WO2020158989A1 - Bioimpedance measurement device and operation method thereof - Google Patents
Bioimpedance measurement device and operation method thereof Download PDFInfo
- Publication number
- WO2020158989A1 WO2020158989A1 PCT/KR2019/002320 KR2019002320W WO2020158989A1 WO 2020158989 A1 WO2020158989 A1 WO 2020158989A1 KR 2019002320 W KR2019002320 W KR 2019002320W WO 2020158989 A1 WO2020158989 A1 WO 2020158989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- measurement
- measurement object
- bioimpedance
- degree
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0209—Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
Definitions
- the following description relates to a bioimpedance measuring apparatus and its operation method.
- the body composition measuring apparatus may determine the body composition by measuring the bioimpedance by making an electrode contact the site to be measured.
- the body composition measuring apparatus may determine the body composition by measuring the bioimpedance by making an electrode contact the site to be measured.
- the bioimpedance In order to accurately calculate body composition, not only the bioimpedance but also the shape information of the measurement site is required. Therefore, it is important to accurately determine the shape of the measurement site along with the accuracy of the bioimpedance measurement.
- features that can measure the impedance and the circumference of the measurement site in a simple manner, and features that can measure body composition as a single device without a separate auxiliary device are important in terms of improving user convenience.
- the present invention can be gripped with one hand for ease of use and can measure bioimpedance with a single device without the need for a separate device, and can increase accuracy in grasping the body shape and contact electrodes regardless of the shape of the measurement site. And it is possible to provide a bio-impedance measuring apparatus capable of increasing the precision and accuracy of the body composition measurement by maintaining the compression degree constant.
- the present invention is not limited to a specific site, such as the abdomen, which can measure the impedance, and can provide a bioimpedance measuring device capable of measuring the impedance of all desired sites.
- the measurement of the bioimpedance and the measurement of the length and the circumference of the measurement site can be performed by a single device, a separate device is not required, thereby improving convenience of use and improving portability.
- An apparatus for measuring bioimpedance includes a body portion that accommodates a measurement circuit and includes a grip that can be gripped by hand; A first electrode and a second electrode coupled to a first axis provided on one side of the body portion to orbit the first axis; And a third electrode and a fourth electrode coupled to a second axis having a position different from the first axis on the one side of the body part to orbit the second axis, and the measurement object approaches the first electrode, the When surrounded and in contact with the second electrode, the third electrode, and the fourth electrode, the bioimpedance of the measurement object may be measured.
- the second electrode is pressed by the measurement object and pivots toward the grip, so that the measurement object can accommodate the measurement object deeper than when the measurement object starts to contact the second electrode. have.
- the second electrode may be supported by the elastic body to restore the position to be measured before the turning of the measurement object.
- the fourth electrode is adjacent to the second electrode and is pressed by the measurement object to turn toward the grip, so that the measurement object is deeper than when the measurement object starts to contact the fourth electrode
- the measurement object can be accommodated.
- the degree to which the fourth electrode turns toward the grip may be different from the degree to which the second electrode turns toward the grip.
- the measurement circuit compares the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip while being pressed by the measurement object. By doing so, it is possible to estimate which part of the measurement object is touching.
- the measurement circuit compares the degree to which the first electrode has been opened and the degree to which the third electrode has been opened while being pressed by the object to be measured. You can estimate whether it is touching.
- the measurement circuit while being pressed by the measurement object, is the difference between the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip It is possible to effectively determine the bioimpedance measurement result when is equal to or less than a predetermined threshold.
- the measurement circuit may include, while the measurement object approaches and contacts, the degree to which the second electrode turns to the grip, the degree to which the fourth electrode turns to the grip, the It is possible to estimate which part of the measurement object is being touched using at least one of a degree in which the first electrode is opened or collected, and a degree in which the third electrode is opened or collected.
- the measurement circuit may include, while the measurement object approaches and contacts, the degree to which the second electrode turns to the grip, the degree to which the fourth electrode turns to the grip, the It is possible to estimate which of the plurality of users the measurement object corresponds to in advance by using at least one of a degree in which the first electrode is opened or collected, and a degree in which the third electrode is opened or collected.
- the bioimpedance measuring apparatus if the measurement circuit is being pressed by the measurement object, at least one of the second electrode and the fourth electrode is pushed by turning to a limit toward the grip, It can be determined that the impedance measurement result is not valid.
- the first electrode and the third electrode may be opened or collected according to the circumference of the measurement object to be approached and contacted.
- the measurement circuit may include a degree to which the second electrode turns toward the grip, a degree to which the fourth electrode turns toward the grip while the measurement object approaches and contacts the first.
- the circumference of the measurement object may be estimated using at least one of a degree in which the electrode is opened or collected and a degree in which the third electrode is opened or collected.
- a method of operating a bioimpedance measuring apparatus includes a first electrode and a second electrode provided in the bioimpedance measuring apparatus when a measurement object approaches the bioimpedance measuring apparatus and is surrounded and contacted by the bioimpedance measuring apparatus. Sensing movement of at least one of the electrode, the third electrode, and the fourth electrode; And measuring a bioimpedance of the measurement object by using at least one of the first electrode, the second electrode, the third electrode, and the fourth electrode, wherein the first electrode and the second electrode are measured.
- the second axis is pivoted by being coupled to a different second axis.
- the detecting of the movement may include a degree to which the second electrode turns toward the grip while the measurement object approaches and contacts, and the fourth electrode toward the grip. And estimating the circumference of the measurement object using at least one of a degree of turning, a degree of opening or collecting of the first electrode, and a degree of opening or collecting of the third electrode.
- An apparatus for measuring bioimpedance includes a T-type or Y-type body that can be gripped with one hand, including a gripping surface; A sample portion coupled to one end of the body, composed of a plurality of segment members rotatably coupled to each other, and having at least two electrodes for applying current and at least two electrodes for measuring voltage on one surface; And a measurement circuit for measuring the impedance of the subject using the current application electrodes and the voltage measurement electrodes, wherein the sample part includes one or more electrodes disposed on the plurality of segment members. The angle between each segment member is adjusted to correspond to the shape or thickness to contact the subject.
- the apparatus for measuring bioimpedance further includes an adjustment mechanism disposed on the gripping surface to adjust rotation of one or more segment members of the specimen, and the specimen is connected to the adjustment mechanism to operate the adjustment mechanism.
- an adjustment mechanism disposed on the gripping surface to adjust rotation of one or more segment members of the specimen, and the specimen is connected to the adjustment mechanism to operate the adjustment mechanism.
- the bioimpedance measuring apparatus is coupled to the other end of the body and further includes a length measuring unit for measuring the circumference or length of the subject, and the length measuring unit rotates about a rotation axis passing through the other end of the body.
- the length measuring unit rotates about a rotation axis passing through the other end of the body.
- the specimen part and the length measuring part are integrally formed with the body, and measure the circumference or length of the subject by a length measuring part coupled to the other end of the body, and the body
- the impedance of the subject can be measured by the sample part coupled to one end of the.
- the apparatus for measuring bioimpedance includes a T-type or Y-type body; A sample portion coupled to one end of the body and having at least two electrodes for applying current and at least two electrodes for measuring voltage on one surface; It is disposed inside the body and includes a measuring circuit for measuring the impedance of the subject using the electrode.
- the specimen part includes a plurality of segment members rotatably coupled to each other, and the plurality of segment members is configured such that the angle between each segment member is adjusted so that the electrode contacts the subject. Can be configured.
- the plurality of segment members so that the angle between each segment member is adjusted so that the electrodes disposed on the plurality of segment members contact the object in correspondence with the shape or thickness of the object. Can be configured.
- the specimen part includes a specimen member made of an elastic body, and the specimen member is a curvature of the specimen member corresponding to the shape or thickness of the specimen so that the electrode contacts the specimen. It can be configured to adjust the radius.
- the sample part includes a plurality of sample members, and the sample member includes a pillar member that is movable up and down as a hollow type; An elastic body installed inside the pillar member to elastically support the pillar member; An electrode disposed on one side of the pillar member; And an electrode angle adjusting member disposed between the electrode and the pillar member and configured to adjust the angle of the electrode in response to the shape or thickness of the subject.
- the bioimpedance measuring apparatus is coupled to one side of the body and may further include a length measuring unit measuring a circumference or length of the subject.
- the length measuring part rotates about a rotation axis passing through the body, and performs a rolling operation on the surface of the subject to determine the circumference or length of the subject based on the number of revolutions measured. Can be measured.
- the apparatus for measuring bioimpedance may further include at least one angle adjustment unit disposed on the body to adjust the rotation angle of the segmental member of the specimen.
- the angle adjusting unit rotates around a rotation axis passing through one side of the body, and an adjusting mechanism of which one end is exposed to the outside of the body;
- a linear motion member coupled to the other end of the adjustment mechanism and having coupling grooves formed at both ends in the longitudinal direction;
- the projection formed on one side is coupled to the coupling groove so as to be linearly movable, the other side may include a rotating coupling portion connected to the segment member.
- Bioimpedance measuring apparatus includes a rectangular body; A sample portion coupled to one side of the rectangular body and an electrode disposed on one surface to detect and measure the bioimpedance of the subject; It is coupled to the other side of the rectangular body and includes a length measuring unit for measuring the circumference or length of the subject, and synthesizes information received from the specimen and the length measuring unit to calculate the health information of the subject.
- the bioimpedance measuring apparatus may further include a display unit that outputs the health information of the subject so as to visually check and recognize the health information of the subject.
- the bioimpedance measuring apparatus may be disposed on one side of an electrode of the sample portion, and may further include a pressure sensor for measuring the pressure applied to the electrode of the sample portion.
- the bioimpedance measuring apparatus is disposed on one side of the body, and may further include a pressure display unit that displays a pressure value measured by the pressure sensor.
- the electrode since the electrode contacts and maintains a constant degree of pressure on the measurement object, precision and accuracy may be improved in measuring the bioimpedance of the measurement object.
- the bioimpedance measuring device can be held with one hand to measure the bioimpedance and the circumference of the measurement site, convenience of use may be improved.
- the measurement object of a small size as well as a measurement object of a large size is effectively Bioimpedance can be measured.
- bioimpedance measurement and circumference measurement without additional equipment or operation can be done at once.
- the measurement object is excessively or weakly contacted with the bioimpedance measurement device, or By knowing whether they are in proper contact, the accuracy of the measurement can be improved by guiding the appropriate contact pressure.
- FIG. 1 is a view showing a bioimpedance measuring apparatus according to an embodiment.
- FIGS. 2 and 3 are views for explaining a body part of the bioimpedance measuring apparatus according to an embodiment.
- FIG. 4 is a view for explaining the operation of the bio-impedance measuring device when pressed by a measurement object according to an embodiment.
- 5 to 7 are views for explaining the operation of the bio-impedance measuring device according to the measurement site according to an embodiment.
- FIG. 8 is a view showing an operation method of a bioimpedance measuring apparatus according to an embodiment.
- FIG. 9 is a perspective view of an impedance measuring device according to an embodiment.
- FIGS. 10A and 10B are schematic diagrams showing the configuration of a body of a bioimpedance measuring apparatus according to an embodiment.
- 11A to 12C are schematic diagrams of various embodiments of a sample portion of a bioimpedance measuring apparatus according to an embodiment.
- FIGS. 13A and 13B are perspective views of a detailed configuration of an angle adjusting unit, which is an embodiment of a means for adjusting the angle of a specimen part of a bioimpedance measuring apparatus according to an embodiment.
- 14A and 14B are schematic views of a state in which bioimpedance is measured by the bioimpedance measuring apparatus according to the present disclosure.
- 15A and 15B are schematic diagrams of a length measuring unit of the bioimpedance measuring apparatus according to the present disclosure.
- 16 is a schematic diagram of a state in which the circumference is measured by the bioimpedance measuring apparatus according to the present disclosure.
- first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from other components.
- first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
- FIG. 1 is a view showing a bioimpedance measuring apparatus according to an embodiment.
- the bioimpedance measuring apparatus 100 includes a body portion 110 and a plurality of electrodes 121 to 124.
- the body portion 110 accommodates the measurement circuit and includes a grip that can be gripped by hand.
- the body portion 110 may be gripped by an examinee corresponding to a measurement object or an examiner performing bio impedance measurement of the examinee.
- the measurement circuit is connected to the plurality of electrodes 121 to 124 to measure the bioimpedance of the measurement object. Also, the measurement circuit may determine the body composition (eg, body fat amount) of the measurement object based on the measured bioimpedance.
- the plurality of electrodes 121 to 124 may include one or more pairs of current applying electrodes and one or more pairs of voltage measurement electrodes.
- the bioimpedance measuring apparatus 100 applies a predetermined current using electrodes for applying current among the electrodes 121 to 124 that are in contact with the measurement object, and uses the voltage measuring electrodes to determine a potential difference in a path through which the current flows. By measuring, the bioimpedance of the measurement object can be measured.
- the bio-impedance measuring apparatus 100 may apply a high-frequency current generated by a built-in current source from one point of a measurement object to another point, and the applied current (current flowing through the body) and current
- the bioimpedance of a measurement object may be measured based on measuring a potential difference between two points in a flowing path.
- the plurality of electrodes 121 to 124 may rotate the first axis 131 or the second axis 132 for stable contact with the measurement object.
- the first shaft 131 or the second shaft 132 may be provided on one axis of the body portion 110 and have different positions.
- the first shaft 131 and the second shaft 132 may include an elastic body therein.
- the first electrode 121 and the third electrode 123 that orbit the first axis 131 and the second axis 132 may be closed at a predetermined angle when the measurement object is not approached and contacted by the elastic body included therein. You can keep it.
- the elastic body may use a general spring, but is not limited thereto, and if the measurement object approaches and does not come into contact, the first electrode 121 and the third electrode 123 can be maintained at a predetermined angle, and any material is used. Can also be used.
- the first electrode 121 and the second electrode 122 may rotate the first axis 131, and the third electrode 123 and the fourth electrode 124 may rotate the second axis 132.
- the first electrode 121 and the third electrode 123 may be opened or collected according to the circumference of the measurement object when the measurement object approaches and contacts. For example, when a measurement object having a circumference greater than a reference value approaches and contacts, the first electrode 121 and the third electrode 123 may be opened. Conversely, when a measurement object having a circumference smaller than the reference value approaches and contacts, the first electrode 121 and the third electrode 123 may be collected.
- the measurement object When the measurement object approaches and contacts the second electrode 122 and the fourth electrode 124, it is pressed by the measurement object and pivots toward the grip, so that the measurement object touches the second electrode 122 and the fourth electrode 124
- the depth measurement object can be accommodated more than when starting.
- the second electrode 122 and the fourth electrode 124 may be supported by the elastic body to restore the position to be measured before the turning of the object to be measured.
- the degree to which each of the second electrode 122 and the fourth electrode 124 pivots toward the grip may be the same or different from each other depending on the shape of the measurement object.
- the measurement circuit is the degree to which the second electrode 122 turns toward the grip, the degree to which the fourth electrode 124 turns toward the grip, and the degree to which the first electrode 121 is opened or collected while the measurement object approaches and contacts
- the third electrode 123 may be estimated by using at least one of the extent of the opening or gathering.
- the bio-impedance measuring apparatus 100 may determine the body composition of the measured object without a separate device based on the measured bio-impedance of the measured object and the estimated circumference of the measured object. However, the bioimpedance measurement device may be interlocked with other devices to further increase the precision and accuracy of body composition measurement.
- At least one of the bioimpedance, body composition, and body composition of the measurement object determined by the bioimpedance measurement device 100 may be displayed on the display 130.
- a pressure sensor may be further provided in the bioimpedance measuring apparatus 100.
- at least one of the plurality of electrodes 121 to 124 may include a pressure sensor on one side of the electrode.
- the position of the pressure sensor is not limited to this, and any position suitable for measuring the pressure applied to the corresponding electrode as it is in close contact with the examinee is possible without limitation.
- a pressure sensor may be included in the second electrode 122 and the fourth electrode 124 positioned at the center.
- the second electrode 122 and the fourth electrode 124 may be drawn inward, and at this time, the second electrode 122 and the fourth electrode
- the pressure sensor disposed on one side of the electrode 124 is pressurized, it is possible to determine whether the test subject is in contact with the electrode and whether the electrode presses the test subject at a pressure required to accurately measure impedance.
- the second electrode 122 and the fourth electrode 124 may include an elastic material on one side or inside.
- the corresponding electrode when the subject is pressed in close contact, the corresponding electrode is drawn inward, pressure is transmitted to a pressure sensor disposed on one side of the electrode, measured, and after the pressure measurement and impedance measurement are finished, the subject is removed from the electrode. Inside, the pressure sensor can be restored to its initial state before being pressed.
- the pressure measured by the pressure sensor can be provided to the subject.
- the measured pressure can be displayed on the display 130.
- the measured pressure may be indicated by a pressure gauge or LED light. If the proper pressure is not applied to the impedance measurement, a message may be displayed to inform the testee that the contact was not made properly. For example, if the measurement value of the pressure sensor is smaller than the predetermined first threshold pressure, a message may be provided to the testee that pressure needs to be applied with a greater intensity. Alternatively, if the measured value of the pressure sensor is greater than a predetermined second threshold pressure, a message may be provided to the testee that pressure needs to be applied with a smaller intensity.
- the bioimpedance measuring apparatus 100 may be configured to automatically measure the impedance of the test subject when it is determined that an appropriate level of pressure is applied based on the measured value of the pressure sensor. For example, the bioimpedance measuring apparatus 100 may determine that an appropriate level of pressure is applied when the measured value of the pressure sensor is equal to or greater than a predetermined threshold pressure. Alternatively, the bioimpedance measuring apparatus 100 may determine that an appropriate level of pressure is applied when the measured value of the pressure sensor falls within a predetermined threshold range.
- FIG. 1 For convenience of description, in FIG. 1, four electrodes are exemplarily illustrated, but in addition, various electrodes may be applied to the bioimpedance measuring apparatus 100 without limitation.
- FIGS. 2 and 3 are views for explaining a body part of the bioimpedance measuring apparatus according to an embodiment.
- the display 130 may include a first button 210, a second button 220, a liquid crystal unit 230, and an LED lamp 240.
- the first button 210 may be a zero point button that initializes existing measurement data. By clicking the first button 210 before performing a new measurement, the existing data can be initialized.
- the second button 220 may be a mode conversion button capable of mode conversion between a plurality of modes including a first mode for measuring the bioimpedance of the measurement object and a second mode for measuring the circumference or length of the measurement object. have.
- the bioimpedance and circumference of the measurement object may be determined at one time without mode conversion, and in this case, the mode conversion function may not be used.
- the functions of the first button 210 and the second button 220 are not limited to the above-described embodiment, and may be used without limitation as a button for executing various functions required in the bioimpedance measuring device.
- the liquid crystal unit 230 may display whether the measurement object is correctly contacted with a plurality of electrodes, the bio impedance of the measurement object, the circumference, body composition, and body composition. In addition, various information that can be displayed on the bioimpedance measurement device can be displayed without limitation on the liquid crystal unit 230.
- the LED lamp 240 may display information about a state in which at least one of the bio impedance and the circumference of the measurement object is measured. For example, whether the plurality of electrodes are contacted while applying the correct pressure to the measurement object may be displayed on the LED lamp 240. In addition, various information may be displayed on the LED lamp 240 without limitation.
- a charging/communication terminal 310 and a magnetic body 320 may be provided on a rear surface of a body part according to an embodiment.
- the charging/communication terminal 310 may electrically connect an external power supply and a bioimpedance measurement device when charging the bioimpedance measurement device, and connect communication between the external device and the bioimpedance measurement device when communicating with an external device. I can do it.
- the magnetic body 320 may be for preventing the bioimpedance measurement device from being easily separated when mounted in a separate charger.
- FIG. 4 is a view for explaining the operation of the bio-impedance measuring device when pressed by a measurement object according to an embodiment.
- FIG. 4 an exemplary situation is shown when the measurement object 410 approaches and contacts the plurality of electrodes 121 to 124.
- the circumference of the measurement object 410 is greater than a reference value.
- the second electrode 122 is pressed by the measurement object 410 and pivoted toward the grip so that the measurement object 410 is the second electrode
- the depth measurement object 410 may be accommodated more than when it starts to reach the 122.
- the fourth electrode 124 is adjacent to the second electrode 122 and is pressed toward the grip by being pressed by the measurement object 410, and measures more depth than when the measurement object 410 starts to contact the fourth electrode 124
- the object 410 may be accommodated.
- the plurality of electrodes 121 to 124 In order to measure the bioimpedance of the measurement object with high accuracy, it is necessary for the plurality of electrodes 121 to 124 to contact the measurement object with an appropriate pressure. Therefore, it is necessary to determine whether or not at least one of the second electrode 122 and the fourth electrode 124 is pushed by turning to the limit toward the grip, and the bioimpedance measurement result is invalid if it is pressed by turning to the limit. It can be judged as.
- the second electrode 122 and the fourth electrode 124 are independent electrodes, and the degree to which the fourth electrode 124 turns toward the grip may be different from the degree to which the second electrode 122 turns toward the grip. have.
- the bioimpedance when the difference between the degree to which the second electrode 122 turns toward the grip and the degree to which the fourth electrode 124 turns toward the grip is equal to or less than a predetermined threshold. The measurement result can be judged effectively.
- the living body It is determined that the impedance measurement result is not valid, and a message indicating re-contact may be output.
- a message indicating re-contact may be output.
- 5 to 7 are views for explaining the operation of the bio-impedance measuring device according to the measurement site according to an embodiment.
- FIG. 5 shows an example of measuring the bioimpedance at the waist portion 510 of the measurement object according to one embodiment
- FIG. 6 is an example of measuring the bioimpedance at the arm portion 610 of the measurement object according to one embodiment.
- 7 is shown, an example of measuring the bioimpedance in the thigh portion 710 of the measurement object according to an embodiment is illustrated.
- the measurement circuit provided in the bio-impedance measuring apparatus 100 is the degree to which the second electrode turns toward the grip while the measurement object approaches and contacts the plurality of electrodes, and the fourth electrode turns toward the grip It is possible to estimate which part of the measurement object is being touched using at least one of the degree to be performed, the degree to which the first electrode is opened or collected, and the degree to which the third electrode is opened or collected.
- the upper portion of the waist portion 510 of the measurement object is doubled when the back portion is generally flat while the belly portion is convex.
- the part may be represented, and the lower part may represent the back part.
- the estimating apparatus may compare the degree to which the first electrode is opened and the degree to which the third electrode is opened to determine which part of the right side and left side of the measurement object is touching. For example, if the degree to which the first electrode is opened is greater than the degree to which the third electrode is opened, the measurement circuit may determine that it is touching the left flank of the measurement object. Conversely, if the degree to which the third electrode is opened is greater than the degree to which the first electrode is opened, it can be determined that the measurement circuit is touching the right flank of the measurement object.
- a difference may occur between the degree to which the electrode located on the ship side of the measurement object turns toward the grip and the degree of the electrode located on the back side of the measurement object turns toward the grip among the second and fourth electrodes. Based on the difference, it can be estimated that the measurement circuit is touching the waist portion of the measurement object.
- the estimation apparatus may compare the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip to determine which part of the right side and left side of the measurement object is touching. For example, if the degree of rotation of the fourth electrode is greater than the degree of rotation of the second electrode, the measurement circuit may determine that it is touching the left flank of the measurement object. Conversely, if the degree of rotation of the second electrode is greater than the degree of rotation of the fourth electrode, the measurement circuit may determine that it is touching the right side of the measurement object.
- the second electrode and the fourth electrode pivot toward the grip, and the first electrode And the third electrode can be collected inward. Based on the movement of the plurality of electrodes, it can be estimated that the measurement circuit is touching the arm portion of the measurement object.
- the second electrode and the fourth electrode turn toward the grip, and the first electrode And the third electrode may be opened outward.
- the first electrode and the third electrode may be opened similarly or similarly to the case of FIG. 5.
- the difference between the degree of opening of the first electrode and the degree of opening of the third electrode may be within a reference range. Based on the movement of the plurality of electrodes, it can be estimated that the measurement circuit is touching the thigh portion of the measurement object.
- the measurement circuit may estimate the circumference of the measurement object.
- the measurement device determined to touch the waist portion of the measurement object may estimate the waist circumference of the measurement object in consideration of the movement of the plurality of electrodes and the waist shape.
- the degree to which the second electrode turns toward the grip the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third It is possible to estimate to which of the plurality of users a predetermined measurement object corresponds to a user by using at least one of the degree of the electrode being opened or collected. Since the bioimpedance or the body circumference is difficult to change rapidly, it is possible to determine who is currently measuring the bioimpedance by referring to the bioimpedance measured in the past and the body circumference.
- the measurement circuit determines whether the current measurement object corresponds to the father, mother, or daughter based on the movement of a plurality of electrodes. can do.
- FIG. 8 is a view showing an operation method of a bioimpedance measuring apparatus according to an embodiment.
- the bio-impedance measuring device is a first electrode, a second electrode, and a third electrode provided in the bio-impedance measuring device when the measurement object approaches the bio-impedance measuring device and is surrounded and contacted by the bio-impedance measuring device. And the movement of at least one of the fourth electrode.
- the first electrode and the second electrode are coupled to the first axis provided on one side of the bio-impedance measurement device to pivot the first axis.
- the third electrode and the fourth electrode pivot on the second axis by being coupled to a second axis having a different position from the first axis on one axis of the bioimpedance measuring device.
- the bio-impedance measuring apparatus while the measurement object is approached and touched, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode to open
- the perimeter of the measurement object may be estimated by using at least one of the degree of losing or collecting.
