WO2020158935A1 - Electrode tab forming method and electrode tab forming device - Google Patents

Electrode tab forming method and electrode tab forming device Download PDF

Info

Publication number
WO2020158935A1
WO2020158935A1 PCT/JP2020/003765 JP2020003765W WO2020158935A1 WO 2020158935 A1 WO2020158935 A1 WO 2020158935A1 JP 2020003765 W JP2020003765 W JP 2020003765W WO 2020158935 A1 WO2020158935 A1 WO 2020158935A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode tab
punch
die
side electrode
bending
Prior art date
Application number
PCT/JP2020/003765
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 戸枝
敬生 伊藤
Original Assignee
株式会社エンビジョンAescジャパン
日進精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescジャパン, 日進精機株式会社 filed Critical 株式会社エンビジョンAescジャパン
Priority to JP2020568635A priority Critical patent/JP7374423B2/en
Publication of WO2020158935A1 publication Critical patent/WO2020158935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode tab forming method and an electrode tab forming apparatus.
  • a battery module that is mounted in a vehicle such as an electric vehicle and has a battery stack in which a plurality of flat batteries having a power generating element housed inside an exterior body are stacked as a power source for driving a vehicle motor. ing.
  • an electrode tab including an anode-side electrode tab and a cathode-side electrode tab is led out from one side of the outer package.
  • the electrode tabs of each battery are electrically connected to each other via a bus bar having conductivity.
  • the electrode tab and the bus bar are joined by laser welding. In a state where a plurality of batteries are stacked, the electrode tab is formed to be bent in order to weld the electrode tab and the bus bar.
  • the anode side electrode tab and the cathode side electrode tab may differ in shape and material characteristics. Therefore, when the anode-side electrode tab and the cathode-side electrode tab are formed by bending using the same forming die under the same forming conditions, the anode-side electrode tab and the cathode-side electrode tab have a resistance to a pressing force and a necessary bending angle. Since they are different from each other, the bending loads of the two influence each other, and the bending position may vary. As a result, the positioning accuracy between the electrode tab and the bus bar is deteriorated, and there is a possibility that the welding quality when the electrode tab and the bus bar are laser-welded is slightly varied.
  • An object of the present invention is to provide an electrode tab forming method and an electrode tab forming apparatus capable of bending an electrode tab with high accuracy.
  • An electrode tab molding method that achieves the above object is to support a base end portion of one electrode tab of a pair of electrode tabs of a battery by a first supporting surface of a first die, and to support the other electrode tab. Is supported by the second supporting surface of the second die. Then, the first punch and the second punch are integrally moved relative to the first die and the second die along a first direction orthogonal to the first support surface and the second support surface. Then, after bending the one electrode tab by the first punch, the other electrode tab is bent by the second punch.
  • the electrode tab forming apparatus that achieves the above object is a forming apparatus that forms a bent portion by bending a pair of electrode tabs of a battery.
  • the electrode tab forming device includes a first die having a first supporting surface that supports a base end portion of one electrode tab of the pair of electrode tabs, and a second die that supports a base end portion of the other electrode tab.
  • a second die having a supporting surface, a first punch that cooperates with the first die to bend and form the one electrode tab, and a second punch that cooperates with the second die to bend and form the other electrode tab. And a second punch.
  • the apparatus for forming an electrode tab further includes the first die and the second punch integrally formed with the first punch and the second punch along a first direction orthogonal to the first support surface and the second support surface. It has a drive unit that moves it relative to the die.
  • the electrode tab forming apparatus is configured such that one of the first tab and the second punch is integrally moved by the driving unit relative to the first die and the second die during one operation. The bending timing of the electrode tab of No. 1 and that of the other electrode tab are shifted.
  • the electrode tab forming method and the electrode tab forming apparatus it is possible to shift the respective bending forming timings of the anode side electrode tab and the cathode side electrode tab. Accordingly, the first punch and the second punch can bend the electrode tab with high accuracy without being affected by the bending load of the anode-side electrode tab and the cathode-side electrode tab.
  • FIG. 3 is a perspective view showing one battery of the battery stack shown in FIG. 2. It is a side view which shows typically the structure which bends and forms the anode side electrode tab (one electrode tab) in the shaping
  • FIG. 5A It is a front view which shows the principal part of the shaping
  • 6A and 6B are views for explaining the procedure for forming the electrode tab.
  • 7A and 7B are views for explaining the procedure for forming the electrode tab.
  • FIGS. 8A and 8B are views for explaining the procedure for forming the electrode tab.
  • 9A and 9B are views for explaining the procedure for forming the electrode tab.
  • 10A and 10B are views for explaining the procedure for forming the electrode tab.
  • 11A and 11B are views for explaining the procedure for forming the electrode tab.
  • FIG. 9 is a side view schematically showing a configuration in which an anode-side electrode tab (one electrode tab) is bent and formed in the electrode tab forming apparatus according to Modification 1;
  • FIG. 9 is a front view showing a main part of a device for forming an electrode tab according to Modification 2.
  • FIG. 11 is a front view showing a main part of an electrode tab molding apparatus according to Modification 3;
  • the XYZ axes attached to the figure indicate the orientation of the battery module 100.
  • the X axis indicates a direction that intersects the stacking direction of the batteries 110 and that is along the longitudinal direction of the batteries 110.
  • the Y-axis indicates a direction that intersects the stacking direction of the batteries 110 and is along the lateral direction of the batteries 110.
  • the Z axis represents the stacking direction of the batteries 110.
  • FIG. 1 is a perspective view showing the battery module 100.
  • FIG. 2 is a perspective view showing a part of the battery module 100 shown in FIG. 1 in an exploded manner. First, the battery module 100 including the battery stack 110S will be described.
  • the battery module 100 has a battery case 110 S, which is a stack of a plurality of flat batteries 110, housed in a module case 120.
  • the module case 120 is composed of four plate members and also functions as a pressurizing unit that pressurizes the battery stack 110S.
  • the plurality of batteries 110 are electrically connected by the bus bar unit 130 while being pressurized by the module case 120.
  • an adhesive or a pressure sensitive adhesive is applied between the stacked batteries 110.
  • FIG. 3 is a side view showing a cross section of a main part of the battery module 100.
  • FIG. 4 is a perspective view showing one battery 110 of the battery stack 110S.
  • battery 110 is, for example, a flat lithium ion secondary battery.
  • the battery 110 has a main body 110H in which the power generation element 111 is sealed with a pair of laminate films 112, and a pair of electrode tabs 113.
  • the power generation element 111 is formed by stacking a positive electrode and a negative electrode via a separator.
  • the power generation element 111 is sealed with a laminate film 112 together with the electrolytic solution.
  • the laminate film 112 is configured by covering both sides of the metal foil with an insulating sheet.
  • the laminate film 112 is formed by bending both ends 112d along the longitudinal direction X upward in the stacking direction Z.
  • the electrode tab 113 is electrically connected to the power generation element 111 and is led out from the laminate film 112 to the outside.
  • the electrode tab 113 has an anode side electrode tab 113A and a cathode side electrode tab 113K. Both the anode-side electrode tab 113A and the cathode-side electrode tab 113K extend from one end of the laminate film 112 along the lateral direction Y toward one direction along the longitudinal direction X (left front side in FIG. 4).
  • the term “electrode tab 113” means both the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
  • the electrode tab 113 is bent and formed in an L shape from the base end portion 113c to the tip end portion 113d.
  • a molding device 10 for the electrode tab 113 according to the present embodiment, which will be described later, is a device for bending the plate-shaped electrode tab 113 into an L-shape. By bending, the tip portion 113d of the electrode tab 113 is formed in a flat shape so as to face the bus bar 132. Note that the shape of the electrode tab 113 is not limited to the L-shape shown in the figure, and has an appropriate shape in relation to the shape of the bus bar 132.
  • the material for forming the anode-side electrode tab 113A is not particularly limited, but, for example, aluminum can be used.
  • the material for forming the cathode-side electrode tab 113K is not particularly limited, but copper can be used, for example.
  • the thickness t1 of the anode-side electrode tab 113A is not particularly limited, but is 0.4 mm, for example.
  • the thickness t2 of the cathode-side electrode tab 113K is not particularly limited, but is 0.2 mm, for example.
  • a part of the tip portion 113d of the cathode-side electrode tab 113K includes a folded-back portion 113e that is folded back and brought into close contact.
  • the folded-back portion 113e is twice as thick as the base end portion 113c.
  • the thickness of the tip portion 113d of the anode-side electrode tab 113A and the tip portion 113d of the cathode-side electrode tab 113K can be made approximately the same, and therefore the welding conditions for the bus bar 132 are set to the anode-side electrode tab 113A and the cathode side.
  • the electrode tab 113K can be set under substantially the same conditions. As a result, manufacturability can be improved.
  • the side provided with the electrode tab 113 is supported by the pair of first spacers 114, and the side not provided with the electrode tab 113 is supported by the pair of second spacers 115.
  • the batteries 110 are stacked while being supported by the spacers 114 and 115.
  • the first spacer 114 has a connecting pin 114a which is inserted into a connecting hole (not shown) of the laminate film 112, and the second spacer 115 has a connecting pin 115a which is inserted into a connecting hole (not shown). Has been done.
  • the spacers 114, 115 are connected to the laminate film 112 by thermally caulking the tips of the connecting pins 114a, 115a.
  • Each of the spacers 114 and 115 is formed of a reinforced plastic having an insulating property.
  • the first spacer 114 has mounting portions 114b at both ends in the longitudinal direction (transverse direction Y), and the second spacer 115 has mounting portions 115b at both ends in the longitudinal direction (transverse direction Y). doing.
  • the first spacers 114 contact the mounting portions 114b adjacent to each other in the stacking direction
  • the second spacers 115 contact the mounting portions 115b adjacent to each other in the stacking direction.
  • Pins 114c and 115c are formed on the upper surfaces of the mounting portions 114b and 115b.
  • a hole 114d corresponding to the position of the pin 114c is formed on the lower surface of the mounting portion 114b (see FIG. 3).
  • the first spacer 114 has a support member 114f that supports the tip portion 113d of the electrode tab 113 from the side opposite to the bus bar 132.
  • the module case 120 includes an upper pressing plate 121 and a lower pressing plate 122 that press the power generating elements 111 of the respective batteries 110 of the battery stack 110S from above and below, and an upper part of the battery stack 110S in a pressed state. It includes a pair of side plates 123 for fixing the pressure plate 121 and the lower pressure plate 122.
  • the upper pressure plate 121 has a locate hole 121b into which a fastening bolt for fixing the battery module 100 to a pack case (not shown) is inserted.
  • the lower pressure plate 122 has a locate hole 122b into which a fastening bolt is inserted.
  • the pair of side plates 123 are welded to the upper pressure plate 121 and the lower pressure plate 122.
  • the material for forming the module case 120 is not particularly limited, but can be formed of, for example, stainless steel.
  • the bus bar unit 130 includes a bus bar 132 that electrically connects the electrode tabs 113 of the batteries 110 that are vertically arranged, a bus bar holder 131 that integrally holds the plurality of bus bars 132, and a protective cover 135 that protects the bus bar 132.
  • the bus bar unit 130 further includes an anode-side terminal 133 that makes the anode-side ends of the plurality of electrically connected batteries 110 face external input/output terminals, and a cathode that makes the cathode-side ends face external input/output terminals. And a side terminal 134.
  • a laser oscillator (not shown) irradiates the bus bar 132 with the laser beam LB.
  • the bus bar 132 and the tip portion 113d of the electrode tab 113 are joined by seam welding or spot welding.
  • the position of the electrode tab 113 and the bus bar 132 should be adjusted so that no gap is created between the electrode tab 113 and the bus bar 132. You have to manage your location.
  • the position of the tip portion 113d of the electrode tab 113 may vary in the stacking direction. Therefore, it is necessary to position the battery 110 at the processing position of the electrode tab 113 with high accuracy and improve the processing accuracy of the electrode tab 113.
  • FIG. 5A is a side view schematically showing the configuration of the molding apparatus 10 for the electrode tab 113
  • FIG. 5B is a front view showing a part of the molding apparatus 10 for the electrode tab 113 shown in FIG. 5A.
  • the forming device 10 for the electrode tab 113 is a forming device for forming the bent portion 113R by bending the anode side electrode tab 113A and the cathode side electrode tab 113K of the battery 110, respectively.
  • the molding apparatus 10 for the electrode tab 113 is roughly described.
  • the configuration of each unit will be described in detail.
  • the die 20 includes a first support that supports a base end portion 113c of the anode-side electrode tab 113A (corresponding to one electrode tab) of the pair of electrode tabs 113. It has the 1st die 21 provided with the surface 24a, and the 2nd die 22 provided with the 2nd support surface 24b which supports the base end part 113c of the cathode side electrode tab 113K (equivalent to the other electrode tab).
  • the first die 21 has a corner portion 23a at the end of the first support surface 24a.
  • the angle ⁇ of the corner portion 23a is an acute angle.
  • the second die 22 has a corner 23b at the end of the second support surface 24b.
  • the angle ⁇ of the corner portion 23b is an acute angle. Accordingly, when the cathode side electrode tab 113K is bent, the cathode side electrode tab 113K can be bent at an angle larger than 90 degrees in consideration of the influence of spring back.
  • the angle ⁇ of the corner portion 23a and the angle ⁇ of the corner portion 23b are set to different angles according to conditions such as the material and thickness of the electrode tab 113.
  • the term “die 20” means both the first die 21 and the second die 22.
  • the punch 30 cooperates with the first die 21 to bend and form the anode-side electrode tab 113A, and the punch 30 cooperates with the second die 22. And a second punch 32 for bending the cathode side electrode tab 113K.
  • the term “punch 30” means both the first punch 31 and the second punch 32.
  • the length of the first punch 31 in the first direction D1 (in the present embodiment, the stacking direction Z of the battery 110 in the present embodiment) orthogonal to the first support surface 24a and the second support surface 24b.
  • the length L1 is longer than the length L2 of the second punch 32 along the first direction D1.
  • the difference ⁇ L between the length L1 of the first punch 31 and the length L2 of the second punch 32 is set to be larger than the thickness t1 of the anode electrode tab 113A.
  • the first punch 31 and the second punch 32 have substantially the same configuration except the length.
  • the first punch 31 has a pressing surface 33a that presses and bends the anode-side electrode tab 113A during bending of the anode-side electrode tab 113A, and an inclination of a first backup plate 63a described later.
  • a sliding contact surface 34a that is in sliding contact with the surface 65a.
  • the second punch 32 has a pressing surface 33b that presses and bends the cathode-side electrode tab 113K when bending the cathode-side electrode tab 113K, and an inclination of a second backup plate 63b described later.
  • a sliding contact surface 34b that is in sliding contact with the surface 65b.
  • the width W1 of the tip 30d of the punch 30 is larger than the width W2 of the base 30c. It is formed to be small. As a result, the tip portion 30d of the punch 30 has a gap G between the punch plate 41 of the upper holding portion 40 described later.
  • the upper holding unit 40 includes a punch plate 41 that limits deformation of the base end portion 30c of the punch 30, and a base of each of the first punch 31 and the second punch 32.
  • An end portion 30c (corresponding to one end portion) and a holding plate 42 that holds the punch plate 41 are included.
  • the first punch 31 and the second punch 32 are provided with an insulating member (not shown) between them and the punch plate 41. The insulating member prevents the first punch 31 and the second punch 32 from being electrically connected via the punch plate 41 or the like.
  • the punch plate 41 has a function of making surface contact with the base end portion 30c of the punch 30 and limiting the deformation of the base end portion 30c of the punch 30 in the direction intersecting the first direction D1.
  • the punch plate 41 is arranged with the gap G between the punch plate 41 and the tip portion 30d of the punch 30 as described above.
  • the punch plate 41 has a function of allowing the tip portion 30d of the punch 30 to be deformed toward the die 20 side by the amount of the gap G, and having a function of limiting the movable range of the tip portion 30d of the punch 30. There is.
  • the holding plate 42 has a backing plate 42a having a reinforcing function and wear resistance against a processing load applied to the punch 30, and a punch holder 42b connected to the drive unit 50.
  • the backing plate 42a is, for example, hardened and formed of a metal having wear resistance.
  • the punch holder 42b fixes the base end portion 30c of the punch 30 via a fastening member such as a bolt having an insulating structure (not shown).
  • the lower holding unit 45 attaches the insulating member 46 to the lower ends of the first die 21, the second die 22, the first backup plate 63a, and the second backup plate 63b. It has a lower holder 47 that holds it through.
  • the anode side electrode tab 113A contacts the first die 21 and the first backup plate 63a
  • the cathode side electrode tab 113K contacts the second die 22 and the second backup plate 63b.
  • the insulating member 46 prevents the anode side electrode tab 113A and the cathode side electrode tab 113K from being electrically connected via the die 20 or the like.
  • the lower holder 47 is connected to the drive unit 51.
  • the lower holder 47 fixes the lower ends of the first die 21, the second die 22, the first backup plate 63a, and the second backup plate 63b via fastening members such as bolts having an insulating structure (not shown).
  • the drive unit 50 integrally includes the first punch 31 and the second punch 32 along a first direction D1 orthogonal to the first support surface 24a of the first die 21 and the second support surface 24b of the second die 22. It is moved relative to the first die 21 and the second die 22.
  • the drive unit 50 moves the upper holding unit 40 in the first direction D1 (downward in FIGS. 5A, 5B, and 5C).
  • the drive unit 50 is composed of, for example, a servo press or a mechanical press.
  • the driving unit 50 moves the upper holding unit 40 in the first direction D1, so that the punch 30 held by the upper holding unit 40 moves in the first direction D1. As a result, the punch 30 moves toward and away from the die 20 relatively.
  • one electrode tab (the anode-side electrode tab 113A) is moved.
  • the other electrode tab (cathode side electrode tab 113K) are bent at different timings. Since the first punch 31 and the second punch 32 are moved as a unit, the relative positional relationship between the first punch 31 and the second punch 32 is maintained, and the accuracy when bending the electrode tab 113 is increased. You can
  • the drive unit 51 moves the lower holding unit 45 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C).
  • the drive unit 51 is composed of, for example, a servo press or a mechanical press.
  • the driving unit 51 moves the lower holding unit 45 in the direction opposite to the first direction D1, so that the die 20 held by the lower holding unit 45 moves in the first direction D1.
  • the driving unit 51 moves the first die 21 and the second die 22 as a unit. Since the first die 21 and the second die 22 are moved as a unit, the relative positional relationship between the first die 21 and the second die 22 is maintained, and the accuracy when bending the electrode tab 113 is increased. You can
  • the drive unit 50 moves the punch 30, and the drive unit 51 moves the die 20.
  • the bending of the electrode tab 113 can be performed by moving the punch 30 and the die 20 relatively closer to each other. Therefore, the electrode tab 113 can be bent by moving only the punch 30 toward the die 20 or, conversely, moving only the die 20 toward the punch 30.
  • the bending angle adjusting unit 60 includes a first bending angle adjusting unit 61 for adjusting the bending angle ⁇ a of the bending portion 113R of the anode-side electrode tab 113A, and a cathode-side electrode tab. And a second bending angle adjusting portion 62 for adjusting the bending angle ⁇ b of the bending portion 113R of 113K.
  • the first bending angle adjusting unit 61 drives in and bends the anode-side electrode tab 113A bent by the first punch 31 moved in the first direction D1.
  • the second bending angle adjusting section 62 drives in the cathode side electrode tab 113K bent by the second punch 32 moved in the first direction D1 to perform bending processing.
  • the first bending angle adjuster 61 includes a first backup plate 63a having an inclined surface 65a and a first height adjuster 64a for adjusting the height of the first backup plate 63a with respect to the first support surface 24a of the first die 21.
  • the second bending angle adjuster 62 includes a second backup plate 63b having an inclined surface 65b and a second height adjuster 64b for adjusting the height of the second backup plate 63b with respect to the second support surface 24b of the second die 22. And.
  • the first height adjusting unit 64a and the second height adjusting unit 64b have, for example, one or a plurality of adjusting spacers incorporated therein in order to save space.
  • the heights of the first backup plate 63a and the second backup plate 63b can be adjusted by combining adjustment spacers having different thicknesses.
  • the term “bending angle adjusting section 60” means both the first bending angle adjusting section 61 and the second bending angle adjusting section 62.
  • the first punch 31 is moved in the first direction D1 (downward in FIG. 5A), and the first die 21 is moved in the direction opposite to the first direction D1 (upward in FIG. 5A).
  • the first punch 31 and the first die 21 move closer to each other, and the sliding contact surface 34a of the first punch 31 makes sliding contact with the inclined surface 65a of the first backup plate 63a.
  • the sliding contact surface 34a of the first punch 31 slides along the inclined surface 65a and moves in the second direction D2 intersecting the first direction D1 (stacking direction Z).
  • the tip portion 30d of the first punch 31 is configured to be deformable toward the first die 21 side by the gap G between the first punch 31 and the punch plate 41.
  • the tip portion 30d of the first punch 31 is deformed so as to bend in the second direction (downward right direction in FIG. 5A) toward the first die 21 side.
  • the bending angle ⁇ a of the bent portion 113R of the anode-side electrode tab 113A further increases.
  • the first bending angle adjusting section 61 adjusts the bending angle ⁇ a of the anode-side electrode tab 113A.
  • the second punch 32 is moved in the first direction D1 (downward in FIG. 5B), and the second die 22 is moved in the direction opposite to the first direction D1 (upward in FIG. 5B).
  • the second punch 32 and the second die 22 move closer to each other, and the sliding contact surface 34a of the second punch 32 makes sliding contact with the inclined surface 65b of the second backup plate 63b.
  • the sliding contact surface 34b of the second punch 32 slides along the inclined surface 65b and moves in the third direction D3 intersecting the first direction D1 (stacking direction Z).
  • the tip portion 30d of the second punch 32 is configured to be deformable toward the second die 22 side by the gap G between the second punch 32 and the punch plate 41.
  • the tip portion 30d of the second punch 32 is deformed so as to bend in the third direction (downward right direction in FIG. 5B) toward the second die 22 side.
  • the bending angle ⁇ b of the bent portion 113R of the cathode-side electrode tab 113K further increases.
  • the second bending angle adjusting section 62 adjusts the bending angle ⁇ b of the cathode side electrode tab 113K.
  • the pressing portion 70 presses and holds the base end portion 113c of the electrode tab 113 against the die 20 when the tip end portion 113d of the electrode tab 113 is bent by the punch 30, and the electrode tab 113 is processed by the punch 30. It has a function of preventing the position from being displaced due to being dragged in the (first direction D1, second direction D2, and third direction D3).
  • the pressing portion 70 is supported by a fixing portion 71 fixed to the upper holding portion 40 so as to be relatively movable in the first direction D1.
  • a biasing member 72 is arranged between the fixed portion 71 and the pressing portion 70, and biases the pressing portion 70 in the first direction D1.
  • the pressing portion 70 is provided with an insulating structure (not shown) between a portion that holds the anode side electrode tab 113A and a portion that holds the cathode side electrode tab 113K.
  • the insulating structure electrically insulates between the two portions of the holding portion 70 so that the portion holding the anode side electrode tab 113A and the portion holding the cathode side electrode tab 113K are not electrically connected.
  • the fixing portion 71 and the biasing member 72 are also provided with an insulating structure (not shown) in order to electrically insulate the portion of the holding portion 70 that holds the anode-side electrode tab 113A from the portion that holds the cathode-side electrode tab 113K. ing.
  • the molding apparatus 10 for the electrode tab 113 needs to have an insulating structure for all equipment-side portions that contact the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
  • Control unit 80 The control unit 80 is mainly composed of a CPU and a memory, and controls the operation of the drive units 50, 51 and the like.
  • the code shown in FIG. 5D is t1: Thickness of the anode side electrode tab 113A t2: Thickness of the cathode side electrode tab 113K x1: Dimensional difference in the height direction between the lower surface of the anode side electrode tab 113A and the lower surface of the cathode side electrode tab 113K x2: Dimensional difference in the height direction between the thickness center Oc of the anode side electrode tab 113A and the upper surface of the cathode side electrode tab 113K y1: the first supporting surface 24a of the first die 21 and the second supporting surface of the second die 22. Height difference between support surface 24b and height y2: The height difference between the pressing surface 33a of the first punch 31 and the pressing surface 33b of the second punch 32 is shown.
  • the cathode-side electrode tab 113K includes a folded-back portion 113e, and the lower surface 113f of the base end portion 113c is placed on the second support surface 24b of the second die 22.
  • the side electrode tab 113K can be set to be substantially coincident with the timing of contact with the second support surface 24b.
  • the y2, which represents the dimensional difference between the pressing surfaces 33a and 33b of the punch 30, is set to be substantially the same as x2, or the pressing surface of the second punch 32 after the bending of the anode-side electrode tab 113A is completed.
  • the size is set so that 33b contacts the upper surface of the cathode-side electrode tab 113K.
  • x2 is half the thickness (t2/2) of the cathode-side electrode tab 113K.
  • the reason why y2 is set to be approximately the same as x2 is as follows.
  • the first punch 31 pushes the anode-side electrode tab 113A by a half of the thickness of the anode-side electrode tab 113A (t1/2)
  • the anode-side electrode tab 113A is bent substantially at a right angle, and the bending is almost completed.
  • the anode side electrode tab 113A is sandwiched by the first die 21 and the first punch 31, and a force for gripping the anode side electrode tab 113A is generated.
  • the cathode electrode tab 113K Since the bending of the cathode electrode tab 113K is started after gripping the anode electrode tab 113A, the cathode electrode tab 113K can be bent with high precision without being affected by the bending load of the anode electrode tab 113A. Because.
  • FIGS. 5A to 5C and FIGS. 6 to 11 are views for explaining the forming procedure of the electrode tab 113.
  • Each drawing (A) shows the forming state of the cathode side electrode tab 113K
  • each drawing (B) shows the anode side electrode tab 113A.
  • the molding situation of is shown.
  • the tip portion 30d of the first punch 31 and the tip portion 30d of the second punch 32 are set so as to bend toward the main body 110H of the battery 110 so that the drive-in bending of the electrode tab 113 can be reliably performed. 10(A)(B)).
  • FIGS. 6 to 11 show that there is almost no gap between the punch 30 and the pressing portion 70.
  • the method of forming the electrode tab 113 using the forming apparatus 10 for the electrode tab 113 will be described in brief.
  • the electrode end 113c of one of the pair of electrode tabs 113 of the battery 110 (anode-side electrode tab 113A) will be described. It is supported by the first supporting surface 24a of the first die 21, and the base end portion 113c of the other electrode tab 113 (cathode side electrode tab 113K) is supported by the second supporting surface 24b of the second die 22.
  • the first punch 31 and the second punch 32 are integrally formed relative to the first die 21 and the second die 22 along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b.
  • the anode side electrode tab 113A is bent by the first punch 31, and then the cathode side electrode tab 113K is bent by the second punch 32. The details will be described below.
  • the battery 110 is carried into the molding device 10 for the electrode tab 113, and is held at a predetermined position by a holding device (not shown).
  • the electrode tabs 113 (the anode-side electrode tabs 113A and the cathode-side electrode tabs 113K) are arranged in the space between the punch 30 and the pressing portion 70, and the die 20 and the bending angle adjusting portion 60.
  • the control unit 80 controls the operation of the driving unit 50 to move the upper holding unit 40 downward in the first direction D1 (see FIGS. 5A, 5B, and 5C).
  • the control unit 80 controls the operation of the drive unit 51 to move (raise) the lower holding unit 45 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C).
  • the punch 30 and the pressing unit 70 move in the first direction D1.
  • the die 20 and the bending angle adjusting portion 60 move in the direction opposite to the first direction D1.
  • the first support surface 24a of the first die 21 abuts on the base end portion 113c of the anode-side electrode tab 113A, and the second support surface of the second die 22. 24b contacts the base end part 113c of the cathode side electrode tab 113K.
  • 113 A of anode side electrode tabs are arrange
  • the cathode side electrode tab 113K is arranged on the second support surface 24b so that the tip portion 113d projects outward from the second support surface 24b.
  • the pressing portion 70 contacts the base end portion 113c of the anode side electrode tab 113A and the base end portion 113c of the cathode side electrode tab 113K.
  • 113 A of anode side electrode tabs hold
  • the cathode side electrode tab 113K is held by pressing the base end portion 113c against the second support surface 24b.
  • the force of pressing the electrode tab 113 by the pressing portion 70 may be set to be different between the cathode side electrode tab 113K and the anode side electrode tab 113A. Since the electrode tab 113 having a relatively high bending rigidity has a higher resistance (bending load) to the pressing force of the punch 30 than the electrode tab 113 having a relatively low bending rigidity, the pressing force of the pressing portion 70 is set to be high. Good.
  • the flexural rigidity of the electrode tab 113 varies depending on the material and the plate thickness, so it is preferable to design it appropriately.
  • the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1.
  • the controller 80 brings the pressing surface 33a of the first punch 31 into contact with the anode-side electrode tab 113A and starts bending.
  • the step shown in FIG. 5C since the length L1 of the first punch 31 along the first direction D1 is longer than the length L2 of the second punch 32 along the first direction D1, the step shown in FIG. Then, the second punch 32 is not in contact with the cathode side electrode tab 113K.
  • the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1.
  • the controller 80 bends the anode-side electrode tab 113A with the first punch 31.
  • the controller 80 forms the bent portion 113R on the anode-side electrode tab 113A with the corner 23a of the first die 21 as the bending start point.
  • the bending angle of the bent portion 113R of the anode electrode tab 113A is ⁇ 1.
  • the bending angle ⁇ 1 is about 90 degrees.
  • the control unit 80 brings the pressing surface 33b of the second punch 32 into contact with the cathode-side electrode tab 113K and starts bending.
  • the cathode-side electrode tab 113K When the cathode-side electrode tab 113K is formed by bending, the anode-side electrode tab 113A formed by bending first is in a state of being sandwiched and gripped by the corner portion 23a of the first die 21 and the first punch 31.
  • the material forming the anode-side electrode tab 113A is, for example, aluminum
  • the material forming the cathode-side electrode tab 113K is, for example, copper.
  • the back side of the bent corner of the aluminum tab should be the corner of the first die 21.
  • corner portion 23a of the first die 21 on the aluminum tab side also has an important function from the viewpoint of gripping the aluminum tab when the copper tab is bent and formed after the aluminum tab is almost completely formed (described later). See FIGS. 9A and 9B).
  • the difference ⁇ L (see FIG. 5C) between the length L1 of the first punch 31 and the length L2 of the second punch 32 is set larger than the thickness t1 of the anode-side electrode tab 113A. Therefore, as shown in FIG. 8B, after the first punch 31 bends and forms the anode side electrode tab 113A to the bending angle ⁇ 1, the second punch 32 abuts on the cathode side electrode tab 113K and the cathode side electrode The bending of the tab 113K is started. As described above, by shifting the timing of starting the bending of the anode-side electrode tab 113A and the cathode-side electrode tab 113K, the first punch 31 and the second punch 32 are not affected by their mutual bending loads. Bending can be performed.
  • the anode-side electrode tab 113A is bent and formed before the cathode-side electrode tab 113K, but the present invention is not limited to this.
  • the cathode-side electrode tab 113K is bent and formed before the anode-side electrode tab 113A. You may. Further, the pressing force of the first punch 31 when the electrode tab 113 is bent and formed may be the same as the pressing force of the second punch 32, or may be different from each other.
  • the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1.
  • the controller 80 bends the cathode side electrode tab 113K by the second punch 32.
  • the controller 80 forms a bent portion 113R on the cathode side electrode tab 113K.
  • the bending angle of the bent portion 113R of the cathode-side electrode tab 113K is set to ⁇ 2.
  • the bending angle ⁇ 2 is about 90 degrees.
  • the anode-side electrode tab 113A is maintained in a gripped state by the corner 23a of the first die 21 and the first punch 31.
  • the bent portion 113R of the cathode side electrode tab 113K is formed so as to be bent with the tip side of the cathode side electrode tab 113K as a starting point of bending rather than the corner portion 23b of the second die 22.
  • the folded-back portion 113e is twice as thick as the other portion of the tip portion 113d. Therefore, the bending rigidity of the folded-back portion 113e becomes higher than that of the other portion of the tip portion 113d, and the bending rigidity sharply changes at the boundary between the folded-back portion 113e and the other portion of the tip portion 113d. Therefore, the cathode-side electrode tab 113K is deformed so as to be bent starting from the vicinity of the boundary between the folded-back portion 113e and the other portion of the tip portion 113d.
  • the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1.
  • the first punch 31 and the second punch 32 reach the bottom dead center, as shown in FIGS. 10(A) and 10(B).
  • the first bending angle adjusting unit 61 the height of the first backup plate 63a with respect to the first supporting surface 24a of the first die 21 is adjusted in advance by the first height adjusting unit 64a.
  • the second bending angle adjusting section 62 the height of the second backup plate 63b with respect to the second supporting surface 24b of the second die 22 is adjusted in advance by the second height adjusting section 64b.
  • the sliding contact surface 34a of the first punch 31 is in sliding contact with the inclined surface 65a of the first backup plate 63a, slides along the inclined surface 65a, and moves in the second direction D2.
  • the tip portion 30d of the first punch 31 is bent in the second direction (lower right direction in FIG. 5A) toward the first die 21 side within the range of movement (gap G) limited by the punch plate 41. Deform.
  • the tip portion 30d of the first punch 31 the bending angle of the bent portion 113R of the anode electrode tab 113A is pushed in the bending direction so as to be further increased, and the angle ⁇ 1 changes to the angle ⁇ 3 (> ⁇ 1).
  • the angle ⁇ 3 is set to be larger than the final bending angle of the anode-side electrode tab 113A in consideration of spring back.
  • the sliding contact surface 34b of the second punch 32 is in sliding contact with the inclined surface 65b of the second backup plate 63b, slides along the inclined surface 65b, and moves in the third direction D3.
  • the tip portion 30d of the second punch 32 is bent in the third direction (downward right direction in FIG. 5B) toward the second die 22 within the range of movement (gap G) limited by the punch plate 41. Deform.
  • the tip portion 30d of the second punch 32 the bending portion 113R of the cathode side electrode tab 113K is pushed in the bending direction so as to be further increased, and the angle ⁇ 2 is changed to the angle ⁇ 4 (> ⁇ 2).
  • the angle ⁇ 4 is set to be larger than the final bending angle of the cathode-side electrode tab 113K in consideration of springback.
  • control unit 80 controls the operation of the drive unit 50 to move (raise) the punch 30 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C). As a result, the control unit 80 retracts the punch 30 from the processing position of the electrode tab 113.
  • the anode-side electrode tab 113A springs back from the bending angle ⁇ 3 to the bending angle ( ⁇ 1 in this embodiment) that is finally desired.
  • the cathode-side electrode tab 113K springs back from the bending angle ⁇ 4 to the bending angle ( ⁇ 2 in this embodiment) that is finally desired.
  • control unit 80 controls the operation of the drive unit 50 to further move the punch 30 and the pressing unit 70 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C) ( Raise). Further, the control unit 80 controls the operation of the driving unit 51 to move the die 20 and the bending angle adjusting unit 60 in a direction in which they are separated from the punch 30 (downward in FIGS. 5A, 5B, and 5C). (Lower) This completes the bending of the electrode tab 113.
  • the processing conditions for bending will vary depending on the shape and material characteristics of the electrode tab 113 to be processed. Therefore, when the anode-side electrode tab 113A and the cathode-side electrode tab 113K have different shapes such as material characteristics and plate thickness, and when the anode-side electrode tab 113A and the cathode-side electrode tab 113K are simultaneously formed using the same punch, they are Bending load may affect the bending position.
  • the cathode side electrode tab 113K has the folded portion 113e during bending, a gap is created between the corner (R part) of the die and the forming surface of the cathode side electrode tab 113K, and bending is performed in consideration of springback. There is a problem that it is difficult to obtain molding precision. In order to adjust to the required bending angle, it is necessary to remake the punch or die in order to change the shape.
  • anode side electrode tab 113A and the cathode side electrode tab 113K also have different required bending angles in consideration of springback, if one bending angle condition is met, springback will occur in the other and the desired angle will be obtained. Bending may not be possible.
  • the anode side electrode tab 113A and the cathode side electrode tab 113K are formed by using different first punches 31 and second punches 32 with different bending forming timings. Therefore, when the anode-side electrode tab 113A and the cathode-side electrode tab 113K are bent, the influences of the bending loads on each other are unlikely to occur, and the conditions for the bending angles of the anode-side electrode tabs are individually optimized so that the anode-side electrodes The tab 113A and the cathode side electrode tab 113K can be bent into a desired shape.
  • the dimensional changes of the bending of each of the anode-side electrode tab 113A and the cathode-side electrode tab 113K can be performed with high precision without recreating the shapes of the die 20 and the punch 30 as they are. Also, when the molding size changes due to aged friction due to continuous use, the molding size can be adjusted without remanufacturing the die 20 and the punch 30.
  • the tip surface of the electrode tab 113 is It is important that they are all parallel and are in the same plane.
  • FIG. 4 even in the battery 110 alone, in a state where the tip 113d of the aluminum tab (anode side electrode tab 113A) and the tip 113d of the copper tab (cathode side electrode tab 113K) are bent at 90 degrees, It is important that the front end surface of the aluminum tab and the front end surface of the copper tab are arranged in parallel and in the same plane.
  • a tip corner portion (corner portion on the pressing portion 70 side) of the first punch 31 that contacts the aluminum tab and a tip corner portion (corner portion of the holding portion 70 side) that contacts the copper tab of the second punch 32 are formed.
  • the punch 30 is arranged so as to be parallel to each other and both corners to move in the same plane along the Z direction.
  • the bending angle is hardly maintained at 90 degrees due to the influence of spring back, and the angle on the back side of the electrode tab 113 is opened slightly larger than 90 degrees ( It is formed so that the bending angle on the surface side is obtuse.
  • the first spacer 114 can be easily attached. By sandwiching the electrode tab 113 between the one spacer 114 and the bus bar 132, the bent portion of the electrode tab 113 is held at 90 degrees.
  • the bending rigidity of the copper tab is higher than the bending rigidity of the aluminum tab (anode side electrode tab 113A), and the reaction force during molding is also high.
  • an aluminum tab having a low bending rigidity is formed first, and the aluminum tab having a high bending rigidity is sandwiched between the first punch 31 and the corner portion 23a of the first die 21 and gripped.
  • the parallelism in the 90-degree bending posture can be ensured between the tip surface of the bent portion of the copper tab and the tip surface of the bent portion of the aluminum tab, and positional deviation of the tip surface in the vertical direction can be suppressed.
  • the aluminum tab has a thickness of 0.4 mm and the copper tab has a thickness of 0.2 mm, the characteristics of the material itself and the copper tab may be coated. The thinner the copper tab, the higher the bending rigidity.
  • the electrode tab 113 having high bending rigidity is attached to the electrode tab 113 formed in advance while being gripped.
  • the first punch 31 and the second punch 32 are integrally moved with respect to the first die 21 and the second die 22.
  • the bending can be carried out at different timings, and one electrode tab (anode side electrode tab 113A) can be bent and then the other.
  • the electrode tab (cathode side electrode tab 113K) is formed by bending. Since the battery 110 is not moved, the deterioration of the parallelism between the tip surfaces of the electrode tabs 113 due to the positional displacement of the battery 110 does not fundamentally occur.
  • first punch 31 and the second punch 32 move together, and the first die 21 and the second die 22 also move together. These configurations are also important for increasing the accuracy when bending the electrode tab 113.
  • the base end portion 113c of the anode-side electrode tab 113A (one electrode tab) of the pair of electrode tabs 113 of the battery 110 is attached to the first die 21.
  • the cathode side electrode tab 113K (the other electrode tab) is supported by the second support surface 24b of the second die 22.
  • the first punch 31 and the second punch 32 are integrally formed relative to the first die 21 and the second die 22 along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b.
  • the electrode tab 113A is bent by the first punch 31, and then the other electrode tab 113K is bent by the second punch 32.
  • the first punch 31 and the second punch 32 can bend the electrode tab 113 with high precision without being affected by the mutual bending load of the anode side electrode tab 113A and the cathode side electrode tab 113K. Furthermore, in one process (one shot) in which the punch 30 and the die 20 are brought close to each other and bent, the bending can be performed at a different timing, and the battery 110 is not moved. Basically, the deterioration of the parallelism between the tip surfaces of the tabs 113 does not occur.
  • the bending angle of the anode-side electrode tab 113A is adjusted by deforming the first punch 31 in the second direction D2 that intersects the first direction D1.
  • the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted with high accuracy, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved.
  • the bending angle of the cathode side electrode tab 113K is adjusted by deforming the second punch 32 in the third direction D3 intersecting the first direction D1.
  • the bending angle of the bent portion 113R of the cathode-side electrode tab 113K can be adjusted with high accuracy, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved.
  • cathode side electrode tab 113K is bent while the previously bent anode side electrode tab 113A is gripped by the corner 23a of the first die 21 and the first punch 31.
  • the second punch 32 can bend the cathode-side electrode tab 113K with high accuracy without being affected by the bending load of the anode-side electrode tab 113A.
  • the bending rigidity of one electrode tab 113A is lower than the bending rigidity of the other electrode tab 113K.
  • the cathode side electrode tab 113K having high bending rigidity is formed by forming the cathode side electrode tab 113K having high bending rigidity while gripping the anode side electrode tab 113A formed by bending in advance. Can be bent with high precision.
  • the forming device 10 for the electrode tab 113 of the present embodiment is a forming device for forming a bent portion by bending the pair of electrode tabs 113 of the battery 110.
  • This molding apparatus includes a first die 21 having a first support surface 24a that supports a base end portion 113c of an anode-side electrode tab 113A (one electrode tab) of a pair of electrode tabs 113, and a cathode-side electrode tab 113K.
  • a second die 22 having a second support surface 24b that supports the base end portion 113c of the other electrode tab, and a first punch 31 that cooperates with the first die 21 to bend and form one electrode tab 113A.
  • a second punch 32 that cooperates with the second die 22 to bend and form the other electrode tab 113K, and a first punch along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b.
  • the punches 31 and the second punches 32 are integrally provided with driving units 50 and 51 that relatively move the punches 31 and the second punches 32 with respect to the first die 21 and the second die 22. Then, during one operation in which the drive parts 50 and 51 move the first punch 31 and the second punch 32 as a unit relative to the first die 21 and the second die 22, the anode-side electrode tab 113A and The bending timing of the cathode side electrode tab 113K is shifted.
  • the bending timings of the anode-side electrode tab 113A and the cathode-side electrode tab 113K are shifted, so that the first punch 31 and the second punch 32 are separated from the anode-side electrode tab 113A and the anode-side electrode tab 113A.
  • the electrode tab 113 can be bent and formed with high precision without being affected by the mutual bending load of the cathode side electrode tab 113K. Furthermore, in one process (one shot) in which the punch 30 and the die 20 are brought close to each other and bent, the bending can be performed at a different timing, and the battery 110 is not moved. Basically, the deterioration of the parallelism between the tip surfaces of the tabs 113 does not occur.
  • the timing is shifted by making the distance between the pressing surface 33a of the first punch 31 and the anode-side electrode tab 113A different from the distance between the pressing surface 33b of the second punch 32 and the cathode-side electrode tab 113K. It becomes.
  • the bending timing of each of the anode electrode tab 113A and the cathode electrode tab 113K can be shifted to a desired timing.
  • a first bending angle adjusting section 61 for adjusting the bending angle of the anode electrode tab 113A is further provided.
  • the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted with high accuracy by the first bending angle adjusting portion 61, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved. Can be improved.
  • the pressing force of the first punch 31 is constant and only the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted by the first bending angle adjusting portion 61, a parameter for adjusting the bending angle. Can be narrowed down to one. As a result, it is possible to suppress variations in the molding of the anode-side electrode tab 113A and stably carry out highly accurate molding.
  • the bending angle can be adjusted by the first bending angle adjusting unit 61 without replacing the first die 21.
  • a second bending angle adjusting section 62 for adjusting the bending angle of the cathode side electrode tab 113K.
  • the bending angle of the bent portion 113R of the cathode-side electrode tab 113K can be adjusted with high accuracy by the second bending angle adjusting portion 62, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved. Can be improved. Further, since the pressing force of the second punch 32 is constant and only the bending angle of the bent portion 113R of the cathode side electrode tab 113K can be adjusted by the second bending angle adjusting portion 62, a parameter for adjusting the bending angle is set. Can be narrowed down to one. As a result, it is possible to suppress variations in the molding of the cathode-side electrode tab 113K and stably carry out highly accurate molding. In addition, the second bending angle adjusting unit 62 can adjust the bending angle without replacing the second die 22.
  • the difference ⁇ L between the length L1 of the first punch 31 along the first direction D1 and the length L2 of the second punch 32 along the first direction D1 is determined by the anode-side electrode tab 113A (one electrode). It is larger than the thickness t1 of the tab). Therefore, after the first punch 31 bends and forms the anode-side electrode tab 113A at the bending angle ⁇ 1, the second punch 32 contacts the cathode-side electrode tab 113K and bends and forms the cathode-side electrode tab 113K. It can be started. Therefore, the timing of starting the bending of the anode-side electrode tab 113A and the cathode-side electrode tab 113K can be reliably shifted.
  • the angle ⁇ of the corner portion 23a of the first die 21 and the angle ⁇ of the corner portion 23b of the second die 22 are acute angles.
  • the bending angle can be made larger than 90 degrees during bending.
  • the electrode tab 113 when it is desired to be bent at 90 degrees, it can be bent at a bending angle larger than 90 degrees in consideration of the influence of spring back.
  • FIG. 12 is a side view schematically showing a configuration in which the anode-side electrode tab 113A (one electrode tab) is bent and formed in the forming apparatus 10 for the electrode tab 113 according to the first modification.
  • the forming apparatus 10 for the electrode tab 113 according to the first modification differs from the forming apparatus 10 of the above-described embodiment in that the configuration of the height adjusting unit 66 of the bending angle adjusting unit 60 is modified.
  • the first bending angle adjusting unit 61 in the molding apparatus 10 of Modification 1 adjusts the height of the first backup plate 63a having the inclined surface 65a and the first backup plate 63a with respect to the first supporting surface 24a of the first die 21.
  • a height adjusting unit 66 for adjusting the height In the embodiment, the first height adjusting portion 64a and the second height adjusting portion 64b have adjustment spacers incorporated therein.
  • the height adjusting unit 66 of the first modification moves the first backup plate 63a in the first direction D1 approaching and separating from the first punch 31 or in the direction opposite to the first direction D1 (vertical direction in FIG. 12).
  • a drive mechanism for adjusting the height of the first backup plate 63a is provided.
  • the structure of the drive mechanism is not particularly limited, but for example, a screw mechanism (not shown) can be used.
  • the screw mechanism includes, for example, a female screw formed on the first backup plate 63a and a male screw screwed to the female screw, and the height of the first backup plate 63a is increased by rotating the male screw in a tightening direction or a loosening direction. Adjustable.
  • the height adjusting unit 66 is connected to the control unit 80.
  • the control unit 80 controls the operation of the height adjusting unit 66 of the bending angle adjusting unit 60.
  • the second bending angle adjusting section 62 also has a height adjusting section 66 for adjusting the height of the second backup plate 63
  • the control portion 80 causes the height adjusting portion 66 of the bending angle adjusting portion 60 to operate. 12 is controlled to move (raise) the first backup plate 63a in a direction approaching the first punch 31 (upward direction in FIG. 12) to move to the first position P1. The height is adjusted to the second position P2. As a result, the sliding contact surface 34a of the first punch 31 makes sliding contact with the inclined surface 65a of the first backup plate 63a, slides along the inclined surface 65a, and moves in the second direction D2.
  • the tip portion 30d of the first punch 31 is bent in the second direction (downward right direction in FIG. 12) toward the first die 21 side within the range of movement (gap G) limited by the punch plate 41. Deform.
  • the tip portion 30d of the first punch 31 adjusts the bending angle ⁇ a of the bent portion 113R of the anode-side electrode tab 113A.
  • the height adjusting portion 66 causes the second backup plate 63b to move. , From the first position P1 to a predetermined position in the direction opposite to the first direction D1. The tip portion 30d of the second punch 32 is deformed as the second backup plate 63b moves upward, and the bending angle ⁇ b of the cathode side electrode tab 113K is adjusted.
  • the height adjusting unit 66 whose operation is controlled by the control unit 80 is provided as described above, since the bending angle of the bent portion 113R of the electrode tab 113 can be adjusted with high accuracy, it is welded to the bus bar 132 in a later step. In this case, welding accuracy can be improved. Further, since the pressing force of the punch 30 is constant and only the bending angle of the bent portion 113R of the electrode tab 113 can be adjusted by the bending angle adjusting unit 60, the parameter for adjusting the bending angle should be reduced to one. You can As a result, it is possible to suppress variation in the molding of the electrode tab 113 and stably carry out highly accurate molding. In addition, the bending angle adjusting unit 60 can adjust the bending angle without replacing the die 20.
  • FIG. 13 is a front view showing a main part of a device for forming an electrode tab according to Modification 2.
  • the distance between the pressing surface 33a of the first punch 31 and the anode side electrode tab 113A and the distance between the pressing surface 33b of the second punch 32 and the cathode side electrode tab 113K are made different.
  • the bending timing of the anode side electrode tab 113A and the cathode side electrode tab 113K is shifted. Since the position of the anode side electrode tab 113A in the battery thickness direction and the position of the cathode side electrode tab 113K in the battery thickness direction are substantially the same, the length L1 of the first punch 31 along the first direction D1 is:
  • the length L2 of the second punch 32 along the first direction D1 is different.
  • the present invention is not limited to this case, and if the bending timing of the anode side electrode tab 113A and the cathode side electrode tab 113K can be shifted, the first punch 31 and the second punch 32 have the same length. You can have it.
  • the position of the anode side electrode tab 113A in the battery thickness direction and the position of the cathode side electrode tab 113K in the battery thickness direction are relatively displaced.
  • the anode side electrode tab 113A is higher than the cathode side electrode tab 113K. Since the timing at which the anode-side electrode tab 113A contacts the first support surface 24a and the timing at which the cathode-side electrode tab 113K contact the second support surface 24b are substantially matched, the position in the height direction is the first support surface. 24a is higher than the second support surface 24b.
  • FIG. 14 is a front view showing a main part of an electrode tab forming apparatus according to Modification 3.
  • the positions of the electrode tabs 113 in the battery thickness direction are different.
  • the first punch 31 and the second punch 31 may be different.
  • the lengths of 32 can be the same.
  • the distance L5 between the pressing surface 33a of the first punch 31 and the first supporting surface 24a of the first die 21, the pressing surface 33b of the second punch 32, and the second surface of the second die 22 are set.
  • the position in the height direction is higher on the first support surface 24a than on the second support surface 24b (L6>L5).
  • the timing at which the anode side electrode tab 113A contacts the first support surface 24a and the bending is started is the timing when the cathode side electrode tab 113K contacts the second support surface 24b. Will be earlier than the timing when is started. Therefore, even when the first punch 31 and the second punch 32 have the same length, it is possible to shift the bending timing of the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
  • the present invention is not limited to the above-described embodiment and modification examples 1 to 3, and can be modified as appropriate.
  • one of the electrode tabs 113 having a low bending rigidity is A mode in which the first electrode tab 113 that has been molded first and then the other electrode tab 113 that has high bending rigidity is molded while the one electrode tab 113 that has been previously molded is gripped is shown, but the invention is not limited to this case.
  • the difference between the bending rigidity of the one electrode tab 113 and the bending rigidity of the other electrode tab 113 is relatively small, the one electrode tab 113 having the higher bending rigidity is reversed first, contrary to the above case.
  • the electrode tab 113 may be molded and then the other electrode tab 113 having a low bending rigidity may be molded while gripping the one electrode tab 113 that is previously molded.
  • the reaction force when the electrode tabs 113 having high bending rigidity are bent is smaller than the reaction force when the electrodes tab 113 is bent at the same time. Bending can be performed while suppressing the orientation of the battery 110 during molding.
  • an example in which the anode side electrode tab and the cathode side electrode tab have different shapes and materials, but either one of the shapes or materials may be the same, or both shapes and materials may be the same. May be Even in this case, by applying the forming apparatus and the forming method of the electrode tab of the present embodiment, the electrode tab can be bent with high accuracy without being affected by the bending load of the anode side electrode tab and the cathode side electrode tab. Can be molded.
  • the bending angle adjusting unit adjusts the bending angle of the electrode tab by sliding the inclined surface of the backup plate to the sliding contact surface of the punch to deform the punch so as to bend.
  • a pressing member or an urging member that directly applies a pressing force or an urging force may be provided on the tip portion of the punch.
  • the first direction in which the holding unit is moved has been described as the downward direction of the molding device, but it may be appropriately changed depending on the configuration of the molding device.
  • the second direction and the third direction may be changed as appropriate.
  • the holding portion has been shown as being held by pressing the base end portion of the electrode tab against the supporting surface of the die, but the holding portion is not limited to this as long as it has a holding function.
  • the electrode tab may be sucked and held by suction from a suction port provided on the supporting surface of the die, or the electrode tab may be held to the die by utilizing magnetic force or static electricity.
  • each of the anode-side electrode tab and the cathode-side electrode tab is not limited to the above-described embodiment, and may be modified as appropriate.
  • Electrode tab forming device 20 dies, 21 First die, 22 Second die, 23a corner, 23b corner, 24a first support surface, 24b second support surface, 30 punches, 31 First punch, 32 Second punch, 33a Pressing surface, 33b Pressing surface, 34a sliding contact surface, 34b sliding contact surface, 40 upper holding part, 41 punch plate, 42 holding plate, 42a backing plate, 42b punch holder, 45 Lower holding part, 46 insulating member, 47 Lower holder, 50 drive, 51 Drive, 60 Bending angle adjustment part, 61 first bending angle adjusting section, 62 second bending angle adjusting section, 63a First backup plate, 63b Second backup plate, 64a 1st height adjustment part, 64b 2nd height adjustment part, 65a inclined surface, 65b inclined surface, 66 Height adjustment unit, 70 Pressing part, 80 control unit, 100 battery module, 110 batteries, 110H main body, 110S battery stack, 111 power generation element, 112 laminated film, 113 electrode tab, 113A Anode side electrode tab (one electrode tab), 113

