WO2020158850A1 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
WO2020158850A1
WO2020158850A1 PCT/JP2020/003379 JP2020003379W WO2020158850A1 WO 2020158850 A1 WO2020158850 A1 WO 2020158850A1 JP 2020003379 W JP2020003379 W JP 2020003379W WO 2020158850 A1 WO2020158850 A1 WO 2020158850A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypochlorous acid
aqueous solution
water
air
water storage
Prior art date
Application number
PCT/JP2020/003379
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 石田
林 智裕
真司 吉田
昌彦 河崎
茂俊 堀切
裕貴 水野
祥太 井深
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020569715A priority Critical patent/JP7345087B2/en
Publication of WO2020158850A1 publication Critical patent/WO2020158850A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements

Definitions

  • the present disclosure relates to an air purification device that removes bacteria (bacteria, viruses, airborne bacteria, odors, etc. in the air (sterilization, deodorization) using water containing hypochlorous acid.
  • a method of generating fine water particles such as a drug to sterilize a target space a method of passing air through a filter containing an aqueous solution of a drug (for example, Patent Document 1 below) and a centrifugal force by a rotating body are used.
  • a method of ejecting the drug aqueous solution from the pores using pressurized air for example, Patent Documents 3 and 4 below
  • ultrasonic vibration for example, the following Patent Document 5.
  • ⁇ Hypochlorous acid water can be used in the method of generating fine water particles such as chemicals for the purpose of sterilizing and deodorizing the target space.
  • hypochlorous acid diffuses into the air in the state of being contained in fine water particles or in the state of gas, it can come into contact with bacteria, viruses and odorous components present in the air to remove them.
  • hypochlorous acid In order to maintain the disinfecting and deodorizing effects of such hypochlorous acid for a long time, always adjust the concentration of hypochlorous acid blown from the device to the space into the space It is necessary to maintain a constant concentration of hypochlorous acid.
  • the supply of hypochlorous acid was accompanied by humidification.
  • the target space is excessively humidified.
  • excessive humidification of the space may cause a drop in room temperature.
  • controlling the amount of hypochlorous acid aqueous solution produced by adjusting the electrolysis strength independently of the amount of humidification requires time for electrolysis, and there is a time lag until hypochlorous acid is supplied to the space. It is possible that the sterilization and deodorization effects of the space will not be maintained.
  • the present disclosure aims to provide an air purifying device capable of independently controlling the concentration of hypochlorous acid blown from the device with respect to the humidification amount.
  • the air purification apparatus of the present disclosure includes a housing having a suction port that sucks in air and a blowout port that blows out the air sucked from the suction port.
  • An air blower is provided in the housing to ventilate air from the suction port to the air outlet.
  • An air passage is provided between the suction port and the air outlet.
  • a detection unit that detects the concentration of hypochlorous acid contained in the air sucked from the suction port, and a liquid micronization chamber that contains micronized hypochlorous acid water in the passing air. I have it.
  • the liquid refining chamber is equipped with a collision wall, a pumping pipe, a hypochlorous acid supply unit, and a height adjustment unit.
  • the collision wall collides with the hypochlorous acid water released by the centrifugal force of the rotating plate.
  • the pumping pipe rotates coaxially with the rotary plate and pumps the hypochlorous acid aqueous solution to the central portion side of the rotary plate.
  • the hypochlorous acid supply unit supplies the hypochlorous acid aqueous solution to the inside of the pumping pipe.
  • the height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe.
  • the case has a control unit.
  • the control unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe according to the concentration of hypochlorous acid detected by the detection unit.
  • the control unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe, it is possible to adjust the amount of the hypochlorous acid aqueous solution to be pumped to the central portion side of the rotating plate.
  • the particle size of the hypochlorous acid water to be collided with can be changed. That is, the amount of hypochlorous acid volatilized in the air passage can be adjusted.
  • the concentration of hypochlorous acid blown into the space can be controlled with a width larger than the humidification amount. That is, the concentration of hypochlorous acid blown out from the device can be controlled independently of the amount of humidification.
  • FIG. 1 is an external view of an air purification device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a schematic cross section of the air purification device according to the first embodiment of the present disclosure.
  • FIG. 3A is a perspective view showing a configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure.
  • FIG. 3B is a side view showing the configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure.
  • FIG. 3C is a side view showing the configuration when the number of rotary plates is increased in the water pump of the first embodiment of the present disclosure.
  • FIG. 3A is a perspective view showing a configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure.
  • FIG. 3B is a side view showing the configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure.
  • FIG. 3C is a side view showing the configuration when the number of rotary
  • FIG. 4A is a diagram showing an example of the liquid level (water level) of the hypochlorous acid aqueous solution in the pumping pipe in the air purification apparatus of the first embodiment of the present disclosure.
  • FIG. 4B is a diagram showing a relationship between the liquid level height (water level) of the hypochlorous acid aqueous solution in the pumping pipe and the blown out hypochlorous acid concentration in the air purification device of the first embodiment of the present disclosure.
  • FIG. 4C is a diagram showing the relationship between the liquid level height (water level) of the hypochlorous acid aqueous solution in the pumping pipe and the humidification amount in the air purification device of the first embodiment of the present disclosure.
  • FIG. 4A is a diagram showing an example of the liquid level (water level) of the hypochlorous acid aqueous solution in the pumping pipe in the air purification apparatus of the first embodiment of the present disclosure.
  • FIG. 4B is a diagram showing a relationship between the liquid level height (water level) of the
  • FIG. 5 is a schematic diagram showing another form of the injection device in the air purification device of the first embodiment of the present disclosure.
  • FIG. 6 is a diagram showing an embodiment of an air purification device in a ventilation air conditioning system according to Embodiment 2 of the present disclosure.
  • FIG. 7 is a figure showing the schematic cross section of the air purification apparatus of Embodiment 3 of this indication.
  • FIG. 8 is a figure showing the schematic cross section of the air purification apparatus of Embodiment 4 of this indication.
  • FIG. 9 is a figure showing the schematic cross section of the air purification apparatus of Embodiment 5 of this indication.
  • the air purification device includes a housing, a blower unit, a liquid atomization chamber, and a concentration detection unit.
  • the housing is provided with a suction port for sucking air and a blowout port for blowing out the air sucked from the suction port.
  • the air blower vents air from the suction port to the air outlet in the housing.
  • An air passage is provided between the suction port and the air outlet.
  • the concentration detector detects the concentration of hypochlorous acid contained in the air sucked from the suction port.
  • the liquid refining chamber is one in which the passing air contains the atomized hypochlorous acid aqueous solution.
  • the liquid atomization chamber is provided with a collision wall, a rotary plate, a pumping pipe, a hypochlorous acid supply unit, and a height detection unit.
  • the collision wall collides with the hypochlorous acid aqueous solution released by the centrifugal force of the rotating plate.
  • the pumping pipe rotates coaxially with the rotary plate and pumps the hypochlorous acid aqueous solution to the central portion side of the rotary plate.
  • the hypochlorous acid supply unit supplies the hypochlorous acid aqueous solution to the inside of the pumping pipe.
  • the height detection unit detects the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe.
  • the housing is provided with a height adjusting unit for adjusting the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe according to the concentration of hypochlorous acid detected by the concentration detecting unit.
  • the air sucked from the suction port passes through the inside of the liquid atomization device, so that the air comes into contact with the fine water particles containing hypochlorous acid and the gaseous hypochlorous acid. That is, since airborne bacteria and odorous components contained in the air are removed, clean air can be obtained from the air outlet.
  • the height of the hypochlorous acid aqueous solution in the pumping pipe is adjusted, the film thickness of the hypochlorous acid pumped to the center side of the rotating plate is adjusted, and the hypochlorous acid water to be collided with the collision wall is Since the particle size can be changed, the amount of hypochlorous acid volatilized in the air passage can be adjusted. That is, it is possible to greatly change the concentration of hypochlorous acid to be blown out, compared with the amount of humidification.
  • the air purification device is equipped with a water storage unit that stores hypochlorous acid water on the bottom surface of the liquid atomization chamber.
  • the pumping pipe is a cylinder whose upper end and lower end are open and whose upper end has a larger cross-sectional area than its lower end.
  • the pumping pipe is arranged with the axis of rotation in the vertical direction and with the lower end of the pumping pipe immersed in the reservoir. ing.
  • the hypochlorous acid supply unit supplies hypochlorous acid to the water storage unit based on an instruction from the height adjustment unit.
  • the inner hypochlorous acid aqueous solution is pumped to the upper end of the pump pipe.
  • the size of the inner circumference and the distance from the water surface to the upper end differ depending on the height (water level) of the water surface of the hypochlorous acid aqueous solution, so the amount of the hypochlorous acid aqueous solution sucked up differs.
  • the hypochlorous acid aqueous solution that has reached the upper end has its thickness adjusted inside the rotating plate, and hypochlorous acid is released from the rotating plate by centrifugal force.
  • the particle size of the acid water can be changed. That is, by adjusting the height of the water surface of the hypochlorous acid aqueous solution, the amount of hypochlorous acid volatilized in the air duct can be adjusted.
  • the pumping pipe of the air purifying device is a tubular body arranged with the rotation axis in the vertical direction, and the cross-sectional area of the upper end is made larger than the lower end, and the upper end is opened and the lower end is closed to form a water storage section.
  • the hypochlorous acid supply unit is provided with a water supply pipe for supplying the hypochlorous acid aqueous solution into the pumping pipe. Hypochlorous acid is supplied to the water storage unit based on the instruction from the height adjustment unit.
  • the size of the inner circumference and the distance from the water surface to the top end differ depending on the height (water level) of the hypochlorous acid aqueous solution, so the amount of hypochlorous acid sucked up. Is adjusted. That is, the thickness of the hypochlorous acid aqueous solution reaching the upper end of the pumping pipe is adjusted at the inner portion of the rotary plate, and the particle size of the hypochlorous acid aqueous solution discharged from the rotary plate by centrifugal force can be changed. .. That is, the amount of hypochlorous acid volatilized in the air passage can be adjusted.
  • the liquid refining chamber of the air purification device has a water storage unit that stores the hypochlorous acid aqueous solution at the bottom. Further, the liquid atomization chamber and the hypochlorous acid supply unit are connected by a water supply flow path and a recovery flow path.
  • the supply flow passage is a flow passage for supplying the hypochlorous acid aqueous solution to the water storage section through the water supply pipe by the operation of the pump.
  • the supply flow path includes a water supply pipe, a pump, and a supply port that is one end of the water supply pipe. The supply port is arranged in the liquid atomization chamber.
  • the recovery channel is a channel for recovering the hypochlorous acid aqueous solution stored in the water storage section from the recovery port through the recovery pipe to the hypochlorous acid supply section by opening the opening/closing valve.
  • the recovery passageway includes a recovery pipe, a pump, and a recovery port that is one end of the recovery pipe.
  • the recovery port is arranged in the water storage section of the liquid atomization chamber.
  • hypochlorous acid supply unit is located lower than the recovery port, and the recovery port is located at the bottom of the water storage unit.
  • the height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operation of the on-off valve and the pump.
  • the pump By this, by operating the pump, it is possible to supply the hypochlorous acid aqueous solution from the hypochlorous acid supply unit to the liquid supply micronization chamber through the water supply pipe. Further, by opening the on-off valve, the hypochlorous acid aqueous solution stored in the liquid atomizing chamber can be recovered through the recovery pipe to the hypochlorous acid supply unit. That is, the height adjusting unit can switch the operation of the on-off valve and the pump to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe.
  • the liquid atomizing chamber of the air purifying apparatus is provided with a water storage section for storing the hypochlorous acid aqueous solution in the upper part. Further, the liquid atomization chamber and the hypochlorous acid supply unit are connected by a water supply flow path and a recovery flow path.
  • the supply flow path is a flow path that supplies the hypochlorous acid aqueous solution to the water storage section through the water supply pipe by opening the on-off valve.
  • the supply flow path includes a water supply pipe, an opening/closing valve, and a supply port that is one end of the water supply pipe.
  • the supply port is arranged in the liquid atomization chamber.
  • the recovery channel is a channel for recovering the hypochlorous acid aqueous solution stored in the water storage part from the recovery port through the recovery pipe to the hypochlorous acid supply part by the operation of the pump.
  • the recovery passageway includes a recovery pipe, a pump, and a recovery port that is one end of the recovery pipe.
  • the recovery port is arranged in the water storage section of the liquid atomization chamber.
  • hypochlorous acid supply part is located higher than the supply port, and the recovery port is located at the bottom of the water storage part.
  • the height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operation of the on-off valve and the pump.
  • the on-off valve By doing this, by opening the on-off valve, it is possible to supply hypochlorous acid from the hypochlorous acid supply unit to the liquid supply micronization chamber through the water supply pipe. Further, by operating the pump, the hypochlorous acid stored in the liquid atomization chamber can be recovered from the recovery port to the hypochlorous acid supply unit through the recovery pipe. That is, the height adjusting unit can switch the operation of the on-off valve and the pump to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe.
  • the air purification device 1 includes a substantially box-shaped housing 2.
  • An intake port 3 is provided on the side surface of the housing 2, and an outlet 4 is provided on the top surface of the housing 2.
  • a liquid atomizing chamber 5, a blower unit 6, a concentration detecting unit 7, and a height adjusting unit 8 are provided in the housing 2.
  • an air passage 9 is formed which communicates with the air outlet 4 from the air inlet 3 through the liquid atomization chamber 5 and the air blower 6. That is, the air sucked from the intake port 3 passes through the liquid atomization chamber 5, and then is exhausted from the outlet port 4.
  • the concentration detection unit 7 is arranged on the upstream side of the air flow with respect to the liquid atomization chamber 5. The concentration detector 7 detects the concentration of hypochlorous acid contained in the passing air.
  • the air passage may be branched so that only a part of the air sucked from the intake port 3 passes through the liquid atomization chamber 5.
  • the air air passage 9 may be branched in the housing 2, and the liquid atomization chamber 5 may be provided in one of the branched air passages.
  • the liquid atomization chamber 5 includes a hypochlorous acid supply unit 11, a collision wall 12, a water storage unit 13, a height detection unit 14, and an injection device 15.
  • the collision wall 12 may be formed integrally with the side wall of the liquid atomization chamber 5.
  • the water storage section 13 is arranged below the liquid atomization chamber 5.
  • the hypochlorous acid supply section 11 has a supply port 17 opened in the liquid atomization chamber 5 via a water supply pipe 16.
  • a method of replenishing the hypochlorous acid supply section 11 with an aqueous solution containing hypochlorous acid, or an electrode inside the hypochlorous acid supply section 11 Can be used, and a method of electrolyzing water containing chloride ions to generate water can be used.
  • At least the hypochlorous acid supply unit 11 is a tank capable of storing the hypochlorous acid aqueous solution therein.
  • the hypochlorous acid supply part 11 should just be equipped with the pump (not shown) which can send the stored hypochlorous acid aqueous solution to the supply port 17.
  • the height detection unit 14 can detect the height of the liquid surface of the hypochlorous acid aqueous solution stored in the water storage unit 13 below the liquid atomization chamber 5. Then, based on the detection signal from the height detection unit 14, the height adjustment unit 8 can issue an instruction to supply the hypochlorous acid aqueous solution to the hypochlorous acid supply unit 11. That is, the hypochlorous acid supply unit 11 can supply the hypochlorous acid aqueous solution to the water storage unit 13 based on the instruction of the height adjustment unit 8. Therefore, in the hypochlorous acid supply unit 11, the relationship between the concentration of hypochlorous acid detected by the concentration detection unit 7 and the height of the liquid surface of the hypochlorous acid aqueous solution stored in the water storage unit 13 should be determined. is important.
  • the injection device 15 is composed of a rotary motor 18, a rotary shaft 19, and a pumping pipe 20.
  • the pumping pipe 20 is arranged vertically in the liquid atomization chamber 5 via a rotary motor 18 and a rotary shaft 19 installed on the top surface 21.
  • the pumping pipe 20 has a cylindrical shape and a truncated cone shape. Both of the two truncated cone-shaped bottom surfaces are open, the bottom surface on the side with the smaller opening area is arranged below the liquid surface of the water storage section 13, and the rotating plate 22 protruding to the outer periphery is provided on the bottom surface with the large opening area. Is equipped with.
  • the diameter of the rotary plate 22 may be changed or the number of the rotary plates 22 may be increased depending on the amount of air processed by the air purification device 1. When the number of the rotary plates 22 is added as shown in FIG.
  • the rotary plates 22 can be provided at predetermined intervals in the direction of the rotary shaft 19 as shown in FIG. 3B.
  • the rotary plate 22a other than the uppermost stage be provided with the opening 20a at the connection point between the rotary plate 22a and the pumping pipe. That is, the side surface of the pumping pipe 20 is provided with the opening 20a connected to the upper surface of the added rotary plate 22a.
  • the openings 20a are preferably provided for each predetermined center angle with respect to one rotating plate 22a (the center angle is 180 degrees in the figure). From the opening 20a, it becomes possible to blow out the hypochlorous acid aqueous solution onto each rotary plate 22a.
  • an obstacle such as an eliminator may be provided in the gap formed between the pumping pipe 20 and the collision wall 12.
  • the collision wall 12 is provided so as to include a position at the same height as the rotary plate 22 in the liquid atomization chamber 5.
  • the rotary motor 18 rotates the rotary shaft 19, and the pumping pipe 20 rotates as the rotary shaft 19 rotates.
  • the water stored in the water storage portion 13 by the rotation of the pumping pipe 20 rises from the lower end side to the upper end side while rotating along the circumference (inner wall surface) of the pumping pipe 20 by the centrifugal force.