- the bioimpedance measuring apparatus can estimate which part of the measurement object is touching by comparing the degree of the second electrode turning toward the grip and the degree of the fourth electrode turning toward the grip while being pressed by the measurement object. have.
- the bioimpedance measuring apparatus can estimate which part of the measurement object is being touched by comparing the degree of opening of the first electrode and the degree of opening of the third electrode while being pressed by the measurement object.
- the bioimpedance measurement apparatus is effective when the difference between the degree of the second electrode turning toward the grip and the degree of the fourth electrode turning toward the grip while being pressed by the measurement object is below a predetermined threshold. Can judge.
- the bio-impedance measuring device is the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode while the measurement object approaches and contacts It is possible to estimate which part of the measurement object is being touched using at least one of the extents that have been opened or collected.
- the bio-impedance measuring device is the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode while the measurement object approaches and contacts It is possible to estimate to which of the plurality of predefined users the measurement object corresponds to at least one of the extents that have been opened or collected.
- the bioimpedance measuring apparatus may determine that the bioimpedance measurement result is not valid if at least one of the second electrode and the fourth electrode is pushed by turning to the limit toward the grip while being pressed by the measurement object.
- the bioimpedance measuring apparatus measures the bioimpedance of the measurement object using at least one of the first electrode, the second electrode, the third electrode, and the fourth electrode.
- the apparatus for measuring bioimpedance may measure the bioimpedance of the measurement object after the movement of the plurality of sensed electrodes is finished.
- the bioimpedance measuring apparatus may determine the body composition of the measurement object based on the bioimpedance and the circumference of the measurement object.
- FIG. 9 is a perspective view of an impedance measuring device according to an embodiment.
- the present measurement device 900 may include a body 1000, a specimen 1100 and a length measurement unit 1200.
- the body 1000 may include a gripping surface, and the body 1000 may be gripped with one hand through the gripping surface.
- the body 1000 may be T-shaped or Y-shaped, but the shape is not limited to this, and any body shape that can grip the body 1000 with one hand is possible.
- the body 1000 may include an upper cover and a lower cover, and the upper cover and the lower cover may be combined or separated from each other.
- the upper cover and the lower cover of the body 1000 may be made of PC+ABS material, but are not limited thereto, and may be made of any known material.
- the sample part 1100 may be coupled to one end of the body 1000, and the length measurement part 1200 may be coupled to the other end of the body 1000, but is not limited to a specific location and may be provided in a separate body. have.
- a specimen part 1100 for measuring impedance and a length measurement part 1200 for measuring the circumference or length of a measurement part can be included in one device, a living body is a single device without the need for a separate device. Impedance can be measured and calculated.
- body composition can be measured and calculated only with this measuring device based on the measured impedance value and the circumferential or length value of the measurement site. However, in order to further increase the precision and accuracy of body composition measurement, it can be linked with other body composition measurement equipment.
- the measuring device 900 may further include a measuring circuit and a control unit.
- the measurement circuit may be included in the body 1000 of the measurement device 900.
- the measurement circuit may measure the impedance of the subject through the electrodes of the subject 1100.
- the measurement circuit can calculate the body fat mass based on the measured impedance.
- the control unit may receive a value for the calculated body fat amount and display it through the liquid crystal unit 1013 of the display unit 1010.
- the control unit may receive the length or circumference value measured by the length measurement unit 1200 and display it on the liquid crystal unit 1013 of the display unit 1010.
- FIGS. 10A and 10B are schematic diagrams showing the configuration of a body of a bioimpedance measuring apparatus according to an embodiment.
- the body 1000 may include a display unit 1010, a fixing unit 1001, and a charging/communication terminal 1002.
- the display unit 1010 may be disposed on the outer surface of the upper cover of the body 1000, and may include a first button 1011, a second button 1012, a liquid crystal unit 1013, and an LED lamp 1014. have.
- the first button 1011 may serve to initialize the existing measurement data. To obtain data by a new measurement, the existing data can be initialized by clicking the first button before measurement. After measuring the circumference by the length measuring unit 1200, the impedance may be measured by the sample unit 1100 after clicking the first button to measure the impedance.
- the second button 1012 may provide a function for mode conversion between a plurality of modes including a first mode for measuring impedance and a second mode for measuring the circumference or length of the subject.
- the functions of the first button 1011 and the second button 1012 are not limited to those mentioned above, and the display unit 1010 may further include buttons having other functions.
- the liquid crystal unit 1013 may display whether or not the electrode of the sample unit, which will be described later, is correctly contacted with the subject, an impedance measurement value, and the like.
- the circumference or length of the measurement site can be displayed.
- the liquid crystal unit 1013 may further display an additional third mode, and in the third mode, may display body fat amount and body fat percentage as well as impedance measurements, and external fat and visceral fat. Each quantity can be displayed, and overall obesity can be displayed.
- the LED lamp 1014 it is possible to determine whether the electrode is contacted while applying the correct pressure to the subject by a pressure sensor attached to the electrode, which will be described later. In order to accurately measure the impedance of the subject, whether the subject is properly contacted with the electrode can be determined by measuring the pressure applied to the electrode. By lighting the LED lamp 1014, it can be determined whether or not the subject is properly contacted with the electrode.
- the number of LED lights 1014 is shown as three, but is not limited thereto.
- the pressure display unit for displaying the degree of pressure of the electrode contacting the subject can be displayed by various means and methods.
- the pressure applied to the electrode by the subject may be displayed as a pressure gauge on the liquid crystal unit 1013 of the display unit 1010.
- the pressure applied to the electrode may be displayed on the liquid crystal unit 1013 through a gauge displayed as a bar, for example. According to this, the user can smoothly measure the impedance of the subject by appropriately adjusting the pressure applied to the electrode with reference to the displayed pressure information.
- the fixing part 1001 can be easily separated when the measuring device is mounted on a separate charger, and may be made of a material having magnetism.
- the charging/communication terminal 1002 may electrically connect the power supply source and the present measurement device when charging the power of the present measurement device.
- 11A to 12C are schematic diagrams of various embodiments of a sample portion of a bioimpedance measuring apparatus according to an embodiment.
- the sample portion 1100 may be coupled to one end of the body 1000.
- the sample portion 1100 may include a plurality of segment members and a plurality of electrodes.
- the electrodes may be disposed on one surface of the plurality of segment members.
- the plurality of segment members are rotatably coupled to each other so that the angle can be adjusted according to the measurement area or body shape. According to this, the impedance can be measured regardless of the shape or body shape of the measurement site.
- the plurality of electrodes may include an electrode for current application and an electrode for voltage measurement.
- the sample portion 1100a includes a plurality of segment members 1110a to 1130a and electrodes 1111a disposed on one surface of each segment member. To 1131a).
- the first segment member 1110a to the third segment member 1130a may be rotatably coupled to each other.
- the number of segment members is not limited to three shown in FIG. 11A.
- the second segment member 1120a may be coupled to one end of the body 1000 and one or more pairs of electrodes may be disposed on one surface. However, the number of electrodes disposed is not limited thereto.
- the first segment member 1110a and the third segment member 1130a may be rotatably coupled to both ends of the second segment member 1120a, and one or more electrodes may be disposed on one surface. However, the number of electrodes disposed is not limited thereto.
- the electrode may include one or more pairs of current applying electrodes and one or more pairs of voltage measuring electrodes.
- the specimen 1100a according to the first embodiment may be connected to the angle adjusting unit 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting unit 10, but the angle adjusting unit 10 and The angle of each segment member can be adjusted without being connected.
- the sample portion 1100b includes a plurality of segment members 1110b to 1140b and electrodes 1111b disposed on one surface of each segment member. To 1141b).
- the first segment member 1110b to the fourth segment member 1140b may be rotatably coupled to each other.
- the number of segment members is not limited to four shown in FIG. 11B.
- the second segment member 1120b and the third segment member 1130b may be coupled to one end of the body 1000, and one or more electrodes may be disposed on one surface, but the number of electrodes arranged is not limited thereto.
- the first segment member 1110b and the fourth segment member 1140b may be rotatably coupled to the second segment member 1120b and the third segment member 1130b, respectively, and one or more electrodes may be disposed on one surface. The number of electrodes disposed is not limited thereto.
- the specimen 1100b according to the second embodiment may be connected to the angle adjusting unit 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting unit 10, but the angle adjusting unit 10 and The angle of each segment member can be adjusted without being connected.
- the sample portion 1100c includes a plurality of segment members 1110c to 1160c and electrodes 1111c disposed on one surface of each segment member. , 1131c, 1141c and 1161c).
- the first segment member 1110c to the sixth segment member 1160c may be rotatably coupled to each other.
- the hinge part to which the first segment member 1110c and the second segment member 1120c are connected and the hinge part to which the fifth segment member 1150c and the sixth segment member 1160c are connected may be combined with the body 1000. However, it is not limited to this, and other hinge portions may be coupled to the body.
- the number of segment members is not limited to six shown in FIG. 12A.
- each segment member may maintain the state shown in the left figure of FIG. 12A by an elastic body (not shown).
- the sample part 1100c according to the third embodiment may be connected to the angle adjusting part 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting part 10, but the angle adjusting part 10 and The angle of each segment member can be adjusted without being connected.
- 12A when the second electrode 1131c and the third electrode 1141c of the sample part 1100c are brought into contact with the subject, the first segment member 1110c and the sixth segment member 1160c ) May rotate to contact the subject.
- the sample portion 1100c is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12A again.
- the sample portion 1100d is one sample member 1110d and an electrode 1111d disposed on one surface of the sample member 1110d , 1112d, 1113d and 1114d).
- the number of sample members 1110d is not limited to one shown in FIG. 12B, and may further include a plurality of segmented sample members 1110d.
- the sample member 1110d of the sample part 1100d according to the fourth embodiment may be made of an elastic material, and the sample member 1110d is bowed in the direction of the body 1000 as the sample member 1110d is pressed. Can be bent into.
- the sample member 1110d may maintain a state as shown in the left figure of FIG. 12B.
- the specimen member 1110d is brought into contact with the specimen, the specimen member 1110d is bent in a bow shape as shown in the right figure of FIG. 12B in accordance with the shape and size of the specimen, and each electrode 1111d to 1114d is attached to the specimen. All can be contacted.
- the sample portion 1100d is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12B again.
- the specimen 1100d is connected to the angle adjusting unit 10, which will be described later, so that the curvature radius or angle of the specimen member 1110d in which the electrodes are disposed so that all the electrodes contact the subject is adjusted by the angle adjusting unit 10.
- the curvature radius or angle of the specimen member 1110d may be adjusted by making the specimen member 1110d made of an elastic material contact the specimen to bend without being connected to the angle adjusting unit 10.
- the sample part 1100e may include a plurality of first sample members to fourth detection members 1110e to 1140e.
- the number of sample members is not limited to four shown in FIG. 12C.
- each sample member is composed of the same components, a common part will be described mainly for the first sample member 1110e.
- the first sample member 1110e may include a first pillar member 1111e, an electrode angle adjusting member 110e, and a first electrode 1112e.
- the first pillar member 1111e may be a hollow member.
- the first pillar member 1111e may include an elastic body inside the hollow.
- the elastic body may be any known one, and may be, for example, a spring.
- the first pillar member 1111e may move in a direction in which the elastic body is compressed as the electrodes contact the subject. When the electrodes are not in contact with the subject, the elastic body is relaxed so that the first pillar member 1111e can return to the initial state as shown in the left figure of FIG. 12C.
- the electrode angle adjusting member 110e can adjust the angle of the electrodes 1112e to 1142e contacting the subject.
- the electrode angle adjusting member 110e may be, for example, a known ball bearing, but is not limited thereto, and any one can be used as long as the angle of the electrode contacting the subject can be adjusted.
- each of the pillar members 1111e to 1241e can move in the direction of compressing the elastic body included therein, as shown in the right figure of FIG.
- the angle of each of the electrodes 1112e to 1142e may be adjusted according to the shape of the subject to be tested.
- the specimen 1100e When the specimen 1100e is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12C.
- the specimen 1100e is connected to the angle adjusting unit 10, which will be described later, but the angle of each electrode can be adjusted by the angle adjusting unit 10 so that all electrodes contact the subject, but the angle adjusting unit 10
- the angle of each electrode can be adjusted so that all of the electrodes are in contact with the subject by simply connecting the electrodes by applying a certain amount of pressure to the subject without being connected.
- the electrodes (1121a and 1122a in the case of the first embodiment) disposed in the center of the sample parts 1100a to 1100e according to the first to fifth embodiments may all be electrodes for voltage measurement.
- the electrodes (1121a and 1122a in the first embodiment) that are located in the center of the sample unit 1100 are not necessarily electrodes for voltage measurement, and in some cases, at least one electrode may be a current application electrode.
- the electrodes directly contacting the subject may be made of any known material, but preferably made of ABS material.
- the electrodes can be plated with chromium on the surface.
- the plating material is not limited to chromium, and any material can be plated as long as it does not cause skin allergies or the like due to direct contact with the subject and does not easily peel off.
- Each of the segment members of the specimen 1100 may be made of PC+ABS material, but is not limited thereto, and may be made of any known material.
- the sample portion 1100 may further include a sample portion cover.
- the sample part cover may be respectively coupled to the outer surfaces of the first segment member 1110a and the third segment member 1130a of the sample part 1100a, respectively.
- the outer surfaces of the first segment member 1110b and the fourth segment member 1140b may be respectively coupled.
- the specimen cover may be made of PC+ABS material, but is not limited thereto, and may be made of any known material.
- At least a portion of the electrode may include a pressure sensor disposed on one side of the electrode.
- the pressure sensor may be disposed between the electrode and the sample portion 1100.
- the position is not limited to this, and any position suitable for measuring the pressure applied to the electrode by the subject may be used.
- At least a part of the electrode may include a pressure sensor, but preferably, a pressure sensor may be included in the electrodes (1121a and 1122a in the first embodiment) positioned in the center of the sample 1100.
- the electrodes may include an elastic material on one side or inside. According to the elastic material, the electrode comes into contact with the electrode, the electrode is pressed and drawn inward, the pressure sensor disposed on one side of the electrode is pressed to measure the pressure, and after the pressure measurement and impedance measurement are finished, the electrode is inspected. When released from, the electrode may be positioned in an initial state before the pressure sensor is pressed.
- the pressure display unit may be, for example, a pressure gauge appearing on the liquid crystal unit 1013 or an LED lamp 1014 separately installed on the body.
- a pressure gauge may be displayed through the liquid crystal unit 1013 of the display unit 1010, and whether the electrode is properly contacted with the subject may be displayed.
- the pressure may be displayed not only through the liquid crystal unit 1013 of the display unit 1010, but also through the LED lamp 1014.
- the measurement device 900 may be configured to automatically measure the impedance of the subject through a measurement circuit because the electrode is determined to be in proper contact with the subject. That is, it can be configured to measure the impedance when a certain level of pressure (predetermined threshold) or more.
- the precision and accuracy of the impedance measurement can be improved.
- FIGS. 13A and 13B are perspective views of a detailed configuration of an angle adjusting unit, which is an embodiment of a means for adjusting the angle of a specimen part of a bioimpedance measuring apparatus according to an embodiment.
- the bioimpedance measuring apparatus may further include an angle adjusting unit 10 that is a means for adjusting the angle of the sample unit 1100.
- the angle adjusting unit 10 may include an adjusting mechanism 1020, a first connector 1030, a second connector 1040, and a rotation coupling unit 1050.
- the angle adjusting unit 10 may serve to adjust the angle between the segment members of the specimen 1100.
- the adjustment mechanism 1020 is coupled to the inner surface of the lower cover of the body 1000 but can be rotatably coupled around the rotation axis 1022.
- the adjusting mechanism 1020 may penetrate the lower cover of the body 1000 and protrude to the outer surface of the lower cover.
- the adjusting mechanism 1020 may rotate around the rotating shaft 1022, and the plurality of connecting leg portions 1021 are connected to the first connector 1030, which will be described later.
- the first connector 1030 can be reciprocated.
- the plurality of connecting leg portions 1021 may be rotatably coupled with the first connector 1030 described later.
- the adjustment mechanism 1020 may be made of PC+ABS material, but is not limited thereto, and may be made of any known material as long as it can withstand durability or abrasion resistance that can withstand repeated movements by user manipulation.
- the first connector 1030 may have an adjusting mechanism 1020 coupled to one end, and a second connector 1040 coupled to the other end.
- the first connector 1030 may serve as an intermediate leg connecting the adjustment mechanism 1020 and the second connector.
- the first connector 1030 may perform a linear reciprocating motion.
- the shape of the first connector 1030 may be a' ⁇ ' shape or a'H' shape, but is not limited thereto, and any shape is possible as long as the adjustment mechanism 1020 and the second connector 1040 can be connected.
- the first connector 1030 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or abrasion resistance to withstand repetitive movement.
- the second connector 1040 may include a linear motion member 1041 and a connection member 1043 including a plurality of coupling grooves 1042.
- the linear motion member 1041 may perform a linear reciprocation motion by the first connector 1030 that performs a linear reciprocation motion by pressing or releasing the adjustment mechanism 1020. As the linear motion member 1041 linearly reciprocates, the rotation coupling unit 1050, which will be described later, may rotate. A plurality of coupling grooves 1042 may be formed on both sides of the linear motion member 1041 in the longitudinal direction. One end of the rotation coupling part 1050 to be described later may be coupled to the plurality of coupling grooves 1042.
- the linear motion member 1041 may be a horizontally elongated curved bar shape, but is not limited thereto, and any shape may be used as long as it can rotate the rotation coupling unit 1050 described later by performing a linear reciprocation motion.
- connection member 1043 is disposed on the bottom surface of the linear motion member 1041 to couple the second connector 1040 and the first connector 1030.
- the connecting member 1043 is coupled to the other end of the first connector 1030, and may be rotatably coupled to the other end of the first connector 1030.
- the second connector 1040 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or abrasion resistance to withstand repeated linear reciprocating motion.
- the rotation coupling part 1050 may rotate about the rotation axis.
- the rotation coupling unit 1050 may be arranged in a pair of left and right, but is not limited thereto.
- the rotating coupling part 1050 may be coupled to each segmented member of the sample part 1100.
- the first segment member 1110 and the third segment member 1130 may be coupled to the rotation coupling part 1050.
- the first segment member 1110 and the fourth segment member 1140 may be coupled to the rotation coupling part 1050.
- each segment member coupled to the rotating coupling portion 1050 may rotate.
- the rotating coupling part 1050 may be coupled to the second connector 1040.
- the protrusion 1051 may be formed at one end of the rotation coupling part 1050 and the protrusion 1051 may be coupled to be able to reciprocate by sliding in the longitudinal direction of the coupling groove 1042.
- the protrusion 1051 may be located outside the coupling groove 1042 when the adjusting mechanism 1020 is not pressed.
- the rotating coupling part 1050 rotates and the protrusion 1051 of the rotating coupling part 1050 is coupled. It can move by sliding from the outside of the groove 1042 to the inside.
- each of the segmented members of the sample portion 1100 coupled with the rotating coupling portion 1050 can rotate.
- the angles formed by the first segment member 1110 and the third segment member 1130 with the second segment member 1120 may increase. have.
- the first segment members 1110 to 4th segment members 1140 may be rotated so that the angle between all the segment members coupled to each other increases.
- the rotation coupling portion 1050 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or wear resistance to withstand repetitive rotational motion.
- the rotating coupling part 1050 may include an elastic body therein. When the adjusting mechanism 1020 is not pressed by the elastic body included in the inside, each segmented member coupled to each rotational coupling part 1050 can maintain a closed state inward.
- the elastic body may use a general spring, but is not limited thereto, and any material may be used as long as it is suitable to maintain each segmented member in a closed state when the adjusting mechanism 1020 is not pressed.
- the angle between each segment member is increased by pressing the adjustment mechanism 1020, at least a part of the plurality of segment members is brought into contact with the measurement part of the subject, and then the pressure of the adjustment mechanism 1020 is released to release the angle between each segment member.
- the segment members that are later contacted with the subject may pressurize the subject under pressure by a spring disposed inside the rotating coupling part 1050. That is, according to this, the accuracy and accuracy of the impedance measurement can be improved because it is in contact with the subject at a constant pressure by the spring regardless of the shape or thickness of the subject and the measurement part.
- the angle adjustment unit 10 may be applied to be connected to the sample unit 1100a according to the first embodiment and the sample unit 1100b according to the second embodiment, but is not limited thereto. It is also applied to be connected to the sample portion of the embodiment to adjust the angle of each segment member or each electrode, the angle of the sample member, or the radius of curvature by the angle adjusting unit 10.
- the angle adjusting part 10 is only one embodiment of the adjusting means for adjusting the angle between each segmented member of the sample part 1100, and the sample without the angle adjusting part 10 according to each embodiment of the sample part 1100 as described above
- the angle of each segment member or electrode of the sub 1100, the angle of the sample member, or the radius of curvature may be adjusted.
- 14A and 14B are schematic views of a state in which bioimpedance is measured by the bioimpedance measuring apparatus according to the present disclosure.
- the first segment member 1110 and the second segment member 1120 of the measuring device have a first angle ( 1) can be achieved.
- a second angle formed by the first segment member 1110 and the second segment member 1120 of the measuring device according to an embodiment of the present disclosure is the first angle ( It can be seen that it is increased compared to 1).
- the rotation coupling part 1050 coupled with the sample part 1100 may further include an angle sensor.
- the angle value between each segmented member that is rotated by the angle sensor included in the rotation coupling unit 1050 can be measured, and through this angle value, the circumference, length, or size of the measurement site can be grasped.
- the shape of the measurement site can be grasped.
- 15A and 15B are schematic diagrams of a length measuring unit of the bioimpedance measuring apparatus according to the present disclosure.
- 16 is a schematic diagram of a state in which the circumference is measured by the bioimpedance measuring apparatus according to the present disclosure.
- the length measurement unit 1200 may serve to measure the circumference or length of the subject.
- the length measuring unit 1200 may be rotatably coupled to the other end of the body 1000.
- the length measurement unit 1200 may rotate around a rotation axis passing through the other end of the body 1000.
- the rotating shaft may penetrate the other end of the body 1000 vertically or horizontally, but the through direction is not limited to this, and the rotating shaft may penetrate the other end of the body 1000 in any direction, and the length measuring unit ( 1200) may rotate around this axis of rotation.
- the length measurement unit 1200 may include a central portion 1210 and an outer portion 1220.
- the central portion 1210 may have a hollow disc shape, but is not limited thereto, and may have any shape, for example, a square plate or a hexagonal plate.
- the material of the central portion 1210 may be made of PC ABS or POM, but is not limited thereto, and any known material may be used.
- the outer portion 1220 may have a protrusion formed on the outer surface.
- the outer portion 1220 may have a donut shape and may be fitted with the central portion 1210.
- the outer portion 1220 may directly contact the subject to measure the circumference or length of the measurement portion.
- the material of the outer portion 1220 may be made of silicon, but is not limited thereto, and any known material may be used as long as the length measuring unit 1200 provides sufficient friction with the subject so that it does not slide and slide on the surface of the subject. It is also possible.
- the length measuring unit 1200 may perform rolling operation on a part of the surface of the subject.
- the length measurement unit 1200 may measure the circumference or length of the subject based on the number of revolutions measured by including an encoder therein. For example, if the length measuring unit 1200 is rolled by the circumference or length of 1/2 of the measuring unit, twice the circumference or the length value calculated based on the number of revolutions of the length measuring unit 1200 is the total of the measuring unit. It can be circumferential or length.
- the subject is not a rigid body when measuring the circumference or length of the subject by the length measuring unit 1200, the subject is pressed by the elasticity of the subject. Simply applying double does not yield an exact circumference or length. Therefore, it is possible to more accurately measure the total circumference or length of the subject by multiplying the appropriate correlation coefficient obtained by the experiment according to the total circumference or the elasticity of the subject according to the length and the amount of fat.
- the embodiments described above may be implemented with hardware components, software components, and/or combinations of hardware components and software components.
- the devices, methods, and components described in the embodiments include, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors (micro signal processors), microcomputers, and field programmable gates (FPGAs). It can be implemented using one or more general purpose computers or special purpose computers, such as arrays, programmable logic units (PLUs), microprocessors, or any other device capable of executing and responding to instructions.
- the processing device may run an operating system (OS) and one or more software applications running on the operating system.
- the processing device may access, store, manipulate, process, and generate data in response to the execution of the software.
- OS operating system
- the processing device may access, store, manipulate, process, and generate data in response to the execution of the software.
- a processing device may be described as one being used, but a person having ordinary skill in the art, the processing device may include a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that may include.
- the processing device may include a plurality of processors or a processor and a controller.
- other processing configurations such as parallel processors, are possible.
- the software may include a computer program, code, instruction, or a combination of one or more of these, and configure the processing device to operate as desired, or process independently or collectively You can command the device.
- Software and/or data may be interpreted by a processing device or to provide instructions or data to a processing device, of any type of machine, component, physical device, virtual equipment, computer storage medium or device. , Or may be permanently or temporarily embodied in the transmitted signal wave.
- the software may be distributed on networked computer systems, and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
- the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
- the computer-readable medium may include program instructions, data files, data structures, or the like alone or in combination.
- the program instructions recorded on the medium may be specially designed and constructed for the embodiments or may be known and usable by those skilled in computer software.
- Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic media such as floptical disks.
- -Hardware devices specifically configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
- program instructions include high-level language code that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler.
- the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
- the components described in the embodiments may be one or more programmable logic devices (Programmable Logic Devices) such as one or more Digital Signal Processors (DSPs), Processors, Controllers, Application Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs).