Abstract

[Problem] To provide an electrode tab forming method by which an electrode tab can be bent highly accurately, and an electrode tab forming device. [Solution] An electrode tab 113 forming device 10 comprises: a first die 21 that has a first support surface 24a for supporting a proximal portion 113c of an anode-side electrode tab 113A; a second die 22 that has a second support surface 24b for supporting a proximal portion of a cathode-side electrode tab 113K; a first punch 31 for bending the anode-side electrode tab in cooperation with the first die; a second punch 32 for bending the cathode-side electrode tab in cooperation with the second die; and a drive portion 50 for causing the first punch and the second punch to be moved together relative to the first die and the second die, along a first direction D1 orthogonal to the first support surface and the second support surface. During a single operation in which the first punch and the second punch are caused to be moved together relative to the first die and the second die by the drive portion, the timing of bending of the respective electrode tabs is staggered.

Description

電極タブの成形方法および電極タブの成形装置Electrode tab molding method and electrode tab molding apparatus
 本発明は、電極タブの成形方法および電極タブの成形装置に関する。 The present invention relates to an electrode tab forming method and an electrode tab forming apparatus.
 従来から、電気自動車のような車両に搭載され、車両用モータを駆動させる電源として、発電要素が外装体の内部に収容された扁平な電池を複数枚積層した電池スタックを有する電池モジュールが知られている。 Conventionally, there is known a battery module that is mounted in a vehicle such as an electric vehicle and has a battery stack in which a plurality of flat batteries having a power generating element housed inside an exterior body are stacked as a power source for driving a vehicle motor. ing.
 例えば、下記特許文献1に開示された電池は、外装体の一側からアノード側電極タブおよびカソード側電極タブからなる電極タブが導出される。それぞれの電池の電極タブは、導電性を備えるバスバーを介して電気的に接続される。電極タブとバスバーとはレーザー溶接によって接合されている。複数の電池を積層した状態において、電極タブとバスバーとを溶接するために、電極タブは折り曲げるように成形される。 For example, in the battery disclosed in Patent Document 1 below, an electrode tab including an anode-side electrode tab and a cathode-side electrode tab is led out from one side of the outer package. The electrode tabs of each battery are electrically connected to each other via a bus bar having conductivity. The electrode tab and the bus bar are joined by laser welding. In a state where a plurality of batteries are stacked, the electrode tab is formed to be bent in order to weld the electrode tab and the bus bar.
国際公開第2017/068703号International Publication No. 2017/068703
 ところで、アノード側電極タブおよびカソード側電極タブは形状や材料特性が異なる場合がある。したがって、同じ成形型を用いて同じ成形条件でアノード側電極タブおよびカソード側電極タブを曲げ成形した場合、アノード側電極タブとカソード側電極タブとは、プレス力に対する抵抗力や必要な曲げ角度が異なるため、互いの曲げ負荷が影響し、曲げ位置がばらつくおそれがある。この結果、電極タブとバスバーとの位置決め精度が低下し、電極タブとバスバーとをレーザー溶接した場合の溶接品質に多少のばらつきが生じるおそれがある。 By the way, the anode side electrode tab and the cathode side electrode tab may differ in shape and material characteristics. Therefore, when the anode-side electrode tab and the cathode-side electrode tab are formed by bending using the same forming die under the same forming conditions, the anode-side electrode tab and the cathode-side electrode tab have a resistance to a pressing force and a necessary bending angle. Since they are different from each other, the bending loads of the two influence each other, and the bending position may vary. As a result, the positioning accuracy between the electrode tab and the bus bar is deteriorated, and there is a possibility that the welding quality when the electrode tab and the bus bar are laser-welded is slightly varied.
 本発明は、電極タブを高精度に曲げ成形できる電極タブの成形方法および電極タブの成形装置を提供することを目的とする。 An object of the present invention is to provide an electrode tab forming method and an electrode tab forming apparatus capable of bending an electrode tab with high accuracy.
 上記目的を達成する本発明に係る電極タブの成形方法は、電池の一対の電極タブのうちの一方の電極タブの基端部を第1ダイの第1支持面によって支持し、他方の電極タブの基端部を第2ダイの第2支持面によって支持する。そして、前記第1支持面および前記第2支持面に対して直交する第1方向に沿って第1パンチおよび第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させて、前記第1パンチによって前記一方の電極タブを曲げ成形した後に、前記第2パンチによって前記他方の電極タブを曲げ成形する。 An electrode tab molding method according to the present invention that achieves the above object is to support a base end portion of one electrode tab of a pair of electrode tabs of a battery by a first supporting surface of a first die, and to support the other electrode tab. Is supported by the second supporting surface of the second die. Then, the first punch and the second punch are integrally moved relative to the first die and the second die along a first direction orthogonal to the first support surface and the second support surface. Then, after bending the one electrode tab by the first punch, the other electrode tab is bent by the second punch.
 また、上記目的を達成する本発明に係る電極タブの成形装置は、電池の一対の電極タブを曲げ成形して折れ曲がり部を形成する成形装置である。電極タブの成形装置は、前記一対の電極タブのうちの一方の電極タブの基端部を支持する第1支持面を備える第1ダイと、他方の電極タブの基端部を支持する第2支持面を備える第2ダイと、前記第1ダイと協働して前記一方の電極タブを曲げ成形する第1パンチと、前記第2ダイと協働して前記他方の電極タブを曲げ成形する第2パンチと、を有する。電極タブの成形装置はさらに、前記第1支持面および前記第2支持面に対して直交する第1方向に沿って前記第1パンチおよび前記第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させる駆動部を有する。この電極タブの成形装置は、前記駆動部によって前記第1パンチおよび前記第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させる1つの動作の間に、前記一方の電極タブおよび前記他方の電極タブの曲げ成形のタイミングをずらしている。 The electrode tab forming apparatus according to the present invention that achieves the above object is a forming apparatus that forms a bent portion by bending a pair of electrode tabs of a battery. The electrode tab forming device includes a first die having a first supporting surface that supports a base end portion of one electrode tab of the pair of electrode tabs, and a second die that supports a base end portion of the other electrode tab. A second die having a supporting surface, a first punch that cooperates with the first die to bend and form the one electrode tab, and a second punch that cooperates with the second die to bend and form the other electrode tab. And a second punch. The apparatus for forming an electrode tab further includes the first die and the second punch integrally formed with the first punch and the second punch along a first direction orthogonal to the first support surface and the second support surface. It has a drive unit that moves it relative to the die. The electrode tab forming apparatus is configured such that one of the first tab and the second punch is integrally moved by the driving unit relative to the first die and the second die during one operation. The bending timing of the electrode tab of No. 1 and that of the other electrode tab are shifted.
 本発明に係る電極タブの成形方法および電極タブの成形装置によれば、アノード側電極タブおよびカソード側電極タブのそれぞれの曲げ成形のタイミングをずらすことができる。これにより、第1パンチおよび第2パンチはアノード側電極タブおよびカソード側電極タブの互いの曲げ負荷に影響を受けることなく電極タブを高精度に曲げ成形できる。 According to the electrode tab forming method and the electrode tab forming apparatus according to the present invention, it is possible to shift the respective bending forming timings of the anode side electrode tab and the cathode side electrode tab. Accordingly, the first punch and the second punch can bend the electrode tab with high accuracy without being affected by the bending load of the anode-side electrode tab and the cathode-side electrode tab.
電池モジュールを示す斜視図である。It is a perspective view which shows a battery module. 図1に示す電池モジュールの一部を分解して示す斜視図である。It is a perspective view which decomposes|disassembles and shows some battery modules shown in FIG. 図1に示す電池モジュールの要部を断面で示す側面図である。It is a side view which shows the principal part of the battery module shown in FIG. 1 in a cross section. 図2に示す電池スタックの一の電池を示す斜視図である。FIG. 3 is a perspective view showing one battery of the battery stack shown in FIG. 2. 電極タブの成形装置においてアノード側電極タブ(一方の電極タブ)を曲げ成形する構成を模式的に示す側面図である。It is a side view which shows typically the structure which bends and forms the anode side electrode tab (one electrode tab) in the shaping|molding apparatus of an electrode tab. 電極タブの成形装置においてカソード側電極タブ(他方の電極タブ)を曲げ成形する構成を模式的に示す側面図である。It is a side view which shows typically the structure which bends and forms the cathode side electrode tab (other electrode tab) in the shaping|molding apparatus of an electrode tab. 図5Aに示す電極タブの成形装置の要部を示す正面図である。It is a front view which shows the principal part of the shaping|molding apparatus of the electrode tab shown in FIG. 5A. 電極タブの成形装置における高さ方向の寸法の一例を示す説明図である。It is explanatory drawing which shows an example of the dimension of the height direction in the shaping|molding apparatus of an electrode tab. 図6(A)(B)は、電極タブの成形手順を説明するための図である。6A and 6B are views for explaining the procedure for forming the electrode tab. 図7(A)(B)は、電極タブの成形手順を説明するための図である。7A and 7B are views for explaining the procedure for forming the electrode tab. 図8(A)(B)は、電極タブの成形手順を説明するための図である。FIGS. 8A and 8B are views for explaining the procedure for forming the electrode tab. 図9(A)(B)は、電極タブの成形手順を説明するための図である。9A and 9B are views for explaining the procedure for forming the electrode tab. 図10(A)(B)は、電極タブの成形手順を説明するための図である。10A and 10B are views for explaining the procedure for forming the electrode tab. 図11(A)(B)は、電極タブの成形手順を説明するための図である。11A and 11B are views for explaining the procedure for forming the electrode tab. 変形例1に係る電極タブの成形装置においてアノード側電極タブ(一方の電極タブ)を曲げ成形する構成を模式的に示す側面図である。FIG. 9 is a side view schematically showing a configuration in which an anode-side electrode tab (one electrode tab) is bent and formed in the electrode tab forming apparatus according to Modification 1; 変形例2に係る電極タブの成形装置の要部を示す正面図である。FIG. 9 is a front view showing a main part of a device for forming an electrode tab according to Modification 2. 変形例3に係る電極タブの成形装置の要部を示す正面図である。FIG. 11 is a front view showing a main part of an electrode tab molding apparatus according to Modification 3;
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図面において、同一の部材には同一の符号を付し、重複する説明を省略する。図面において、各部材の大きさや比率は、実施形態の理解を容易にするために誇張し、実際の大きさや比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In the drawings, the same members are designated by the same reference numerals, and overlapping description will be omitted. In the drawings, the size and ratio of each member may be exaggerated for easy understanding of the embodiment and may differ from the actual size and ratio.
 図に付したX-Y-Z軸は、電池モジュール100の方位を示している。X軸は、電池110の積層方向と交差し、かつ、電池110の長手方向に沿った方向を示している。Y軸は、電池110の積層方向と交差し、かつ、電池110の短手方向に沿った方向を示している。Z軸は、電池110の積層方向を示している。 XYZ axes attached to the figure indicate the orientation of the battery module 100. The X axis indicates a direction that intersects the stacking direction of the batteries 110 and that is along the longitudinal direction of the batteries 110. The Y-axis indicates a direction that intersects the stacking direction of the batteries 110 and is along the lateral direction of the batteries 110. The Z axis represents the stacking direction of the batteries 110.
 (電池モジュール100)
 図1は、電池モジュール100を示す斜視図である。図2は、図1に示す電池モジュール100の一部を分解して示す斜視図である。まず、電池スタック110Sを含む電池モジュール100について説明する。
(Battery module 100)
FIG. 1 is a perspective view showing the battery module 100. FIG. 2 is a perspective view showing a part of the battery module 100 shown in FIG. 1 in an exploded manner. First, the battery module 100 including the battery stack 110S will be described.
 図1および図2を参照して、電池モジュール100は、扁平な複数の電池110を積層してなる電池スタック110Sがモジュールケース120内に収納されている。モジュールケース120は、4枚の板部材から構成され、電池スタック110Sを加圧する加圧ユニットとしても機能する。複数の電池110は、モジュールケース120によって加圧された状態において、バスバーユニット130によって電気的に接続される。図示省略するが、積層される電池110同士の間には、接着剤あるいは粘着剤が塗布されている。 Referring to FIGS. 1 and 2, the battery module 100 has a battery case 110 S, which is a stack of a plurality of flat batteries 110, housed in a module case 120. The module case 120 is composed of four plate members and also functions as a pressurizing unit that pressurizes the battery stack 110S. The plurality of batteries 110 are electrically connected by the bus bar unit 130 while being pressurized by the module case 120. Although not shown, an adhesive or a pressure sensitive adhesive is applied between the stacked batteries 110.
 図3は、電池モジュール100の要部を断面で示す側面図である。図4は、電池スタック110Sの一の電池110を示す斜視図である。図3および図4を参照して、電池110は、例えば、扁平なリチウムイオン二次電池である。電池110は、発電要素111を一対のラミネートフィルム112によって封止した本体部110Hと、一対の電極タブ113と、を有している。発電要素111は、正極と負極とをセパレータを介して積層して形成されている。発電要素111は、電解液とともにラミネートフィルム112によって封止されている。 FIG. 3 is a side view showing a cross section of a main part of the battery module 100. FIG. 4 is a perspective view showing one battery 110 of the battery stack 110S. Referring to FIGS. 3 and 4, battery 110 is, for example, a flat lithium ion secondary battery. The battery 110 has a main body 110H in which the power generation element 111 is sealed with a pair of laminate films 112, and a pair of electrode tabs 113. The power generation element 111 is formed by stacking a positive electrode and a negative electrode via a separator. The power generation element 111 is sealed with a laminate film 112 together with the electrolytic solution.
 ラミネートフィルム112は、絶縁性を備えたシートによって金属箔の両側を覆って構成されている。ラミネートフィルム112は、長手方向Xに沿った両端部112dを、積層方向Zの上方に向かって折り曲げて形成している。 The laminate film 112 is configured by covering both sides of the metal foil with an insulating sheet. The laminate film 112 is formed by bending both ends 112d along the longitudinal direction X upward in the stacking direction Z.
 図3を参照して、電極タブ113は、発電要素111に電気的に接続され、ラミネートフィルム112から外部に導出されている。図4を参照して、電極タブ113は、アノード側電極タブ113Aと、カソード側電極タブ113Kとを有している。アノード側電極タブ113Aおよびカソード側電極タブ113Kはともに、ラミネートフィルム112の短手方向Yに沿う一端部から、長手方向Xに沿う一方向(図4において左手前側)に向かって伸びている。なお、本明細書では、電極タブ113と称する場合、アノード側電極タブ113Aおよびカソード側電極タブ113Kの両方を意味するものとする。 Referring to FIG. 3, the electrode tab 113 is electrically connected to the power generation element 111 and is led out from the laminate film 112 to the outside. With reference to FIG. 4, the electrode tab 113 has an anode side electrode tab 113A and a cathode side electrode tab 113K. Both the anode-side electrode tab 113A and the cathode-side electrode tab 113K extend from one end of the laminate film 112 along the lateral direction Y toward one direction along the longitudinal direction X (left front side in FIG. 4). In this specification, the term "electrode tab 113" means both the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
 図3および図4を参照して、電極タブ113は、基端部113cから先端部113dにかけてL字形状に曲げ成形されている。後述する本実施形態の電極タブ113の成形装置10は、平板状の電極タブ113をL字形状に折り曲げ成形するための装置である。曲げ成形することによって、電極タブ113の先端部113dは、バスバー132と対面するように平面状に形成されている。なお、電極タブ113の形状は図示したL字形状に限定されない、バスバー132の形状との関係において、適宜の形状を有する。 Referring to FIGS. 3 and 4, the electrode tab 113 is bent and formed in an L shape from the base end portion 113c to the tip end portion 113d. A molding device 10 for the electrode tab 113 according to the present embodiment, which will be described later, is a device for bending the plate-shaped electrode tab 113 into an L-shape. By bending, the tip portion 113d of the electrode tab 113 is formed in a flat shape so as to face the bus bar 132. Note that the shape of the electrode tab 113 is not limited to the L-shape shown in the figure, and has an appropriate shape in relation to the shape of the bus bar 132.
 アノード側電極タブ113Aの形成材料は、特に限定されないが、例えば、アルミニウムを用いることができる。カソード側電極タブ113Kの形成材料は、特に限定されないが、例えば、銅を用いることができる。また、アノード側電極タブ113Aの厚さt1は、特に限定されないが、例えば、0.4mmである。また、カソード側電極タブ113Kの厚さt2は、特に限定されないが、例えば、0.2mmである。また、カソード側電極タブ113Kの先端部113dの一部は、折り返して密着させた折り返し部113eを備える。折り返し部113eは、厚さが基端部113cに比べて2倍である。これにより、アノード側電極タブ113Aの先端部113dとカソード側電極タブ113Kの先端部113dの厚さを同程度とすることができるため、バスバー132との溶接条件をアノード側電極タブ113Aとカソード側電極タブ113Kにおいてほぼ同じ条件に設定することができる。その結果、製造性を向上することができる。 The material for forming the anode-side electrode tab 113A is not particularly limited, but, for example, aluminum can be used. The material for forming the cathode-side electrode tab 113K is not particularly limited, but copper can be used, for example. The thickness t1 of the anode-side electrode tab 113A is not particularly limited, but is 0.4 mm, for example. The thickness t2 of the cathode-side electrode tab 113K is not particularly limited, but is 0.2 mm, for example. Further, a part of the tip portion 113d of the cathode-side electrode tab 113K includes a folded-back portion 113e that is folded back and brought into close contact. The folded-back portion 113e is twice as thick as the base end portion 113c. As a result, the thickness of the tip portion 113d of the anode-side electrode tab 113A and the tip portion 113d of the cathode-side electrode tab 113K can be made approximately the same, and therefore the welding conditions for the bus bar 132 are set to the anode-side electrode tab 113A and the cathode side. The electrode tab 113K can be set under substantially the same conditions. As a result, manufacturability can be improved.
 図4を参照して、電池110は、電極タブ113を備えた側が一対の第1スペーサー114によって支持され、電極タブ113を備えていない側が一対の第2スペーサー115によって支持されている。電池110は、各スペーサー114、115によって支持された状態において積層される。第1スペーサー114には、ラミネートフィルム112の連結孔(図示省略)に挿通される連結ピン114aが形成され、第2スペーサー115には、連結孔(図示省略)に挿通される連結ピン115aが形成されている。連結ピン114a、115aの先端を熱カシメすることによって、各スペーサー114、115は、ラミネートフィルム112に接続される。各スペーサー114、115は、絶縁性を備えた強化プラスチックスから形成される。 Referring to FIG. 4, in the battery 110, the side provided with the electrode tab 113 is supported by the pair of first spacers 114, and the side not provided with the electrode tab 113 is supported by the pair of second spacers 115. The batteries 110 are stacked while being supported by the spacers 114 and 115. The first spacer 114 has a connecting pin 114a which is inserted into a connecting hole (not shown) of the laminate film 112, and the second spacer 115 has a connecting pin 115a which is inserted into a connecting hole (not shown). Has been done. The spacers 114, 115 are connected to the laminate film 112 by thermally caulking the tips of the connecting pins 114a, 115a. Each of the spacers 114 and 115 is formed of a reinforced plastic having an insulating property.
 第1スペーサー114は、その長手方向(短手方向Y)の両端に載置部114bを有し、第2スペーサー115は、その長手方向(短手方向Y)の両端に載置部115bを有している。電池110を積層するとき、第1スペーサー114は、積層方向に隣り合う載置部114b同士が接触し、第2スペーサー115は、積層方向に隣り合う載置部115b同士が接触する。載置部114b、115bの上面には、ピン114c、115cが形成されている。載置部114bの下面には、ピン114cの位置に対応した穴114dが形成されている(図3を参照)。載置部115bの下面にも同様に、ピン115cの位置に対応した穴(図示省略)が形成されている。載置部114b、115bには、通しボルトを挿通する貫通孔114e、115eが形成されている。第1スペーサー114は、図3に示すように、電極タブ113の先端部113dをバスバー132とは反対側から支持する支持部材114fを有している。 The first spacer 114 has mounting portions 114b at both ends in the longitudinal direction (transverse direction Y), and the second spacer 115 has mounting portions 115b at both ends in the longitudinal direction (transverse direction Y). doing. When stacking the batteries 110, the first spacers 114 contact the mounting portions 114b adjacent to each other in the stacking direction, and the second spacers 115 contact the mounting portions 115b adjacent to each other in the stacking direction. Pins 114c and 115c are formed on the upper surfaces of the mounting portions 114b and 115b. A hole 114d corresponding to the position of the pin 114c is formed on the lower surface of the mounting portion 114b (see FIG. 3). Similarly, a hole (not shown) corresponding to the position of the pin 115c is formed on the lower surface of the mounting portion 115b. Through holes 114e and 115e for inserting the through bolts are formed in the mounting portions 114b and 115b. As shown in FIG. 3, the first spacer 114 has a support member 114f that supports the tip portion 113d of the electrode tab 113 from the side opposite to the bus bar 132.
 図2を参照して、モジュールケース120は、電池スタック110Sの各々の電池110の発電要素111を上下から加圧する上部加圧板121と下部加圧板122、および電池スタック110Sを加圧した状態の上部加圧板121および下部加圧板122を固定する一対の側板123を含んでいる。上部加圧板121は、電池モジュール100を図示しないパックケースに対して固定する締結ボルトを挿入するロケート孔121bが形成されている。下部加圧板122も同様に、締結ボルトを挿入するロケート孔122bが形成されている。一対の側板123は、上部加圧板121および下部加圧板122に対して溶接している。モジュールケース120の形成材料は、特に限定されないが、例えば、ステンレスなどから形成することができる。 Referring to FIG. 2, the module case 120 includes an upper pressing plate 121 and a lower pressing plate 122 that press the power generating elements 111 of the respective batteries 110 of the battery stack 110S from above and below, and an upper part of the battery stack 110S in a pressed state. It includes a pair of side plates 123 for fixing the pressure plate 121 and the lower pressure plate 122. The upper pressure plate 121 has a locate hole 121b into which a fastening bolt for fixing the battery module 100 to a pack case (not shown) is inserted. Similarly, the lower pressure plate 122 has a locate hole 122b into which a fastening bolt is inserted. The pair of side plates 123 are welded to the upper pressure plate 121 and the lower pressure plate 122. The material for forming the module case 120 is not particularly limited, but can be formed of, for example, stainless steel.
 バスバーユニット130は、上下に並んだ電池110の電極タブ113を電気的に接続するバスバー132と、複数のバスバー132を一体的に保持するバスバーホルダ131と、バスバー132を保護する保護カバー135とを有する。バスバーユニット130はさらに、電気的に接続された複数の電池110のアノード側の終端を外部の入出力端子に臨ませるアノード側ターミナル133と、カソード側の終端を外部の入出力端子に臨ませるカソード側ターミナル134とを有する。 The bus bar unit 130 includes a bus bar 132 that electrically connects the electrode tabs 113 of the batteries 110 that are vertically arranged, a bus bar holder 131 that integrally holds the plurality of bus bars 132, and a protective cover 135 that protects the bus bar 132. Have. The bus bar unit 130 further includes an anode-side terminal 133 that makes the anode-side ends of the plurality of electrically connected batteries 110 face external input/output terminals, and a cathode that makes the cathode-side ends face external input/output terminals. And a side terminal 134.
