WO2020158644A1 - Tomosynthesis device and method for driving same - Google Patents

Tomosynthesis device and method for driving same Download PDF

Info

Publication number
WO2020158644A1
WO2020158644A1 PCT/JP2020/002697 JP2020002697W WO2020158644A1 WO 2020158644 A1 WO2020158644 A1 WO 2020158644A1 JP 2020002697 W JP2020002697 W JP 2020002697W WO 2020158644 A1 WO2020158644 A1 WO 2020158644A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold cathode
ray
ray sources
tomosynthesis
tomosynthesis device
Prior art date
Application number
PCT/JP2020/002697
Other languages
French (fr)
Japanese (ja)
Inventor
均 桝谷
秀憲 監物
Original Assignee
ナノックス イメージング リミテッド
株式会社ナノックスイメージング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノックス イメージング リミテッド, 株式会社ナノックスイメージング filed Critical ナノックス イメージング リミテッド
Publication of WO2020158644A1 publication Critical patent/WO2020158644A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode

Definitions

  • the present invention relates to a tomosynthesis device using a plurality of cold cathode X-ray sources and a method of blinking these X-ray sources.
  • Tomosynthesis is one of the widely used methods for obtaining high-resolution tomographic images in X-ray fluoroscopy, and a plurality of objects obtained by scanning an object while irradiating X-rays in a certain angle range are used. It is a method of reconstructing a tomographic image of a subject from image information. Compared with computed tomography (abbreviated as CT), the imaging range and the number of tomography are limited, but since tomographic images can be obtained with a small X-ray dose, the digital processing technology for image information is rapidly advancing, It is expected to be applied in various fields including medical applications.
  • CT computed tomography
  • Digital radiography (digital X-ray photography), which has been in full swing since the beginning of the 21st century, uses a flat panel image sensor in the X-ray photosensitive section, which used to rely on the film until then. It is to be taken out as a digital signal.
  • X-ray source which is a light source
  • a traditional hot cathode X-ray tube is used in which thermoelectrons from a filament are accelerated by a high voltage and collide with an anode to obtain X-rays from the braking energy.
  • one X-ray tube is moved in one direction on an arc or parallel straight line trajectory with respect to the image sensor, and the irradiated X-rays from this X-ray tube are transmitted to the object in the vicinity of the image sensor. Scanning against.
  • thermoelectrons Due to the nature of thermoelectrons, it is not possible to quickly switch the blinking of X-ray irradiation by a simple and inexpensive method, and it is physically necessary to arrange multiple hot cathode X-ray tubes that tend to be large due to exhaust heat treatment or high voltage introduction. Nor was it economically rational.
  • the irradiation X-rays can be blinked easily and reliably, and the need for exhaust heat treatment is reduced, so that the X-ray tube can be downsized. It is possible, and a method of arranging a plurality of them and sequentially lighting them becomes practical. This eliminates the need for a drive mechanism for moving one X-ray tube, eliminates deterioration of image quality due to mechanical drive, shortens imaging time, and simplifies the entire imaging apparatus.
  • the tomosynthesis device includes a plurality of cold cathode X-ray sources for irradiating a subject with X-rays, and the plurality of cold cathode X-ray sources are two-dimensionally arranged on a predetermined plane. ..
  • a method of driving a tomosynthesis device is a method of driving a tomosynthesis device in which a plurality of cold cathode X-ray sources for irradiating a subject with X-rays are two-dimensionally arranged on a predetermined plane. , A plurality of cold cathode X-ray sources are sequentially blinked.
  • FIG. 1A is a schematic perspective view showing a conventional tomosynthesis device (using a rotating mechanism) using a hot cathode X-ray tube.
  • FIG. 1B is a schematic perspective view showing a conventional tomosynthesis apparatus (using a parallel movement mechanism) using a hot cathode X-ray tube.
  • FIG. 1C is a schematic diagram for explaining an imaging method of a conventional tomosynthesis apparatus using a hot cathode X-ray tube.
  • FIG. 2A is a schematic diagram showing a tomosynthesis device (small X-ray tubes arranged in an arc shape) using a plurality of small cold cathode X-ray sources.
  • FIG. 1A is a schematic perspective view showing a conventional tomosynthesis device (using a rotating mechanism) using a hot cathode X-ray tube.
  • FIG. 1B is a schematic perspective view showing a conventional tomosynthesis apparatus (using a parallel movement mechanism) using a hot cathode
  • FIG. 2B is a schematic diagram showing a tomosynthesis device using a plurality of small cold cathode X-ray sources (a plurality of X-ray sources arranged linearly in a single X-ray generator).
  • FIG. 3A is a schematic diagram showing a tomosynthesis device according to an example in which a plurality of small cold cathode X-ray sources are arranged in an arc shape.
  • FIG. 3B is a schematic diagram showing a tomosynthesis device according to an example in which a plurality of small cold cathode X-ray sources are two-dimensionally arranged on a predetermined plane.
  • FIG. 4A is a schematic diagram showing a tomosynthesis device according to an example in which some small cold cathode X-ray sources are arranged on different planes while avoiding obstacles.
  • FIG. 4B is a schematic diagram showing a tomosynthesis apparatus according to an example in which a plane on which a plurality of small-sized cold cathode X-ray sources is arranged has an inclination.
  • FIG. 5 is a schematic diagram for explaining an example of the blinking order of a plurality of small cold cathode X-ray sources.
  • FIG. 6 is a schematic diagram for explaining an example of blinking order and dose of a plurality of small cold cathode X-ray sources.
  • FIG. 7 is a schematic diagram for explaining an example of the blinking order and dose of a plurality of small cold cathode X-ray sources, and shows an example in which different anode voltages are applied in advance to specific X-ray sources.
  • a method of sequentially blinking driving of angled X-rays for tomosynthesis imaging can be considered. ..
  • a plurality of X-ray tubes or X-ray sources are arranged on an arc or a straight line in accordance with a conventional mechanical X-ray tube driving method, and they are sequentially blinked in a fixed direction. It is assumed that.
  • the arrangement of the cold cathode X-ray tube or the X-ray source which is small and can blink easily, is not limited to the conventional mechanically driven track, and the blinking order is free.
  • the present invention introduces a new usage and merit by introducing into the tomosynthesis the arrangement and blinking method of the cold cathode X-ray source that did not exist in the past.
