillar folds. The radiator 55 forms a circulation path of the cooling water therein and discharges heat energy of the cooling water to the outside during the circulation process of the cooling water. A fan 59 is disposed on the rear of the radiator 55 to increase the cooling efficiency of the radiator 55.
라지에이터(55)는 냉각펌프(51)의 광 공진부(10)에 연결된 공급 라인이 분기되어, 광 공진부(10)로 공급되는 냉각수 중 일부가 유입되는 라인을 갖는다. 광 공진부(10)로 공급되는 냉각수 중 일부가 라지에이터(55)로 유입되는 라인으로 분기된 상기 구성을 분기라인(54)으로 명명한다.The radiator 55 has a line through which a supply line connected to the optical resonator 10 of the cooling pump 51 branches, and a portion of cooling water supplied to the optical resonator 10 flows in. The configuration in which a part of the cooling water supplied to the optical resonator 10 is branched into a line flowing into the radiator 55 is referred to as a branching line 54.
분기라인(54)은 캐비티 냉각라인(52)에 형성된다. 분기라인(54)은 라지에이터(55)로 연결된다. 냉각수는 분기라인(54)을 통해 라지에이터(55)로 유입되어 열 에너지를 방출한다. 본 실시예로, 라지에이터(55)의 유입 경로가 캐비티 냉각라인(52)으로부터 분기된 분기라인(54)임에 주목한다. 일반적으로, 광 공진부(10)를 순환하여 배출된 냉각수의 라인이 라지에이터(55)로 유입되는 것이 일반적이다. 그러나, 본 실시예에서는, 광 공진부(10)를 순환하여 배출된 냉각수의 라인이 냉각탱크(57)와 연결된다. 즉, 캐비티 냉각라인(52)은 광 공진부(10)를 경유하여 냉각탱크(57)와 연결된다. The branch line 54 is formed in the cavity cooling line 52. The branch line 54 is connected to the radiator 55. Cooling water is introduced into the radiator 55 through the branch line 54 to release heat energy. Note that in this embodiment, the inflow path of the radiator 55 is a branch line 54 branched from the cavity cooling line 52. In general, it is common for a line of coolant discharged by circulating the optical resonator 10 to flow into the radiator 55. However, in this embodiment, the line of cooling water discharged by circulating the optical resonator 10 is connected to the cooling tank 57. That is, the cavity cooling line 52 is connected to the cooling tank 57 via the optical resonator 10.
멀티 레이저 증폭 출력 장치(1)는 온도의 변위를 최소화하여 일정한 범위로 제어되는 것이 요구된다. 본 실시예는, 광 공진부(10)를 거쳐서 온도가 높아진 냉각수가 캐비티 냉각라인(52)을 통해 냉각탱크(57)로 모인다. 냉각탱크(57) 상에 온도가 높아진 냉각수가 다량 수용됨에 따라, 온도의 변위가 낮아지고 냉각수의 온도값이 일정해진다. 여기서, 라지에이터(55)를 통해 온도가 낮아진 냉각수도 냉각탱크(57)로 유입됨에 주목한다. 즉, 본 실시예와 같은 냉각부(50) 시스템은 라지에이터(55)가 냉각수의 온도를 낮출 뿐만 아니라, 냉각탱크(57) 또한 냉각수의 온도를 낮추고, 온도값을 일정하게 평준화 시킨다. The multi-laser amplification output device 1 is required to be controlled in a certain range by minimizing the displacement of temperature. In the present embodiment, the cooling water whose temperature has increased through the optical resonator 10 is collected into the cooling tank 57 through the cavity cooling line 52. As a large amount of cooling water having a high temperature is accommodated on the cooling tank 57, the displacement of the temperature is lowered and the temperature value of the cooling water becomes constant. Here, it is noted that the cooling water whose temperature is lowered through the radiator 55 also flows into the cooling tank 57. That is, in the cooling unit 50 system as in the present embodiment, the radiator 55 not only lowers the temperature of the cooling water, but also the cooling tank 57 also lowers the temperature of the cooling water and equalizes the temperature value.