 図3に示すように、積層した電池110の電極タブ113にバスバー132をレーザー接合するときには、図示しないレーザー発振器は、バスバー132にレーザー光LBを照射する。バスバー132と電極タブ113の先端部113dとは、シーム溶接またはスポット溶接によって接合される。電極タブ113とバスバー132とをレーザー溶接する場合、高品位の溶接品質を確保するために、電極タブ113とバスバー132との間に隙間が生じないように、電極タブ113の位置とバスバー132の位置を管理しなければならない。電極タブ113の曲げ角度などの形状にばらつきがあると、電極タブ113の先端部113dの位置が積層方向にばらつくおそれがある。このため、電池110を電極タブ113の加工位置に高精度に位置決めし、電極タブ113の加工精度を向上することが必要である。 As shown in FIG. 3, when the bus bar 132 is laser-bonded to the electrode tabs 113 of the stacked batteries 110, a laser oscillator (not shown) irradiates the bus bar 132 with the laser beam LB. The bus bar 132 and the tip portion 113d of the electrode tab 113 are joined by seam welding or spot welding. When laser welding the electrode tab 113 and the bus bar 132, in order to ensure high quality welding quality, the position of the electrode tab 113 and the bus bar 132 should be adjusted so that no gap is created between the electrode tab 113 and the bus bar 132. You have to manage your location. If there is variation in the shape such as the bending angle of the electrode tab 113, the position of the tip portion 113d of the electrode tab 113 may vary in the stacking direction. Therefore, it is necessary to position the battery 110 at the processing position of the electrode tab 113 with high accuracy and improve the processing accuracy of the electrode tab 113.
 [電極タブ113の成形装置10]
 本実施形態に係る電極タブ113の成形装置10を説明する。図5Aは、電極タブ113の成形装置10の構成を模式的に示す側面図、図5Bは、図5Aに示す電極タブ113の成形装置10の一部を示す正面図である。
[Molding Device 10 for Electrode Tab 113]
The molding device 10 for the electrode tab 113 according to this embodiment will be described. 5A is a side view schematically showing the configuration of the molding apparatus 10 for the electrode tab 113, and FIG. 5B is a front view showing a part of the molding apparatus 10 for the electrode tab 113 shown in FIG. 5A.
 電極タブ113の成形装置10は、電池110のアノード側電極タブ113Aおよびカソード側電極タブ113Kをそれぞれ曲げ成形して折れ曲がり部113Rを形成する成形装置である。図5A、図5B、および図5Cを参照して、電極タブ113の成形装置10は、概説すると、ダイ20と、パンチ30と、上部保持部40と、下部保持部45と、駆動部50、51と、曲げ角度調整部60と、押さえ部70と、成形装置10の各部の作動を制御する制御部80と、を有する。以下、各部の構成について詳述する。 The forming device 10 for the electrode tab 113 is a forming device for forming the bent portion 113R by bending the anode side electrode tab 113A and the cathode side electrode tab 113K of the battery 110, respectively. With reference to FIGS. 5A, 5B, and 5C, the molding apparatus 10 for the electrode tab 113 is roughly described. The die 20, the punch 30, the upper holding unit 40, the lower holding unit 45, and the driving unit 50. 51, a bending angle adjusting unit 60, a pressing unit 70, and a control unit 80 that controls the operation of each unit of the molding apparatus 10. Hereinafter, the configuration of each unit will be described in detail.
 (ダイ20)
 図5A、図5B、および図5Cを参照して、ダイ20は、一対の電極タブ113のうちのアノード側電極タブ113A(一方の電極タブに相当)の基端部113cを支持する第1支持面24aを備える第1ダイ21と、カソード側電極タブ113K(他方の電極タブに相当)の基端部113cを支持する第2支持面24bを備える第2ダイ22と、を有する。第1ダイ21は、第1支持面24aの端部に角部23aを有する。角部23aの角度αは、鋭角である。これにより、アノード側電極タブ113Aを曲げ成形する際に、スプリングバックの影響を考慮して、アノード側電極タブ113Aを90度よりも大きな角度で曲げることができる。第2ダイ22は、第2支持面24bの端部に角部23bを有する。角部23bの角度βは、鋭角である。これにより、カソード側電極タブ113Kを曲げ成形する際に、スプリングバックの影響を考慮して、カソード側電極タブ113Kを90度よりも大きな角度で曲げることができる。角部23aの角度αおよび角部23bの角度βは、電極タブ113の材質や厚さなどの条件に合わせてそれぞれ異なる角度に設定されている。なお、本明細書では、ダイ20と称する場合、第1ダイ21および第2ダイ22の両方を意味するものとする。
(Die 20)
5A, 5B, and 5C, the die 20 includes a first support that supports a base end portion 113c of the anode-side electrode tab 113A (corresponding to one electrode tab) of the pair of electrode tabs 113. It has the 1st die 21 provided with the surface 24a, and the 2nd die 22 provided with the 2nd support surface 24b which supports the base end part 113c of the cathode side electrode tab 113K (equivalent to the other electrode tab). The first die 21 has a corner portion 23a at the end of the first support surface 24a. The angle α of the corner portion 23a is an acute angle. This allows the anode-side electrode tab 113A to be bent at an angle larger than 90 degrees in consideration of the effect of springback when the anode-side electrode tab 113A is bent. The second die 22 has a corner 23b at the end of the second support surface 24b. The angle β of the corner portion 23b is an acute angle. Accordingly, when the cathode side electrode tab 113K is bent, the cathode side electrode tab 113K can be bent at an angle larger than 90 degrees in consideration of the influence of spring back. The angle α of the corner portion 23a and the angle β of the corner portion 23b are set to different angles according to conditions such as the material and thickness of the electrode tab 113. In this specification, the term “die 20” means both the first die 21 and the second die 22.
 (パンチ30)
 図5A、図5B、および図5Cを参照して、パンチ30は、第1ダイ21と協働してアノード側電極タブ113Aを曲げ成形する第1パンチ31と、第2ダイ22と協働してカソード側電極タブ113Kを曲げ成形する第2パンチ32と、を有する。なお、本明細書では、パンチ30と称する場合、第1パンチ31および第2パンチ32の両方を意味するものとする。
(Punch 30)
5A, 5B, and 5C, the punch 30 cooperates with the first die 21 to bend and form the anode-side electrode tab 113A, and the punch 30 cooperates with the second die 22. And a second punch 32 for bending the cathode side electrode tab 113K. In the present specification, the term “punch 30” means both the first punch 31 and the second punch 32.
 図5Cを参照して、パンチ30を第1支持面24aおよび第2支持面24bに対して直交する第1方向D1(本実施形態では電池110の積層方向Z)において、第1パンチ31の長さL1は、第2パンチ32の第1方向D1に沿う長さL2よりも長い。また、第1パンチ31の長さL1と第2パンチ32の長さL2の差ΔLは、アノード側電極タブ113Aの厚さt1よりも大きく設定されている。本実施形態では、長さの差ΔLは、1mm(>t1=0.4mm)としている。 Referring to FIG. 5C, the length of the first punch 31 in the first direction D1 (in the present embodiment, the stacking direction Z of the battery 110 in the present embodiment) orthogonal to the first support surface 24a and the second support surface 24b. The length L1 is longer than the length L2 of the second punch 32 along the first direction D1. The difference ΔL between the length L1 of the first punch 31 and the length L2 of the second punch 32 is set to be larger than the thickness t1 of the anode electrode tab 113A. In this embodiment, the length difference ΔL is set to 1 mm (>t1=0.4 mm).
 第1パンチ31および第2パンチ32は、長さ以外はほぼ同様の構成を有する。図5Aを参照して、第1パンチ31は、アノード側電極タブ113Aの曲げ成形時において、アノード側電極タブ113Aを押圧して曲げ加工する押圧面33aと、後述する第1バックアッププレート63aの傾斜面65aと摺接する摺接面34aと、を有する。図5Bを参照して、第2パンチ32は、カソード側電極タブ113Kの曲げ成形時において、カソード側電極タブ113Kを押圧して曲げ加工する押圧面33bと、後述する第2バックアッププレート63bの傾斜面65bと摺接する摺接面34bと、を有する。 The first punch 31 and the second punch 32 have substantially the same configuration except the length. Referring to FIG. 5A, the first punch 31 has a pressing surface 33a that presses and bends the anode-side electrode tab 113A during bending of the anode-side electrode tab 113A, and an inclination of a first backup plate 63a described later. And a sliding contact surface 34a that is in sliding contact with the surface 65a. Referring to FIG. 5B, the second punch 32 has a pressing surface 33b that presses and bends the cathode-side electrode tab 113K when bending the cathode-side electrode tab 113K, and an inclination of a second backup plate 63b described later. And a sliding contact surface 34b that is in sliding contact with the surface 65b.
 第1方向D1に直交する方向(本実施形態では電池110の長手方向X)をパンチ30の幅方向としたとき、パンチ30の先端部30dの幅W1は、基端部30cの幅W2よりも小さくなるように形成されている。これにより、パンチ30の先端部30dは、後述する上部保持部40のパンチプレート41との間に隙間Gを有する。 When the direction orthogonal to the first direction D1 (the longitudinal direction X of the battery 110 in the present embodiment) is the width direction of the punch 30, the width W1 of the tip 30d of the punch 30 is larger than the width W2 of the base 30c. It is formed to be small. As a result, the tip portion 30d of the punch 30 has a gap G between the punch plate 41 of the upper holding portion 40 described later.
 (上部保持部40)
 図5A、図5B、および図5Cを参照して、上部保持部40は、パンチ30の基端部30cの変形を制限するパンチプレート41と、第1パンチ31および第2パンチ32の各々の基端部30c(一端部に相当)およびパンチプレート41を保持する保持プレート42と、を有する。また、第1パンチ31および第2パンチ32は、パンチプレート41との間に図示しない絶縁部材が配置されている。絶縁部材は、第1パンチ31と第2パンチ32とがパンチプレート41等を介して電気的に接続されることを防止する。
(Upper holding part 40)
5A, 5B, and 5C, the upper holding unit 40 includes a punch plate 41 that limits deformation of the base end portion 30c of the punch 30, and a base of each of the first punch 31 and the second punch 32. An end portion 30c (corresponding to one end portion) and a holding plate 42 that holds the punch plate 41 are included. Further, the first punch 31 and the second punch 32 are provided with an insulating member (not shown) between them and the punch plate 41. The insulating member prevents the first punch 31 and the second punch 32 from being electrically connected via the punch plate 41 or the like.
 パンチプレート41は、パンチ30の基端部30cと面接触し、パンチ30の基端部30cが第1方向D1に交差する方向に変形することを制限する機能を有する。また、パンチプレート41は、上述したようにパンチ30の先端部30dとの間に隙間Gを介して配置される。これにより、パンチプレート41は、隙間Gの分だけパンチ30の先端部30dをダイ20側に向かう方向へ変形可能にするとともに、パンチ30の先端部30dの可動域を制限する機能を有している。 The punch plate 41 has a function of making surface contact with the base end portion 30c of the punch 30 and limiting the deformation of the base end portion 30c of the punch 30 in the direction intersecting the first direction D1. The punch plate 41 is arranged with the gap G between the punch plate 41 and the tip portion 30d of the punch 30 as described above. As a result, the punch plate 41 has a function of allowing the tip portion 30d of the punch 30 to be deformed toward the die 20 side by the amount of the gap G, and having a function of limiting the movable range of the tip portion 30d of the punch 30. There is.
 保持プレート42は、パンチ30にかかる加工荷重に対して補強機能および耐摩耗性を備えるバッキングプレート42aと、駆動部50に接続されるパンチホルダー42bと、を有する。バッキングプレート42aは、例えば、焼入れ硬化が施され、耐摩耗性を有する金属によって形成される。パンチホルダー42bは、図示しない絶縁構造のボルト等の締結部材を介してパンチ30の基端部30cを固定している。 The holding plate 42 has a backing plate 42a having a reinforcing function and wear resistance against a processing load applied to the punch 30, and a punch holder 42b connected to the drive unit 50. The backing plate 42a is, for example, hardened and formed of a metal having wear resistance. The punch holder 42b fixes the base end portion 30c of the punch 30 via a fastening member such as a bolt having an insulating structure (not shown).
 (下部保持部45)
 図5A、図5B、および図5Cを参照して、下部保持部45は、第1ダイ21、第2ダイ22、第1バックアッププレート63a、および第2バックアッププレート63bの下端部を絶縁部材46を介して保持する下部ホルダー47を有する。アノード側電極タブ113Aは、第1ダイ21および第1バックアッププレート63aに接触し、カソード側電極タブ113Kは、第2ダイ22および第2バックアッププレート63bに接触する。絶縁部材46は、アノード側電極タブ113Aとカソード側電極タブ113Kとがダイ20等を介して電気的に接続されることを防止する。下部ホルダー47は、駆動部51に接続される。下部ホルダー47は、図示しない絶縁構造のボルト等の締結部材を介して第1ダイ21、第2ダイ22、第1バックアッププレート63a、および第2バックアッププレート63bの下端部を固定している。
(Lower holding part 45)
Referring to FIGS. 5A, 5B, and 5C, the lower holding unit 45 attaches the insulating member 46 to the lower ends of the first die 21, the second die 22, the first backup plate 63a, and the second backup plate 63b. It has a lower holder 47 that holds it through. The anode side electrode tab 113A contacts the first die 21 and the first backup plate 63a, and the cathode side electrode tab 113K contacts the second die 22 and the second backup plate 63b. The insulating member 46 prevents the anode side electrode tab 113A and the cathode side electrode tab 113K from being electrically connected via the die 20 or the like. The lower holder 47 is connected to the drive unit 51. The lower holder 47 fixes the lower ends of the first die 21, the second die 22, the first backup plate 63a, and the second backup plate 63b via fastening members such as bolts having an insulating structure (not shown).
 (駆動部50)
 駆動部50は、第1ダイ21の第1支持面24aおよび第2ダイ22の第2支持面24bに対して直交する第1方向D1に沿って第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させる。駆動部50は、上部保持部40を第1方向D1(図5A、図5B、および図5Cにおいて下方向)に移動させる。駆動部50は、例えば、サーボプレスや機械プレス等によって構成される。駆動部50が上部保持部40を第1方向D1に移動させることによって、上部保持部40に保持されたパンチ30が第1方向D1に移動する。これによって、パンチ30は、ダイ20に対して相対的に接近離反移動する。駆動部50によって第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させる1つの動作の間に、一方の電極タブ(アノード側電極タブ113A)および他方の電極タブ(カソード側電極タブ113K)の曲げ成形のタイミングをずらしている。第1パンチ31および第2パンチ32を一体として移動させることから、第1パンチ31および第2パンチ32の相対的な位置関係を維持して、電極タブ113を曲げ成形するときの精度を高めることができる。
(Drive unit 50)
The drive unit 50 integrally includes the first punch 31 and the second punch 32 along a first direction D1 orthogonal to the first support surface 24a of the first die 21 and the second support surface 24b of the second die 22. It is moved relative to the first die 21 and the second die 22. The drive unit 50 moves the upper holding unit 40 in the first direction D1 (downward in FIGS. 5A, 5B, and 5C). The drive unit 50 is composed of, for example, a servo press or a mechanical press. The driving unit 50 moves the upper holding unit 40 in the first direction D1, so that the punch 30 held by the upper holding unit 40 moves in the first direction D1. As a result, the punch 30 moves toward and away from the die 20 relatively. During one operation in which the driving unit 50 moves the first punch 31 and the second punch 32 as a unit relative to the first die 21 and the second die 22, one electrode tab (the anode-side electrode tab 113A) is moved. ) And the other electrode tab (cathode side electrode tab 113K) are bent at different timings. Since the first punch 31 and the second punch 32 are moved as a unit, the relative positional relationship between the first punch 31 and the second punch 32 is maintained, and the accuracy when bending the electrode tab 113 is increased. You can
 (駆動部51)
 駆動部51は、下部保持部45を第1方向D1と反対方向(図5A、図5B、および図5Cにおいて上方向)に移動させる。駆動部51は、例えば、サーボプレスや機械プレス等によって構成される。駆動部51が下部保持部45を第1方向D1と反対方向に移動させることによって、下部保持部45に保持されたダイ20が第1方向D1に移動する。これによって、ダイ20は、パンチ30に対して相対的に接近離反移動する。本実施形態においては、駆動部51によって第1ダイ21および第2ダイ22を一体として移動させている。第1ダイ21および第2ダイ22を一体として移動させることから、第1ダイ21および第2ダイ22の相対的な位置関係を維持して、電極タブ113を曲げ成形するときの精度を高めることができる。
(Drive unit 51)
The drive unit 51 moves the lower holding unit 45 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C). The drive unit 51 is composed of, for example, a servo press or a mechanical press. The driving unit 51 moves the lower holding unit 45 in the direction opposite to the first direction D1, so that the die 20 held by the lower holding unit 45 moves in the first direction D1. As a result, the die 20 moves toward and away from the punch 30 relatively. In the present embodiment, the driving unit 51 moves the first die 21 and the second die 22 as a unit. Since the first die 21 and the second die 22 are moved as a unit, the relative positional relationship between the first die 21 and the second die 22 is maintained, and the accuracy when bending the electrode tab 113 is increased. You can
 本実施形態にあっては、駆動部50がパンチ30を移動させ、駆動部51がダイ20を移動させる。ただし、電極タブ113の曲げ成形は、パンチ30とダイ20とを相対的に接近移動させれば行うことができる。このため、パンチ30のみをダイ20に向けて移動させたり、逆に、ダイ20のみをパンチ30に向けて移動させたりして、電極タブ113を曲げ成形できる。 In the present embodiment, the drive unit 50 moves the punch 30, and the drive unit 51 moves the die 20. However, the bending of the electrode tab 113 can be performed by moving the punch 30 and the die 20 relatively closer to each other. Therefore, the electrode tab 113 can be bent by moving only the punch 30 toward the die 20 or, conversely, moving only the die 20 toward the punch 30.
 (曲げ角度調整部60)
 図5A、図5B、および図5Cを参照して、曲げ角度調整部60は、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度θaを調整する第1曲げ角度調整部61と、カソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度θbを調整する第2曲げ角度調整部62と、を有する。第1曲げ角度調整部61は、第1方向D1へ移動した第1パンチ31によって曲げ成形されたアノード側電極タブ113Aを追い込み曲げ加工する。第2曲げ角度調整部62は、第1方向D1へ移動した第2パンチ32によって曲げ成形されたカソード側電極タブ113Kを追い込み曲げ加工する。第1曲げ角度調整部61は、傾斜面65aを備える第1バックアッププレート63aと、第1ダイ21の第1支持面24aに対する第1バックアッププレート63aの高さを調整する第1高さ調整部64aと、を有する。第2曲げ角度調整部62は、傾斜面65bを備える第2バックアッププレート63bと、第2ダイ22の第2支持面24bに対する第2バックアッププレート63bの高さを調整する第2高さ調整部64bと、を有する。本実施形態では、第1高さ調整部64aおよび第2高さ調整部64bは、省スペースな構成するために、例えば、1または複数の調整スペーサーが組み込まれている。厚みの異なる調整スペーサーを組み合わせることによって、第1バックアッププレート63aおよび第2バックアッププレート63bの高さを調整できる。なお、本明細書では、曲げ角度調整部60と称する場合、第1曲げ角度調整部61および第2曲げ角度調整部62の両方を意味するものとする。
(Bending angle adjusting unit 60)
5A, 5B, and 5C, the bending angle adjusting unit 60 includes a first bending angle adjusting unit 61 for adjusting the bending angle θa of the bending portion 113R of the anode-side electrode tab 113A, and a cathode-side electrode tab. And a second bending angle adjusting portion 62 for adjusting the bending angle θb of the bending portion 113R of 113K. The first bending angle adjusting unit 61 drives in and bends the anode-side electrode tab 113A bent by the first punch 31 moved in the first direction D1. The second bending angle adjusting section 62 drives in the cathode side electrode tab 113K bent by the second punch 32 moved in the first direction D1 to perform bending processing. The first bending angle adjuster 61 includes a first backup plate 63a having an inclined surface 65a and a first height adjuster 64a for adjusting the height of the first backup plate 63a with respect to the first support surface 24a of the first die 21. And. The second bending angle adjuster 62 includes a second backup plate 63b having an inclined surface 65b and a second height adjuster 64b for adjusting the height of the second backup plate 63b with respect to the second support surface 24b of the second die 22. And. In the present embodiment, the first height adjusting unit 64a and the second height adjusting unit 64b have, for example, one or a plurality of adjusting spacers incorporated therein in order to save space. The heights of the first backup plate 63a and the second backup plate 63b can be adjusted by combining adjustment spacers having different thicknesses. In this specification, the term “bending angle adjusting section 60” means both the first bending angle adjusting section 61 and the second bending angle adjusting section 62.
 図5Aの破線部分を参照して、第1パンチ31を第1方向D1(図5Aの下方向)に移動させ、第1ダイ21を第1方向D1と反対方向(図5Aの上方向)に移動させると、第1パンチ31と第1ダイ21とが接近移動し、第1パンチ31の摺接面34aは、第1バックアッププレート63aの傾斜面65aと摺接する。そして、第1パンチ31の摺接面34aは、傾斜面65aに沿って摺動し、第1方向D1(積層方向Z)に対して交差する第2方向D2へ移動する。上述したように第1パンチ31の先端部30dは、パンチプレート41との間の隙間Gの分だけ第1ダイ21側に変形できるように構成されている。そのため、第1パンチ31の先端部30dは、第1ダイ21側に向かう第2方向(図5Aでは右下方向)へ撓むように変形する。第1パンチ31の先端部30dの変形に伴って、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度θaはさらに大きくなる。このようにして、第1曲げ角度調整部61は、アノード側電極タブ113Aの曲げ角度θaを調整する。 5A, the first punch 31 is moved in the first direction D1 (downward in FIG. 5A), and the first die 21 is moved in the direction opposite to the first direction D1 (upward in FIG. 5A). When moved, the first punch 31 and the first die 21 move closer to each other, and the sliding contact surface 34a of the first punch 31 makes sliding contact with the inclined surface 65a of the first backup plate 63a. Then, the sliding contact surface 34a of the first punch 31 slides along the inclined surface 65a and moves in the second direction D2 intersecting the first direction D1 (stacking direction Z). As described above, the tip portion 30d of the first punch 31 is configured to be deformable toward the first die 21 side by the gap G between the first punch 31 and the punch plate 41. Therefore, the tip portion 30d of the first punch 31 is deformed so as to bend in the second direction (downward right direction in FIG. 5A) toward the first die 21 side. With the deformation of the tip portion 30d of the first punch 31, the bending angle θa of the bent portion 113R of the anode-side electrode tab 113A further increases. In this way, the first bending angle adjusting section 61 adjusts the bending angle θa of the anode-side electrode tab 113A.
 図5Bの破線部分を参照して、第2パンチ32を第1方向D1(図5Bの下方向)に移動させ、第2ダイ22を第1方向D1と反対方向(図5Bの上方向)に移動させると、第2パンチ32と第2ダイ22とが接近移動し、第2パンチ32の摺接面34aは、第2バックアッププレート63bの傾斜面65bと摺接する。そして、第2パンチ32の摺接面34bは、傾斜面65bに沿って摺動し、第1方向D1(積層方向Z)に対して交差する第3方向D3へ移動する。上述したように第2パンチ32の先端部30dは、パンチプレート41との間の隙間Gの分だけ第2ダイ22側に変形できるように構成されている。そのため、第2パンチ32の先端部30dは、第2ダイ22側に向かう第3方向(図5Bでは右下方向)へ撓むように変形する。第2パンチ32の先端部30dの変形に伴って、カソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度θbはさらに大きくなる。このようにして、第2曲げ角度調整部62は、カソード側電極タブ113Kの曲げ角度θbを調整する。 5B, the second punch 32 is moved in the first direction D1 (downward in FIG. 5B), and the second die 22 is moved in the direction opposite to the first direction D1 (upward in FIG. 5B). When moved, the second punch 32 and the second die 22 move closer to each other, and the sliding contact surface 34a of the second punch 32 makes sliding contact with the inclined surface 65b of the second backup plate 63b. Then, the sliding contact surface 34b of the second punch 32 slides along the inclined surface 65b and moves in the third direction D3 intersecting the first direction D1 (stacking direction Z). As described above, the tip portion 30d of the second punch 32 is configured to be deformable toward the second die 22 side by the gap G between the second punch 32 and the punch plate 41. Therefore, the tip portion 30d of the second punch 32 is deformed so as to bend in the third direction (downward right direction in FIG. 5B) toward the second die 22 side. With the deformation of the tip portion 30d of the second punch 32, the bending angle θb of the bent portion 113R of the cathode-side electrode tab 113K further increases. In this way, the second bending angle adjusting section 62 adjusts the bending angle θb of the cathode side electrode tab 113K.
 (押さえ部70)
 押さえ部70は、パンチ30によって電極タブ113の先端部113dを曲げ加工する際に、電極タブ113の基端部113cをダイ20に対して押し付けて保持し、電極タブ113がパンチ30による加工方向(第1方向D1、第2方向D2、および第3方向D3)に引きずり込まれて位置ずれすることを防止する機能を有する。押さえ部70は、上部保持部40に固定された固定部71に第1方向D1へ相対的に移動可能に支持されている。固定部71と押さえ部70との間には付勢部材72が配置され、押さえ部70を第1方向D1へ付勢している。また、押さえ部70は、アノード側電極タブ113Aを押さえる部分と、カソード側電極タブ113Kを押さえる部分との間に図示しない絶縁構造が配置されている。絶縁構造は、押さえ部70におけるアノード側電極タブ113Aを押さえる部分と、カソード側電極タブ113Kを押さえる部分とが電気的に導通しないように、2つの部分の間を電気的に絶縁する。固定部71および付勢部材72についても、押さえ部70におけるアノード側電極タブ113Aを押さえる部分と、カソード側電極タブ113Kを押さえる部分とを電気的に絶縁するために、図示しない絶縁構造が配置されている。
(Holding part 70)
The pressing portion 70 presses and holds the base end portion 113c of the electrode tab 113 against the die 20 when the tip end portion 113d of the electrode tab 113 is bent by the punch 30, and the electrode tab 113 is processed by the punch 30. It has a function of preventing the position from being displaced due to being dragged in the (first direction D1, second direction D2, and third direction D3). The pressing portion 70 is supported by a fixing portion 71 fixed to the upper holding portion 40 so as to be relatively movable in the first direction D1. A biasing member 72 is arranged between the fixed portion 71 and the pressing portion 70, and biases the pressing portion 70 in the first direction D1. In addition, the pressing portion 70 is provided with an insulating structure (not shown) between a portion that holds the anode side electrode tab 113A and a portion that holds the cathode side electrode tab 113K. The insulating structure electrically insulates between the two portions of the holding portion 70 so that the portion holding the anode side electrode tab 113A and the portion holding the cathode side electrode tab 113K are not electrically connected. The fixing portion 71 and the biasing member 72 are also provided with an insulating structure (not shown) in order to electrically insulate the portion of the holding portion 70 that holds the anode-side electrode tab 113A from the portion that holds the cathode-side electrode tab 113K. ing.