  • the water that rises while rotating on the inner wall of the pumping pipe 20 spreads on the circumference along with the increase in the cross section of the pumping pipe 20, moves to the rotating plate 22 at the upper end, and spreads thinly to form a water film. Since the amount of water is adjusted when the water moves from the lower end side to the upper end side in the pumping pipe 20, the thickness of the water film on the rotary plate 22 becomes uniform.
  • the water film formed on the upper surface of the rotating plate 22 spreads from the central portion of the rotating plate 22 to the outer extending portion at high speed due to the centrifugal force generated by the rotation, and is discharged as a water drop from the outer extending portion.
  • the discharged water droplets collide with the collision wall 12, are further miniaturized, and are discharged from the outlet 4 into the target space by the ventilation by the blower unit 6. Or, it is vaporized during transportation by the air.
  • fine droplets can be added to the air blown out from the air purification device 1, the target space can be humidified.
  • the temperature and humidity of the inhaled air are detected by the detection unit provided in the air duct 9, the rotation speed of the pumping pipe 20 of the injection device 15 is changed, and the amount of water droplets emitted from the injection device 15 is changed. You can That is, the amount of moisture contained in the air can be controlled to control the amount of humidification of the target space.
  • hypochlorous acid water is stored in the water storage unit 13.
  • Hypochlorous acid water can be supplied from the hypochlorous acid supply unit 11 to the water storage unit 13 to contain hypochlorous acid in the air, and the hypochlorous acid can be discharged to the target space.
  • the height adjusting unit 8 By supplying the hypochlorous acid aqueous solution to the water storage unit 13 based on the instruction of the height adjusting unit 8, the height (water level) of the liquid level in the pumping pipe 20 can be changed.
  • the height adjusting unit 8 detects the concentration of hypochlorous acid in the air sucked from the target space with the concentration detecting unit 7 provided in the air air passage 9 on the upstream side of the liquid atomizing chamber 5. , And gives an instruction to the hypochlorous acid supply unit 11.
  • the height adjustment unit 8 issues an instruction to supply the hypochlorous acid aqueous solution to the hypochlorous acid supply unit 11, and
  • the chloric acid supply unit 11 changes the supply amount of hypochlorous acid water and controls the water level in which the pumping pipe 20 is immersed (the rotation speed of the pumping pipe 20 is not changed), so that the amount of humidification is not changed and the hypochlorous acid is changed. It is possible to control the concentration of.
  • the height of the liquid surface in the pumping pipe 20 is changed, the size (circumferential length) of the portion where the liquid surface of the hypochlorous acid aqueous solution and the inner wall of the pumping pipe 20 contact changes, and The amount of aqueous acid solution can be varied. Further, the distance from the liquid surface of the hypochlorous acid aqueous solution to the upper end is changed in the pumping pipe 20, and the degree of thinning of the film thickness due to the expansion of the inner diameter of the pumping pipe 20 can be changed. As described above, the two bottom surfaces of the pumping pipe 20 are both open, and the bottom surface on the side with the smaller opening area is submerged in the water in the water storage section 13. Therefore, the water level in the pumping tube 20 is It also agrees with the water level of 13.
  • the thickness of the water film formed by the rotary plate 22 changes, and the particle size of the water droplets jetted from the jet device 15 can be changed. Then, as the particle size changes, the amount of hypochlorous acid volatilized in the air duct 9 changes.
  • FIG. 4A An example of the height (water level) of the liquid level of the hypochlorous acid aqueous solution in the pumping pipe 20 is shown in FIG. 4A.
  • FIG. 4B The relationship between the concentration of hypochlorous acid blown out from the outlet 4 is shown in FIG. 4B, and the relationship between the water level in the pumping pipe 20 and the humidification amount is shown in FIG. 4C.
  • the humidification amount of the target space hardly changes from H1 to H2 and H3 even if the water level in the pumping pipe 20 rises.
  • the humidification amount does not change.
  • the height of the liquid surface of the hypochlorous acid aqueous solution may be increased.
  • the concentration of the hypochlorous acid blown out can be controlled by controlling the height of the liquid surface of the hypochlorous acid water supplied to the water storage unit 13, so It is possible to realize the maintenance of the sterilization/deodorization effect of the space more easily than the generation of new hypochlorous acid water by decomposition.
  • the concentration of hypochlorous acid blown out from the liquid atomization chamber 5 is determined by the wetness of the collision wall 12 and the amount of volatilization that accompanies changes in the surface area of water particles. That is, in the process of forming water droplets in the jetting device 15, by making the particle diameter uniform, it is possible to control the volatilization amount of hypochlorous acid to be blown out. To make the water particles uniform, it is necessary to form a uniform water film on the rotating plate 22.
  • the rotary plate 22 is provided with a structure for sucking water like the pumping pipe 20 of the present embodiment, and is It is preferable to have a function of making the amount of water uniform on one circumference on the plate 22.
  • FIG. 5 shows an injection device 15a different from the injection device 15.
  • the hypochlorous acid supply unit 11 may extend the water supply pipe 16 to guide the hypochlorous acid aqueous solution into the pumping pipe 20, so that the hypochlorous acid aqueous solution may be directly supplied to the inside of the pumping pipe 20.
  • the pumping pipe 20 is a cylindrical body in which the rotary shaft 19 is arranged in the vertical direction, as described above, and has a larger cross-sectional area at the upper end than at the lower end. In particular, it is possible to open the upper end and close the lower end. When the lower end is closed, the lower part of the pumping pipe 20 can be used as the water storage part 13.
  • the height (water level) of the liquid level in the pumping pipe 20 is controlled by supplying the hypochlorous acid aqueous solution from the upper part of the pumping pipe 20 into the pumping pipe 20 using the water supply pipe 16.
  • the amount of hypochlorous acid water to be supplied can be reduced.
  • an air purification device for decontaminating bacteria is installed in a branch chamber in a ventilation air conditioning system.
  • the air purification device 1 includes a substantially box-shaped housing 2, and an intake port 3 is provided on a side surface of the housing 2 and an air outlet 4 is provided on a top surface of the housing 2.
  • the air purification device 31 of the present embodiment is attached to the ceiling or the ceiling of a building as shown in FIG. Since the housing 32 is desired to be thin, both the intake port 3 and the outlet port 4 are provided on the side surface of the box shape.
  • the ventilation air conditioning system 33 has, as its main components, an indoor unit 34, a circulation blower 35, an indoor suction opening 36, an indoor blowout opening 37, an exhaust opening 38, and an introduction.
  • the opening 39 and the ventilation device 40 are provided.
  • a heat exchange device 41 by a refrigeration cycle is provided.
  • the temperature of the air sucked from the indoor suction opening 36 is adjusted by the circulation blower 35, and the air is blown out from the indoor blowout opening 37 arranged in each room. Furthermore, the exhaust opening 38 arranged in the ceiling 42 of the house and the introduction opening 39 arranged in the outer wall 44 are provided.
  • the ventilation device 40 is provided with an exhaust blower 46. When the exhaust blower 46 is operated, a part of the air inside the house is discharged to the outside from the exhaust opening 38 and the outside air is taken into the house from the introduction opening 39.
  • the indoor unit 34 is provided with a branch chamber 47 and a branch duct 48.
  • the branch chamber 47 distributes air to be sent to each room, and is provided with a branch duct 48 that conveys the air to the indoor blowout opening 37 located on the downstream side of the branch chamber 47.
  • the air purification device 31 is arranged in the branch chamber 47.
  • the opening for introducing air into the branch chamber 47 is the intake port 3, and the connection port of the branch duct 48 is the outlet port 4.
  • the sterilization/deodorization performance can be enhanced by the operation of the air purification device 31 that sterilizes and deodorizes while performing ventilation and air conditioning of the indoor space.
  • the configuration in which the hypochlorous acid aqueous solution is supplied from the hypochlorous acid supply section to the water storage section 13 is different. That is, as shown in FIG. 7, the hypochlorous acid supply unit 50 is connected to the liquid atomization chamber 5 by the water supply pipe 16 and the recovery pipe 51. The water supply pipe 16 and the recovery pipe 51 are directly connected to the hypochlorous acid supply unit 50. A supply port 17 is provided at one end of the water supply pipe 16, and the supply port 17 is connected to the liquid atomization chamber 5. A recovery port 52 is provided at one end of the recovery pipe 51, and the recovery port 52 is connected to the lowest position of the water storage section 13.
  • the water supply pipe 16 is provided with a pump 53, and the recovery pipe 51 is provided with an opening/closing valve 54.
  • the water storage unit 13, the recovery port 52, the recovery pipe 51, and the hypochlorous acid supply unit 50 of the liquid atomization chamber 5 are arranged with a head in order from above.
  • the on-off valve 54 By opening the on-off valve 54 according to this arrangement order, the hypochlorous acid aqueous solution is recovered from the water storage section 13 to the hypochlorous acid supply section 50 by atmospheric pressure.
  • the opening/closing valve 54 is opened to cause atmospheric pressure to act on the hypochlorous acid aqueous solution in the water storage unit 13, and the recovery port 52 through the recovery pipe 51 to A recovery channel 55 capable of recovering the hypochlorous acid aqueous solution is formed in the chlorous acid supply unit 50.
  • a supply flow path 56 that can supply the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 11 to the water storage unit 13 from the supply port 17 through the water supply pipe 16 is formed. ing. That is, by driving the pump 53, the hypochlorous acid aqueous solution is supplied from the hypochlorous acid supply unit 11 through the water supply pipe 16 and from the supply port 17 to the water storage unit 13.
  • the height adjusting unit 8 also switches the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the water storage unit 13 and the pumping pipe 20.
  • the on-off valve 54 and the pump 53 are connected to the height adjusting unit 8 and operate according to a command from the height adjusting unit 8.
  • the height h 1 of the lower surface of the pump 53 is higher than the height h 2 of the liquid surface of the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 50.
  • the hypochlorous acid aqueous solution is placed inside the pump 53. This is not preferable because it tends to be delayed.
  • the pump 53 operates according to a command from the height adjusting unit 8 to supply the hypochlorous acid aqueous solution from the hypochlorous acid supply unit 50 to the supply port 17 through the water supply pipe 16 (at this time, the opening/closing valve). 54 is closed). That is, the hypochlorous acid aqueous solution can be supplied from the hypochlorous acid supply unit 50 to the water storage unit 13. That is, it is possible to increase the height of the liquid surface of the hypochlorous acid aqueous solution while the height detection unit 14 detects the height of the liquid surface of the hypochlorous acid aqueous solution in the water storage unit 13.
  • the hypochlorous acid aqueous solution stored in the water storage unit 13 is discharged from the recovery port 52 through the recovery pipe 51. It can be recovered to the chloric acid supply unit 50. That is, it is possible to lower the height of the liquid surface of the hypochlorous acid aqueous solution while the height detector 14 detects the height of the liquid surface of the hypochlorous acid aqueous solution in the water storage portion 13.
  • the amount V 1 of the hypochlorous acid aqueous solution stored in the water storage unit 13 is equal to the storage water volume V 2 of the hypochlorous acid supply unit 50. It is desirable to keep it smaller than.
  • the height adjusting unit 8 can switch the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe 20. Further, the hypochlorous acid aqueous solution drained from the water storage section 13 of the liquid micronization chamber 5 is recovered to the hypochlorous acid supply section 50, and the recovered hypochlorous acid aqueous solution is supplied to the liquid micronization chamber 5 again. And can be reused.
  • the configuration of supplying hypochlorous acid water from the hypochlorous acid supply unit to the water storage unit 13 is different. That is, as shown in FIG. 8, the hypochlorous acid supply unit 61 is connected to the liquid atomization chamber 5 by the water supply pipe 16 and the recovery pipe 51. The water supply pipe 16 and the recovery pipe 51 are directly connected to the hypochlorous acid supply unit 61. A supply port 17 is provided at one end of the water supply pipe 16, and the supply port 17 is connected to the liquid atomization chamber 5. A recovery port 52 is provided at one end of the recovery pipe 51, and the recovery port 52 is connected to the water storage unit 13. The water supply pipe 16 is provided with an opening/closing valve 54, and the recovery pipe 51 is provided with a pump 53. There is.
  • the hypochlorous acid supply unit 61, the water supply pipe 16, the supply port 17, and the water storage unit 13 are arranged with a head in order from above.
  • the on-off valve 54 By opening the on-off valve 54 in this order of arrangement, the hypochlorous acid aqueous solution is supplied to the water reservoir 13 by the atmospheric pressure.
  • the recovery port 52 is provided at the bottom of the liquid atomization chamber 5. More specifically, since the lower part of the liquid atomization chamber 5 is the water storage part 13, the recovery port 52 is provided at the lowest part of the water storage part 13.
  • the atmospheric pressure acts by opening the on-off valve 54, and the hypochlorous acid aqueous solution can be supplied from the hypochlorous acid supply unit 61 through the water supply pipe 16 to the liquid atomization chamber 5 through the supply port 17.
  • a possible supply channel 62 is formed.
  • a recovery passageway 63 is formed which can recover the hypochlorous acid aqueous solution stored in the water storage part 13 to the hypochlorous acid supply part 61 from the recovery port 52 through the recovery pipe 51. There is. That is, when the pump 53 is driven, the hypochlorous acid aqueous solution that has flowed into the recovery port 52 from the water storage unit 13 is recovered by the hypochlorous acid supply unit 61 through the recovery pipe 51.
  • the height adjusting unit 8 switches the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the water storage unit 13 and the pumping pipe 20.
  • the on-off valve 54 and the pump 53 are connected to the height adjusting unit 8 and operate according to a command from the height adjusting unit 8.
  • the height h 3 of the lower surface of the pump 53 is located above the recovery port 52 with reference to the position of the recovery port 52. Arranging the lower surface of the pump 53 at a position lower than the recovery port 52 is not preferable because the hypochlorous acid aqueous solution is likely to stay inside the pump 53. Further, more preferably, the height h 3 of the lower surface of the pump 53 may be arranged above the liquid level height h 4 in the water storage section 13. This is because when this is done, the time during which the pump 53 is in contact with the hypochlorous acid aqueous solution is shortened, and the life of the pump 53 can be extended.
  • the opening/closing valve 54 is opened by a command from the height adjusting unit 8, and the hypochlorous acid is supplied from the hypochlorous acid supply unit 61 to the liquid atomization chamber 5 through the water supply pipe 16 and the supply port 17.
  • An aqueous solution can be supplied. That is, the height detection unit 14 can increase the liquid level of the hypochlorous acid aqueous solution while detecting the liquid level of the hypochlorous acid aqueous solution in the water storage unit 13.
  • the hypochlorous acid aqueous solution stored in the water storage unit 13 is collected from the recovery port 52 through the recovery pipe 51. It can be collected in the supply unit 61. That is, the height detection unit 14 can lower the liquid level of the hypochlorous acid aqueous solution while detecting the height of the liquid level of the hypochlorous acid aqueous solution in the water storage unit 13.
  • the height adjusting unit 8 can switch the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe 20.
  • the hypochlorous acid aqueous solution drained from the water storage section 13 of the liquid atomization chamber 5 is recovered by the hypochlorous acid supply unit 61, supplied again to the liquid atomization chamber 5, and reused.
  • the hypochlorous acid supply unit 11, the hypochlorous acid supply unit 50, and the hypochlorous acid supply unit 61 have already been described as the hypochlorous acid supply unit.
  • a hypochlorous acid supply unit 11, a hypochlorous acid supply unit 50, and a hypochlorous acid supply unit are provided in order to continuously remove bacteria, viruses, floating bacteria and odors in the air.
  • a configuration for supplying water to any of the parts 61 will be described.
  • a hypochlorous acid supply unit 11 representing these will be described with reference to FIG. Note that, for ease of understanding, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • a water supply port 72 is provided above the hypochlorous acid supply unit 11.
  • the water supply port 72 is connected to city water by an intake pipe 73. City water is supplied from the water supply port 72.
  • the intake pipe 73 is equipped with a flow rate control unit 76.
  • the flow rate control at the time of water supply by the flow rate control unit 76 is performed according to the water level detected by the water level detection unit 77 provided in the hypochlorous acid supply unit 11.
  • a signal is sent to the height adjusting unit 8 and the height adjusting unit 8 sends a command to the flow rate adjusting unit 76 to adjust the flow rate.
  • a water retaining part (not shown) may be provided to store city water or a hypochlorous acid aqueous solution.
  • the water retention section is arranged at a position higher than the hypochlorous acid supply section 11.
  • a water softening device (not shown) may be provided in the pipe of the water intake pipe 73.
  • a water supply port 72, an intake pipe 73, a flow rate control unit 76, and a water level detection unit 77 may be provided. it can.
  • the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 11 is sent to the liquid atomization chamber 5 and becomes small, the signal based on the water level detected by the water level detection unit 77 becomes high. Is sent to the adjusting unit 8. As a result, the height adjusting unit 8 sends a command to the flow rate adjusting unit 76. In the flow rate adjusting unit 76, the amount of water flowing through the intake pipe 73 is adjusted, and new water (city water or hypochlorous acid aqueous solution) is supplied to the hypochlorous acid supply unit 11 through the water supply port 72. ..
  • hypochlorous acid supply unit 11 since water is always supplied to the hypochlorous acid supply unit 11, it is possible to stably generate an aqueous solution of hypochlorous acid and supply it to the liquid atomization chamber 5. That is, since it becomes possible to continuously supply the aqueous solution of hypochlorous acid to the liquid atomization chamber 5, the concentration of hypochlorous acid blown from the air purifying device into the space can be maintained at a predetermined concentration. The cleanliness of can be maintained.
  • the air purifier is expected to play an active role as an air purifier that removes bacteria and deodorizes household, office, and public spaces.
  • Air Purification Device 2 Housing 3 Inlet 4 Outlet 5 Liquid Refining Chamber 6 Blower 7 Concentration Detector 8 Height Adjuster 9 Air Airway 11 Hypochlorous Acid Supply 12 Collision Wall 13 Water Storage 14 Height Detector 15 Injection device 15a Injection device 16 Water supply pipe 17 Supply port 18 Rotation motor 19 Rotation shaft 20 Pumping pipe 21 Top surface 22 Rotation plate 22a Rotation plate 23 Bottom face 31 on the lower end side 31 Air purification device 32 Housing 33 Ventilation and air conditioning system 34 Indoors Machine 35 Circulation blower 36 Indoor suction opening 37 Indoor blowout opening 38 Exhaust opening 39 Inlet opening 40 Ventilator 41 Heat exchange device 42 House ceiling 44 Outer wall 46 Exhaust blower 47 Branch chamber 48 Branch duct 50 Hypochlorous acid Supply unit 51 Recovery pipe 52 Recovery port 53 Pump 54 Open/close valve 55 Recovery flow path 56 Supply flow path 61 Hypochlorous acid supply unit 62 Supply flow path 63 Recovery flow path 72 Water supply port 73 Water intake pipe 76 Flow rate control unit 77 Water level detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