도 6은 본 발명의 실시예에 따른 냉각부(50)의 냉각수 순환 경로를 나타낸다. 도 6을 참조하면, 본 발명의 실시예에 따른 냉각부(50)는 C1의 냉각수 경로와, C2의 냉각수 경로로 구분된다. 6 shows a cooling water circulation path of the cooling unit 50 according to an embodiment of the present invention. Referring to FIG. 6, the cooling unit 50 according to an embodiment of the present invention is divided into a cooling water path of C1 and a cooling water path of C2.
C1의 냉각수 경로는, 냉각수가 냉각탱크(57)로부터 냉각펌프(51), 및 캐비티 냉각라인(52)을 순차적으로 거쳐서 광 공진부(10)로 유입된다. C2의 냉각수 경로는, 냉각수가 냉각펌프(51)에서 광 공진부(10)로 공급되는 캐비티 냉각라인(52)이 분기된 분기라인(54)을 통해 라지에이터(55)로 유입된다. 라지에이터(55)를 순환한 냉각수는 다시 냉각탱크(57)로 유입된다. C1의 경로는 광 공진부(10)의 레이저를 냉각하는 경로이고, C2의 경로는 냉각수를 냉각하는 경로이다. 본 실시예에 따른 냉각부(50) 시스템은 냉각탱크(57)에서 냉각 펌프(51)로 배출되는 경로가 공통된다. 따라서, 냉각탱크(57) 상에서 레이저를 냉각하여 온도가 높아진 냉각수와 냉각된 냉각수와 합쳐지고, 온도가 균일하게 평준화되어 보다 안정적인 온도 제어를 가능하게 한다. The cooling water path of C1 flows through the cooling water from the cooling tank 57 through the cooling pump 51 and the cavity cooling line 52 sequentially to the optical resonator 10. The cooling water path of C2 flows into the radiator 55 through the branch line 54 in which the cavity cooling line 52 supplied from the cooling pump 51 to the optical resonator 10 is branched. Cooling water circulated through the radiator 55 flows into the cooling tank 57 again. The path of C1 is a path for cooling the laser of the optical resonator 10, and the path of C2 is a path for cooling the cooling water. In the cooling unit 50 system according to the present embodiment, a path discharged from the cooling tank 57 to the cooling pump 51 is common. Accordingly, the laser is cooled on the cooling tank 57 to be combined with the cooling water having a high temperature and the cooled cooling water, and the temperature is evenly leveled to enable more stable temperature control.
도 7는 본 발명의 실시예에 따른 프로세서부(30)의 제어 화면을 나타낸다. 도 7에 따른 프로세서부(30)의 제어 화면은 디스플레이부(70)를 통해 표시될 수 있다. 디스플레이부(70)는 제어용 판넬로 제공되며, 프로세서부(30)의 동작 조건을 변경하거나 장비의 동작 상태를 표시할 수 있다.7 shows a control screen of the processor unit 30 according to an embodiment of the present invention. The control screen of the processor unit 30 according to FIG. 7 may be displayed through the display unit 70. The display unit 70 is provided as a control panel, and can change the operating conditions of the processor unit 30 or display the operation status of the equipment.
도 7을 참조하면, 디스플레이부(70)에는 상태창(READY), 가이드빔 UI(PILOT), 정보버튼(i), 시스템 전원 버튼, 주파수 제어 UI(FREQUENCY), 에너지 제어 UI(ENERGY), 파워 상태창(POWER), 장비의 오프셋 파라미터 로드 UI(DEFAULT), 메인 알람 UI(FIBER, SAFETY GLASS, LAMP, TEMP), 온도 표시창(TEMP) 및 기타 알람 및 장비 정보 창이 제공될 수 있다.Referring to FIG. 7, the display unit 70 includes a status window (READY), a guide beam UI (PILOT), an information button (i), a system power button, a frequency control UI (FREQUENCY), an energy control UI (ENERGY), and power A status window (POWER), an offset parameter load UI (DEFAULT) of the equipment, a main alarm UI (FIBER, SAFETY GLASS, LAMP, TEMP), a temperature display (TEMP), and other alarm and equipment information windows may be provided.