 なお、電極タブ113の成形装置10は、上述した絶縁部材や絶縁構造のほか、アノード側電極タブ113Aやカソード側電極タブ113Kに接触する設備側部分が全て絶縁構造をとる必要がある。 In addition to the above-described insulating member and insulating structure, the molding apparatus 10 for the electrode tab 113 needs to have an insulating structure for all equipment-side portions that contact the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
 (制御部80)
 制御部80は、CPUやメモリを主体に構成され、駆動部50、51等の作動を制御する。
(Control unit 80)
The control unit 80 is mainly composed of a CPU and a memory, and controls the operation of the drive units 50, 51 and the like.
 [電極タブ113の成形装置10における高さ方向の寸法の一例]
 図5Dを参照して、電極タブの成形装置における高さ方向の寸法の一例についてさらに説明する。
[Example of Dimensions of Electrode Tab 113 in Height Direction in Molding Device 10]
With reference to FIG. 5D, an example of the dimension in the height direction of the electrode tab forming apparatus will be further described.
 図5Dに示される符号は、
  t1:アノード側電極タブ113Aの厚さ
  t2:カソード側電極タブ113Kの厚さ
  x1:アノード側電極タブ113Aの下面と、カソード側電極タブ113Kの下面との間の高さ方向の寸法差
  x2:アノード側電極タブ113Aの厚さ中心Ocと、カソード側電極タブ113Kの上面との間の高さ方向の寸法差
  y1:第1ダイ21の第1支持面24aと、第2ダイ22の第2支持面24bとの間の高さ方向の寸法差
  y2:第1パンチ31の押圧面33aと、第2パンチ32の押圧面33bとの間の高さ方向の寸法差
をそれぞれ表している。
The code shown in FIG. 5D is
t1: Thickness of the anode side electrode tab 113A t2: Thickness of the cathode side electrode tab 113K x1: Dimensional difference in the height direction between the lower surface of the anode side electrode tab 113A and the lower surface of the cathode side electrode tab 113K x2: Dimensional difference in the height direction between the thickness center Oc of the anode side electrode tab 113A and the upper surface of the cathode side electrode tab 113K y1: the first supporting surface 24a of the first die 21 and the second supporting surface of the second die 22. Height difference between support surface 24b and height y2: The height difference between the pressing surface 33a of the first punch 31 and the pressing surface 33b of the second punch 32 is shown.
 図5Dに示される一例における電池110は、電池110の厚さ中心Oc、アノード側電極タブ113Aの厚さ中心Oc、およびカソード側電極タブ113Kの厚さ中心Ocの3つがすべて一致している。したがって、x1は、x1=t1/2-t2/2である。カソード側電極タブ113Kは、折り返し部113eを備えており、基端部113cの下面113fが第2ダイ22の第2支持面24bの上に載置される。第1支持面24aと第2支持面24bとの間の段差寸法を表しているy1をx1と同じ寸法とすることによって、アノード側電極タブ113Aが第1支持面24aに接触するタイミングと、カソード側電極タブ113Kが第2支持面24bに接触するタイミングとをほぼ一致させるように設定できる。パンチ30の押圧面33a、33bの寸法差を表しているy2は、ほぼx2と同じ寸法に設定するか、あるいは、アノード側電極タブ113Aの曲げ成形が完了してから第2パンチ32の押圧面33bがカソード側電極タブ113Kの上面に接触するような寸法に設定する。図示する例においては、x2は、カソード側電極タブ113Kの厚さの半分(t2/2)である。y2をほぼx2と同じ寸法に設定する理由は次のとおりである。アノード側電極タブ113Aの厚さの半分(t1/2)だけ第1パンチ31がアノード側電極タブ113Aを押し込むと、アノード側電極タブ113Aは、ほぼ直角に折れ曲がり、曲げ成形がほぼ完了する。アノード側電極タブ113Aが第1ダイ21と第1パンチ31とによって挟み込まれ、アノード側電極タブ113Aをグリップする力が発生する。アノード側電極タブ113Aをグリップしてからカソード側電極タブ113Kの曲げ成形を開始するため、アノード側電極タブ113Aの曲げ負荷に影響を受けることなく、カソード側電極タブ113Kを高精度に曲げ成形できるからである。 In the battery 110 in the example shown in FIG. 5D, the thickness center Oc of the battery 110, the thickness center Oc of the anode-side electrode tab 113A, and the thickness center Oc of the cathode-side electrode tab 113K all match. Therefore, x1 is x1=t1/2-t2/2. The cathode-side electrode tab 113K includes a folded-back portion 113e, and the lower surface 113f of the base end portion 113c is placed on the second support surface 24b of the second die 22. By setting y1 representing the step size between the first support surface 24a and the second support surface 24b to be the same as x1, the timing at which the anode-side electrode tab 113A contacts the first support surface 24a and the cathode The side electrode tab 113K can be set to be substantially coincident with the timing of contact with the second support surface 24b. The y2, which represents the dimensional difference between the pressing surfaces 33a and 33b of the punch 30, is set to be substantially the same as x2, or the pressing surface of the second punch 32 after the bending of the anode-side electrode tab 113A is completed. The size is set so that 33b contacts the upper surface of the cathode-side electrode tab 113K. In the illustrated example, x2 is half the thickness (t2/2) of the cathode-side electrode tab 113K. The reason why y2 is set to be approximately the same as x2 is as follows. When the first punch 31 pushes the anode-side electrode tab 113A by a half of the thickness of the anode-side electrode tab 113A (t1/2), the anode-side electrode tab 113A is bent substantially at a right angle, and the bending is almost completed. The anode side electrode tab 113A is sandwiched by the first die 21 and the first punch 31, and a force for gripping the anode side electrode tab 113A is generated. Since the bending of the cathode electrode tab 113K is started after gripping the anode electrode tab 113A, the cathode electrode tab 113K can be bent with high precision without being affected by the bending load of the anode electrode tab 113A. Because.
 [電極タブ113の成形方法]
 次に、図5A~図5C、図6~図11を参照して、電極タブ113の成形装置10を用いた電極タブ113の成形手順を説明する。図6~図11は、電極タブ113の成形手順を説明するための図であり、各図(A)はカソード側電極タブ113Kの成形状況を示し、各図(B)はアノード側電極タブ113Aの成形状況を示している。なお、第1パンチ31の先端部30dや第2パンチ32の先端部30dは電池110の本体部110H側に撓んで、電極タブ113の追い込み曲げ加工が確実にできるように設定されている(図10(A)(B)を参照)。ただし、パンチ30の先端部30dの撓み量は実際にはかなり小さいため、図6~図11においては、パンチ30と押さえ部70との間の隙間がほとんどないように表している。
[Method of forming electrode tab 113]
Next, with reference to FIGS. 5A to 5C and FIGS. 6 to 11, a procedure for forming the electrode tab 113 using the forming device 10 for the electrode tab 113 will be described. 6 to 11 are views for explaining the forming procedure of the electrode tab 113. Each drawing (A) shows the forming state of the cathode side electrode tab 113K, and each drawing (B) shows the anode side electrode tab 113A. The molding situation of is shown. The tip portion 30d of the first punch 31 and the tip portion 30d of the second punch 32 are set so as to bend toward the main body 110H of the battery 110 so that the drive-in bending of the electrode tab 113 can be reliably performed. 10(A)(B)). However, since the bending amount of the tip portion 30d of the punch 30 is actually quite small, FIGS. 6 to 11 show that there is almost no gap between the punch 30 and the pressing portion 70.
 電極タブ113の成形装置10を用いた電極タブ113の成形方法は、概説すると、電池110の一対の電極タブ113のうちの一方の電極タブ113(アノード側電極タブ113A)の基端部113cを第1ダイ21の第1支持面24aによって支持し、他方の電極タブ113(カソード側電極タブ113K)の基端部113cを第2ダイ22の第2支持面24bによって支持する。そして、第1支持面24aおよび第2支持面24bに対して直交する第1方向D1に沿って第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させて、第1パンチ31によってアノード側電極タブ113Aを曲げ成形した後に、第2パンチ32によってカソード側電極タブ113Kを曲げ成形する。以下、詳述する。 The method of forming the electrode tab 113 using the forming apparatus 10 for the electrode tab 113 will be described in brief. The electrode end 113c of one of the pair of electrode tabs 113 of the battery 110 (anode-side electrode tab 113A) will be described. It is supported by the first supporting surface 24a of the first die 21, and the base end portion 113c of the other electrode tab 113 (cathode side electrode tab 113K) is supported by the second supporting surface 24b of the second die 22. Then, the first punch 31 and the second punch 32 are integrally formed relative to the first die 21 and the second die 22 along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b. The anode side electrode tab 113A is bent by the first punch 31, and then the cathode side electrode tab 113K is bent by the second punch 32. The details will be described below.
 まず、図5A、図5B、および図5Cを参照して、電池110は、電極タブ113の成形装置10に搬入され、図示しない保持装置によって所定の位置に保持される。このとき、電極タブ113(アノード側電極タブ113Aおよびカソード側電極タブ113K)は、パンチ30および押さえ部70と、ダイ20および曲げ角度調整部60との間の空間に配置される。 First, referring to FIG. 5A, FIG. 5B, and FIG. 5C, the battery 110 is carried into the molding device 10 for the electrode tab 113, and is held at a predetermined position by a holding device (not shown). At this time, the electrode tabs 113 (the anode-side electrode tabs 113A and the cathode-side electrode tabs 113K) are arranged in the space between the punch 30 and the pressing portion 70, and the die 20 and the bending angle adjusting portion 60.
 図5A、図5B、および図5Cを参照して、制御部80は、駆動部50の作動を制御して、上部保持部40を第1方向D1(図5A、図5B、および図5Cにおいて下方向)に移動(下降)させる。制御部80は、駆動部51の作動を制御して、下部保持部45を第1方向D1と反対方向(図5A、図5B、および図5Cにおいて上方向)に移動(上昇)させる。上部保持部40の移動に伴って、パンチ30および押さえ部70が第1方向D1に移動する。下部保持部45の移動に伴って、ダイ20および曲げ角度調整部60が第1方向D1と反対方向に移動する。 5A, 5B, and 5C, the control unit 80 controls the operation of the driving unit 50 to move the upper holding unit 40 downward in the first direction D1 (see FIGS. 5A, 5B, and 5C). Direction). The control unit 80 controls the operation of the drive unit 51 to move (raise) the lower holding unit 45 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C). With the movement of the upper holding unit 40, the punch 30 and the pressing unit 70 move in the first direction D1. With the movement of the lower holding portion 45, the die 20 and the bending angle adjusting portion 60 move in the direction opposite to the first direction D1.
 図6(A)および図6(B)に示すように、第1ダイ21の第1支持面24aがアノード側電極タブ113Aの基端部113cに当接し、第2ダイ22の第2支持面24bがカソード側電極タブ113Kの基端部113cに当接する。アノード側電極タブ113Aは、先端部113dが第1支持面24aよりも外側に突出するように、第1支持面24aの上に配置される。カソード側電極タブ113Kは、先端部113dが第2支持面24bよりも外側に突出するように、第2支持面24bの上に配置される。押さえ部70がアノード側電極タブ113Aの基端部113cに当接し、カソード側電極タブ113Kの基端部113cに当接する。アノード側電極タブ113Aは、基端部113cが第1支持面24aに対して押し付けられて保持される。カソード側電極タブ113Kは、基端部113cが第2支持面24bに対して押し付けられて保持される。 As shown in FIGS. 6A and 6B, the first support surface 24a of the first die 21 abuts on the base end portion 113c of the anode-side electrode tab 113A, and the second support surface of the second die 22. 24b contacts the base end part 113c of the cathode side electrode tab 113K. 113 A of anode side electrode tabs are arrange|positioned on the 1st support surface 24a so that 113 d of front-end|tip parts may protrude outside the 1st support surface 24a. The cathode side electrode tab 113K is arranged on the second support surface 24b so that the tip portion 113d projects outward from the second support surface 24b. The pressing portion 70 contacts the base end portion 113c of the anode side electrode tab 113A and the base end portion 113c of the cathode side electrode tab 113K. 113 A of anode side electrode tabs hold|maintain by pressing the base end part 113c with respect to the 1st support surface 24a. The cathode side electrode tab 113K is held by pressing the base end portion 113c against the second support surface 24b.
 なお、押さえ部70によって電極タブ113を押さえる力は、カソード側電極タブ113Kの場合と、アノード側電極タブ113Aの場合とで異なるように設定してもよい。曲げ剛性が比較的高い電極タブ113は、曲げ剛性が比較的低い電極タブ113に比べて、パンチ30によるプレス力に対する抵抗(曲げ負荷)が高いため、押さえ部70によって押さえる力を高く設定してもよい。電極タブ113の曲げ剛性は、材質および板厚によって変わるため適宜設計することが好ましい。 The force of pressing the electrode tab 113 by the pressing portion 70 may be set to be different between the cathode side electrode tab 113K and the anode side electrode tab 113A. Since the electrode tab 113 having a relatively high bending rigidity has a higher resistance (bending load) to the pressing force of the punch 30 than the electrode tab 113 having a relatively low bending rigidity, the pressing force of the pressing portion 70 is set to be high. Good. The flexural rigidity of the electrode tab 113 varies depending on the material and the plate thickness, so it is preferable to design it appropriately.
 次に、制御部80は、駆動部50の作動を制御して、上部保持部40を第1方向D1にさらに移動させる。これにより、図7(B)に示すように、制御部80は、第1パンチ31の押圧面33aをアノード側電極タブ113Aに当接させて曲げ成形を開始する。図5Cを参照して、第1パンチ31の第1方向D1に沿う長さL1は、第2パンチ32の第1方向D1に沿う長さL2よりも長いため、図7(A)に示す段階では、第2パンチ32はカソード側電極タブ113Kに接触していない。 Next, the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1. As a result, as shown in FIG. 7B, the controller 80 brings the pressing surface 33a of the first punch 31 into contact with the anode-side electrode tab 113A and starts bending. Referring to FIG. 5C, since the length L1 of the first punch 31 along the first direction D1 is longer than the length L2 of the second punch 32 along the first direction D1, the step shown in FIG. Then, the second punch 32 is not in contact with the cathode side electrode tab 113K.
 次に、制御部80は、駆動部50の作動を制御して、上部保持部40を第1方向D1にさらに移動させる。これにより、図8(B)に示すように、制御部80は、第1パンチ31によってアノード側電極タブ113Aを曲げ成形する。制御部80は、第1ダイ21の角部23aを曲げの起点としてアノード側電極タブ113Aに折れ曲がり部113Rを形成する。このとき、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度をθ1とする。本実施形態では、曲げ角度θ1は、約90度である。図8(A)に示すように、制御部80は、第2パンチ32の押圧面33bをカソード側電極タブ113Kに当接させて曲げ成形を開始する。カソード側電極タブ113Kを曲げ成形するとき、先に曲げ成形されたアノード側電極タブ113Aは、第1ダイ21の角部23aと第1パンチ31とによって挟み込まれてグリップされた状態にある。本実施形態では、アノード側電極タブ113Aの形成材料は例えばアルミニウムであり、カソード側電極タブ113Kの形成材料は例えば銅である。銅タブ(カソード側電極タブ113K)と比較して柔らかい材質のアルミニウムタブ(アノード側電極タブ113A)の成形性を良くするために、アルミニウムタブの折り曲げ角部の裏側を第1ダイ21の角部23aによって受ける(支持する)ことは重要である。さらに、アルミニウムタブの成形がほぼ完了した後に、銅タブを曲げ成形するときにアルミニウムタブをグリップする観点においてもアルミニウムタブ側の第1ダイ21の角部23aは重要な機能を発揮する(後述の図9(A)(B)を参照)。 Next, the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1. As a result, as shown in FIG. 8B, the controller 80 bends the anode-side electrode tab 113A with the first punch 31. The controller 80 forms the bent portion 113R on the anode-side electrode tab 113A with the corner 23a of the first die 21 as the bending start point. At this time, the bending angle of the bent portion 113R of the anode electrode tab 113A is θ1. In this embodiment, the bending angle θ1 is about 90 degrees. As shown in FIG. 8(A), the control unit 80 brings the pressing surface 33b of the second punch 32 into contact with the cathode-side electrode tab 113K and starts bending. When the cathode-side electrode tab 113K is formed by bending, the anode-side electrode tab 113A formed by bending first is in a state of being sandwiched and gripped by the corner portion 23a of the first die 21 and the first punch 31. In the present embodiment, the material forming the anode-side electrode tab 113A is, for example, aluminum, and the material forming the cathode-side electrode tab 113K is, for example, copper. In order to improve the formability of the aluminum tab (anode side electrode tab 113A) made of a soft material as compared with the copper tab (cathode side electrode tab 113K), the back side of the bent corner of the aluminum tab should be the corner of the first die 21. It is important to receive (support) by 23a. Furthermore, the corner portion 23a of the first die 21 on the aluminum tab side also has an important function from the viewpoint of gripping the aluminum tab when the copper tab is bent and formed after the aluminum tab is almost completely formed (described later). See FIGS. 9A and 9B).
 第1パンチ31の長さL1と第2パンチ32の長さL2との差ΔL(図5Cを参照)は、アノード側電極タブ113Aの厚さt1よりも大きく設定されている。このため、図8(B)に示すように第1パンチ31がアノード側電極タブ113Aを曲げ角度θ1に曲げ成形した後に、第2パンチ32は、カソード側電極タブ113Kに当接し、カソード側電極タブ113Kの曲げ成形を開始する。このように、アノード側電極タブ113Aとカソード側電極タブ113Kの曲げ成形を開始するタイミングをずらすことによって、第1パンチ31および第2パンチ32は互いの曲げ負荷に影響を受けることなく電極タブ113の曲げ成形をすることができる。 The difference ΔL (see FIG. 5C) between the length L1 of the first punch 31 and the length L2 of the second punch 32 is set larger than the thickness t1 of the anode-side electrode tab 113A. Therefore, as shown in FIG. 8B, after the first punch 31 bends and forms the anode side electrode tab 113A to the bending angle θ1, the second punch 32 abuts on the cathode side electrode tab 113K and the cathode side electrode The bending of the tab 113K is started. As described above, by shifting the timing of starting the bending of the anode-side electrode tab 113A and the cathode-side electrode tab 113K, the first punch 31 and the second punch 32 are not affected by their mutual bending loads. Bending can be performed.
 なお、本実施形態では、アノード側電極タブ113Aをカソード側電極タブ113Kよりも先に曲げ成形するが、これに限定されず、カソード側電極タブ113Kをアノード側電極タブ113Aよりも先に曲げ成形してもよい。また、電極タブ113を曲げ成形する際の第1パンチ31のプレス力は、第2パンチ32のプレス力と同じ大きさとしてもよいし、それぞれ異なる大きさとしてもよい。 In the present embodiment, the anode-side electrode tab 113A is bent and formed before the cathode-side electrode tab 113K, but the present invention is not limited to this. The cathode-side electrode tab 113K is bent and formed before the anode-side electrode tab 113A. You may. Further, the pressing force of the first punch 31 when the electrode tab 113 is bent and formed may be the same as the pressing force of the second punch 32, or may be different from each other.
 次に、制御部80は、駆動部50の作動を制御して、上部保持部40を第1方向D1にさらに移動させる。これにより、図9(A)に示すように、制御部80は、第2パンチ32によってカソード側電極タブ113Kを曲げ成形する。制御部80は、カソード側電極タブ113Kに折れ曲がり部113Rを形成する。このとき、カソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度をθ2とする。本実施形態では、曲げ角度θ2は、約90度である。アノード側電極タブ113Aは、第1ダイ21の角部23aと第1パンチ31とによってグリップされた状態に維持される。 Next, the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1. As a result, as shown in FIG. 9A, the controller 80 bends the cathode side electrode tab 113K by the second punch 32. The controller 80 forms a bent portion 113R on the cathode side electrode tab 113K. At this time, the bending angle of the bent portion 113R of the cathode-side electrode tab 113K is set to θ2. In this embodiment, the bending angle θ2 is about 90 degrees. The anode-side electrode tab 113A is maintained in a gripped state by the corner 23a of the first die 21 and the first punch 31.
 カソード側電極タブ113Kの折れ曲がり部113Rは、第2ダイ22の角部23bよりもカソード側電極タブ113Kの先端側を曲げの起点として折れ曲がるように形成される。これは、カソード側電極タブ113Kの先端部113dの一部が折り返し部113eを備えるためである。折り返し部113eでは、厚さが先端部113dの他の部分の2倍になっている。このため、折り返し部113eの曲げ剛性が先端部113dの他の部分よりも高くなり、先端部113dのうち折り返し部113eと他の部分との境目で曲げ剛性が急激に変化する。そのため、カソード側電極タブ113Kは、先端部113dのうち折り返し部113eと他の部分との境目周辺を起点として折れ曲がるように変形する。 The bent portion 113R of the cathode side electrode tab 113K is formed so as to be bent with the tip side of the cathode side electrode tab 113K as a starting point of bending rather than the corner portion 23b of the second die 22. This is because a part of the tip portion 113d of the cathode-side electrode tab 113K has the folded-back portion 113e. The folded-back portion 113e is twice as thick as the other portion of the tip portion 113d. Therefore, the bending rigidity of the folded-back portion 113e becomes higher than that of the other portion of the tip portion 113d, and the bending rigidity sharply changes at the boundary between the folded-back portion 113e and the other portion of the tip portion 113d. Therefore, the cathode-side electrode tab 113K is deformed so as to be bent starting from the vicinity of the boundary between the folded-back portion 113e and the other portion of the tip portion 113d.
 次に、制御部80は、駆動部50の作動を制御して、上部保持部40を第1方向D1にさらに移動させる。これにより、図10(A)および図10(B)に示すように、第1パンチ31および第2パンチ32は、下死点に達する。第1曲げ角度調整部61は、第1高さ調整部64aによって、第1ダイ21の第1支持面24aに対する第1バックアッププレート63aの高さが予め調整されている。第2曲げ角度調整部62は、第2高さ調整部64bによって、第2ダイ22の第2支持面24bに対する第2バックアッププレート63bの高さが予め調整されている。 Next, the control unit 80 controls the operation of the drive unit 50 to further move the upper holding unit 40 in the first direction D1. As a result, the first punch 31 and the second punch 32 reach the bottom dead center, as shown in FIGS. 10(A) and 10(B). In the first bending angle adjusting unit 61, the height of the first backup plate 63a with respect to the first supporting surface 24a of the first die 21 is adjusted in advance by the first height adjusting unit 64a. In the second bending angle adjusting section 62, the height of the second backup plate 63b with respect to the second supporting surface 24b of the second die 22 is adjusted in advance by the second height adjusting section 64b.
 図10(B)に示すように、第1パンチ31の摺接面34aは、第1バックアッププレート63aの傾斜面65aと摺接して、傾斜面65aに沿って摺動し、第2方向D2へ移動する。そして、第1パンチ31の先端部30dは、パンチプレート41に制限された可動域(隙間G)の範囲内で第1ダイ21側に向かう第2方向(図5Aでは右下方向)へ撓むように変形する。第1パンチ31の先端部30dによって、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度はさらに大きくなるように折れ曲がる方向へ押し込まれて、角度θ1から角度θ3(>θ1)になる。なお、角度θ3は、スプリングバックを考慮して、最終的なアノード側電極タブ113Aの曲げ角度よりも大きい角度に設定される。 As shown in FIG. 10B, the sliding contact surface 34a of the first punch 31 is in sliding contact with the inclined surface 65a of the first backup plate 63a, slides along the inclined surface 65a, and moves in the second direction D2. Moving. Then, the tip portion 30d of the first punch 31 is bent in the second direction (lower right direction in FIG. 5A) toward the first die 21 side within the range of movement (gap G) limited by the punch plate 41. Deform. By the tip portion 30d of the first punch 31, the bending angle of the bent portion 113R of the anode electrode tab 113A is pushed in the bending direction so as to be further increased, and the angle θ1 changes to the angle θ3 (>θ1). The angle θ3 is set to be larger than the final bending angle of the anode-side electrode tab 113A in consideration of spring back.
 図10(A)に示すように、第2パンチ32の摺接面34bは、第2バックアッププレート63bの傾斜面65bと摺接して、傾斜面65bに沿って摺動し、第3方向D3へ移動する。そして、第2パンチ32の先端部30dは、パンチプレート41に制限された可動域(隙間G)の範囲内で第2ダイ22側に向かう第3方向(図5Bでは右下方向)へ撓むように変形する。第2パンチ32の先端部30dによって、カソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度はさらに大きくなるように折れ曲がる方向へ押し込まれて、角度θ2から角度θ4(>θ2)になる。角度θ4は、スプリングバックを考慮して、最終的なカソード側電極タブ113Kの曲げ角度よりも大きい角度に設定される。 As shown in FIG. 10A, the sliding contact surface 34b of the second punch 32 is in sliding contact with the inclined surface 65b of the second backup plate 63b, slides along the inclined surface 65b, and moves in the third direction D3. Moving. Then, the tip portion 30d of the second punch 32 is bent in the third direction (downward right direction in FIG. 5B) toward the second die 22 within the range of movement (gap G) limited by the punch plate 41. Deform. By the tip portion 30d of the second punch 32, the bending portion 113R of the cathode side electrode tab 113K is pushed in the bending direction so as to be further increased, and the angle θ2 is changed to the angle θ4 (>θ2). The angle θ4 is set to be larger than the final bending angle of the cathode-side electrode tab 113K in consideration of springback.