  • a rotary mechanism drives the arcuate track, and a parallel mechanism drives the linear track.
  • the width of the arc (symbol A shown in FIG. 1A) and the length of the straight line (symbol B shown in FIG. 1B) are several tens cm to hundreds of tens of cm, and since there is also a drive mechanism, the tomosynthesis device itself is moved to take an image. I can't.
  • the tomosynthesis device is fixed, and an object to be photographed (affected part) is placed at a predetermined photographing place for photographing.
  • X-rays are emitted ten to several dozen times in the order from one end of the orbit to the other end (Fig. 1C). Since it is difficult for the hot cathode X-ray tube to quickly and reliably blink the thermoelectrons from the filament, the X-ray tube is kept irradiating X-rays while moving in orbit, and There was also a method of sequentially capturing only the image information from the position from one end of the trajectory to the other end, but with this, most of the X-ray dose does not contribute to imaging, and the object (affected part) becomes useless. You will be exposed. Therefore, at present, measures are taken to prevent the X-rays from being irradiated from the orbital positions other than the time of photographing by using a high-cost method such as blinking the anode voltage of the X-ray tube.
  • a high-cost method such as blinking the anode voltage of the X-ray tube.
  • each cold cathode X-ray tube or cold cathode source is arranged along an arc or straight line in the conventional tomosynthesis device.
  • the size of the X-ray source portion of the tomosynthesis device (reference A in FIG. 1A or reference B in FIG. 1B) does not change except that the X-ray tube drive mechanism is not required.
  • the blinking method of multiple cold cathode tubes or cold cathode sources is performed under the same condition from one end of the arc or linear array to the other end.
  • a plurality of X-ray irradiations from different angles with respect to the object (X-ray image sensor) necessary for tomosynthesis imaging are arranged one-dimensionally when viewed from the object (X-ray image sensor) ( 3A) is not necessary and may be realized by dispersing the cold cathode X-ray source in two dimensions (FIG. 3B). That is, a plurality of small cold cathode X-ray sources may be arranged two-dimensionally on a predetermined plane. As a result, the maximum length of the X-ray source portion can be reduced even if the same number of irradiations and the same intervals as those in the conventional arrangement are arranged (reference numeral C in FIG. 3A to reference numeral C in FIG.
  • a plurality of cold cathode X-ray sources are arranged so as to surround the object to be viewed when viewed from directly above the object.
  • the plurality of cold cathode sources arranged two-dimensionally when viewed from the object (X-ray image sensor) does not need to be equidistant from the object (X-ray image sensor), and different distances depending on the purpose. In addition, they may be dispersed in a three-dimensional space.
  • the X-ray source portion of the tomosynthesis device can be placed in the restricted space shape (FIG. 4A), and it can also be arranged so as to ensure imaging from a specific direction (FIG. 4B).
  • some small cold cathode X-ray sources are arranged on another plane closer to the object to be photographed, avoiding obstacles. Further, in the example shown in FIG.
  • the plane on which the plurality of small cold cathode X-ray sources are arranged has an inclination, and the small cold cathode X-ray source located at the center is directly above the object to be photographed. It is arranged.
  • the distances between the plurality of cold cathode X-ray sources and the object to be photographed are not the same, and at least two cold cathode X-ray sources are different from each other in the object to be photographed.
  • the blinking may be performed sequentially along the arrangement order of the plurality of cold cathode X-ray sources, or the blinking may be performed sequentially in an order different from the arrangement order of the plurality of cold cathode X-ray sources.
  • Fig. 5 it is not necessary that the blinking of the cold cathode X-ray source be performed once under the same conditions. If a higher X-ray dose is required for an image from irradiation from a particular direction, a large current can be set for irradiation in this direction. This can also be realized by repeating the irradiation (Fig. 6).
  • the X-ray dose of the cold cathode X-ray source G is 20 mAs
  • the X-ray dose of the other cold cathode X-ray sources G is 10 mAs.
  • the cold cathode X-ray source G may irradiate the X-ray dose of 20 mAs at a time, or may irradiate the X-ray dose of 10 mAs in two times. With a cold cathode X-ray source that does not mechanically move during imaging, the imaging time does not significantly increase even if the specific X-ray source is repeatedly irradiated. Such adjustment of the dose according to the irradiation direction is repeated in the same irradiation direction in order to correct a problem such as poor image quality found in the analysis of a certain image in addition to the case of being preset. The dose adjustment in the next irradiation direction can be performed dynamically in conjunction with image analysis by a computer.
  • the method of adjusting the irradiation conditions from each cold cathode X-ray source can affect not only the X-ray dose but also the X-ray energy, but the anode voltage of one X-ray tube is blinked or the energy level is changed. Up and down has already been done.
  • the anode voltage of each X-ray source is not dynamically adjusted, but different anode voltages are given to a specific X-ray source in advance, and the corresponding X-ray sources are provided.
  • By flashing the current of X it is possible to realize X-ray irradiation with different energies (FIG. 7).
  • FIG. 7 In the example shown in FIG.
  • the anode voltage is 40 keV in some cold cathode X-ray sources, while the anode voltage is 70 keV in the remaining cold cathode X-ray sources.
  • the combination of X-ray energy and its irradiation direction is uniquely determined, but the order and number of times can be arbitrarily selected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

[Problem] To provide a compact tomosynthesis device that uses a plurality of cold cathode X-ray sources. [Solution] This tomosynthesis device includes a plurality of cold cathode X-ray sources that irradiate a subject with X-rays, wherein the plurality of cold cathode X-ray sources is arranged two-dimensionally on a predetermined plane. This drive method for a tomosynthesis device is for a tomosynthesis device in which a plurality of cold cathode X-ray sources that illuminates a subject with X-rays is arranged two-dimensionally on a predetermined plane, and the plurality of cold cathode X-ray sources are caused to flash in turn.