상태창(READY)은 안전안 레이저 출력 동작을 제공하기 위해 스탠바이와 레디모드로 변환 가능한 기능을 제공한다. 레디 모드에서, 사용자가 별도의 Foot switch를 밟게 되면 레이저가 발진된다. 가이드빔 UI(PILOT)는 레이저 출력 경로의 가이드빔 밝기를 조정할 수 있다. 터치 또는 드래그로 가이드빔의 밝기를 세게 또는 약하게 조절 할 수 있도록 한다. 정보버튼(i)은 시스템의 S/N, 램프 사용량, 시간, 제조일 등의 정보를 제공한다. 시스템 전원 버튼은 장비를 안전하게 종료시키기 위해 버튼 조작 순서 또는 이미지를 함께 디스플레이할 수 있다.The status window (READY) provides a function that can be switched between standby and ready mode to provide safe eye laser output operation. In ready mode, the laser is emitted when the user presses a separate foot switch. The guide beam UI (PILOT) can adjust the brightness of the guide beam of the laser output path. It is possible to adjust the brightness of the guide beam hard or weak by touching or dragging. The information button (i) provides information such as S/N of the system, lamp usage, time, and manufacturing date. The system power button can display a button operation sequence or an image together to safely shut down the device.
주파수 제어 UI(FREQUENCY)는 레이저의 1초당 발사 횟수를 설정할 수 있도록 한다. 사용자는 (+), (-)의 버튼을 조작하여 출력 레이저의 펄스 주파수를 설정할 수 있다. 40Hz로 표기된 본 실시예에서는, 출력 레이저의 주파수가 40Hz이며, 이 때 4개의 레이저 캐비티(101(a), 101(b), 101(c), 101(d))는 각각 10Hz의 레이저를 출력한다. 에너지 제어 UI(ENERGY)는 출력 레이저의 에너지를 설정할 수 있도록 한다. 파워 상태창(POWER)은 주파수 제어 UI(FREQUENCY)와 에너지 제어 UI(ENERGY)에 의해서 설정된 파워(Frequency x Energy)를 디스플레이 한다. 메인 알람 UI(FIBER, SAFETY GLASS, LAMP, TEMP)는 사용자가 알아야 할 주요 알람의 상태를 표시한다. 온도 표시창(TEMP)은 현재 장비의 온도를 표시한다.The frequency control UI (FREQUENCY) allows you to set the number of shots per second of the laser. The user can set the pulse frequency of the output laser by operating the buttons (+) and (-). In the present embodiment, indicated as 40 Hz, the frequency of the output laser is 40 Hz, where the four laser cavities 101 (a), 101 (b), 101 (c), and 101 (d) each output a laser of 10 Hz. do. The energy control UI (ENERGY) allows the energy of the output laser to be set. The power status window (POWER) displays the power (Frequency x Energy) set by the frequency control UI (FREQUENCY) and the energy control UI (ENERGY). The main alarm UI (FIBER, SAFETY GLASS, LAMP, TEMP) displays the status of major alarms that the user needs to know. The temperature display (TEMP) displays the current instrument temperature.
장비의 오프셋 파라미터 로드 UI(DEFAULT)는 오프셋 설정된 장비의 세팅된 파라미터를 불러온다. 오프셋 파라미터는 디스플레이부(70)에서 관리자 모드를 선택하여 설정할 수 있다. Loading the offset parameter of the device UI (DEFAULT) loads the set parameter of the device that is offset. The offset parameter can be set by selecting the administrator mode on the display unit 70.
프로세서부(30)는 레이저 캐비티(101)의 매질을 여기시키는 에너지를 결정하여 광 공진부(10)를 제어한다. 프로세서부(30)는 레이저 캐비티(101)의 초기 펄스를 제어하는 과정에서, 펄스폭이 점진적으로 커지는 오프셋 신호를 인가하여 레이저 캐비티(101)의 설정된 출력값에 도달시 오프셋 신호의 펄스폭을 고정함으로써 광 공진부(10)의 오프셋을 조정할 수 있다. 프로세서부(30)는 오프셋 신호의 인가시, 오프셋 신호의 전압을 고정한 상태에서 오프셋 신호의 펄스폭을 점진적으로 증가시킬 수 있다.The processor unit 30 controls the optical resonator unit 10 by determining energy to excite the medium of the laser cavity 101. In the process of controlling the initial pulse of the laser cavity 101, the processor unit 30 applies an offset signal that gradually increases in pulse width to fix the pulse width of the offset signal when reaching the set output value of the laser cavity 101. The offset of the optical resonator 10 can be adjusted. When the offset signal is applied, the processor unit 30 may gradually increase the pulse width of the offset signal while the voltage of the offset signal is fixed.