A space disinfection and deodorization device has a housing with an air inlet and an air outlet. The inside of the housing is provided with a liquid atomization chamber, an air channel, and a fan. The air channel links the air inlet to the air outlet via the liquid atomization chamber. The fan blows air in the air channel to the air outlet. The liquid atomization chamber has a hypochlorous acid supply unit, a water storage unit, and an injection device. The injection device suctions water from the water storage unit and discharges water droplets toward a collision wall. In the injection device, the particle size of water droplets to be discharged is changed and the concentration of the hypochlorous acid to be expelled into a space to be treated is changed by controlling the water level to fill water pipes.

Description

空気浄化装置Air purifier
 本開示は、次亜塩素酸を含む水を用いて、空気中の細菌、ウイルス、浮遊菌や臭いなどの除去(除菌、脱臭)を行う空気浄化装置に関するものである。 The present disclosure relates to an air purification device that removes bacteria (bacteria, viruses, airborne bacteria, odors, etc. in the air (sterilization, deodorization) using water containing hypochlorous acid.
 対象とする空間を殺菌するために薬剤などの微細水粒子を発生させる方法として、薬剤水溶液を含ませたフィルタへ空気を通風させる方法(例えば下記特許文献1)、回転体による遠心力を利用して薬剤を壁面へ衝突させる方法(例えば下記特許文献2)、加圧空気を用いて薬剤水溶液を細孔からの噴出させる方法(例えば下記特許文献3、4)、超音波振動を加えて薬剤水溶液を微細化する方法(例えば下記特許文献5)などが知られている。 As a method of generating fine water particles such as a drug to sterilize a target space, a method of passing air through a filter containing an aqueous solution of a drug (for example, Patent Document 1 below) and a centrifugal force by a rotating body are used. To collide the drug against the wall surface (for example, Patent Document 2 below), a method of ejecting the drug aqueous solution from the pores using pressurized air (for example, Patent Documents 3 and 4 below), and ultrasonic vibration to add the drug aqueous solution. There is known a method of refining (for example, the following Patent Document 5).
 対象とする空間の除菌や脱臭を行うことを目的として、薬剤などの微細水粒子を発生させる方法において、次亜塩素酸水を用いることができる。次亜塩素酸は、微細水粒子に含まれた状態あるいは気体の状態で空気中に拡散すると、空気中に存在する菌やウイルス、臭い成分に接触して、これらを除去することができる。 ㆍHypochlorous acid water can be used in the method of generating fine water particles such as chemicals for the purpose of sterilizing and deodorizing the target space. When hypochlorous acid diffuses into the air in the state of being contained in fine water particles or in the state of gas, it can come into contact with bacteria, viruses and odorous components present in the air to remove them.
 このような次亜塩素酸による除菌・脱臭効果を長時間に渡り維持させるためには、常時、空間への装置から空間へ吹出す次亜塩素酸の濃度を調節し、対象とする空間内の次亜塩素酸の濃度を一定に維持する必要がある。 In order to maintain the disinfecting and deodorizing effects of such hypochlorous acid for a long time, always adjust the concentration of hypochlorous acid blown from the device to the space into the space It is necessary to maintain a constant concentration of hypochlorous acid.
 そこで、脱臭装置(例えば下記特許文献1、3)では、次亜塩素酸による空気の除菌・脱臭効果を維持するために、湿度を検知し、電気分解強度の調節で次亜塩素酸の生成量を制御していた。 Therefore, in a deodorizing device (for example, Patent Documents 1 and 3 below), in order to maintain the sterilization/deodorizing effect of air by hypochlorous acid, humidity is detected and hypochlorous acid is generated by adjusting electrolysis strength. Controlled the amount.
 このような従来の空気浄化装置によれば、次亜塩素酸の供給には加湿を伴うものであった。例えば、対象とする空間が至適湿度に達しているにも関わらず、空間へ吹き出す次亜塩素酸の濃度を上昇させたい場合、次亜塩素酸の分子を含んだ微細水粒子を生成し噴霧する必要があるため、対象とする空間が過剰に加湿されてしまう。更に、空間の過剰な加湿は室温の下降を引き起こすことがあった。 According to such a conventional air purifier, the supply of hypochlorous acid was accompanied by humidification. For example, if you want to increase the concentration of hypochlorous acid blown into the space even though the target space has reached the optimum humidity, generate fine water particles containing molecules of hypochlorous acid and spray it. Therefore, the target space is excessively humidified. Furthermore, excessive humidification of the space may cause a drop in room temperature.
 また、加湿量と独立させて電気分解強度の調節で次亜塩素酸水溶液の生成量を制御することは、電気分解に時間を要し、空間に次亜塩素酸を供給するまでに時間差が生じてしまい、空間の除菌・脱臭効果が維持されない可能性がある。 Moreover, controlling the amount of hypochlorous acid aqueous solution produced by adjusting the electrolysis strength independently of the amount of humidification requires time for electrolysis, and there is a time lag until hypochlorous acid is supplied to the space. It is possible that the sterilization and deodorization effects of the space will not be maintained.
 つまり、空間内の次亜塩素酸濃度を維持するために、加湿量に依存せず空間に放出する次亜塩素酸濃度を制御することが困難であった。 That is, in order to maintain the hypochlorous acid concentration in the space, it was difficult to control the concentration of hypochlorous acid released into the space without depending on the amount of humidification.
 そこで、本開示は、装置から吹き出す次亜塩素酸濃度を加湿量に対して独立して制御できることが可能な空気浄化装置を提供することを目的としている。 Therefore, the present disclosure aims to provide an air purifying device capable of independently controlling the concentration of hypochlorous acid blown from the device with respect to the humidification amount.
特開2016-174853号公報JP, 2016-174853, A 特開2009-115440号公報JP, 2009-115440, A 特開2000-288075号公報Japanese Patent Laid-Open No. 2000-288075 特開2011-87905号公報JP, 2011-87905, A 特開平11-169441号公報JP-A-11-169441
 本開示では、回転体による遠心力を利用して水を壁面へ衝突させる方法を用いて、空気中に放出させる次亜塩素酸の量を制御する装置を検討したところ、衝突壁に衝突させる薬剤液の粒径を調節することが重要であることを見出した。 In the present disclosure, a method of controlling the amount of hypochlorous acid released into the air by using a method of causing water to collide with a wall surface by utilizing a centrifugal force of a rotating body has been investigated. It has been found that it is important to control the particle size of the liquid.
 すなわち、本開示の空気浄化装置は、空気を吸い込む吸込口と前記吸込口より吸い込まれた空気を吹き出す吹出口とを備えた筐体を備えている。筐体内には、吸込口から吹出口まで通風を行うための送風部を備えている。吸込口と吹出口との間には風路が設けられている。風路内には、吸込口より吸い込まれた空気に含まれる次亜塩素酸の濃度を検知する検知部と、通過する空気に微細化した次亜塩素酸水を含ませる液体微細化室とを備えている。 That is, the air purification apparatus of the present disclosure includes a housing having a suction port that sucks in air and a blowout port that blows out the air sucked from the suction port. An air blower is provided in the housing to ventilate air from the suction port to the air outlet. An air passage is provided between the suction port and the air outlet. In the air passage, a detection unit that detects the concentration of hypochlorous acid contained in the air sucked from the suction port, and a liquid micronization chamber that contains micronized hypochlorous acid water in the passing air. I have it.
 液体微細化室内には、衝突壁と、揚水管と、次亜塩素酸供給部と、高さ調整部とを備えている。衝突壁は、回転板の遠心力により放出した次亜塩素酸水を衝突させるものである。揚水管は、回転板と同軸にして回転し、該回転板の中心部側に次亜塩素酸水溶液を揚水するものである。次亜塩素酸供給部は、揚水管の内側へ次亜塩素酸水溶液を供給するものである。高さ調整部は、揚水管内の次亜塩素酸水溶液の液面の高さを調整するものである。 The liquid refining chamber is equipped with a collision wall, a pumping pipe, a hypochlorous acid supply unit, and a height adjustment unit. The collision wall collides with the hypochlorous acid water released by the centrifugal force of the rotating plate. The pumping pipe rotates coaxially with the rotary plate and pumps the hypochlorous acid aqueous solution to the central portion side of the rotary plate. The hypochlorous acid supply unit supplies the hypochlorous acid aqueous solution to the inside of the pumping pipe. The height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe.
 また、筐体には制御部を備えている。制御部は、検知部によって検知した次亜塩素酸の濃度に応じて揚水管内の次亜塩素酸水溶液の液面の高さを調整するものである。 Also, the case has a control unit. The control unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe according to the concentration of hypochlorous acid detected by the detection unit.
 これにより、制御部が揚水管内の次亜塩素酸水溶液の液面の高さを調整すると、回転板の中心部側に揚水する次亜塩素酸水溶液の量を調整することができるので、衝突壁に衝突させる次亜塩素酸水の粒子径を変えることができる。すなわち、風路内で揮発する次亜塩素酸量を調整することができる。このような次亜塩素酸水を衝突壁へ衝突させる方法では、空間へ吹き出す次亜塩素酸濃度は加湿量に比べて大きな幅で制御することが可能となる。つまり、装置から吹き出す次亜塩素酸濃度を加湿量に対して独立して制御することができる。 With this, when the control unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe, it is possible to adjust the amount of the hypochlorous acid aqueous solution to be pumped to the central portion side of the rotating plate. The particle size of the hypochlorous acid water to be collided with can be changed. That is, the amount of hypochlorous acid volatilized in the air passage can be adjusted. In such a method of colliding the hypochlorous acid water with the collision wall, the concentration of hypochlorous acid blown into the space can be controlled with a width larger than the humidification amount. That is, the concentration of hypochlorous acid blown out from the device can be controlled independently of the amount of humidification.
図1は、本開示の実施の形態1の空気浄化装置の外観図である。FIG. 1 is an external view of an air purification device according to a first embodiment of the present disclosure. 図2は、本開示の実施の形態1の空気浄化装置の概略断面を表す図である。FIG. 2 is a diagram illustrating a schematic cross section of the air purification device according to the first embodiment of the present disclosure. 図3Aは、本開示の実施の形態1の揚水管において、回転板の数を増やした場合の構成を示す斜視図である。FIG. 3A is a perspective view showing a configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure. 図3Bは、本開示の実施の形態1の揚水管において、回転板の数を増やした場合の構成を示す側面図である。FIG. 3B is a side view showing the configuration when the number of rotating plates is increased in the water pump of the first embodiment of the present disclosure. 図3Cは、本開示の実施の形態1の揚水管において、回転板の数を増やした場合の構成を示す側面図である。FIG. 3C is a side view showing the configuration when the number of rotary plates is increased in the water pump of the first embodiment of the present disclosure. 図4Aは、本開示の実施の形態1の空気浄化装置における揚水管内の次亜塩酸水溶液の液面高さ(水位)の例を示す図である。FIG. 4A is a diagram showing an example of the liquid level (water level) of the hypochlorous acid aqueous solution in the pumping pipe in the air purification apparatus of the first embodiment of the present disclosure. 図4Bは、本開示の実施の形態1の空気浄化装置における揚水管内の次亜塩酸水溶液の液面高さ(水位)と吹出し次亜塩素酸濃度の関係示す図である。FIG. 4B is a diagram showing a relationship between the liquid level height (water level) of the hypochlorous acid aqueous solution in the pumping pipe and the blown out hypochlorous acid concentration in the air purification device of the first embodiment of the present disclosure. 図4Cは、本開示の実施の形態1の空気浄化装置における揚水管内の次亜塩酸水溶液の液面高さ(水位)と加湿量の関係を示す図である。FIG. 4C is a diagram showing the relationship between the liquid level height (water level) of the hypochlorous acid aqueous solution in the pumping pipe and the humidification amount in the air purification device of the first embodiment of the present disclosure. 図5は、本開示の実施の形態1の空気浄化装置における噴射装置の別の形態を示す概略図である。FIG. 5 is a schematic diagram showing another form of the injection device in the air purification device of the first embodiment of the present disclosure. 図6は、本開示の実施の形態2の換気空調システムにおける空気浄化装置の実施形態を示す図である。FIG. 6 is a diagram showing an embodiment of an air purification device in a ventilation air conditioning system according to Embodiment 2 of the present disclosure. 図7は、本開示の実施の形態3の空気浄化装置の概略断面を表す図である。FIG. 7: is a figure showing the schematic cross section of the air purification apparatus of Embodiment 3 of this indication. 図8は、本開示の実施の形態4の空気浄化装置の概略断面を表す図である。FIG. 8: is a figure showing the schematic cross section of the air purification apparatus of Embodiment 4 of this indication. 図9は、本開示の実施の形態5の空気浄化装置の概略断面を表す図である。FIG. 9: is a figure showing the schematic cross section of the air purification apparatus of Embodiment 5 of this indication.
 本開示に係る空気浄化装置は、筐体と送風部と液体微細化室と濃度検知部を備えている。筐体には、空気を吸い込む吸込口と前記吸込口より吸い込まれた空気を吹き出す吹出口とを備えている。送風部は、筐体内において、吸込口から吹出口まで通風を行うものである。また、吸込口と吹出口との間には、風路が設けられている。濃度検知部は、吸込口より吸い込まれた空気に含まれる次亜塩素酸の濃度を検知するものである。液体微細化室は、通過する空気に微細化した次亜塩素酸水溶液を含ませるものである。また、液体微細化室内には、衝突壁と、回転板と、揚水管と、次亜塩素酸供給部と、高さ検知部とを備えている。衝突壁は、回転板の遠心力により放出した次亜塩素酸水溶液を衝突させるものである。揚水管は、回転板と同軸にして回転し、該回転板の中心部側に次亜塩素酸水溶液を揚水するものである。次亜塩素酸供給部は、揚水管の内側へ次亜塩素酸水溶液を供給するものである。高さ検知部は、揚水管内の次亜塩素酸水溶液の液面の高さを検知するものである。さらに、筐体内には、濃度検知部によって検知した次亜塩素酸の濃度に応じて前記揚水管内の次亜塩素酸水溶液の液面の高さを調整する高さ調整部を備えている。 The air purification device according to the present disclosure includes a housing, a blower unit, a liquid atomization chamber, and a concentration detection unit. The housing is provided with a suction port for sucking air and a blowout port for blowing out the air sucked from the suction port. The air blower vents air from the suction port to the air outlet in the housing. An air passage is provided between the suction port and the air outlet. The concentration detector detects the concentration of hypochlorous acid contained in the air sucked from the suction port. The liquid refining chamber is one in which the passing air contains the atomized hypochlorous acid aqueous solution. Further, the liquid atomization chamber is provided with a collision wall, a rotary plate, a pumping pipe, a hypochlorous acid supply unit, and a height detection unit. The collision wall collides with the hypochlorous acid aqueous solution released by the centrifugal force of the rotating plate. The pumping pipe rotates coaxially with the rotary plate and pumps the hypochlorous acid aqueous solution to the central portion side of the rotary plate. The hypochlorous acid supply unit supplies the hypochlorous acid aqueous solution to the inside of the pumping pipe. The height detection unit detects the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe. Further, the housing is provided with a height adjusting unit for adjusting the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe according to the concentration of hypochlorous acid detected by the concentration detecting unit.
 これにより、吸込口から吸気された空気が液体微細化装置内を通過することで、空気は、次亜塩素酸を含んだ微細水粒子と気体状次亜塩素酸に接触する。すなわち、空気中に含まれる浮遊菌や臭気成分が除去されるため、吹出口から清浄な空気を得ることができる。この時、揚水管内の次亜塩素酸水溶液の高さを調整すると、回転板の中心部側に揚水する次亜塩素酸の膜厚を調整して、衝突壁に衝突させる次亜塩素酸水の粒子径を変えることができるので、風路内で揮発する次亜塩素酸の量を調整することができる。つまり、吹き出す次亜塩素酸濃度を加湿量に比べて大きく変化させることが可能となる。 By this, the air sucked from the suction port passes through the inside of the liquid atomization device, so that the air comes into contact with the fine water particles containing hypochlorous acid and the gaseous hypochlorous acid. That is, since airborne bacteria and odorous components contained in the air are removed, clean air can be obtained from the air outlet. At this time, if the height of the hypochlorous acid aqueous solution in the pumping pipe is adjusted, the film thickness of the hypochlorous acid pumped to the center side of the rotating plate is adjusted, and the hypochlorous acid water to be collided with the collision wall is Since the particle size can be changed, the amount of hypochlorous acid volatilized in the air passage can be adjusted. That is, it is possible to greatly change the concentration of hypochlorous acid to be blown out, compared with the amount of humidification.
 また、空気浄化装置は、液体微細化室の底面に次亜塩素酸水を貯留する貯水部を備えている。また、揚水管は、上端と下端が開放し、下端よも上端の断面積が大きい筒体であって、回転軸を沿直方向にしてかつ貯水部内に揚水管の下端を浸水させて配置している。次亜塩素酸供給部は、高さ調整部の指示に基づき貯水部へ次亜塩素酸を供給するものである。 Also, the air purification device is equipped with a water storage unit that stores hypochlorous acid water on the bottom surface of the liquid atomization chamber. The pumping pipe is a cylinder whose upper end and lower end are open and whose upper end has a larger cross-sectional area than its lower end.The pumping pipe is arranged with the axis of rotation in the vertical direction and with the lower end of the pumping pipe immersed in the reservoir. ing. The hypochlorous acid supply unit supplies hypochlorous acid to the water storage unit based on an instruction from the height adjustment unit.
 これにより、揚水管が回転をすると、内側の次亜塩素酸水溶液が揚水管の上端まで揚水される。この時、揚水管内では、次亜塩素酸水溶液の水面の高さ(水位)によって、内円周の大きさと水面から上端までの距離が異なるため、吸い上げられる次亜塩素酸水溶液の量が異なる。次亜塩素酸水溶液の水面の高さを調整することで、上端に達した次亜塩素酸水溶液は、回転板の内側部分で厚さが調整され、回転板から遠心力によって放出する次亜塩素酸水の粒子径を変化させることができる。つまり、次亜塩素酸水溶液の水面の高さを調整することで、風路内で揮発する次亜塩素酸量を調整することができる。 With this, when the pump pipe rotates, the inner hypochlorous acid aqueous solution is pumped to the upper end of the pump pipe. At this time, in the pumping pipe, the size of the inner circumference and the distance from the water surface to the upper end differ depending on the height (water level) of the water surface of the hypochlorous acid aqueous solution, so the amount of the hypochlorous acid aqueous solution sucked up differs. By adjusting the height of the water surface of the hypochlorous acid aqueous solution, the hypochlorous acid aqueous solution that has reached the upper end has its thickness adjusted inside the rotating plate, and hypochlorous acid is released from the rotating plate by centrifugal force. The particle size of the acid water can be changed. That is, by adjusting the height of the water surface of the hypochlorous acid aqueous solution, the amount of hypochlorous acid volatilized in the air duct can be adjusted.
 また、空気浄化装置の揚水管は、回転軸を沿直方向にして配置した筒体であって、下端よりも上端の断面積を大きくし、上端を開放し下端を閉塞し貯水部を形成している。次亜塩素酸供給部には、揚水管内に次亜塩素酸水溶液を供給する給水管を備えている。高さ調整部の指示に基づき貯水部へ次亜塩素酸を供給するものである。 Further, the pumping pipe of the air purifying device is a tubular body arranged with the rotation axis in the vertical direction, and the cross-sectional area of the upper end is made larger than the lower end, and the upper end is opened and the lower end is closed to form a water storage section. ing. The hypochlorous acid supply unit is provided with a water supply pipe for supplying the hypochlorous acid aqueous solution into the pumping pipe. Hypochlorous acid is supplied to the water storage unit based on the instruction from the height adjustment unit.