Description

トモシンセシス装置その駆動方法Tomosynthesis device Driving method
 本発明は、複数の冷陰極X線源を用いたトモシンセス装置、並びに、これらX線源の点滅方法に関するものである。 The present invention relates to a tomosynthesis device using a plurality of cold cathode X-ray sources and a method of blinking these X-ray sources.
 トモシンセシスは、X線透視撮影において、高解像度の断層画像を得るために広く用いられている方法のひとつであり、ある角度範囲でX線を照射しながら被写物体を走査して得られる複数の画像情報から、被写物体の断層画像を再構成する方法である。コンピューター断層撮影(略称:CT)と比べて、撮影範囲や断層数が限定されるが、少ないX線線量で断層画像が得られるので、画像情報のデジタル処理技術が急速に進歩している現在、医療用途を含む様々な分野での応用が期待されている。 Tomosynthesis is one of the widely used methods for obtaining high-resolution tomographic images in X-ray fluoroscopy, and a plurality of objects obtained by scanning an object while irradiating X-rays in a certain angle range are used. It is a method of reconstructing a tomographic image of a subject from image information. Compared with computed tomography (abbreviated as CT), the imaging range and the number of tomography are limited, but since tomographic images can be obtained with a small X-ray dose, the digital processing technology for image information is rapidly advancing, It is expected to be applied in various fields including medical applications.
 21世紀初頭から本格化したデジタル・ラジオグラフィー(デジタルX線撮影)は、それまでフイルムに頼っていたX線感光部に、フラットパネル撮像素子を採用することによって、X線画像情報を直接かつ高速にデジタル信号として取り出すものである。光源であるX線源としては、フィラメントからの熱電子を高電圧で加速して陽極に衝突させてその制動エネルギーからX線を得る、伝統的な熱陰極X線管が用いられている。現行のトモシンセシス装置でも、一つのX線管を、撮像素子に対する円弧あるいは平行直線の軌道上で一方向に動かしながら、このX線管からの照射X線を、撮像素子に近接した被写物体に対して走査している。 Digital radiography (digital X-ray photography), which has been in full swing since the beginning of the 21st century, uses a flat panel image sensor in the X-ray photosensitive section, which used to rely on the film until then. It is to be taken out as a digital signal. As an X-ray source which is a light source, a traditional hot cathode X-ray tube is used in which thermoelectrons from a filament are accelerated by a high voltage and collide with an anode to obtain X-rays from the braking energy. Even with the current tomosynthesis device, one X-ray tube is moved in one direction on an arc or parallel straight line trajectory with respect to the image sensor, and the irradiated X-rays from this X-ray tube are transmitted to the object in the vicinity of the image sensor. Scanning against.
 熱電子の性格上、簡単安価な方法で素早くX線照射の点滅を切り替えることができず、排熱処理や高電圧導入のため大型になりがちな熱陰極X線管を複数並べることは物理的にも経済的にも合理的ではなかった。 Due to the nature of thermoelectrons, it is not possible to quickly switch the blinking of X-ray irradiation by a simple and inexpensive method, and it is physically necessary to arrange multiple hot cathode X-ray tubes that tend to be large due to exhaust heat treatment or high voltage introduction. Nor was it economically rational.
 しかしながら、X線発生のための制動電子を電界放出方式による冷陰極によって供給すれば、照射X線の点滅が容易確実になり、排熱処理の必要が少なくなるのでX線管を小型化することができ、複数並べて順次点灯する方法が現実的となる。これにより一つのX線管を動かすための駆動機構が不要となり、機械的駆動に伴う画像品質の劣化を無くし、撮影時間を短縮し、撮像装置全体を簡素化することも可能になる。 However, if the bremsstrahlung electrons for generating X-rays are supplied by the cold cathode by the field emission method, the irradiation X-rays can be blinked easily and reliably, and the need for exhaust heat treatment is reduced, so that the X-ray tube can be downsized. It is possible, and a method of arranging a plurality of them and sequentially lighting them becomes practical. This eliminates the need for a drive mechanism for moving one X-ray tube, eliminates deterioration of image quality due to mechanical drive, shortens imaging time, and simplifies the entire imaging apparatus.
 したがって、本発明の目的は、複数の冷陰極X線源を用いたトモシンセシス装置を提供することである。また、本発明の他の目的は、複数の冷陰極X線源を用いたトモシンセシス装置の駆動方法を提供することである。 Therefore, an object of the present invention is to provide a tomosynthesis device using a plurality of cold cathode X-ray sources. Another object of the present invention is to provide a method of driving a tomosynthesis device using a plurality of cold cathode X-ray sources.
 本発明によるトモシンセシス装置は、被写物体に対してX線を照射する複数の冷陰極X線源を備え、複数の冷陰極X線源は、所定の平面上において2次元的に配置されている。 The tomosynthesis device according to the present invention includes a plurality of cold cathode X-ray sources for irradiating a subject with X-rays, and the plurality of cold cathode X-ray sources are two-dimensionally arranged on a predetermined plane. ..
 本発明によるトモシンセシス装置の駆動方法は、被写物体に対してX線を照射する複数の冷陰極X線源が所定の平面上において2次元的に配置されているトモシンセシス装置の駆動方法であって、複数の冷陰極X線源を順次点滅させる。 A method of driving a tomosynthesis device according to the present invention is a method of driving a tomosynthesis device in which a plurality of cold cathode X-ray sources for irradiating a subject with X-rays are two-dimensionally arranged on a predetermined plane. , A plurality of cold cathode X-ray sources are sequentially blinked.
図1Aは、熱陰極X線管を用いた従来のトモシンセシス装置(回転機構によるもの)を示す模式図な斜視図である。FIG. 1A is a schematic perspective view showing a conventional tomosynthesis device (using a rotating mechanism) using a hot cathode X-ray tube. 図1Bは、熱陰極X線管を用いた従来のトモシンセシス装置(平行移動機構によるもの)を示す模式図な斜視図である。FIG. 1B is a schematic perspective view showing a conventional tomosynthesis apparatus (using a parallel movement mechanism) using a hot cathode X-ray tube. 図1Cは、熱陰極X線管を用いた従来のトモシンセシス装置の撮影方法を説明するための模式図である。FIG. 1C is a schematic diagram for explaining an imaging method of a conventional tomosynthesis apparatus using a hot cathode X-ray tube. 図2Aは、複数個の小型冷陰極X線源を用いたトモシンセシス装置(小型X線管を円弧状に並べたもの)を示す模式図である。FIG. 2A is a schematic diagram showing a tomosynthesis device (small X-ray tubes arranged in an arc shape) using a plurality of small cold cathode X-ray sources. 図2Bは、複数個の小型冷陰極X線源を用いたトモシンセシス装置(複数のX線源を一つのX線発生装置の中に直線状に並べて納めたもの)を示す模式図である。FIG. 2B is a schematic diagram showing a tomosynthesis device using a plurality of small cold cathode X-ray sources (a plurality of X-ray sources arranged linearly in a single X-ray generator). 