도 8은 본 발명의 실시예에 따른 프로세서부의 오프셋 제어 원리를 나타낸다. 도 8a는 종래의 오프셋 신호와 이에 따른 출력 파형을 나타낸다. 도 8b는 본 발명의 실시예에 따른 프로세서부의 오프셋 신호와 이에 따른 출력 파형을 나타낸다. 8 shows the offset control principle of the processor unit according to an embodiment of the present invention. 8A shows a conventional offset signal and thus an output waveform. 8B shows an offset signal and a corresponding output waveform of the processor unit according to an embodiment of the present invention.
도 8a를 참조하면, 기존의 오프셋 제어는 일정한 펄스폭(예를 들어 600㎲)을 갖는 오프셋 신호를 인가하여 레이저의 정해진 출력값이 나오도록 세팅된다. 이론상 레이저의 출력 1J이 나오기 위한 오프셋 신호의 펄스폭은 600㎲라 가정한다. 여기서, 오프셋 신호의 인가시 레이저의 펌핑 과정으로 1J을 초과하는 오버슈팅 값이 존재하며, 안정화 구간을 거쳐 출력값이 1J로 수렴된다. 하지만, 레이저는 극히 민감한 장비로서, 하드웨어 적인 특성, 설치된 장소의 온도 등에 의하여 오프셋 설정의 이론적인 값을 정확하게 도출할 수 없다. 도 8a의 예시에서도 경우에 따라 레이저 출력이 1J이 초과되기도 하며 1J에 못 미치기도 한다. Referring to Figure 8a, the conventional offset control is set to output a predetermined output value of the laser by applying an offset signal having a constant pulse width (for example, 600 ㎲). In theory, it is assumed that the pulse width of the offset signal for outputting the laser output 1J is 600 Hz. Here, when the offset signal is applied, an overshooting value exceeding 1J exists as a laser pumping process, and the output value converges to 1J through a stabilization period. However, the laser is an extremely sensitive device and cannot accurately derive the theoretical value of the offset setting due to hardware characteristics, temperature of the installed place, and the like. In the example of FIG. 8A, in some cases, the laser power may exceed 1J and may not reach 1J.
이에, 본 실시예에 따른 프로세서부(30)는 도 8b와 같이 펄스폭이 가변되는 오프셋 신호를 인가한다. 여기서 오프셋 신호의 전압값은 고정된다. 프로세서부(30)가 인가하는 오프셋 신호는 초기 신호의 펄스폭이 가장 짧고, 시간이 경과할수록 펄스폭이 증가된다. 프로세서부(30)는 출력 레이저의 에너지를 체크하여 설정된 값(예를 들어 1J)에 도달시 그 때의 펄스폭을 갖는 오프셋 신호를 후행적으로 결정한다. Accordingly, the processor unit 30 according to the present embodiment applies an offset signal having a variable pulse width as shown in FIG. 8B. Here, the voltage value of the offset signal is fixed. The offset signal applied by the processor unit 30 has the shortest pulse width of the initial signal, and the pulse width increases as time passes. The processor unit 30 checks the energy of the output laser and subsequently determines an offset signal having a pulse width at that time when it reaches a set value (for example, 1J).
프로세서부(30)가 상기의 형태로 오프셋 제어 과정을 수행한 결과 초기 에너지가 안정화 되고, 출력 안정화 구간에서도 과도한 오버슈트로 시스템이 손상되는 것이 방지된다. 오프셋 과정에서 사용자는 시작시 오프셋 신호의 초기 펄스폭과, 펄스폭의 증가량을 설정할 수 있다. As a result of the processor 30 performing the offset control process in the above-described form, the initial energy is stabilized, and the system is prevented from being damaged by excessive overshoot even in the output stabilization section. In the offset process, the user can set an initial pulse width of the offset signal and an increase amount of the pulse width at the start.