 これにより、この時、揚水管内では、次亜塩素酸水溶液の液面の高さ(水位)によって、内円周の大きさと水面から上端までの距離が異なるため、吸い上げられる次亜塩素酸の量が調整される。すなわち、揚水管の上端に達した次亜塩素酸水溶液は、回転板の内側部分で厚さが調整され、回転板から遠心力によって放出する次亜塩素酸水溶液の粒子径を変化させることができる。つまり、風路内で揮発する次亜塩素酸量を調整することができる。 As a result, at this time, in the pumping pipe, the size of the inner circumference and the distance from the water surface to the top end differ depending on the height (water level) of the hypochlorous acid aqueous solution, so the amount of hypochlorous acid sucked up. Is adjusted. That is, the thickness of the hypochlorous acid aqueous solution reaching the upper end of the pumping pipe is adjusted at the inner portion of the rotary plate, and the particle size of the hypochlorous acid aqueous solution discharged from the rotary plate by centrifugal force can be changed. .. That is, the amount of hypochlorous acid volatilized in the air passage can be adjusted.
 また、空気浄化装置の液体微細化室は、下部に次亜塩素酸水溶液を貯留する貯水部を備えている。また、液体微細化室と次亜塩素酸供給部は、給水流路と回収流路で接続されている。供給流路は、ポンプの動作によって、給水管を通じて貯水部へ次亜塩素酸水溶液を供給する流路である。そのために、供給流路は、給水管とポンプと給水管の一端である供給口を備えている。供給口は液体微細化室に配置されている。また、回収流路は、開閉弁の開放によって、回収管を通じて回収口から貯水部に貯留した次亜塩素酸水溶液を次亜塩素酸供給部へ回収する流路である。そのために、回収流路は、回収管とポンプと回収管の一端である回収口を備えている。回収口は液体微細化室の貯水部に配置されている。 Also, the liquid refining chamber of the air purification device has a water storage unit that stores the hypochlorous acid aqueous solution at the bottom. Further, the liquid atomization chamber and the hypochlorous acid supply unit are connected by a water supply flow path and a recovery flow path. The supply flow passage is a flow passage for supplying the hypochlorous acid aqueous solution to the water storage section through the water supply pipe by the operation of the pump. For this purpose, the supply flow path includes a water supply pipe, a pump, and a supply port that is one end of the water supply pipe. The supply port is arranged in the liquid atomization chamber. The recovery channel is a channel for recovering the hypochlorous acid aqueous solution stored in the water storage section from the recovery port through the recovery pipe to the hypochlorous acid supply section by opening the opening/closing valve. For this purpose, the recovery passageway includes a recovery pipe, a pump, and a recovery port that is one end of the recovery pipe. The recovery port is arranged in the water storage section of the liquid atomization chamber.
 また、次亜塩素酸供給部は、回収口よりも低い位置に配置され、回収口は貯水部の最下部に配置されている。高さ調整部が、開閉弁とポンプの動作を切り替えて揚水管内の次亜塩素酸水溶液の液面の高さを調整するものである。 Also, the hypochlorous acid supply unit is located lower than the recovery port, and the recovery port is located at the bottom of the water storage unit. The height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operation of the on-off valve and the pump.
 これにより、ポンプを動作させることによって、次亜塩素酸供給部から給水管を通じて供液体微細化室へ次亜塩素酸水溶液を供給することができる。また、開閉弁を開放することによって、回収管を通じて液体微細化室に貯留した次亜塩素酸水溶液を次亜塩素酸供給部へ回収することができる。つまり、高さ調整部が、開閉弁とポンプの動作を切り替えて揚水管内の次亜塩素酸溶液の液面の高さを調整することができる。 By this, by operating the pump, it is possible to supply the hypochlorous acid aqueous solution from the hypochlorous acid supply unit to the liquid supply micronization chamber through the water supply pipe. Further, by opening the on-off valve, the hypochlorous acid aqueous solution stored in the liquid atomizing chamber can be recovered through the recovery pipe to the hypochlorous acid supply unit. That is, the height adjusting unit can switch the operation of the on-off valve and the pump to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe.
 また、一態様に係る空気浄化装置の液体微細化室は、上部に次亜塩素酸水溶液を貯留する貯水部を備えている。また、液体微細化室と次亜塩素酸供給部は、給水流路と回収流路で接続されている。 Further, the liquid atomizing chamber of the air purifying apparatus according to one aspect is provided with a water storage section for storing the hypochlorous acid aqueous solution in the upper part. Further, the liquid atomization chamber and the hypochlorous acid supply unit are connected by a water supply flow path and a recovery flow path.
 供給流路は、開閉弁の開放によって、給水管を通じて貯水部へ次亜塩素酸水溶液を供給する流路である。そのために、供給流路は、給水管と開閉弁と給水管の一端である供給口を備えている。供給口は液体微細化室に配置されている。また、回収流路は、ポンプの動作によって、回収口から回収管を通じて貯水部に貯留した次亜塩素酸水溶液を次亜塩素酸供給部へ回収する流路である。そのために、回収流路は、回収管とポンプと回収管の一端である回収口を備えている。回収口は液体微細化室の貯水部に配置されている。 The supply flow path is a flow path that supplies the hypochlorous acid aqueous solution to the water storage section through the water supply pipe by opening the on-off valve. For this purpose, the supply flow path includes a water supply pipe, an opening/closing valve, and a supply port that is one end of the water supply pipe. The supply port is arranged in the liquid atomization chamber. The recovery channel is a channel for recovering the hypochlorous acid aqueous solution stored in the water storage part from the recovery port through the recovery pipe to the hypochlorous acid supply part by the operation of the pump. For this purpose, the recovery passageway includes a recovery pipe, a pump, and a recovery port that is one end of the recovery pipe. The recovery port is arranged in the water storage section of the liquid atomization chamber.
 また、次亜塩素酸供給部は、供給口よりも高い位置に配置され、回収口は貯水部の最下部に配置されている。高さ調整部が、開閉弁とポンプの動作を切り替えて揚水管内の次亜塩素酸水溶液の液面の高さを調整するものである。 Also, the hypochlorous acid supply part is located higher than the supply port, and the recovery port is located at the bottom of the water storage part. The height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operation of the on-off valve and the pump.
 これにより、開閉弁を開放することによって、次亜塩素酸供給部から給水管を通じて供液体微細化室へ次亜塩素酸を供給することができる。また、ポンプを動作させることによって、回収口から回収管を通じて液体微細化室に貯留した次亜塩素酸を次亜塩素酸供給部へ回収することができる。つまり、高さ調整部が、開閉弁とポンプの動作を切り替えて揚水管内の次亜塩素酸溶液の液面の高さを調整することができる。 By doing this, by opening the on-off valve, it is possible to supply hypochlorous acid from the hypochlorous acid supply unit to the liquid supply micronization chamber through the water supply pipe. Further, by operating the pump, the hypochlorous acid stored in the liquid atomization chamber can be recovered from the recovery port to the hypochlorous acid supply unit through the recovery pipe. That is, the height adjusting unit can switch the operation of the on-off valve and the pump to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe.
 以下、本開示の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 (実施の形態1)
 まず、図1から図5を用いて、実施の形態1に係る空気浄化装置1について説明する。
(Embodiment 1)
First, the air purification apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 to 5.
 図1に示すように、空気浄化装置1においては、略箱形状の筐体2を備えている。筐体2の側面には吸気口3、筐体2の天面には吹出口4を設けている。 As shown in FIG. 1, the air purification device 1 includes a substantially box-shaped housing 2. An intake port 3 is provided on the side surface of the housing 2, and an outlet 4 is provided on the top surface of the housing 2.
 図2に示すように、筐体2内には、液体微細化室5と、送風部6と、濃度検知部7と、高さ調整部8を設けている。また、吸気口3から液体微細化室5、送風部6を通過して吹出口4へ連通する空気風路9を構成している。つまり、吸気口3から吸い込まれた空気は、液体微細化室5を通過し、その後、吹出口4から排気される。空気風路9には、液体微細化室5よりも気流の上流側に濃度検知部7を配置している。濃度検知部7は通過する空気に含まれる次亜塩素酸の濃度を検知するものである。 As shown in FIG. 2, a liquid atomizing chamber 5, a blower unit 6, a concentration detecting unit 7, and a height adjusting unit 8 are provided in the housing 2. In addition, an air passage 9 is formed which communicates with the air outlet 4 from the air inlet 3 through the liquid atomization chamber 5 and the air blower 6. That is, the air sucked from the intake port 3 passes through the liquid atomization chamber 5, and then is exhausted from the outlet port 4. In the air duct 9, the concentration detection unit 7 is arranged on the upstream side of the air flow with respect to the liquid atomization chamber 5. The concentration detector 7 detects the concentration of hypochlorous acid contained in the passing air.
 なお、吸気口3から吸い込まれた空気の一部だけが液体微細化室5を通過するように風路を分岐する構成とすることも可能である。筐体2内で空気風路9を分岐させ、分岐させた一方の風路に液体微細化室5を設ければよい。 Note that the air passage may be branched so that only a part of the air sucked from the intake port 3 passes through the liquid atomization chamber 5. The air air passage 9 may be branched in the housing 2, and the liquid atomization chamber 5 may be provided in one of the branched air passages.
 液体微細化室5は、図2に示すように、次亜塩素酸供給部11と、衝突壁12と、貯水部13と、高さ検知部14と、噴射装置15を備えている。 As shown in FIG. 2, the liquid atomization chamber 5 includes a hypochlorous acid supply unit 11, a collision wall 12, a water storage unit 13, a height detection unit 14, and an injection device 15.
 衝突壁12は、液体微細化室5の側壁と一体に形成してもよい。 The collision wall 12 may be formed integrally with the side wall of the liquid atomization chamber 5.
 貯水部13は液体微細化室5の下部に配置している。 The water storage section 13 is arranged below the liquid atomization chamber 5.
 貯水部13に次亜塩素酸水溶液を供給するために、次亜塩素酸供給部11は、給水管16を介して液体微細化室5内に供給口17を開口している。次亜塩素酸水溶液を貯水部13に供給するために、次亜塩素酸供給部11に次亜塩素酸を含む水溶液を補給しておく方法、あるいは、次亜塩素酸供給部11の内部に電極を設け、塩化物イオンを含んだ水を電気分解して生成する方法を用いることができる。少なくとも、次亜塩素酸供給部11は、内部に次亜塩素酸水溶液を貯留できるタンクである。加えて、次亜塩素酸供給部11は、貯留した次亜塩素酸水溶液を供給口17へ送ることができるポンプ(図示せず)を備えていればよい。 In order to supply the hypochlorous acid aqueous solution to the water storage section 13, the hypochlorous acid supply section 11 has a supply port 17 opened in the liquid atomization chamber 5 via a water supply pipe 16. In order to supply the hypochlorous acid aqueous solution to the water storage section 13, a method of replenishing the hypochlorous acid supply section 11 with an aqueous solution containing hypochlorous acid, or an electrode inside the hypochlorous acid supply section 11 Can be used, and a method of electrolyzing water containing chloride ions to generate water can be used. At least the hypochlorous acid supply unit 11 is a tank capable of storing the hypochlorous acid aqueous solution therein. In addition, the hypochlorous acid supply part 11 should just be equipped with the pump (not shown) which can send the stored hypochlorous acid aqueous solution to the supply port 17.
 高さ検知部14は、液体微細化室5の下部において、貯水部13に貯留した次亜塩素酸水溶液の液面の高さを検知することができる。そして、高さ検知部14からの検知信号をもとに、高さ調整部8が次亜塩素酸供給部11へ次亜塩素酸水溶液を供給させる指示を出すことができる。つまり、次亜塩素酸供給部11は、高さ調整部8の指示に基づき貯水部13へ次亜塩素酸水溶液を供給することができる。そのために、次亜塩素酸供給部11では、濃度検知部7で検知した次亜塩素酸の濃度と貯水部13に貯留する次亜塩素酸水溶液の液面の高さの関係を定めておくことが重要である。 The height detection unit 14 can detect the height of the liquid surface of the hypochlorous acid aqueous solution stored in the water storage unit 13 below the liquid atomization chamber 5. Then, based on the detection signal from the height detection unit 14, the height adjustment unit 8 can issue an instruction to supply the hypochlorous acid aqueous solution to the hypochlorous acid supply unit 11. That is, the hypochlorous acid supply unit 11 can supply the hypochlorous acid aqueous solution to the water storage unit 13 based on the instruction of the height adjustment unit 8. Therefore, in the hypochlorous acid supply unit 11, the relationship between the concentration of hypochlorous acid detected by the concentration detection unit 7 and the height of the liquid surface of the hypochlorous acid aqueous solution stored in the water storage unit 13 should be determined. is important.
 噴射装置15は、回転モータ18、回転軸19、揚水管20で構成されている。 The injection device 15 is composed of a rotary motor 18, a rotary shaft 19, and a pumping pipe 20.
 揚水管20は、液体微細化室5内で、天面21に据え付けられた回転モータ18と回転軸19を介して、鉛直に配置されている。揚水管20は筒状かつ円錐台形状を有している。円錐台形状の二つの底面はいずれも開口しており、開口面積の小さい側の底面が貯水部13の液面よりも下方に配置され、開口面積の大きい底面には外周へ張り出した回転板22が備え付けられている。回転板22は、空気浄化装置1が処理する空気の量により直径を変化させたり、枚数を増やしたりしても良い。図3Aのように、回転板22の枚数を追加した場合、図3Bに示すように、回転板22は回転軸19の方向に所定の間隔を開けて設けることができる。この場合、複数の回転板の中で最上段以外の回転板22aでは、回転板22aと揚水管の連結箇所に、開口部20aを設けることが望ましい。つまり、揚水管20の側面には、追加した回転板22aの上面へ繋がる開口部20aを設けるものである。開口部20aは、図3Cに示すように、一枚の回転板22aに対して所定の中心角ごとに設けることがよい(図では中心角が180度となっている)。開口部20aから、各回転板22a上に次亜塩素酸水溶液を吹き出すことが可能となる。 The pumping pipe 20 is arranged vertically in the liquid atomization chamber 5 via a rotary motor 18 and a rotary shaft 19 installed on the top surface 21. The pumping pipe 20 has a cylindrical shape and a truncated cone shape. Both of the two truncated cone-shaped bottom surfaces are open, the bottom surface on the side with the smaller opening area is arranged below the liquid surface of the water storage section 13, and the rotating plate 22 protruding to the outer periphery is provided on the bottom surface with the large opening area. Is equipped with. The diameter of the rotary plate 22 may be changed or the number of the rotary plates 22 may be increased depending on the amount of air processed by the air purification device 1. When the number of the rotary plates 22 is added as shown in FIG. 3A, the rotary plates 22 can be provided at predetermined intervals in the direction of the rotary shaft 19 as shown in FIG. 3B. In this case, among the plurality of rotary plates, it is desirable that the rotary plate 22a other than the uppermost stage be provided with the opening 20a at the connection point between the rotary plate 22a and the pumping pipe. That is, the side surface of the pumping pipe 20 is provided with the opening 20a connected to the upper surface of the added rotary plate 22a. As shown in FIG. 3C, the openings 20a are preferably provided for each predetermined center angle with respect to one rotating plate 22a (the center angle is 180 degrees in the figure). From the opening 20a, it becomes possible to blow out the hypochlorous acid aqueous solution onto each rotary plate 22a.
 さらに揚水管20と衝突壁12の間に形成された間隙に、エリミネーターなどの障害物を設けても良い。 Further, an obstacle such as an eliminator may be provided in the gap formed between the pumping pipe 20 and the collision wall 12.
 高さ方向において、衝突壁12は、液体微細化室5において回転板22と同じ高さの位置を含むように設けている。 In the height direction, the collision wall 12 is provided so as to include a position at the same height as the rotary plate 22 in the liquid atomization chamber 5.
 上記構成において、まず、貯水部13に水を貯水した場合について説明をする。 In the above configuration, first, the case where water is stored in the water storage unit 13 will be described.
 空気浄化装置1を稼働させると、回転モータ18により回転軸19が回転し、回転軸19の回転に伴い揚水管20が回転する。この時、揚水管20の回転で貯水部13に貯水した水は、遠心力により揚水管20の円周(内側の壁面)に沿って回転しながら下端側から上端側へ上昇する。揚水管20の内壁上を回転しながら上昇する水は、揚水管20の断面の増加にともなって円周上で広がり、上端の回転板22上まで移動して、薄く広がり水膜を形成する。揚水管20内で下端側から上端側へと水が移動する際に水の量が調整されるため、回転板22上の水膜の厚みは均一となる。 When the air purification device 1 is operated, the rotary motor 18 rotates the rotary shaft 19, and the pumping pipe 20 rotates as the rotary shaft 19 rotates. At this time, the water stored in the water storage portion 13 by the rotation of the pumping pipe 20 rises from the lower end side to the upper end side while rotating along the circumference (inner wall surface) of the pumping pipe 20 by the centrifugal force. The water that rises while rotating on the inner wall of the pumping pipe 20 spreads on the circumference along with the increase in the cross section of the pumping pipe 20, moves to the rotating plate 22 at the upper end, and spreads thinly to form a water film. Since the amount of water is adjusted when the water moves from the lower end side to the upper end side in the pumping pipe 20, the thickness of the water film on the rotary plate 22 becomes uniform.
 回転板22の上面に形成された水膜は、回転により生じる遠心力により回転板22の中心部から外延部へ高速で広がり、外延部から水滴として放出される。放出された水滴は、衝突壁12に衝突し、更に微細化され、送風部6による通風により吹出口4から対象空間に放出される。もしくは、その空気による運搬途中で気化される。これにより、空気浄化装置1から吹き出す空気に微細滴を加えることができるため、対象空間の加湿を行うことができる。 The water film formed on the upper surface of the rotating plate 22 spreads from the central portion of the rotating plate 22 to the outer extending portion at high speed due to the centrifugal force generated by the rotation, and is discharged as a water drop from the outer extending portion. The discharged water droplets collide with the collision wall 12, are further miniaturized, and are discharged from the outlet 4 into the target space by the ventilation by the blower unit 6. Or, it is vaporized during transportation by the air. As a result, since fine droplets can be added to the air blown out from the air purification device 1, the target space can be humidified.
 この時、空気風路9内に設けた検知部で、吸気した空気の温湿度を検知し、噴射装置15の揚水管20の回転数を変え、噴射装置15から放出する水滴の量を変えることができる。すなわち、空気に含ませる水分量を制御し、対象空間の加湿量を制御することができる。 At this time, the temperature and humidity of the inhaled air are detected by the detection unit provided in the air duct 9, the rotation speed of the pumping pipe 20 of the injection device 15 is changed, and the amount of water droplets emitted from the injection device 15 is changed. You can That is, the amount of moisture contained in the air can be controlled to control the amount of humidification of the target space.
 さて、本実施の形態では、貯水部13に次亜塩素酸水を貯水したものである。 By the way, in the present embodiment, the hypochlorous acid water is stored in the water storage unit 13.
 次亜塩素酸供給部11から貯水部13に次亜塩素酸水を供給し、空気に次亜塩素酸を含ませ、次亜塩素酸を対象とする空間に放出することができる。 Hypochlorous acid water can be supplied from the hypochlorous acid supply unit 11 to the water storage unit 13 to contain hypochlorous acid in the air, and the hypochlorous acid can be discharged to the target space.