 次に、制御部80は、駆動部50の作動を制御して、パンチ30を第1方向D1と反対方向(図5A、図5B、および図5Cにおいて上方向)に移動(上昇)させる。これにより、制御部80は、パンチ30を電極タブ113の加工位置から退避させる。 Next, the control unit 80 controls the operation of the drive unit 50 to move (raise) the punch 30 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C). As a result, the control unit 80 retracts the punch 30 from the processing position of the electrode tab 113.
 図11(B)に示すように、アノード側電極タブ113Aは、曲げ角度θ3から最終的に得たい曲げ角度(本実施形態ではθ1)までスプリングバックする。同様に、図11(A)に示すように、カソード側電極タブ113Kは、曲げ角度θ4から最終的に得たい曲げ角度(本実施形態ではθ2)までスプリングバックする。 As shown in FIG. 11B, the anode-side electrode tab 113A springs back from the bending angle θ3 to the bending angle (θ1 in this embodiment) that is finally desired. Similarly, as shown in FIG. 11A, the cathode-side electrode tab 113K springs back from the bending angle θ4 to the bending angle (θ2 in this embodiment) that is finally desired.
 次に、制御部80は、駆動部50の作動を制御して、パンチ30および押さえ部70を第1方向D1と反対方向(図5A、図5B、および図5Cにおいて上方向)にさらに移動(上昇)させる。また、制御部80は、駆動部51の作動を制御して、ダイ20および曲げ角度調整部60をパンチ30に対して離反する方向(図5A、図5B、および図5Cにおいて下方向)に移動(下降)させる。これにより、電極タブ113の曲げ成形が完了する。なお、カソード側電極タブ113Kの折れ曲がり部113Rと第2ダイ22の角部23bとの間には、隙間が存在するため、第2ダイ22を退避させるときに折り返し部113eに引っかかることなく円滑に移動させることができる。 Next, the control unit 80 controls the operation of the drive unit 50 to further move the punch 30 and the pressing unit 70 in the direction opposite to the first direction D1 (upward in FIGS. 5A, 5B, and 5C) ( Raise). Further, the control unit 80 controls the operation of the driving unit 51 to move the die 20 and the bending angle adjusting unit 60 in a direction in which they are separated from the punch 30 (downward in FIGS. 5A, 5B, and 5C). (Lower) This completes the bending of the electrode tab 113. In addition, since there is a gap between the bent portion 113R of the cathode side electrode tab 113K and the corner portion 23b of the second die 22, when the second die 22 is retracted, the folded portion 113e is smoothly caught without being caught. Can be moved.
 曲げ成形の加工条件は、加工対象である電極タブ113の形状や材料特性によって変わる。そのため、アノード側電極タブ113Aとカソード側電極タブ113Kの材料特性や板厚等の形状が異なる場合、アノード側電極タブ113Aおよびカソード側電極タブ113Kを同じパンチを用いて同時に成形した場合、互いの曲げ負荷が影響し、曲げ位置がばらつくおそれがある。また、曲げ成形時にカソード側電極タブ113Kには折り返し部113eがあるため、ダイの角部(R部)とカソード側電極タブ113Kの成形面との間に隙間が生じ、スプリングバックを考慮した曲げ成形の精度出しが困難という課題がある。要求される曲げ角度に調整するためにはパンチやダイの形状を変更するために再作製する必要がある。 The processing conditions for bending will vary depending on the shape and material characteristics of the electrode tab 113 to be processed. Therefore, when the anode-side electrode tab 113A and the cathode-side electrode tab 113K have different shapes such as material characteristics and plate thickness, and when the anode-side electrode tab 113A and the cathode-side electrode tab 113K are simultaneously formed using the same punch, they are Bending load may affect the bending position. In addition, since the cathode side electrode tab 113K has the folded portion 113e during bending, a gap is created between the corner (R part) of the die and the forming surface of the cathode side electrode tab 113K, and bending is performed in consideration of springback. There is a problem that it is difficult to obtain molding precision. In order to adjust to the required bending angle, it is necessary to remake the punch or die in order to change the shape.
 また、アノード側電極タブ113Aとカソード側電極タブ113Kとは、スプリングバックを考慮した必要な曲げ角度も異なるため、一方の曲げ角度の条件に合わせると、他方にスプリングバックが生じ、所望の角度に曲げ成形できない可能性がある。 Further, since the anode side electrode tab 113A and the cathode side electrode tab 113K also have different required bending angles in consideration of springback, if one bending angle condition is met, springback will occur in the other and the desired angle will be obtained. Bending may not be possible.
 本実施形態の成形装置10による成形方法では、アノード側電極タブ113Aおよびカソード側電極タブ113Kをそれぞれ異なる第1パンチ31および第2パンチ32を用いて、曲げ成形するタイミングをずらして成形する。このため、アノード側電極タブ113Aおよびカソード側電極タブ113Kを曲げ成形する際の互いの曲げ負荷の影響が生じにくく、また、互いの曲げ角度の条件を個々に最適化することで、アノード側電極タブ113Aおよびカソード側電極タブ113Kを所望の形状に曲げることができる。また、アノード側電極タブ113Aおよびカソード側電極タブ113Kのそれぞれの曲げ成形の寸法変更を、ダイ20やパンチ30の形状をそのままで再作製することなく高精度に曲げ成形できる。また、継続使用による経年摩擦により成形寸法が変化した場合も同様に、ダイ20やパンチ30を再作製することなく成形寸法を調整することができる。 In the forming method by the forming apparatus 10 of the present embodiment, the anode side electrode tab 113A and the cathode side electrode tab 113K are formed by using different first punches 31 and second punches 32 with different bending forming timings. Therefore, when the anode-side electrode tab 113A and the cathode-side electrode tab 113K are bent, the influences of the bending loads on each other are unlikely to occur, and the conditions for the bending angles of the anode-side electrode tabs are individually optimized so that the anode-side electrodes The tab 113A and the cathode side electrode tab 113K can be bent into a desired shape. In addition, the dimensional changes of the bending of each of the anode-side electrode tab 113A and the cathode-side electrode tab 113K can be performed with high precision without recreating the shapes of the die 20 and the punch 30 as they are. Also, when the molding size changes due to aged friction due to continuous use, the molding size can be adjusted without remanufacturing the die 20 and the punch 30.
 図3に示したように、電極タブ113とバスバー132とを溶接する観点から、電極タブ113の折り曲げられた先端部113dの先端面にバスバー132を押し付けた際に、電極タブ113の先端面が全て平行であり、かつ、同一平面内に揃っていることが重要である。図4に示したように、電池110単体でも、アルミニウムタブ(アノード側電極タブ113A)の先端部113dおよび銅タブ(カソード側電極タブ113K)の先端部113dが90度に曲がっている状態において、アルミニウムタブの先端面と銅タブの先端面とが平行、かつ、同一平面内に配置されることが重要である。したがって、第1パンチ31のアルミニウムタブに接触する先端角部(押さえ部70側の角部)と、第2パンチ32の銅タブに接触する先端角部(押さえ部70側の角部)とが互いに平行であり、かつ、両方の角部が、Z方向に沿った同一平面内を移動するようにパンチ30が配置されている。電極タブ113が曲げ成形された直後は、スプリングバックの影響で曲げ角度が90度に保持されていることはほとんどなく、電極タブ113の背面側の角度が90度よりもやや大きく開くように(表面側の曲げ角度が鈍角となるように)成形されている。背面側の角度が90度よりも大きいことによって、第1スペーサー114の取付が容易になる。1スペーサー114とバスバー132との間に電極タブ113が挟み込まれることによって、電極タブ113の折り曲げ部が90度に保持される。 As shown in FIG. 3, from the viewpoint of welding the electrode tab 113 and the bus bar 132, when the bus bar 132 is pressed against the tip surface of the bent tip portion 113d of the electrode tab 113, the tip surface of the electrode tab 113 is It is important that they are all parallel and are in the same plane. As shown in FIG. 4, even in the battery 110 alone, in a state where the tip 113d of the aluminum tab (anode side electrode tab 113A) and the tip 113d of the copper tab (cathode side electrode tab 113K) are bent at 90 degrees, It is important that the front end surface of the aluminum tab and the front end surface of the copper tab are arranged in parallel and in the same plane. Therefore, a tip corner portion (corner portion on the pressing portion 70 side) of the first punch 31 that contacts the aluminum tab and a tip corner portion (corner portion of the holding portion 70 side) that contacts the copper tab of the second punch 32 are formed. The punch 30 is arranged so as to be parallel to each other and both corners to move in the same plane along the Z direction. Immediately after the electrode tab 113 is bent and formed, the bending angle is hardly maintained at 90 degrees due to the influence of spring back, and the angle on the back side of the electrode tab 113 is opened slightly larger than 90 degrees ( It is formed so that the bending angle on the surface side is obtuse. When the angle on the back side is larger than 90 degrees, the first spacer 114 can be easily attached. By sandwiching the electrode tab 113 between the one spacer 114 and the bus bar 132, the bent portion of the electrode tab 113 is held at 90 degrees.
 上述した実施形態にあっては、銅タブ(カソード側電極タブ113K)の曲げ剛性の方がアルミニウムタブ(アノード側電極タブ113A)の曲げ剛性よりも高く、成形時の反力も高い。この場合、曲げ剛性の低いアルミニウムタブを先に成形し、アルミニウムタブが第1パンチ31と第1ダイ21の角部23aとの間に挟まれてグリップされている状態において、曲げ剛性の高い銅タブを成形することによって、成形反力の高い銅タブ成型時に電池110全体の姿勢が乱されることなく成形できる。これによって、銅タブにおける折り曲げ部の先端面と、アルミニウムタブにおける折り曲げ部の先端面とで、90度折り曲げ姿勢での平行度を確保でき、先端面の垂直方向での位置ずれを抑制できる。なお、前述したように、アルミニウムタブの厚さが例えば0.4mm、銅タブの厚さが例えば0.2mmであっても、材質自体の特性や、銅タブに関してはコーテーィングされていることもあり、厚さの薄い銅タブのほうが曲げ剛性が高くなっている。 In the embodiment described above, the bending rigidity of the copper tab (cathode side electrode tab 113K) is higher than the bending rigidity of the aluminum tab (anode side electrode tab 113A), and the reaction force during molding is also high. In this case, an aluminum tab having a low bending rigidity is formed first, and the aluminum tab having a high bending rigidity is sandwiched between the first punch 31 and the corner portion 23a of the first die 21 and gripped. By molding the tab, the battery 110 can be molded without disturbing the posture of the entire battery 110 when molding a copper tab having a high molding reaction force. As a result, the parallelism in the 90-degree bending posture can be ensured between the tip surface of the bent portion of the copper tab and the tip surface of the bent portion of the aluminum tab, and positional deviation of the tip surface in the vertical direction can be suppressed. As described above, even if the aluminum tab has a thickness of 0.4 mm and the copper tab has a thickness of 0.2 mm, the characteristics of the material itself and the copper tab may be coated. The thinner the copper tab, the higher the bending rigidity.
 一方の電極タブ113(アノード側電極タブ113A)の曲げ剛性と他方の電極タブ113(カソード側電極タブ113K)の曲げ剛性との差が比較的大きい場合には、上述したように、曲げ剛性の低い一方の電極タブ113を先に成形し、次に、先に成形した一方の電極タブ113をグリップした状態で、曲げ剛性の高い他方の電極タブ113を成形することが好ましい。特に、実施形態の電池110のように本体部110Hの一辺から一対の電極タブ113が突出している電池110では、先に成形した電極タブ113をグリップした状態で、曲げ剛性の高い電極タブ113を成形することによって、曲げ剛性の高い電極タブ113の曲げ成形時に電池110全体の回転が抑制される。その結果、一対の電極タブ113の折れ曲がり部113Rの先端面同士が、折れ曲がり部113Rの90度姿勢において精度の高い平行度を確保することができる。 When the difference between the bending rigidity of the one electrode tab 113 (anode side electrode tab 113A) and the bending rigidity of the other electrode tab 113 (cathode side electrode tab 113K) is relatively large, as described above, It is preferable that one of the lower electrode tabs 113 is first molded, and then the other electrode tab 113 having high bending rigidity is molded with the one electrode tab 113 previously molded being gripped. In particular, in the battery 110 in which the pair of electrode tabs 113 protrude from one side of the main body 110H like the battery 110 of the embodiment, the electrode tab 113 having high bending rigidity is attached to the electrode tab 113 formed in advance while being gripped. By molding, rotation of the entire battery 110 is suppressed when the electrode tab 113 having high bending rigidity is bent. As a result, the tip surfaces of the bent portions 113R of the pair of electrode tabs 113 can ensure highly accurate parallelism in the 90-degree posture of the bent portions 113R.
 一方の電極タブを曲げ成形してから電池を移動し、別の工程において他方の電極タブを曲げ成形することも考えられる。しかしながら、この場合には、電池の位置ずれに起因して電極タブ同士の先端面の平行度が悪化するおそれがある。これに対して、上述した実施形態にあっては、第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して移動させている。パンチ30とダイ20とを接近させて曲げ成形する1つの工程(1ショット)内において、タイミングをずらして曲げ成形でき、一方の電極タブ(アノード側電極タブ113A)を曲げ成形した後に、他方の電極タブ(カソード側電極タブ113K)を曲げ成形している。電池110を移動しないことから、電池110の位置ずれに起因した電極タブ113同士の先端面の平行度の悪化が根本的に生じない。 It is also possible to move the battery after bending one electrode tab and then bend the other electrode tab in another process. However, in this case, the parallelism of the tip surfaces of the electrode tabs may deteriorate due to the displacement of the battery. On the other hand, in the above-described embodiment, the first punch 31 and the second punch 32 are integrally moved with respect to the first die 21 and the second die 22. In one step (one shot) in which the punch 30 and the die 20 are brought close to each other to be bent and formed, the bending can be carried out at different timings, and one electrode tab (anode side electrode tab 113A) can be bent and then the other. The electrode tab (cathode side electrode tab 113K) is formed by bending. Since the battery 110 is not moved, the deterioration of the parallelism between the tip surfaces of the electrode tabs 113 due to the positional displacement of the battery 110 does not fundamentally occur.
 また、第1パンチ31および第2パンチ32は、一体となって移動し、第1ダイ21および第2ダイ22も、一体となって移動する。これらの構成も、電極タブ113を曲げ成形するときの精度を高くするために重要である。 Further, the first punch 31 and the second punch 32 move together, and the first die 21 and the second die 22 also move together. These configurations are also important for increasing the accuracy when bending the electrode tab 113.
 以上説明したように、本実施形態の電極タブ113の成形方法は、電池110の一対の電極タブ113のうちのアノード側電極タブ113A(一方の電極タブ)の基端部113cを第1ダイ21の第1支持面24aによって支持し、カソード側電極タブ113K(他方の電極タブ)の基端部113cを第2ダイ22の第2支持面24bによって支持する。そして、第1支持面24aおよび第2支持面24bに対して直交する第1方向D1に沿って第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させて、第1パンチ31によって一方の電極タブ113Aを曲げ成形した後に、第2パンチ32によって他方の電極タブ113Kを曲げ成形する。 As described above, in the method of molding the electrode tab 113 of the present embodiment, the base end portion 113c of the anode-side electrode tab 113A (one electrode tab) of the pair of electrode tabs 113 of the battery 110 is attached to the first die 21. Of the cathode side electrode tab 113K (the other electrode tab) is supported by the second support surface 24b of the second die 22. Then, the first punch 31 and the second punch 32 are integrally formed relative to the first die 21 and the second die 22 along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b. The electrode tab 113A is bent by the first punch 31, and then the other electrode tab 113K is bent by the second punch 32.
 上記の成形方法によれば、アノード側電極タブ113Aおよびカソード側電極タブ113Kのそれぞれの曲げ成形のタイミングをずらすことができる。これにより、第1パンチ31および第2パンチ32は、アノード側電極タブ113Aおよびカソード側電極タブ113Kの互いの曲げ負荷に影響を受けることなく電極タブ113を高精度に曲げ成形できる。さらに、パンチ30とダイ20とを接近させて曲げ成形する1つの工程(1ショット)内において、タイミングをずらして曲げ成形でき、電池110を移動しないことから、電池110の位置ずれに起因した電極タブ113同士の先端面の平行度の悪化が根本的に生じない。 According to the above-mentioned forming method, it is possible to shift the respective bending forming timings of the anode side electrode tab 113A and the cathode side electrode tab 113K. As a result, the first punch 31 and the second punch 32 can bend the electrode tab 113 with high precision without being affected by the mutual bending load of the anode side electrode tab 113A and the cathode side electrode tab 113K. Furthermore, in one process (one shot) in which the punch 30 and the die 20 are brought close to each other and bent, the bending can be performed at a different timing, and the battery 110 is not moved. Basically, the deterioration of the parallelism between the tip surfaces of the tabs 113 does not occur.
 また、第1パンチ31を第1方向D1に対して交差する第2方向D2へ変形させることによって、アノード側電極タブ113Aの曲げ角度を調整する。 Also, the bending angle of the anode-side electrode tab 113A is adjusted by deforming the first punch 31 in the second direction D2 that intersects the first direction D1.
 上記の成形方法によれば、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度を高い精度で調整できるため、後工程でバスバー132に溶接する際の溶接精度を向上させることができる。 According to the above-mentioned molding method, the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted with high accuracy, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved.
 また、第2パンチ32を第1方向D1に対して交差する第3方向D3へ変形させることによって、カソード側電極タブ113Kの曲げ角度を調整する。 Further, the bending angle of the cathode side electrode tab 113K is adjusted by deforming the second punch 32 in the third direction D3 intersecting the first direction D1.
 上記の成形方法によれば、カソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度を高い精度で調整できるため、後工程でバスバー132に溶接する際の溶接精度を向上させることができる。 According to the above molding method, the bending angle of the bent portion 113R of the cathode-side electrode tab 113K can be adjusted with high accuracy, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved.
 また、先に曲げ成形されたアノード側電極タブ113Aを第1ダイ21の角部23aと第1パンチ31とによってグリップした状態において、カソード側電極タブ113Kを曲げ成形する。 Further, the cathode side electrode tab 113K is bent while the previously bent anode side electrode tab 113A is gripped by the corner 23a of the first die 21 and the first punch 31.
 上記の成形方法によれば、第2パンチ32は、アノード側電極タブ113Aの曲げ負荷に影響を受けることなくカソード側電極タブ113Kを高精度に曲げ成形できる。 According to the above-mentioned forming method, the second punch 32 can bend the cathode-side electrode tab 113K with high accuracy without being affected by the bending load of the anode-side electrode tab 113A.
 また、一方の電極タブ113Aの曲げ剛性が、他方の電極タブ113Kの曲げ剛性よりも低い。 Also, the bending rigidity of one electrode tab 113A is lower than the bending rigidity of the other electrode tab 113K.
 上記の成形方法によれば、先に曲げ成形されたアノード側電極タブ113Aをグリップした状態で、曲げ剛性の高いカソード側電極タブ113Kを成形することによって、曲げ剛性の高いカソード側電極タブ113Kを高精度に曲げ成形できる。 According to the above-mentioned forming method, the cathode side electrode tab 113K having high bending rigidity is formed by forming the cathode side electrode tab 113K having high bending rigidity while gripping the anode side electrode tab 113A formed by bending in advance. Can be bent with high precision.
 また、本実施形態の電極タブ113の成形装置10は、電池110の一対の電極タブ113を曲げ成形して折れ曲がり部を形成する成形装置である。この成形装置は、一対の電極タブ113のうちのアノード側電極タブ113A(一方の電極タブ)の基端部113cを支持する第1支持面24aを備える第1ダイ21と、カソード側電極タブ113K(他方の電極タブ)の基端部113cを支持する第2支持面24bを備える第2ダイ22と、第1ダイ21と協働して一方の電極タブ113Aを曲げ成形する第1パンチ31と、第2ダイ22と協働して他方の電極タブ113Kを曲げ成形する第2パンチ32と、第1支持面24aおよび第2支持面24bに対して直交する第1方向D1に沿って第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させる駆動部50、51と、を有する。そして、駆動部50、51によって第1パンチ31および第2パンチ32を一体として第1ダイ21および第2ダイ22に対して相対的に移動させる1つの動作の間に、アノード側電極タブ113Aおよびカソード側電極タブ113Kの曲げ成形のタイミングをずらしている。 Further, the forming device 10 for the electrode tab 113 of the present embodiment is a forming device for forming a bent portion by bending the pair of electrode tabs 113 of the battery 110. This molding apparatus includes a first die 21 having a first support surface 24a that supports a base end portion 113c of an anode-side electrode tab 113A (one electrode tab) of a pair of electrode tabs 113, and a cathode-side electrode tab 113K. A second die 22 having a second support surface 24b that supports the base end portion 113c of the other electrode tab, and a first punch 31 that cooperates with the first die 21 to bend and form one electrode tab 113A. , A second punch 32 that cooperates with the second die 22 to bend and form the other electrode tab 113K, and a first punch along a first direction D1 orthogonal to the first support surface 24a and the second support surface 24b. The punches 31 and the second punches 32 are integrally provided with driving units 50 and 51 that relatively move the punches 31 and the second punches 32 with respect to the first die 21 and the second die 22. Then, during one operation in which the drive parts 50 and 51 move the first punch 31 and the second punch 32 as a unit relative to the first die 21 and the second die 22, the anode-side electrode tab 113A and The bending timing of the cathode side electrode tab 113K is shifted.
 上記のような構成によれば、アノード側電極タブ113Aおよびカソード側電極タブ113Kのそれぞれの曲げ成形のタイミングをずらしているため、第1パンチ31および第2パンチ32は、アノード側電極タブ113Aおよびカソード側電極タブ113Kの互いの曲げ負荷に影響を受けることなく電極タブ113を高精度に曲げ成形できる。さらに、パンチ30とダイ20とを接近させて曲げ成形する1つの工程(1ショット)内において、タイミングをずらして曲げ成形でき、電池110を移動しないことから、電池110の位置ずれに起因した電極タブ113同士の先端面の平行度の悪化が根本的に生じない。 According to the above configuration, the bending timings of the anode-side electrode tab 113A and the cathode-side electrode tab 113K are shifted, so that the first punch 31 and the second punch 32 are separated from the anode-side electrode tab 113A and the anode-side electrode tab 113A. The electrode tab 113 can be bent and formed with high precision without being affected by the mutual bending load of the cathode side electrode tab 113K. Furthermore, in one process (one shot) in which the punch 30 and the die 20 are brought close to each other and bent, the bending can be performed at a different timing, and the battery 110 is not moved. Basically, the deterioration of the parallelism between the tip surfaces of the tabs 113 does not occur.
 第1パンチ31の押圧面33aとアノード側電極タブ113Aとの間の距離と、第2パンチ32の押圧面33bとカソード側電極タブ113Kとの間の距離とを異ならせることによって、タイミングをずらしてなる。 The timing is shifted by making the distance between the pressing surface 33a of the first punch 31 and the anode-side electrode tab 113A different from the distance between the pressing surface 33b of the second punch 32 and the cathode-side electrode tab 113K. It becomes.
 上記のような構成によれば、アノード側電極タブ113Aおよびカソード側電極タブ113Kのそれぞれの曲げ成形のタイミングを、所望のタイミングにずらすことができる。 According to the above configuration, the bending timing of each of the anode electrode tab 113A and the cathode electrode tab 113K can be shifted to a desired timing.
 また、第1パンチ31を第1方向D1に対して交差する第2方向D2へ変形させることによって、アノード側電極タブ113Aの曲げ角度を調整する第1曲げ角度調整部61をさらに有する。 Further, by further deforming the first punch 31 in a second direction D2 intersecting the first direction D1, a first bending angle adjusting section 61 for adjusting the bending angle of the anode electrode tab 113A is further provided.
 上記のような構成によれば、第1曲げ角度調整部61によってアノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度を高い精度で調整できるため、後工程でバスバー132に溶接する際の溶接精度を向上させることができる。また、第1パンチ31のプレス力は一定とし、第1曲げ角度調整部61によってアノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度のみを調整することができるため、曲げ角度を調整する際のパラメータを1つに絞ることができる。その結果、アノード側電極タブ113Aの成形のばらつきを抑えて、高精度な成形を安定して実施することができる。また、第1曲げ角度調整部61によって第1ダイ21を交換せずに曲げ角度を調整することができる。 According to the above-described configuration, the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted with high accuracy by the first bending angle adjusting portion 61, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved. Can be improved. In addition, since the pressing force of the first punch 31 is constant and only the bending angle of the bent portion 113R of the anode-side electrode tab 113A can be adjusted by the first bending angle adjusting portion 61, a parameter for adjusting the bending angle. Can be narrowed down to one. As a result, it is possible to suppress variations in the molding of the anode-side electrode tab 113A and stably carry out highly accurate molding. Further, the bending angle can be adjusted by the first bending angle adjusting unit 61 without replacing the first die 21.