図3Aは、複数個の小型冷陰極X線源を円弧状に配置した例によるトモシンセシス装置を示す模式図である。FIG. 3A is a schematic diagram showing a tomosynthesis device according to an example in which a plurality of small cold cathode X-ray sources are arranged in an arc shape. 図3Bは、複数個の小型冷陰極X線源を所定の平面上において2次元的に配置した例によるトモシンセシス装置を示す模式図である。FIG. 3B is a schematic diagram showing a tomosynthesis device according to an example in which a plurality of small cold cathode X-ray sources are two-dimensionally arranged on a predetermined plane. 図4Aは、障害物を避けて一部の小型冷陰極X線源を異なる平面上に配置した例によるトモシンセシス装置を示す模式図である。FIG. 4A is a schematic diagram showing a tomosynthesis device according to an example in which some small cold cathode X-ray sources are arranged on different planes while avoiding obstacles. 図4Bは、複数個の小型冷陰極X線源が配置された平面が傾きを有している例によるトモシンセシス装置を示す模式図である。FIG. 4B is a schematic diagram showing a tomosynthesis apparatus according to an example in which a plane on which a plurality of small-sized cold cathode X-ray sources is arranged has an inclination. 図5は、複数個の小型冷陰極X線源の点滅順序の一例を説明するための模式図である。FIG. 5 is a schematic diagram for explaining an example of the blinking order of a plurality of small cold cathode X-ray sources. 図6は、複数個の小型冷陰極X線源の点滅順序及び線量の一例を説明するための模式図である。FIG. 6 is a schematic diagram for explaining an example of blinking order and dose of a plurality of small cold cathode X-ray sources. 図7は、複数個の小型冷陰極X線源の点滅順序及び線量の一例を説明するための模式図であって、あらかじめ特定のX線源に異なる陽極電圧を印加した例を示す。FIG. 7 is a schematic diagram for explaining an example of the blinking order and dose of a plurality of small cold cathode X-ray sources, and shows an example in which different anode voltages are applied in advance to specific X-ray sources.
 複数の冷陰極X線管を並べて、あるいは複数のX線源を一体のX線装置の中に配置することによって、トモシンセシス撮影のための角度のついたX線を順次点滅駆動する方法が考えられる。これらの方法は、従来の機械的なX線管駆動の方法に準じて、複数のX線管あるいはX線源を円弧上あるいは直線上に配置して、それらを一定方向に順次点滅していくことを前提としている。しかし、小型で、容易に点滅することができる冷陰極X線管あるいはX線源の配置は、従来の機械的駆動の軌道に限定されず、また点滅の順番も自由である。本発明は、従来存在しなかった冷陰極X線源の配置や点滅方法をトモシンセシスに導入することによって、新たな用法やメリットを生み出す。 By arranging a plurality of cold cathode X-ray tubes side by side or by arranging a plurality of X-ray sources in an integrated X-ray apparatus, a method of sequentially blinking driving of angled X-rays for tomosynthesis imaging can be considered. .. According to these methods, a plurality of X-ray tubes or X-ray sources are arranged on an arc or a straight line in accordance with a conventional mechanical X-ray tube driving method, and they are sequentially blinked in a fixed direction. It is assumed that. However, the arrangement of the cold cathode X-ray tube or the X-ray source, which is small and can blink easily, is not limited to the conventional mechanically driven track, and the blinking order is free. The present invention introduces a new usage and merit by introducing into the tomosynthesis the arrangement and blinking method of the cold cathode X-ray source that did not exist in the past.
 一つの伝統的な熱陰極X線管を機械的に駆動する、従来のトモシンセシス装置におけるX線管の軌道、すなわちX線源の軌跡は、駆動機構に従うため、円弧(図1A)または直線(図1B)のいずれかであった。円弧軌道をとるものの駆動は回転機構により、直線軌道をとるものの駆動は平行移動機構による。円弧の幅(図1Aに示す符号A)や直線の長さ(図1Bに示す符号B)は数十cmから百数十cmあり、駆動機構も存在するため、トモシンセシス装置そのものを動かして撮影することができない。トモシンセシス装置は固定されており、定められた撮影場所に被写物体(患部)を置いて撮影する。 The trajectory of the X-ray tube in the conventional tomosynthesis device that mechanically drives one traditional hot cathode X-ray tube, that is, the locus of the X-ray source, follows the drive mechanism, and therefore, the arc (Fig. 1A) or straight line (Fig. 1B). A rotary mechanism drives the arcuate track, and a parallel mechanism drives the linear track. The width of the arc (symbol A shown in FIG. 1A) and the length of the straight line (symbol B shown in FIG. 1B) are several tens cm to hundreds of tens of cm, and since there is also a drive mechanism, the tomosynthesis device itself is moved to take an image. I can't. The tomosynthesis device is fixed, and an object to be photographed (affected part) is placed at a predetermined photographing place for photographing.
 これらのX線源軌道のなかで、X線は十数回から数十回、軌道の一方の端から他方の端に向かう順番に、照射される(図1C)。熱陰極X線管ではフィラメントからの熱電子を素早く確実に点滅することが困難であるため、X線管が軌道上を動くあいだX線を照射し続けたままにして、所定のX線管の位置からの画像情報だけを、軌道の一方の端から他方の端にかけて、順次取り込む方法もあったが、これではX線線量の大半が撮影に寄与せず、被写物体(患部)が無用に被曝することになる。したがい現在は、X線管の陽極電圧を点滅させるなどの高コストの方法を用いて、撮影時以外の軌道位置からX線が照射されないように対策がとられている。 In these X-ray source trajectories, X-rays are emitted ten to several dozen times in the order from one end of the orbit to the other end (Fig. 1C). Since it is difficult for the hot cathode X-ray tube to quickly and reliably blink the thermoelectrons from the filament, the X-ray tube is kept irradiating X-rays while moving in orbit, and There was also a method of sequentially capturing only the image information from the position from one end of the trajectory to the other end, but with this, most of the X-ray dose does not contribute to imaging, and the object (affected part) becomes useless. You will be exposed. Therefore, at present, measures are taken to prevent the X-rays from being irradiated from the orbital positions other than the time of photographing by using a high-cost method such as blinking the anode voltage of the X-ray tube.
 この際、X線管が軌道上を移動しながら撮影すると、撮影のあいだに光源が動くため、画像がぶれる問題が生じる。このため十数回から数十回の撮影位置ごとに移動を止めて、X線管が静止した位置で撮影する方法がとられることもある。この方法ではX線管駆動機構の運動と停止を繰り返すため、十数回から数十回の撮影を終えるまでの時間が長くかかり、その間に被写物体(患部)が変化して画像品質を損なうという問題がある。この場合も撮影は、X線管軌道の一方の端から他方の端に向かう順番で行われる。 At this time, if the X-ray tube is moved while moving in orbit, the light source moves during the shooting, which causes the problem of blurring the image. For this reason, a method may be adopted in which the movement is stopped after every ten to several tens of photographing positions and the X-ray tube is photographed at a stationary position. In this method, since the X-ray tube drive mechanism is repeatedly moved and stopped, it takes a long time to finish photographing a dozen to several tens of times, during which the object to be imaged (affected part) changes and the image quality is impaired. There is a problem. Also in this case, imaging is performed in the order from one end of the X-ray tube trajectory to the other end.