 高さ調整部8の指示に基づき貯水部13へ次亜塩素酸水溶液を供給することで、揚水管20内の液面の高さ(水位)を変えることができる。高さ調整部8は、液体微細化室5よりも上流側の空気風路9内に設けた濃度検知部7で、対象とする空間から吸い込んだ空気の次亜塩素酸の濃度を検知して、次亜塩素酸供給部11へ指示を出すことになる。揚水管20内の次亜塩素酸水溶液の液面の高さを変えることで、加湿量を変えずに吹出した次亜塩素酸の濃度を変えることが可能である。 By supplying the hypochlorous acid aqueous solution to the water storage unit 13 based on the instruction of the height adjusting unit 8, the height (water level) of the liquid level in the pumping pipe 20 can be changed. The height adjusting unit 8 detects the concentration of hypochlorous acid in the air sucked from the target space with the concentration detecting unit 7 provided in the air air passage 9 on the upstream side of the liquid atomizing chamber 5. , And gives an instruction to the hypochlorous acid supply unit 11. By changing the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe 20, it is possible to change the concentration of blown hypochlorous acid without changing the humidification amount.
 具体的には、高さ検知部14で検知した液面の高さに基づき、高さ調整部8が次亜塩素酸供給部11へ次亜塩素酸水溶液の供給の指示を出して、次亜塩素酸供給部11が次亜塩素酸水の供給量を変え、揚水管20が浸る水位を制御する(揚水管20の回転数は変えない)ことで、加湿量を変えずに次亜塩素酸の濃度を制御することが可能である。 Specifically, based on the height of the liquid level detected by the height detection unit 14, the height adjustment unit 8 issues an instruction to supply the hypochlorous acid aqueous solution to the hypochlorous acid supply unit 11, and The chloric acid supply unit 11 changes the supply amount of hypochlorous acid water and controls the water level in which the pumping pipe 20 is immersed (the rotation speed of the pumping pipe 20 is not changed), so that the amount of humidification is not changed and the hypochlorous acid is changed. It is possible to control the concentration of.
 つまり、揚水管20内の液面の高さを変えると、次亜塩素酸水溶液の液面と揚水管20の内壁が接する部分の大きさ(円周の長さ)が変わり、吸い上げる次亜塩素酸水溶液の量を変えることができる。また、揚水管20内で次亜塩素酸水溶液の液面から上端までの距離も変わり、揚水管20の内径の拡大に伴う膜厚の薄化の程度も変えることができる。なお、上記のように揚水管20の二つの底面はいずれも開口しており、開口面積の小さい側の底面が貯水部13の水に浸かっているので、揚水管20内の水位は、貯水部13の水位とも一致している。 In other words, if the height of the liquid surface in the pumping pipe 20 is changed, the size (circumferential length) of the portion where the liquid surface of the hypochlorous acid aqueous solution and the inner wall of the pumping pipe 20 contact changes, and The amount of aqueous acid solution can be varied. Further, the distance from the liquid surface of the hypochlorous acid aqueous solution to the upper end is changed in the pumping pipe 20, and the degree of thinning of the film thickness due to the expansion of the inner diameter of the pumping pipe 20 can be changed. As described above, the two bottom surfaces of the pumping pipe 20 are both open, and the bottom surface on the side with the smaller opening area is submerged in the water in the water storage section 13. Therefore, the water level in the pumping tube 20 is It also agrees with the water level of 13.
 したがって、吸い上げる水量を変えると、回転板22で形成される水膜の厚さが変わり、噴射装置15から噴射される水滴の粒径を変化させることができる。そして、粒径の変化に伴い、空気風路9内で揮発する次亜塩素酸の量が変化することとなる。 Therefore, if the amount of water to be sucked is changed, the thickness of the water film formed by the rotary plate 22 changes, and the particle size of the water droplets jetted from the jet device 15 can be changed. Then, as the particle size changes, the amount of hypochlorous acid volatilized in the air duct 9 changes.
 より具体的な説明を加えるために、揚水管20内の次亜塩素酸水溶液の液面の高さ(水位)の例を図4Aに、揚水管20内の次亜塩素酸水溶液の水位と吹出口4から吹出す次亜塩素酸濃度の関係を図4Bに、揚水管20内の水位と加湿量の関係を図4Cに示す。 In order to add a more specific explanation, an example of the height (water level) of the liquid level of the hypochlorous acid aqueous solution in the pumping pipe 20 is shown in FIG. 4A. The relationship between the concentration of hypochlorous acid blown out from the outlet 4 is shown in FIG. 4B, and the relationship between the water level in the pumping pipe 20 and the humidification amount is shown in FIG. 4C.
 貯水部13に供給された次亜塩素酸水溶液の液面が揚水管20の下端側の底面23よりも上方の位置をW1とし、W1を基準として同濃度の次亜塩素酸水溶液を貯水部13へ供給して揚水管20内の次亜塩素酸水溶液の液面の高さ(水位)をW2、W3に上げると、図4Bに示すように装置からの吹出し次亜塩素酸濃度もC1からC2、C3へとほぼ比例の関係で上昇する。一方で、図4Cに示すように対象とする空間の加湿量は揚水管20内の水位が上昇しても、H1からH2、H3へとほとんど変化しない。特に、揚水管内の液面の高さが、所定の高さ(W2)を超えると加湿量は変化しない。 The position where the liquid level of the hypochlorous acid aqueous solution supplied to the water storage section 13 is above the bottom surface 23 on the lower end side of the pumping pipe 20 is W1, and the hypochlorous acid aqueous solution having the same concentration based on W1 is stored in the water storage section 13 When the liquid level height (water level) of the hypochlorous acid aqueous solution in the pumping pipe 20 is increased to W2 and W3, the concentration of hypochlorous acid blown out from the apparatus also changes from C1 to C2 as shown in FIG. 4B. , And C3 in a substantially proportional relationship. On the other hand, as shown in FIG. 4C, the humidification amount of the target space hardly changes from H1 to H2 and H3 even if the water level in the pumping pipe 20 rises. In particular, when the height of the liquid surface in the pumping pipe exceeds a predetermined height (W2), the humidification amount does not change.
 すなわち、液体微細化室5から吹き出す次亜塩素酸の濃度を上げるためには、次亜塩素酸水溶液の液面の高さ(水位)を上げればよい。次亜塩素酸の濃度を下げるには、水位を下げればよい。つまり、加湿が十分に行われている空間でも、貯水部13に供給する次亜塩素酸水の液面の高さを制御することで、吹出す次亜塩素酸の濃度が制御できるため、電気分解により新たな次亜塩素酸水を生成するよりも簡便に空間の除菌・脱臭効果の維持を実現させることができる。 That is, in order to increase the concentration of hypochlorous acid blown out from the liquid atomizing chamber 5, the height of the liquid surface of the hypochlorous acid aqueous solution (water level) may be increased. To lower the concentration of hypochlorous acid, lower the water level. That is, even in a sufficiently humidified space, the concentration of the hypochlorous acid blown out can be controlled by controlling the height of the liquid surface of the hypochlorous acid water supplied to the water storage unit 13, so It is possible to realize the maintenance of the sterilization/deodorization effect of the space more easily than the generation of new hypochlorous acid water by decomposition.
 液体微細化室5から吹出す次亜塩素酸の濃度は、衝突壁12の濡れ具合や水粒子の表面積変化に伴う揮発量により決定される。すなわち、噴射装置15での水滴形成過程において粒子径を均一にすることで吹出す次亜塩素酸の揮発量を制御できる。水粒子の均一化には、回転板22上で均一な水膜を形成することが必要である。従って、回転板22上面の中心軸に近い側に供給する水の量について言うならば、回転板22には、本実施の形態の揚水管20のように水を吸い上げる構造体を備えて、回転板22上の一つの円周上で水の量を均一にする機能を備えることが好ましい。 The concentration of hypochlorous acid blown out from the liquid atomization chamber 5 is determined by the wetness of the collision wall 12 and the amount of volatilization that accompanies changes in the surface area of water particles. That is, in the process of forming water droplets in the jetting device 15, by making the particle diameter uniform, it is possible to control the volatilization amount of hypochlorous acid to be blown out. To make the water particles uniform, it is necessary to form a uniform water film on the rotating plate 22. Therefore, in terms of the amount of water supplied to the side closer to the central axis on the upper surface of the rotary plate 22, the rotary plate 22 is provided with a structure for sucking water like the pumping pipe 20 of the present embodiment, and is It is preferable to have a function of making the amount of water uniform on one circumference on the plate 22.
 図5に噴射装置15とは別の形態の噴射装置15aを示す。次亜塩素酸供給部11が揚水管20内に次亜塩素酸水溶液を案内するために給水管16を延設することで、次亜塩素酸水溶液を揚水管20内側に直接供給することも可能である。揚水管20は、すでに説明をしたものと同様に回転軸19を沿直方向にして配置した筒体であって、下端よりも上端の断面積を大きくしたものである。特に、上端を開放し下端を閉塞することもできる。下端を閉塞した場合には、揚水管20の下部を貯水部13とすることができる。この場合、給水管16を用いて、揚水管20の上部から次亜塩素酸水溶液を揚水管20内に供給することで、揚水管20内の液面の高さ(水位)の制御をすることも可能である。このような構成の噴射装置15aでは、供給する次亜塩素酸水の量を少なくすることができる。 FIG. 5 shows an injection device 15a different from the injection device 15. The hypochlorous acid supply unit 11 may extend the water supply pipe 16 to guide the hypochlorous acid aqueous solution into the pumping pipe 20, so that the hypochlorous acid aqueous solution may be directly supplied to the inside of the pumping pipe 20. Is. The pumping pipe 20 is a cylindrical body in which the rotary shaft 19 is arranged in the vertical direction, as described above, and has a larger cross-sectional area at the upper end than at the lower end. In particular, it is possible to open the upper end and close the lower end. When the lower end is closed, the lower part of the pumping pipe 20 can be used as the water storage part 13. In this case, the height (water level) of the liquid level in the pumping pipe 20 is controlled by supplying the hypochlorous acid aqueous solution from the upper part of the pumping pipe 20 into the pumping pipe 20 using the water supply pipe 16. Is also possible. In the injection device 15a having such a configuration, the amount of hypochlorous acid water to be supplied can be reduced.
 以上のように、本実施例によれば、除菌・脱臭性能を高めることができる空間除菌脱臭装置を簡単な構成で提供することができる。 As described above, according to the present embodiment, it is possible to provide a space disinfection/deodorization device capable of enhancing disinfection/deodorization performance with a simple configuration.
 (実施の形態2)
 次に、図6を用いて、実施の形態2に係る換気と空調を組み合わせたシステム(以下、換気空調システムと呼ぶ)について説明する。
(Embodiment 2)
Next, a system that combines ventilation and air conditioning according to the second embodiment (hereinafter referred to as a ventilation air conditioning system) will be described with reference to FIG.
 本実施の形態では、換気空調システムにおいて分岐チャンバ内に除菌脱臭を行う空気浄化装置を組み込んだ一例を説明する。 In the present embodiment, an example will be described in which an air purification device for decontaminating bacteria is installed in a branch chamber in a ventilation air conditioning system.
 実施の形態1の空気浄化装置1は、略箱形状の筐体2を備えていて、筐体2の側面に吸気口3、筐体2の天面に吹出口4を設けている。 The air purification device 1 according to the first embodiment includes a substantially box-shaped housing 2, and an intake port 3 is provided on a side surface of the housing 2 and an air outlet 4 is provided on a top surface of the housing 2.
 本実施の形態の空気浄化装置31は、図6に示すように建物の天井裏もしくは天井に取り付けるものである。筐体32の薄型化が望まれるため、吸気口3と吹出口4は、ともに箱形状の側面に設けられている。 The air purification device 31 of the present embodiment is attached to the ceiling or the ceiling of a building as shown in FIG. Since the housing 32 is desired to be thin, both the intake port 3 and the outlet port 4 are provided on the side surface of the box shape.
 図6に示すように、換気空調システム33は、主となる構成として、室内機34と、循環送風機35と、室内吸込開口部36と、室内吹出開口部37と、排気開口部38と、導入開口部39と、換気装置40とを備えたものである。 As shown in FIG. 6, the ventilation air conditioning system 33 has, as its main components, an indoor unit 34, a circulation blower 35, an indoor suction opening 36, an indoor blowout opening 37, an exhaust opening 38, and an introduction. The opening 39 and the ventilation device 40 are provided.
 室内機34として、冷凍サイクルによる熱交換装置41を備えている。 As the indoor unit 34, a heat exchange device 41 by a refrigeration cycle is provided.
 循環送風機35によって、室内吸込開口部36から吸った空気の温度を調節して、各部屋に配置した室内吹出開口部37から吹き出すものである。更に、住宅の天井42に配置した排気開口部38と、外壁部44に配置した導入開口部39とを備えるものである。換気装置40には排気送風機46が備えられている。排気送風機46を運転すると、排気開口部38から住宅内部の空気の一部を外部に排出するとともに、導入開口部39から外気を住宅内部に取り入れるものである。 The temperature of the air sucked from the indoor suction opening 36 is adjusted by the circulation blower 35, and the air is blown out from the indoor blowout opening 37 arranged in each room. Furthermore, the exhaust opening 38 arranged in the ceiling 42 of the house and the introduction opening 39 arranged in the outer wall 44 are provided. The ventilation device 40 is provided with an exhaust blower 46. When the exhaust blower 46 is operated, a part of the air inside the house is discharged to the outside from the exhaust opening 38 and the outside air is taken into the house from the introduction opening 39.
 また、室内機34には、分岐チャンバ47と、分岐ダクト48が備えられている。分岐チャンバ47は各部屋へ送る空気を分配するもので、分岐チャンバ47の下流側に位置する室内吹出開口部37まで空気を搬送させる分岐ダクト48が備えられている。 Further, the indoor unit 34 is provided with a branch chamber 47 and a branch duct 48. The branch chamber 47 distributes air to be sent to each room, and is provided with a branch duct 48 that conveys the air to the indoor blowout opening 37 located on the downstream side of the branch chamber 47.
 そして、空気浄化装置31は、分岐チャンバ47内に配置されている。 The air purification device 31 is arranged in the branch chamber 47.
 分岐チャンバ47に空気を導入する開口が吸気口3であり、分岐ダクト48の接続口が吹出口4になる。 The opening for introducing air into the branch chamber 47 is the intake port 3, and the connection port of the branch duct 48 is the outlet port 4.
 このような構成とすることで、室内空間の換気と空気調和を行いながら、除菌脱臭を行う空気浄化装置31の動作によって、除菌・脱臭性能を高めることができる。 With such a configuration, the sterilization/deodorization performance can be enhanced by the operation of the air purification device 31 that sterilizes and deodorizes while performing ventilation and air conditioning of the indoor space.
 (実施の形態3)
 次に、実施の形態3として、貯水部13もしくは揚水管20内の次亜塩素酸水溶液の液面の高さの上げ下げを調整する構成について、図1から図4C、図6、図7を参照して説明する。なお、理解を容易にするために、実施の形態1、2と同一の構成については、同一の符号を付し詳細な説明は省略する。
(Embodiment 3)
Next, as a third embodiment, referring to FIGS. 1 to 4C, FIG. 6 and FIG. 7, regarding a configuration for adjusting the elevation of the liquid level of the hypochlorous acid aqueous solution in the water storage part 13 or the pumping pipe 20. And explain. Note that, for ease of understanding, the same configurations as those of the first and second embodiments are designated by the same reference numerals, and detailed description thereof will be omitted.
 実施の形態3では、次亜塩素酸供給部から貯水部13へ次亜塩酸水溶液を供給する構成が異なる。すなわち、図7に示すように、次亜塩素酸供給部50は、給水管16と回収管51とによって、液体微細化室5に接続されている。次亜塩素酸供給部50には給水管16と回収管51が直接に接続されている。給水管16の一端には供給口17が備えられ、供給口17は液体微細化室5に接続されている。回収管51の一端には回収口52が備えられ、回収口52は貯水部13の最下位位置に接続されている。また、給水管16にはポンプ53を、回収管51には開閉弁54を設けている。 In the third embodiment, the configuration in which the hypochlorous acid aqueous solution is supplied from the hypochlorous acid supply section to the water storage section 13 is different. That is, as shown in FIG. 7, the hypochlorous acid supply unit 50 is connected to the liquid atomization chamber 5 by the water supply pipe 16 and the recovery pipe 51. The water supply pipe 16 and the recovery pipe 51 are directly connected to the hypochlorous acid supply unit 50. A supply port 17 is provided at one end of the water supply pipe 16, and the supply port 17 is connected to the liquid atomization chamber 5. A recovery port 52 is provided at one end of the recovery pipe 51, and the recovery port 52 is connected to the lowest position of the water storage section 13. The water supply pipe 16 is provided with a pump 53, and the recovery pipe 51 is provided with an opening/closing valve 54.
 また、図7に示すように、液体微細化室5の貯水部13と回収口52と回収管51と次亜塩素酸供給部50は、上方から順番に落差を付けて配置している。この配置順により、開閉弁54を開放することで、大気圧によって次亜塩素酸水溶液が貯水部13から次亜塩素酸供給部50へ回収されるものである。 Further, as shown in FIG. 7, the water storage unit 13, the recovery port 52, the recovery pipe 51, and the hypochlorous acid supply unit 50 of the liquid atomization chamber 5 are arranged with a head in order from above. By opening the on-off valve 54 according to this arrangement order, the hypochlorous acid aqueous solution is recovered from the water storage section 13 to the hypochlorous acid supply section 50 by atmospheric pressure.
 このように、筐体2または筐体32内では、開閉弁54の開放によって、貯水部13内の次亜塩素酸水溶液に大気圧を作用させて、回収口52から、回収管51を通じて、次亜塩素酸供給部50へ次亜塩素酸水溶液を回収することができる回収流路55が形成されている。 As described above, in the housing 2 or the housing 32, the opening/closing valve 54 is opened to cause atmospheric pressure to act on the hypochlorous acid aqueous solution in the water storage unit 13, and the recovery port 52 through the recovery pipe 51 to A recovery channel 55 capable of recovering the hypochlorous acid aqueous solution is formed in the chlorous acid supply unit 50.
 また、ポンプ53の動作によって、供給口17から、給水管16を通じて、次亜塩素酸供給部11に貯留した次亜塩素酸水溶液を貯水部13へ供給することができる供給流路56が形成されている。つまり、ポンプ53が駆動することにより、次亜塩素酸水溶液が、次亜塩素酸供給部11から給水管16を通り、供給口17から貯水部13に供給されるものである。 In addition, by the operation of the pump 53, a supply flow path 56 that can supply the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 11 to the water storage unit 13 from the supply port 17 through the water supply pipe 16 is formed. ing. That is, by driving the pump 53, the hypochlorous acid aqueous solution is supplied from the hypochlorous acid supply unit 11 through the water supply pipe 16 and from the supply port 17 to the water storage unit 13.
 また、高さ調整部8は、開閉弁54とポンプ53の動作を切り替えて貯水部13および揚水管20内の次亜塩素酸溶液の液面の高さを調整するものでもある。 The height adjusting unit 8 also switches the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the water storage unit 13 and the pumping pipe 20.
 開閉弁54とポンプ53は、高さ調整部8に接続されていて、該高さ調整部8の指令によって動作するものである。 The on-off valve 54 and the pump 53 are connected to the height adjusting unit 8 and operate according to a command from the height adjusting unit 8.
 図7に示すように、ポンプ53下面の高さhは次亜塩素酸供給部50に貯留する次亜塩素酸水溶液の液面の高さhよりも上方に配置することが望ましい。ポンプ53下面高さhを次亜塩素酸供給部50に貯留する次亜塩素酸水溶液の液面の高さhよりも低い位置に配置すると、次亜塩素酸水溶液がポンプ53の内部に滞りやすくなるので、好ましくない。 As shown in FIG. 7, it is preferable that the height h 1 of the lower surface of the pump 53 is higher than the height h 2 of the liquid surface of the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 50. When the lower surface height h 1 of the pump 53 is arranged at a position lower than the height h 2 of the liquid surface of the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 50, the hypochlorous acid aqueous solution is placed inside the pump 53. This is not preferable because it tends to be delayed.