- programmable Logic Devices such as one or more Digital Signal Processors (DSPs), Processors, Controllers, Application Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs).
- DSPs Digital Signal Processors
- ASICs Application Specific Integrated Circuits
- FPGAs Field Programmable Gate Arrays
- Logic Element other electronic devices, and hardware components including one or more of combinations thereof.
- At least some of the functions or processes described in the embodiments may be implemented by software, and the software may be recorded in a recording medium.
- the components, functions and processes described in the embodiments may be implemented by a combination of hardware and software.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Disclosed are a bioimpedance measurement device and an operation method thereof. The disclosed bioimpedance measurement device comprises: a body part accommodating a measurement circuit and including a grip that can be gripped by hand; first and second electrodes which are coupled to a first shaft provided on one side of the body part and turn the first shaft; and third and fourth electrodes which are coupled to a second shaft that is disposed at a different position on the one side of the body part from the first shaft, and which turn the second shaft, wherein the bioimpedance of a measurement target is measured when the measurement target is brought close so as to be surrounded by and put in contact with the first electrode, the second electrode, the third electrode, and the fourth electrode.
Description
아래의 설명은 생체 임피던스 측정 장치 및 그 동작 방법에 관한 것이다.The following description relates to a bioimpedance measuring apparatus and its operation method.
지방과 근육 등의 전기적 저항이 다른 것을 이용해 체조성을 측정하는 장치가 종래에 알려져 있다. 체조성 측정 장치는 측정하고자 하는 부위에 전극을 접촉시켜 생체 임피던스를 측정하여 이를 통해 체조성을 결정할 수 있다. 체조성을 정확하게 산출하기 위해서는 생체 임피던스뿐만 아니라 측정부위의 형상 정보도 필요하다. 따라서 생체 임피던스 측정의 정확도와 더불어 측정부위의 형상을 정확히 파악하는 것이 중요하다. 또한, 간편한 방식으로 임피던스 및 측정부위의 둘레 등을 측정할 수 있는 특징, 별도의 보조장치 없이 단일 장치로서 체조성을 측정할 수 있는 특징 등은 사용자의 편의성 향상 측면에서 중요하다.Devices for measuring body composition using different electrical resistances such as fat and muscle are conventionally known. The body composition measuring apparatus may determine the body composition by measuring the bioimpedance by making an electrode contact the site to be measured. In order to accurately calculate body composition, not only the bioimpedance but also the shape information of the measurement site is required. Therefore, it is important to accurately determine the shape of the measurement site along with the accuracy of the bioimpedance measurement. In addition, features that can measure the impedance and the circumference of the measurement site in a simple manner, and features that can measure body composition as a single device without a separate auxiliary device are important in terms of improving user convenience.
본 발명은 한 손으로 파지 가능하여 사용 편의성이 있고 별도의 장치 필요없이 하나의 장치로 생체 임피던스를 측정할 수 있으며, 체형 파악에 있어서 보다 정확도를 높일 수 있고 측정부위의 형상에 상관없이 전극의 접촉 및 압박 정도를 일정하게 유지하여 체조성 측정의 정밀도 및 정확도를 높일 수 있는 생체 임피던스 측정장치를 제공할 수 있다.The present invention can be gripped with one hand for ease of use and can measure bioimpedance with a single device without the need for a separate device, and can increase accuracy in grasping the body shape and contact electrodes regardless of the shape of the measurement site. And it is possible to provide a bio-impedance measuring apparatus capable of increasing the precision and accuracy of the body composition measurement by maintaining the compression degree constant.
본 발명은 임피던스 측정가능한 부위가 복부 등의 특정한 부위에 한정되지 않고, 원하는 모든 부위의 임피던스를 측정할 수 있는 생체 임피던스 측정장치를 제공할 수 있다.The present invention is not limited to a specific site, such as the abdomen, which can measure the impedance, and can provide a bioimpedance measuring device capable of measuring the impedance of all desired sites.
본 발명은 생체 임피던스 측정과 측정부위의 길이 및 둘레 측정이 하나의 디바이스로 수행될 수 있으므로 별도의 장치가 필요치 않아 사용 편의성이 향상되고 휴대성(portability)이 향상될 수 있다.In the present invention, since the measurement of the bioimpedance and the measurement of the length and the circumference of the measurement site can be performed by a single device, a separate device is not required, thereby improving convenience of use and improving portability.
일실시예에 따른 생체 임피던스 측정 장치는 측정 회로를 수용하며 손으로 파지가능한 그립을 포함하는 몸체부; 상기 몸체부의 일측에 구비되는 제1 축에 결합하여 상기 제1 축을 선회하는 제1 전극 및 제2 전극; 및 상기 몸체부의 상기 일측에서 상기 제1 축과 위치를 달리하는 제2 축에 결합하여 상기 제2 축을 선회하는 제3 전극 및 제4 전극을 포함하고, 측정 대상체가 접근하여 상기 제1 전극, 상기 제2 전극, 상기 제3 전극, 및 상기 제4 전극에 둘러싸이며 접촉할 때 상기 측정 대상체의 생체 임피던스를 측정할 수 있다.An apparatus for measuring bioimpedance according to an embodiment includes a body portion that accommodates a measurement circuit and includes a grip that can be gripped by hand; A first electrode and a second electrode coupled to a first axis provided on one side of the body portion to orbit the first axis; And a third electrode and a fourth electrode coupled to a second axis having a position different from the first axis on the one side of the body part to orbit the second axis, and the measurement object approaches the first electrode, the When surrounded and in contact with the second electrode, the third electrode, and the fourth electrode, the bioimpedance of the measurement object may be measured.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 제2 전극은 상기 측정 대상체에 의해 눌러져서 상기 그립 쪽으로 선회함으로써, 상기 측정 대상체가 상기 제2 전극에 닿기 시작할 때보다 더 깊이 상기 측정 대상체를 수용할 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the second electrode is pressed by the measurement object and pivots toward the grip, so that the measurement object can accommodate the measurement object deeper than when the measurement object starts to contact the second electrode. have.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 제2 전극은 상기 측정 대상체가 이격하면 다시 선회 전의 위치로 복원하도록 탄성체의 지지를 받을 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the second electrode may be supported by the elastic body to restore the position to be measured before the turning of the measurement object.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 제4 전극은 상기 제2 전극과 이웃하며 상기 측정 대상체에 의해 눌러져서 상기 그립 쪽으로 선회함으로써, 상기 측정 대상체가 상기 제4 전극에 닿기 시작할 때보다 더 깊이 상기 측정 대상체를 수용할 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the fourth electrode is adjacent to the second electrode and is pressed by the measurement object to turn toward the grip, so that the measurement object is deeper than when the measurement object starts to contact the fourth electrode The measurement object can be accommodated.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도는 상기 제2 전극이 상기 그립 쪽으로 선회화는 정도와 상이할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the degree to which the fourth electrode turns toward the grip may be different from the degree to which the second electrode turns toward the grip.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도와 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도를 비교함으로써 상기 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the measurement circuit compares the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip while being pressed by the measurement object. By doing so, it is possible to estimate which part of the measurement object is touching.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제1 전극이 벌어진 정도와 상기 제3 전극이 벌어진 정도를 비교함으로써 상기 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the measurement circuit compares the degree to which the first electrode has been opened and the degree to which the third electrode has been opened while being pressed by the object to be measured. You can estimate whether it is touching.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도와 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도의 차이가 미리 지정된 임계치 이하일 때의 상기 생체 임피던스 측정 결과를 유효하게 판단할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the measurement circuit, while being pressed by the measurement object, is the difference between the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip It is possible to effectively determine the bioimpedance measurement result when is equal to or less than a predetermined threshold.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제1 전극이 벌어지거나 모아진 정도, 및 상기 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the measurement circuit may include, while the measurement object approaches and contacts, the degree to which the second electrode turns to the grip, the degree to which the fourth electrode turns to the grip, the It is possible to estimate which part of the measurement object is being touched using at least one of a degree in which the first electrode is opened or collected, and a degree in which the third electrode is opened or collected.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제1 전극이 벌어지거나 모아진 정도, 및 상기 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체가 미리 지정된 복수의 사용자 중 누구에 대응하는지를 추정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the measurement circuit may include, while the measurement object approaches and contacts, the degree to which the second electrode turns to the grip, the degree to which the fourth electrode turns to the grip, the It is possible to estimate which of the plurality of users the measurement object corresponds to in advance by using at least one of a degree in which the first electrode is opened or collected, and a degree in which the third electrode is opened or collected.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는, 상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제2 전극 및 상기 제4 전극 중 적어도 하나가 상기 그립 쪽으로 한계치까지 선회하여 눌리고 있다면, 상기 생체 임피던스 측정 결과가 유효하지 않은 것으로 판단할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, if the measurement circuit is being pressed by the measurement object, at least one of the second electrode and the fourth electrode is pushed by turning to a limit toward the grip, It can be determined that the impedance measurement result is not valid.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 제1 전극 및 상기 제3 전극은 접근하여 접촉되는 측정 대상체의 둘레에 따라 벌어지거나 또는 모아질 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the first electrode and the third electrode may be opened or collected according to the circumference of the measurement object to be approached and contacted.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 측정 회로는 상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체의 둘레를 추정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the measurement circuit may include a degree to which the second electrode turns toward the grip, a degree to which the fourth electrode turns toward the grip while the measurement object approaches and contacts the first. The circumference of the measurement object may be estimated using at least one of a degree in which the electrode is opened or collected and a degree in which the third electrode is opened or collected.
일실시예에 따른 생체 임피던스 측정 장치의 동작 방법은 측정 대상체가 상기 생체 임피던스 측정 장치에 접근하여 상기 생체 임피던스 측정 장치에 둘러싸이며 접촉할 때, 상기 생체 임피던스 측정 장치에 구비된 제1 전극, 제2 전극, 제3 전극 및 제4 전극 중 적어도 하나의 움직임을 감지하는 단계; 및 상기 제1 전극, 상기 제2 전극, 상기 제3 전극 및 상기 제4 전극 중 적어도 하나를 이용하여, 상기 측정 대상체의 생체 임피던스를 측정하는 단계를 포함하고, 상기 제1 전극 및 상기 제2 전극은 상기 생체 임피던스 측정 장치의 일측에 구비되는 제1 축에 결합하여 상기 제1 축을 선회하고, 상기 제3 전극 및 상기 제4 전극은 상기 생체 임피던스 측정 장치의 상기 일축에서 상기 제1 축과 위치를 달리하는 제2 축에 결합하여 상기 제2 축을 선회한다.A method of operating a bioimpedance measuring apparatus according to an embodiment includes a first electrode and a second electrode provided in the bioimpedance measuring apparatus when a measurement object approaches the bioimpedance measuring apparatus and is surrounded and contacted by the bioimpedance measuring apparatus. Sensing movement of at least one of the electrode, the third electrode, and the fourth electrode; And measuring a bioimpedance of the measurement object by using at least one of the first electrode, the second electrode, the third electrode, and the fourth electrode, wherein the first electrode and the second electrode are measured. Is coupled to a first axis provided on one side of the bioimpedance measurement device to orbit the first axis, and the third electrode and the fourth electrode are positioned with respect to the first axis on the one axis of the bioimpedance measurement device. The second axis is pivoted by being coupled to a different second axis.
일실시예에 따른 생체 임피던스 측정 장치의 동작 방법에서 상기 움직임을 감지하는 단계는 상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체의 둘레를 추정하는 단계를 포함할 수 있다.In the operation method of the bio-impedance measuring apparatus according to an embodiment, the detecting of the movement may include a degree to which the second electrode turns toward the grip while the measurement object approaches and contacts, and the fourth electrode toward the grip. And estimating the circumference of the measurement object using at least one of a degree of turning, a degree of opening or collecting of the first electrode, and a degree of opening or collecting of the third electrode.
일실시예에 따른 생체 임피던스 측정 장치는 파지면을 포함하여 한 손으로 파지가능한 T형 또는 Y형 몸체; 상기 몸체의 일단에 결합되며, 서로 회전 가능하게 결합되는 복수의 분절부재로 구성되고, 일면에 적어도 2개의 전류인가용 전극과 적어도 2개의 전압측정용 전극이 배치되는 검체부; 및 상기 전류인가용 전극들과 상기 전압측정용 전극들을 이용하여, 피검체의 임피던스를 측정하는 측정회로를 포함하며, 상기 검체부는, 상기 복수의 분절부재에 배치되는 하나 이상의 전극이 상기 피검체의 형상 또는 두께에 대응하여 피검체에 접촉하도록 각 분절부재간의 각도가 조절된다.An apparatus for measuring bioimpedance according to an embodiment includes a T-type or Y-type body that can be gripped with one hand, including a gripping surface; A sample portion coupled to one end of the body, composed of a plurality of segment members rotatably coupled to each other, and having at least two electrodes for applying current and at least two electrodes for measuring voltage on one surface; And a measurement circuit for measuring the impedance of the subject using the current application electrodes and the voltage measurement electrodes, wherein the sample part includes one or more electrodes disposed on the plurality of segment members. The angle between each segment member is adjusted to correspond to the shape or thickness to contact the subject.
일실시예에 따른 생체 임피던스 측정 장치는 상기 파지면에 배치되어 상기 검체부의 하나 이상의 분절부재의 회전을 조절하는 조절기구를 더 포함하며, 상기 검체부는, 상기 조절기구와 연결되어 상기 조절기구의 조작에 의해 상기 복수의 분절부재 간의 각도가 증가하며, 상기 복수의 전극 중 적어도 일부를 피검체의 측정부위에 접촉시킨 후 상기 조절기구의 조작상태를 해제하는 경우, 상기 복수의 분절부재에 배치되는 전극이 상기 피검체의 형상 또는 두께에 대응하여 피검체에 접촉하도록 각 분절부재간의 각도가 조절될 수 있다.The apparatus for measuring bioimpedance according to an embodiment further includes an adjustment mechanism disposed on the gripping surface to adjust rotation of one or more segment members of the specimen, and the specimen is connected to the adjustment mechanism to operate the adjustment mechanism. When the angle between the plurality of segment members is increased, and when at least a portion of the plurality of electrodes is brought into contact with the measurement part of the subject, and the operation state of the adjustment mechanism is released, the electrodes are arranged on the plurality of segment members. The angle between each segment member may be adjusted to correspond to the shape or thickness of the subject to contact the subject.
일실시예에 따른 생체 임피던스 측정 장치는 상기 몸체의 타단에 결합되며 피검체의 둘레 또는 길이를 측정하는 길이측정부를 더 포함하며, 상기 길이측정부는, 상기 몸체의 타단을 관통하는 회전축을 중심으로 회전하며, 피검체의 표면에서 구름작동을 하여 측정되는 회전수를 기초로 피검체의 둘레 또는 길이를 측정할 수 있다.The bioimpedance measuring apparatus according to an embodiment is coupled to the other end of the body and further includes a length measuring unit for measuring the circumference or length of the subject, and the length measuring unit rotates about a rotation axis passing through the other end of the body. In addition, it is possible to measure the circumference or length of the subject based on the number of revolutions measured by rolling on the surface of the subject.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 검체부와 상기 길이측정부는 상기 몸체와 일체형으로 구성되어, 상기 몸체의 타단에 결합되는 길이측정부에 의해 피검체의 둘레 또는 길이를 측정하고, 상기 몸체의 일단에 결합되는 상기 검체부에 의해 피검체의 임피던스를 측정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the specimen part and the length measuring part are integrally formed with the body, and measure the circumference or length of the subject by a length measuring part coupled to the other end of the body, and the body The impedance of the subject can be measured by the sample part coupled to one end of the.
일실시예에 따른 생체 임피던스 측정 장치는 T형 또는 Y형 몸체; 상기 몸체의 일단에 결합되며 일면에 적어도 2개의 전류인가용 전극과 적어도 2개의 전압측정용 전극이 배치되는 검체부; 상기 몸체의 내부에 배치되며 상기 전극을 이용하여 피검체의 임피던스를 측정하는 측정회로를 포함한다.The apparatus for measuring bioimpedance according to an embodiment includes a T-type or Y-type body; A sample portion coupled to one end of the body and having at least two electrodes for applying current and at least two electrodes for measuring voltage on one surface; It is disposed inside the body and includes a measuring circuit for measuring the impedance of the subject using the electrode.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 검체부는 서로 회전 가능하게 결합되는 복수의 분절부재를 포함하고, 상기 복수의 분절부재는, 상기 전극이 피검체에 접촉하도록 각 분절부재간의 각도가 조절되도록 구성될 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the specimen part includes a plurality of segment members rotatably coupled to each other, and the plurality of segment members is configured such that the angle between each segment member is adjusted so that the electrode contacts the subject. Can be configured.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 복수의 분절부재는, 상기 복수의 분절부재에 배치되는 전극이 상기 피검체의 형상 또는 두께에 대응하여 피검체에 접촉하도록 각 분절부재간의 각도가 조절되도록 구성될 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the plurality of segment members, so that the angle between each segment member is adjusted so that the electrodes disposed on the plurality of segment members contact the object in correspondence with the shape or thickness of the object. Can be configured.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 검체부는 탄성체로 이루어지는 검체부재를 포함하고, 상기 검체부재는, 상기 전극이 피검체에 접촉하도록 상기 피검체의 형상 또는 두께에 대응하여 상기 검체부재의 곡률반경이 조절되도록 구성될 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the specimen part includes a specimen member made of an elastic body, and the specimen member is a curvature of the specimen member corresponding to the shape or thickness of the specimen so that the electrode contacts the specimen. It can be configured to adjust the radius.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 검체부는 복수의 검체부재를 포함하고, 상기 검체부재는, 중공형으로서 상하로 이동가능한 기둥부재; 상기 기둥부재의 내부에 설치되어 상기 기둥부재를 탄성 지지하는 탄성체; 상기 기둥부재의 일측에 배치되는 전극; 및 상기 전극과 상기 기둥부재의 사이에 배치되어 상기 피검체의 형상 또는 두께에 대응하여 상기 전극의 각도를 조절하도록 구성된 전극각도조절부재를 포함할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the sample part includes a plurality of sample members, and the sample member includes a pillar member that is movable up and down as a hollow type; An elastic body installed inside the pillar member to elastically support the pillar member; An electrode disposed on one side of the pillar member; And an electrode angle adjusting member disposed between the electrode and the pillar member and configured to adjust the angle of the electrode in response to the shape or thickness of the subject.
일실시예에 따른 생체 임피던스 측정 장치는 상기 몸체의 일측에 결합되며 피검체의 둘레 또는 길이를 측정하는 길이측정부를 더 포함할 수 있다.The bioimpedance measuring apparatus according to an embodiment is coupled to one side of the body and may further include a length measuring unit measuring a circumference or length of the subject.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 길이측정부는, 상기 몸체를 관통하는 회전축을 중심으로 회전하며, 피검체의 표면에서 구름작동을 하여 측정되는 회전수를 기초로 피검체의 둘레 또는 길이를 측정할 수 있다.In the bioimpedance measuring apparatus according to an embodiment, the length measuring part rotates about a rotation axis passing through the body, and performs a rolling operation on the surface of the subject to determine the circumference or length of the subject based on the number of revolutions measured. Can be measured.
일실시예에 따른 생체 임피던스 측정 장치는 상기 몸체에 배치되어 상기 검체부의 분절부재의 회전각도를 조절하는 각도조절부를 적어도 1개 이상 더 포함할 수 있다.The apparatus for measuring bioimpedance according to an embodiment may further include at least one angle adjustment unit disposed on the body to adjust the rotation angle of the segmental member of the specimen.
일실시예에 따른 생체 임피던스 측정 장치에서 상기 각도조절부는, 상기 몸체의 일측면을 관통하는 회전축을 중심으로 회전하며 일단이 상기 몸체의 외부로 노출되는 조절기구; 상기 조절기구의 타단에 결합되며 길이방향의 양단에 결합 홈이 형성되는 직선운동부재; 및 일측에 형성되는 돌기가 상기 결합 홈에 직선운동 가능하게 결합되고 타측은 상기 분절부재와 연결되는 회전결합부를 포함할 수 있다.In the bio-impedance measuring apparatus according to an embodiment, the angle adjusting unit rotates around a rotation axis passing through one side of the body, and an adjusting mechanism of which one end is exposed to the outside of the body; A linear motion member coupled to the other end of the adjustment mechanism and having coupling grooves formed at both ends in the longitudinal direction; And the projection formed on one side is coupled to the coupling groove so as to be linearly movable, the other side may include a rotating coupling portion connected to the segment member.
일실시예에 따른 생체 임피던스 측정 장치는 장방형 몸체; 상기 장방형 몸체의 일측에 결합되며 일면에 전극이 배치되어 피검체의 생체 임피던스를 검출 및 측정하는 검체부; 상기 장방형 몸체의 타측에 결합되며 상기 피검체의 둘레 또는 길이를 측정하는 길이측정부를 포함하며, 상기 검체부 및 길이측정부로부터 수신된 정보를 종합하여 피검자의 건강정보를 산출한다.Bioimpedance measuring apparatus according to an embodiment includes a rectangular body; A sample portion coupled to one side of the rectangular body and an electrode disposed on one surface to detect and measure the bioimpedance of the subject; It is coupled to the other side of the rectangular body and includes a length measuring unit for measuring the circumference or length of the subject, and synthesizes information received from the specimen and the length measuring unit to calculate the health information of the subject.
일실시예에 따른 생체 임피던스 측정 장치는 상기 피검자의 건강정보를 육안으로 확인 및 인식할 수 있도록 상기 피검자의 건강정보를 출력하는 디스플레이부를 더 포함할 수 있다.The bioimpedance measuring apparatus according to an embodiment may further include a display unit that outputs the health information of the subject so as to visually check and recognize the health information of the subject.
일실시예에 따른 생체 임피던스 측정 장치는 상기 검체부의 전극의 일측에 배치되며, 상기 검체부의 전극에 가해지는 압력을 측정하는 압력센서를 더 포함할 수 있다.The bioimpedance measuring apparatus according to an embodiment may be disposed on one side of an electrode of the sample portion, and may further include a pressure sensor for measuring the pressure applied to the electrode of the sample portion.
일실시예에 따른 생체 임피던스 측정 장치는 상기 몸체의 일측에 배치되며, 상기 압력센서에 의해 측정되는 압력값을 표시하는 압력표시부를 더 포함할 수 있다.The bioimpedance measuring apparatus according to an embodiment is disposed on one side of the body, and may further include a pressure display unit that displays a pressure value measured by the pressure sensor.
일실시예에 따르면, 측정부위의 형상 또는 체형에 상관없이 전극이 접촉하여 측정 대상체를 압박하는 정도를 일정하게 유지할 수 있으므로 측정 대상체의 생체 임피던스를 측정함에 있어서 정밀도 및 정확도가 향상시킬 수 있다.According to one embodiment, regardless of the shape or body shape of the measurement part, since the electrode contacts and maintains a constant degree of pressure on the measurement object, precision and accuracy may be improved in measuring the bioimpedance of the measurement object.
일실시예에 따르면, 생체 임피던스 측정 장치를 한 손으로 파지하여 생체 임피던스 및 측정 부위의 둘레 등을 측정할 수 있으므로 사용 편의성이 향상될 수 있다.According to an embodiment, since the bioimpedance measuring device can be held with one hand to measure the bioimpedance and the circumference of the measurement site, convenience of use may be improved.
일실시예에 따르면, 생체 임피던스 측정 장치에 구비된 제2 전극 및 제4 전극이 측정 대상체에 의해 눌러져서 그립 쪽으로 선회하는 구조를 통해, 큰 크기의 측정 대상체뿐만 아니라 작은 크기의 측정 대상체도 유효하게 생체 임피던스를 측정할 수 있다.According to an embodiment, through the structure in which the second electrode and the fourth electrode provided in the bioimpedance measuring device are pressed by the measurement object and pivot to the grip, the measurement object of a small size as well as a measurement object of a large size is effectively Bioimpedance can be measured.
일실시예에 따르면, 측정 대상체가 접근하여 복수의 전극들에 둘러싸이며 접촉할 때 복수의 전극들의 움직임 정도에 기초하여 측정 대상체의 둘레를 결정함으로써, 별도의 장비나 동작 없이 생체 임피던스 측정과 둘레 측정을 한번에 수행할 수 있다.According to one embodiment, when a measurement object approaches and is surrounded by a plurality of electrodes and determines the circumference of the measurement object based on the degree of movement of the plurality of electrodes, bioimpedance measurement and circumference measurement without additional equipment or operation Can be done at once.
일실시예에 따르면, 생체 임피던스 측정 장치에 구비된 제2 전극 및 제4 전극이 측정 대상체에 의해 눌러져서 그립 쪽으로 선회하는 정도에 따라 측정 대상체가 생체 임피던스 측정 장치에 과하게 접촉되었는지 또는 약하게 접촉되었는지 또는 적절히 접촉되었는지를 파악함으로써, 적절한 접촉 압력을 가이드하여 측정의 정확도를 향상시킬 수 있다.According to an embodiment, depending on the degree to which the second electrode and the fourth electrode provided in the bioimpedance measuring device are pressed by the measurement object and turn toward the grip, the measurement object is excessively or weakly contacted with the bioimpedance measurement device, or By knowing whether they are in proper contact, the accuracy of the measurement can be improved by guiding the appropriate contact pressure.
도 1은 일실시예에 따른 생체 임피던스 측정 장치를 나타낸 도면이다.1 is a view showing a bioimpedance measuring apparatus according to an embodiment.
도 2 및 도 3은 일실시예에 따라 생체 임피던스 측정 장치의 몸체부를 설명하기 위한 도면이다.2 and 3 are views for explaining a body part of the bioimpedance measuring apparatus according to an embodiment.