 多くのトモシンセシス撮影は、X線管が軌道上の一方の端から他方の端に移動するあいだ、均等の条件でおこなわれる(ただしX線源の軌道上の位置は除く)。すなわち、十数回から数十回のX線照射は、等しい位置間隔、照射時間、管電圧、管電流(X線線量)でおこなわれる。 Many tomosynthesis images are taken under equal conditions while the X-ray tube moves from one end on the orbit to the other end (except for the position of the X-ray source on the orbit). That is, the X-ray irradiation of ten to several tens of times is performed with the same position interval, irradiation time, tube voltage, and tube current (X-ray dose).
 医療X線撮影などにおいて、同一の被写物体(患部)をエネルギーレベルが異なる二種類のX線で撮影し、これらの画像を合成することにより、X線吸収率が異なる複数の組織の視認性を向上させる、いわゆるデュアルエナジー方式をトモシンセシスに用いることが可能である。この場合、軌道上の一回の移動の間にX線管の管電圧を切り替えながら同一位置で二回ずつ撮影すれば、一つの軌道上での一連の撮影が異なる条件でなされることになるが、全ての撮影を終えるまでの時間がさらに長くなるという問題があるため例外的である。 In medical X-ray photography, the same object (affected part) is imaged with two types of X-rays with different energy levels, and these images are combined to make it possible to see multiple tissues with different X-ray absorption rates. It is possible to use a so-called dual energy method for improving tomosynthesis in tomosynthesis. In this case, if the tube voltage of the X-ray tube is switched during one movement on the orbit and two images are taken at the same position, a series of images on one orbit will be performed under different conditions. However, it is exceptional because there is a problem that it takes longer to finish all the shooting.
 トモシンセシス撮影のX線源として、小型の冷陰X線管を用いる場合、従来のトモシンセス装置での熱陰極X線管の軌道上に、複数の冷陰極X線管を、十数個から数十個、一連のトモシンセシス撮影の回数ぶん配置して、これらを順番に点滅してX線を照射していくことによって、図1A~図1Cにて説明した方法と同様の撮影ができる(図2A)。複数の冷陰極X線源を、上記軌道上に配した機構を備える、X線発生装置でも同様である(図2B)。これらの場合でも、各冷陰極X線管あるいは冷陰極源は、従来のトモシンセシス装置における円弧または直線に沿って配置される。X線管駆動機構が不要となる以外に、トモシンセシス装置のX線源部分の大きさ(図1Aの符号Aまたは図1Bの符号B)が変わるわけではない。 When a small cold cathode X-ray tube is used as an X-ray source for tomosynthesis imaging, a dozen to several tens of cold cathode X-ray tubes are placed on the orbit of the hot cathode X-ray tube in the conventional tomosynthesis device. By arranging the individual tomosynthesis images a number of times and sequentially blinking these to irradiate X-rays, the same imaging as the method described in FIGS. 1A to 1C can be performed (FIG. 2A). .. The same applies to an X-ray generator including a mechanism in which a plurality of cold cathode X-ray sources are arranged on the orbit (FIG. 2B). Even in these cases, each cold cathode X-ray tube or cold cathode source is arranged along an arc or straight line in the conventional tomosynthesis device. The size of the X-ray source portion of the tomosynthesis device (reference A in FIG. 1A or reference B in FIG. 1B) does not change except that the X-ray tube drive mechanism is not required.
 さらに複数の冷陰極管あるいは冷陰極源の点滅方法も、円弧あるいは直線配列の一方の端から他方の端に向けて、均等の条件で行われる。 Furthermore, the blinking method of multiple cold cathode tubes or cold cathode sources is performed under the same condition from one end of the arc or linear array to the other end.
 上述のごとく、トモシンセシス撮影においては、伝統的な熱陰極X線管を機械駆動する装置でも、冷陰極X線源を複数配置して点滅する装置でも、X線源の配置とX線照射の駆動方法は、従来の方式と変わるところがない。 As described above, in tomosynthesis imaging, whether a device that mechanically drives a traditional hot cathode X-ray tube or a device that arranges a plurality of cold cathode X-ray sources and blinks them, arranges the X-ray sources and drives X-ray irradiation. The method is no different from the conventional method.
 トモシンセシス撮影のために必要な、被写物体(X線撮像素子)に対して異なる角度からの複数のX線照射は、被写物体(X線撮像素子)から見て一次元上に配置する(図3A)必要はなく、冷陰極X線源を二次元上に分散させることによって実現してよい(図3B)。つまり、複数個の小型冷陰極X線源を所定の平面上において2次元的に配置しても構わない。これによって従来の配置と同じ照射数と同じ間隔に配しても、X線源部分の最大の長さを縮小することができ(図3Aの符号Aに対する図3Bの符号C)、被写物体(患部)と撮影環境に応じて、X線源部分の位置を変えて撮影することが可能になる。図3Bに示す例では、被写物体の直上から見て、複数の冷陰極X線源が被写物体を囲むように配置されている。 A plurality of X-ray irradiations from different angles with respect to the object (X-ray image sensor) necessary for tomosynthesis imaging are arranged one-dimensionally when viewed from the object (X-ray image sensor) ( 3A) is not necessary and may be realized by dispersing the cold cathode X-ray source in two dimensions (FIG. 3B). That is, a plurality of small cold cathode X-ray sources may be arranged two-dimensionally on a predetermined plane. As a result, the maximum length of the X-ray source portion can be reduced even if the same number of irradiations and the same intervals as those in the conventional arrangement are arranged (reference numeral C in FIG. 3A to reference numeral C in FIG. 3A), and the object to be photographed is reduced. It is possible to change the position of the X-ray source portion and take an image according to the (affected part) and the imaging environment. In the example shown in FIG. 3B, a plurality of cold cathode X-ray sources are arranged so as to surround the object to be viewed when viewed from directly above the object.