도 9은 본 발명의 실시예에 따른 프로세서부(30)의 시퀀스 제어 원리를 나타낸다. 도 9는 프로세서부(30)가 제어하는 4개 레이저 캐비티(101(a), 101(b), 101(c), 101(d))의 동작신호를 시간(x축)라인으로 표현한 것이다. 프로세서부(30)는 제1 레이저 캐비티(101(a)의 동작신호로부터 순차적으로, 제2 레이저 캐비티(101(b)), 제3 레이저 캐비티(101(c)), 및 제4 레이저 캐비티(101(d))의 동작신호를 명령한다.9 shows a sequence control principle of the processor unit 30 according to an embodiment of the present invention. 9 shows the operation signals of the four laser cavities 101(a), 101(b), 101(c), and 101(d) controlled by the processor unit 30 as time (x-axis) lines. The processor unit 30 sequentially from the operation signal of the first laser cavity 101(a), the second laser cavity 101(b), the third laser cavity 101(c), and the fourth laser cavity ( 101(d)).
이 때, 프로세서부(30)는 각각의 레이저 캐비티(101(a), 101(b), 101(c), 101(d)) 중 어느 한 레이저 캐비티(101(b))에 에러가 발생시, 에러가 발생된 레이저 캐비티(101(b))의 출력 순서를 시퀀스 상에서 제외하고, 다음 레이저 캐비티(101(c))로 순서를 건너뛰도록 명령하여 출력의 연속성을 보장하도록 광 공진부(10)를 제어할 수 있다. At this time, the processor unit 30, each of the laser cavity (101 (a), 101 (b), 101 (c), 101 (d)) of any one of the laser cavity (101 (b)) when an error occurs, The optical resonator 10 so as to ensure the continuity of the output by instructing to skip the order of the output of the laser cavity 101(b) in which the error occurred in the sequence, and to skip the order to the next laser cavity 101(c) Can be controlled.
도 9에서, 제2 레이저 캐비티(101(b))의 플래시 램프의 수명이 다했거나, 제2 레이저 캐비티(101(b))에 배치되는 광학계에 이상이 발생된 경우, 레이저가 출력라인으로 도달하지 않거나, 설정과 다른 레이저 출력값이 나타난다. 이 때, 프로세서부(30)는 제2 레이저 캐비티(101(b))의 에러를 감지한다. 상기와 같은 에러 시그널이 감지되면, 프로세서부(30)는 제2 레이저 캐비티(101(b))의 동작 신호를 생략한다. 또한, 프로세서부(30)는 출력 시퀀스를 제1 레이저 캐비티(101(a))-제2 레이저 캐비티(101(b))-제3 레이저 캐비티(101(c))-제4 레이저 캐비티(101(d))에서, 제1 레이저 캐비티(101(a))-제3 레이저 캐비티(101(c))-제4 레이저 캐비티(101(d))로 변경하며, 이 때의 시퀀스를 저장하고, 상기의 순서로 지속 제어한다.In FIG. 9, when the life of the flash lamp of the second laser cavity 101(b) has expired, or an abnormality has occurred in the optical system disposed in the second laser cavity 101(b), the laser reaches the output line Otherwise, the laser output value different from the setting is displayed. At this time, the processor unit 30 detects an error of the second laser cavity 101(b). When the above error signal is detected, the processor unit 30 omits the operation signal of the second laser cavity 101(b). Also, the processor unit 30 outputs the output sequence to the first laser cavity 101(a)-the second laser cavity 101(b)-the third laser cavity 101(c)-the fourth laser cavity 101 In (d)), the first laser cavity 101(a)-third laser cavity 101(c)-fourth laser cavity 101(d) is changed, and the sequence at this time is stored, Continuous control is performed in the above order.
프로세서부(30)의 시퀀스 변경으로, 출력 레이저는 비록 기존보다 작은 파워를 갖게 되어 시술 시간이 길어질 수는 있지만, 적어도 출력의 연속성은 유지되므로 혹여 발생될 수 있는 의료사고를 시스템적으로 방지할 수 있게 된다. By changing the sequence of the processor unit 30, although the output laser has a smaller power than the conventional one, the operation time may be extended, but at least the continuity of the output is maintained, so that it is possible to systematically prevent medical accidents that may occur. There will be.
이상에서 대표적인 실시예를 통하여 본 발명을 상세하게 설명하였으나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리 범위는 설명한 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태에 의하여 정해져야 한다.Although the present invention has been described in detail through exemplary embodiments above, those skilled in the art to which the present invention pertains understand that various modifications are possible within the limits of the embodiments described above without departing from the scope of the present invention. will be. Therefore, the scope of rights of the present invention should not be limited to the described embodiments, but should be determined by all modified or modified forms derived from the claims and equivalent concepts as well as the claims described below.