도 4는 일실시예에 따라 측정 대상체에 의해 눌러질 때 생체 임피던스 측정 장치의 동작을 설명하기 위한 도면이다.4 is a view for explaining the operation of the bio-impedance measuring device when pressed by a measurement object according to an embodiment.
도 5 내지 도 7은 일실시예에 따라 측정 부위에 따른 생체 임피던스 측정 장치의 동작을 설명하기 위한 도면이다.5 to 7 are views for explaining the operation of the bio-impedance measuring device according to the measurement site according to an embodiment.
도 8은 일실시예에 따른 생체 임피던스 측정 장치의 동작 방법을 나타낸 도면이다.8 is a view showing an operation method of a bioimpedance measuring apparatus according to an embodiment.
도 9는 일실시예에 따른 임피던스 측정장치의 사시도이다.9 is a perspective view of an impedance measuring device according to an embodiment.
도 10a 및 도 10b는 일실시예에 따른 생체 임피던스 측정장치의 몸체의 구성을 나타낸 개략도이다.10A and 10B are schematic diagrams showing the configuration of a body of a bioimpedance measuring apparatus according to an embodiment.
도 11a 내지 도 12c는 일실시예에 따른 생체 임피던스 측정장치의 검체부의 여러 실시예의 개략도이다.11A to 12C are schematic diagrams of various embodiments of a sample portion of a bioimpedance measuring apparatus according to an embodiment.
도 13a 및 도 13b는 일실시예에 따른 생체 임피던스 측정장치의 검체부의 각도를 조절하는 수단의 일 실시예인 각도조절부의 세부구성의 사시도이다.13A and 13B are perspective views of a detailed configuration of an angle adjusting unit, which is an embodiment of a means for adjusting the angle of a specimen part of a bioimpedance measuring apparatus according to an embodiment.
도 14a 및 도 14b는 본 개시에 따른 생체 임피던스 측정장치에 의해 생체 임피던스를 측정하는 모습의 개략도이다.14A and 14B are schematic views of a state in which bioimpedance is measured by the bioimpedance measuring apparatus according to the present disclosure.
도 15a 및 도 15b는 본 개시에 따른 생체 임피던스 측정장치의 길이측정부의 개략도이다.15A and 15B are schematic diagrams of a length measuring unit of the bioimpedance measuring apparatus according to the present disclosure.
도 16은 본 개시에 따른 생체 임피던스 측정장치에 의해 둘레를 측정하는 모습의 개략도이다.16 is a schematic diagram of a state in which the circumference is measured by the bioimpedance measuring apparatus according to the present disclosure.
실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 실시될 수 있다. 따라서, 실시예들은 특정한 개시형태로 한정되는 것이 아니며, 본 명세서의 범위는 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.Certain structural or functional descriptions of the embodiments are disclosed for illustrative purposes only, and may be implemented in various forms. Accordingly, the embodiments are not limited to a specific disclosure form, and the scope of the present specification includes modifications, equivalents, or substitutes included in the technical spirit.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.The terms first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When a component is said to be "connected" to another component, it should be understood that other components may be present, either directly connected to or connected to the other component.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as “include” or “have” are intended to designate the existence of a described feature, number, step, action, component, part, or combination thereof, one or more other features or numbers, It should be understood that the presence or addition possibilities of steps, actions, components, parts or combinations thereof are not excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art. Terms such as those defined in a commonly used dictionary should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined herein. Does not.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 아래의 특정한 구조적 내지 기능적 설명들은 단지 실시예들을 설명하기 위한 목적으로 예시된 것으로, 실시예의 범위가 본문에 설명된 내용에 한정되는 것으로 해석되어서는 안된다. 관련 기술 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 또한, 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타내며, 공지된 기능 및 구조는 생략하도록 한다.Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The specific structural or functional descriptions below are for illustrative purposes only and should not be construed as limiting the scope of the embodiments to what is described in the text. Those skilled in the art can make various modifications and variations from these descriptions. In addition, the same reference numerals shown in each drawing denote the same members, and well-known functions and structures will be omitted.
도 1은 일실시예에 따른 생체 임피던스 측정 장치를 나타낸 도면이다.1 is a view showing a bioimpedance measuring apparatus according to an embodiment.
도 1을 참조하면, 일실시예에 따른 생체 임피던스 측정 장치(100)는 몸체부(110) 및 복수의 전극들(121~124)을 포함한다.Referring to FIG. 1, the bioimpedance measuring apparatus 100 according to an embodiment includes a body portion 110 and a plurality of electrodes 121 to 124.
몸체부(110)는 측정 회로를 수용하며 손으로 파지가능한 그립을 포함한다. 예를 들어, 몸체부(110)는 측정 대상체에 해당하는 피검사자 또는 피검사자의 생체 임피던스 측정을 수행하는 검사자에 의해 파지될 수 있다. 측정 회로는 복수의 전극들(121~124)에 연결되어 측정 대상체의 생체 임피던스를 측정할 수 있다. 또한, 측정 회로는 측정된 생체 임피던스에 기초하여 측정 대상체의 체성분(예컨대, 체지방량 등)을 결정할 수 있다.The body portion 110 accommodates the measurement circuit and includes a grip that can be gripped by hand. For example, the body portion 110 may be gripped by an examinee corresponding to a measurement object or an examiner performing bio impedance measurement of the examinee. The measurement circuit is connected to the plurality of electrodes 121 to 124 to measure the bioimpedance of the measurement object. Also, the measurement circuit may determine the body composition (eg, body fat amount) of the measurement object based on the measured bioimpedance.
복수의 전극들(121~124)은 한 쌍 이상의 전류 인가용 전극들 및 한 쌍 이상의 전압 측정용 전극들을 포함할 수 있다. 생체 임피던스 측정 장치(100)는 측정 대상체에 접촉된 전극들(121~124) 중 전류 인가용 전극들을 이용하여 소정의 전류를 인가하고, 전압 측정용 전극들을 이용하여 해당 전류가 흐르는 경로의 전위차를 측정함으로써, 측정 대상체의 생체 임피던스를 측정할 수 있다. 예를 들어, 생체 임피던스 측정 장치(100)는 내장된 전류원에 의해 생성된 고주파 전류를 측정 대상체의 한 점으로부터 다른 한 점으로 인가할 수 있고, 인가되는 전류(신체에 흐르게 되는 전류) 및 전류가 흐르는 경로 내의 두 개의 지점 사이의 전위차를 측정하는 것에 기반하여 측정 대상체의 생체 임피던스를 측정할 수 있다.The plurality of electrodes 121 to 124 may include one or more pairs of current applying electrodes and one or more pairs of voltage measurement electrodes. The bioimpedance measuring apparatus 100 applies a predetermined current using electrodes for applying current among the electrodes 121 to 124 that are in contact with the measurement object, and uses the voltage measuring electrodes to determine a potential difference in a path through which the current flows. By measuring, the bioimpedance of the measurement object can be measured. For example, the bio-impedance measuring apparatus 100 may apply a high-frequency current generated by a built-in current source from one point of a measurement object to another point, and the applied current (current flowing through the body) and current The bioimpedance of a measurement object may be measured based on measuring a potential difference between two points in a flowing path.
복수의 전극들(121~124)은 측정 대상체와의 안정적인 접촉을 위해 제1 축(131) 또는 제2 축(132)을 선회할 수 있다. 제1 축(131) 또는 제2 축(132)은 몸체부(110)의 일축에 구비되고 서로 위치를 달리할 수 있다. 제1 축(131) 및 제2 축(132)은 내부에 탄성체를 포함할 수 있다. 내부에 포함되는 탄성체에 의해 측정 대상체가 접근하여 접촉하지 않으면 제1 축(131) 및 제2 축(132)을 선회하는 제1 전극(121) 및 제3 전극(123)은 소정 각도로 오므려진 상태를 유지할 수 있다. 탄성체는 일반적인 스프링을 사용할 수 있으나 이에 한정되는 것은 아니고, 측정 대상체가 접근하여 접촉하지 않은 경우 제1 전극(121) 및 제3 전극(123)이 소정 각도로 오므려진 상태를 유지할 수 있는 것이라면 어떠한 재질도 사용될 수 있다.The plurality of electrodes 121 to 124 may rotate the first axis 131 or the second axis 132 for stable contact with the measurement object. The first shaft 131 or the second shaft 132 may be provided on one axis of the body portion 110 and have different positions. The first shaft 131 and the second shaft 132 may include an elastic body therein. The first electrode 121 and the third electrode 123 that orbit the first axis 131 and the second axis 132 may be closed at a predetermined angle when the measurement object is not approached and contacted by the elastic body included therein. You can keep it. The elastic body may use a general spring, but is not limited thereto, and if the measurement object approaches and does not come into contact, the first electrode 121 and the third electrode 123 can be maintained at a predetermined angle, and any material is used. Can also be used.
제1 전극(121) 및 제2 전극(122)은 제1 축(131)을 선회하고, 제3 전극(123) 및 제4 전극(124)은 제2 축(132)을 선회할 수 있다. 아래에서 상세히 설명되겠으나, 제1 전극(121) 및 제3 전극(123)은 측정 대상체가 접근하여 접촉되면 측정 대상체의 둘레에 따라 벌어지거나 또는 모아질 수 있다. 예를 들어, 기준 값보다 큰 둘레를 가진 측정 대상체가 접근하여 접촉되면, 제1 전극(121) 및 제3 전극(123)은 벌어질 수 있다. 반대로, 기준 값보다 작은 둘레를 가진 측정 대상체가 접근하여 접촉되면, 제1 전극(121) 및 제3 전극(123)은 모아질 수 있다.The first electrode 121 and the second electrode 122 may rotate the first axis 131, and the third electrode 123 and the fourth electrode 124 may rotate the second axis 132. Although described in detail below, the first electrode 121 and the third electrode 123 may be opened or collected according to the circumference of the measurement object when the measurement object approaches and contacts. For example, when a measurement object having a circumference greater than a reference value approaches and contacts, the first electrode 121 and the third electrode 123 may be opened. Conversely, when a measurement object having a circumference smaller than the reference value approaches and contacts, the first electrode 121 and the third electrode 123 may be collected.
제2 전극(122) 및 제4 전극(124)은 측정 대상체가 접근하여 접촉되면 측정 대상체에 의해 눌러져서 그립 쪽으로 선회함으로써, 측정 대상체가 제2 전극(122) 및 제4 전극(124)에 닿기 시작할 때보다 더 깊이 측정 대상체를 수용할 수 있다. 또한, 제2 전극(122) 및 제4 전극(124)은 측정 대상체가 이격하면 다시 선회 전의 위치로 복원하도록 탄성체의 지지를 받을 수 있다. 이 때, 제2 전극(122) 및 제4 전극(124) 각각이 그립 쪽으로 선회하는 정도는 측정 대상체의 형태에 따라 동일하거나 또는 서로 상이할 수 있다. When the measurement object approaches and contacts the second electrode 122 and the fourth electrode 124, it is pressed by the measurement object and pivots toward the grip, so that the measurement object touches the second electrode 122 and the fourth electrode 124 The depth measurement object can be accommodated more than when starting. Further, the second electrode 122 and the fourth electrode 124 may be supported by the elastic body to restore the position to be measured before the turning of the object to be measured. At this time, the degree to which each of the second electrode 122 and the fourth electrode 124 pivots toward the grip may be the same or different from each other depending on the shape of the measurement object.
또한, 측정 회로는 측정 대상체가 접근하여 접촉되는 동안 제2 전극(122)이 그립 쪽으로 선회하는 정도, 제4 전극(124)이 그립 쪽으로 선회하는 정도, 제1 전극(121)이 벌어지거나 모아진 정도 및 제3 전극(123)이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체의 둘레를 추정할 수 있다. 생체 임피던스 측정 장치(100)는 측정된 측정 대상체의 생체 임피던스와 추정된 측정 대상체의 둘레에 기초하여 별도의 장치 없이도 측정 대상체의 체조성을 결정할 수 있다. 다만, 생체 임피던스 측정 장치는 체조성 측정의 정밀도 및 정확도를 더 높이기 위하여 다른 장치와 연동될 수도 있다.In addition, the measurement circuit is the degree to which the second electrode 122 turns toward the grip, the degree to which the fourth electrode 124 turns toward the grip, and the degree to which the first electrode 121 is opened or collected while the measurement object approaches and contacts And the third electrode 123 may be estimated by using at least one of the extent of the opening or gathering. The bio-impedance measuring apparatus 100 may determine the body composition of the measured object without a separate device based on the measured bio-impedance of the measured object and the estimated circumference of the measured object. However, the bioimpedance measurement device may be interlocked with other devices to further increase the precision and accuracy of body composition measurement.
생체 임피던스 측정 장치(100)에서 결정된 측정 대상체의 생체 임피던스, 체성분 및 체조성 중 적어도 하나는 디스플레이(130)에 표시될 수 있다.At least one of the bioimpedance, body composition, and body composition of the measurement object determined by the bioimpedance measurement device 100 may be displayed on the display 130.
또한, 실시예에 따라서는, 생체 임피던스 측정 장치(100)에 압력 센서가 더 구비될 수 있다. 예를 들어, 복수의 전극들(121~124) 중 적어도 하나에는 해당 전극의 일측에 압력 센서를 포함할 수 있다. 다만, 압력 센서의 위치가 이에 한정되는 것은 아니고 피검사자에 밀착됨에 따라 해당 전극에 가해지는 압력을 측정하기에 적절한 위치라면 어디든 제한 없이 가능하다.In addition, according to an embodiment, a pressure sensor may be further provided in the bioimpedance measuring apparatus 100. For example, at least one of the plurality of electrodes 121 to 124 may include a pressure sensor on one side of the electrode. However, the position of the pressure sensor is not limited to this, and any position suitable for measuring the pressure applied to the corresponding electrode as it is in close contact with the examinee is possible without limitation.
예를 들어, 중앙에 위치하는 제2 전극(122) 및 제4 전극(124)에 압력 센서가 포함될 수 있다. 제2 전극(122) 및 제4 전극(124)이 피검사자에 접촉되면 제2 전극(122) 및 제4 전극(124)은 내측으로 인입될 수 있으며, 이 때 제2 전극(122) 및 제4 전극(124)의 일측에 배치되는 압력 센서가 가압됨에 따라 피검사자가 전극에 접촉되었는지 여부 및 임피던스를 정확히 측정하기 위해 필요한 정도의 압력으로 전극이 피검사자를 가압하는지 여부를 파악할 수 있다. 제2 전극(122) 및 제4 전극(124)은 일측 또는 내부에 탄성소재를 포함할 수 있다. 탄성소재에 의해, 피검사자가 밀착되어 가압되면 해당 전극이 내측으로 인입되고, 해당 전극의 일측에 배치되는 압력 센서에 압력이 전달되어 측정되고, 압력 측정 및 임피던스 측정이 종료된 후 피검사자를 전극에서 떼어내면, 압력 센서가 가압되기 이전의 초기상태로 복원될 수 있다. For example, a pressure sensor may be included in the second electrode 122 and the fourth electrode 124 positioned at the center. When the second electrode 122 and the fourth electrode 124 contact the examinee, the second electrode 122 and the fourth electrode 124 may be drawn inward, and at this time, the second electrode 122 and the fourth electrode As the pressure sensor disposed on one side of the electrode 124 is pressurized, it is possible to determine whether the test subject is in contact with the electrode and whether the electrode presses the test subject at a pressure required to accurately measure impedance. The second electrode 122 and the fourth electrode 124 may include an elastic material on one side or inside. With the elastic material, when the subject is pressed in close contact, the corresponding electrode is drawn inward, pressure is transmitted to a pressure sensor disposed on one side of the electrode, measured, and after the pressure measurement and impedance measurement are finished, the subject is removed from the electrode. Inside, the pressure sensor can be restored to its initial state before being pressed.
압력 센서에 의해 측정되는 압력은 피검사자로 제공될 수 있다. 예를 들어, 측정된 압력은 디스플레이(130)에 표시될 수 있다. 또는, 측정된 압력은 압력 게이지 또는 LED등으로 표시될 수도 있다. 만약 임피던스 측정에 적절한 압력이 가해지지 않았으면, 접촉이 제대로 되지 않았음을 피검사자로 알리는 메시지도 표시될 수도 있다. 예를 들어, 압력 센서의 측정 값이 미리 결정된 제1 임계 압력보다 작다면, 더 큰 세기로 압력이 가해질 필요가 있다는 메시지가 피검사자로 제공될 수 있다. 또는, 압력 센서의 측정 값이 미리 결정된 제2 임계 압력보다 크다면, 더 작은 세기로 압력이 가해질 필요가 있다는 메시지가 피검사자로 제공될 수 있다.The pressure measured by the pressure sensor can be provided to the subject. For example, the measured pressure can be displayed on the display 130. Alternatively, the measured pressure may be indicated by a pressure gauge or LED light. If the proper pressure is not applied to the impedance measurement, a message may be displayed to inform the testee that the contact was not made properly. For example, if the measurement value of the pressure sensor is smaller than the predetermined first threshold pressure, a message may be provided to the testee that pressure needs to be applied with a greater intensity. Alternatively, if the measured value of the pressure sensor is greater than a predetermined second threshold pressure, a message may be provided to the testee that pressure needs to be applied with a smaller intensity.
생체 임피던스 측정 장치(100)는 압력 센서의 측정 값에 기초하여 적정 수준의 압력이 가해진 것으로 판단되면, 피검사자의 임피던스를 자동으로 측정하도록 구성될 수 있다. 예를 들어, 생체 임피던스 측정 장치(100)는 압력 센서의 측정 값이 미리 결정된 임계 압력 이상일 때 적정 수준이 압력이 가해진 것으로 판단할 수 있다. 또는, 생체 임피던스 측정 장치(100)는 압력 센서의 측정 값이 미리 결정된 임계 범위 내에 속할 때 적정 수준의 압력이 가해진 것으로 판단할 수 있다.The bioimpedance measuring apparatus 100 may be configured to automatically measure the impedance of the test subject when it is determined that an appropriate level of pressure is applied based on the measured value of the pressure sensor. For example, the bioimpedance measuring apparatus 100 may determine that an appropriate level of pressure is applied when the measured value of the pressure sensor is equal to or greater than a predetermined threshold pressure. Alternatively, the bioimpedance measuring apparatus 100 may determine that an appropriate level of pressure is applied when the measured value of the pressure sensor falls within a predetermined threshold range.
설명의 편의를 위해 도 1에서는 4개의 전극들이 예시적으로 도시되어 있으나, 이외에도 생체 임피던스 측정 장치(100)에 다양한 개수의 전극들이 제한 없이 적용될 수 있다.For convenience of description, in FIG. 1, four electrodes are exemplarily illustrated, but in addition, various electrodes may be applied to the bioimpedance measuring apparatus 100 without limitation.
도 2 및 도 3은 일실시예에 따라 생체 임피던스 측정 장치의 몸체부를 설명하기 위한 도면이다.2 and 3 are views for explaining a body part of the bioimpedance measuring apparatus according to an embodiment.
도 2를 참조하면, 일실시예에 따른 디스플레이부(130)는 제1 버튼(210), 제2 버튼(220), 액정부(230) 및 LED등(240)을 포함할 수 있다.Referring to FIG. 2, the display 130 according to an embodiment may include a first button 210, a second button 220, a liquid crystal unit 230, and an LED lamp 240.
제1 버튼(210)은 기존의 측정데이터를 초기화 시키는 0점버튼일 수 있다. 새로운 측정을 수행하기 전에 제1 버튼(210)이 클릭됨으로써, 기존 데이터가 초기화될 수 있다.The first button 210 may be a zero point button that initializes existing measurement data. By clicking the first button 210 before performing a new measurement, the existing data can be initialized.
제2 버튼(220)은 측정 대상체의 생체 임피던스를 측정하는 제1 모드 및 측정 대상체의 둘레 또는 길이를 측정하는 제2 모드 등을 포함하는 복수의 모드 간에 모드변환을 할 수 있는 모드변환버튼일 수 있다. 다만, 실시예에 따라서 측정 대상체가 접근하여 복수의 전극들에 접촉되면 측정 대상체의 생체 임피던스와 둘레가 모드 변환 없이 한번에 결정될 수 있으며, 이 경우 모드변환 기능은 이용되지 않을 수 있다.The second button 220 may be a mode conversion button capable of mode conversion between a plurality of modes including a first mode for measuring the bioimpedance of the measurement object and a second mode for measuring the circumference or length of the measurement object. have. However, according to an embodiment, when the measurement object approaches and contacts a plurality of electrodes, the bioimpedance and circumference of the measurement object may be determined at one time without mode conversion, and in this case, the mode conversion function may not be used.
제1 버튼(210) 및 제2 버튼(220)의 기능은 앞서 설명한 실시예로 한정되지 않으며, 이외에도 생체 임피던스 측정 장치에서 필요로 되는 다양한 기능을 실행하기 위한 버튼으로 제한 없이 이용될 수 있다.The functions of the first button 210 and the second button 220 are not limited to the above-described embodiment, and may be used without limitation as a button for executing various functions required in the bioimpedance measuring device.
액정부(230)는 측정 대상체가 복수의 전극들에 올바르게 접촉되었는지 여부, 측정 대상체의 생체 임피던스, 둘레, 체성분, 체조성 등을 표시할 수 있다. 이외에도 생체 임피던스 측정 장치에서 표시될 수 있는 다양한 정보가 액정부(230)에 제한 없이 표시될 수 있다.The liquid crystal unit 230 may display whether the measurement object is correctly contacted with a plurality of electrodes, the bio impedance of the measurement object, the circumference, body composition, and body composition. In addition, various information that can be displayed on the bioimpedance measurement device can be displayed without limitation on the liquid crystal unit 230.
LED등(240)은 측정 대상체의 생체 임피던스 및 둘레 중 적어도 하나가 측정되는 상태에 대한 정보를 표시할 수 있다. 예를 들어, 복수의 전극들이 측정 대상체에 올바른 압력을 가하면서 접촉되는지 여부가 LED등(240)에 표시될 수 있다. 이외에도 다양한 정보가 제한 없이 LED등(240)에 표시될 수 있다.The LED lamp 240 may display information about a state in which at least one of the bio impedance and the circumference of the measurement object is measured. For example, whether the plurality of electrodes are contacted while applying the correct pressure to the measurement object may be displayed on the LED lamp 240. In addition, various information may be displayed on the LED lamp 240 without limitation.
도 3을 참조하면, 일실시예에 따른 몸체부의 후면에 충전/통신 단자(310) 및 자성체(320)가 구비될 수 있다. 충전/통신 단자(310)는 생체 임피던스 측정 장치를 충전할 때 외부전원과 생체 임피던스 측정 장치를 전기적으로 연결시킬 수 있으며, 외부 디바이스와 통신을 수행할 때 외부 디바이스와 생체 임피던스 측정 장치 간 통신을 연결시킬 수 있다. 자성체(320)는 생체 임피던스 측정 장치를 별도의 충전기에 거치할 때 쉽게 분리되지 않도록 하기 위한 것일 수 있다. Referring to FIG. 3, a charging/communication terminal 310 and a magnetic body 320 may be provided on a rear surface of a body part according to an embodiment. The charging/communication terminal 310 may electrically connect an external power supply and a bioimpedance measurement device when charging the bioimpedance measurement device, and connect communication between the external device and the bioimpedance measurement device when communicating with an external device. I can do it. The magnetic body 320 may be for preventing the bioimpedance measurement device from being easily separated when mounted in a separate charger.
도 4는 일실시예에 따라 측정 대상체에 의해 눌러질 때 생체 임피던스 측정 장치의 동작을 설명하기 위한 도면이다.4 is a view for explaining the operation of the bio-impedance measuring device when pressed by a measurement object according to an embodiment.
도 4를 참조하면, 측정 대상체(410)가 접근하여 복수의 전극들(121~124)에 접촉될 때의 예시적인 상황이 도시된다. 도 4에서는 측정 대상체(410)의 둘레가 기준 값보다 큰 상황을 가정한다.Referring to FIG. 4, an exemplary situation is shown when the measurement object 410 approaches and contacts the plurality of electrodes 121 to 124. In FIG. 4, it is assumed that the circumference of the measurement object 410 is greater than a reference value.
측정 대상체(410)가 접근하여 복수의 전극들(121~124)에 접촉되면, 제2 전극(122)은 측정 대상체(410)에 의해 눌러져서 그립 쪽으로 선회하여 측정 대상체(410)가 제2 전극(122)에 닿기 시작할 때보다 더 깊이 측정 대상체(410)를 수용할 수 있다. 제4 전극(124)은 제2 전극(122)과 이웃하며 측정 대상체(410)에 의해 눌러져서 그립 쪽으로 선회하며, 측정 대상체(410)가 제4 전극(124)에 닿기 시작할 때보다 더 깊이 측정 대상체(410)를 수용할 수 있다.When the measurement object 410 approaches and contacts the plurality of electrodes 121 to 124, the second electrode 122 is pressed by the measurement object 410 and pivoted toward the grip so that the measurement object 410 is the second electrode The depth measurement object 410 may be accommodated more than when it starts to reach the 122. The fourth electrode 124 is adjacent to the second electrode 122 and is pressed toward the grip by being pressed by the measurement object 410, and measures more depth than when the measurement object 410 starts to contact the fourth electrode 124 The object 410 may be accommodated.