 また、第2パンチ32を第1方向D1に対して交差する第3方向D3へ変形させることによって、カソード側電極タブ113Kの曲げ角度を調整する第2曲げ角度調整部62をさらに有する。 Further, by further deforming the second punch 32 in the third direction D3 intersecting the first direction D1, there is further provided a second bending angle adjusting section 62 for adjusting the bending angle of the cathode side electrode tab 113K.
 上記のような構成によれば、第2曲げ角度調整部62によってカソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度を高い精度で調整できるため、後工程でバスバー132に溶接する際の溶接精度を向上させることができる。また、第2パンチ32のプレス力は一定とし、第2曲げ角度調整部62によってカソード側電極タブ113Kの折れ曲がり部113Rの曲げ角度のみを調整することができるため、曲げ角度を調整する際のパラメータを1つに絞ることができる。その結果、カソード側電極タブ113Kの成形のばらつきを抑えて、高精度な成形を安定して実施することができる。また、第2曲げ角度調整部62によって第2ダイ22を交換せずに曲げ角度を調整することができる。 According to the above-described configuration, the bending angle of the bent portion 113R of the cathode-side electrode tab 113K can be adjusted with high accuracy by the second bending angle adjusting portion 62, so that the welding accuracy when welding to the bus bar 132 in a later step can be improved. Can be improved. Further, since the pressing force of the second punch 32 is constant and only the bending angle of the bent portion 113R of the cathode side electrode tab 113K can be adjusted by the second bending angle adjusting portion 62, a parameter for adjusting the bending angle is set. Can be narrowed down to one. As a result, it is possible to suppress variations in the molding of the cathode-side electrode tab 113K and stably carry out highly accurate molding. In addition, the second bending angle adjusting unit 62 can adjust the bending angle without replacing the second die 22.
 本実施形態では、第1パンチ31の第1方向D1に沿う長さL1と、第2パンチ32の第1方向D1に沿う長さL2との差ΔLは、アノード側電極タブ113A(一方の電極タブ)の厚さt1よりも大きい。これにより、このため、第1パンチ31がアノード側電極タブ113Aを曲げ角度θ1に曲げ成形した後に、第2パンチ32は、カソード側電極タブ113Kに当接し、カソード側電極タブ113Kの曲げ成形を開始させることができる。したがって、アノード側電極タブ113Aとカソード側電極タブ113Kの曲げ成形を開始するタイミングを確実にずらすことができる。 In the present embodiment, the difference ΔL between the length L1 of the first punch 31 along the first direction D1 and the length L2 of the second punch 32 along the first direction D1 is determined by the anode-side electrode tab 113A (one electrode). It is larger than the thickness t1 of the tab). Therefore, after the first punch 31 bends and forms the anode-side electrode tab 113A at the bending angle θ1, the second punch 32 contacts the cathode-side electrode tab 113K and bends and forms the cathode-side electrode tab 113K. It can be started. Therefore, the timing of starting the bending of the anode-side electrode tab 113A and the cathode-side electrode tab 113K can be reliably shifted.
 第1ダイ21の角部23aの角度αおよび第2ダイ22の角部23bの角度βは、鋭角である。これにより、曲げ成形するときに曲げ角度を90度よりも大きくすることができる。その結果、電極タブ113を90度に曲げ成形したい場合に、スプリングバックの影響を考慮して90度よりも大きな曲げ角度で曲げ成形することができる。 The angle α of the corner portion 23a of the first die 21 and the angle β of the corner portion 23b of the second die 22 are acute angles. As a result, the bending angle can be made larger than 90 degrees during bending. As a result, when the electrode tab 113 is desired to be bent at 90 degrees, it can be bent at a bending angle larger than 90 degrees in consideration of the influence of spring back.
 (変形例1)
 図12は、変形例1に係る電極タブ113の成形装置10においてアノード側電極タブ113A(一方の電極タブ)を曲げ成形する構成を模式的に示す側面図である。
(Modification 1)
FIG. 12 is a side view schematically showing a configuration in which the anode-side electrode tab 113A (one electrode tab) is bent and formed in the forming apparatus 10 for the electrode tab 113 according to the first modification.
 変形例1に係る電極タブ113の成形装置10は、曲げ角度調整部60の高さ調整部66の構成を改変した点において上述した実施形態の成形装置10と相違する。変形例1の成形装置10における第1曲げ角度調整部61は、傾斜面65aを備える第1バックアッププレート63aと、第1ダイ21の第1支持面24aに対する第1バックアッププレート63aの高さを調整する高さ調整部66と、を有する。実施形態においては、第1高さ調整部64aおよび第2高さ調整部64bは調整スペーサーが組み込まれている。一方、変形例1の高さ調整部66は、第1バックアッププレート63aを第1パンチ31に対して接近離反する第1方向D1または第1方向D1と反対方向(図12の上下方向)に移動させて第1バックアッププレート63aの高さを調整する駆動機構を有する。駆動機構の構成は特に限定されないが、例えば、ねじ機構(図示省略)を利用することができる。ねじ機構は、例えば、第1バックアッププレート63aに形成された雌ねじと、該雌ねじに螺合する雄ねじとを備え、雄ねじを締める方向または緩める方向に回転させることによって第1バックアッププレート63aの高さを調整可能とする。高さ調整部66は、制御部80に接続される。制御部80は、曲げ角度調整部60の高さ調整部66の作動を制御する。図示省略するが、第2曲げ角度調整部62も、第2バックアッププレート63bの高さを調整する高さ調整部66を有する。 The forming apparatus 10 for the electrode tab 113 according to the first modification differs from the forming apparatus 10 of the above-described embodiment in that the configuration of the height adjusting unit 66 of the bending angle adjusting unit 60 is modified. The first bending angle adjusting unit 61 in the molding apparatus 10 of Modification 1 adjusts the height of the first backup plate 63a having the inclined surface 65a and the first backup plate 63a with respect to the first supporting surface 24a of the first die 21. And a height adjusting unit 66 for adjusting the height. In the embodiment, the first height adjusting portion 64a and the second height adjusting portion 64b have adjustment spacers incorporated therein. On the other hand, the height adjusting unit 66 of the first modification moves the first backup plate 63a in the first direction D1 approaching and separating from the first punch 31 or in the direction opposite to the first direction D1 (vertical direction in FIG. 12). A drive mechanism for adjusting the height of the first backup plate 63a is provided. The structure of the drive mechanism is not particularly limited, but for example, a screw mechanism (not shown) can be used. The screw mechanism includes, for example, a female screw formed on the first backup plate 63a and a male screw screwed to the female screw, and the height of the first backup plate 63a is increased by rotating the male screw in a tightening direction or a loosening direction. Adjustable. The height adjusting unit 66 is connected to the control unit 80. The control unit 80 controls the operation of the height adjusting unit 66 of the bending angle adjusting unit 60. Although not shown, the second bending angle adjusting section 62 also has a height adjusting section 66 for adjusting the height of the second backup plate 63b.
 アノード側電極タブ113Aの基端部113cが第1ダイ21の第1支持面24aと押さえ部70とによって保持されると、制御部80は、曲げ角度調整部60の高さ調整部66の作動を制御して、図12の破線部分に示すように、第1バックアッププレート63aを第1パンチ31に対して接近する方向(図12の上方向)に移動(上昇)させて、第1位置P1から第2位置P2に高さを調整する。これにより、第1パンチ31の摺接面34aは、第1バックアッププレート63aの傾斜面65aと摺接して、傾斜面65aに沿って摺動し、第2方向D2へ移動する。そして、第1パンチ31の先端部30dは、パンチプレート41に制限された可動域(隙間G)の範囲内で第1ダイ21側に向かう第2方向(図12では右下方向)へ撓むように変形する。第1パンチ31の先端部30dによって、アノード側電極タブ113Aの折れ曲がり部113Rの曲げ角度θaが調整される。 When the base end portion 113c of the anode-side electrode tab 113A is held by the first supporting surface 24a of the first die 21 and the pressing portion 70, the control portion 80 causes the height adjusting portion 66 of the bending angle adjusting portion 60 to operate. 12 is controlled to move (raise) the first backup plate 63a in a direction approaching the first punch 31 (upward direction in FIG. 12) to move to the first position P1. The height is adjusted to the second position P2. As a result, the sliding contact surface 34a of the first punch 31 makes sliding contact with the inclined surface 65a of the first backup plate 63a, slides along the inclined surface 65a, and moves in the second direction D2. Then, the tip portion 30d of the first punch 31 is bent in the second direction (downward right direction in FIG. 12) toward the first die 21 side within the range of movement (gap G) limited by the punch plate 41. Deform. The tip portion 30d of the first punch 31 adjusts the bending angle θa of the bent portion 113R of the anode-side electrode tab 113A.
 図示省略するが、カソード側電極タブ113Kの基端部113cが第2ダイ22の第2支持面24bと押さえ部70とによって保持されると、高さ調整部66によって、第2バックアッププレート63bは、第1位置P1から所定の位置まで第1方向D1と反対方向に移動される。第2バックアッププレート63bの上昇移動に伴って第2パンチ32の先端部30dが変形し、カソード側電極タブ113Kの曲げ角度θbが調整される。 Although illustration is omitted, when the base end portion 113c of the cathode side electrode tab 113K is held by the second supporting surface 24b of the second die 22 and the holding portion 70, the height adjusting portion 66 causes the second backup plate 63b to move. , From the first position P1 to a predetermined position in the direction opposite to the first direction D1. The tip portion 30d of the second punch 32 is deformed as the second backup plate 63b moves upward, and the bending angle θb of the cathode side electrode tab 113K is adjusted.
 上記のように制御部80によって作動が制御される高さ調整部66を備える場合にも、電極タブ113の折れ曲がり部113Rの曲げ角度を高い精度で調整できるため、後工程でバスバー132に溶接する際の溶接精度を向上させることができる。また、パンチ30のプレス力は一定とし、曲げ角度調整部60によって電極タブ113の折れ曲がり部113Rの曲げ角度のみを調整することができるため、曲げ角度を調整する際のパラメータを1つに絞ることができる。その結果、電極タブ113の成形のばらつきを抑えて、高精度な成形を安定して実施することができる。また、曲げ角度調整部60によってダイ20を交換せずに曲げ角度を調整することができる。 Even when the height adjusting unit 66 whose operation is controlled by the control unit 80 is provided as described above, since the bending angle of the bent portion 113R of the electrode tab 113 can be adjusted with high accuracy, it is welded to the bus bar 132 in a later step. In this case, welding accuracy can be improved. Further, since the pressing force of the punch 30 is constant and only the bending angle of the bent portion 113R of the electrode tab 113 can be adjusted by the bending angle adjusting unit 60, the parameter for adjusting the bending angle should be reduced to one. You can As a result, it is possible to suppress variation in the molding of the electrode tab 113 and stably carry out highly accurate molding. In addition, the bending angle adjusting unit 60 can adjust the bending angle without replacing the die 20.
 (変形例2)
 図13は、変形例2に係る電極タブの成形装置の要部を示す正面図である。
(Modification 2)
FIG. 13 is a front view showing a main part of a device for forming an electrode tab according to Modification 2.
 上述した実施形態では、第1パンチ31の押圧面33aとアノード側電極タブ113Aとの間の距離と、第2パンチ32の押圧面33bとカソード側電極タブ113Kとの間の距離とを異ならせることによって、アノード側電極タブ113Aおよびカソード側電極タブ113Kの曲げ成形のタイミングをずらしている。アノード側電極タブ113Aの電池厚さ方向の位置と、カソード側電極タブ113Kの電池厚さ方向の位置とがほぼ同じであるため、第1パンチ31の第1方向D1に沿う長さL1と、第2パンチ32の第1方向D1に沿う長さL2とを異ならせている。本発明はこの場合に限定されるものではなく、アノード側電極タブ113Aとカソード側電極タブ113Kの曲げ成形のタイミングをずらすことができれば、第1パンチ31と第2パンチ32の長さが同じであっても良い。 In the above-described embodiment, the distance between the pressing surface 33a of the first punch 31 and the anode side electrode tab 113A and the distance between the pressing surface 33b of the second punch 32 and the cathode side electrode tab 113K are made different. Thus, the bending timing of the anode side electrode tab 113A and the cathode side electrode tab 113K is shifted. Since the position of the anode side electrode tab 113A in the battery thickness direction and the position of the cathode side electrode tab 113K in the battery thickness direction are substantially the same, the length L1 of the first punch 31 along the first direction D1 is: The length L2 of the second punch 32 along the first direction D1 is different. The present invention is not limited to this case, and if the bending timing of the anode side electrode tab 113A and the cathode side electrode tab 113K can be shifted, the first punch 31 and the second punch 32 have the same length. You can have it.
 図13に示すように、例えば、セルの製造段階において、アノード側電極タブ113Aの電池厚さ方向の位置と、カソード側電極タブ113Kの電池厚さ方向の位置とを相対的にずらしておく。電池厚さ方向の位置は、アノード側電極タブ113Aの方がカソード側電極タブ113Kよりも高い。アノード側電極タブ113Aが第1支持面24aに接触するタイミングと、カソード側電極タブ113Kが第2支持面24bに接触するタイミングとをほぼ一致させるため、高さ方向の位置は、第1支持面24aの方が第2支持面24bよりも高い。このような構成の場合にも、第1パンチ31の押圧面33aとアノード側電極タブ113Aとの間の距離L3と、第2パンチ32の押圧面33bとカソード側電極タブ113Kとの間の距離L4とが異なるため(L4>L3)、第1パンチ31と第2パンチ32の長さが同じであっても、アノード側電極タブ113Aおよびカソード側電極タブ113Kの曲げ成形のタイミングをずらすことができる。 As shown in FIG. 13, for example, in the cell manufacturing stage, the position of the anode side electrode tab 113A in the battery thickness direction and the position of the cathode side electrode tab 113K in the battery thickness direction are relatively displaced. Regarding the position in the battery thickness direction, the anode side electrode tab 113A is higher than the cathode side electrode tab 113K. Since the timing at which the anode-side electrode tab 113A contacts the first support surface 24a and the timing at which the cathode-side electrode tab 113K contact the second support surface 24b are substantially matched, the position in the height direction is the first support surface. 24a is higher than the second support surface 24b. Also in such a configuration, the distance L3 between the pressing surface 33a of the first punch 31 and the anode-side electrode tab 113A, and the distance between the pressing surface 33b of the second punch 32 and the cathode-side electrode tab 113K. Since L4 is different (L4>L3), even if the first punch 31 and the second punch 32 have the same length, it is possible to shift the bending timing of the anode side electrode tab 113A and the cathode side electrode tab 113K. it can.
 (変形例3)
 図14は、変形例3に係る電極タブの成形装置の要部を示す正面図である。
(Modification 3)
FIG. 14 is a front view showing a main part of an electrode tab forming apparatus according to Modification 3.
 変形例2にあっては、電極タブ113の電池厚さ方向の位置を異ならせたが、電極タブ113の電池厚さ方向の位置がほぼ同じであっても、第1パンチ31と第2パンチ32の長さを同じにすることができる。図14に示すように、第1パンチ31の押圧面33aと第1ダイ21の第1支持面24aとの間の距離L5と、第2パンチ32の押圧面33bと第2ダイ22の第2支持面24bとの間の距離L6とを異ならせることによって、アノード側電極タブ113Aおよびカソード側電極タブ113Kの曲げ成形のタイミングをずらすことができる。図示例にあっては、高さ方向の位置は、第1支持面24aの方が第2支持面24bよりも高い(L6>L5)。このような構成の場合には、アノード側電極タブ113Aが第1支持面24aに接触して曲げ成形が開始されるタイミングが、カソード側電極タブ113Kが第2支持面24bに接触して曲げ成形が開始されるタイミングよりも早くなる。このため、第1パンチ31と第2パンチ32の長さが同じであっても、アノード側電極タブ113Aおよびカソード側電極タブ113Kの曲げ成形のタイミングをずらすことができる。 In the second modification, the positions of the electrode tabs 113 in the battery thickness direction are different. However, even if the positions of the electrode tabs 113 in the battery thickness direction are almost the same, the first punch 31 and the second punch 31 may be different. The lengths of 32 can be the same. As shown in FIG. 14, the distance L5 between the pressing surface 33a of the first punch 31 and the first supporting surface 24a of the first die 21, the pressing surface 33b of the second punch 32, and the second surface of the second die 22 are set. By making the distance L6 between the supporting surface 24b and the supporting surface 24b different, the bending timing of the anode-side electrode tab 113A and the cathode-side electrode tab 113K can be shifted. In the illustrated example, the position in the height direction is higher on the first support surface 24a than on the second support surface 24b (L6>L5). In the case of such a configuration, the timing at which the anode side electrode tab 113A contacts the first support surface 24a and the bending is started is the timing when the cathode side electrode tab 113K contacts the second support surface 24b. Will be earlier than the timing when is started. Therefore, even when the first punch 31 and the second punch 32 have the same length, it is possible to shift the bending timing of the anode-side electrode tab 113A and the cathode-side electrode tab 113K.
 本発明は上述した実施形態および変形例1~3に限定されるものではなく、適宜改変することができる。 The present invention is not limited to the above-described embodiment and modification examples 1 to 3, and can be modified as appropriate.
 例えば、一方の電極タブ113(アノード側電極タブ113A)の曲げ剛性が、他方の電極タブ113(カソード側電極タブ113K)の曲げ剛性よりも低い場合に、曲げ剛性の低い一方の電極タブ113を先に成形し、次に、先に成形した一方の電極タブ113をグリップした状態で、曲げ剛性の高い他方の電極タブ113を成形する形態を示したが、この場合に限定されない。一方の電極タブ113の曲げ剛性と他方の電極タブ113の曲げ剛性との差が比較的小さいような場合には、上記の場合とは逆に、曲げ剛性の高い一方の電極タブ113を先に成形し、次に、先に成形した一方の電極タブ113をグリップした状態で、曲げ剛性の低い他方の電極タブ113を成形してもよい。この場合、一対の電極タブ113を同時に曲げ成形する場合に比較して、曲げ剛性の高い電極タブ113を曲げ成形するときの反力が、同時に曲げ成形するとときの反力よりも小さいため、曲げ成形時の電池110の姿勢の乱れを抑制して曲げ成形できる。 For example, when the bending rigidity of the one electrode tab 113 (anode side electrode tab 113A) is lower than the bending rigidity of the other electrode tab 113 (cathode side electrode tab 113K), one of the electrode tabs 113 having a low bending rigidity is A mode in which the first electrode tab 113 that has been molded first and then the other electrode tab 113 that has high bending rigidity is molded while the one electrode tab 113 that has been previously molded is gripped is shown, but the invention is not limited to this case. When the difference between the bending rigidity of the one electrode tab 113 and the bending rigidity of the other electrode tab 113 is relatively small, the one electrode tab 113 having the higher bending rigidity is reversed first, contrary to the above case. The electrode tab 113 may be molded and then the other electrode tab 113 having a low bending rigidity may be molded while gripping the one electrode tab 113 that is previously molded. In this case, as compared with the case where the pair of electrode tabs 113 are simultaneously bent, the reaction force when the electrode tabs 113 having high bending rigidity are bent is smaller than the reaction force when the electrodes tab 113 is bent at the same time. Bending can be performed while suppressing the orientation of the battery 110 during molding.
 また、上述した実施形態ではアノード側電極タブとカソード側電極タブの形状と材質が異なる例について説明したが、形状または材質のいずれか一方を同じとしてもよいし、形状および材質の両方を同じものとしてもよい。この場合においても、本実施形態の電極タブの成形装置および成形方法を適用することによって、アノード側電極タブおよびカソード側電極タブの互いの曲げ負荷に影響を受けることなく電極タブを高精度に曲げ成形できる。 Further, in the above-described embodiment, an example in which the anode side electrode tab and the cathode side electrode tab have different shapes and materials, but either one of the shapes or materials may be the same, or both shapes and materials may be the same. May be Even in this case, by applying the forming apparatus and the forming method of the electrode tab of the present embodiment, the electrode tab can be bent with high accuracy without being affected by the bending load of the anode side electrode tab and the cathode side electrode tab. Can be molded.
 また、上述した実施形態では曲げ角度調整部は、バックアッププレートの傾斜面をパンチの摺接面に摺動させることによって、パンチを撓むように変形させて電極タブの曲げ角度を調整するとして説明したが、これに限定されない。パンチの先端部に直接的に押圧力や付勢力を付与する押圧部材や付勢部材を設けてもよい。 Further, in the above-described embodiment, the bending angle adjusting unit adjusts the bending angle of the electrode tab by sliding the inclined surface of the backup plate to the sliding contact surface of the punch to deform the punch so as to bend. , But is not limited to this. A pressing member or an urging member that directly applies a pressing force or an urging force may be provided on the tip portion of the punch.
 また、上述した実施形態では保持部を移動させる第1方向は、成形装置の下方向として説明したが、成形装置の構成によって適宜変更してよい。同様に、第2方向や第3方向も適宜変更してよい。 In addition, in the above-described embodiment, the first direction in which the holding unit is moved has been described as the downward direction of the molding device, but it may be appropriately changed depending on the configuration of the molding device. Similarly, the second direction and the third direction may be changed as appropriate.
 また、上述した実施形態では押さえ部はダイの支持面に対して電極タブの基端部を押し付けることによって保持する構成を示したが、保持する機能を有する限りにおいてこれに限定されない。例えば、ダイの支持面に設けた吸着口から真空吸引して電極タブを吸着保持もよいし、磁力あるいは静電気を利用してダイに対して電極タブを保持してもよい。 Further, in the above-described embodiment, the holding portion has been shown as being held by pressing the base end portion of the electrode tab against the supporting surface of the die, but the holding portion is not limited to this as long as it has a holding function. For example, the electrode tab may be sucked and held by suction from a suction port provided on the supporting surface of the die, or the electrode tab may be held to the die by utilizing magnetic force or static electricity.
 また、アノード側電極タブおよびカソード側電極タブのそれぞれを曲げ成形する具体的な手順は、上述した実施形態に限定されるものではなく、適宜改変してよい。 Also, the specific procedure for bending each of the anode-side electrode tab and the cathode-side electrode tab is not limited to the above-described embodiment, and may be modified as appropriate.
 本出願は、2019年1月31日に出願された日本国特許出願第2019-15510号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2019-15510 filed on January 31, 2019, the disclosure content of which is incorporated by reference in its entirety.
10    電極タブの成形装置、
20    ダイ、
21    第1ダイ、
22    第2ダイ、
23a   角部、
23b   角部、
24a   第1支持面、
24b   第2支持面、
30    パンチ、
31    第1パンチ、
32    第2パンチ、
33a   押圧面、
33b   押圧面、
34a   摺接面、
34b   摺接面、
40    上部保持部、
41    パンチプレート、
42    保持プレート、
42a   バッキングプレート、
42b   パンチホルダー、
45    下部保持部、
46    絶縁部材、
47    下部ホルダー、
50    駆動部、
51    駆動部、
60    曲げ角度調整部、
61    第1曲げ角度調整部、
62    第2曲げ角度調整部、
63a   第1バックアッププレート、
63b   第2バックアッププレート、
64a   第1高さ調整部、
64b   第2高さ調整部、
65a   傾斜面、
65b   傾斜面、
66    高さ調整部、
70    押さえ部、
80    制御部、
100   電池モジュール、
110   電池、
110H  本体部、
110S  電池スタック、
111   発電要素、
112   ラミネートフィルム、
113   電極タブ、
113A  アノード側電極タブ(一方の電極タブ)、
113K  カソード側電極タブ(他方の電極タブ)、
113R  折れ曲がり部、
113c  基端部、
113d  先端部、
113e  折り返し部、
114   第1スペーサー、
115   第2スペーサー、
132   バスバー、
D1    第1方向、
D2    第2方向、
D3    第3方向、
LB    レーザー光。
10 Electrode tab forming device,
20 dies,
21 First die,
22 Second die,
23a corner,
23b corner,
24a first support surface,
24b second support surface,
30 punches,
31 First punch,
32 Second punch,
33a Pressing surface,
33b Pressing surface,
34a sliding contact surface,
34b sliding contact surface,
40 upper holding part,
41 punch plate,
42 holding plate,
42a backing plate,
42b punch holder,
45 Lower holding part,
46 insulating member,
47 Lower holder,
50 drive,
51 Drive,
60 Bending angle adjustment part,
61 first bending angle adjusting section,
62 second bending angle adjusting section,
63a First backup plate,
63b Second backup plate,
64a 1st height adjustment part,
64b 2nd height adjustment part,
65a inclined surface,
65b inclined surface,
66 Height adjustment unit,
70 Pressing part,
80 control unit,
100 battery module,
110 batteries,
110H main body,
110S battery stack,
111 power generation element,
112 laminated film,
113 electrode tab,
113A Anode side electrode tab (one electrode tab),
113K cathode side electrode tab (other electrode tab),
113R Bent part,
113c base end,
113d tip,
113e folding part,
114 first spacer,
115 second spacer,
132 busbars,
D1 first direction,
D2 second direction,
D3 third direction,
LB laser light.