[부호의 설명][Description of codes]
1: 멀티 레이저 증폭 출력 장치1: Multi laser amplification output device
10: 광 공진부10: optical resonator
101: 레이저 캐비티101: laser cavity
103: 리플렉터 미러103: reflector mirror
105: 릴레이 미러105: relay mirror
107: 서보 미러107: servo mirror
109: 출력라인 광학계109: output line optical system
30: 프로세서부30: processor unit
50: 냉각부50: cooling unit
51: 냉각펌프51: cooling pump
52: 캐비티 냉각라인52: cavity cooling line
53: 필터53: filter
54: 분기라인54: branch line
55: 라지에이터55: Radiator
57: 냉각탱크57: cooling tank
59: 팬59: fan
70: 디스플레이부70: display unit

Claims (6)

  1. 의료용 멀티 레이저 증폭 출력 장치에 있어서,In the medical multi-laser amplification output device,
    복수개의 레이저 캐비티와, 상기 복수개의 레이저 캐비티가 순차적으로 출력한 레이저를 단일 경로로 가이드하여 단일 출력 레이저를 형성시키는 광학계로 구성된 광 공진부;An optical resonator composed of a plurality of laser cavities and an optical system that guides the lasers sequentially output by the plurality of laser cavities in a single path to form a single output laser;
    상기 레이저 캐비티의 매질을 여기시키는 에너지를 결정하여 상기 광 공진부를 제어하는 프로세서부; 및A processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity; And
    상기 광 공진부의 온도를 제어하는 냉각부를 포함하고,It includes a cooling unit for controlling the temperature of the optical resonance unit,
    상기 프로세서부는,The processor unit,
    상기 레이저 캐비티의 초기 펄스를 제어하는 과정에서, 펄스폭이 점진적으로 커지는 오프셋 신호를 인가하여 상기 레이저 캐비티의 설정된 출력값에 도달시 상기 오프셋 신호의 펄스폭을 고정함으로써 상기 광 공진부의 오프셋을 조정하는 것을 특징으로 하는 의료용 멀티 레이저 증폭 출력 장치.In the process of controlling the initial pulse of the laser cavity, adjusting the offset of the optical resonator by fixing the pulse width of the offset signal when a preset output value of the laser cavity is reached by applying an offset signal whose pulse width gradually increases. Medical multi-laser amplification output device characterized by.
  2. 제 1 항에 있어서,According to claim 1,
    상기 프로세서부는,The processor unit,
    상기 오프셋 신호의 인가시, 상기 오프셋 신호의 전압을 고정한 상태에서 상기 오프셋 신호의 펄스폭을 점진적으로 증가시키는 것을 특징으로 하는 의료용 멀티 레이저 증폭 출력 장치.When applying the offset signal, a medical multi-laser amplification output device, characterized in that the pulse width of the offset signal is gradually increased while the voltage of the offset signal is fixed.
  3. 제 1 항에 있어서,According to claim 1,
    상기 광학계는,The optical system,
    각각의 상기 레이저 캐비티에,In each of the above laser cavities,
    상기 레이저 캐비티의 전후로 마련되는 한 쌍의 리플렉터 미러; 및A pair of reflector mirrors provided before and after the laser cavity; And
    상기 한 쌍의 리플렉터 미러를 통해 출력된 광을 집속시키는 릴레이 미러를 포함하고, It includes a relay mirror for focusing the light output through the pair of reflector mirrors,
    각각의 상기 레이저 캐비티에 마련된 각각의 상기 릴레이 미러에서 반사된 광을 출력라인으로 가이드 하는 서보 미러를 더 포함하며,Further comprising a servo mirror to guide the light reflected from each of the relay mirror provided in each of the laser cavity to the output line,
    상기 서보 미러는,The servo mirror,
    상기 프로세서부의 제어 아래 회동되면서 각각의 상기 레이저 캐비티가 순차적으로 출력한 광을 출력라인의 단일 경로로 집속시키고,While rotating under the control of the processor unit, each laser cavity sequentially outputs light to focus on a single path of the output line,
    상기 리플렉터 미러는,The reflector mirror,
    상기 레이저 캐비티의 후면에 위치된 후면 리플렉터 미러가 음의 곡률 면을 갖고, 상기 레이저 캐비티의 전면에 위치된 전면 리플렉터 미러가 편평한 면을 갖는 것을 특징으로 하는 의료용 멀티 레이저 증폭 출력 장치.Medical multi-laser amplification output device, characterized in that the rear reflector mirror located on the rear surface of the laser cavity has a negative curvature surface, and the front reflector mirror located on the front surface of the laser cavity has a flat surface.