측정 대상체의 생체 임피던스를 높은 정확도로 측정하기 위해서는 복수의 전극들(121~124)이 측정 대상체를 적정한 압력으로 접촉될 필요가 있다. 따라서, 제2 전극(122) 및 제4 전극(124) 중 적어도 하나가 그립 쪽으로 한계치까지 선회하여 눌리고 있는지 여부가 판단될 필요가 있으며, 만약 한계치까지 선회하여 눌리고 있다면 생체 임피던스 측정 결과가 유효하지 않는 것으로 판단될 수 있다.In order to measure the bioimpedance of the measurement object with high accuracy, it is necessary for the plurality of electrodes 121 to 124 to contact the measurement object with an appropriate pressure. Therefore, it is necessary to determine whether or not at least one of the second electrode 122 and the fourth electrode 124 is pushed by turning to the limit toward the grip, and the bioimpedance measurement result is invalid if it is pressed by turning to the limit. It can be judged as.
또한, 제2 전극(122)과 제4 전극(124)은 독립적인 전극으로, 제4 전극(124)이 그립 쪽으로 선회하는 정도는 제2 전극(122)이 그립 쪽으로 선회하는 정도와 상이할 수 있다. 다만, 생체 임피던스가 측정되는 측정 대상체의 형상을 고려할 때, 제2 전극(122)이 그립 쪽으로 선회하는 정도와 제4 전극(124)이 그립 쪽으로 선회하는 정도의 차이가 미리 지정된 임계치 이하일 때 생체 임피던스 측정 결과가 유효하게 판단될 수 있다. 예를 들어, 측정 대상체(410)가 정상적으로 접촉되지 않아 제2 전극(122)이 그립 쪽으로 선회하는 정도와 제4 전극(124)이 그립 쪽으로 선회하는 정도의 차이가 미리 지정된 임계치를 초과하면, 생체 임피던스 측정 결과가 유효하지 않는 것으로 판단되고, 재 접촉을 알리는 메시지가 출력될 수 있다. 이로써, 잘못된 접촉으로 한쪽으로 너무 치우친 편향 가압이 발생하는 것을 효과적으로 방지될 수 있다.Further, the second electrode 122 and the fourth electrode 124 are independent electrodes, and the degree to which the fourth electrode 124 turns toward the grip may be different from the degree to which the second electrode 122 turns toward the grip. have. However, when considering the shape of the measurement object to which the bioimpedance is measured, the bioimpedance when the difference between the degree to which the second electrode 122 turns toward the grip and the degree to which the fourth electrode 124 turns toward the grip is equal to or less than a predetermined threshold. The measurement result can be judged effectively. For example, if the difference between the degree to which the second electrode 122 turns toward the grip and the degree to which the fourth electrode 124 turns toward the grip does not normally contact the measured object 410, the living body It is determined that the impedance measurement result is not valid, and a message indicating re-contact may be output. Thus, it is possible to effectively prevent occurrence of deflection pressure that is too biased to one side due to wrong contact.
도 5 내지 도 7은 일실시예에 따라 측정 부위에 따른 생체 임피던스 측정 장치의 동작을 설명하기 위한 도면이다.5 to 7 are views for explaining the operation of the bio-impedance measuring device according to the measurement site according to an embodiment.
도 5에는 일실시예에 따라 측정 대상체의 허리 부분(510)에서 생체 임피던스를 측정하는 예시가 도시되고, 도 6에는 일실시예에 따라 측정 대상체의 팔 부분(610)에서 생체 임피던스를 측정하는 예시가 도시되며, 도 7에는 일실시예에 따라 측정 대상체의 허벅지 부분(710)에서 생체 임피던스를 측정하는 예시가 도시된다.5 shows an example of measuring the bioimpedance at the waist portion 510 of the measurement object according to one embodiment, and FIG. 6 is an example of measuring the bioimpedance at the arm portion 610 of the measurement object according to one embodiment. 7 is shown, an example of measuring the bioimpedance in the thigh portion 710 of the measurement object according to an embodiment is illustrated.
일실시예에 따르면, 생체 임피던스 측정 장치(100)에 구비된 측정 회로는 측정 대상체가 접근하여 복수의 전극들에 접촉되는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도, 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.According to one embodiment, the measurement circuit provided in the bio-impedance measuring apparatus 100 is the degree to which the second electrode turns toward the grip while the measurement object approaches and contacts the plurality of electrodes, and the fourth electrode turns toward the grip It is possible to estimate which part of the measurement object is being touched using at least one of the degree to be performed, the degree to which the first electrode is opened or collected, and the degree to which the third electrode is opened or collected.
예시적으로 측정 대상체의 허리 부분(510)에서 생체 임피던스가 측정되는 도 5의 경우, 일반적으로 등 부분은 평평한 반면 배 부분은 볼록한 점을 고려할 때 측정 대상체의 허리 부분(510)의 위 부분이 배 부분을 나타내고, 아래 부분이 등 부분을 나타낼 수 있다. 도 5와 같이 측정 대상체의 허리 부분(510)에서 생체 임피던스가 측정되면, 제1 전극 및 제3 전극 중 측정 대상체의 배 쪽에 위치한 전극이 벌어진 정도와 측정 대상체의 등 쪽에 위치한 전극이 벌어진 정도에 차이가 발생하고, 이러한 차이에 기초하여 측정 회로는 측정 대상체의 허리 부분에 닿고 있는 것으로 추정할 수 있다.For example, in the case of FIG. 5 in which the bioimpedance is measured at the waist portion 510 of the measurement object, the upper portion of the waist portion 510 of the measurement object is doubled when the back portion is generally flat while the belly portion is convex. The part may be represented, and the lower part may represent the back part. When the bioimpedance is measured at the waist portion 510 of the measurement object as shown in FIG. 5, the difference between the degree of the gap between the electrodes located on the belly side of the measurement object and the degree of the gap between the electrodes located on the back side of the measurement object among the first and third electrodes Is generated, and based on the difference, the measurement circuit can be estimated to be touching the waist portion of the measurement object.
이 때, 추정 장치는 제1 전극이 벌어진 정도와 제3 전극이 벌어진 정도를 비교하여 측정 대상체의 오른쪽 옆구리와 왼쪽 옆구리 중에서 어느 부분에 닿고 있는지를 판단할 수 있다. 이를테면, 제1 전극이 벌어진 정도가 제3 전극이 벌어진 정도보다 크다면, 측정 회로는 측정 대상체의 왼쪽 옆구리에 닿고 있는 것으로 판단할 수 있다. 반대로, 제3 전극이 벌어진 정도가 제1 전극이 벌어진 정도보다 크다면, 측정 회로는 측정 대상의 오른쪽 옆구리에 닿고 있는 것으로 판단할 수 있다.At this time, the estimating apparatus may compare the degree to which the first electrode is opened and the degree to which the third electrode is opened to determine which part of the right side and left side of the measurement object is touching. For example, if the degree to which the first electrode is opened is greater than the degree to which the third electrode is opened, the measurement circuit may determine that it is touching the left flank of the measurement object. Conversely, if the degree to which the third electrode is opened is greater than the degree to which the first electrode is opened, it can be determined that the measurement circuit is touching the right flank of the measurement object.
또한, 도 5의 경우에 제2 전극 및 제4 전극 중 측정 대상체의 배 쪽에 위치한 전극이 그립 쪽으로 선회하는 정도와 측정 대상체의 등 쪽에 위치한 전극이 그립 쪽으로 선회하는 정도에 차이가 발생할 수 있고, 이러한 차이에 기초하여 측정 회로는 측정 대상의 허리 부분에 닿고 있는 것으로 추정할 수 있다. 또한, 추정 장치는 제2 전극이 그립 쪽으로 선회하는 정도와 제4 전극이 그립 쪽으로 선회하는 정도를 비교하여 측정 대상체의 오른쪽 옆구리와 왼쪽 옆구리 중에서 어느 부분에 닿고 있는지를 판단할 수 있다. 이를테면, 제4 전극이 선회하는 정도가 제2 전극이 선회하는 정도보다 크다면, 측정 회로는 측정 대상체의 왼쪽 옆구리에 닿고 있는 것으로 판단할 수 있다. 반대로, 제2 전극이 선회하는 정도가 제4 전극이 선회하는 정도보다 크다면, 측정 회로는 측정 대상체의 오른쪽 옆구리에 닿고 있는 것으로 판단할 수 있다.In addition, in the case of FIG. 5, a difference may occur between the degree to which the electrode located on the ship side of the measurement object turns toward the grip and the degree of the electrode located on the back side of the measurement object turns toward the grip among the second and fourth electrodes. Based on the difference, it can be estimated that the measurement circuit is touching the waist portion of the measurement object. In addition, the estimation apparatus may compare the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip to determine which part of the right side and left side of the measurement object is touching. For example, if the degree of rotation of the fourth electrode is greater than the degree of rotation of the second electrode, the measurement circuit may determine that it is touching the left flank of the measurement object. Conversely, if the degree of rotation of the second electrode is greater than the degree of rotation of the fourth electrode, the measurement circuit may determine that it is touching the right side of the measurement object.
예시적으로 측정 대상체의 팔 부분(610)에서 생체 임피던스가 측정되는 도 6의 경우, 측정 대상체가 접근하여 복수의 전극들에 접촉되면 제2 전극 및 제4 전극은 그립 쪽으로 선회하고, 제1 전극 및 제3 전극은 안쪽으로 모아질 수 있다. 이러한 복수의 전극들의 움직임에 기초하여 측정 회로는 측정 대상체의 팔 부분에 닿고 있는 것으로 추정할 수 있다.For example, in the case of FIG. 6 in which the bioimpedance is measured at the arm part 610 of the measurement object, when the measurement object approaches and contacts a plurality of electrodes, the second electrode and the fourth electrode pivot toward the grip, and the first electrode And the third electrode can be collected inward. Based on the movement of the plurality of electrodes, it can be estimated that the measurement circuit is touching the arm portion of the measurement object.
예시적으로 측정 대상체의 허벅지 부분(710)에서 생체 임피던스가 측정되는 도 7의 경우, 측정 대상체가 접근하여 복수의 전극들에 접촉되면 제2 전극 및 제4 전극은 그립 쪽으로 선회하고, 제1 전극 및 제3 전극은 바깥쪽으로 벌어질 수 있다. 이 때, 제1 전극과 제3 전극은 도 5의 경우와 달리 동일 또는 유사하게 벌어질 수 있다. 다시 말해, 제1 전극이 벌어진 정도 및 제3 전극이 벌어진 정도 간 차이가 기준 범위 내일 수 있다. 이러한 복수의 전극들의 움직임에 기초하여 측정 회로는 측정 대상체의 허벅지 부분에 닿고 있는 것으로 추정할 수 있다.For example, in the case of FIG. 7 in which the bioimpedance is measured in the thigh portion 710 of the measurement object, when the measurement object approaches and contacts a plurality of electrodes, the second electrode and the fourth electrode turn toward the grip, and the first electrode And the third electrode may be opened outward. At this time, the first electrode and the third electrode may be opened similarly or similarly to the case of FIG. 5. In other words, the difference between the degree of opening of the first electrode and the degree of opening of the third electrode may be within a reference range. Based on the movement of the plurality of electrodes, it can be estimated that the measurement circuit is touching the thigh portion of the measurement object.
일실시예에 따르면, 측정 회로는 측정 대상체가 접근하여 접촉되는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체의 둘레를 추정할 수 있다. 도 6 및 도 7에 도시된 예시들을 참조하면, 측정 대상체의 둘레에 따라 복수의 전극들의 움직임이 서로 다르다. 이러한 복수의 전극들의 움직임에 기초하여 측정 회로는 측정 대상체의 둘레를 추정할 수 있다. 또한, 도 5의 경우에 측정 대상체의 허리 부분에 닿는 것으로 판단한 측정 장치는 복수의 전극들의 움직임과 허리 형태를 고려하여 측정 대상체의 허리 둘레를 추정할 수도 있다.According to one embodiment, while the measurement circuit approaches and contacts the measurement object, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode The circumference of the measurement object may be estimated using at least one of the extents that have been opened or collected. 6 and 7, movements of the plurality of electrodes are different depending on the circumference of the measurement object. Based on the movement of the plurality of electrodes, the measurement circuit may estimate the circumference of the measurement object. In addition, in the case of FIG. 5, the measurement device determined to touch the waist portion of the measurement object may estimate the waist circumference of the measurement object in consideration of the movement of the plurality of electrodes and the waist shape.
일실시예에 따르면, 측정 회로는 측정 대상체에 의해 눌러지고 있는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도, 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체가 미리 지정된 복수의 사용자 중 누구에 대응하는지를 추정할 수 있다. 생체 임피던스나 신체 둘레는 급격히 변하기 어려우므로, 과거 측정된 생체 임피던스, 신체 둘레를 참고하여 현재 생체 임피던스가 측정되고 있는 사용자가 누구인지가 결정될 수 있다. 예를 들어, 한 집에 살고 있는 아버지, 어머니, 딸이 생체 임피던스 측정 장치를 이용하는 경우, 측정 회로는 복수의 전극들의 움직임에 기초하여 현재 측정 대상체가 아버지, 어머니, 딸 중에서 누구에 해당되는지를 판단할 수 있다.According to one embodiment, while the measurement circuit is being pressed by the measurement object, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third It is possible to estimate to which of the plurality of users a predetermined measurement object corresponds to a user by using at least one of the degree of the electrode being opened or collected. Since the bioimpedance or the body circumference is difficult to change rapidly, it is possible to determine who is currently measuring the bioimpedance by referring to the bioimpedance measured in the past and the body circumference. For example, when a father, mother, and daughter living in a house uses a bio-impedance measurement device, the measurement circuit determines whether the current measurement object corresponds to the father, mother, or daughter based on the movement of a plurality of electrodes. can do.
도 8은 일실시예에 따른 생체 임피던스 측정 장치의 동작 방법을 나타낸 도면이다.8 is a view showing an operation method of a bioimpedance measuring apparatus according to an embodiment.
단계(810)에서, 생체 임피던스 측정 장치는 측정 대상체가 생체 임피던스 측정 장치에 접근하여 생체 임피던스 측정 장치에 둘러싸이며 접촉할 때, 생체 임피던스 측정 장치에 구비된 제1 전극, 제2 전극, 제3 전극 및 제4 전극 중 적어도 하나의 움직임을 감지한다. 제1 전극 및 제2 전극은 생체 임피던스 측정 장치의 일측에 구비되는 제1 축에 결합하여 제1 축을 선회한다. 제3 전극 및 제4 전극은 생체 임피던스 측정 장치의 일축에서 제1 축과 위치를 달리하는 제2 축에 결합하여 제2 축을 선회한다.In operation 810, the bio-impedance measuring device is a first electrode, a second electrode, and a third electrode provided in the bio-impedance measuring device when the measurement object approaches the bio-impedance measuring device and is surrounded and contacted by the bio-impedance measuring device. And the movement of at least one of the fourth electrode. The first electrode and the second electrode are coupled to the first axis provided on one side of the bio-impedance measurement device to pivot the first axis. The third electrode and the fourth electrode pivot on the second axis by being coupled to a second axis having a different position from the first axis on one axis of the bioimpedance measuring device.
또한, 생체 임피던스 측정 장치는 측정 대상체가 접근하여 접촉되는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체의 둘레를 추정할 수 있다.In addition, the bio-impedance measuring apparatus, while the measurement object is approached and touched, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode to open The perimeter of the measurement object may be estimated by using at least one of the degree of losing or collecting.
또한, 생체 임피던스 측정 장치는 측정 대상체에 의해 눌러지고 있는 동안, 제2 전극이 그립 쪽으로 선회하는 정도와 제4 전극이 그립 쪽으로 선회하는 정도를 비교함으로써 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In addition, the bioimpedance measuring apparatus can estimate which part of the measurement object is touching by comparing the degree of the second electrode turning toward the grip and the degree of the fourth electrode turning toward the grip while being pressed by the measurement object. have.
또한, 생체 임피던스 측정 장치는 측정 대상체에 의해 눌러지고 있는 동안, 제1 전극이 벌어진 정도와 제3 전극이 벌어진 정도를 비교함으로써 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In addition, the bioimpedance measuring apparatus can estimate which part of the measurement object is being touched by comparing the degree of opening of the first electrode and the degree of opening of the third electrode while being pressed by the measurement object.
또한, 생체 임피던스 측정 장치는 측정 대상체에 의해 눌러지고 있는 동안, 제2 전극이 그립 쪽으로 선회하는 정도와 제4 전극이 그립 쪽으로 선회하는 정도의 차이가 미리 지정된 임계치 이하일 때의 생체 임피던스 측정 결과를 유효하게 판단할 수 있다.In addition, the bioimpedance measurement apparatus is effective when the difference between the degree of the second electrode turning toward the grip and the degree of the fourth electrode turning toward the grip while being pressed by the measurement object is below a predetermined threshold. Can judge.
또한, 생체 임피던스 측정 장치는 측정 대상체가 접근하여 접촉되는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도, 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체의 어느 부분에 닿고 있는지를 추정할 수 있다.In addition, the bio-impedance measuring device is the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode while the measurement object approaches and contacts It is possible to estimate which part of the measurement object is being touched using at least one of the extents that have been opened or collected.
또한, 생체 임피던스 측정 장치는 측정 대상체가 접근하여 접촉되는 동안, 제2 전극이 그립 쪽으로 선회하는 정도, 제4 전극이 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도, 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 측정 대상체가 미리 지정된 복수의 사용자 중 누구에 대응하는지를 추정할 수 있다.In addition, the bio-impedance measuring device is the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or gathered, and the third electrode while the measurement object approaches and contacts It is possible to estimate to which of the plurality of predefined users the measurement object corresponds to at least one of the extents that have been opened or collected.
또한, 생체 임피던스 측정 장치는 측정 대상체에 의해 눌러지고 있는 동안, 제2 전극 및 제4 전극 중 적어도 하나가 그립 쪽으로 한계치까지 선회하여 눌리고 있다면, 생체 임피던스 측정 결과가 유효하지 않은 것으로 판단할 수 있다.In addition, the bioimpedance measuring apparatus may determine that the bioimpedance measurement result is not valid if at least one of the second electrode and the fourth electrode is pushed by turning to the limit toward the grip while being pressed by the measurement object.
단계(820)에서, 생체 임피던스 측정 장치는 제1 전극, 제2 전극, 제3 전극 및 제4 전극 중 적어도 하나를 이용하여, 측정 대상체의 생체 임피던스를 측정한다. 예를 들어, 생체 임피던스 측정 장치는 감지된 복수의 전극들의 움직임이 종료된 후에 측정 대상체의 생체 임피던스를 측정할 수 있다. 또한, 생체 임피던스 측정 장치는 측정 대상체의 생체 임피던스와 둘레에 기초하여 측정 대상체의 체조성을 결정할 수도 있다.In operation 820, the bioimpedance measuring apparatus measures the bioimpedance of the measurement object using at least one of the first electrode, the second electrode, the third electrode, and the fourth electrode. For example, the apparatus for measuring bioimpedance may measure the bioimpedance of the measurement object after the movement of the plurality of sensed electrodes is finished. In addition, the bioimpedance measuring apparatus may determine the body composition of the measurement object based on the bioimpedance and the circumference of the measurement object.
도 8에 도시된 각 단계들에는 도 1 내지 도 8을 통하여 전술한 사항들이 그대로 적용되므로, 보다 상세한 설명은 생략한다.Since the above-described matters are applied to each of the steps shown in FIG. 8 through FIGS. 1 to 8 as they are, detailed descriptions thereof will be omitted.
도 9는 일실시예에 따른 임피던스 측정장치의 사시도이다.9 is a perspective view of an impedance measuring device according to an embodiment.
도 9를 참조하면, 본 측정장치(900)는 몸체(1000), 검체부(1100) 및 길이측정부(1200)를 포함할 수 있다.Referring to FIG. 9, the present measurement device 900 may include a body 1000, a specimen 1100 and a length measurement unit 1200.
몸체(1000)는 파지면을 포함할 수 있으며 이 파지면을 통해 몸체(1000)를 한 손으로 파지할 수 있다. 몸체(1000)는 T형 또는 Y형일 수 있으나, 형상이 이에 한정되는 것은 아니고 몸체(1000)를 한 손으로 파지할 수 있는 형상이면 어느 것이든 가능하다. 몸체(1000)는 상부 커버와 하부 커버를 포함할 수 있으며 상부 커버와 하부 커버는 서로 결합 또는 분리될 수 있다. 몸체(1000)의 상부 커버와 하부 커버는 PC+ABS 재질로 이루어질 수 있으나, 반드시 이에 한정되는 것은 아니고 공지의 어떠한 재질로도 이루어질 수 있다.The body 1000 may include a gripping surface, and the body 1000 may be gripped with one hand through the gripping surface. The body 1000 may be T-shaped or Y-shaped, but the shape is not limited to this, and any body shape that can grip the body 1000 with one hand is possible. The body 1000 may include an upper cover and a lower cover, and the upper cover and the lower cover may be combined or separated from each other. The upper cover and the lower cover of the body 1000 may be made of PC+ABS material, but are not limited thereto, and may be made of any known material.
몸체(1000)의 일단에 검체부(1100)가 결합될 수 있고, 몸체(1000)의 타단에 길이측정부(1200)가 결합될 수 있으나, 특정 위치에 한정되지 않으며 별도의 몸체에 구비될 수도 있다. 본 개시에 의하면 하나의 장치에 임피던스를 측정하는 검체부(1100)와 측정부위의 둘레 또는 길이를 측정하는 길이측정부(1200)를 모두 포함할 수 있으므로, 별도의 장치 필요 없이 하나의 장치로 생체 임피던스를 측정 및 산출할 수 있다. 뿐만 아니라, 측정된 임피던스 값과 측정부위의 둘레 또는 길이 값을 바탕으로 본 측정장치 만으로 체조성을 측정 및 산출할 수 있다. 다만, 체조성 측정의 정밀도 및 정확도를 더 높이기 위하여 타 체성분 측정장비와 연동할 수 있다.The sample part 1100 may be coupled to one end of the body 1000, and the length measurement part 1200 may be coupled to the other end of the body 1000, but is not limited to a specific location and may be provided in a separate body. have. According to the present disclosure, since a specimen part 1100 for measuring impedance and a length measurement part 1200 for measuring the circumference or length of a measurement part can be included in one device, a living body is a single device without the need for a separate device. Impedance can be measured and calculated. In addition, body composition can be measured and calculated only with this measuring device based on the measured impedance value and the circumferential or length value of the measurement site. However, in order to further increase the precision and accuracy of body composition measurement, it can be linked with other body composition measurement equipment.
본 측정장치(900)는 측정회로 및 제어부를 더 포함할 수 있다. The measuring device 900 may further include a measuring circuit and a control unit.
측정회로는 본 측정장치(900)의 몸체(1000)의 내부에 포함될 수 있다. 측정회로는 검체부(1100)의 전극들을 통해 피검체의 임피던스를 측정할 수 있다. 측정회로는 측정된 임피던스를 바탕으로 체지방량을 산출할 수 있다.The measurement circuit may be included in the body 1000 of the measurement device 900. The measurement circuit may measure the impedance of the subject through the electrodes of the subject 1100. The measurement circuit can calculate the body fat mass based on the measured impedance.
제어부는 산출된 체지방량에 대한 수치를 송신받아 디스플레이부(1010)의 액정부(1013)를 통해 표시할 수 있다. 제어부는 길이측정부(1200)에 의해 측정되는 길이 또는 둘레 값을 송신받아 디스플레이부(1010)의 액정부(1013)에 표시할 수 있다.The control unit may receive a value for the calculated body fat amount and display it through the liquid crystal unit 1013 of the display unit 1010. The control unit may receive the length or circumference value measured by the length measurement unit 1200 and display it on the liquid crystal unit 1013 of the display unit 1010.
도 10a 및 도 10b는 일실시예에 따른 생체 임피던스 측정장치의 몸체의 구성을 나타낸 개략도이다.10A and 10B are schematic diagrams showing the configuration of a body of a bioimpedance measuring apparatus according to an embodiment.
도 10a 및 도 10b를 참조하면, 몸체(1000)는 디스플레이부(1010), 고정부(1001) 및 충전/통신 단자(1002)를 포함할 수 있다.10A and 10B, the body 1000 may include a display unit 1010, a fixing unit 1001, and a charging/communication terminal 1002.
디스플레이부(1010)는 몸체(1000)의 상부 커버의 외면에 배치될 수 있으며, 제1버튼(1011), 제2버튼(1012), 액정부(1013) 및 LED등(1014)을 포함할 수 있다.The display unit 1010 may be disposed on the outer surface of the upper cover of the body 1000, and may include a first button 1011, a second button 1012, a liquid crystal unit 1013, and an LED lamp 1014. have.
제1버튼(1011)은 기존의 측정데이터를 초기화 시키는 역할을 할 수 있다. 새로운 측정에 의해 데이터를 얻기 위해 측정 전에 제1버튼을 클릭하여 기존 데이터를 초기화 할 수 있다. 길이측정부(1200)에 의해 둘레를 측정한 후 임피던스를 측정하기 위해 제1버튼을 클릭한 후 검체부(1100)에 의해 임피던스를 측정할 수 있다.The first button 1011 may serve to initialize the existing measurement data. To obtain data by a new measurement, the existing data can be initialized by clicking the first button before measurement. After measuring the circumference by the length measuring unit 1200, the impedance may be measured by the sample unit 1100 after clicking the first button to measure the impedance.
제2버튼(1012)은 임피던스를 측정하는 제1모드 및 피검체의 둘레 또는 길이를 측정하는 제2모드 등을 포함하는 복수의 모드 간에 모드변환을 할 수 있는 기능을 제공할 수 있다. The second button 1012 may provide a function for mode conversion between a plurality of modes including a first mode for measuring impedance and a second mode for measuring the circumference or length of the subject.