 被写物体(X線撮像素子)から見て二次元上に配置される複数の冷陰極源は、被写物体(X線撮像素子)から等距離にある必要はなく、目的に応じて異なる距離に、三次元空間中に分散させてよい。これによって、制約のある空間形状の中にトモシンセシス装置のX線源部分を置くことができる(図4A)ほか、特定の方向からの撮影を確保する配置とすることもできる(図4B)。図4Aに示す例では、障害物を避けて一部の小型冷陰極X線源がより被写物体に近い別の平面上に配置されている。また、図4Bに示す例では、複数個の小型冷陰極X線源が配置された平面が傾きを有しているとともに、中心に位置する小型冷陰極X線源は、被写物体の直上に配置されている。図4A、図4Bに示す例では、複数の冷陰極X線源と被写物体の距離が同じではなく、少なくとも2つの冷陰極X線源については、被写物体との距離が互いに異なる。 The plurality of cold cathode sources arranged two-dimensionally when viewed from the object (X-ray image sensor) does not need to be equidistant from the object (X-ray image sensor), and different distances depending on the purpose. In addition, they may be dispersed in a three-dimensional space. As a result, the X-ray source portion of the tomosynthesis device can be placed in the restricted space shape (FIG. 4A), and it can also be arranged so as to ensure imaging from a specific direction (FIG. 4B). In the example shown in FIG. 4A, some small cold cathode X-ray sources are arranged on another plane closer to the object to be photographed, avoiding obstacles. Further, in the example shown in FIG. 4B, the plane on which the plurality of small cold cathode X-ray sources are arranged has an inclination, and the small cold cathode X-ray source located at the center is directly above the object to be photographed. It is arranged. In the example shown in FIGS. 4A and 4B, the distances between the plurality of cold cathode X-ray sources and the object to be photographed are not the same, and at least two cold cathode X-ray sources are different from each other in the object to be photographed.
 トモシンセシス撮影のために、複数の冷陰極X線源を、円弧、直線あるいは円周上で、一定の方向に順番に一回ずつ点滅させていく必要はない。ある特定の方向からの照射による画像が断層画像を合成するための基本情報となり、コンピューターによる分析に他の画像より時間をかけることが有効な場合、この方向の照射を最初にして、次にその近傍の撮影を優先させて差分解析を続ける(図5)ことによって、最終的な断層画像合成までの時間が短縮され、画像品質を向上させることができる。このように目的に応じて、一定順序にとらわれない、飛び越し、往復、繰り返しなど任意の順序で点滅させることができる。このように、複数の冷陰極X線源の配列順序に沿って順次点滅させても構わないし、複数の冷陰極X線源の配列順序とは異なる順序で順次点滅させても構わない。  For tomosynthesis imaging, it is not necessary to blink multiple cold-cathode X-ray sources in a fixed direction one by one on an arc, straight line, or circumference. When the image from the irradiation from a certain direction serves as the basic information for synthesizing a tomographic image, and it is effective to spend more time for computer analysis than other images, irradiation in this direction should be performed first, and then By continuing the difference analysis by prioritizing the imaging in the vicinity (FIG. 5), the time until the final tomographic image synthesis is shortened and the image quality can be improved. In this way, according to the purpose, it is possible to blink the light in any order such as jumping, reciprocating, and repeating without being bound by a fixed order. As described above, the blinking may be performed sequentially along the arrangement order of the plurality of cold cathode X-ray sources, or the blinking may be performed sequentially in an order different from the arrangement order of the plurality of cold cathode X-ray sources.
 図5において、一回の冷陰極X線源の点滅が、同じ条件で行われる必要もない。特定の方向からの照射による画像により多いX線線量が求められる場合、この方向の照射に大きい電流を設定することができる。これはその照射を繰り返すことによっても実現できる(図6)。図6に示す例では、冷陰極X線源GのX線線量が20mAsであり、他の冷陰極X線源GのX線線量が10mAsである。冷陰極X線源Gは、一度に20mAsのX線線量を照射しても構わないし、2回に分けて10mAsずつX線線量を照射しても構わない。撮影中、機械的に位置を動かすことのない冷陰極X線源では、特定X線源の繰り返し照射を行なっても、撮影時間が大きく伸びることはない。このような照射方向による線量の調整は、あらかじめ設定される場合のほか、ある画像の解析において、画質不良などの問題が発見された場合にそれを補正するために、同じ照射方向を繰り返す、あるいは次の照射方向での線量調整を行う、などコンピューターによる画像分析と連動して動的に実施することもできる。 In Fig. 5, it is not necessary that the blinking of the cold cathode X-ray source be performed once under the same conditions. If a higher X-ray dose is required for an image from irradiation from a particular direction, a large current can be set for irradiation in this direction. This can also be realized by repeating the irradiation (Fig. 6). In the example shown in FIG. 6, the X-ray dose of the cold cathode X-ray source G is 20 mAs, and the X-ray dose of the other cold cathode X-ray sources G is 10 mAs. The cold cathode X-ray source G may irradiate the X-ray dose of 20 mAs at a time, or may irradiate the X-ray dose of 10 mAs in two times. With a cold cathode X-ray source that does not mechanically move during imaging, the imaging time does not significantly increase even if the specific X-ray source is repeatedly irradiated. Such adjustment of the dose according to the irradiation direction is repeated in the same irradiation direction in order to correct a problem such as poor image quality found in the analysis of a certain image in addition to the case of being preset. The dose adjustment in the next irradiation direction can be performed dynamically in conjunction with image analysis by a computer.
 各冷陰極X線源からの照射条件の調整方法は、X線線量に限らず、X線エネルギーにも及ぼすことができるが、一つのX線管の陽極電圧を点滅させる、あるいは、エネルギーレベルを上下させることは既に行われている。複数の冷陰極X線源を配するトモシンセシスでは、各X線源の陽極電圧を動的に調整するのではなく、あらかじめ特定のX線源に異なる陽極電圧を与えておき、対応するX線源の電流を点滅することによって、異なるエネルギーのX線照射を実現することができる(図7)。図7に示す例では、一部の冷陰極X線源においては陽極電圧が40keVであるのに対し、残りの冷陰極X線源においては陽極電圧が70keVである。この場合X線エネルギーとその照射方向の組合せが一意に決まることになるが、その順番と回数については、任意に選択することができる。 The method of adjusting the irradiation conditions from each cold cathode X-ray source can affect not only the X-ray dose but also the X-ray energy, but the anode voltage of one X-ray tube is blinked or the energy level is changed. Up and down has already been done. In tomosynthesis in which a plurality of cold cathode X-ray sources are arranged, the anode voltage of each X-ray source is not dynamically adjusted, but different anode voltages are given to a specific X-ray source in advance, and the corresponding X-ray sources are provided. By flashing the current of X, it is possible to realize X-ray irradiation with different energies (FIG. 7). In the example shown in FIG. 7, the anode voltage is 40 keV in some cold cathode X-ray sources, while the anode voltage is 70 keV in the remaining cold cathode X-ray sources. In this case, the combination of X-ray energy and its irradiation direction is uniquely determined, but the order and number of times can be arbitrarily selected.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. It goes without saying that it is included in the range.