Claims (11)

  1.  電池の一対の電極タブのうちの一方の電極タブの基端部を第1ダイの第1支持面によって支持し、他方の電極タブの基端部を第2ダイの第2支持面によって支持し、
     前記第1支持面および前記第2支持面に対して直交する第1方向に沿って第1パンチおよび第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させて、前記第1パンチによって前記一方の電極タブを曲げ成形した後に、前記第2パンチによって前記他方の電極タブを曲げ成形する、電極タブの成形方法。
    The base end of one of the pair of electrode tabs of the battery is supported by the first supporting surface of the first die, and the base end of the other electrode tab is supported by the second supporting surface of the second die. ,
    By moving the first punch and the second punch as one body relative to the first die and the second die along a first direction orthogonal to the first support surface and the second support surface. A method of forming an electrode tab, wherein the one electrode tab is bent and formed by the first punch, and then the other electrode tab is bent and formed by the second punch.
  2.  前記第1パンチを前記第1方向に対して交差する第2方向へ変形させることによって、前記一方の電極タブの曲げ角度を調整する、請求項1に記載の電極タブの成形方法。 The method for forming an electrode tab according to claim 1, wherein the bending angle of the one electrode tab is adjusted by deforming the first punch in a second direction that intersects the first direction.
  3.  前記第2パンチを前記第1方向に対して交差する第3方向へ変形させることによって、前記他方の電極タブの曲げ角度を調整する、請求項1または請求項2に記載の電極タブの成形方法。 The method for forming an electrode tab according to claim 1, wherein the bending angle of the other electrode tab is adjusted by deforming the second punch in a third direction intersecting the first direction. ..
  4.  先に曲げ成形された前記一方の電極タブを前記第1ダイの角部と前記第1パンチとによってグリップした状態において、前記他方の電極タブを曲げ成形する、請求項1~3のいずれか1項に記載の電極タブの成形方法。 4. The other electrode tab is bend-formed in a state in which the one electrode tab previously bend-formed is gripped by the corner portion of the first die and the first punch, and the other electrode tab is bend-formed. Item 7. A method for forming an electrode tab according to item.
  5.  前記一方の電極タブの曲げ剛性が、前記他方の電極タブの曲げ剛性よりも低い、請求項4に記載の電極タブの成形方法。 The method of forming an electrode tab according to claim 4, wherein the bending rigidity of the one electrode tab is lower than the bending rigidity of the other electrode tab.
  6.  前記一方の電極タブの曲げ剛性が、前記他方の電極タブの曲げ剛性よりも高い、請求項4に記載の電極タブの成形方法。 The method for forming an electrode tab according to claim 4, wherein the bending rigidity of the one electrode tab is higher than the bending rigidity of the other electrode tab.
  7.  電池の一対の電極タブを曲げ成形して折れ曲がり部を形成する成形装置であって、
     前記一対の電極タブのうちの一方の電極タブの基端部を支持する第1支持面を備える第1ダイと、
     他方の電極タブの基端部を支持する第2支持面を備える第2ダイと、
     前記第1ダイと協働して前記一方の電極タブを曲げ成形する第1パンチと、
     前記第2ダイと協働して前記他方の電極タブを曲げ成形する第2パンチと、
     前記第1支持面および前記第2支持面に対して直交する第1方向に沿って前記第1パンチおよび前記第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させる駆動部と、を有し、
     前記駆動部によって前記第1パンチおよび前記第2パンチを一体として前記第1ダイおよび前記第2ダイに対して相対的に移動させる1つの動作の間に、前記一方の電極タブおよび前記他方の電極タブの曲げ成形のタイミングをずらしてなる、電極タブの成形装置。
    A forming device for forming a bent portion by bending a pair of electrode tabs of a battery,
    A first die having a first support surface that supports a base end portion of one of the pair of electrode tabs;
    A second die having a second support surface for supporting the base end of the other electrode tab;
    A first punch for bending the one electrode tab in cooperation with the first die;
    A second punch for bending the other electrode tab in cooperation with the second die;
    The first punch and the second punch are integrally moved relative to the first die and the second die along a first direction orthogonal to the first support surface and the second support surface. And a drive unit for
    During one operation of moving the first punch and the second punch as a unit relative to the first die and the second die by the drive unit, the one electrode tab and the other electrode An electrode tab forming device in which the tab bending forming timing is shifted.
  8.  前記第1パンチの押圧面と前記一方の電極タブとの間の距離と、前記第2パンチの押圧面と前記他方の電極タブとの間の距離とを異ならせることによって、前記タイミングをずらしてなる、請求項7に記載の電極タブの成形装置。 The timing is shifted by making the distance between the pressing surface of the first punch and the one electrode tab different from the distance between the pressing surface of the second punch and the other electrode tab. The device for forming an electrode tab according to claim 7, wherein:
  9.  前記第1パンチの押圧面と前記第1ダイの前記第1支持面との間の距離と、前記第2パンチの押圧面と前記第2ダイの前記第2支持面との間の距離とを異ならせることによって、前記タイミングをずらしてなる、請求項7に記載の電極タブの成形装置。 A distance between the pressing surface of the first punch and the first supporting surface of the first die, and a distance between the pressing surface of the second punch and the second supporting surface of the second die. The device for forming an electrode tab according to claim 7, wherein the timing is shifted by making the timing different.
  10.  前記第1パンチを前記第1方向に対して交差する第2方向へ変形させることによって、前記一方の電極タブの曲げ角度を調整する第1曲げ角度調整部をさらに有する、請求項7~9のいずれか1項に記載の電極タブの成形装置。 10. The first bending angle adjusting section for adjusting the bending angle of the one electrode tab by deforming the first punch in a second direction intersecting with the first direction, further comprising: The apparatus for forming an electrode tab according to any one of claims 1.
  11.  前記第2パンチを前記第1方向に対して交差する第3方向へ変形させることによって、前記他方の電極タブの曲げ角度を調整する第2曲げ角度調整部をさらに有する、請求項7~10のいずれか1項に記載の電極タブの成形装置。 11. The second bending angle adjusting portion for adjusting the bending angle of the other electrode tab by deforming the second punch in a third direction intersecting with the first direction, further comprising: The apparatus for forming an electrode tab according to any one of claims 1.
PCT/JP2020/003765 2019-01-31 2020-01-31 Electrode tab forming method and electrode tab forming device WO2020158935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020568635A JP7374423B2 (en) 2019-01-31 2020-01-31 Electrode tab molding method and electrode tab molding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015510 2019-01-31
JP2019015510 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158935A1 true WO2020158935A1 (en) 2020-08-06