다만, 위의 제1버튼(1011) 및 제2버튼(1012)등의 기능은 위에서 언급한 바로 한정되지 않으며, 디스플레이부(1010)는 다른 기능을 갖는 버튼을 더 포함할 수 있다.However, the functions of the first button 1011 and the second button 1012 are not limited to those mentioned above, and the display unit 1010 may further include buttons having other functions.
액정부(1013)는 제1모드의 경우 후술하는 검체부의 전극이 피검체에 올바르게 접촉되었는지 여부, 임피던스 측정치 등을 표시할 수 있다. 제2모드의 경우 측정부위의 둘레 또는 길이 등을 표시할 수 있다. 본 개시의 다른 실시예에 따르면, 액정부(1013)는 추가적인 제3모드를 더 표시할 수 있고, 제3모드의 경우 임피던스 측정치뿐만 아니라 체지방량 및 체지방률 등을 표시할 수 있고, 외장지방 및 내장지방 각각의 양을 표시할 수 있으며 종합적인 비만도 등을 표시할 수 있다.In the case of the first mode, the liquid crystal unit 1013 may display whether or not the electrode of the sample unit, which will be described later, is correctly contacted with the subject, an impedance measurement value, and the like. In the second mode, the circumference or length of the measurement site can be displayed. According to another embodiment of the present disclosure, the liquid crystal unit 1013 may further display an additional third mode, and in the third mode, may display body fat amount and body fat percentage as well as impedance measurements, and external fat and visceral fat. Each quantity can be displayed, and overall obesity can be displayed.
LED등(1014)에 의하면, 후술하는 전극에 부착된 압력센서에 의해 피검체에 전극이 올바른 압력을 가하면서 접촉되는지 여부를 판단할 수 있다. 피검체의 임피던스를 정확하게 측정할 수 있도록 피검체가 전극에 적절하게 접촉되었는지 여부는 전극에 가해지는 압력을 측정하여 판단할 수 있다. LED등(1014)의 점등에 의해서 피검체가 전극에 적절하게 접촉되었는지 여부를 파악할 수 있다. LED등(1014)의 개수는 3개로 도시되어 있으나 이에 한정되는 것은 아니다. According to the LED lamp 1014, it is possible to determine whether the electrode is contacted while applying the correct pressure to the subject by a pressure sensor attached to the electrode, which will be described later. In order to accurately measure the impedance of the subject, whether the subject is properly contacted with the electrode can be determined by measuring the pressure applied to the electrode. By lighting the LED lamp 1014, it can be determined whether or not the subject is properly contacted with the electrode. The number of LED lights 1014 is shown as three, but is not limited thereto.
피검체에 전극이 접촉하는 압력의 정도를 표시하는 압력표시부는 전술한 실시예 중 하나인 LED등(1014) 외에도 다양한 수단 및 방법으로 표시될 수 있다. 가령 피검체에 의해 전극에 가해지는 압력은 디스플레이부(1010)의 액정부(1013)에 압력게이지로 표시될 수 있다. 예를 들면, 전극에 가해지는 압력은 액정부(1013)에 가령 바(bar)로 표시되는 게이지를 통해 표시될 수 있다. 이에 의하면, 사용자는 표시되는 압력정보를 참조하여 전극에 가해지는 압력을 적절하게 조절하여 원할하게 피검체의 임피던스를 측정할 수 있다.In addition to the LED lamp 1014, which is one of the above-described embodiments, the pressure display unit for displaying the degree of pressure of the electrode contacting the subject can be displayed by various means and methods. For example, the pressure applied to the electrode by the subject may be displayed as a pressure gauge on the liquid crystal unit 1013 of the display unit 1010. For example, the pressure applied to the electrode may be displayed on the liquid crystal unit 1013 through a gauge displayed as a bar, for example. According to this, the user can smoothly measure the impedance of the subject by appropriately adjusting the pressure applied to the electrode with reference to the displayed pressure information.
고정부(1001)는 본 측정장치를 별도의 충전기에 거치할 때 쉽게 분리되지 않도록 할 수 있으며, 자성(Magnetic)을 갖는 재료로 이루어질 수 있다. 충전/통신 단자(1002)는 본 측정장치의 전력을 충전할 때 전력공급원과 본 측정장치를 전기적으로 연결할 수 있다.The fixing part 1001 can be easily separated when the measuring device is mounted on a separate charger, and may be made of a material having magnetism. The charging/communication terminal 1002 may electrically connect the power supply source and the present measurement device when charging the power of the present measurement device.
도 11a 내지 도 12c는 일실시예에 따른 생체 임피던스 측정장치의 검체부의 여러 실시예의 개략도이다.11A to 12C are schematic diagrams of various embodiments of a sample portion of a bioimpedance measuring apparatus according to an embodiment.
검체부(1100)는 몸체(1000)의 일단에 결합될 수 있다. 검체부(1100)는 복수의 분절부재 및 복수의 전극을 포함할 수 있다. 복수의 분절부재는 일면에 전극이 배치될 수 있다. 복수의 분절부재는 서로 회전가능하게 결합되어 측정부위 또는 체형에 따라 각도가 조절될 수 있다. 이에 의하면 측정부위의 형상 또는 체형에 상관없이 임피던스를 측정할 수 있다. 복수의 전극은 전류인가용 전극과 전압측정용 전극을 포함할 수 있다.The sample portion 1100 may be coupled to one end of the body 1000. The sample portion 1100 may include a plurality of segment members and a plurality of electrodes. The electrodes may be disposed on one surface of the plurality of segment members. The plurality of segment members are rotatably coupled to each other so that the angle can be adjusted according to the measurement area or body shape. According to this, the impedance can be measured regardless of the shape or body shape of the measurement site. The plurality of electrodes may include an electrode for current application and an electrode for voltage measurement.
본 개시의 제1실시예에 따른 검체부(1100a)에 의하면, 도 11a를 참조하면, 검체부(1100a)는 복수의 분절부재(1110a 내지 1130a) 및 각 분절부재의 일면에 배치되는 전극(1111a 내지 1131a)을 포함할 수 있다. 제1분절부재(1110a) 내지 제3분절부재(1130a)는 서로 회전가능하게 결합될 수 있다. 분절부재의 개수가 도 11a에 도시된 3개로 한정되는 것은 아니다.According to the sample portion 1100a according to the first embodiment of the present disclosure, referring to FIG. 11A, the sample portion 1100a includes a plurality of segment members 1110a to 1130a and electrodes 1111a disposed on one surface of each segment member. To 1131a). The first segment member 1110a to the third segment member 1130a may be rotatably coupled to each other. The number of segment members is not limited to three shown in FIG. 11A.
제2분절부재(1120a)는 몸체(1000)의 일단에 결합될 수 있으며 일면에 전극이 한 쌍 이상 배치될 수 있다. 다만, 배치되는 전극의 수가 이에 한정되는 것은 아니다. 제1분절부재(1110a) 및 제3분절부재(1130a)는 제2분절부재(1120a)의 양단에 회전가능하게 결합될 수 있으며 일면에 전극이 하나 이상 배치될 수 있다. 다만, 배치되는 전극의 수가 이에 한정되는 것은 아니다. 전극은 한 쌍 이상의 전류인가용 전극과 한 쌍 이상의 전압측정용 전극을 포함할 수 있다. 제1실시예에 따른 검체부(1100a)는, 후술하는 각도조절부(10)와 연결되어 각도조절부(10)에 의해 각 분절부재의 각도가 조절될 수 있으나, 각도조절부(10)와 연결되지 않고도 각 분절부재의 각도가 조절될 수 있다.The second segment member 1120a may be coupled to one end of the body 1000 and one or more pairs of electrodes may be disposed on one surface. However, the number of electrodes disposed is not limited thereto. The first segment member 1110a and the third segment member 1130a may be rotatably coupled to both ends of the second segment member 1120a, and one or more electrodes may be disposed on one surface. However, the number of electrodes disposed is not limited thereto. The electrode may include one or more pairs of current applying electrodes and one or more pairs of voltage measuring electrodes. The specimen 1100a according to the first embodiment may be connected to the angle adjusting unit 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting unit 10, but the angle adjusting unit 10 and The angle of each segment member can be adjusted without being connected.
본 개시의 제2실시예에 따른 검체부(1100b)에 의하면, 도 11b를 참조하면, 검체부(1100b)는 복수의 분절부재(1110b 내지 1140b) 및 각 분절부재의 일면에 배치되는 전극(1111b 내지 1141b)을 포함할 수 있다. 제1분절부재(1110b) 내지 제4분절부재(1140b)는 서로 회전가능하게 결합될 수 있다. 분절부재의 개수가 도 11b에 도시된 4개로 한정되는 것은 아니다.According to the sample portion 1100b according to the second embodiment of the present disclosure, referring to FIG. 11B, the sample portion 1100b includes a plurality of segment members 1110b to 1140b and electrodes 1111b disposed on one surface of each segment member. To 1141b). The first segment member 1110b to the fourth segment member 1140b may be rotatably coupled to each other. The number of segment members is not limited to four shown in FIG. 11B.
제2분절부재(1120b) 및 제3분절부재(1130b)는 몸체(1000)의 일단에 결합될 수 있으며 일면에 전극이 하나 이상 배치될 수 있으나 배치되는 전극의 수가 이에 한정되는 것은 아니다. 제1분절부재(1110b) 및 제4분절부재(1140b)는 각각 제2분절부재(1120b), 제3분절부재(1130b)와 회전가능하게 결합될 수 있으며 일면에 전극이 하나 이상 배치될 수 있으나 배치되는 전극의 수가 이에 한정되는 것은 아니다. 제2실시예에 따른 검체부(1100b)는, 후술하는 각도조절부(10)와 연결되어 각도조절부(10)에 의해 각 분절부재의 각도가 조절될 수 있으나, 각도조절부(10)와 연결되지 않고도 각 분절부재의 각도가 조절될 수 있다.The second segment member 1120b and the third segment member 1130b may be coupled to one end of the body 1000, and one or more electrodes may be disposed on one surface, but the number of electrodes arranged is not limited thereto. The first segment member 1110b and the fourth segment member 1140b may be rotatably coupled to the second segment member 1120b and the third segment member 1130b, respectively, and one or more electrodes may be disposed on one surface. The number of electrodes disposed is not limited thereto. The specimen 1100b according to the second embodiment may be connected to the angle adjusting unit 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting unit 10, but the angle adjusting unit 10 and The angle of each segment member can be adjusted without being connected.
본 개시의 제3실시예에 따른 검체부(1100c)에 의하면, 도 12a를 참조하면, 검체부(1100c)는 복수의 분절부재(1110c 내지 1160c) 및 각 분절부재의 일면에 배치되는 전극(1111c, 1131c, 1141c 및 1161c)을 포함할 수 있다. 제1분절부재(1110c) 내지 제6분절부재(1160c)는 서로 회전가능하게 결합될 수 있다. 제1분절부재(1110c)와 제2분절부재(1120c)가 연결되는 힌지부분과 제5분절부재(1150c)와 제6분절부재(1160c)가 연결되는 힌지부분은 몸체(1000)와 결합될 수 있으나 이에 한정되는 것은 아니고 다른 힌지부분이 몸체에 결합될 수 있다. 분절부재의 개수가 도 12a에 도시된 6개로 한정되는 것은 아니다.According to the sample portion 1100c according to the third embodiment of the present disclosure, referring to FIG. 12A, the sample portion 1100c includes a plurality of segment members 1110c to 1160c and electrodes 1111c disposed on one surface of each segment member. , 1131c, 1141c and 1161c). The first segment member 1110c to the sixth segment member 1160c may be rotatably coupled to each other. The hinge part to which the first segment member 1110c and the second segment member 1120c are connected and the hinge part to which the fifth segment member 1150c and the sixth segment member 1160c are connected may be combined with the body 1000. However, it is not limited to this, and other hinge portions may be coupled to the body. The number of segment members is not limited to six shown in FIG. 12A.
제3실시예에 따른 검체부(1100c)는, 탄성체(미도시)등에 의해 각 분절부재가 도 12a의 왼쪽 그림의 상태를 유지할 수 있다.In the sample part 1100c according to the third embodiment, each segment member may maintain the state shown in the left figure of FIG. 12A by an elastic body (not shown).
제3실시예에 따른 검체부(1100c)는, 후술하는 각도조절부(10)와 연결되어 각도조절부(10)에 의해 각 분절부재의 각도가 조절될 수 있으나, 각도조절부(10)와 연결되지 않고도 각 분절부재의 각도가 조절될 수 있다. 도 12a의 오른쪽 그림을 참조하면, 피검체에 검체부(1100c)의 제2전극(1131c) 및 제3전극(1141c)을 접촉시키는 경우, 제1분절부재(1110c) 및 제6분절부재(1160c)는 회전하여 피검체에 접촉할 수 있다. 피검체에서 검체부(1100c)를 떼는 경우 다시 도 12a의 왼쪽그림과 같은 초기상태로 되돌아 갈 수 있다. The sample part 1100c according to the third embodiment may be connected to the angle adjusting part 10, which will be described later, so that the angle of each segment member can be adjusted by the angle adjusting part 10, but the angle adjusting part 10 and The angle of each segment member can be adjusted without being connected. 12A, when the second electrode 1131c and the third electrode 1141c of the sample part 1100c are brought into contact with the subject, the first segment member 1110c and the sixth segment member 1160c ) May rotate to contact the subject. When the sample portion 1100c is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12A again.
본 개시의 제4실시예에 따른 검체부(1100d)에 의하면, 도 12b를 참조하면, 검체부(1100d)는 하나의 검체부재(1110d) 및 검체부재(1110d)의 일면에 배치되는 전극(1111d, 1112d, 1113d 및 1114d)을 포함할 수 있다. 검체부재(1110d)의 개수가 도 12b에 도시된 1개로 한정되는 것은 아니며, 복수의 분절되는 검체부재(1110d)를 더 포함할 수 있다.According to the sample portion 1100d according to the fourth embodiment of the present disclosure, referring to FIG. 12B, the sample portion 1100d is one sample member 1110d and an electrode 1111d disposed on one surface of the sample member 1110d , 1112d, 1113d and 1114d). The number of sample members 1110d is not limited to one shown in FIG. 12B, and may further include a plurality of segmented sample members 1110d.
제4실시예에 따른 검체부(1100d)의 검체부재(1110d)는, 탄성력 있는 재질로 이루어질 수 있으며 검체부재(1110d)를 압박함에 따라 검체부재(1110d)가 몸체(1000)의 방향으로 활 형으로 휘어질 수 있다. 검체부재(1110d)는 도 12b의 왼쪽 그림과 같은 상태를 유지할 수 있다. 검체부(1110d)를 피검체에 접촉시키는 경우, 피검체의 형상과 크기에 맞게 검체부재(1110d)가 도 12b의 오른쪽 그림과 같이 활 형으로 휘어지며 각 전극(1111d 내지 1114d)이 피검체에 모두 접촉할 수 있다. 피검체에서 검체부(1100d)를 떼는 경우 다시 도 12b의 왼쪽그림과 같은 초기상태로 되돌아 갈 수 있다. 검체부(1100d)는 후술하는 각도조절부(10)와 연결되어 각도조절부(10)에 의해 모든 전극이 피검체에 맞닿도록 전극이 배치되는 검체부재(1110d)의 곡률반경 또는 각도가 조절될 수 있으나, 각도조절부(10)와 연결되지 않고도 탄성재질로 이루어지는 검체부재(1110d)를 피검체에 닿게 하여 휘어지도록 함에 의해 검체부재(1110d)의 곡률반경 또는 각도가 조절될 수 있다.The sample member 1110d of the sample part 1100d according to the fourth embodiment may be made of an elastic material, and the sample member 1110d is bowed in the direction of the body 1000 as the sample member 1110d is pressed. Can be bent into. The sample member 1110d may maintain a state as shown in the left figure of FIG. 12B. When the specimen 1110d is brought into contact with the specimen, the specimen member 1110d is bent in a bow shape as shown in the right figure of FIG. 12B in accordance with the shape and size of the specimen, and each electrode 1111d to 1114d is attached to the specimen. All can be contacted. When the sample portion 1100d is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12B again. The specimen 1100d is connected to the angle adjusting unit 10, which will be described later, so that the curvature radius or angle of the specimen member 1110d in which the electrodes are disposed so that all the electrodes contact the subject is adjusted by the angle adjusting unit 10. However, the curvature radius or angle of the specimen member 1110d may be adjusted by making the specimen member 1110d made of an elastic material contact the specimen to bend without being connected to the angle adjusting unit 10.
본 개시의 제5실시예에 따른 검체부(1100e)에 의하면, 도 12c를 참조하면, 검체부(1100e)는 복수의 제1검체부재 내지 제4검채부재(1110e 내지 1140e)를 포함할 수 있다. 다만, 검체부재의 개수는 도 12c에 도시된 4개에 한정되지 않는다.According to the sample part 1100e according to the fifth embodiment of the present disclosure, referring to FIG. 12C, the sample part 1100e may include a plurality of first sample members to fourth detection members 1110e to 1140e. . However, the number of sample members is not limited to four shown in FIG. 12C.
각각의 검체부재는 동일한 구성요소로 구성되어 있으므로 아래에서는 공통되는 부분은 제1검체부재(1110e)를 위주로 서술한다.Since each sample member is composed of the same components, a common part will be described mainly for the first sample member 1110e.
제1검체부재(1110e)는 제1 기둥부재(1111e), 전극각도조절부재(110e) 및 제1전극(1112e)을 포함할 수 있다. The first sample member 1110e may include a first pillar member 1111e, an electrode angle adjusting member 110e, and a first electrode 1112e.
제1기둥부재(1111e)는 중공부재일 수 있다. 제1기둥부재(1111e)는 중공 내부에 탄성체를 포함할 수 있다. 이 때 탄성체는 공지의 어떠한 것도 가능하며, 예를 들면 스프링일 수 있다. 제1기둥부재(1111e)는 피검체에 전극들이 접촉함에 따라 탄성체를 압축하는 방향으로 이동할 수 있다. 피검체에 전극들이 접촉되지 않는 경우, 탄성체는 이완되어 제1기둥부재(1111e)가 도 12c의 왼쪽그림과 같이 초기상태로 되돌아 갈 수 있다.The first pillar member 1111e may be a hollow member. The first pillar member 1111e may include an elastic body inside the hollow. At this time, the elastic body may be any known one, and may be, for example, a spring. The first pillar member 1111e may move in a direction in which the elastic body is compressed as the electrodes contact the subject. When the electrodes are not in contact with the subject, the elastic body is relaxed so that the first pillar member 1111e can return to the initial state as shown in the left figure of FIG. 12C.
전극각도조절부재(110e)는 피검체에 접촉하는 전극(1112e 내지 1142e)의 각도를 조절할 수 있다. 전극각도조절부재(110e)는 가령 공지의 볼 베어링일 수 있으나 이에 한정되는 것은 아니고 피검체에 접촉하는 전극의 각도를 조절할 수 있는 것이면 어떠한 것도 가능하다. 전극각도조절부재(110e)에 의하면, 전극을 피검체에 접촉시키는 경우 도 12c의 오른쪽그림과 같이 각 기둥부재들(1111e 내지 1241e)은 내부에 포함되는 탄성체를 압축하는 방향으로 이동할 수 있고, 접촉하는 피검체의 형상에 대응하여 각 전극들(1112e 내지 1142e)의 각도가 조절될 수 있다. 피검체에서 검체부(1100e)를 떼는 경우 다시 도 12c의 왼쪽그림과 같은 초기상태로 되돌아 갈 수 있다. 검체부(1100e)는 후술하는 각도조절부(10)와 연결되어 각도조절부(10)에 의해 모든 전극이 피검체에 맞닿도록 각 전극의 각도가 조절될 수 있으나, 각도조절부(10)와 연결되지 않고 피검체에 어느 정도의 압력을 가해 전극을 접촉시키는 것만으로도 전극각도조절부재(110e)에 의해 각 전극 모두가 피검체에 접촉할 수 있도록 각 전극의 각도가 조절될 수 있다.The electrode angle adjusting member 110e can adjust the angle of the electrodes 1112e to 1142e contacting the subject. The electrode angle adjusting member 110e may be, for example, a known ball bearing, but is not limited thereto, and any one can be used as long as the angle of the electrode contacting the subject can be adjusted. According to the electrode angle adjusting member 110e, when the electrode is brought into contact with the subject, each of the pillar members 1111e to 1241e can move in the direction of compressing the elastic body included therein, as shown in the right figure of FIG. The angle of each of the electrodes 1112e to 1142e may be adjusted according to the shape of the subject to be tested. When the specimen 1100e is removed from the subject, it may return to the initial state as shown in the left figure of FIG. 12C. The specimen 1100e is connected to the angle adjusting unit 10, which will be described later, but the angle of each electrode can be adjusted by the angle adjusting unit 10 so that all electrodes contact the subject, but the angle adjusting unit 10 The angle of each electrode can be adjusted so that all of the electrodes are in contact with the subject by simply connecting the electrodes by applying a certain amount of pressure to the subject without being connected.
제1실시예 내지 제5실시예에 따른 검체부(1100a 내지 1100e)의 중앙에 배치되는 전극들(제1실시예의 경우 1121a 및 1122a)은 모두 전압측정용 전극일 수 있다. 다만, 검체부(1100)의 중앙에 위치하는 전극들이(제1실시예의 경우 1121a 및 1122a)이 모두 전압측정용 전극이어야 하는 것은 아니며 경우에 따라 적어도 하나 이상이 전류인가용 전극일 수 있다.The electrodes (1121a and 1122a in the case of the first embodiment) disposed in the center of the sample parts 1100a to 1100e according to the first to fifth embodiments may all be electrodes for voltage measurement. However, the electrodes (1121a and 1122a in the first embodiment) that are located in the center of the sample unit 1100 are not necessarily electrodes for voltage measurement, and in some cases, at least one electrode may be a current application electrode.
피검체에 직접 접촉하는 전극들은 공지의 어떠한 재질로도 이루어질 수 있으나, 바람직하게는 ABS 재질로 이루어질 수 있다. 전극들은 표면이 크롬으로 도금 처리될 수 있다. 다만, 도금처리재질이 크롬에 한정되는 것은 아니고 피검체에 직접 접촉하여 피부 알레르기 등을 일으키지 않으며 쉽게 벗겨지지 않는 재질이면 어떠한 것으로도 도금을 할 수 있다.The electrodes directly contacting the subject may be made of any known material, but preferably made of ABS material. The electrodes can be plated with chromium on the surface. However, the plating material is not limited to chromium, and any material can be plated as long as it does not cause skin allergies or the like due to direct contact with the subject and does not easily peel off.
검체부(1100)의 각 분절부재들은 PC+ABS재질로 이루어질 수 있으나, 이에 한정되는 것은 아니고 공지의 어떠한 재질로도 이루어질 수 있다.Each of the segment members of the specimen 1100 may be made of PC+ABS material, but is not limited thereto, and may be made of any known material.
검체부(1100)는 검체부 커버를 더 포함할 수 있다. 검체부 커버는 제1실시예에 따른 검체부(1100a)의 경우, 검체부(1100a)의 제1분절부재(1110a) 및 제3분절부재(1130a)의 외면에 각각 결합될 수 있고, 제2실시예에 따른 검체부(1100b)의 경우, 제1분절부재(1110b) 및 제4분절부재(1140b)의 외면에 각각 결합될 수 있다. 검체부 커버는 PC+ABS재질로 이루어질 수 있으나, 이에 한정되는 것은 아니고 공지의 어떠한 재질로도 이루어질 수 있다.The sample portion 1100 may further include a sample portion cover. In the case of the sample part 1100a according to the first embodiment, the sample part cover may be respectively coupled to the outer surfaces of the first segment member 1110a and the third segment member 1130a of the sample part 1100a, respectively. In the case of the sample portion 1100b according to the embodiment, the outer surfaces of the first segment member 1110b and the fourth segment member 1140b may be respectively coupled. The specimen cover may be made of PC+ABS material, but is not limited thereto, and may be made of any known material.
전극의 적어도 일부는 전극의 일측에 배치되는 압력센서를 포함할 수 있다. 압력센서는 전극과 검체부(1100)의 사이에 배치될 수 있다. 다만, 위치가 이에 한정되는 것은 아니고 피검체에 의해 전극에 가해지는 압력을 측정하기에 적절한 위치라면 어디든 가능하다. 전극의 적어도 일부가 압력센서를 포함할 수 있으나, 바람직하게는 검체부(1100)의 중앙에 위치하는 전극들(제1실시예의 경우, 1121a 및 1122a)에 압력센서가 포함될 수 있다. 적어도 일부의 전극들이 피검체에 접촉하면 전극은 내측으로 인입될 수 있으며, 이 때 전극의 일측에 배치되는 압력센서가 가압됨에 의해 피검체가 전극에 접촉되었는지 여부 및 임피던스를 정확히 측정하기 위해 필요한 정도의 압력으로 전극이 피검체를 가압하는지 여부를 파악할 수 있다. 적어도 일부의 전극은 일측 또는 내부에 탄성소재를 포함할 수 있다. 탄성소재에 의하면, 전극에 피검체가 접촉되어 전극이 가압되어 내측으로 인입되고, 전극의 일측에 배치되는 압력센서가 가압되어 압력이 측정되고, 압력 측정 및 임피던스 측정이 종료된 후 피검체를 전극에서 떼면, 압력센서가 가압되기 이전의 초기상태로 전극이 위치될 수 있다. At least a portion of the electrode may include a pressure sensor disposed on one side of the electrode. The pressure sensor may be disposed between the electrode and the sample portion 1100. However, the position is not limited to this, and any position suitable for measuring the pressure applied to the electrode by the subject may be used. At least a part of the electrode may include a pressure sensor, but preferably, a pressure sensor may be included in the electrodes (1121a and 1122a in the first embodiment) positioned in the center of the sample 1100. When at least some of the electrodes are in contact with the subject, the electrode may be drawn inward, and at this time, the pressure sensor disposed on one side of the electrode is pressed to determine whether the subject is in contact with the electrode and the degree required to accurately measure the impedance. It is possible to determine whether the electrode presses the subject under the pressure of. At least some of the electrodes may include an elastic material on one side or inside. According to the elastic material, the electrode comes into contact with the electrode, the electrode is pressed and drawn inward, the pressure sensor disposed on one side of the electrode is pressed to measure the pressure, and after the pressure measurement and impedance measurement are finished, the electrode is inspected. When released from, the electrode may be positioned in an initial state before the pressure sensor is pressed.