  4. 제 1 항에 있어서,According to claim 1,
    상기 프로세서부는,The processor unit,
    각각의 상기 레이저 캐비티 중 어느 한 레이저 캐비티에 에러가 발생시,When an error occurs in any one of the above laser cavities,
    에러가 발생된 레이저 캐비티의 출력 순서를 시퀀스 상에서 제외하고, 다음 레이저 캐비티로 순서를 건너뛰도록 명령하여 출력의 연속성을 보장하도록 상기 광 공진부를 제어하는 것을 특징으로 하는 의료용 멀티 레이저 증폭 출력 장치.A multi-amplification medical output device for medical use, characterized in that the optical resonator is controlled to ensure the continuity of the output by excluding the output sequence of the laser cavity in which an error occurs in a sequence, and then skipping the sequence to the next laser cavity.
  5. 제 1 항에 있어서,According to claim 1,
    상기 냉각부는,The cooling unit,
    상기 광 공진부에 연결되고, 냉각수를 공급하는 냉각펌프; 및A cooling pump connected to the optical resonance unit and supplying cooling water; And
    상기 냉각펌프의 상기 광 공진부에 연결된 공급 라인이 분기되어, 상기 광 공진부로 공급되는 냉각수 중 일부가 유입되는 라인을 갖는 라지에이터를 포함하는 의료용 멀티 레이저 증폭 출력 장치.A medical multi-laser amplifying output device including a radiator having a line in which a supply line connected to the optical resonator of the cooling pump is branched and a portion of cooling water supplied to the optical resonator is introduced.
  6. 의료용 멀티 레이저 증폭 출력 장치에 있어서,In the medical multi-laser amplification output device,
    복수개의 레이저 캐비티와, 상기 복수개의 레이저 캐비티가 순차적으로 출력한 광을 단일 경로로 가이드하여 단일 출력 레이저를 형성시키는 광학계로 구성된 광 공진부;An optical resonator composed of a plurality of laser cavities and an optical system that guides light sequentially output from the plurality of laser cavities in a single path to form a single output laser;
    상기 레이저 캐비티의 매질을 여기시키는 에너지를 결정하여 상기 광 공진부를 제어하는 프로세서부; 및A processor unit configured to control the optical resonance unit by determining energy to excite the medium of the laser cavity; And
    상기 광 공진부의 온도를 제어하는 냉각부를 포함하고,It includes a cooling unit for controlling the temperature of the optical resonance unit,
    상기 프로세서부는,The processor unit,
    각각의 상기 레이저 캐비티 중 어느 한 레이저 캐비티에 에러가 발생시,When an error occurs in any one of the above laser cavities,
    에러가 발생된 레이저 캐비티의 출력 순서를 시퀀스 상에서 제외하고, 다음 레이저 캐비티로 순서를 건너뛰도록 명령하여 출력의 연속성을 보장하도록 상기 광 공진부를 제어하는 것을 특징으로 하는 의료용 멀티 레이저 증폭 출력 장치.A multi-amplification medical output device for medical use, characterized in that the optical resonator is controlled to ensure the continuity of the output by excluding the output sequence of the laser cavity in which an error occurs in a sequence, and then skipping the sequence to the next laser cavity.