 上記構成により、高さ調整部8の指令によって、ポンプ53が動作して、次亜塩素酸供給部50から給水管16を通じて供給口17へ次亜塩素酸水溶液を供給する(この時、開閉弁54は閉じている)。すなわち、次亜塩素酸供給部50から貯水部13へ次亜塩素酸水溶液を供給することができる。つまり、高さ検知部14で貯水部13における次亜塩素酸水溶液の液面の高さを検知しながら、次亜塩素酸水溶液の液面の高さを上昇させることができる。 With the above configuration, the pump 53 operates according to a command from the height adjusting unit 8 to supply the hypochlorous acid aqueous solution from the hypochlorous acid supply unit 50 to the supply port 17 through the water supply pipe 16 (at this time, the opening/closing valve). 54 is closed). That is, the hypochlorous acid aqueous solution can be supplied from the hypochlorous acid supply unit 50 to the water storage unit 13. That is, it is possible to increase the height of the liquid surface of the hypochlorous acid aqueous solution while the height detection unit 14 detects the height of the liquid surface of the hypochlorous acid aqueous solution in the water storage unit 13.
 また、高さ調整部8の指令によって、ポンプ53の動作を停止させて、開閉弁54を開くと、回収口52から回収管51を通じて、貯水部13に貯留した次亜塩素酸水溶液を次亜塩素酸供給部50へ回収することができる。つまり、高さ検知部14で貯水部13における次亜塩素酸水溶液の液面の高さを検知しながら、次亜塩酸水溶液の液面の高さを低く下げることができる。なお、貯水部13に貯留した次亜塩素酸水溶液をすべて回収するためには、貯水部13に貯留する次亜塩素酸水溶液の量Vは、次亜塩素酸供給部50の貯水容量Vよりも小さくしておくことが望ましい。 In addition, when the operation of the pump 53 is stopped and the opening/closing valve 54 is opened in response to a command from the height adjusting unit 8, the hypochlorous acid aqueous solution stored in the water storage unit 13 is discharged from the recovery port 52 through the recovery pipe 51. It can be recovered to the chloric acid supply unit 50. That is, it is possible to lower the height of the liquid surface of the hypochlorous acid aqueous solution while the height detector 14 detects the height of the liquid surface of the hypochlorous acid aqueous solution in the water storage portion 13. In order to recover all the hypochlorous acid aqueous solution stored in the water storage unit 13, the amount V 1 of the hypochlorous acid aqueous solution stored in the water storage unit 13 is equal to the storage water volume V 2 of the hypochlorous acid supply unit 50. It is desirable to keep it smaller than.
 このようにして、高さ調整部8が、開閉弁54とポンプ53の動作を切り替えて揚水管20内の次亜塩素酸溶液の液面の高さを調整することができる。また、液体微細化室5の貯水部13から排水される次亜塩素酸水溶液が、次亜塩素酸供給部50へ回収され、回収された次亜塩素酸水溶液を再び液体微細化室5へ供給して再利用することができる。 In this way, the height adjusting unit 8 can switch the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe 20. Further, the hypochlorous acid aqueous solution drained from the water storage section 13 of the liquid micronization chamber 5 is recovered to the hypochlorous acid supply section 50, and the recovered hypochlorous acid aqueous solution is supplied to the liquid micronization chamber 5 again. And can be reused.
 つまり、貯水部13において、余分な給排水を行わずに水位の調節を行うことができるため、吹出口4から吹出す次亜塩素酸の濃度を迅速に変えることが可能となる。 That is, since the water level can be adjusted in the water storage unit 13 without performing extra water supply/drainage, it is possible to quickly change the concentration of hypochlorous acid discharged from the air outlet 4.
 (実施の形態4)
 実施の形態4として、貯水部13もしくは揚水管20内の次亜塩素酸水溶液の液面の高さの上げ下げを調整する別の構成について、図1から図4C、図6、図8を参照して説明する。なお、理解を容易にするために、実施の形態1と同一の構成については、同一の符号を付し詳細な説明は省略する。
(Embodiment 4)
As a fourth embodiment, referring to FIGS. 1 to 4C, FIG. 6 and FIG. 8, regarding another configuration for adjusting the elevation of the liquid level of the hypochlorous acid aqueous solution in the water storage part 13 or the pumping pipe 20, Explain. Note that, for ease of understanding, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 実施の形態4では、次亜塩素酸供給部から貯水部13へ次亜塩酸水を供給する構成が異なる。すなわち、図8に示すように、次亜塩素酸供給部61は、給水管16と回収管51とによって、液体微細化室5に接続されている。次亜塩素酸供給部61には給水管16と回収管51が直接接続されている。給水管16の一端には供給口17が備えられ、供給口17は液体微細化室5に接続されている。回収管51の一端には回収口52が備えられ、回収口52は貯水部13に接続されており、また、給水管16には、開閉弁54を、回収管51にはポンプ53を設けている。 In the fourth embodiment, the configuration of supplying hypochlorous acid water from the hypochlorous acid supply unit to the water storage unit 13 is different. That is, as shown in FIG. 8, the hypochlorous acid supply unit 61 is connected to the liquid atomization chamber 5 by the water supply pipe 16 and the recovery pipe 51. The water supply pipe 16 and the recovery pipe 51 are directly connected to the hypochlorous acid supply unit 61. A supply port 17 is provided at one end of the water supply pipe 16, and the supply port 17 is connected to the liquid atomization chamber 5. A recovery port 52 is provided at one end of the recovery pipe 51, and the recovery port 52 is connected to the water storage unit 13. The water supply pipe 16 is provided with an opening/closing valve 54, and the recovery pipe 51 is provided with a pump 53. There is.
 また、図8に示すように、次亜塩素酸供給部61と給水管16と供給口17と貯水部13は、上方から順番に落差を付けて配置している。この配置の順番により、開閉弁54を開放することで、大気圧によって次亜塩素酸水溶液が貯水部13へ供給されるものである。なお、回収口52は液体微細化室5の最下部に設けている。より詳しくは、液体微細化室5の下部が貯水部13となっているので、回収口52は、貯水部13の最下部に設けている。 Further, as shown in FIG. 8, the hypochlorous acid supply unit 61, the water supply pipe 16, the supply port 17, and the water storage unit 13 are arranged with a head in order from above. By opening the on-off valve 54 in this order of arrangement, the hypochlorous acid aqueous solution is supplied to the water reservoir 13 by the atmospheric pressure. The recovery port 52 is provided at the bottom of the liquid atomization chamber 5. More specifically, since the lower part of the liquid atomization chamber 5 is the water storage part 13, the recovery port 52 is provided at the lowest part of the water storage part 13.
 このように、開閉弁54の開放によって大気圧が作用して、次亜塩素酸供給部61から給水管16を通じて、供給口17から液体微細化室5へ次亜塩素酸水溶液を供給することができる供給流路62が形成されている。 In this way, the atmospheric pressure acts by opening the on-off valve 54, and the hypochlorous acid aqueous solution can be supplied from the hypochlorous acid supply unit 61 through the water supply pipe 16 to the liquid atomization chamber 5 through the supply port 17. A possible supply channel 62 is formed.
 また、ポンプ53の動作によって、回収口52から回収管51を通じて、貯水部13に貯留した次亜塩素酸水溶液を次亜塩素酸供給部61へ回収することができる回収流路63が形成されている。つまり、ポンプ53が駆動することにより、貯水部13から回収口52に流入した次亜塩素酸水溶液が、回収管51を通り次亜塩素酸供給部61に回収されるものである。 Further, by the operation of the pump 53, a recovery passageway 63 is formed which can recover the hypochlorous acid aqueous solution stored in the water storage part 13 to the hypochlorous acid supply part 61 from the recovery port 52 through the recovery pipe 51. There is. That is, when the pump 53 is driven, the hypochlorous acid aqueous solution that has flowed into the recovery port 52 from the water storage unit 13 is recovered by the hypochlorous acid supply unit 61 through the recovery pipe 51.
 また、高さ調整部8は、開閉弁54とポンプ53の動作を切り替えて貯水部13および揚水管20内の次亜塩素酸溶液の液面の高さを調整するものである。 Further, the height adjusting unit 8 switches the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the water storage unit 13 and the pumping pipe 20.
 開閉弁54とポンプ53は、高さ調整部8に接続されていて、該高さ調整部8の指令によって動作するものである。 The on-off valve 54 and the pump 53 are connected to the height adjusting unit 8 and operate according to a command from the height adjusting unit 8.
 図8に示すように、回収口52の位置を基準にして、ポンプ53下面の高さhは回収口52よりも上方に配置することが望ましい。ポンプ53下面が回収口52よりも低い位置に配置すると、次亜塩素酸水溶液がポンプ53の内部に滞りやすくなるので、好ましくない。また、より好ましくは、ポンプ53下面の高さhを貯水部13内の液面高さhよりも上方に配置することがよい。このようにすると、ポンプ53が次亜塩素酸水溶液と接触する時間が短くなり、ポンプ53の寿命を長くすることができると考えるからである。 As shown in FIG. 8, it is desirable that the height h 3 of the lower surface of the pump 53 is located above the recovery port 52 with reference to the position of the recovery port 52. Arranging the lower surface of the pump 53 at a position lower than the recovery port 52 is not preferable because the hypochlorous acid aqueous solution is likely to stay inside the pump 53. Further, more preferably, the height h 3 of the lower surface of the pump 53 may be arranged above the liquid level height h 4 in the water storage section 13. This is because when this is done, the time during which the pump 53 is in contact with the hypochlorous acid aqueous solution is shortened, and the life of the pump 53 can be extended.
 上記構成により、高さ調整部8の指令によって、開閉弁54が開放されて、次亜塩素酸供給部61から給水管16を通じて、供給口17を介して液体微細化室5へ次亜塩素酸水溶液を供給することができる。すなわち、高さ検知部14で貯水部13における次亜塩素酸水溶液の液面の高さを検知しながら、次亜塩素酸水溶液の液面の高さを上昇させることができる。 With the above configuration, the opening/closing valve 54 is opened by a command from the height adjusting unit 8, and the hypochlorous acid is supplied from the hypochlorous acid supply unit 61 to the liquid atomization chamber 5 through the water supply pipe 16 and the supply port 17. An aqueous solution can be supplied. That is, the height detection unit 14 can increase the liquid level of the hypochlorous acid aqueous solution while detecting the liquid level of the hypochlorous acid aqueous solution in the water storage unit 13.
 また、高さ調整部8の指令によって、開閉弁54を閉じて、ポンプ53を動作させると、回収口52から回収管51を通じて、貯水部13に貯留した次亜塩素酸水溶液を次亜塩素酸供給部61へ回収することができる。すなわち、高さ検知部14で貯水部13における次亜塩素酸水溶液の液面の高さを検知しながら、次亜塩酸水溶液の液面の高さを低く下げることができる。 Further, when the opening/closing valve 54 is closed and the pump 53 is operated by a command from the height adjustment unit 8, the hypochlorous acid aqueous solution stored in the water storage unit 13 is collected from the recovery port 52 through the recovery pipe 51. It can be collected in the supply unit 61. That is, the height detection unit 14 can lower the liquid level of the hypochlorous acid aqueous solution while detecting the height of the liquid level of the hypochlorous acid aqueous solution in the water storage unit 13.
 このようにして、高さ調整部8が、開閉弁54とポンプ53の動作を切り替えて揚水管20内の次亜塩素酸溶液の液面の高さを調整することができる。また、液体微細化室5の貯水部13から排水される次亜塩素酸水溶液が、次亜塩素酸供給部61へ回収され、再び液体微細化室5へ供給され、再利用される。 In this way, the height adjusting unit 8 can switch the operations of the on-off valve 54 and the pump 53 to adjust the height of the liquid level of the hypochlorous acid solution in the pumping pipe 20. In addition, the hypochlorous acid aqueous solution drained from the water storage section 13 of the liquid atomization chamber 5 is recovered by the hypochlorous acid supply unit 61, supplied again to the liquid atomization chamber 5, and reused.
 つまり、貯水部13において、余分な給排水を行わずに水位の調節を行うことができるため、吹出口4から吹出す次亜塩素酸の濃度を迅速に変えることが可能となる。 That is, since the water level can be adjusted in the water storage unit 13 without performing extra water supply/drainage, it is possible to quickly change the concentration of hypochlorous acid discharged from the air outlet 4.
 (実施の形態5)
 次亜塩素酸供給部として、次亜塩素酸供給部11、次亜塩素酸供給部50、次亜塩素酸供給部61についてすでに説明をした。実施の形態5は、継続的な、空気中の細菌、ウイルス、浮遊菌や臭いなどの除去を行うために、次亜塩素酸供給部11、次亜塩素酸供給部50、次亜塩素酸供給部61の何れかへ給水を行う構成について説明するものである。実施の形態5では、これらを代表した次亜塩素酸供給部11について図9を用いて説明をする。なお、理解を容易にするために、実施の形態1と同一の構成については、同一の符号を付し詳細な説明は省略する。
(Embodiment 5)
The hypochlorous acid supply unit 11, the hypochlorous acid supply unit 50, and the hypochlorous acid supply unit 61 have already been described as the hypochlorous acid supply unit. In the fifth embodiment, a hypochlorous acid supply unit 11, a hypochlorous acid supply unit 50, and a hypochlorous acid supply unit are provided in order to continuously remove bacteria, viruses, floating bacteria and odors in the air. A configuration for supplying water to any of the parts 61 will be described. In the fifth embodiment, a hypochlorous acid supply unit 11 representing these will be described with reference to FIG. Note that, for ease of understanding, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図9においては、次亜塩素酸供給部11の上部に給水口72が設けられている。給水口72は取水管73により、市水と連結している。市水が給水口72から給水されるものである。 In FIG. 9, a water supply port 72 is provided above the hypochlorous acid supply unit 11. The water supply port 72 is connected to city water by an intake pipe 73. City water is supplied from the water supply port 72.
 また、取水管73には流量調節部76が備えられている。この流量調節部76による給水時の流量制御は、次亜塩素酸供給部11内に設けられた水位検知部77で検知された水位に応じて行われる。水位検知部77で低水位が検知されると、高さ調整部8へ信号が送られ、高さ調整部8が流量調節部76に指令を送ることにより流量が調節される。 Also, the intake pipe 73 is equipped with a flow rate control unit 76. The flow rate control at the time of water supply by the flow rate control unit 76 is performed according to the water level detected by the water level detection unit 77 provided in the hypochlorous acid supply unit 11. When the water level detecting unit 77 detects a low water level, a signal is sent to the height adjusting unit 8 and the height adjusting unit 8 sends a command to the flow rate adjusting unit 76 to adjust the flow rate.
 なお、取水管73が市水直結の構成をとっているが、保水部(図示せず)を設けて、市水または次亜塩素酸水溶液を貯めておく構成であってもよい。給水において、大気圧を利用するためには、保水部は、次亜塩素酸供給部11よりも高い位置に配置することが望ましい。 Although the water intake pipe 73 is directly connected to city water, a water retaining part (not shown) may be provided to store city water or a hypochlorous acid aqueous solution. In order to utilize the atmospheric pressure during water supply, it is desirable that the water retention section is arranged at a position higher than the hypochlorous acid supply section 11.
 また、次亜塩素酸供給部11に供給する水中の金属イオンを取り除くために、取水管73の配管中に軟水化装置(図示せず)を設けても良い。 Also, in order to remove metal ions in the water supplied to the hypochlorous acid supply unit 11, a water softening device (not shown) may be provided in the pipe of the water intake pipe 73.
 また、高さ調整部8による流量調節部76の流量制御において、次亜塩素酸供給部11に常に一定の水量が保持される制御をとることも可能である。 Further, in the flow rate control of the flow rate adjusting unit 76 by the height adjusting unit 8, it is also possible to take control so that the hypochlorous acid supply unit 11 always holds a constant amount of water.
 同様に、図7に示す次亜塩素酸供給部50、図8に示す次亜塩素酸供給部61においても、給水口72、取水管73、流量調節部76、水位検知部77を設けることができる。 Similarly, also in the hypochlorous acid supply unit 50 shown in FIG. 7 and the hypochlorous acid supply unit 61 shown in FIG. 8, a water supply port 72, an intake pipe 73, a flow rate control unit 76, and a water level detection unit 77 may be provided. it can.
 上記構成において、次亜塩素酸供給部11で貯留している次亜塩素酸水溶液が、液体微細化室5へ送られて、少なくなると、水位検知部77が検知した水位に基づく信号が、高さ調整部8へ送られる。これにより、高さ調整部8が流量調節部76に指令を送ることとなる。流量調節部76では、取水管73を流れる水量を調節して、給水口72を通じて、次亜塩素酸供給部11へ新たな水(市水または次亜塩素酸水溶液)が供給されることとなる。 In the above configuration, when the hypochlorous acid aqueous solution stored in the hypochlorous acid supply unit 11 is sent to the liquid atomization chamber 5 and becomes small, the signal based on the water level detected by the water level detection unit 77 becomes high. Is sent to the adjusting unit 8. As a result, the height adjusting unit 8 sends a command to the flow rate adjusting unit 76. In the flow rate adjusting unit 76, the amount of water flowing through the intake pipe 73 is adjusted, and new water (city water or hypochlorous acid aqueous solution) is supplied to the hypochlorous acid supply unit 11 through the water supply port 72. ..
 これにより、次亜塩素酸供給部11に常に水が供給されるため、次亜塩素酸水溶液を安定して生成し、液体微細化室5に供給することができる。つまり、液体微細化室5に継続的に次亜塩素酸水溶液を供給することが可能となるので、空気浄化装置から空間に吹き出す次亜塩素酸の濃度を所定の濃度に保つことができ、空間の清浄度を維持することができる。 Due to this, since water is always supplied to the hypochlorous acid supply unit 11, it is possible to stably generate an aqueous solution of hypochlorous acid and supply it to the liquid atomization chamber 5. That is, since it becomes possible to continuously supply the aqueous solution of hypochlorous acid to the liquid atomization chamber 5, the concentration of hypochlorous acid blown from the air purifying device into the space can be maintained at a predetermined concentration. The cleanliness of can be maintained.
 空気浄化装置は、家庭用や事務用、公共空間などの、除菌・脱臭を行う空気浄化装置としての活躍が期待されるものである。  The air purifier is expected to play an active role as an air purifier that removes bacteria and deodorizes household, office, and public spaces.
1 空気浄化装置
2 筐体
3 吸気口
4 吹出口
5 液体微細化室
6 送風部
7 濃度検知部
8 高さ調整部
9 空気風路
11 次亜塩素酸供給部
12 衝突壁
13 貯水部
14 高さ検知部
15 噴射装置
15a 噴射装置
16 給水管
17 供給口
18 回転モータ
19 回転軸
20 揚水管
21 天面
22 回転板
22a 回転板
23 下端側の底面
31 空気浄化装置
32 筐体
33 換気空調システム
34 室内機
35 循環送風機
36 室内吸込開口部
37 室内吹出開口部
38 排気開口部
39 導入開口部
40 換気装置
41 熱交換装置
42 住宅の天井
44 外壁部
46 排気送風機
47 分岐チャンバ
48 分岐ダクト
50 次亜塩素酸供給部
51 回収管
52 回収口
53 ポンプ
54 開閉弁
55 回収流路
56 供給流路
61 次亜塩素酸供給部
62 供給流路
63 回収流路
72 給水口
73 取水管
76 流量調節部
77 水位検知部
1 Air Purification Device 2 Housing 3 Inlet 4 Outlet 5 Liquid Refining Chamber 6 Blower 7 Concentration Detector 8 Height Adjuster 9 Air Airway 11 Hypochlorous Acid Supply 12 Collision Wall 13 Water Storage 14 Height Detector 15 Injection device 15a Injection device 16 Water supply pipe 17 Supply port 18 Rotation motor 19 Rotation shaft 20 Pumping pipe 21 Top surface 22 Rotation plate 22a Rotation plate 23 Bottom face 31 on the lower end side 31 Air purification device 32 Housing 33 Ventilation and air conditioning system 34 Indoors Machine 35 Circulation blower 36 Indoor suction opening 37 Indoor blowout opening 38 Exhaust opening 39 Inlet opening 40 Ventilator 41 Heat exchange device 42 House ceiling 44 Outer wall 46 Exhaust blower 47 Branch chamber 48 Branch duct 50 Hypochlorous acid Supply unit 51 Recovery pipe 52 Recovery port 53 Pump 54 Open/close valve 55 Recovery flow path 56 Supply flow path 61 Hypochlorous acid supply unit 62 Supply flow path 63 Recovery flow path 72 Water supply port 73 Water intake pipe 76 Flow rate control unit 77 Water level detection unit