압력센서에 의해 압력이 측정된 후, 압력센서에 의해 측정되는 압력은 압력표시부를 통해 표시될 수 있다. 압력표시부는 예를 들면, 액정부(1013)에 나타나는 압력게이지 또는 별도로 몸체에 설치되는 LED등(1014)일 수 있다. 디스플레이부(1010)의 액정부(1013)를 통해 압력게이지로 표시될 수 있고, 전극이 피검체에 제대로 접촉되었는지 여부가 표시될 수 있다. 또한 전술한 바와 같이, 압력은 디스플레이부(1010)의 액정부(1013)를 통해 표시될 수 있을 뿐만 아니라, LED등(1014)을 통해서도 표시될 수 있다. After the pressure is measured by the pressure sensor, the pressure measured by the pressure sensor can be displayed through the pressure display. The pressure display unit may be, for example, a pressure gauge appearing on the liquid crystal unit 1013 or an LED lamp 1014 separately installed on the body. A pressure gauge may be displayed through the liquid crystal unit 1013 of the display unit 1010, and whether the electrode is properly contacted with the subject may be displayed. In addition, as described above, the pressure may be displayed not only through the liquid crystal unit 1013 of the display unit 1010, but also through the LED lamp 1014.
본 측정장치(900)는 압력센서에 의해 적정한 수준의 압력이 측정되면, 전극이 피검체에 적절하게 접촉된 것으로 판단되어 자동으로 측정회로를 통해 피검체의 임피던스를 측정하도록 구성될 수 있다. 즉, 일정 수준의 압력(소정의 임계값) 이상일 때 임피던스를 측정하도록 구성될 수 있다.When the appropriate level of pressure is measured by the pressure sensor, the measurement device 900 may be configured to automatically measure the impedance of the subject through a measurement circuit because the electrode is determined to be in proper contact with the subject. That is, it can be configured to measure the impedance when a certain level of pressure (predetermined threshold) or more.
이에 의하면 사용자의 일정치 못한 조작에 의해 임피던스의 측정값이 매번 다르게 측정되는 것을 방지할 수 있으므로 임피던스 측정의 정밀도 및 정확도를 향상시킬 수 있다.According to this, since the measurement value of the impedance can be prevented from being measured differently each time by the user's inconsistent operation, the precision and accuracy of the impedance measurement can be improved.
도 13a 및 도 13b는 일실시예에 따른 생체 임피던스 측정장치의 검체부의 각도를 조절하는 수단의 일 실시예인 각도조절부의 세부구성의 사시도이다.13A and 13B are perspective views of a detailed configuration of an angle adjusting unit, which is an embodiment of a means for adjusting the angle of a specimen part of a bioimpedance measuring apparatus according to an embodiment.
도 13a 및 도 13b를 참조하면, 본 개시에 따른 생체 임피던스 측정장치는 검체부(1100)의 각도를 조절하는 수단인 각도조절부(10)를 더 포함할 수 있다. 13A and 13B, the bioimpedance measuring apparatus according to the present disclosure may further include an angle adjusting unit 10 that is a means for adjusting the angle of the sample unit 1100.
각도조절부(10)는 조절기구(1020), 제1연결구(1030), 제2연결구(1040) 및 회전결합부(1050)를 포함할 수 있다. 각도조절부(10)는 검체부(1100)의 분절부재 간의 각도를 조절하는 역할을 할 수 있다.The angle adjusting unit 10 may include an adjusting mechanism 1020, a first connector 1030, a second connector 1040, and a rotation coupling unit 1050. The angle adjusting unit 10 may serve to adjust the angle between the segment members of the specimen 1100.
조절기구(1020)는 몸체(1000)의 하부 커버의 내면에 결합되되 회전축(1022)을 중심으로 회전가능하게 결합될 수 있다. 조절기구(1020)는 몸체(1000)의 하부 커버를 관통하여 하부 커버의 외면으로 돌출될 수 있다. 조절기구(1020)를 가압하거나 가압을 해제하는 경우 조절기구(1020)는 회전축(1022)을 중심으로 회전할 수 있으며, 복수의 연결다리부(1021)는 후술하는 제1연결구(1030)와 연결되어 제1연결구(1030)를 왕복운동 시킬 수 있다. 복수의 연결다리부(1021)는 후술하는 제1연결구(1030)와 회전가능하게 결합될 수 있다. 조절기구(1020)는 PC+ABS 재질로 이루어질 수 있으나 이에 한정되는 것은 아니고 사용자의 조작에 의한 반복적인 움직임에 견딜 수 있는 내구성 또는 내마모성을 견딜 수 있는 것이면 공지의 어떠한 재질로도 이루어질 수 있다.The adjustment mechanism 1020 is coupled to the inner surface of the lower cover of the body 1000 but can be rotatably coupled around the rotation axis 1022. The adjusting mechanism 1020 may penetrate the lower cover of the body 1000 and protrude to the outer surface of the lower cover. When pressurizing or releasing the adjusting mechanism 1020, the adjusting mechanism 1020 may rotate around the rotating shaft 1022, and the plurality of connecting leg portions 1021 are connected to the first connector 1030, which will be described later. The first connector 1030 can be reciprocated. The plurality of connecting leg portions 1021 may be rotatably coupled with the first connector 1030 described later. The adjustment mechanism 1020 may be made of PC+ABS material, but is not limited thereto, and may be made of any known material as long as it can withstand durability or abrasion resistance that can withstand repeated movements by user manipulation.
제1연결구(1030)는 일단에 조절기구(1020)가 결합되고, 타단에 제2연결구(1040)가 결합될 수 있다. 제1연결구(1030)는 조절기구(1020)와 제2연결구를 연결하는 중간다리의 역할을 할 수 있다. 조절기구(1020)를 가압 또는 가압을 해제하는 경우 제1연결구(1030)는 직선왕복운동 할 수 있다. 제1연결구(1030)의 형상은 'ㅍ'형상 또는 'H'형상일 수 있으나 이에 한정되는 것은 아니고, 조절기구(1020)와 제2연결구(1040)를 연결할 수 있으면 어떠한 형상도 가능하다. 제1연결구(1030)는 POM 재질로 이루어질 수 있으나 이에 한정되는 것은 아니고, 반복적인 움직임에 견딜 수 있는 내구성 또는 내마모성을 가진 것이면 어떠한 재질로도 이루어질 수 있다.The first connector 1030 may have an adjusting mechanism 1020 coupled to one end, and a second connector 1040 coupled to the other end. The first connector 1030 may serve as an intermediate leg connecting the adjustment mechanism 1020 and the second connector. When pressurizing or releasing the adjusting mechanism 1020, the first connector 1030 may perform a linear reciprocating motion. The shape of the first connector 1030 may be a'ㅍ' shape or a'H' shape, but is not limited thereto, and any shape is possible as long as the adjustment mechanism 1020 and the second connector 1040 can be connected. The first connector 1030 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or abrasion resistance to withstand repetitive movement.
제2연결구(1040)는 복수의 결합 홈(1042)을 포함하는 직선운동부재(1041)와 연결부재(1043)를 포함할 수 있다. The second connector 1040 may include a linear motion member 1041 and a connection member 1043 including a plurality of coupling grooves 1042.
직선운동부재(1041)는 조절기구(1020)를 가압 또는 가압을 해제함에 따라 직선왕복운동을 하는 제1연결구(1030)에 의해 직선왕복운동을 할 수 있다. 직선운동부재(1041)가 직선왕복운동함에 따라 후술하는 회전결합부(1050)가 회전운동을 할 수 있다. 직선운동부재(1041)의 길이방향의 양 측에는 복수의 결합 홈(1042)이 형성될 수 있다. 복수의 결합 홈(1042)에는 후술하는 회전결합부(1050)의 일단이 결합될 수 있다. 직선운동부재(1041)는 가로로 길쭉한 곡선의 막대 형상일 수 있으나 이에 한정되지 않고 직선왕복운동을 하여 후술하는 회전결합부(1050)를 회전시킬 수 있는 형상이면 어떠한 것도 가능하다.The linear motion member 1041 may perform a linear reciprocation motion by the first connector 1030 that performs a linear reciprocation motion by pressing or releasing the adjustment mechanism 1020. As the linear motion member 1041 linearly reciprocates, the rotation coupling unit 1050, which will be described later, may rotate. A plurality of coupling grooves 1042 may be formed on both sides of the linear motion member 1041 in the longitudinal direction. One end of the rotation coupling part 1050 to be described later may be coupled to the plurality of coupling grooves 1042. The linear motion member 1041 may be a horizontally elongated curved bar shape, but is not limited thereto, and any shape may be used as long as it can rotate the rotation coupling unit 1050 described later by performing a linear reciprocation motion.
연결부재(1043)는 직선운동부재(1041)의 저면에 배치되어 제2연결구(1040)와 제1연결구(1030)를 결합시킬 수 있다. 연결부재(1043)는 제1연결구(1030)의 타단에 결합되되, 제1연결구(1030)의 타단과 서로 회전가능하게 결합될 수 있다.The connection member 1043 is disposed on the bottom surface of the linear motion member 1041 to couple the second connector 1040 and the first connector 1030. The connecting member 1043 is coupled to the other end of the first connector 1030, and may be rotatably coupled to the other end of the first connector 1030.
제2연결구(1040)는 POM 재질로 이루어질 수 있으나 이에 한정되는 것은 아니고, 반복적인 직선왕복운동에 견딜 수 있는 내구성 또는 내마모성을 가진 것이면 어떠한 재질로도 이루어질 수 있다.The second connector 1040 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or abrasion resistance to withstand repeated linear reciprocating motion.
회전결합부(1050)는 회전축을 중심으로 회전할 수 있다. 회전결합부(1050)는 좌, 우 한 쌍으로 배치될 수 있으나, 이에 한정되는 것은 아니다. 회전결합부(1050)는 검체부(1100)의 각 분절부재와 결합할 수 있다. 본 개시의 제1 실시예에 따른 검체부(1100a)의 경우 제1분절부재(1110) 및 제3분절부재(1130)는 회전결합부(1050)와 결합할 수 있다. 본 개시의 제2실시예에 따른 검체부(1100b)의 경우 제1분절부재(1110) 및 제4분절부재(1140)는 회전결합부(1050)와 결합할 수 있다. 회전결합부(1050)가 회전함에 따라 회전결합부(1050)에 결합된 각 분절부재가 회전할 수 있다. The rotation coupling part 1050 may rotate about the rotation axis. The rotation coupling unit 1050 may be arranged in a pair of left and right, but is not limited thereto. The rotating coupling part 1050 may be coupled to each segmented member of the sample part 1100. In the case of the sample part 1100a according to the first embodiment of the present disclosure, the first segment member 1110 and the third segment member 1130 may be coupled to the rotation coupling part 1050. In the case of the specimen 1100b according to the second embodiment of the present disclosure, the first segment member 1110 and the fourth segment member 1140 may be coupled to the rotation coupling part 1050. As the rotating coupling portion 1050 rotates, each segment member coupled to the rotating coupling portion 1050 may rotate.
회전결합부(1050)는 제2연결구(1040)와 결합될 수 있다. 회전결합부(1050)의 일단에 돌기(1051)가 형성될 수 있으며 돌기(1051)가 결합 홈(1042)의 길이방향으로 슬라이딩하여 왕복 운동 가능하게 결합될 수 있다. 돌기(1051)는 조절기구(1020)가 가압되지 않는 경우 결합 홈(1042)의 외측에 위치할 수 있다. 조절기구(1020)가 가압되어 제2연결구(1040)가 직선운동을 하여 검체부(1100)와 가까워지는 경우 회전결합부(1050)는 회전하며 회전결합부(1050)의 돌기(1051)는 결합 홈(1042)의 외측에서 내측으로 슬라이딩하여 이동할 수 있다. 이에 따라 회전결합부(1050)와 결합되는 검체부(1100)의 각 분절부재들은 회전할 수 있다. 본 개시의 제1 실시예에 따른 검체부(1100a)의 경우, 제1분절부재(1110)와 제3분절부재(1130)가 각각 제2분절부재(1120)와 이루는 각도가 증가하도록 회전할 수 있다. 본 개시의 제2실시예에 따른 검체부(1100b)의 경우, 제1분절부재(1110) 내지 제4분절부재(1140)는 서로 결합하는 모든 분절부재간의 각도가 증가하도록 회전할 수 있다.The rotating coupling part 1050 may be coupled to the second connector 1040. The protrusion 1051 may be formed at one end of the rotation coupling part 1050 and the protrusion 1051 may be coupled to be able to reciprocate by sliding in the longitudinal direction of the coupling groove 1042. The protrusion 1051 may be located outside the coupling groove 1042 when the adjusting mechanism 1020 is not pressed. When the adjustment mechanism 1020 is pressurized and the second connector 1040 moves linearly to be closer to the specimen 1100, the rotating coupling part 1050 rotates and the protrusion 1051 of the rotating coupling part 1050 is coupled. It can move by sliding from the outside of the groove 1042 to the inside. Accordingly, each of the segmented members of the sample portion 1100 coupled with the rotating coupling portion 1050 can rotate. In the case of the specimen 1100a according to the first embodiment of the present disclosure, the angles formed by the first segment member 1110 and the third segment member 1130 with the second segment member 1120 may increase. have. In the case of the specimen 1100b according to the second embodiment of the present disclosure, the first segment members 1110 to 4th segment members 1140 may be rotated so that the angle between all the segment members coupled to each other increases.
회전결합부(1050)는 POM재질로 이루어질 수 있으나 이에 한정되는 것은 아니고, 반복적인 회전운동에 견딜 수 있는 내구성 또는 내마모성을 가진 것이면 어떠한 재질로도 이루어질 수 있다.The rotation coupling portion 1050 may be made of POM material, but is not limited thereto, and may be made of any material as long as it has durability or wear resistance to withstand repetitive rotational motion.
회전결합부(1050)는 내부에 탄성체를 포함할 수 있다. 내부에 포함되는 탄성체에 의해 조절기구(1020)를 가압하지 않은 경우 각 회전결합부(1050)에 결합되는 각 분절부재가 내측으로 오므려진 상태를 유지할 수 있다. 탄성체는 일반적인 스프링을 사용할 수 있으나 이에 한정되는 것은 아니고, 조절기구(1020)를 가압하지 않은 경우 각 분절부재를 내측으로 오므려진 상태를 유지할 수 있는 적당한 것이면 어떠한 재질도 사용될 수 있다.The rotating coupling part 1050 may include an elastic body therein. When the adjusting mechanism 1020 is not pressed by the elastic body included in the inside, each segmented member coupled to each rotational coupling part 1050 can maintain a closed state inward. The elastic body may use a general spring, but is not limited thereto, and any material may be used as long as it is suitable to maintain each segmented member in a closed state when the adjusting mechanism 1020 is not pressed.
조절기구(1020)를 가압하여 각 분절부재 간의 각도가 증가된 후 복수의 분절부재 중 적어도 일부를 피검체의 측정부위에 접촉시킨 후 조절기구(1020)의 가압상태를 해제하여 각 분절부재간의 각도가 감소되도록 조절하여 피검체에 접촉되지 않은 나머지 분절부재가 피검체에 접촉하도록 할 수 있다. 즉, 피검체의 모든 부위에 전극이 접촉하도록 하여 임피던스를 측정할 수 있다. 이에 의하면, 복수의 분절부재 모두가 피검체에 접촉할 수 있도록 피검체의 형상 또는 두께에 대응하여 각 분절부재 간의 각도가 조절되므로 피검체의 형상 또는 두께 그리고 측정부위에 상관없이 임피던스를 측정할 수 있다. 이 때, 피검체에 나중에 접촉되는 분절부재들은 회전결합부(1050)의 내부에 배치되는 용수철에 의한 압력으로 피검체를 가압할 수 있다. 즉, 이에 의하면 피검체의 형상 또는 두께 그리고 측정부위와 상관없이 용수철에 의한 일정한 압력으로 피검체에 접촉하므로 임피던스 측정의 정밀도 및 정확도가 향상될 수 있다.After the angle between each segment member is increased by pressing the adjustment mechanism 1020, at least a part of the plurality of segment members is brought into contact with the measurement part of the subject, and then the pressure of the adjustment mechanism 1020 is released to release the angle between each segment member. Can be adjusted so that the remaining segment members that are not in contact with the subject contact the subject. That is, the impedance can be measured by making the electrode contact all parts of the subject. According to this, since the angle between each segment member is adjusted in correspondence with the shape or thickness of the object so that all of the plurality of segment members can contact the object, impedance can be measured regardless of the shape or thickness of the object and the measurement area. have. At this time, the segment members that are later contacted with the subject may pressurize the subject under pressure by a spring disposed inside the rotating coupling part 1050. That is, according to this, the accuracy and accuracy of the impedance measurement can be improved because it is in contact with the subject at a constant pressure by the spring regardless of the shape or thickness of the subject and the measurement part.
각도조절부(10)는 제1실시예에 따른 검체부(1100a) 및 제2실시예에 따른 검체부(1100b)에 연결되도록 하여 적용할 수 있으나, 이에 한정되지 않고 제3실시예 내지 제5실시예의 검체부와도 연결되게 적용하여 각도조절부(10)에 의해 각 분절부재 또는 각 전극의 각도, 검체부재의 각도 또는 곡률반경을 조절할 수 있다.The angle adjustment unit 10 may be applied to be connected to the sample unit 1100a according to the first embodiment and the sample unit 1100b according to the second embodiment, but is not limited thereto. It is also applied to be connected to the sample portion of the embodiment to adjust the angle of each segment member or each electrode, the angle of the sample member, or the radius of curvature by the angle adjusting unit 10.
각도조절부(10)는 검체부(1100)의 각 분절부재간의 각도를 조절하는 조절수단의 일 실시예일뿐이고, 전술하였듯이 검체부(1100)의 각 실시예에 따라서 각도조절부(10) 없이도 검체부(1100)의 각 분절부재 또는 각 전극의 각도, 검체부재의 각도 또는 곡률반경이 조절될 수 있다.The angle adjusting part 10 is only one embodiment of the adjusting means for adjusting the angle between each segmented member of the sample part 1100, and the sample without the angle adjusting part 10 according to each embodiment of the sample part 1100 as described above The angle of each segment member or electrode of the sub 1100, the angle of the sample member, or the radius of curvature may be adjusted.
도 14a 및 도 14b는 본 개시에 따른 생체 임피던스 측정장치에 의해 생체 임피던스를 측정하는 모습의 개략도이다.14A and 14B are schematic views of a state in which bioimpedance is measured by the bioimpedance measuring apparatus according to the present disclosure.
도 14a 및 도 14b을 참조하면, 체형 또는 측정부위에 따라 검체부(1100)의 각 분절부재간의 이루는 각도가 달라짐을 알 수 있다. 14A and 14B, it can be seen that an angle formed between each segmented member of the specimen 1100 varies according to a body shape or a measurement part.
도 14a를 참조하면, 체형 또는 측정부위가 비교적 얇은 경우로서, 본 개시의 일 실시예에 따른 측정장치의 제1분절부재(1110)와 제2분절부재(1120)가 제1각도(
1)을 이룰 수 있다.Referring to FIG. 14A, as the body shape or the measurement part is relatively thin, the first segment member 1110 and the second segment member 1120 of the measuring device according to an embodiment of the present disclosure have a first angle ( 1) can be achieved.
도 14b를 참조하면, 도 14a에 비해 체형 또는 측정부위가 두꺼운 경우로서, 본 개시의 일 실시예에 따른 측정장치의 제1분절부재(1110)와 제2분절부재(1120)가 이루는 제2각도(
2)가 제1각도(
1)에 비해 증가됨을 알 수 있다.Referring to FIG. 14B, as compared to FIG. 14A, the body shape or the measurement area is thicker, and a second angle formed by the first segment member 1110 and the second segment member 1120 of the measuring device according to an embodiment of the present disclosure ( 2) is the first angle ( It can be seen that it is increased compared to 1).
검체부(1100)와 결합되는 회전결합부(1050)는 각도센서를 더 포함할 수 있다.The rotation coupling part 1050 coupled with the sample part 1100 may further include an angle sensor.
회전결합부(1050)에 포함되는 각도센서에 의해 회전하는 각 분절부재간의 각도값을 측정할 수 있으며 이 각도값을 통해 측정부위의 둘레 또는 길이 또는 크기를 파악할 수 있으며 또한, 피검체의 체형, 측정부위의 형상 등을 파악할 수 있다.The angle value between each segmented member that is rotated by the angle sensor included in the rotation coupling unit 1050 can be measured, and through this angle value, the circumference, length, or size of the measurement site can be grasped. The shape of the measurement site can be grasped.
도 15a 및 도 15b는 본 개시에 따른 생체 임피던스 측정장치의 길이측정부의 개략도이다.15A and 15B are schematic diagrams of a length measuring unit of the bioimpedance measuring apparatus according to the present disclosure.
도 16은 본 개시에 따른 생체 임피던스 측정장치에 의해 둘레를 측정하는 모습의 개략도이다.16 is a schematic diagram of a state in which the circumference is measured by the bioimpedance measuring apparatus according to the present disclosure.
도 15a를 참조하면, 길이측정부(1200)는 피검체의 둘레 또는 길이를 측정하는 역할을 할 수 있다. 길이측정부(1200)는 몸체(1000)의 타단에 회전가능하게 결합될 수 있다. 길이측정부(1200)는 몸체(1000)의 타단을 관통하는 회전축을 중심으로 회전할 수 있다. 이 때, 회전축은 몸체(1000)의 타단을 수직 또는 수평으로 관통할 수 있으나, 관통방향이 이에 한정되는 것은 아니고 회전축은 몸체(1000)의 타단을 어느 방향으로도 관통할 수 있으며 길이측정부(1200)는 이 회전축을 중심으로 회전할 수 있다.15A, the length measurement unit 1200 may serve to measure the circumference or length of the subject. The length measuring unit 1200 may be rotatably coupled to the other end of the body 1000. The length measurement unit 1200 may rotate around a rotation axis passing through the other end of the body 1000. At this time, the rotating shaft may penetrate the other end of the body 1000 vertically or horizontally, but the through direction is not limited to this, and the rotating shaft may penetrate the other end of the body 1000 in any direction, and the length measuring unit ( 1200) may rotate around this axis of rotation.
도 15b를 참조하면, 길이측정부(1200)는 중앙부(1210) 및 외곽부(1220)을 포함할 수 있다.Referring to FIG. 15B, the length measurement unit 1200 may include a central portion 1210 and an outer portion 1220.
중앙부(1210)는 중공의 원판 형상일 수 있으나 이에 한정되지 않고 어떠한 형상도 가능하며, 가령 사각판, 육각판 등의 형상일 수도 있다. 중앙부(1210)의 재질은 PC ABS 또는 POM등으로 이루어질 수 있으나, 이에 한정되는 것은 아니고 공지의 어떠한 재질도 가능하다. The central portion 1210 may have a hollow disc shape, but is not limited thereto, and may have any shape, for example, a square plate or a hexagonal plate. The material of the central portion 1210 may be made of PC ABS or POM, but is not limited thereto, and any known material may be used.
외곽부(1220)는 외면에 돌기부가 형성될 수 있다. 외곽부(1220)는 도넛 형상일 수 있으며 중앙부(1210)와 끼움 결합할 수 있다. 외곽부(1220)는 측정부위의 둘레 또는 길이를 측정하기 위해 피검체와 직접 접촉할 수 있다. 외곽부(1220)의 재질은 실리콘으로 이루어질 수 있으나, 이에 한정되는 것은 아니고 길이측정부(1200)가 피검체의 표면에서 미끄러져 슬라이딩 되지 않도록 피검체와의 마찰력을 충분히 제공하는 재질이면 공지의 어떠한 것도 가능하다.The outer portion 1220 may have a protrusion formed on the outer surface. The outer portion 1220 may have a donut shape and may be fitted with the central portion 1210. The outer portion 1220 may directly contact the subject to measure the circumference or length of the measurement portion. The material of the outer portion 1220 may be made of silicon, but is not limited thereto, and any known material may be used as long as the length measuring unit 1200 provides sufficient friction with the subject so that it does not slide and slide on the surface of the subject. It is also possible.