PCT/KR2019/009032 2019-01-30 2019-07-22 Medical multi-laser amplification output device WO2020159017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190011891A KR102004169B1 (en) 2019-01-30 2019-01-30 Medical multi-laser amplification output device
KR10-2019-0011891 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020159017A1 true WO2020159017A1 (en) 2020-08-06

Family

ID=67480817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009032 WO2020159017A1 (en) 2019-01-30 2019-07-22 Medical multi-laser amplification output device

Country Status (2)

Country Link
KR (1) KR102004169B1 (en)
WO (1) WO2020159017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246467A1 (en) * 2021-05-21 2022-11-24 Boston Scientific Scimed, Inc. Systems and methods for generating a modulated laser pulse
WO2022246466A1 (en) * 2021-05-21 2022-11-24 Boston Scientific Scimed, Inc. Systems and methods for laser pulse monitoring and calibration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946334A (en) * 1996-03-27 1999-08-31 Ricoh Company, Inc. Semiconductor laser control system
US6115396A (en) * 1993-05-05 2000-09-05 Coherent, Inc. Control system for a laser with multiple solid state rods
KR101386496B1 (en) * 2013-10-28 2014-04-17 주식회사 메드썬 The multi-laser generating system
KR20140147856A (en) * 2012-03-21 2014-12-30 트리아 뷰티, 인코포레이티드 Dermatological treatment device with one or more vertical cavity surface emitting laser(vcsel)
US20150293348A1 (en) * 2014-04-10 2015-10-15 Lumenis Ltd. Multiple laser cavity apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243350B1 (en) * 1996-05-01 2001-06-05 Terastor Corporation Optical storage systems with flying optical heads for near-field recording and reading
US20120232538A1 (en) * 2011-02-03 2012-09-13 Tria Beauty, Inc. Radiation-based dermatological devices and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115396A (en) * 1993-05-05 2000-09-05 Coherent, Inc. Control system for a laser with multiple solid state rods
US5946334A (en) * 1996-03-27 1999-08-31 Ricoh Company, Inc. Semiconductor laser control system
KR20140147856A (en) * 2012-03-21 2014-12-30 트리아 뷰티, 인코포레이티드 Dermatological treatment device with one or more vertical cavity surface emitting laser(vcsel)
KR101386496B1 (en) * 2013-10-28 2014-04-17 주식회사 메드썬 The multi-laser generating system
US20150293348A1 (en) * 2014-04-10 2015-10-15 Lumenis Ltd. Multiple laser cavity apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246467A1 (en) * 2021-05-21 2022-11-24 Boston Scientific Scimed, Inc. Systems and methods for generating a modulated laser pulse
WO2022246466A1 (en) * 2021-05-21 2022-11-24 Boston Scientific Scimed, Inc. Systems and methods for laser pulse monitoring and calibration

Also Published As

Publication number Publication date
KR102004169B1 (en) 2019-07-29

Similar Documents

Publication Publication Date Title
WO2020159017A1 (en) Medical multi-laser amplification output device
EP0830719B1 (en) Ultra-long flashlamp-excited pulse dye laser for therapy
US6066127A (en) Laser treatment apparatus
US6579284B2 (en) Ultra long pulsed dye laser device for treatment of ectatic vessels and method therefor
US7329251B2 (en) Laser treatment apparatus
KR100992471B1 (en) Ultraviolet light source, laser treatment apparatus using ultraviolet light source, and exposure system using ultraviolet light source
JP2001505103A (en) Variable pulse width lasing device
JP2000504234A (en) Laser surgical device and method of using the same
JP2002151774A (en) Laser equipment
JP2002248123A (en) Laser slit lamp with laser light source
JP6645736B2 (en) Combined laser treatment method and apparatus with temperature control by multifunctional treatment laser
CN109044526B (en) Dual wavelength laser and laser therapeutic instrument
WO2018199578A1 (en) Laser device for dermal therapy
WO2014092430A1 (en) Phototherapy apparatus, method for operating same, and treatment method using same
JP3675876B2 (en) Laser treatment device
WO2013147334A1 (en) Optical surgery device and method for controlling same
JPH06233778A (en) Laser system for laser diagnosis and treatment
JP4150476B2 (en) Laser scanning microscope and laser light source control method thereof
KR20210112689A (en) Laser generation device using multi q switching means
WO1989011828A1 (en) Laser-aided intravascular operation equipment
RU2045298C1 (en) Laser device for medical purposes
WO2016175629A1 (en) Laser device and method for driving laser device
JP2007029620A (en) Laser therapy equipment
KR101705591B1 (en) Laser irradiation device for medical
RU27892U1 (en) DEVICE FOR LASER TREATMENT OF BIOLOGICAL TISSUES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912370

Country of ref document: EP

Kind code of ref document: A1