Claims (5)

  1. 空気を吸い込む吸込口と前記吸込口より吸い込まれた空気を吹き出す吹出口とを備えた筐体と、
    前記筐体内に、前記吸込口から前記吹出口まで通風を行うための送風部と、
    前記吸込口と前記吹出口との間の風路内に設けられた、前記吸込口より吸い込まれた空気に含まれる次亜塩素酸の濃度を検知する濃度検知部と通過する空気に微細化した次亜塩素酸水を含ませる液体微細化室とを備え、
    前記液体微細化室内には、回転板の遠心力により放出した次亜塩素酸水溶液を衝突させる衝突壁と、前記回転板と同軸にして回転し、該回転板の中心部側に次亜塩素酸水溶液を揚水する揚水管と、前記揚水管の内側へ次亜塩素酸水溶液を供給する次亜塩素酸供給部と、前記揚水管内の次亜塩素酸水溶液の液面の高さを検知する高さ検知部とを備え、
    前記筐体に前記濃度検知部によって検知した次亜塩素酸の濃度に応じて前記揚水管内の次亜塩素酸水溶液の液面の高さを調整する高さ調整部とを備えた空気浄化装置。
    A casing provided with a suction port for sucking in air and a blowout port for blowing out the air sucked in from the suction port,
    An air blower for performing ventilation from the suction port to the air outlet in the housing,
    Provided in the air passage between the suction port and the air outlet, a concentration detection unit for detecting the concentration of hypochlorous acid contained in the air sucked from the suction port and atomized into passing air It is equipped with a liquid atomization chamber containing hypochlorous acid water,
    In the liquid atomization chamber, a collision wall for colliding the hypochlorous acid aqueous solution released by the centrifugal force of the rotating plate, and the rotating plate is rotated coaxially with the rotating plate, the hypochlorous acid on the center side of the rotating plate. A pumping pipe for pumping the aqueous solution, a hypochlorous acid supply unit for supplying the hypochlorous acid aqueous solution to the inside of the pumping pipe, and a height for detecting the height of the liquid level of the hypochlorous acid aqueous solution in the pumping pipe. With a detector,
    An air purification apparatus comprising: a height adjusting unit that adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe according to the concentration of hypochlorous acid detected by the concentration detecting unit in the casing.
  2. 前記液体微細化室の底面に次亜塩素酸水溶液を貯留する貯水部を備え、前記揚水管は、上端と下端が開放し、下端よりも上端の断面積が大きい筒体であって、回転軸を沿直方向にして前記貯水部内に前記揚水管の前記下端を浸水させて配置し、前記次亜塩素酸供給部は、前記高さ調整部の指示に基づき前記貯水部へ次亜塩素酸水を供給する請求項1記載の空気浄化装置。 The bottom surface of the liquid atomization chamber is provided with a water storage part for storing an aqueous solution of hypochlorous acid, and the pumping pipe is a tubular body having an open upper end and a lower end, and a cross-sectional area of the upper end larger than that of the lower end, and the rotating shaft Is arranged in the water storage part by immersing the lower end of the pumping pipe in the water storage part, and the hypochlorous acid supply part supplies hypochlorous acid water to the water storage part based on an instruction of the height adjusting part. The air purification apparatus according to claim 1, which supplies the air.
  3. 前記揚水管は、回転軸を沿直方向にして配置した筒体であって、下端よりも上端の断面積が大きくし、上端を開放し下端を閉塞し貯水部を形成し、前記次亜塩素酸供給部は、前記揚水管内に次亜塩素酸水溶液を供給する給水管を備え、前記高さ調整部の指示に基づき前記貯水部へ次亜塩素酸水溶液を供給する請求項1記載の空気浄化装置。 The pumping pipe is a tubular body arranged with the axis of rotation in the vertical direction, and has a cross-sectional area of the upper end larger than that of the lower end, and the upper end is opened and the lower end is closed to form a water storage part. The air purifier according to claim 1, wherein the acid supply unit includes a water supply pipe for supplying the hypochlorous acid aqueous solution into the pumping pipe, and supplies the hypochlorous acid aqueous solution to the water storage unit based on an instruction from the height adjusting unit. apparatus.
  4. 前記液体微細化室は、下部に次亜塩素酸水溶液を貯留する貯水部を備え、
    前記次亜塩素酸供給部は、ポンプを備えかつ一端に供給口を有した給水管と、開閉弁を備えかつ一端に回収口を有した回収管によって前記貯水部に接続され、前記次亜塩素酸供給部は、前記回収口よりも低い位置に配置し、前記回収口は前記貯水部の最下部に配置し、
    前記ポンプの動作によって前記給水管を通じて前記貯水部へ次亜塩素酸水溶液を供給する流路と、前記開閉弁の開放によって前記回収管を通じて、前記回収口から前記貯水部に貯留した次亜塩素酸水溶液を前記次亜塩素酸供給部へ回収する流路とを備え、
    前記高さ調整部が、前記開閉弁と前記ポンプの動作を切り替えて前記揚水管内の次亜塩素酸水溶液の液面の高さを調整する請求項1に記載の空気浄化装置。
    The liquid refining chamber is provided with a water storage section for storing a hypochlorous acid aqueous solution in a lower portion,
    The hypochlorous acid supply unit is connected to the water storage unit by a water supply pipe having a pump and a supply port at one end, and a recovery pipe having an opening/closing valve and having a recovery port at one end, The acid supply unit is disposed at a position lower than the recovery port, and the recovery port is disposed at the bottom of the water storage unit,
    A flow path for supplying an aqueous solution of hypochlorous acid to the water storage section through the water supply pipe by the operation of the pump, and a hypochlorous acid stored in the water storage section from the recovery port through the recovery tube by opening the on-off valve. A flow path for collecting the aqueous solution to the hypochlorous acid supply unit is provided,
    The air purification apparatus according to claim 1, wherein the height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operations of the on-off valve and the pump.
  5. 前記液体微細化室は、下部に次亜塩素酸水溶液を貯留する貯水部を備え、
    前記次亜塩素酸供給部は、開閉弁を備えかつ一端に供給口を有した給水管と、ポンプを備えかつ一端に回収口を有した回収管によって前記液体微細化室に接続され、前記次亜塩素酸供給部は、前記供給口よりも高い位置に配置し、前記回収口は液体微細化室の最下部に配置し、
    前記開閉弁の開放によって、前記給水管を通じて前記供給口から前記液体微細化室へ次亜塩素酸水溶液を供給する流路と、前記ポンプの動作によって、前記回収管を通じて前記回収口から前記貯水部に貯留した次亜塩素酸水溶液を前記次亜塩素酸供給部へ回収する流路とを備え、
    前記高さ調整部が、前記開閉弁と前記ポンプの動作を切り替えて前記揚水管内の次亜塩素酸水溶液の液面の高さを調整する請求項1に記載の空気浄化装置。
    The liquid refining chamber is provided with a water storage section for storing a hypochlorous acid aqueous solution in a lower portion,
    The hypochlorous acid supply unit is connected to the liquid atomization chamber by a water supply pipe having an opening/closing valve and a supply port at one end, and a recovery pipe having a pump and having a recovery port at one end. The chlorous acid supply unit is arranged at a position higher than the supply port, and the recovery port is arranged at the bottom of the liquid atomization chamber,
    A channel for supplying an aqueous solution of hypochlorous acid from the supply port to the liquid atomizing chamber through the water supply pipe by opening the on-off valve, and the water reservoir from the recovery port through the recovery pipe by the operation of the pump. And a flow path for collecting the hypochlorous acid aqueous solution stored in
    The air purification apparatus according to claim 1, wherein the height adjusting unit adjusts the height of the liquid surface of the hypochlorous acid aqueous solution in the pumping pipe by switching the operations of the on-off valve and the pump.
PCT/JP2020/003379 2019-01-31 2020-01-30 Air purification device WO2020158850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569715A JP7345087B2 (en) 2019-01-31 2020-01-30 air purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019015365 2019-01-31
JP2019-015365 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158850A1 true WO2020158850A1 (en) 2020-08-06