길이측정부(1200)는 피검체의 표면의 일부에서 구름작동을 할 수 있다. 길이측정부(1200)는 내부에 인코더(encoder)를 포함하여 측정되는 회전수를 기초로 피검체의 둘레 또는 길이를 측정할 수 있다. 예를 들어 측정부위의 1/2의 둘레 또는 길이만큼 길이측정부(1200)가 구름작동을 하였다면 길이측정부(1200)의 회전수를 기초로 산출되는 둘레 또는 길이값의 두 배가 측정부위 전체의 둘레 또는 길이일 수 있다. 다만, 도 16을 참조하면, 길이측정부(1200)에 의해 피검체의 둘레 또는 길이를 측정할 때 피검체가 강체(rigid body)가 아닌 경우, 피검체의 탄성도에 의해 피검체가 눌려지므로 단순히 두 배를 적용하면 정확한 둘레 또는 길이를 산출할 수 없다. 따라서, 전체 둘레 또는 길이 및 지방량에 따른 피검체의 탄성도 등에 따라 실험으로 얻어진 적절한 상관계수를 곱하여 보다 정확하게 피검체의 전체 둘레 또는 길이를 측정할 수 있다.The length measuring unit 1200 may perform rolling operation on a part of the surface of the subject. The length measurement unit 1200 may measure the circumference or length of the subject based on the number of revolutions measured by including an encoder therein. For example, if the length measuring unit 1200 is rolled by the circumference or length of 1/2 of the measuring unit, twice the circumference or the length value calculated based on the number of revolutions of the length measuring unit 1200 is the total of the measuring unit. It can be circumferential or length. However, referring to FIG. 16, when the subject is not a rigid body when measuring the circumference or length of the subject by the length measuring unit 1200, the subject is pressed by the elasticity of the subject. Simply applying double does not yield an exact circumference or length. Therefore, it is possible to more accurately measure the total circumference or length of the subject by multiplying the appropriate correlation coefficient obtained by the experiment according to the total circumference or the elasticity of the subject according to the length and the amount of fat.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The embodiments described above may be implemented with hardware components, software components, and/or combinations of hardware components and software components. For example, the devices, methods, and components described in the embodiments include, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors (micro signal processors), microcomputers, and field programmable gates (FPGAs). It can be implemented using one or more general purpose computers or special purpose computers, such as arrays, programmable logic units (PLUs), microprocessors, or any other device capable of executing and responding to instructions. The processing device may run an operating system (OS) and one or more software applications running on the operating system. In addition, the processing device may access, store, manipulate, process, and generate data in response to the execution of the software. For convenience of understanding, a processing device may be described as one being used, but a person having ordinary skill in the art, the processing device may include a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that may include. For example, the processing device may include a plurality of processors or a processor and a controller. In addition, other processing configurations, such as parallel processors, are possible.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.The software may include a computer program, code, instruction, or a combination of one or more of these, and configure the processing device to operate as desired, or process independently or collectively You can command the device. Software and/or data may be interpreted by a processing device or to provide instructions or data to a processing device, of any type of machine, component, physical device, virtual equipment, computer storage medium or device. , Or may be permanently or temporarily embodied in the transmitted signal wave. The software may be distributed on networked computer systems, and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, or the like alone or in combination. The program instructions recorded on the medium may be specially designed and constructed for the embodiments or may be known and usable by those skilled in computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic media such as floptical disks. -Hardware devices specifically configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language code that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler. The hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
실시예들에서 설명된 구성요소들은 하나 이상의 DSP (Digital Signal Processor), 프로세서 (Processor), 컨트롤러 (Controller), ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array)와 같은 프로그래머블 논리 소자 (Programmable Logic Element), 다른 전자 기기들 및 이것들의 조합 중 하나 이상을 포함하는 하드웨어 구성 요소들(hardware components)에 의해 구현될 수 있다. 실시예들에서 설명된 기능들(functions) 또는 프로세스들(processes) 중 적어도 일부는 소프트웨어(software)에 의해 구현될 수 있고, 해당 소프트웨어는 기록 매체(recording medium)에 기록될 수 있다. 실시예들에서 설명된 구성요소들, 기능들 및 프로세스들은 하드웨어와 소프트웨어의 조합에 의해 구현될 수 있다.The components described in the embodiments may be one or more programmable logic devices (Programmable Logic Devices) such as one or more Digital Signal Processors (DSPs), Processors, Controllers, Application Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs). Logic Element), other electronic devices, and hardware components including one or more of combinations thereof. At least some of the functions or processes described in the embodiments may be implemented by software, and the software may be recorded in a recording medium. The components, functions and processes described in the embodiments may be implemented by a combination of hardware and software.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described by the limited drawings, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques are performed in a different order than the described method, and/or the components of the described system, structure, device, circuit, etc. are combined or combined in a different form from the described method, or other components Alternatively, even if replaced or substituted by equivalents, appropriate results can be achieved.
Claims (22)
- 생체 임피던스 측정 장치로서, 상기 장치는:A bioimpedance measurement device, the device comprising:측정 회로를 수용하며 손으로 파지가능한 그립을 포함하는 몸체부;A body portion accommodating the measurement circuit and including a grip that can be gripped by hand;상기 몸체부의 일측에 구비되는 제1 축에 결합하여 상기 제1 축을 선회하는 제1 전극 및 제2 전극; 및A first electrode and a second electrode coupled to a first axis provided on one side of the body portion to orbit the first axis; And상기 몸체부의 상기 일측에서 상기 제1 축과 위치를 달리하는 제2 축에 결합하여 상기 제2 축을 선회하는 제3 전극 및 제4 전극A third electrode and a fourth electrode pivoting on the second axis by being coupled to a second axis having a different position from the first axis on the one side of the body part을 포함하고,Including,측정 대상체가 접근하여 상기 제1 전극, 상기 제2 전극, 상기 제3 전극, 및 상기 제4 전극에 둘러싸이며 접촉할 때 상기 측정 대상체의 생체 임피던스를 측정하는 장치.A device for measuring the bioimpedance of the measurement object when the measurement object approaches and is surrounded and contacted by the first electrode, the second electrode, the third electrode, and the fourth electrode.
- 제1항에 있어서,According to claim 1,상기 제2 전극은 The second electrode상기 측정 대상체에 의해 눌러져서 상기 그립 쪽으로 선회함으로써, 상기 측정 대상체가 상기 제2 전극에 닿기 시작할 때보다 더 깊이 상기 측정 대상체를 수용하는 장치.An apparatus for receiving the measurement object deeper than when the measurement object starts to contact the second electrode by being pressed by the measurement object and turning toward the grip.
- 제2항에 있어서,According to claim 2,상기 제2 전극은 The second electrode상기 측정 대상체가 이격하면 다시 선회 전의 위치로 복원하도록 탄성체의 지지를 받는 장치.When the measurement object is spaced apart, the device is supported by the elastic body to restore it to the position before turning again.
- 제2항에 있어서,According to claim 2,상기 제4 전극은 The fourth electrode상기 제2 전극과 이웃하며 상기 측정 대상체에 의해 눌러져서 상기 그립 쪽으로 선회함으로써, 상기 측정 대상체가 상기 제4 전극에 닿기 시작할 때보다 더 깊이 상기 측정 대상체를 수용하는 장치.An apparatus adjacent to the second electrode and receiving the measurement object deeper than when the measurement object starts to contact the fourth electrode by being pressed by the measurement object and turning toward the grip.
- 제4항에 있어서,According to claim 4,상기 제4 전극이 상기 그립 쪽으로 선회하는 정도는 상기 제2 전극이 상기 그립 쪽으로 선회화는 정도와 상이할 수 있는 장치.The degree to which the fourth electrode turns toward the grip may be different from the degree to which the second electrode turns toward the grip.
- 제1항에 있어서,According to claim 1,상기 측정 회로는,The measurement circuit,상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도와 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도를 비교함으로써 상기 측정 대상체의 어느 부분에 닿고 있는지를 추정하는 장치.The apparatus for estimating which part of the measurement object is being touched by comparing the degree to which the second electrode turns toward the grip and the degree to which the fourth electrode turns toward the grip while being pressed by the measurement object.
- 제1항에 있어서,According to claim 1,상기 측정 회로는,The measurement circuit,상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제1 전극이 벌어진 정도와 상기 제3 전극이 벌어진 정도를 비교함으로써 상기 측정 대상체의 어느 부분에 닿고 있는지를 추정하는 장치.An apparatus for estimating which part of the measurement object is being touched by comparing the degree to which the first electrode is opened and the degree to which the third electrode is opened while being pressed by the measurement object.
- 제1항에 있어서,According to claim 1,상기 측정 회로는,The measurement circuit,상기 측정 대상체에 의해 눌러지고 있는 동안, 상기 제2 전극 및 상기 제4 전극 중 적어도 하나가 상기 그립 쪽으로 한계치까지 선회하여 눌리고 있다면, 상기 생체 임피던스 측정 결과가 유효하지 않은 것으로 판단하는 장치.A device for determining that the result of the measurement of the bioimpedance is invalid if at least one of the second electrode and the fourth electrode is pressed and pressed down to a limit toward the grip while being pressed by the measurement object.
- 제1항에 있어서,According to claim 1,상기 제1 전극 및 상기 제3 전극은 접근하여 접촉되는 측정 대상체의 둘레에 따라 벌어지거나 또는 모아지는 장치.The device in which the first electrode and the third electrode are opened or gathered along the circumference of the measurement object to be approached and contacted.
- 제1항에 있어서,According to claim 1,상기 측정 회로는 The measuring circuit상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체의 둘레를 추정하는 장치.While the measurement object approaches and contacts, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or collected, and the degree to which the third electrode is opened or collected A device for estimating the circumference of the measurement object using at least one of degrees.
- 제1항에 있어서,According to claim 1,상기 측정 대상체가 접근하여 상기 제1 전극, 상기 제2 전극, 상기 제3 전극, 및 상기 제4 전극에 둘러싸이며 접촉할 때의 압력을 측정하는 압력 센서A pressure sensor that measures the pressure when the measurement object approaches and is surrounded and contacted by the first electrode, the second electrode, the third electrode, and the fourth electrode.를 더 포함하고,Further comprising,상기 측정 대상체의 생체 임피던스는The bio impedance of the measurement object is상기 압력 센서에서 측정된 압력이 미리 결정된 범위 내에 속할 때 측정되는 장치.A device that is measured when the pressure measured by the pressure sensor falls within a predetermined range.
- 생체 임피던스 측정 장치의 동작 방법에 있어서, 상기 동작 방법은:In the operation method of the bioimpedance measuring device, the operation method is:측정 대상체가 상기 생체 임피던스 측정 장치에 접근하여 상기 생체 임피던스 측정 장치에 둘러싸이며 접촉할 때, 상기 생체 임피던스 측정 장치에 구비된 제1 전극, 제2 전극, 제3 전극 및 제4 전극 중 적어도 하나의 움직임을 감지하는 단계; 및When a measurement object approaches the bioimpedance measurement device and is surrounded and contacted by the bioimpedance measurement device, at least one of a first electrode, a second electrode, a third electrode, and a fourth electrode provided in the bioimpedance measurement device is contacted. Detecting movement; And상기 제1 전극, 상기 제2 전극, 상기 제3 전극 및 상기 제4 전극 중 적어도 하나를 이용하여, 상기 측정 대상체의 생체 임피던스를 측정하는 단계Measuring a bioimpedance of the measurement object using at least one of the first electrode, the second electrode, the third electrode, and the fourth electrode.를 포함하고,Including,상기 제1 전극 및 상기 제2 전극은 상기 생체 임피던스 측정 장치의 일측에 구비되는 제1 축에 결합하여 상기 제1 축을 선회하고,The first electrode and the second electrode are coupled to a first axis provided on one side of the bio-impedance measurement device to orbit the first axis,상기 제3 전극 및 상기 제4 전극은 상기 생체 임피던스 측정 장치의 상기 일축에서 상기 제1 축과 위치를 달리하는 제2 축에 결합하여 상기 제2 축을 선회하는 동작 방법.The third electrode and the fourth electrode are coupled to a second axis having a position different from the first axis in the one axis of the bio-impedance measuring device to rotate the second axis.
- 제12항에 있어서,The method of claim 12,상기 움직임을 감지하는 단계는The step of detecting the movement상기 측정 대상체가 접근하여 접촉되는 동안, 상기 제2 전극이 상기 그립 쪽으로 선회하는 정도, 상기 제4 전극이 상기 그립 쪽으로 선회하는 정도, 제1 전극이 벌어지거나 모아진 정도 및 제3 전극이 벌어지거나 모아진 정도 중 적어도 하나를 이용하여 상기 측정 대상체의 둘레를 추정하는 단계While the measurement object approaches and contacts, the degree to which the second electrode turns toward the grip, the degree to which the fourth electrode turns toward the grip, the degree to which the first electrode is opened or collected, and the degree to which the third electrode is opened or collected Estimating the circumference of the measurement object using at least one of the degree를 포함하는 동작 방법.Method of operation comprising a.
- 파지면을 포함하여 한 손으로 파지가능한 T형 또는 Y형 몸체;T- or Y-shaped body that can be gripped with one hand, including a gripping surface;상기 몸체의 일단에 결합되며, 서로 회전 가능하게 결합되는 복수의 분절부재로 구성되고, 일면에 적어도 2개의 전류인가용 전극과 적어도 2개의 전압측정용 전극이 배치되는 검체부; 및A sample portion coupled to one end of the body, composed of a plurality of segment members rotatably coupled to each other, and having at least two electrodes for applying current and at least two electrodes for measuring voltage on one surface; And상기 전류인가용 전극들과 상기 전압측정용 전극들을 이용하여, 피검체의 임피던스를 측정하는 측정회로Measurement circuit for measuring the impedance of the subject using the current application electrodes and the voltage measurement electrodes를 포함하며,It includes,상기 검체부는, The sample portion,상기 복수의 분절부재에 배치되는 하나 이상의 전극이 상기 피검체의 형상 또는 두께에 대응하여 피검체에 접촉하도록 각 분절부재간의 각도가 조절되는 것The angle between each segment member is adjusted so that at least one electrode disposed on the plurality of segment members contacts the object under the shape or thickness of the object.을 특징으로 하는 생체 임피던스 측정 장치.Bioimpedance measuring device characterized in that.
- 제14항에 있어서,The method of claim 14,상기 파지면에 배치되어 상기 검체부의 하나 이상의 분절부재의 회전을 조절하는 조절기구를 더 포함하며, It is disposed on the gripping surface further comprises an adjustment mechanism for adjusting the rotation of one or more segment members of the specimen,상기 검체부는,The sample portion,상기 조절기구와 연결되어 상기 조절기구의 조작에 의해 상기 복수의 분절부재 간의 각도가 증가하며, The angle between the plurality of segment members is increased by operation of the adjustment mechanism in connection with the adjustment mechanism,상기 복수의 전극 중 적어도 일부를 피검체의 측정부위에 접촉시킨 후 상기 조절기구의 조작상태를 해제하는 경우,When at least a part of the plurality of electrodes is brought into contact with the measurement part of the subject, and the operation state of the adjustment mechanism is released,상기 복수의 분절부재에 배치되는 전극이 상기 피검체의 형상 또는 두께에 대응하여 피검체에 접촉하도록 각 분절부재간의 각도가 조절되는 것The angle between each segment member is adjusted so that the electrodes disposed on the plurality of segment members contact the object under the shape or thickness of the object.을 특징으로 하는 생체 임피던스 측정 장치.Bioimpedance measuring device characterized in that.
- 제14항에 있어서,The method of claim 14,상기 몸체의 타단에 결합되며 피검체의 둘레 또는 길이를 측정하는 길이측정부를 더 포함하며,It is coupled to the other end of the body and further includes a length measuring unit for measuring the circumference or length of the subject,상기 길이측정부는, 상기 몸체의 타단을 관통하는 회전축을 중심으로 회전하며, 피검체의 표면에서 구름작동을 하여 측정되는 회전수를 기초로 피검체의 둘레 또는 길이를 측정하는 것The length measuring part rotates about a rotation axis passing through the other end of the body, and measures the circumference or length of the subject based on the number of revolutions measured by rolling on the surface of the subject.을 특징으로 하는 생체 임피던스 측정 장치.Bioimpedance measuring device characterized in that.
- 제16항에 있어서,The method of claim 16,상기 검체부와 상기 길이측정부는 상기 몸체와 일체형으로 구성되어,The specimen part and the length measuring part are integrally formed with the body,상기 몸체의 타단에 결합되는 길이측정부에 의해 피검체의 둘레 또는 길이를 측정하고, 상기 몸체의 일단에 결합되는 상기 검체부에 의해 피검체의 임피던스를 측정하는 것Measuring the circumference or length of the subject by a length measuring part coupled to the other end of the body, and measuring the impedance of the subject by the sample part coupled to one end of the body을 특징으로 하는 생체 임피던스 측정 장치.Bioimpedance measuring device characterized in that.
- 제14항에 있어서,The method of claim 14,상기 몸체에 배치되어 상기 검체부의 분절부재의 회전각도를 조절하는 각도조절부An angle adjustment unit disposed on the body to adjust the rotation angle of the segmental member of the specimen를 적어도 1개 이상 더 포함하는 생체 임피던스 측정 장치.Bioimpedance measuring apparatus further comprising at least one or more.
- 제18항에 있어서,The method of claim 18,상기 각도조절부는,The angle adjustment unit,상기 몸체의 일측면을 관통하는 회전축을 중심으로 회전하며 일단이 상기 몸체의 외부로 노출되는 조절기구;A control mechanism that rotates around a rotation axis passing through one side of the body and one end is exposed to the outside of the body;상기 조절기구의 타단에 결합되며 길이방향의 양단에 결합 홈이 형성되는 직선운동부재; 및A linear motion member coupled to the other end of the adjustment mechanism and having coupling grooves formed at both ends in the longitudinal direction; And일측에 형성되는 돌기가 상기 결합 홈에 직선운동 가능하게 결합되고 타측은 상기 분절부재와 연결되는 회전결합부A rotating coupling part that is formed on one side is coupled to the coupling groove to be linearly movable and the other side is connected to the segment member.를 포함하는 생체 임피던스 측정 장치.Bioimpedance measuring device comprising a.
- 제14항에 있어서,The method of claim 14,상기 피검체의 건강정보는 상기 검체부 및 길이측정부로부터 수신된 정보를 종합하여 산출되는 것The health information of the subject is calculated by synthesizing the information received from the specimen part and the length measurement part.을 특징으로 하는 생체 임피던스 측정 장치.Bioimpedance measuring device characterized in that.
- 제14항에 있어서,The method of claim 14,상기 검체부의 전극의 일측에 배치되며, 상기 검체부의 전극에 가해지는 압력을 측정하는 압력센서A pressure sensor disposed on one side of the electrode of the sample portion and measuring the pressure applied to the electrode of the sample portion를 더 포함하는 생체 임피던스 측정 장치.Bioimpedance measuring apparatus further comprising a.
- 제21항에 있어서,The method of claim 21,상기 몸체의 일측에 배치되며, 상기 압력센서에 의해 측정되는 압력값을 표시하는 압력표시부A pressure display unit disposed on one side of the body and displaying a pressure value measured by the pressure sensor를 더 포함하는 생체 임피던스 측정 장치.Bioimpedance measuring apparatus further comprising a.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190057959A KR20200094055A (en) | 2019-01-29 | 2019-05-17 | Bioimpedance measuring device and operating method for the same |
KR1020190096704A KR20200094063A (en) | 2019-01-29 | 2019-08-08 | Bioimpedance measuring device and operating method for the same |
US17/426,459 US12144600B2 (en) | 2019-01-29 | 2020-01-15 | Bioimpedance measurement device and operation method thereof |
PCT/KR2020/000739 WO2020159118A1 (en) | 2019-01-29 | 2020-01-15 | Bioimpedance measurement device and operation method thereof |
CN202080022943.8A CN113613555B (en) | 2019-01-29 | 2020-01-15 | Bioimpedance measurement device and method of operating same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190011295 | 2019-01-29 | ||
KR10-2019-0011295 | 2019-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158989A1 true WO2020158989A1 (en) | 2020-08-06 |
Family
ID=71841136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/002320 WO2020158989A1 (en) | 2019-01-29 | 2019-02-26 | Bioimpedance measurement device and operation method thereof |
Country Status (3)
Country | Link |
---|---|
KR (2) | KR20200094055A (en) |
CN (1) | CN113613555B (en) |
WO (1) | WO2020158989A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102327171B1 (en) * | 2020-08-13 | 2021-11-17 | 재단법인 아산사회복지재단 | Device for diagnosing edema |
CN114533017A (en) * | 2022-02-24 | 2022-05-27 | 合肥诺和电子科技有限公司 | Electrical impedance lung function imaging mechanical arm |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100423678B1 (en) * | 1999-10-12 | 2004-03-19 | 가부시키가이샤 타니타 | Bioelectrical impedance measuring apparatus with handgrip |
JP2009050412A (en) * | 2007-08-25 | 2009-03-12 | Tanita Corp | Biometric data measuring instrument |
US20130102870A1 (en) * | 2010-07-22 | 2013-04-25 | Yasuaki Murakawa | Body fat measurement device |
KR20160065330A (en) * | 2014-11-28 | 2016-06-09 | 경희대학교 산학협력단 | Body shape and composition measurement management system and method thereof |
KR20180077897A (en) * | 2016-12-29 | 2018-07-09 | 주식회사 인바디 | Apparatus for Measuring Body Impedence |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4105472B2 (en) * | 2002-04-12 | 2008-06-25 | 株式会社フィジオン | Body composition measuring device |
EP1712179B1 (en) * | 2005-04-13 | 2010-12-15 | Tanita Corporation | Trunk visceral fat measuring method and apparatus |
JP2007301093A (en) * | 2006-05-10 | 2007-11-22 | Omron Healthcare Co Ltd | Body composition measuring device |
JP4413943B2 (en) * | 2007-03-27 | 2010-02-10 | 株式会社タニタ | Abdominal impedance measuring device |
JP2008302106A (en) * | 2007-06-11 | 2008-12-18 | Tanita Corp | Muscle mass balance evaluation apparatus and muscle mass balance evaluation method |
JP4893515B2 (en) * | 2007-07-19 | 2012-03-07 | オムロンヘルスケア株式会社 | Body impedance measurement unit for body impedance measurement and body fat measurement device |
US10052035B2 (en) * | 2013-10-25 | 2018-08-21 | Qualcomm Incorporated | System and method for obtaining bodily function measurements using a mobile device |
WO2017079793A1 (en) * | 2015-11-10 | 2017-05-18 | Impedimed Limited | Impedance measurement system |
JP7036319B2 (en) * | 2016-08-02 | 2022-03-15 | 国立大学法人 東京医科歯科大学 | Biomagnetic measuring device |
-
2019
- 2019-02-26 WO PCT/KR2019/002320 patent/WO2020158989A1/en active Application Filing
- 2019-05-17 KR KR1020190057959A patent/KR20200094055A/en active Pending
- 2019-08-08 KR KR1020190096704A patent/KR20200094063A/en active Pending
-
2020
- 2020-01-15 CN CN202080022943.8A patent/CN113613555B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100423678B1 (en) * | 1999-10-12 | 2004-03-19 | 가부시키가이샤 타니타 | Bioelectrical impedance measuring apparatus with handgrip |
JP2009050412A (en) * | 2007-08-25 | 2009-03-12 | Tanita Corp | Biometric data measuring instrument |
US20130102870A1 (en) * | 2010-07-22 | 2013-04-25 | Yasuaki Murakawa | Body fat measurement device |
KR20160065330A (en) * | 2014-11-28 | 2016-06-09 | 경희대학교 산학협력단 | Body shape and composition measurement management system and method thereof |
KR20180077897A (en) * | 2016-12-29 | 2018-07-09 | 주식회사 인바디 | Apparatus for Measuring Body Impedence |
Also Published As
Publication number | Publication date |
---|---|
CN113613555B (en) | 2024-08-27 |
KR20200094063A (en) | 2020-08-06 |
KR20200094055A (en) | 2020-08-06 |
CN113613555A (en) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020158989A1 (en) | Bioimpedance measurement device and operation method thereof | |
WO2015083958A1 (en) | Electrical impedance tomography device | |
EP3707584A1 (en) | Method for tracking hand pose and electronic device thereof | |
WO2018124809A1 (en) | Wearable terminal and method for operating same | |
WO2018088612A1 (en) | Watch-type terminal | |
WO2016182181A1 (en) | Wearable device and method for providing feedback of wearable device | |
WO2016060372A1 (en) | Biomimetic multiple sensory skin sensor | |
WO2015026047A1 (en) | Wearable biosignal interface and method of operating wearable biosignal interface | |
CN1067734A (en) | Dimension measuring instrument | |
WO2020159118A1 (en) | Bioimpedance measurement device and operation method thereof | |
WO2018101778A1 (en) | Method for providing health care information by using cloud-based portable device for measuring body fat and device using same | |
CN112230769A (en) | Data glove and joint motion angle measurement method based on flexible capacitive sensor | |
GB2609155A (en) | Biocapacitance sensor | |
WO2012036376A1 (en) | Insulator checking module and method for driving same, and insulator checking apparatus and method for same | |
Guo et al. | Finger motion detection based on optical fiber Bragg grating with polyimide substrate | |
Lorussi et al. | Modeling and characterization of extensible wearable textile-based electrogoniometers | |
US11744517B2 (en) | Body composition measurement using clamp electrodes | |
WO2022015081A1 (en) | Wearable device and method for measuring human body impedance | |
WO2023090533A1 (en) | System and methods for providing information for diagnosing preterm birth risk | |
JP7136882B2 (en) | Motion detection sensor and motion detection method | |
WO2024043684A1 (en) | Touchpad-based finger bending sensor device and robot hand grasping gesture control method using same | |
EP3653116B1 (en) | Clamp electrode | |
WO2018203658A1 (en) | Strain measurement sensor, data processing system using strain measurement sensor applied to body, and data processing method using same | |
WO2022265456A1 (en) | Device for measuring finger movement | |
WO2018203590A1 (en) | Contact position and depth measurement algorithm for three-dimensional touch recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19912430 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19912430 Country of ref document: EP Kind code of ref document: A1 |