Claims (11)

  1.  被写物体に対してX線を照射する複数の冷陰極X線源を備え、
     前記複数の冷陰極X線源は、所定の平面上において2次元的に配置されている、トモシンセシス装置。
    A plurality of cold cathode X-ray sources for irradiating the object with X-rays,
    The tomosynthesis device in which the plurality of cold cathode X-ray sources are two-dimensionally arranged on a predetermined plane.
  2.  所定の方向から見て、前記複数の冷陰極X線源が前記被写物体を囲むように配置されている、請求項1に記載のトモシンセシス装置。 The tomosynthesis device according to claim 1, wherein the plurality of cold cathode X-ray sources are arranged so as to surround the object to be photographed when viewed from a predetermined direction.
  3.  前記複数の冷陰極X線源の少なくとも2つは、前記被写物体との距離が互いに異なる、請求項1又は2に記載のトモシンセシス装置。 The tomosynthesis device according to claim 1 or 2, wherein at least two of the plurality of cold cathode X-ray sources have different distances from the object to be photographed.
  4.  前記複数の冷陰極X線源を順次点滅させる、請求項1~3のいずれか一項に記載のトモシンセシス装置。 The tomosynthesis device according to any one of claims 1 to 3, wherein the plurality of cold cathode X-ray sources are sequentially blinked.
  5.  前記複数の冷陰極X線源の配列順序に沿って、前記複数の冷陰極X線源を順次点滅させる、請求項4に記載のトモシンセシス装置。 The tomosynthesis device according to claim 4, wherein the plurality of cold cathode X-ray sources are sequentially blinked in accordance with the arrangement order of the plurality of cold cathode X-ray sources.
  6.  前記複数の冷陰極X線源の配列順序とは異なる順序で、前記複数の冷陰極X線源を順次点滅させる、請求項4に記載のトモシンセシス装置。 The tomosynthesis device according to claim 4, wherein the plurality of cold cathode X-ray sources are sequentially blinked in an order different from the arrangement order of the plurality of cold cathode X-ray sources.
  7.  前記複数の冷陰極X線源は、第1及び第2の冷陰極X線源を含み、
     前記第1の冷陰極X線源が照射するX線のエネルギーと、前記第2の冷陰極X線源が照射するX線のエネルギーが互いに異なる、請求項1~6のいずれか一項に記載のトモシンセシス装置。
    The plurality of cold cathode X-ray sources includes first and second cold cathode X-ray sources,
    7. The energy of X-rays emitted by the first cold cathode X-ray source and the energy of X-rays emitted by the second cold cathode X-ray source are different from each other. Tomosynthesis device.
  8.  前記第1の冷陰極X線源にあらかじめ与えられる陽極電圧と、前記第2の冷陰極X線源にあらかじめ与えられる陽極電圧が互いに異なる、請求項7に記載のトモシンセシス装置。 The tomosynthesis device according to claim 7, wherein an anode voltage previously given to the first cold cathode X-ray source and an anode voltage previously given to the second cold cathode X-ray source are different from each other.
  9.  被写物体に対してX線を照射する複数の冷陰極X線源が所定の平面上において2次元的に配置されているトモシンセシス装置の駆動方法であって、
     前記複数の冷陰極X線源を順次点滅させる、トモシンセシス装置の駆動方法。
    A method for driving a tomosynthesis device, in which a plurality of cold cathode X-ray sources for irradiating an object with X-rays are two-dimensionally arranged on a predetermined plane,
    A method for driving a tomosynthesis device, which comprises sequentially blinking the plurality of cold cathode X-ray sources.
  10.  前記複数の冷陰極X線源の配列順序に沿って、前記複数の冷陰極X線源を順次点滅させる、請求項9に記載のトモシンセシス装置の駆動方法。 The method for driving a tomosynthesis device according to claim 9, wherein the plurality of cold cathode X-ray sources are sequentially blinked in the order of arrangement of the plurality of cold cathode X-ray sources.
  11.  前記複数の冷陰極X線源の配列順序とは異なる順序で、前記複数の冷陰極X線源を順次点滅させる、請求項9に記載のトモシンセシス装置の駆動方法。 The method of driving a tomosynthesis device according to claim 9, wherein the plurality of cold cathode X-ray sources are sequentially blinked in an order different from the arrangement order of the plurality of cold cathode X-ray sources.
PCT/JP2020/002697 2019-01-29 2020-01-27 Tomosynthesis device and method for driving same WO2020158644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962798325P 2019-01-29 2019-01-29
US62/798,325 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158644A1 true WO2020158644A1 (en) 2020-08-06