Family

ID=71841122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003765 WO2020158935A1 (en) 2019-01-31 2020-01-31 Electrode tab forming method and electrode tab forming device

Country Status (2)

Country Link
JP (1) JP7374423B2 (en)
WO (1) WO2020158935A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087337A (en) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd Battery laminated aggregate and battery used for it
JP2009187768A (en) * 2008-02-06 2009-08-20 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2017188233A (en) * 2016-04-01 2017-10-12 日産自動車株式会社 Battery pack and manufacturing method of battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087337A (en) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd Battery laminated aggregate and battery used for it
JP2009187768A (en) * 2008-02-06 2009-08-20 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2017188233A (en) * 2016-04-01 2017-10-12 日産自動車株式会社 Battery pack and manufacturing method of battery pack

Also Published As

Publication number Publication date
JPWO2020158935A1 (en) 2021-12-02
JP7374423B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN108140792B (en) Method and apparatus for manufacturing battery pack
CN108352489B (en) Assembled battery and method for manufacturing assembled battery
US10804505B2 (en) Battery pack and method for producing battery pack
US10418602B2 (en) Battery pack
US20180309101A1 (en) Battery pack and method for producing same
US11050107B2 (en) Method for assembling battery pack, and battery pack
JP6748285B2 (en) Method of manufacturing assembled battery
JP2017188233A (en) Battery pack and manufacturing method of battery pack
JP2018056112A (en) Battery pack, method of positioning electrode tab and spacer in single cell forming battery pack, and device for positioning electrode tab and spacer in single cell
US20190372079A1 (en) Battery pack production method and production device
JP6667255B2 (en) Battery pack and method of manufacturing battery pack
WO2020158935A1 (en) Electrode tab forming method and electrode tab forming device
TW201143195A (en) Laminated fuel cell assembly
US11411286B2 (en) Battery stack forming apparatus and battery stack forming method
CN211866934U (en) Welding auxiliary mechanism and welding device
JP2018181678A (en) Manufacturing apparatus for battery pack and manufacturing method for battery pack
CN211028461U (en) Pressing mechanism and series welding machine
JP2021528814A (en) Membrane electrode assembly, fuel cell stack with membrane electrode assembly, and fuel cell cell stutter alignment jig
US20230344090A1 (en) Battery module and method for manufacturing same
CN115917850A (en) Battery module, battery device, and method for manufacturing battery module
JP2020177901A (en) Secondary battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747924

Country of ref document: EP

Kind code of ref document: A1