Family

ID=71840573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003379 WO2020158850A1 (en) 2019-01-31 2020-01-30 Air purification device

Country Status (2)

Country Link
JP (1) JP7345087B2 (en)
WO (1) WO2020158850A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202071A1 (en) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 Space cleaning device
WO2022209447A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Space purification device
WO2022239531A1 (en) * 2021-05-14 2022-11-17 パナソニックIpマネジメント株式会社 Space purification device
JP2022175541A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system
JP2022175543A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system
JP2022175542A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230041A (en) * 1989-03-01 1990-09-12 Mitsubishi Electric Corp Humidifying device
JPH04108063A (en) * 1990-08-27 1992-04-09 Hitachi Ltd Vehicle air conditioner and operating method thereof
EP0638773A1 (en) * 1993-08-10 1995-02-15 Scat Equipment Pte Ltd. Air cleaning method, cleaning apparatus, and mist generator
JP2008261608A (en) * 2007-04-13 2008-10-30 Noritz Corp Mist generating device and bathroom heating device comprising the same
JP2009097738A (en) * 2007-10-12 2009-05-07 Noritz Corp Mist generator and bathroom air-conditioner comprising the same
JP2018050483A (en) * 2016-09-26 2018-04-05 株式会社東芝 Processing method for dry process
JP2018175740A (en) * 2017-04-21 2018-11-15 パナソニックIpマネジメント株式会社 Air purification device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108063B2 (en) 2004-04-22 2008-06-25 リンナイ株式会社 Pilot valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230041A (en) * 1989-03-01 1990-09-12 Mitsubishi Electric Corp Humidifying device
JPH04108063A (en) * 1990-08-27 1992-04-09 Hitachi Ltd Vehicle air conditioner and operating method thereof
EP0638773A1 (en) * 1993-08-10 1995-02-15 Scat Equipment Pte Ltd. Air cleaning method, cleaning apparatus, and mist generator
JP2008261608A (en) * 2007-04-13 2008-10-30 Noritz Corp Mist generating device and bathroom heating device comprising the same
JP2009097738A (en) * 2007-10-12 2009-05-07 Noritz Corp Mist generator and bathroom air-conditioner comprising the same
JP2018050483A (en) * 2016-09-26 2018-04-05 株式会社東芝 Processing method for dry process
JP2018175740A (en) * 2017-04-21 2018-11-15 パナソニックIpマネジメント株式会社 Air purification device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202071A1 (en) * 2021-03-22 2022-09-29 パナソニックIpマネジメント株式会社 Space cleaning device
JP2022145989A (en) * 2021-03-22 2022-10-05 パナソニックIpマネジメント株式会社 Space cleaning device
JP7266223B2 (en) 2021-03-22 2023-04-28 パナソニックIpマネジメント株式会社 space purifier
WO2022209447A1 (en) * 2021-03-30 2022-10-06 パナソニックIpマネジメント株式会社 Space purification device
WO2022239531A1 (en) * 2021-05-14 2022-11-17 パナソニックIpマネジメント株式会社 Space purification device
JP2022175541A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system
JP2022175543A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system
JP2022175542A (en) * 2021-05-14 2022-11-25 パナソニックIpマネジメント株式会社 air conditioning system
JP7336641B2 (en) 2021-05-14 2023-09-01 パナソニックIpマネジメント株式会社 air conditioning system
JP7352784B2 (en) 2021-05-14 2023-09-29 パナソニックIpマネジメント株式会社 air conditioning system
JP7386402B2 (en) 2021-05-14 2023-11-27 パナソニックIpマネジメント株式会社 air conditioning system
JP7403048B2 (en) 2021-05-14 2023-12-22 パナソニックIpマネジメント株式会社 space purification device

Also Published As

Publication number Publication date
JP7345087B2 (en) 2023-09-15
JPWO2020158850A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020158850A1 (en) Air purification device
JP4347012B2 (en) Air purifier
JP4023512B1 (en) Liquid processing apparatus, air conditioner, and humidifier
JP4967971B2 (en) Air conditioner
JP2006288453A (en) Air treatment device
JP2018175740A (en) Air purification device
JP5227663B2 (en) Air-conditioning sterilization system
JP6948520B2 (en) Air cleaner
JP6814927B2 (en) Vehicle air conditioning system
JP2019041933A (en) Air purification device
JP2007305436A (en) Ion emitting device and air conditioner equipped with it
JP5494340B2 (en) Humidifier
JP2008116203A (en) Air conditioner
JP7203299B2 (en) heat exchange ventilator
JP2021132841A (en) Air purification device
JP2019056514A (en) Liquid atomization device and air cleaner or air conditioner using the same
JP2008221159A (en) Clarifying apparatus of drain water from instrument
JP2003199814A (en) Atomizing sterilization and deodorization device
JP6335418B2 (en) Air conditioning system
WO2023238526A1 (en) Liquid atomization device and heat exchange ventilation device using same
JP2019171272A (en) Liquid atomization device and heat exchanger, air cleaner or air conditioner using the same
JP2021115119A (en) Air purification system
JP2005308305A (en) Ventilating installation
JP2010121850A (en) Humidity controller
JP2024016985A (en) Space purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749598

Country of ref document: EP

Kind code of ref document: A1