Family

ID=71842244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002697 WO2020158644A1 (en) 2019-01-29 2020-01-27 Tomosynthesis device and method for driving same

Country Status (1)

Country Link
WO (1) WO2020158644A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034450A1 (en) * 2008-01-15 2010-02-11 Thomas Mertelmeier Method and device for producing a tomosynthetic 3d x-ray image
JP2011512004A (en) * 2008-01-25 2011-04-14 テールズ X-ray source comprising at least one electron source combined with a photoelectric control device
JP2013504365A (en) * 2009-09-15 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Distributed X-ray source and X-ray imaging system having the same
US20160256128A1 (en) * 2014-02-26 2016-09-08 Carestream Health, Inc. Hybrid imaging apparatus and methods for interactive procedures
US20170311911A1 (en) * 2014-10-24 2017-11-02 Vatech Co., Ltd. X-ray generation apparatus for intra-oral x-ray imaging, guide holder, and intra-oral x-ray imaging system comprising same
US20180005796A1 (en) * 2016-05-16 2018-01-04 Nanox Imaging Plc X-ray tube and a controller thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100034450A1 (en) * 2008-01-15 2010-02-11 Thomas Mertelmeier Method and device for producing a tomosynthetic 3d x-ray image
JP2011512004A (en) * 2008-01-25 2011-04-14 テールズ X-ray source comprising at least one electron source combined with a photoelectric control device
JP2013504365A (en) * 2009-09-15 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Distributed X-ray source and X-ray imaging system having the same
US20160256128A1 (en) * 2014-02-26 2016-09-08 Carestream Health, Inc. Hybrid imaging apparatus and methods for interactive procedures
US20170311911A1 (en) * 2014-10-24 2017-11-02 Vatech Co., Ltd. X-ray generation apparatus for intra-oral x-ray imaging, guide holder, and intra-oral x-ray imaging system comprising same
US20180005796A1 (en) * 2016-05-16 2018-01-04 Nanox Imaging Plc X-ray tube and a controller thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPRENGER,F. ET AL.: "Distributed source x-ray tube technology for tomosynthesis imaging", PROCEEDINGS OF SPIE, vol. 7622, 23 March 2010 (2010-03-23), XP055361499, DOI: 10.1117/12.844586 *

Similar Documents

Publication Publication Date Title
US10405813B2 (en) Panoramic imaging using multi-spectral X-ray source
JP4864308B2 (en) X-ray anode with increased effective range
US8873716B2 (en) Method and system for controlling x-ray focal spot characteristics for tomosynthesis and mammography imaging
US9107642B2 (en) Method and apparatus for tomographic X-ray imaging and source configuration
KR101875847B1 (en) Radiation imaging apparatus and radiation imaging method using the same
US20030076927A1 (en) X-ray computed tomography apparatus
WO2009115982A1 (en) Computed tomography scanner apparatus and method for ct-based image acquisition based on spatially distributed x-ray microsources of the cone-beam type
JP2010082428A (en) X-ray computer tomography apparatus
US20110002442A1 (en) Circular tomosynthesis x-ray tube
JP2013504365A (en) Distributed X-ray source and X-ray imaging system having the same
JP2020048993A (en) Tomosynthesis photographing apparatus and operation method thereof
CN117241734A (en) Fast 3D radiography using X-ray flexible curved panel detector with motion compensated multiple pulsed X-ray sources
CN110946607B (en) Radiographic apparatus
JP2004136021A (en) Concentrated irradiation type radiotherapy apparatus
WO2018174389A1 (en) Radiography apparatus and radiography method using same
US7184514B2 (en) X-ray CT apparatus
WO2020158644A1 (en) Tomosynthesis device and method for driving same
JP2010284325A (en) X-ray computed tomography apparatus
JP7043381B2 (en) Tomosynthesis imaging device and its operation method
RU178295U1 (en) Rotating Anode Multipath X-ray Tube
JP7007319B2 (en) Radiographing device, operation method of radiography device, operation program of radiography device
JP5823178B2 (en) X-ray CT system
EP4224215A1 (en) Method for saturation correction and dynamic gain configuration
JP7175602B2 (en) X-ray CT device and X-ray generation system
WO2009027904A2 (en) X ray imaging system with cylindrical arrangement of source and detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP