WO2020158491A1 - Insulin secretion promoting peptide - Google Patents

Insulin secretion promoting peptide Download PDF

Info

Publication number
WO2020158491A1
WO2020158491A1 PCT/JP2020/001791 JP2020001791W WO2020158491A1 WO 2020158491 A1 WO2020158491 A1 WO 2020158491A1 JP 2020001791 W JP2020001791 W JP 2020001791W WO 2020158491 A1 WO2020158491 A1 WO 2020158491A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
amino acid
alanine
seq
present
Prior art date
Application number
PCT/JP2020/001791
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 佐伯
雅子 岡
和典 松村
亜峰 朱
豊隆 森
Original Assignee
国立研究開発法人国立国際医療研究センター
株式会社Idファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立国際医療研究センター, 株式会社Idファーマ filed Critical 国立研究開発法人国立国際医療研究センター
Publication of WO2020158491A1 publication Critical patent/WO2020158491A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Definitions

  • the present invention relates to a short-chain insulin secretagogue peptide and internal medicine therapy for the purpose of correcting hyperglycemic condition due to insufficient insulin secretion.
  • Non-patent Document 1 The number of people with obesity and overweight is increasing worldwide, and in the 2017 “World Burden Study”, one in three people in the world is obese or overweight (Non-patent Document 1). Obesity and overweight increase the risk of developing life-threatening diseases such as type 2 diabetes, ischemic heart disease, cerebrovascular disease, and cancer. Furthermore, those who have experienced obesity or overweight in the past have a higher risk of death than those who have maintained normal weight (Non-patent Document 2). In addition, the higher the blood sugar level of a pregnant woman, the greater the endless burden on the baby (Non-Patent Document 3), and the higher the incidence of cerebral palsy in the offspring of mothers who were obese or overweight in early pregnancy (Non-patent Document 3). It has been reported that a child of an obese or overweight pregnant woman is prone to malformation (Non-Patent Document 5). As described above, obesity and overweight have serious effects on the health of the individual and the next generation.
  • Non-Patent Document 6 the prevalence of diabetes in adults was estimated to be 10.9%, and the prevalence of prediabetes was estimated to be 35.7% (Non-Patent Document 7). It is reported to be twice as high (Non-Patent Document 7).
  • Non-Patent Document 8 the number of people suffering from ischemic heart disease was reduced by about 20%, but the number of people suffering from diabetes is increasing (Non-Patent Document 8). In Mexico, about one in four people has been diagnosed with diabetes (Non-Patent Document 9).
  • Type 2 diabetes has a high incidence of complications. For example, in a follow-up study of 2018 people diagnosed with diabetes by the age of 20 for about 8 years, the prevalence of complications was 32% among type 1 diabetic patients and type 2 diabetes. It was 72% in diabetic patients (Non-Patent Document 10).
  • Non-Patent Document 11 It is not easy for obese/overweight sufferers to lose weight and maintain a reduced weight. In addition, it was also reported in a survey in the United States from 1988 to 2014 that the proportion of “obesity/overweight adults trying to lose weight” was decreasing (Non-Patent Document 11).
  • Another object of the present invention is to provide an organic chemically synthesized product of this peptide.
  • Another object of the present invention is to provide a physicochemical treatment method for converting the synthetic product into an “active structural isomer” that exerts a higher insulin secretagogue effect, and information regarding the method.
  • Another object of the present invention is to provide an “active mutant peptide” that stably exhibits insulin secretagogue activity.
  • Another object of the present invention is to provide a peptide preparation that enables therapeutic use in diabetes, specifically, for example, in patients with type 2 diabetes who have poor blood glucose control with existing insulin secretagogues. To do.
  • Non-patent Documents 14 to 17 Brown fat cells produce heat by burning the neutral fat accumulated in the cells when the demand for body heat production increases in cold environments. Although research on rodents had preceded, it was reported in 2009 that human adults also had brown adipocytes (Non-patent Documents 14 to 17).
  • brown adipocytes have the effects of "preventing obesity,” “improving glucose metabolism,” “improving lipid metabolism,” and “improving leptin sensitivity.” Moreover, contributions to "prevention of middle-aged overweight” and “improvement of glucose metabolism” have been shown from epidemiologic studies using human cancer screening and human dock data, and studies in which healthy volunteers participated.
  • brown adipocytes Initially, the improvement of glucose metabolism by brown adipocytes was considered to be a secondary effect associated with fat burning, whereas brown adipocyte-deficient mice exhibited severe obesity and diabetes, whereas brown adipocyte thermogenic capacity was increased. Since the mice deficient only in Nd showed neither obesity nor impaired glucose metabolism, it was suggested that the improvement of glucose metabolism by brown adipocytes is "an action mediated by a soluble factor (hormone)". Since then, research has been promoted worldwide toward the discovery of "a sugar metabolism-improving hormone specifically produced by brown adipocytes", but until now, such a factor has not been identified. There are two reasons.
  • hormone search was performed by gene cloning technology. This technique is effective when there is a one-to-one correlation between the gene expression and the expression of the protein encoded by the gene, but most peptide hormones produced by endocrine cells process precursor proteins (specific amino acid sites are identified). Is a short-chain peptide (about 3 to 20 amino acids) produced by the step of cleaving with peptidase and cutting out from the precursor). Therefore, the effectiveness of gene cloning technology is poor.
  • BAT brown adipose tissue
  • BAT is a digestive enzyme produced by exocrine pancreatic gland cells, which expresses a strong group of degrading enzymes such as chymotrypsin group, trypsin group, and RNase1, RNase1.
  • the quality of brown adipocytes begins to deteriorate rapidly from the moment it is taken. Therefore, it is extremely difficult to obtain the hormone group produced by BAT in an uninjured state (Non-Patent Document 18).
  • the discovery of "a sugar metabolism-improving hormone specifically produced by brown adipocytes” requires the establishment of a strategy that enables the preparation of "high-quality brown adipocytes” without being attacked by proteolytic enzymes. It is a prerequisite.
  • the "high-quality brown adipocytes” used as a material exhibit a glucose metabolism improving action independent of the heat-producing ability, are stable and can be prepared at any time, and have a glucose metabolism improving action in the culture supernatant. To be recognized is necessary. For example, if the "technology for producing brown adipocytes from human pluripotent stem cells” is applied, stable preparation of high-quality brown adipocyte culture supernatant is possible only by a general-purpose cell culture technique.
  • the present inventors when BA-SUP was added to the pancreatic beta cell line, regardless of the glucose concentration of the culture medium, that is, high glucose solution (16.8 mM; 302 mg/dL) low glucose solution (2.8 mM). 50 mg/dL also found that the amount of insulin secretion increased. This means that there is a factor in BA-SUP that promotes the "basal secretion" of insulin in pancreatic beta cells, and the existing insulinotropic hormone (incretin) is present only in a hyperglycemic environment. In contrast to promoting insulin secretion.
  • the insulin secretagogue-activating factor in BA-SUP was inactivated by treatment with the peptide-degrading enzyme trypsin, and the value of about 800 Da was obtained by HPLC using a gel filtration column (Superdex 75 5/150GL; GE). Since the factor was detected in the molecular weight fraction, it was revealed that the factor was "a short chain peptide having 10 or less amino acids and larger than a dipeptide or a tripeptide". Since a molecule having such characteristics does not exist in the known sugar metabolism-improving hormone, it was revealed that "a novel insulin secretagogue peptide" exists in BA-SUP.
  • the gel filtration column is one that dilutes and elutes the molecular population in the order of the molecular weight as a guide by the principle of the molecular sieve, and has a lower resolution than the hydrophobic column and the ion exchange column.
  • the matrix packed in the column includes chemically synthesized polymers other than the agarose/dextran type used in Superdex75/150GL (GE), and it is possible to use multiple types of gel filtration columns for the purpose. It was considered possible to increase the purity of the molecule.
  • the factor is inactivated by trypsin treatment
  • mass spectrometrically analyzing the active fraction of HPLC on a gel filtration column analysis is performed before and after trypsin treatment, and a "peak disappeared by trypsin treatment (target molecule)
  • peak derived from the target molecule can be distinguished from the contaminant-derived peak group by identifying the "peak corresponding to the target molecule” and "the peak appearing in the trypsin treatment (the peak corresponding to the trypsin-treated fragment of the target molecule)".
  • a general peptide purification protocol is not effective for purifying the “new insulin secretagogue peptide” in BA-SUP, but as described above, it is difficult to purify by an ion exchange column, but by gel filtration.
  • the present inventors have conducted diligent studies to obtain candidates for the amino acid sequence of the target peptide by paying attention to the fact that they can be purified and that they are inactivated by trypsin treatment.
  • amino acid sequence candidates obtained in the previous section by searching the human gene/protein database, we have selected those that may be derived from the gene product encoded by the human genome. Whether or not the selected candidate peptide was the target peptide was judged by organically synthesizing a peptide having the amino acid sequence and evaluating the insulin secretagogue activity.
  • a step of "desalting and concentrating" BA-SUP is required. Since “desalting” is difficult to carry out with an ion exchange column as described above, a column packed with a gel filtration carrier, for example, a PD-10 column (manufactured by GE Healthcare) is effective.
  • the PD-10 column is a disposable column packed with a dextran gel filtration carrier, and separates the target substance and salts by utilizing the difference in molecular weight.
  • concentration general-purpose freeze-drying that is effective for peptide concentration is effective.
  • Human ES cell-derived brown adipocytes prepared using the method described in Reference Example 1 were cultured for 16 hours in the "buffer containing salts and a low concentration of glucose (KRTB buffer)" described in Reference Example 2 for BA.
  • KRTB buffer glucose
  • -SUP was prepared, desalted and concentrated with PD-10 column and freeze-dryer, then dissolved in KRTB buffer, fractionated by HPLC using Superdex75/5/150GL (mobile phase: KRTB buffer), and reference example Insulin secretagogue activity was measured by the method described in 2 above, the fraction with the highest activity was collected, dissolved in 0.05% acetonitrile/0.1% acetic acid after desalting and concentration, and used with GS-320 HQ column (Shodex).
  • HPLC fractionation mobile phase: 0.05% acetonitrile/0.1% acetic acid
  • desalting and concentrating them and then dissolving them in KRTB buffer to measure insulin secretagogue activity, which was derived from the peptide in the fraction with the highest activity.
  • the UV absorbance at 260 nm was below the detection limit, and most of the impurities present in BA-SUP were removed.
  • mutant analysis focused on specific amino acids to design mutants (eg, substituting serine with alanine or glutamic acid mimics non-phosphorylated or phosphorylated, respectively).
  • variant analysis focusing on “structural isomers”, it is useful to design a variant in which multiple amino acids are simultaneously substituted, focusing on the “higher-order structure” formed by a specific amino acid sequence. ..
  • the present invention has the following configurations based on the above findings.
  • A Information on the amino acid sequence of the insulin secretagogue-active peptide predicted from the results of mass spectrometry of the fractionated sample of BA-SUP
  • B Information on physicochemical treatment by which an organic chemical synthetic product of a peptide having the amino acid sequence of (A) induces "conversion to an active structural isomer” to exert an insulin secretagogue action.
  • C An active variant peptide of the peptide having the amino acid sequence of (A)
  • the “active variant” of (C) is not limited to those shown in the examples of the present specification, and it is possible to reproduce the characteristics of the higher-order structure of the "active structural isomer” shown in the present specification. Includes variants that can be easily inferred from known information.
  • the present invention also provides medical therapy using the peptide of the present invention.
  • One example of the medical therapy using the novel insulin secretagogue peptide of the present invention is medical therapy for diabetes including type 2 diabetes, and in particular, conventional medical therapy using an insulin secretagogue has poor blood glucose control. Is a medical treatment for type 2 diabetes mellitus.
  • a further example of the medical therapy using the novel insulin secretagogue peptide of the present invention is intended for early (mild) type 2 diabetes mellitus, borderline diabetes mellitus, or untreated type 2 diabetes mellitus. It is a medical treatment that was done. Borderline diabetes cases include, for example, cases in which the blood glucose level rises at any time but the fasting blood glucose is in the normal range. In the present invention, borderline diabetes is also included in diabetes.
  • Another example of the medical therapy using the novel insulin secretion-promoting peptide of the present invention is medical therapy for a case of prediabetes.
  • the present invention relates to a peptide that exhibits insulin secretagogue activity, its use, and the like, and more specifically includes the invention described in each of the claims.
  • An invention consisting of an arbitrary combination of two or more inventions described in claims which refer to the same claim is also an invention intended in the present specification. That is, the present invention includes the following inventions.
  • the peptide according to [1] which consists of several to more than ten amino acids.
  • the ⁇ -helix forming amino acid is selected from the group consisting of methionine, alanine, leucine, glutamic acid and lysine.
  • [6] The peptide according to [5], wherein the amino acid sequence of 5 residues or more forming the ⁇ -helix structure contains 5 alanines (AAAAA/SEQ ID NO: 3).
  • Threonine-alanine-alanine-alanine-alanine-alanine-alanine-glutamine (TAAAAAQ/SEQ ID NO:4), serine-alanine-alanine-alanine-alanine-alanine-glutamine (SAAAAAQ/SEQ ID NO:12), or threonine-alanine- A peptide comprising the amino acid sequence of alanine-alanine-alanine-alanine-glutamine-glycine-glycine (TAAAAAQGG/SEQ ID NO: 11), wherein the peptide and/or its active form has insulinotropic activity.
  • a peptide comprising an amino acid sequence of threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1), the peptide and/or its active form having insulinotropic activity. peptide.
  • TKEDGRQ/SEQ ID NO: 1 A threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1) amino acid at the amino terminal and carboxyl terminal is a cyclic peptide in which a lactam ring is formed by a peptide bond, [12] The described peptides.
  • the active form is a peptide that has been treated in the step of heating and cooling under acidic conditions and/or the step of dissolving in a buffer and freeze-drying, [1] to [13] peptide.
  • a composition comprising the peptide according to any one of [1] to [15] and a pharmaceutically acceptable carrier.
  • the composition according to [16] which is a pharmaceutical composition.
  • the composition according to [16] or [17] which is used for promoting insulin secretion and/or promoting glucose metabolism.
  • a method for treating or preventing diabetes or prediabetes which comprises the step of administering the peptide according to any one of [1] to [15].
  • the present invention can provide materials for basic research on pancreatic ⁇ cells, including the discovery of an unidentified insulin secretion mechanism.
  • cases of diabetes and pre-diabetes for example, untreated type 2 diabetes, early type (mild) type 2 diabetes, and poor glycemic control by conventional medical therapy using insulin secretagogues. It is possible to provide effective medical therapy for cases of type 2 diabetes and type 1 diabetes (in particular, slowly progressive type 1 diabetes).
  • FIG. 3 is a view showing “insulin secretion promoting action of circ-TKED GRQ (SEQ ID NO: 1): effect of thermal acid treatment”.
  • FIG. 3 is a diagram showing “insulin secretion promoting action of circ-TKED GRQ (SEQ ID NO: 1): influence of solvent during lyophilization treatment”. It is a figure which shows "the effect of a linear peptide (with freeze-drying process).” The results using the peptide of TKEDGRQ (SEQ ID NO: 1) are shown.
  • FIG. 2 is a diagram showing “a higher-order structure prediction of amino acid sequence TKEDGRQ (SEQ ID NO: 1)”. It is a figure which shows "the effect of alanine stretch (1): no freeze-drying process”.
  • the result using the peptide of TAAAAAQ (SEQ ID NO: 4) containing an alanine stretch (AAAAA/SEQ ID NO: 3) is shown. It is a figure which shows "the effect of alanine stretch (2): with freeze-drying process".
  • the result using the peptide of TAAAAAQ (SEQ ID NO: 4) is shown. It is a figure which shows "the effect of alanine stretch (3): no freeze-drying process”.
  • the results obtained using peptides of TAAAAAQ (SEQ ID NO: 4), AAAAAAA (SEQ ID NO: 5) and TKEDGRQ (SEQ ID NO: 1) are shown. It is a figure which shows "the effect of alanine stretch (4): with freeze-drying process".
  • FIG. 4 is a diagram showing “a decrease in blood glucose level by administration of TAAAAAQ (SEQ ID NO: 4) to diet-induced obese mice”.
  • the results using KEDGRQ (amino acids 2 to 7 of SEQ ID NO: 1) are also shown as a comparison target.
  • FIG. 4 is a diagram showing “a decrease in blood glucose level by administration of TAAAAAQ (SEQ ID NO: 4) to diet-induced obese mice”.
  • the results using KEDGRQ amino acids 2 to 7 of SEQ ID NO: 1 are also shown as a comparison target.
  • FIG. 3 is a diagram showing “a decrease in blood glucose level and promotion of insulin secretion by administration of TAAAAAQ (SEQ ID NO: 4) to ob/ob mice”.
  • the results of using TKEDGRQ (SEQ ID NO: 1) as a comparison target are also shown. It is a figure which shows "the effect of GlpTKEDGR (sequence number 22) and GlpTKEDGR (sequence number 23): No freeze-drying process.”
  • FIG. 8 is a diagram showing “improved glucose tolerance by administration of TAAAAAQGG (SEQ ID NO: 11) to insulin deficient mice (borderline diabetes)”. The results using GlpTKEdGR (SEQ ID NO:23) are also shown as comparison targets.
  • FIG. 2 is a diagram showing “improved glucose tolerance by administration of TAAAAAQGG (SEQ ID NO: 11) to insulin deficient mice (type 1 diabetes)”.
  • the results using GlpTKEdGR (SEQ ID NO:23) are also shown as comparison targets.
  • the present invention relates to a peptide having an amino acid sequence capable of forming an ⁇ -helix structure, the peptide and/or its active form having insulinotropic activity and its use.
  • a short-chain peptide capable of forming an ⁇ -helix-like helix has an action of acting on pancreatic ⁇ -cells to promote insulin secretion.
  • the peptide exerts the action of lowering the blood glucose level when administered to a hyperglycemic mouse. Therefore, the peptide of the present invention is useful for promoting insulin secretion, lowering blood glucose level, and/or promoting glucose metabolism.
  • the ⁇ -helix structure means an ⁇ -helix or a helix similar thereto ( ⁇ -helix-like helix) structure.
  • the ⁇ -helix structure may be a helix structure formed by the interaction of amino acids 4 residues apart (that is, 2 amino acids located across 3 residues).
  • the ⁇ -helix structure includes the typical ⁇ -helix shown above in FIG. 5 and the helix shown below in FIG.
  • the ⁇ -helix structure has, for example, about 3.6 amino acid residues, for example, amino acid 3.2 to 4.0 residues, 3.3 to 3.9 residues, 3.4 to 3.8 residues, or 3.5 to 3.7 residues, such as an average of about 3.5 residues or Included are helical or cyclic structures that rotate about 3.6 residues.
  • a helix having about 2 turns about 7 residues for example, about 1.5 to 2.5 turns, preferably 1.6 to 2.4 turns, 1.7 to 2.3 turns, 1.8 to 2.2 turns, or 1.9 to 2.1 turns is included in the present invention in the ⁇ -helix structure. To be done.
  • the insulin secretagogue activity of a peptide can be determined by administering the peptide to cells having insulin-producing ability such as pancreatic ⁇ cells.
  • cells having insulin-producing ability may be appropriately selected, for example, pancreatic beta cell line MIN6 cells (Miyazaki et al., Endocrinology 127: 126-132, 1990), rat pancreatic islets and the like can be used.
  • the cells are cultured, a peptide is added, and the insulin concentration in the culture supernatant is measured. If the insulin concentration is significantly increased, the peptide is considered to have insulinotropic activity.
  • Examples of the peptide of the present invention include insulin secretagogue-active peptides identified by mass spectrometry of the active fraction of BA-SUP.
  • the amino acid sequence of the “insulin secretagogue active peptide identified by mass spectrometry of the active fraction of BA-SUP” according to the present invention is threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1).
  • TKEDGRQ/SEQ ID NO: 1 Is a lactam cyclic peptide having an amino terminus (N terminus) and a carboxyl terminus (C terminus) bonded to each other. Therefore, a cyclic peptide containing the amino acid sequence of TKEDGRQ (SEQ ID NO: 1) is suitable as the peptide of the present invention.
  • lactam cyclic peptide "circ-TKEDGRQ” can be converted into "active structural isomers” that exert a strong insulin secretagogue action by being subjected to physicochemical treatment.
  • a physicochemical treatment for converting into an “active structural isomer” that exerts an insulin secretagogue action for example, a step of dissolving in a HEPES buffer solution having a pH of about 10 mM and a pH of about 7.6 and then freeze-drying is preferable.
  • the physicochemical treatment for converting the above-mentioned lactam cyclic peptide into the “active structural isomer” that exerts a strong insulin secretagogue action for example, about 0.1% formic acid and about 140 mM sodium chloride are included.
  • a step of dissolving the peptide in the solution, heating at about 60° C. for about 1 hour, and then gradually cooling to about room temperature is also suitable.
  • the present invention also relates to an “active mutant peptide” in which the above-mentioned lactam cyclic peptide has been subjected to amino acid substitution so as to stably exert an insulin secretagogue action.
  • the peptide is a peptide capable of forming a three-dimensional structure which is presumed to be formed by the freeze-drying step and/or the thermal acid treatment step, and may be a cyclic peptide or a linear peptide. Good.
  • polypeptide of the present invention will be described in more detail below.
  • the peptide means a short-chain polypeptide, and the length thereof is not particularly limited, but it is typically several to ten and several.
  • the peptides include those called oligopeptides or oligomers. Further, in the present invention, the peptides include those having a linear shape, a cyclic shape, a branched shape and the like.
  • the term "several" may be a number greater than 2 or 3, for example, about 5 to 15, preferably 5 to 12, 5 to 11, 5 to 10, 5 to 9, 5 ⁇ 8, 5-7, 6-12, 6-11, 6-10, 6-9, or 6-8, more preferably 6-10, 7-10, Or 7 to 9 pieces.
  • the number of ten and several may be, for example, about 11 to 19, preferably 12 to 18, 12 to 17, 12 to 16, 12 to 15, 12 to 14, or 12. Can be up to 13.
  • the length of the peptide of the present invention is not limited to the following, but is, for example, 20 amino acids or less, or less than 20 amino acids, for example, 5 to 19 amino acids, preferably 5 to 17 amino acids, 5 to 16 amino acids, 6 to 15 amino acids, 6-12 amino acids, 6-11 amino acids, 6-11 amino acids, 6-10 amino acids, 7-10 amino acids, or about 10 amino acids, more preferably 9 or less, for example 6-9 amino acids , More preferably 7-9 amino acids, for example 7 amino acids, 8 amino acids, or 9 amino acids.
  • a heptapeptide and a peptide obtained by adding about 1 or 2 amino acids to the heptapeptide are particularly suitable as the peptide of the present invention.
  • Amino acids can be added, for example, at the C-terminus.
  • the amino acid sequence capable of forming an ⁇ -helix structure contained in the peptide of the present invention can be appropriately selected.
  • the amino acid sequence preferably contains an amino acid that easily forms an ⁇ -helix structure (this is referred to as an ⁇ -helix forming amino acid), but may include other amino acids.
  • Amino acids that are difficult to form an ⁇ -helix structure for example, proline, glycine, tyrosine, and serine
  • the ⁇ -helix forming amino acid include methionine, alanine, leucine, glutamic acid and lysine.
  • the amino acids in the amino acid sequence capable of forming an ⁇ -helix structure occupy, for example, 50% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more. You can stay. More preferably, the amino acid sequence capable of forming an ⁇ -helix structure is composed of only ⁇ -helix forming amino acids.
  • the length of the amino acid sequence capable of forming an ⁇ -helix structure may be appropriately selected, but is, for example, 4 amino acids or more, preferably 5 amino acids or more, more preferably 6 amino acids or more, and further preferably 7 amino acids or more.
  • an amino acid sequence capable of forming an ⁇ -helix structure consisting of 5, 6, 7, or 8 amino acids can be preferably used.
  • a peptide containing an amino acid sequence capable of forming an ⁇ -helix structure consisting of 5 amino acids is suitable as the peptide of the present invention.
  • the ⁇ -helix structure formed by the amino acid sequence preferably has a relatively small radius of gyration.
  • amino acids with small side chains can be selected.
  • the average molecular weight of the side chains of amino acids that form the amino acid sequence capable of forming an ⁇ -helix structure is preferably smaller than the average molecular weight of the side chains of 20 types of natural amino acids, for example, 20 types of natural amino acids.
  • the average molecular weight of the side chain is preferably 80% or less, 70% or less, 60% or less, or 50% or less.
  • the molecular weight of the side chain of amino acids constituting the amino acid sequence capable of forming an ⁇ -helix structure is, for example, 74 or less of the majority (for example, 50% or more, preferably 60% or more, more preferably 80% or more). % Or more), for example, the molecular weight of the side chain is 73 or less, 72 or less, 70 or less, 68 or less, 65 or less, 62 or less, 60 or less, 40 or less, 30 or less, or 20 or less amino acids, ⁇ It is preferable to occupy a majority of amino acids (for example, 50% or more, preferably 60% or more, more preferably 80% or more, 90% or more, or 100%) constituting an amino acid sequence capable of forming a helix structure.
  • the peptide of the present invention containing an amino acid sequence capable of forming an ⁇ -helix structure consisting of 5 amino acids has a side chain molecular weight of 74 or less, 73 or less, 72 or less, 70 or less, 68 or less, 65 or less, 62 or less, 60 or less.
  • 40 or less, 30 or less, or 20 or less amino acids may be contained in 3 or more, 4 or more, or 5 of 5 amino acids.
  • the peptide of the present invention it is preferable to include alanine in the amino acid sequence forming the ⁇ -helix structure, for example.
  • the ratio of alanine may be appropriately selected, but is, for example, 30% or more, preferably 40% or more, 50% or more, 60% or more, more preferably 80% or more, or 100%.
  • the peptide of the present invention containing an amino acid sequence capable of forming an ⁇ -helix structure consisting of 5 amino acids may contain 3 or more, 4 or more, or 5 alanines in 5 amino acids.
  • the peptide of the present invention contains, as an amino acid sequence forming an ⁇ -helix structure, 3 consecutive alanines or more, more preferably 4 consecutive alanines or more. Five consecutive alanines (AAAAA/SEQ ID NO: 3) are suitable as an amino acid sequence capable of forming an ⁇ -helix structure.
  • an amino acid having a hydroxyl group and/or a hydrophilic amino acid is preferably linked to the N-terminal side of an amino acid sequence capable of forming an ⁇ -helix structure. That is, the peptide of the present invention is preferably a peptide containing an amino acid sequence having an ⁇ -helix structure, following an amino acid having a hydroxyl group and/or a hydrophilic amino acid.
  • the amino acid having a hydroxyl group and/or the hydrophilic amino acid is preferably the N-terminal amino acid of the peptide.
  • amino acid having the hydroxyl group and/or the hydrophilic amino acid include threonine, serine, and tyrosine, but are not limited thereto.
  • hydrophilic amino acid include arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine, cysteine, histidine, and methionine, and particularly arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine. preferable.
  • the amino acid may be a hydrophilic neutral amino acid (for example, threonine, serine, asparagine, glutamine).
  • Particularly preferred amino acids are hydrophilic amino acids having a hydroxyl group, such as threonine or serine.
  • the peptide of the present invention is preferably one in which a hydrophilic amino acid is linked to the C-terminal side of an amino acid sequence capable of forming an ⁇ -helix structure. That is, the peptide of the present invention is preferably a peptide containing a hydrophilic amino acid following an amino acid sequence capable of forming an ⁇ -helix structure.
  • the amino acid may be appropriately selected, but hydrophilic neutral amino acids such as threonine, serine, glutamine and asparagine are preferred, and glutamine is more preferred.
  • the peptide of the present invention has an amino acid having a hydroxyl group at the N-terminal and/or a hydrophilic amino acid, which is subsequently linked with an amino acid sequence capable of forming an ⁇ -helix structure, followed by a hydrophilic neutral amino acid.
  • Peptides containing linked sequences are preferred.
  • an amino acid sequence capable of forming an ⁇ -helix structure has a structure in which an amino acid having a hydroxyl group and/or a hydrophilic amino acid and a hydrophilic neutral amino acid are sandwiched, that is, an amino acid having a hydroxyl group and Preference is given to a peptide in which an amino acid sequence capable of forming an ⁇ -helix structure is located between a hydrophilic amino acid and a hydrophilic neutral amino acid. More specifically, there are amino acids having a hydroxyl group such as threonine, serine, and tyrosine at the N-terminus and/or hydrophilic amino acids, and subsequently, for example, ⁇ containing 3 or more, 4 or more, or 5 alanines.
  • a peptide containing a sequence in which amino acid sequences capable of forming a helix structure are linked, followed by a hydrophilic neutral amino acid such as glutamine is particularly suitable as the peptide of the present invention.
  • the amino acid sequence capable of forming the ⁇ -helix structure may be, for example, a sequence consisting of 5 amino acids, and a preferable sequence includes 5 consecutive alanines (AAAAA/SEQ ID NO: 3).
  • hydrophilic neutral amino acid such as glutamine may be the C-terminal amino acid of the peptide, but an amino acid or the like may be further added to the C-terminal side as long as it retains insulin secretagogue activity.
  • an amino acid or the like may be further added to the C-terminal side as long as it retains insulin secretagogue activity.
  • a few amino acids specifically, about 1, 2, 3, 4, or 5 amino acids can be added as long as the activity is maintained.
  • the amino acid to be added is not particularly limited, examples thereof include glycine, and for example, one to which one glycine (G) or two glycines (GG) are added is also suitable as the peptide of the present invention.
  • examples of the peptide of the present invention include threonine-alanine-alanine-alanine-alanine-alanine-glutamine (TAAAAAQ/SEQ ID NO: 4), serine-alanine-alanine-alanine-alanine-glutamine (SAAAAAQ/ SEQ ID NO: 12), and the amino acid sequences of threonine-alanine-alanine-alanine-alanine-alanine-glutamine-glycine-glycine (TAAAAAQGG/SEQ ID NO: 11), and also TAAAAAQG (SEQ ID NO: 19), SAAAAAQG (SEQ ID NO: 19). 20), and also amino acid sequences such as SAAAAAQGG (SEQ ID NO: 21). Peptides containing these amino acid sequences are preferable in the present invention, and peptides having the amino acid sequences are particularly preferable in the present invention.
  • the present invention also provides a peptide in which one or several amino acids are substituted, deleted, added, and/or inserted in the peptide specifically exemplified above, wherein the peptide and/or its active form promotes insulin secretion. It relates to active peptides.
  • the number of amino acids modified is, for example, 1 to 3, preferably 1 to 2, and most preferably 1.
  • the present invention also relates to a peptide in which the amino acids of the peptides specifically exemplified above are conservatively substituted, and the peptide and/or its active form has insulinotropic activity.
  • Conservative substitutions of such amino acids are well known to those skilled in the art. Examples of groups of amino acids corresponding to conservative substitutions include basic amino acids (eg, lysine, arginine, histidine), acidic amino acids (eg, aspartic acid, glutamic acid), uncharged polar amino acids (eg, glycine, asparagine, glutamine, serine, Threonine, tyrosine, cysteine), non-polar amino acids (e.g.
  • the value of BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is 2 or less, more preferably 1 or less, and more preferably Substitutions can be given to 0 amino acids.
  • the number of amino acid substitutions is, for example, 1 to 3, preferably 1 to 2, and more preferably 1.
  • the peptides of the present invention do not include known peptides known to have insulinotropic activity.
  • the peptide of the present invention for example, a peptide known to have insulinotropic activity, for example, a dipeptide or tripeptide known to have insulinotropic activity, specifically, JP2018-123065, It does not include dipeptides or tripeptides as described in JP-A-2016-034930 and WO2012/109561.
  • the peptides of the present invention do not include known inlectins (GLP-1, GIP) and GLP-1 analogs (known diabetes drugs). That is, the peptide of the present invention is a peptide which is not known to have insulinotropic activity.
  • the peptide of the present invention may be a natural peptide or a synthetic peptide.
  • the amino acids that compose the peptide may be natural amino acids or non-natural amino acids.
  • the peptide or amino acid may or may not be modified.
  • the modification may be naturally modified or artificially modified. Modifications include modifications such as peptide backbones, amino acid side chains, amino (N) termini, or carboxyl (C) termini. Modifications include acetylation, acylation, ADP ribosylation, amidation, cyclization, disulfide bond formation, methylation, demethylation, pyroglutamine oxidation, ⁇ -carboxylation, glycosylation, hydroxylation, iodination, myristoyl.
  • the modification may be addition of a compound such as flavin, nucleotide, nucleotide derivative, lipid, lipid derivative, or phosphatidylinositol.
  • the peptides of the present invention include derivatives, modified products and analogs.
  • Such derivatives include molecules having a modified form of the functional group of the peptide of the present invention by modification, addition, mutation, substitution or deletion.
  • the modification of the functional group is carried out for the purpose of, for example, protecting the functional group existing in the polypeptide (for example, replacing the functional group with a protecting group), controlling the stability or tissue translocation of the peptide, or controlling the activity of the peptide. Can be broken.
  • the peptides of the present invention include those in which any of the N-terminal, C-terminal, and side chain functional groups of amino acids constituting the polypeptide is modified with other substituents such as a protecting group. .. Examples of the substituent include, but are not limited to, various alkyl groups, acyl groups, amides, phosphoric acid groups, amino groups, carboxyl groups and ester groups.
  • the peptides of the present invention include multimers such as dimers, trimers, and tetramers in which peptides are bound to each other, branched molecules, and cyclized molecules.
  • the peptide may be bound to a carrier.
  • the peptide of the present invention may be linked to polyethylene glycol (PEG), dextran, or another polymer.
  • the amino acids that compose the peptide of the present invention may be L-form and/or D-form. Use of D-form amino acids is useful for reducing degradation by peptidases. Moreover, the amino acid is not limited to the natural amino acid as described above, and may be a non-natural amino acid. Further, the peptide bond of the peptide of the present invention may be appropriately replaced with a covalent bond other than the peptide bond. Substitution with a non-peptide bond can reduce the sensitivity to peptidases and improve the duration of drug efficacy. Examples of non-peptide bonds include, but are not limited to, imino bonds, ester bonds, ketomethylene bonds, ⁇ -aza bonds, carba bonds, hydroxyethylene bonds, thioamide bonds, olefinic double bonds and the like.
  • the polypeptide of the present invention also includes a salt thereof.
  • Such salts are derived from acids or bases. Specifically, for example, salts with inorganic acids such as hydrochlorides, phosphates, hydrobromides, sulfates, nitrates, acetates, lactates, formates, butyrates, glycolates and propiones.
  • Salts with organic acids such as acid salts, fumarates, maleates, succinates, tartrates, citrates, malates, oxalates, benzoates, methanesulfonates, benzenesulfonates Or ammonium salts, alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, salts with organic bases, salts with amino acids such as arginine and lysine, and the like.
  • organic acids such as acid salts, fumarates, maleates, succinates, tartrates, citrates, malates, oxalates, benzoates, methanesulfonates, benzenesulfonates Or ammonium salts, alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, salts with organic bases, salts with amino acids such as arginine and lysine, and
  • the present invention also relates to a nucleic acid encoding the peptide of the present invention and a vector carrying the nucleic acid.
  • the nucleic acids and vectors of the present invention are useful for expressing and/or producing the peptides of the present invention.
  • the nucleic acid of the present invention may be DNA or RNA.
  • a desired vector such as a plasmid, a viral vector, a non-viral vector (for example, liposome) can be used.
  • Viral vectors include, but are not limited to, adenovirus vectors, retrovirus vectors (including lentivirus vectors), paramyxovirus vectors (including Sendai virus vectors), and the like.
  • the peptide of the present invention shows significant insulin secretagogue activity as it is and/or when it is converted to an active form by an appropriate treatment. Since the activity of a peptide can be changed by the change of its higher-order structure, it is possible to impart or increase the insulin secretagogue activity by converting the peptide to an active form by appropriate treatment.
  • acid treatment alkali treatment, heat treatment, transition metal addition, a combination thereof and the like can be mentioned, and activation may be carried out by any of these treatments.
  • the acid treatment include, but are not limited to, treatment with an acidic solvent such as formic acid, acetic acid, citric acid and phosphoric acid.
  • the pH in the acid treatment can be appropriately selected.
  • the alkali treatment include alkaline solvents such as ammonia solution and ammonium chloride solution.
  • the metal to be added include sodium, zinc, lithium, manganese, and the like, and salts such as sodium chloride, zinc chloride, zinc sulfate, lithium chloride, and manganese chloride can be appropriately added.
  • the peptide of the present invention is a cyclic peptide
  • the activity can be increased by a hot acid treatment in which salts are added and heated after the acid treatment.
  • the present invention is (1) a step of acid-treating the peptide of the present invention, (2) adding a salt to the peptide of the present invention, and (3) heating the peptide of the present invention, And a peptide having an increased insulin secretagogue activity, which is produced by the treatment with a hot acid containing
  • the present invention also relates to a method for producing a peptide having an insulin secretagogue-promoting activity imparted or increased, including the steps described above, and a method for imparting or increasing the insulin secretion-promoting activity to the peptide of the present invention, comprising the steps described above.
  • the acid treatment may be, for example, treatment with an acidic solvent having a pH of about 2.0 to 6.4.
  • an acidic solvent having a pH of about 2.0 to 6.4.
  • the term “about” as used herein generally means, for example, ⁇ 15%, more preferably ⁇ 10%.
  • the acidic solvent is not particularly limited as long as the above pH can be achieved, but examples thereof include acidic solvents such as formic acid, acetic acid, citric acid, and phosphoric acid, and particularly preferably treatment with formic acid or acetic acid. ..
  • the concentration of formic acid or acetic acid may be adjusted appropriately, for example, 0.01 to 1% (v/v), preferably 0.02 to 0.8% (v/v), 0.03 to 0.5% (v/v), 0.05 to 0.3% (V/v), 0.08 to 0.2% (v/v), for example, about 0.1% (v/v).
  • the treatment time may be adjusted appropriately.
  • salts are added to the peptide.
  • the salt to be added may be appropriately selected, and examples thereof include sodium salt and zinc salt, and specific examples thereof include sodium chloride and zinc chloride, but are not limited thereto.
  • the concentration of salts may be adjusted appropriately.
  • the final concentration is 10 mM to 1 M, preferably 20 to 800 mM, 30 to 600 mM, 50 to 500 mM, 80 to 300 mM, 100 to 200 It can be mM, 110-180 mM, for example about 140 mM.
  • the final concentration of zinc salt can be 1 ⁇ M to 1 M, preferably 10 ⁇ M to 100 mM, 300 ⁇ M to 30 mM, for example, about 10 mM.
  • the heating temperature may be appropriately selected, and examples thereof include 37 to 90°C, preferably 45 to 85°C, 50 to 85°C, or 55 to 80°C.
  • 37-90°C preferably 45-80°C, 50-75°C, 55-70°C, 58-65°C, for example about 60°C.
  • the temperature is 37 to 90°C, preferably 45 to 85°C, 50 to 85°C, 60 to 85°C, for example, about 80°C.
  • the heating time may be adjusted appropriately.
  • it can be appropriately selected, for example, from 10 minutes to overnight, and is appropriately in the range of, for example, 20 minutes to 10 hours, 30 minutes to 5 hours, 40 minutes to 3 hours, or 50 minutes to 2 hours. It can be selected, for example, about 1 hour. However, these are merely examples, and those skilled in the art may appropriately set the optimum conditions according to the salt or the like to be used. After heating, it can be cooled slowly, for example.
  • the peptide of the present invention can impart or increase the insulin secretagogue activity by the process of freeze-drying regardless of its form, for example, cyclic peptide or linear peptide.
  • the activity can be increased by a treatment of lyophilization after dissolution in a buffer solution.
  • the pH of the buffer solution may be appropriately selected, for example, pH 6.2 to 8.2, pH 6.5 to 8.0, pH 7.0 to 8.0, pH 7.2 to 8.0, pH 7.4 to 8.0, pH 6.7 to 7.9, pH 6.8 to 7.9 , PH 7.0 to 7.8, pH 7.2 to 7.8, pH 7.3 to 7.8, or pH 7.5 to 7.8 can be appropriately selected, for example, about pH 7.6.
  • a buffering agent is also appropriately selected, and examples thereof include HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane). In the present invention, HEPES is preferably used.
  • the concentration of the buffering agent in the buffer solution is appropriately selected, but is, for example, 0.1 to 500 mM, preferably 0.2 to 300 mM, 0.5 to 200 mM, 1 to 100 mM, 2 to 80 mM, 5 to 50 mM, or 8 It can be appropriately selected within a range of up to 30 mM, for example, it can be about 10 mM.
  • an intercalator may be added to the peptide of the present invention.
  • the structure of the peptide of the present invention can be converted to the active form, and the insulin secretagogue activity can be imparted or increased.
  • the peptide of the present invention may be lyophilized. Lyophilization may be performed according to a well-known procedure.
  • the peptide having an amino acid sequence capable of forming an ⁇ -helix structure also includes a peptide that forms an ⁇ -helix structure by treatment with hot acid, dissolution in a buffer solution and freeze-drying, or addition of an intercalator. To be done.
  • the present invention also relates to the above-mentioned peptide of the present invention, wherein the desired other compound is cleavably linked.
  • the compound may or may not inhibit the insulin secretagogue activity possessed by the peptide of the present invention, as long as it can be cleaved and separated from the peptide. That is, the peptides to which the compound is bound include those having insulinotropic activity and those having no insulinotropic activity. A peptide having no insulin secretagogue activity can be converted into an active form by cleaving the compound from the peptide.
  • the compound is not particularly limited, but is a fusion peptide in which an amino acid or a polypeptide (which may be a short-chain polypeptide called a peptide) is adopted as another compound and is fused with the peptide of the present invention. (Or a fusion polypeptide). If the fused boundary portion is cleaved so that the two can be separated from each other, the peptide of the present invention (which can exert insulinotropic activity) can be produced by the cleaving. For that purpose, for example, another polypeptide may be added so that the boundary becomes a protease cleavage site.
  • the other peptide to be fused is not particularly limited, and examples thereof include any polypeptide from a short peptide having a few residues such as a tag to a long polypeptide such as a protein. Specific examples thereof include, but are not limited to, His tag, HA tag, Myc tag, FLAG, GFP, maltose binding protein, glutathione S-transferase (GST), alkaline phosphatase, HRP and other enzymes. Alternatively, an antibody fragment (eg, Fc fragment) or the like may be fused. Further, a leader sequence, a secretory signal, a preprotein or proprotein sequence, etc. may be fused.
  • the present invention also provides the use of the peptide of the present invention for promoting insulin secretion and/or promoting glucose metabolism.
  • the invention also provides the use of the peptides of the invention for lowering blood glucose levels.
  • the present invention also provides the use of the peptide of the present invention in the manufacture of a medicament or reagent for promoting insulin secretion and/or promoting glucose metabolism.
  • the invention also provides the use of the peptides of the invention in the manufacture of a medicament or reagent for lowering blood glucose levels.
  • the present invention also provides an insulin secretagogue and a sugar metabolism enhancer containing the peptide of the present invention.
  • the present invention also provides a blood glucose lowering agent containing the peptide of the present invention.
  • the present invention also provides the use of the peptide of the present invention for the treatment or prevention of diabetes or pre-diabetes, the use of the peptide of the present invention in the manufacture of a medicament for the treatment or prevention of diabetes or pre-diabetes, and the invention Provided are therapeutic and prophylactic agents for diabetes or pre-diabetes containing peptides.
  • diabetes includes borderline diabetes as described above.
  • the peptide of the present invention specifically promotes insulin secretion in a hyperglycemic state to lower the blood glucose level, and does not promote insulin secretion and induces hypoglycemia in a state where the blood glucose is not high (Examples 11 to 13).
  • the insulin secretagogue and the glucose metabolism promoter of the present invention are useful as a hyperglycemic state-specific insulin secretagogue and a glucose metabolism promoter, respectively, and the hypoglycemic agent of the present invention is a hyperglycemic condition-specific. It is useful as an effective hypoglycemic agent.
  • the peptide of the present invention acts on pancreatic ⁇ cells to promote insulin secretion, thereby promoting glucose metabolism and exerting an effect of lowering blood glucose level. Therefore, the peptide of the present invention can be used as a research tool for the insulin secretion control mechanism of pancreatic ⁇ -cells and as a therapeutic tool for obesity, hyperlipidemia and the like. Such uses include in vitro use and in vivo use, ex vivo use. In particular, the peptide of the present invention can be used for the treatment and prevention of various pathological conditions and symptoms that require improved glucose metabolism.
  • the peptide of the present invention is also useful for various cosmetic purposes for the purpose of preventing or reducing an increase in body weight and body fat, reducing weight (including partial weight loss), improving body shape, and the like.
  • the present invention provides a medical or cosmetic method for the prevention or treatment of obesity, which method comprises administering a peptide.
  • the present invention provides a medical therapy for improving insulin resistance and/or preventing or treating diabetes or pre-diabetes, which comprises administering a peptide of the present invention.
  • the medical therapy of the present invention prevents or treats obesity, improves insulin resistance, prevents or treats diabetes, prevents or treats hyperlipidemia, treats to promote hematopoiesis, and creates a coronary bypass circulation.
  • Medical treatment in combination with any of the following surgery, which comprises the administration of a peptide of the invention.
  • the present invention is a composition for preventing and/or treating various diseases showing metabolic disorders such as obesity and/or overweight, metabolic syndrome, type 2 diabetes and type 1 diabetes, which comprises the peptide of the present invention as an active ingredient.
  • the present invention also provides a cosmetic composition containing the peptide of the present invention as an active ingredient for the purpose of preventing or reducing an increase in body weight or body fat, thinning (including partial thinning), improving body shape and the like.
  • the peptide of the present invention exerts a strong action of promoting insulin secretion and lowering the blood glucose level when the blood glucose level is high at any time (diabetes type), and promotes insulin secretion when the blood glucose level is not high at any time (normal type).
  • the activity is expected to be relatively low (see Example 11).
  • the peptide of the present invention is considered to be advantageous in that it exhibits an effect only in a hyperglycemic state in vivo, that is, it is highly safe without inducing hypoglycemia.
  • the peptide of the present invention provides an effective glycemic control strategy for a wide range of cases of type 2 diabetes and type 1 diabetes (in particular, slowly progressive type 1 diabetes).
  • the peptide of the present invention can be formed into a composition as appropriate. That is, the present invention relates to a composition comprising the peptide of the present invention (including the above-mentioned fusion polypeptide and the like) and a pharmaceutically acceptable carrier or medium.
  • the composition is particularly useful as a pharmaceutical composition, and can be used, for example, for promoting insulin secretion, promoting glucose metabolism, and/or improving glucose metabolism, and for treating or preventing diabetes or prediabetes. it can.
  • the composition of the present invention is also useful as a cosmetic composition.
  • the formulation can be carried out by a known pharmaceutical method.
  • a pharmacologically acceptable carrier or medium is appropriately selected, and examples thereof include water (eg, sterile water), physiological saline (eg, phosphate buffered saline), glycol, ethanol, glycerol, lactose, sucrose, calcium phosphate, Examples include oils such as gelatin, dextran, agar, pectin, olive oil, peanut oil, and sesame oil.Emulsifiers, suspending agents, surfactants, buffers, flavoring agents, diluents, preservatives, stabilizers, shaping agents. Agents, vehicles, preservatives, sustained-release agents and the like.
  • aqueous solution for injection examples include an aqueous solution containing other components such as physiological saline, glucose, D-sorbitol, D-mannose, D-mannitol and sodium chloride.
  • alcohol, propylene glycol, polyethylene glycol, nonionic surfactant and the like may be contained.
  • the pharmaceutical composition and cosmetic composition of the present invention are preferably administered by parenteral administration.
  • parenteral administration can be formulated as an injection, a nasal agent, a pulmonary agent, a transdermal agent and the like.
  • Administration may be systemic or local, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like.
  • the details of the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose is, for example, in the range of 0.0001 mg to 1000 mg per 1 kg of body weight, for example, 0.0005 to 500 mg, 0.001 to 400 mg, 0.002 to 300 mg per 1 kg of body weight, calculated as a dry peptide. It can be set to 0.005-200 mg, but is not limited to this.
  • the dose may be set to 0.001 to 100,000 mg per patient, for example, 0.002 to 70000 mg, 0.003 to 50000 mg, 0.005 to 40,000 mg, 0.01 to 20000 mg, but is not limited thereto.
  • Those skilled in the art can appropriately determine an appropriate dose and administration method in consideration of the body weight, age, symptoms, etc. of the patient.
  • the peptide of the present invention can be administered to a desired subject.
  • the administration subject can be appropriately selected, for example, mammals, specifically, rodents such as mice, rats, guinea pigs, non-rodent animals such as cows, pigs, goats, rabbits, desired primates, Non-human primates such as monkeys, and humans are included.
  • Example 1 Relationship between physicochemical treatment of circ-TKEDGRQ and insulin secretagogue activity: A lactam cyclic peptide circ-TKEDGRQ in which the N-terminal and the C-terminal of the peptide having the amino acid sequence "threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine" (SEQ ID NO: 1) were peptide-bonded was synthesized organically. (Eurofin Genomics Co., Ltd.). This was dissolved in pure water to prepare a 5 mg/ml (6.1 mM) stock solution.
  • the organic chemically synthesized product circ-TKEDGRQ has an insulin secretagogue promoting activity, and it is possible to increase the activity by thermal acid treatment in which salts are added and heated after acid treatment.
  • this method could convert the organic chemically synthesized product circ-TKEDGRQ into the “active structural isomer” with extremely high reproducibility.
  • a linear peptide (threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine: TKEDGRQ) (SEQ ID NO: 1 was organically synthesized, and freeze-dried by the above method using HEPES buffer (pH 7.6) to evaluate the insulin secretagogue activity.
  • HEPES buffer pH 7.6
  • the results did not change even after repeated experiments, and it was concluded that the lactam ring structure is important for circ-TKEDGRQ to exert a high insulin secretagogue activity.
  • TKEDGRQ threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine
  • circ-TKEDGRQ which is a peptide in which the N-terminal and C-terminal of TKEDGRQ (SEQ ID NO: 1) form a lactam ring, exhibits a high level of insulin secretagogue activity when it forms a specific conformation. It was shown that it is possible to obtain an active peptide with improved robustness by treatment with thermal acid and/or treatment with a buffer solution. However, it was suggested that it is difficult to convert into an “active structural isomer” with extremely high stability and high probability by the treatment using “pH”, “temperature” and “metal salt” as parameters.
  • Example 2 Insulin secretion promoting action of TAAAAAQ (SEQ ID NO: 4) in pancreatic ⁇ cells: From Example 1, the seven amino acid sequence "TKEDGRQ" (SEQ ID NO: 1) is 1) formed a lactam cyclic peptide by peptide-bonding the N-terminus and the C-terminus, and 2) is lyophilized in HEPES buffer. It was suggested that the higher order structure is changed to exert a high level of insulin secretagogue activity by the two steps of. However, since lactam cyclic peptides are time-consuming and expensive to synthesize, it would be a great advantage if linear peptides exhibiting similar activities could be obtained.
  • the HEPES molecule is known to intercalate into a Z-type DNA double helix to broaden the angle of helical stacking (de Rosa et al., PNAS 107: 9088-9092, 2010), It is expected that the pitch of the helix will be increased when HEPES intercalates.
  • the two steps of 1) cyclization and 2) lyophilization in HEPES buffer are applied to the linear peptide TKEDGR (SEQ ID NO: 1), it is similar to the ⁇ -helix formed by amino acids with small side chains. It was speculated that the probability of adopting the higher-order structure described above would increase.
  • Amino acids that easily form ⁇ -helix are, for example, alanine and methionine (Scholtz et al., Annu. Rev.Biophys. Biomol.Struct, Vol. 21, pages 95-118, 1992), of which the side chain is small. It is alanine that is thought to form an ⁇ -helix with a small radius. That is, a short-chain peptide with continuous alanine (alanine stretch peptide) was assumed as a candidate for “a linear peptide that mimics the higher-order structure of active circ-TKEDGRQ”. However, since alanine is a hydrophobic amino acid, it is also known that alanine stretch peptide easily forms a ⁇ sheet and self-aggregates (Ma B&Nussinov R. Protein Science 11:2335-2350, 2002).
  • the chemically-synthesized product TAAAAAQ was dissolved in pure water (5 mg/ml; 8.32 mM) and added in various amounts to 50 ⁇ l of an assay system using the pancreatic ⁇ -cell line MIN6 to enhance the insulin secretion promoting ability. Evaluation was carried out (final concentration 5.6 ⁇ M, 90 ⁇ M, 350 ⁇ M). As a result, an insulin secretagogue action was detected in a dose-dependent manner (Fig. 6). Furthermore, it was examined whether freeze-drying in HEPES buffer enhances the action of TAAAAAQ to promote insulin secretion.
  • TAAAAAQ exerts insulin secretagogue activity even without treatment, and exerts insulin secretagogue activity at a lower concentration after freeze-drying treatment in HEPES buffer.
  • Example 3 Evaluation of AAAAAAA on insulin secretagogue action: From Example 2, it was confirmed that TAAAAAQ (SEQ ID NO: 4) has insulinotropic activity, but it is unclear whether T (threonine) at the N terminus and Q (glutamine) at the C terminus are essential for the activity. .. Therefore, a linear peptide AAAAAAA (SEQ ID NO: 5) in which all seven amino acids were converted to alanine was organically synthesized to evaluate the insulin secretagogue activity.
  • AAAAAAA an aqueous solution of the chemically synthesized product
  • AAAAAAA does not show any significant insulin secretagogue activity when untreated, but since it can exert a high level of insulin secretagogue activity after freeze-drying treatment in HEPES buffer, the peptide N in Example 2 It was confirmed that the T at the terminal and the Q at the C terminal are not essential for the activity, and that the active form has some instability.
  • Example 4 Evaluation of biotin-TAAAAAQ on insulin secretagogue action: Biotin, which specifically binds to Avidin, is widely used for various purposes as a modifier for the N-terminal of peptides. From Example 3, it was suggested that the N-terminal amino acid (threonine) contributes to the formation of active structural isomers of insulin secretagogue activity, but biotin modification to the N-terminal of the peptide contributes to insulin secretagogue activity. Knowing what kind of effect it will have is important information for carrying out the task of identifying the TAAAAAQ (SEQ ID NO: 4) receptor and binding partner.
  • the N-terminal of TAAAAAQ may be important for the insulin secretagogue activity, and it is not preferable to use a probe with biotin added to the N-terminal to identify the binding partner of TAAAAAQ.
  • Example 5 Evaluation of insulin secretion promoting action of AAAAAAQ, MAAAAAQ, GAAAAAQ, CAAAAAQ:
  • an amino acid such as T (threonine) is present at the N-terminal and an Q (glutamine) is present at the C-terminal with the alanine stretch AAAAA (SEQ ID NO: 3) sandwiched between them. It is suggested that the presence of amino acids such as is effective, and that the N-terminal amino group is preferably not modified.
  • T threonine
  • A alanine
  • peptide substituted with M (methionine) AAAAAAQ (SEQ ID NO:6), MAAAAAQ (SEQ ID NO:7)
  • G glycine
  • GAAAAAQ dimer
  • Organochemically synthesized product AAAAAAQ formed a precipitate when dissolved in pure water (5 mg/ml), and the precipitate did not disappear even after ultrasonic treatment. Therefore, the ability to promote insulin secretion using the pancreatic ⁇ cell line MIN6 could not be properly evaluated.
  • Organochemically synthesized product GAAAAAQ formed a precipitate when dissolved in pure water (5 mg/ml).
  • the organic chemical compound CAAAAAQ could be dissolved in pure water (5 mg/ml, 8.26 mM), but a precipitate was formed during storage at 4°C. Therefore, in both cases, the ability to promote insulin secretion using the pancreatic ⁇ -cell line MIN6 could not be properly evaluated.
  • the N-terminal amino acid is preferably a hydrophilic amino acid such as T (threonine) or an amino acid having a hydroxyl group.
  • Example 6 Evaluation of insulin secretion promoting action of TAAAAAA: From Example 3, the importance of amino acids such as T (threonine) at the N-terminus and amino acids such as Q (glutamine) at the C-terminus for efficient formation of active peptides having insulinotropic activity is shown in Example 4, Example 5 suggested the importance of N-terminal hydrophilic amino acids or amino acids having a hydroxyl group. Subsequently, in order to examine the importance of Q at the C terminus, the insulin secretagogue activity of the peptide TAAAAAA (SEQ ID NO: 10) in which it was replaced with A (alanine) was evaluated.
  • SEQ ID NO: 10 the insulin secretagogue activity of the peptide TAAAAAA (SEQ ID NO: 10) in which it was replaced with A (alanine) was evaluated.
  • TAAAAAA has an insulinotropic activity, but its activity is lower than TAAAAAQ.
  • This result shows the importance of hydrophilic amino acids such as C-terminal Q (glutamine) in TAAAAAQ.
  • TKEDGRQ SEQ ID NO: 1
  • KEDGRQ amino acids 2 to 7 of SEQ ID NO: 1
  • C-terminal Q was considered to be important for insulin secretagogue activity in a peptide having a specific amino acid sequence located on the N-terminal side.
  • Example 7 Effect of TAAAAAQGG on insulin secretion promotion in pancreatic beta cells: To identify a TAAAAAQ receptor or binding partner, it is useful to add a tag to TAAAAAQ, but as shown in Example 4, addition of biotin to the N-terminus abolishes insulin secretagogue activity. .. Therefore, in order to further investigate the addition to the C terminus, the peptide TAAAAAQGG (SEQ ID NO: 11), in which "glycylglycine (GG)" commonly used as a spacer for linking tags is added to the C terminus, They were synthesized and evaluated for insulin secretagogue activity in the same manner as in FIG.
  • TAAAAAQGG showed insulin secretagogue activity equivalent to that of TAAAAAQ (Fig. 14). This result was reproduced even after repeated experiments. As described above, it was revealed that the addition of the spacer sequence GG to the C terminus does not affect the insulin secretagogue activity. The results also indicate that it is not essential that the C-terminal amino acid be Q (glutamine).
  • Example 8 Insulin secretion promoting action of pancreatic ⁇ cells by SAAAAAQ: From Examples 4 to 7, it was shown that amino acids such as N-terminal T (threonine) are important for high-level insulin secretagogue activity.
  • T is "a hydrophilic amino acid having a hydroxyl group”. Therefore, S (serine), which is also a “hydrophilic amino acid having a hydroxyl group”, may have the same effect. Therefore, a peptide SAAAAAQ (SEQ ID NO: 12) in which N at the N-terminal was replaced by S at the S-position was organically synthesized, and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 12 and 13.
  • Example 9 Evaluation of YAAAAAQ, and DAAAAAQ, KAAAAAQ, and TAAAAAE on insulin secretion promoting action: Although it was suggested from Examples 2 and 8 that the N-terminal "amino acid having a hydroxyl group" is preferable for the insulin secretagogue activity, amino acids having a hydroxyl group are classified as hydrophilic amino acids. In addition to T (threonine) and S (serine), there is Y (tyrosine), which is classified as a hydrophobic amino acid.
  • a peptide YAAAAAQ (SEQ ID NO: 13) in which T in TAAAAAQ was replaced with Y was synthesized organically, and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 12 and 13.
  • untreated YAAAAAQ did not show high insulin secretagogue activity (Fig. 16).
  • a relatively high insulin secretagogue activity was detected after no lyophilization treatment in HEPES buffer (Fig. 17), but the titer was lower than that of TAAAAAQGG.
  • TAAAAAQ is preferably an amino acid having a hydroxyl group at the N-terminus, but more preferably a hydrophilic amino acid having a hydroxyl group, for the insulin secretion promoting activity of TAAAAAQ.
  • the peptide KAAAAAQ (SEQ ID NO: 15) substituted with was chemically synthesized and evaluated for insulin secretagogue activity in the same manner as in FIGS. 11 and 12.
  • C-terminal Q glucose
  • E glutamic acid
  • TAAAAAQ SEQ ID NO: 16
  • TAAAAAQ a peptide in which the C-terminal Q of TAAAAAQ was replaced with E, was synthesized organically and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 11 and 12.
  • N-terminal is a hydrophilic amino acid (T, S) having a hydroxyl group
  • the central part is an ⁇ -helix such as five alanines It has been found that it is preferable that it is a stretch consisting of amino acids capable of forming 3) and that 3) its C-terminal side is a hydrophilic neutral amino acid such as Q having no charged side chain. Further, it was revealed from Example 7 that an amino acid can be further added to the C-terminus.
  • Example 10 Blood glucose reduction by TAAAAAQ administration in diet-induced obese mice Seven-week-old C57BL/6 mice were loaded with a high-fat diet (D12492, Research Diets) for 19 weeks. At the age of 26 weeks, 2 ⁇ l of TAAAAAQ aqueous solution (8.32 mM) was diluted with 200 ⁇ l of 10 mM HEPES buffer (pH 7.6) (100-fold dilution), and the lyophilized sample was dissolved in 150 ⁇ l of saline and intraperitoneally injected. (10 ⁇ g/animal). Thereafter, the animals were not fed and blood was collected 2 hours later to measure blood glucose level and serum insulin level.
  • TKEDGRQ As a control, the same treatment was performed using TKEDGRQ (FIG. 3 and FIG. 4) in which a high insulin secretagogue activity was not detected in the in vitro test.
  • both TKEDGRQ (SEQ ID NO: 1) and TAAAAAQ (SEQ ID NO: 4) were administered to three C57BL/6 mice, and the blood glucose levels of “before administration” and “after 2 hours after administration” were compared.
  • the TKEDGRQ-administered mice showed a tendency for a decrease in blood glucose level along with “fasting for 2 hours”, and the TAAAAAQ-administered mice showed a marked decrease in blood glucose level.
  • both TKEDGRQ and TAAAAAQ showed a hypoglycemic tendency in diet-induced obese mice, but TAAAAAQ was shown to exert a remarkable hypoglycemic effect.
  • Example 11 Blood glucose reduction by TAAAAAQ administration in ob/ob mice 13-week-old ob/ob mice were loaded with a high-fat diet (D12492, Research Diets) for 12 weeks. At the age of 25 weeks, 2 ⁇ l of TAAAAAQ aqueous solution (8.32 mM) was diluted with 200 ⁇ l of 10 mM HEPES buffer (pH 7.6) (100-fold dilution), and the freeze-dried sample was dissolved in 150 ⁇ l of saline and intraperitoneal. (10 ⁇ g/animal). Thereafter, the animals were not fed and blood was collected 2 hours later to measure blood glucose level and serum insulin level.
  • a high-fat diet D12492, Research Diets
  • KEDGRQ amino acids 2 to 7 of SEQ ID NO: 1
  • TAAAAAQ amino acids 2 to 7 of SEQ ID NO: 4
  • Both KEDGRQ and TAAAAAQ were administered to two ob/ob mice to compare the blood glucose level and the serum insulin level “before administration” and “2 hours after administration”.
  • the KEDGRQ-administered mice showed a slight decrease in blood glucose level (160 mg/dL ⁇ 149 mg/ml) regardless of the blood glucose level (pre-dose blood glucose) at any time.
  • the serum insulin level showed a low decrease rate (2.47 OD 450nm ⁇ 1.92 OD 450nm ) despite the non-feeding state for 2 hours, showing a value of 78% at the time of feeding.
  • the other animal had a normal blood glucose level (pre-dose blood glucose level) of 134 mg/dL, which was normal, and 125 mg/dL even after TAAAAAQ administration, and serum insulin also decreased reflecting the non-fed state ( 1.88 OD 450nm ⁇ 0.53 OD 450nm ).
  • TAAAAAQ has the effect of promoting insulin secretion by lowering the blood glucose level when the blood glucose level is high (diabetic type), but promoting insulin secretion when the blood glucose level is not high (normal type). Not to be shown. This result strongly suggests that the insulin secretagogue action of TAAAAAQ is exerted only in the hyperglycemic state in vivo, that is, it is highly safe and does not induce hypoglycemia.
  • Example 12 Improvement of glucose tolerance by administration of TAAAAAQGG in mice with borderline diabetes caused by single administration of low-dose streptozotocin
  • Single-dose streptozotocin (90-100 mg/Kg) of streptozotocin was administered to 6-week old C57BL/6 mice.
  • STZ Nacalai Tesque, Inc., 32238-91, used by dissolving in water
  • OGTT oral glucose tolerance test
  • TAAAAAQGG SEQ ID NO: 11
  • aqueous solution 5 mg/ml was diluted to 150 ⁇ l of saline and intraperitoneally administered to 3 mice (20 ⁇ g/mouse).
  • Glp in GlpTKEdGR represents pyroglutamic acid (Note: TKEDGRQ of SEQ ID NO: 1 has been moved from the C-terminal Q to the N-terminal. Q becomes pyroglutamic acid due to the inevitable oxidation reaction during peptide synthesis. ).
  • d represents “D-type aspartic acid” (Note: the amino acids that make up proteins in living organisms are L-type, but aspartic acid is a very small amount, but D-type is mixed).
  • GlpTKEdGR and GlpTKEDGR SEQ ID NO: 23 were tested in the same manner as in FIG.
  • Example 13 Restoration of insulin secretion by administration of TAAAAAQGG in mice that developed diabetes by single administration of low-dose streptozotocin
  • 6-week-old C57BL/6 mice were treated with a low dose (100 mg/Kg).
  • STZ was intravenously injected into the tail, and blood was collected twice/week to monitor the blood glucose level at any time.
  • 4 ⁇ l of a TAAAAAQGG (SEQ ID NO: 11) aqueous solution 5 mg/ml was diluted in 150 ⁇ l of saline and administered intraperitoneally (20 ⁇ g/animal).
  • the animals were fasted, and blood was sampled at 0 hours, 2 hours, and 6 hours, and blood glucose levels and serum insulin levels were measured.
  • the blood glucose level exceeded 250 mg/dL at 0 hours and the serum insulin level was below the measurement limit, but the serum insulin level recovered to a measurable level after 2 hours.
  • the value was obtained by diluting 4 ⁇ l of the mutant peptide (GlpTKEdGR) (SEQ ID NO: 23) aqueous solution (5 mg/ml) into 150 ⁇ l of saline and intraperitoneally administered to the borderline diabetic mouse obtained in Example 12 ( (20 ⁇ g/animal), that is, it was found to recover to a level equivalent to that when a low dose of the control peptide was administered to a mouse that had not yet developed diabetes. After that, in the TAAAAAQGG-administered group, the serum insulin level was maintained at 6 hours, and the blood glucose level was further lowered due to fasting.
  • TAAAAAQGG has an action of improving glucose tolerance by recovering insulin secretion in a mouse in which diabetes was caused by insufficient insulin secretion.
  • the MEF When inducing differentiation into brown adipocytes, first, the MEF is separated and removed from KhES-3, so the suspension of pluripotent stem cells recovered by the stripping solution treatment is allowed to stand in a centrifuge tube for about 30 seconds. Only pluripotent stem cells were selectively sedimented at.
  • Process A Precipitate consisting of pluripotent stem cells was added to 4 ml of medium for cell aggregate preparation (5 mg/ml BSA, 1% volume synthetic lipid solution, 1% volume x100 ITS-A, 450 ⁇ M MTG, 2 mM L-Glutamine, 5%).
  • %DM PFHII IMDM/F12 medium containing 50 ⁇ g/ml ascorbic acid, 20 ng/ml BMP4, 5 ng/ml VEGF, 20 ng/ml SCF, 2.5 ng/ml Flt3L, 2.5 ng/ml IL6, 5 ng/ml IGF2-containing medium
  • the cells were transferred to a 6-well MPC-coated culture dish, and cultured at 37°C in a 5% CO 2 incubator. Thereafter, the culture was continued for 8 to 10 days while changing the half amount of the medium every 3 days.
  • resistin is a gene that not only causes insulin resistance but is also associated with canceration and arteriosclerosis.
  • the fact that the expression of resistin was not induced in human pluripotent stem cell-derived brown adipocytes means that not only drug discovery research using human pluripotent stem cell-derived brown adipocytes but also human pluripotent stem cell-derived brown adipocytes This is an extremely important point in considering the safety of cell therapy using saccharin.
  • Human ESC-derived BA SUP was prepared as follows. That is, BA was induced to be differentiated from the human ESC maintained in culture on MEF by the method described in Reference Example 1, and the differentiation medium was removed from the mature BA on Day 10, and then Krebs-Ringer-containing 2.8 mM glucose was added.
  • TRIS-Bicarbonate (KRTB) buffer NaCl: 119 mM, KCl: 4.74 mM, CaCl 2 1.19 mM, MgCl 2 1.19 mM, KH 2 PO 4: 1.19 mM, NaHCO 3: 25 mM, TRIS (pH7.4): 10 mM, Glucose 2.8 mM was added, and the supernatant was recovered after culturing for 16 hours in a carbon dioxide gas culture device (37°C, 5% CO 2 ) (hereinafter, the recovered supernatant is referred to as BA-SUP). ..
  • a 96-well plate using the recommended method was MIN6 cells, a mouse pancreatic beta cell line (distributed by Junichi Miyazaki, specially appointed professor of the University-Industry Collaboration Division of Osaka University (current)) It was cultured in. After washing this with PBS buffer, culturing for 1 hour in KRH buffer containing 2.8 mM glucose (low glucose treatment), removing the cell supernatant, and then adding BA-SUP or control SUP, and culturing with carbon dioxide The cells were cultured in the device (37°C, 5% CO 2 ) for 2 hours.
  • a synthetic peptide was dissolved in the above KRTB instead of BA-SUP and added (control is KRTB). Then, the supernatant of the MIN6 cells was collected, and the insulin concentration was measured by the ELISA method (ultrasensitive mouse insulin measurement kit, Morinaga Institute of Bioscience).
  • the present invention it becomes possible to provide a short-chain peptide drug having an action of promoting basal insulin secretion, which has never been available until now.
  • the basal insulin secretion is increased, the blood glucose is lowered at any time, so that the ability to cope with the glucose load accompanying meals (glucose tolerance) is also improved.
  • a decrease in basal insulin secretion ability is a pathological condition seen in advanced cases of type 2 diabetes, it is possible to exert an effective hypoglycemic effect even in cases where conventional insulin secretagogues have become ineffective as the disease progresses. There is expected. That is, it is possible to provide an effective blood glucose control strategy for a wide range of type 2 diabetes cases.
  • pancreatic ⁇ cells remain in about 1/3 of the cases of type 1 diabetes, and improvement of insulin secretory function of residual pancreatic ⁇ cells has attracted attention as a new therapeutic strategy for type 1 diabetes. Therefore, the short-chain peptide drug according to the present invention provides an effective glycemic control strategy even in cases of type 1 diabetes (particularly slowly progressive type 1 diabetes). Since the synthesis of insulin secretagogue short-chain peptides according to the present invention can be carried out in many countries and regions in the world, it can be applied to the giant plant industry, is practical and has high industrial utility value.

Abstract

The present invention provides a peptide that promotes insulin secretion, and a use for said peptide. A search for insulin secretion promoting factors present in a culture supernatant of brown adipocytes (BA-SUP) derived from human pluripotent stem cells led to the identification of a bioactive peptide that promotes insulin secretion. Through the development of a peptide that imitates said peptide, it was discovered that a short-chain linear peptide capable of forming an α-helix structure exhibits strong insulin secretion promoting activity. Moreover, it was discovered that by heat-treating said peptide under acidic conditions or freeze-drying the peptide after dissolving in a buffer solution, the peptide becomes an active form having an increased insulin secretion promoting effect. Said peptide exhibited an effect of promoting insulin secretion using pancreatic beta cells, and of reducing the blood sugar level in vivo. The peptide group according to the present invention is expected to be applicable to the development of a therapeutic medication for glucose metabolism disorders.

Description

インスリン分泌促進ペプチドInsulin secretagogue peptide
 本発明は、インスリン分泌促進短鎖ペプチド、並びに、インスリン分泌不全による高血糖状態の是正を目的とした、内科療法に関する。 The present invention relates to a short-chain insulin secretagogue peptide and internal medicine therapy for the purpose of correcting hyperglycemic condition due to insufficient insulin secretion.
 肥満および過体重を呈する人口は世界的に増加しており、2017年の「世界の疾病負担研究」では、世界の3人に1人は肥満または過体重である(非特許文献1)。肥満や過体重は、2型糖尿病・虚血性心疾患・脳血管障害・がんなど、生命を脅かす疾患群の発症リスクを上昇させる。さらに、過去に肥満や過体重を経験した人は、正常体重を維持している人よりも死亡リスクが高い(非特許文献2)。また、妊婦の血糖値が高いほど出生児への負担は際限なく大きくなり(非特許文献3)、妊娠初期に肥満や過体重であった母親の子は脳性麻痺の発症率が高く(非特許文献4)、肥満や過体重の妊婦の子は奇形になりやすいこと(非特許文献5)が報告されている。以上、肥満および過体重は、本人や次世代の健康に与える影響が深刻である。 The number of people with obesity and overweight is increasing worldwide, and in the 2017 “World Burden Study”, one in three people in the world is obese or overweight (Non-patent Document 1). Obesity and overweight increase the risk of developing life-threatening diseases such as type 2 diabetes, ischemic heart disease, cerebrovascular disease, and cancer. Furthermore, those who have experienced obesity or overweight in the past have a higher risk of death than those who have maintained normal weight (Non-patent Document 2). In addition, the higher the blood sugar level of a pregnant woman, the greater the endless burden on the baby (Non-Patent Document 3), and the higher the incidence of cerebral palsy in the offspring of mothers who were obese or overweight in early pregnancy (Non-patent Document 3). It has been reported that a child of an obese or overweight pregnant woman is prone to malformation (Non-Patent Document 5). As described above, obesity and overweight have serious effects on the health of the individual and the next generation.
 肥満/過体重の罹患者の増加に伴い、最も大きな脅威となっているのが2型糖尿病の有病者の増大である。糖尿病の有病率は、日本で950万人、世界で4.2億人と推定される。2013年の中国の調査では、成人の糖尿病の有病率は10.9%、前糖尿病の有病率は35.7%と推定され(非特許文献6)、糖尿病患者の死亡リスクは非糖尿病者よりも2倍高いことが報告されている(非特許文献7)。また1983年から2011年の米国の調査では、虚血性心疾患の罹患者が約20%も低下したが、糖尿病の罹患者は増加している(非特許文献8)。またメキシコでは約4人に1人が糖尿病と診断されている(非特許文献9)。 With the increase in obese/overweight patients, the greatest threat is the increase in the number of people with type 2 diabetes. The prevalence of diabetes is estimated to be 9.5 million in Japan and 420 million worldwide. According to a 2013 Chinese survey, the prevalence of diabetes in adults was estimated to be 10.9%, and the prevalence of prediabetes was estimated to be 35.7% (Non-Patent Document 6). It is reported to be twice as high (Non-Patent Document 7). In addition, according to a US survey from 1983 to 2011, the number of people suffering from ischemic heart disease was reduced by about 20%, but the number of people suffering from diabetes is increasing (Non-Patent Document 8). In Mexico, about one in four people has been diagnosed with diabetes (Non-Patent Document 9).
 2型糖尿病は合併症の発症率が高く、例えば、20歳までに糖尿病と診断された2018人の約8年間の追跡調査では、合併症有病率は1型糖尿病患者では32%、2型糖尿病患者では72%であった(非特許文献10)。 Type 2 diabetes has a high incidence of complications. For example, in a follow-up study of 2018 people diagnosed with diabetes by the age of 20 for about 8 years, the prevalence of complications was 32% among type 1 diabetic patients and type 2 diabetes. It was 72% in diabetic patients (Non-Patent Document 10).
 以上、肥満/過体重の罹患者の増大、それに伴う2型糖尿病の有病率の増加は、世界的な対策が必要な緊急課題である。 As mentioned above, the increase in the number of obese/overweight patients and the associated increase in the prevalence of type 2 diabetes is an urgent task that requires global countermeasures.
 しかし、肥満/過体重の罹患者が、減量し、かつ減量した体重を維持することは容易ではない。また1988-2014年の米国での調査では「痩せようとする肥満/過体重の成人」の割合が低下していることも報告されている(非特許文献11)。 However, it is not easy for obese/overweight sufferers to lose weight and maintain a reduced weight. In addition, it was also reported in a survey in the United States from 1988 to 2014 that the proportion of “obesity/overweight adults trying to lose weight” was decreasing (Non-Patent Document 11).
 現行では2型糖尿病の治療は十分な効果を発揮しているとは言えず、患者の治療満足度も低い。2017年2月の米国の報告では、肥満手術を受けた糖尿病患者(胃バイパス群)の5年時点での糖化ヘモグロビン(HbA1c)6%以下の割合は29%であったが、内科治療のみの群ではわずか5%であり(非特許文献12)、糖尿病患者の血糖制御は肥満手術が内科治療を凌駕する。しかし、肥満手術は侵襲を伴う処置であり、現行治療薬を凌駕する優れた2型糖尿病治療薬の開発が望まれている。 Currently, it cannot be said that the treatment of type 2 diabetes is sufficiently effective, and the treatment satisfaction of patients is low. According to a February 2017 U.S. report, the proportion of glycated hemoglobin (HbA1c) 6% or less at 5 years was 29% in diabetic patients who underwent bariatric surgery (gastric bypass group), but only for medical treatment. Only 5% in the group (Non-Patent Document 12), bariatric surgery outweighs medical treatment in controlling blood glucose in diabetic patients. However, bariatric surgery is a invasive procedure, and development of an excellent therapeutic agent for type 2 diabetes that surpasses current therapeutic agents is desired.
 また2016年に報告されたプロスペクティブ観察試験のメタ解析によると、心血管疾患リスクはHbA1c 5.7%から上昇することが示されており(非特許文献13)、2型糖尿病における合併症発症の完全阻止を目指す観点からは、現行の内科治療では95%の症例で不十分な対策しか講じられていないことを意味する。 In addition, a meta-analysis of the prospective observational study reported in 2016 showed that the risk of cardiovascular disease increased from 5.7% in HbA1c (Non-patent document 13), and the complete onset of complications in type 2 diabetes was reported. From the point of view of prevention, it means that the current medical treatment is insufficient in 95% of cases.
 現状では、合併症の早期診断と治療に高額な研究費と医療費が投じられているが、何よりも優先して行うべきは、HbA1c 5.7%以下の血糖制御を可能とする優れた治療薬を開発することである。 Currently, high research costs and medical costs are invested in early diagnosis and treatment of complications, but what should be prioritized above all is to provide an excellent therapeutic drug capable of controlling blood glucose below 5.7% HbA1c. It is to develop.
 実際、2017年1月30日に、糖尿病治療薬の世界第1位の販売実績を誇る製薬企業が、英国のオックスフォード大学と提携して2型糖尿病の新しい治療法の発見を目指すことを発表した。同社は同大学敷地内に新しい研究センターを設立し、今後10年間に1億1500万ポンドを投じることも発表している。これは、現行の2型糖尿病の内科治療の不十分さを如実に物語る一例である。 In fact, on January 30, 2017, the world's number one selling drug for diabetes has announced that the pharmaceutical company is aiming to discover a new treatment for type 2 diabetes in partnership with Oxford University in the United Kingdom. .. The company has also announced that it will set up a new research center on the premises of the university and will spend £115 million over the next 10 years. This is an example that clearly demonstrates the inadequacy of current medical treatment for type 2 diabetes.
WO 2012/147853WO2012/147853
 本発明は、褐色脂肪細胞の培養上清(以下、BA-SUP)中に存在する「インスリン分泌促進性短鎖ペプチド」を提供することを課題とする。また本発明は、当該ペプチドのアミノ配列に関する情報を得るための手段を提供することを課題とする。 An object of the present invention is to provide an “insulin secretagogue-promoting short-chain peptide” present in the culture supernatant of brown adipocytes (hereinafter, BA-SUP). Another object of the present invention is to provide a means for obtaining information on the amino sequence of the peptide.
 本発明は、また、このペプチドの有機化学合成品を提供することを課題とする。また本発明は、当該合成品がより高いインスリン分泌促進効果を発揮する「活性型構造異性体」に変換する物理化学的処理方法、および当該方法に関する情報を提供することを課題とする。 Another object of the present invention is to provide an organic chemically synthesized product of this peptide. Another object of the present invention is to provide a physicochemical treatment method for converting the synthetic product into an “active structural isomer” that exerts a higher insulin secretagogue effect, and information regarding the method.
 本発明は、また、インスリン分泌促進活性を安定に発揮する「活性型変異体ペプチド」を提供することを課題とする。 Another object of the present invention is to provide an “active mutant peptide” that stably exhibits insulin secretagogue activity.
 本発明は、また、糖尿病、具体的には例えば、既存のインスリン分泌促進薬では血糖制御が不良である2型糖尿病患者等への治療的使用を可能とするペプチド製剤を提供することを課題とする。 Another object of the present invention is to provide a peptide preparation that enables therapeutic use in diabetes, specifically, for example, in patients with type 2 diabetes who have poor blood glucose control with existing insulin secretagogues. To do.
 上述のとおり、2型糖尿病において厳格な血糖制御(HbA1c≦5.7%)を可能とする新規治療薬の開発は重要かつ緊急性の高い創薬事業である。しかし、従来の2型糖尿病の病態把握に立脚し、新規性のない戦略で創薬研究を繰り返しても、上記目標を達成する新薬は開発されない。安全性と有効性がともに高い優れた治療薬の開発には、2型糖尿病の病態理解そのものを根本から見直す必要がある。この観点から注目すべきは「褐色脂肪細胞(Brown adipose tissue: BAT)」である。 As mentioned above, the development of new therapeutic agents that enable strict blood glucose control (HbA1c ≤ 5.7%) in type 2 diabetes is an important and highly urgent drug discovery business. However, even if the drug discovery research is repeated with a novel strategy based on the conventional understanding of the pathological condition of type 2 diabetes, a new drug that achieves the above target cannot be developed. In order to develop excellent therapeutic agents that are both safe and effective, it is necessary to fundamentally rethink the pathophysiology of type 2 diabetes. From this point of view, “brown adipose tissue (BAT)” should be noted.
 褐色脂肪細胞は、寒冷環境など体熱産生の需要が亢進した際に、細胞内に蓄えられた中性脂肪を燃焼して熱産生を行う。げっ歯類での研究が先行していたが、2009年にヒト成人にも褐色脂肪細胞があることが報告された(非特許文献14-17)。 Brown fat cells produce heat by burning the neutral fat accumulated in the cells when the demand for body heat production increases in cold environments. Although research on rodents had preceded, it was reported in 2009 that human adults also had brown adipocytes (Non-patent Documents 14 to 17).
 遺伝子改変マウスを用いた研究から、褐色脂肪細胞には「肥満防止」「糖代謝改善」「脂質代謝改善」「レプチン感受性亢進」の作用があることが実証されている。またヒトのがん検診や人間ドックのデータを用いた疫学研究、健常人ボランティアが参加した研究から「中年太りの防止」と「糖代謝改善」への寄与が示されている。 Studies using genetically modified mice have demonstrated that brown adipocytes have the effects of "preventing obesity," "improving glucose metabolism," "improving lipid metabolism," and "improving leptin sensitivity." Moreover, contributions to "prevention of middle-aged overweight" and "improvement of glucose metabolism" have been shown from epidemiologic studies using human cancer screening and human dock data, and studies in which healthy volunteers participated.
 当初、褐色脂肪細胞による糖代謝改善は、脂肪燃焼に伴う二次的効果と考えられたが、褐色脂肪細胞欠如マウスが高度肥満と糖尿病を呈したのに対して、褐色脂肪細胞の熱産生能だけを欠損させたマウスは肥満も糖代謝障害も呈さなかったことから、褐色脂肪細胞による糖代謝改善は「可溶性因子(ホルモン)を介した作用」であることが示唆された。以後、「褐色脂肪細胞が特異的に産生する糖代謝改善性ホルモン」の発見に向けて世界的に研究が推進されたが、現在に至るまでそのような因子は同定されていない。理由は2つ挙げられる。 Initially, the improvement of glucose metabolism by brown adipocytes was considered to be a secondary effect associated with fat burning, whereas brown adipocyte-deficient mice exhibited severe obesity and diabetes, whereas brown adipocyte thermogenic capacity was increased. Since the mice deficient only in Nd showed neither obesity nor impaired glucose metabolism, it was suggested that the improvement of glucose metabolism by brown adipocytes is "an action mediated by a soluble factor (hormone)". Since then, research has been promoted worldwide toward the discovery of "a sugar metabolism-improving hormone specifically produced by brown adipocytes", but until now, such a factor has not been identified. There are two reasons.
 1つは、遺伝子クローニング技術によりホルモン探索が行われたことである。この技術は、遺伝子発現と遺伝子がコードする蛋白の発現が1対1相関する場合は有効であるが、内分泌細胞が産生するペプチドホルモンの多くは、前駆体蛋白のプロセシング(特定のアミノ酸部位を特定のペプチダーゼで切断して前駆体から切り出す工程)により産生される短鎖ペプチド(アミノ酸3個から20個程度)である。このため、遺伝子クローニング技術の有効性が乏しい。 One is that the hormone search was performed by gene cloning technology. This technique is effective when there is a one-to-one correlation between the gene expression and the expression of the protein encoded by the gene, but most peptide hormones produced by endocrine cells process precursor proteins (specific amino acid sites are identified). Is a short-chain peptide (about 3 to 20 amino acids) produced by the step of cleaving with peptidase and cutting out from the precursor). Therefore, the effectiveness of gene cloning technology is poor.
 もう1つの理由は、マウス生体から褐色脂肪組織(brown adipose tissue: BAT)を採取し、ここから分離・回収した褐色脂肪細胞を材料としたことである。BATは膵外分泌腺細胞が産生する消化酵素である、キモトリプシン系蛋白分解酵素群、トリプシン系蛋白分解酵素群、核酸分解酵素RNase1、といった強力な分解酵素群を高発現するため、マウス体内からBATを取り出した瞬間から褐色脂肪細胞の品質は急速に劣化を始める。このため、BATが産生するホルモン群を非損傷状態で取得することは極めて困難となる(非特許文献18)。 Another reason is that brown adipose tissue (BAT) was collected from the living body of the mouse, and the brown adipocytes separated and collected from this were used as the material. BAT is a digestive enzyme produced by exocrine pancreatic gland cells, which expresses a strong group of degrading enzymes such as chymotrypsin group, trypsin group, and RNase1, RNase1. The quality of brown adipocytes begins to deteriorate rapidly from the moment it is taken. Therefore, it is extremely difficult to obtain the hormone group produced by BAT in an uninjured state (Non-Patent Document 18).
 一方、ヒト生体からBATを取得して研究に用いることは倫理的観点から不可能である。また、マウスBATであれ、ヒトBATであれ、そこから回収した褐色脂肪細胞の培養・凍結保存のための技術は存在しない。 On the other hand, it is impossible from an ethical point of view to obtain BAT from a living human body and use it for research. In addition, there is no technique for culturing and cryopreserving brown adipocytes recovered from mouse BAT or human BAT.
 以上、「褐色脂肪細胞が特異的に産生する糖代謝改善性ホルモン」の発見には、蛋白分解酵素群の攻撃を受けることなく「高品質な褐色脂肪細胞」を調製可能とする方策の確立が前提となる。かつ、材料となる「高品質な褐色脂肪細胞」は、熱産生能とは独立に糖代謝改善作用を発揮すること、安定かつ随時に調製可能であること、培養上清に糖代謝改善作用が認められること、が必要である。例えば、「ヒト多能性幹細胞からの褐色脂肪細胞の作製技術」を適用すれば、汎用の細胞培養技術のみで、高品質な褐色脂肪細胞の培養上清の安定調製が可能である。 As described above, the discovery of "a sugar metabolism-improving hormone specifically produced by brown adipocytes" requires the establishment of a strategy that enables the preparation of "high-quality brown adipocytes" without being attacked by proteolytic enzymes. It is a prerequisite. Moreover, the "high-quality brown adipocytes" used as a material exhibit a glucose metabolism improving action independent of the heat-producing ability, are stable and can be prepared at any time, and have a glucose metabolism improving action in the culture supernatant. To be recognized is necessary. For example, if the "technology for producing brown adipocytes from human pluripotent stem cells" is applied, stable preparation of high-quality brown adipocyte culture supernatant is possible only by a general-purpose cell culture technique.
 本発明者らは、以前、「ヒト多能性幹細胞の褐色脂肪細胞分化誘導技術」を開発している(特許文献1、非特許文献19, 20)。本発明者らが、このヒト多能性幹細胞由来褐色脂肪細胞から調製したBA-SUPをマウスに投与する実験を行ったところ、16時間後に測定した空腹時血糖値が低下することが判明した。この結果からは、BA-SUP中にインスリン分泌促進作用を持つ因子が存在することが示唆される。かつ、インスリンやGLP-1などの血糖降下作用を持つ既知のホルモンの血中半減期は3時間程度であることを鑑みると、投与16時間後にも生理効果が発揮されているBA-SUP中の因子は「新規な糖代謝改善ホルモン」であると考えられた。 The present inventors have previously developed "technology for inducing brown adipocyte differentiation of human pluripotent stem cells" (Patent Document 1, Non-Patent Documents 19, 20). When the present inventors conducted an experiment in which BA-SUP prepared from this human pluripotent stem cell-derived brown adipocyte was administered to mice, it was found that the fasting blood glucose level measured 16 hours later decreased. From this result, it is suggested that there is a factor having an insulin secretagogue action in BA-SUP. In addition, considering that the half-life in blood of known hormones such as insulin and GLP-1 that have a hypoglycemic effect is about 3 hours, the physiological effects of BA-SUP are shown 16 hours after administration. The factor was considered to be a "new glucose metabolism improving hormone".
 また、本発明者らは、BA-SUPを膵ベータ細胞株に添加すると、培養液のブドウ糖濃度に関係なく、すなわち、高ブドウ糖液(16.8 mM; 302 mg/dL)でも低ブドウ糖液(2.8 mM; 50 mg/dL)でも、インスリン分泌量が上昇することを見出した。このことは、BA-SUP中に膵ベータ細胞のインスリンの「基礎分泌」を促進する因子が存在することを意味しており、既存のインスリン分泌促進性ホルモン(インクレチン)が高血糖環境でのみインスリン分泌を促進することとは対照的である。
 またBA-SUP中のインスリン分泌促進活性因子は、ペプチド分解酵素であるトリプシンでの処理で失活すること、ゲル濾過カラム(Superdex 75 5/150GL; GE社)を用いたHPLCにおいて約800 Daの分子量画分に検出されたことから、当該因子は「アミノ酸が10個以下の、ジペプチド,トリペプチドより大きい短鎖ペプチド」であることが判明した。このような特徴を持つ分子は既知の糖代謝改善ホルモンには存在しないことから、BA-SUP中に「新規なインスリン分泌促進ペプチド」が存在することが明らかとなった。
In addition, the present inventors, when BA-SUP was added to the pancreatic beta cell line, regardless of the glucose concentration of the culture medium, that is, high glucose solution (16.8 mM; 302 mg/dL) low glucose solution (2.8 mM). 50 mg/dL) also found that the amount of insulin secretion increased. This means that there is a factor in BA-SUP that promotes the "basal secretion" of insulin in pancreatic beta cells, and the existing insulinotropic hormone (incretin) is present only in a hyperglycemic environment. In contrast to promoting insulin secretion.
In addition, the insulin secretagogue-activating factor in BA-SUP was inactivated by treatment with the peptide-degrading enzyme trypsin, and the value of about 800 Da was obtained by HPLC using a gel filtration column (Superdex 75 5/150GL; GE). Since the factor was detected in the molecular weight fraction, it was revealed that the factor was "a short chain peptide having 10 or less amino acids and larger than a dipeptide or a tripeptide". Since a molecule having such characteristics does not exist in the known sugar metabolism-improving hormone, it was revealed that "a novel insulin secretagogue peptide" exists in BA-SUP.
 そこで、HPLCを適用して当該因子の純化を試みたが、以下に示すように、一般のペプチドにおいては想定が困難であった「特異な性質」を持つことが判明し、汎用のペプチド精製プロトコルが適用できないことが判明した。 Therefore, we tried to purify the factor by applying HPLC, but as shown below, it was found that it has a "unique property" that was difficult to assume for general peptides, and a general peptide purification protocol was used. Was found to be inapplicable.
 ペプチド精製で汎用される逆相クロマトグラフィ(疎水カラムを用いたHPLC)を適用して当該因子の純化を試みたが、どのような種類の疎水カラムを用いても、またどのような移動相を用いても、調べた限りのすべての条件において、当該因子は大量の夾雑物とともにフロースルー(非結合分画)に回収された。
 以上、逆相クロマトグラフィで当該因子を純化することは不可能と結論された。
We tried to purify the factor by applying reversed-phase chromatography (HPLC using a hydrophobic column), which is commonly used for peptide purification, but no matter what kind of hydrophobic column was used and what mobile phase was used. However, under all conditions examined, the factor was recovered in the flow through (non-binding fraction) along with a large amount of contaminants.
From the above, it was concluded that it is impossible to purify the factor by reverse phase chromatography.
 前項の結果は同時に、試料の脱塩処理工程で汎用される、疎水性レジンが充填されたZipTip(Merck KGaA社、ドイツ)が、当該因子の純化を目的としたBA-SUPの脱塩濃縮に使用できないことも意味する。 At the same time, the results of the previous section show that ZipTip (Merck KGaA, Germany) filled with hydrophobic resin, which is commonly used in the desalting process of samples, is used for the desalination concentration of BA-SUP for the purification of the factor. It also means that it cannot be used.
 イオン交換カラムを用いた順相クロマトグラフィにより当該因子の純化を試みたが、「強陽イオン交換カラム」「強陰イオン交換カラム」を用いた分画化作業では当該因子は失活し、「弱陽イオン交換カラム」「弱陰イオン交換カラム」を用いた分画化作業では、当該因子は大量の夾雑物とともにフロースルーに回収された。
 以上、イオン交換カラムを用いた順相クロマトグラフィでも、当該因子を純化することは不可能と結論された。
We tried to purify the factor by normal phase chromatography using an ion exchange column, but the factor was deactivated in the fractionation work using the “strong cation exchange column” and “strong anion exchange column”, In the fractionation work using the “cation exchange column” and “weak anion exchange column”, the factor was collected in the flow through together with a large amount of contaminants.
As described above, it was concluded that the factor cannot be purified even by normal phase chromatography using an ion exchange column.
 以上より、当該因子の純化には「ゲル濾過カラム」を用いたHPLCのみが有効であると結論された。ゲル濾過カラムとは、分子篩の原理により分子量を目安とした順序で分子集団を稀釈溶出するものであり、疎水カラムやイオン交換カラムよりも分離能は低い。しかし、カラムに充填されるマトリックスは、Superdex 75 5/150GL(GE社)で使用されるアガロース/デキストラン系のもの以外にも化学合成ポリマーなどがあり、複数種のゲル濾過カラムを用いることで目的分子の純度を高めることは可能であると考えた。 From the above, it was concluded that only HPLC using a "gel filtration column" is effective for purifying the factor. The gel filtration column is one that dilutes and elutes the molecular population in the order of the molecular weight as a guide by the principle of the molecular sieve, and has a lower resolution than the hydrophobic column and the ion exchange column. However, the matrix packed in the column includes chemically synthesized polymers other than the agarose/dextran type used in Superdex75/150GL (GE), and it is possible to use multiple types of gel filtration columns for the purpose. It was considered possible to increase the purity of the molecule.
 また、当該因子はトリプシン処理で失活することから、ゲル濾過カラムでのHPLCの活性画分を質量分析する際に、トリプシン処理の前後で分析を行い、「トリプシン処理で消失するピーク(目的分子に該当するピーク)」「トリプシン処理で出現するピーク(目的分子のトリプシン処理断片に該当するピーク)」を同定することで、目的分子に由来するピークを夾雑物由来ピーク群から区別することを考えた。 In addition, since the factor is inactivated by trypsin treatment, when mass spectrometrically analyzing the active fraction of HPLC on a gel filtration column, analysis is performed before and after trypsin treatment, and a "peak disappeared by trypsin treatment (target molecule It is considered that the peak derived from the target molecule can be distinguished from the contaminant-derived peak group by identifying the "peak corresponding to the target molecule" and "the peak appearing in the trypsin treatment (the peak corresponding to the trypsin-treated fragment of the target molecule)". It was
 また、上記のように、当該因子は疎水カラムに全く結合しないことから、親水性アミノ酸のみで構成されることが強く示唆された。 Also, as mentioned above, since the factor does not bind to the hydrophobic column at all, it was strongly suggested that it is composed of only hydrophilic amino acids.
 以上、BA-SUP中の「新規なインスリン分泌促進ペプチド」の純化には、一般的なペプチド精製プロトコルは有効ではないが、上記のように、イオン交換カラムでは純化が困難であるもののゲル濾過により純化しうること、また、トリプシン処理で失活することなどの事項に留意することで、本発明者らは目的ペプチドのアミノ酸配列の候補を得るべく、鋭意研究を行った。 As mentioned above, a general peptide purification protocol is not effective for purifying the “new insulin secretagogue peptide” in BA-SUP, but as described above, it is difficult to purify by an ion exchange column, but by gel filtration. The present inventors have conducted diligent studies to obtain candidates for the amino acid sequence of the target peptide by paying attention to the fact that they can be purified and that they are inactivated by trypsin treatment.
 また、前項で得られたアミノ酸配列の候補について、ヒト遺伝子/蛋白データベースを検索することで、ヒトゲノムにコードされる遺伝子産物に由来する可能性のあるものを選定した。選定された候補ペプチドが目的とするペプチドであるか否かは、そのアミノ酸配列を持つペプチドを有機化学的に合成してインスリン分泌促進活性を評価することで判断した。 Also, regarding the amino acid sequence candidates obtained in the previous section, by searching the human gene/protein database, we have selected those that may be derived from the gene product encoded by the human genome. Whether or not the selected candidate peptide was the target peptide was judged by organically synthesizing a peptide having the amino acid sequence and evaluating the insulin secretagogue activity.
 夾雑物を大量に含有するBA-SUPから目的分子をHPLCで純化する際には、BA-SUPを「脱塩濃縮」する工程が必要となる。「脱塩」は、上述のとおりイオン交換カラムで実施するのは困難であることから、ゲル濾過担体を充填したカラム、例えば、PD-10カラム(GEヘルスケア社製)が有効である。PD-10カラムとは、デキストラン系ゲル濾過担体が充填されたディスポーザブルカラムであり、分子量の違いを利用して目的物質と塩類を分離する。「濃縮」に関しては、ペプチド濃縮に効力を発揮する汎用の凍結乾燥が有効である。 When purifying a target molecule from BA-SUP containing a large amount of impurities by HPLC, a step of "desalting and concentrating" BA-SUP is required. Since “desalting” is difficult to carry out with an ion exchange column as described above, a column packed with a gel filtration carrier, for example, a PD-10 column (manufactured by GE Healthcare) is effective. The PD-10 column is a disposable column packed with a dextran gel filtration carrier, and separates the target substance and salts by utilizing the difference in molecular weight. Regarding "concentration", general-purpose freeze-drying that is effective for peptide concentration is effective.
 参考例1に記載した方法を用いて作製したヒトES細胞由来褐色脂肪細胞を、参考例2に記載の「塩類と低濃度のブドウ糖を含有するバッファー(KRTBバッファー)」で16時間培養してBA-SUPを調製し、PD-10カラムと凍結乾燥機で脱塩濃縮して後にKRTBバッファーに溶解し、Superdex 75 5/150GL(移動相:KRTBバッファー)を用いたHPLCで分画し、参考例2に記載の方法でインスリン分泌促進活性を測定し、最も活性が高い分画を回収し、脱塩濃縮後に0.05%アセトニトリル/0.1%酢酸に溶解し、GS-320 HQカラム(Shodex社)を用いたHPLCで分画し(移動相:0.05%アセトニトリル/0.1%酢酸)、これらを脱塩濃縮後にKRTBバッファーに溶解してインスリン分泌促進活性を測定したところ、最も活性が高い分画におけるペプチドに由来する260 nmの紫外線吸光度は検出限界以下となり、BA-SUP中に存在する夾雑物はほぼ除去された。 Human ES cell-derived brown adipocytes prepared using the method described in Reference Example 1 were cultured for 16 hours in the "buffer containing salts and a low concentration of glucose (KRTB buffer)" described in Reference Example 2 for BA. -SUP was prepared, desalted and concentrated with PD-10 column and freeze-dryer, then dissolved in KRTB buffer, fractionated by HPLC using Superdex75/5/150GL (mobile phase: KRTB buffer), and reference example Insulin secretagogue activity was measured by the method described in 2 above, the fraction with the highest activity was collected, dissolved in 0.05% acetonitrile/0.1% acetic acid after desalting and concentration, and used with GS-320 HQ column (Shodex). HPLC fractionation (mobile phase: 0.05% acetonitrile/0.1% acetic acid), desalting and concentrating them, and then dissolving them in KRTB buffer to measure insulin secretagogue activity, which was derived from the peptide in the fraction with the highest activity. The UV absorbance at 260 nm was below the detection limit, and most of the impurities present in BA-SUP were removed.
 前項の分画の脱塩濃縮品の質量分析を行った(LC-TOF/MS、正イオンモードESI法)。なお、事前に2つ(A, B)に分け、Aはそのまま、Bはトリプシン処理後に質量分析を行い、1)Aで検出されるが、Bで検出されないピーク(a1,a2,a3, …)、2)Aで検出されないが、Bで検出されるピーク(b1, b2, b3, …)、を抽出し、これらに関して、an=bm+bl+19(線状)、またはan=bm+bl+37(環状)となる組み合わせ(an, bm, bl)を選出したところ、前者に適合するものは存在しなかったが、後者に適合するものが1組だけ得られた。そこで、ヒトゲノムデータベースを照合して、anを構成可能するアミノ酸配列がヒト遺伝子にコードされた蛋白に由来するペプチド断片であるという仮定のもとに抽出した。また、上述のとおり目的のペプチドは親水性アミノ酸で構成されることが示唆されることから、anを構成する全てのアミノ酸は親水性アミノ酸であるという条件も付加した。
 結果、BA-SUP中に存在するインスリン分泌促進ペプチドの候補として「スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(TKEDGRQ)」(配列番号1)のアミノ末端(N末端)とカルボキシル末端(C末端)がペプチド結合した「ラクタム環状ペプチド」が得られた。以下、これをcirc-TKEDGRQと記載する。
Mass spectrometry was performed on the desalted and concentrated product of the above-mentioned fraction (LC-TOF/MS, positive ion mode ESI method). In addition, it is divided into two (A, B) in advance, A is as it is, B is subjected to mass spectrometry after trypsin treatment, 1) Peaks that are detected in A but not in B (a 1 , a 2 , a) 3 ,...), 2) The peaks (b 1 , b 2 , b 3 , ...) that are not detected in A but are detected in B are extracted, and for these, a n =b m +b l +19 ( Linear), or a combination (a n , b m , b l ) such that a n =b m +b l +37 (ring) was selected, and there was no match for the former, but there was no match for the latter. Only one set was obtained. Therefore, by matching the human genome database, the amino acid sequence of configurable a n is extracted on the assumption that a peptide fragment derived from the encoded protein in human genes. Further, the peptide of interest as described above from the be comprised of hydrophilic amino acids is suggested, all amino acids constituting a n was also added condition that a hydrophilic amino acid.
As a result, the amino-terminal (N-terminal) and carboxyl-terminal of "threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ)" (SEQ ID NO: 1) were identified as candidates for insulin secretagogue peptides present in BA-SUP. A "lactam cyclic peptide" having a peptide bond at the (C-terminal) was obtained. Hereinafter, this is referred to as circ-TKEDGRQ.
 化学熱力学的観点からは、短鎖ペプチドは水溶液中で複数の「構造異性体」を形成し、それらが熱力学的な動的または静的な平衡状態にあることが想定される。しかし、目的とする生理活性を示す構造異性体はそれらの中の特定のものであると考えられる。このため、有機化学合成ペプチド品を用いた活性評価試験では、有機化学合成ペプチドが水溶液中で高確率かつ安定的に「活性型構造異性体」を形成しない場合、生理活性は検出されないことが想定される。
 すなわち、有機化学合成品circ-TKEDGRQ水溶液を用いてインスリン分泌促進活性を評価しても、高い再現性を持って生理活性を検出することが困難となることも予想される。その場合、何らかの方法で「活性型構造異性体」の高次構造の特徴に関する情報を取得し、有機化学合成品circ-TKEDGRQを「活性型構造異性体」に変換するための処理技術を開発する、または活性型構造異性体の高次構造を模倣する「活性型変異体ペプチド」を作製する、ことが有効である。
From a chemo-thermodynamic point of view, it is envisioned that short-chain peptides form multiple "structural isomers" in aqueous solution, which are in thermodynamic dynamic or static equilibrium. However, the structural isomer showing the desired physiological activity is considered to be a specific one among them. Therefore, in the activity evaluation test using the organic chemically synthesized peptide product, it is assumed that the biological activity is not detected unless the organic chemically synthesized peptide stably and stably forms the “active structural isomer”. To be done.
That is, it is expected that it will be difficult to detect physiological activity with high reproducibility even if the insulin secretagogue activity is evaluated using an organic chemical synthetic product circ-TKEDGRQ aqueous solution. In that case, information on the higher-order structural features of the "active structural isomer" is obtained by some method, and a processing technology for converting the organic chemical synthetic product circ-TKEDGRQ into the "active structural isomer" is developed. , Or it is effective to produce an “active mutant peptide” that mimics the higher-order structure of the active structural isomer.
 「活性型構造異性体」の高次構造の特徴に関する情報を取得するには、短鎖ペプチドに様々な物理化学的処理を行い、短鎖ペプチドが形成する高次構造(αヘリックス、Piヘリックス、310ヘリックス、27リボン、ランダムコイル、βシートなど)のどれがインスリン分泌促進活性と相関するか、を示唆するデータを得ることが有用である。そして、得られた情報をもとに「活性型構造異性体」の高次構造を模倣する変異体ペプチドを作製することが「インスリン分泌促進性ペプチド」を取得する鍵となる。
 なお、従来の変異体解析が特定のアミノ酸に注目して変異体が設計されていた(例:セリンをアラニンまたはグルタミン酸に置換することで、それぞれ非リン酸化型またはリン酸化を模倣させる)のに対して、「構造異性体」に着目した変異体解析では、特定のアミノ酸配列が形成する「高次構造」に着目して、複数のアミノ酸を同時に置換した変異体を設計することが有用である。
In order to obtain information on the higher-order structure characteristics of the "active structural isomer", various short-chain peptides are subjected to various physicochemical treatments, and the higher-order structure (α helix, Pi helix, 3 10 helix, 2 7 ribbon, random coil, one of the β such sheets) is correlated with insulinotropic activity, it is useful to obtain data suggest. The key to obtaining the "insulin secretagogue peptide" is to prepare a mutant peptide that mimics the higher-order structure of the "active structural isomer" based on the obtained information.
Although conventional mutant analysis focused on specific amino acids to design mutants (eg, substituting serine with alanine or glutamic acid mimics non-phosphorylated or phosphorylated, respectively). On the other hand, in the variant analysis focusing on “structural isomers”, it is useful to design a variant in which multiple amino acids are simultaneously substituted, focusing on the “higher-order structure” formed by a specific amino acid sequence. ..
 以上の知見を基に、本発明は、次の構成を備える。
(A) BA-SUPの分画サンプルの質量分析結果から予想されたインスリン分泌促進活性ペプチドのアミノ酸配列に関する情報
(B) (A)のアミノ酸配列を持つペプチドの有機化学合成品が、インスリン分泌促進作用を発揮するための「活性型構造異性体への変換」を誘導する物理化学的処理に関する情報
(C) (A) のアミノ酸配列を持つペプチドの活性型変異体ペプチド
The present invention has the following configurations based on the above findings.
(A) Information on the amino acid sequence of the insulin secretagogue-active peptide predicted from the results of mass spectrometry of the fractionated sample of BA-SUP
(B) Information on physicochemical treatment by which an organic chemical synthetic product of a peptide having the amino acid sequence of (A) induces "conversion to an active structural isomer" to exert an insulin secretagogue action.
(C) An active variant peptide of the peptide having the amino acid sequence of (A)
 (C)の「活性型変異体」としては、本明細書の実施例に示すものに留まらず、本明細書にて示す「活性型構造異性体」の高次構造の特徴を再現することが公知の情報から容易に類推可能である変異体を含む。 The "active variant" of (C) is not limited to those shown in the examples of the present specification, and it is possible to reproduce the characteristics of the higher-order structure of the "active structural isomer" shown in the present specification. Includes variants that can be easily inferred from known information.
 また本発明は、本発明のペプチドを用いた内科療法を提供する。本発明の、新規インスリン分泌促進ペプチドを用いた内科療法の一例は、2型糖尿病を含む糖尿病を対象とした内科療法であり、特に、従来のインスリン分泌促進剤を用いた内科療法では血糖制御不良の2型糖尿病を対象とした内科療法である。 The present invention also provides medical therapy using the peptide of the present invention. One example of the medical therapy using the novel insulin secretagogue peptide of the present invention is medical therapy for diabetes including type 2 diabetes, and in particular, conventional medical therapy using an insulin secretagogue has poor blood glucose control. Is a medical treatment for type 2 diabetes mellitus.
 また本発明の、新規インスリン分泌促進ペプチドを用いた内科療法の更なる一例は、初期(軽症)の2型糖尿病の症例、境界型糖尿病の症例、または未治療の2型糖尿病の症例を対象とした内科療法である。境界型糖尿病の症例とは、例えば随時血糖値は上昇しているものの空腹時血糖は正常範囲にあるような症例が挙げられる。本発明においては境界型糖尿病も糖尿病に包含される。 Further, a further example of the medical therapy using the novel insulin secretagogue peptide of the present invention is intended for early (mild) type 2 diabetes mellitus, borderline diabetes mellitus, or untreated type 2 diabetes mellitus. It is a medical treatment that was done. Borderline diabetes cases include, for example, cases in which the blood glucose level rises at any time but the fasting blood glucose is in the normal range. In the present invention, borderline diabetes is also included in diabetes.
 また本発明の、新規インスリン分泌促進ペプチドを用いた内科療法の更なる一例は、前糖尿病の症例を対象とした内科療法である。 Further, another example of the medical therapy using the novel insulin secretion-promoting peptide of the present invention is medical therapy for a case of prediabetes.
 すなわち本発明は、インスリン分泌促進活性を発揮するペプチドおよびその利用等に関し、より具体的には請求項の各項に記載の発明を包含する。なお同一の請求項を引用する請求項に記載の発明の2つまたはそれ以上の任意の組み合わせからなる発明も、本明細書において意図された発明である。すなわち本発明は、以下の発明を包含する。
〔1〕 αへリックス構造を形成しうるアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。
〔2〕 数個から十数個のアミノ酸からなる、〔1〕に記載のペプチド。
〔3〕 水酸基を持つアミノ酸および/または親水性アミノ酸に続き、該へリックスを形成しうる5残基以上のアミノ酸配列を含む、〔1〕または〔2〕に記載のペプチド。
〔4〕 該αヘリックス構造を形成する5残基以上のアミノ酸配列が、αヘリックス形成性アミノ酸で構成される、〔3〕に記載のペプチド。
〔5〕 該αヘリックス形成性アミノ酸が、メチオニン、アラニン、ロイシン、グルタミン酸、リジンからなる群より選択される、〔4〕に記載のペプチド。
〔6〕 該αヘリックス構造を形成する5残基以上のアミノ酸配列が5つのアラニン(AAAAA/配列番号3)を含む、〔5〕に記載のペプチド。
〔7〕 水酸基を持つアミノ酸および/または親水性アミノ酸が、スレオニン、セリン、チロシンから選択されるアミノ酸である、〔3〕から〔6〕のいずれかに記載のペプチド。
〔8〕 水酸基を持つアミノ酸および/または親水性アミノ酸が、スレオニンまたはセリンである、〔3〕から〔6〕のいずれかに記載のペプチド。
〔9〕 該αヘリックス構造を形成する5残基以上のアミノ酸配列に続き、親水性の中性アミノ酸を含む、〔3〕から〔8〕のいずれかに記載のペプチド。
〔10〕 該親水性の中性アミノ酸がグルタミンである、〔9〕に記載のペプチド。
〔11〕 スレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(TAAAAAQ/配列番号4)、セリン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(SAAAAAQ/配列番号12)、またはスレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン-グリシン-グリシン(TAAAAAQGG/配列番号11)のアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。
〔12〕 スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(TKEDGRQ/配列番号1)のアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。
〔13〕 スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン (TKEDGRQ/配列番号1)のアミノ末端とカルボキシル末端のアミノ酸がペプチド結合によりラクタム環を形成した環状ペプチドである、〔12〕に記載のペプチド。
〔14〕 活性型が、酸性条件下で加熱後冷却する工程、および/または緩衝液に溶解後に凍結乾燥する工程で処理されたペプチドである、〔1〕から〔13〕のいずれかに記載のペプチド。
〔15〕 他の化合物が分離可能に連結されている、〔1〕から〔14〕のいずれかに記載のペプチド。
〔16〕 〔1〕から〔15〕のいずれかに記載のペプチドおよび薬学的に許容される担体を含む組成物。
〔17〕 医薬組成物である、〔16〕に記載の組成物。
〔18〕 インスリン分泌促進および/または糖代謝促進のために用いられる、〔16〕または〔17〕に記載の組成物。
〔19〕 糖尿病または前糖尿病の治療または予防のために用いられる、〔16〕から〔18〕のいずれかに記載の組成物。
〔20〕 〔1〕から〔15〕のいずれかに記載のペプチドを投与する工程を含む、糖尿病または前糖尿病の療法または予防方法。
That is, the present invention relates to a peptide that exhibits insulin secretagogue activity, its use, and the like, and more specifically includes the invention described in each of the claims. An invention consisting of an arbitrary combination of two or more inventions described in claims which refer to the same claim is also an invention intended in the present specification. That is, the present invention includes the following inventions.
[1] A peptide comprising an amino acid sequence capable of forming an α-helix structure, wherein the peptide and/or its active form has insulinotropic activity.
[2] The peptide according to [1], which consists of several to more than ten amino acids.
[3] The peptide according to [1] or [2], which comprises an amino acid having a hydroxyl group and/or a hydrophilic amino acid and an amino acid sequence of 5 or more residues capable of forming the helix.
[4] The peptide according to [3], wherein the amino acid sequence having 5 or more residues forming the α-helix structure is composed of α-helix-forming amino acids.
[5] The peptide according to [4], wherein the α-helix forming amino acid is selected from the group consisting of methionine, alanine, leucine, glutamic acid and lysine.
[6] The peptide according to [5], wherein the amino acid sequence of 5 residues or more forming the α-helix structure contains 5 alanines (AAAAA/SEQ ID NO: 3).
[7] The peptide according to any one of [3] to [6], wherein the amino acid having a hydroxyl group and/or the hydrophilic amino acid is an amino acid selected from threonine, serine and tyrosine.
[8] The peptide according to any one of [3] to [6], wherein the amino acid having a hydroxyl group and/or the hydrophilic amino acid is threonine or serine.
[9] The peptide according to any one of [3] to [8], which contains a hydrophilic neutral amino acid following the amino acid sequence of 5 residues or more forming the α-helix structure.
[10] The peptide according to [9], wherein the hydrophilic neutral amino acid is glutamine.
[11] Threonine-alanine-alanine-alanine-alanine-alanine-glutamine (TAAAAAQ/SEQ ID NO:4), serine-alanine-alanine-alanine-alanine-alanine-glutamine (SAAAAAQ/SEQ ID NO:12), or threonine-alanine- A peptide comprising the amino acid sequence of alanine-alanine-alanine-alanine-glutamine-glycine-glycine (TAAAAAQGG/SEQ ID NO: 11), wherein the peptide and/or its active form has insulinotropic activity.
[12] A peptide comprising an amino acid sequence of threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1), the peptide and/or its active form having insulinotropic activity. peptide.
[13] A threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1) amino acid at the amino terminal and carboxyl terminal is a cyclic peptide in which a lactam ring is formed by a peptide bond, [12] The described peptides.
[14] The active form is a peptide that has been treated in the step of heating and cooling under acidic conditions and/or the step of dissolving in a buffer and freeze-drying, [1] to [13] peptide.
[15] The peptide according to any one of [1] to [14], in which another compound is separably linked.
[16] A composition comprising the peptide according to any one of [1] to [15] and a pharmaceutically acceptable carrier.
[17] The composition according to [16], which is a pharmaceutical composition.
[18] The composition according to [16] or [17], which is used for promoting insulin secretion and/or promoting glucose metabolism.
[19] The composition according to any of [16] to [18], which is used for treating or preventing diabetes or prediabetes.
[20] A method for treating or preventing diabetes or prediabetes, which comprises the step of administering the peptide according to any one of [1] to [15].
 なお、本明細書に記載した任意の技術的事項およびその任意の組み合わせは、本明細書において意図されている。また、それらの発明において、本明細書に記載の任意の事項またはその任意の組み合わせを除外した発明も、本明細書において意図されている。また本発明に関して、明細書中に記載されたある特定の態様は、それを開示するのみならず、その態様を含むより上位の本明細書に開示された発明から、その態様を除外した発明も開示するものである。 It should be noted that any technical matter described in this specification and any combination thereof are intended in this specification. Further, in these inventions, inventions excluding any matters described in the present specification or any combination thereof are also intended in the present specification. Further, regarding the present invention, a certain aspect described in the specification not only discloses the aspect but also an invention excluding the aspect from the invention disclosed in a higher order including the aspect. It is disclosed.
 本発明により、未同定のインスリン分泌機構の発見を含めた、膵β細胞の基礎研究のための材料を提供することができる。 The present invention can provide materials for basic research on pancreatic β cells, including the discovery of an unidentified insulin secretion mechanism.
 本発明により、未同定の血糖制御機構の発見を含めた、糖代謝制御に関する動物を用いた研究のための材料を提供することができる。 According to the present invention, it is possible to provide a material for animal studies relating to glucose metabolism control, including the discovery of an unidentified blood glucose control mechanism.
 本発明により、糖尿病および前糖尿病の症例、例えば、未治療の2型糖尿病の症例、初期(軽症)の2型糖尿病の症例、従来のインスリン分泌促進剤を用いた内科療法で血糖制御不良の2型糖尿病の症例、および1型糖尿病(特に緩徐進行型1型糖尿病)の症例に対して、有効な内科療法を提供することができる。 According to the present invention, cases of diabetes and pre-diabetes, for example, untreated type 2 diabetes, early type (mild) type 2 diabetes, and poor glycemic control by conventional medical therapy using insulin secretagogues. It is possible to provide effective medical therapy for cases of type 2 diabetes and type 1 diabetes (in particular, slowly progressive type 1 diabetes).
「circ-TKEDGRQ (配列番号1) のインスリン分泌促進作用:熱酸処理の効果」を示す図である。FIG. 3 is a view showing “insulin secretion promoting action of circ-TKED GRQ (SEQ ID NO: 1): effect of thermal acid treatment”. 「circ-TKEDGRQ (配列番号1) のインスリン分泌促進作用:凍結乾燥処置時の溶媒の影響」を示す図である。FIG. 3 is a diagram showing “insulin secretion promoting action of circ-TKED GRQ (SEQ ID NO: 1): influence of solvent during lyophilization treatment”. 「線状ペプチドの効果(凍結乾燥処理あり)」を示す図である。TKEDGRQ (配列番号1) のペプチドを用いた結果を示す。It is a figure which shows "the effect of a linear peptide (with freeze-drying process)." The results using the peptide of TKEDGRQ (SEQ ID NO: 1) are shown. 「線状欠損変異ペプチドの効果(凍結乾燥処理あり)」を示す図である。KEDGRQ (配列番号1のアミノ酸2-7番目)、TKEDGR (配列番号1のアミノ酸1-6番目)、TKEDG (配列番号1のアミノ酸1-5番目)、TKEDGRQ (配列番号1) のペプチドを用いた結果を示す。It is a figure which shows "the effect of linear deletion mutant peptide (with freeze-drying process)." The peptides of KEDGRQ (amino acids 2 to 7 of SEQ ID NO: 1), TKEDGR (amino acids 1 to 6 of SEQ ID NO: 1), TKEDG (amino acids 1 to 5 of SEQ ID NO: 1), and TKEDGRQ (SEQ ID NO: 1) were used. The results are shown. 「アミノ酸配列 TKEDGRQ (配列番号1) の高次構造予測」を示す図である。FIG. 2 is a diagram showing “a higher-order structure prediction of amino acid sequence TKEDGRQ (SEQ ID NO: 1)”. 「アラニンストレッチの効果(1):凍結乾燥処理なし」を示す図である。アラニンストレッチ(AAAAA/配列番号3)を含むTAAAAAQ (配列番号4) のペプチドを用いた結果を示す。It is a figure which shows "the effect of alanine stretch (1): no freeze-drying process". The result using the peptide of TAAAAAQ (SEQ ID NO: 4) containing an alanine stretch (AAAAA/SEQ ID NO: 3) is shown. 「アラニンストレッチの効果(2):凍結乾燥処理あり」を示す図である。TAAAAAQ (配列番号4) のペプチドを用いた結果を示す。It is a figure which shows "the effect of alanine stretch (2): with freeze-drying process". The result using the peptide of TAAAAAQ (SEQ ID NO: 4) is shown. 「アラニンストレッチの効果(3):凍結乾燥処理なし」を示す図である。TAAAAAQ (配列番号4)、AAAAAAA (配列番号5)、TKEDGRQ (配列番号1) のペプチドを用いた結果を示す。It is a figure which shows "the effect of alanine stretch (3): no freeze-drying process". The results obtained using peptides of TAAAAAQ (SEQ ID NO: 4), AAAAAAA (SEQ ID NO: 5) and TKEDGRQ (SEQ ID NO: 1) are shown. 「アラニンストレッチの効果(4):凍結乾燥処理あり」を示す図である。TAAAAAQ (配列番号4)、AAAAAAA (配列番号5)、TKEDGRQ (配列番号1) のペプチドを用いた結果を示す。It is a figure which shows "the effect of alanine stretch (4): with freeze-drying process". The results obtained using peptides of TAAAAAQ (SEQ ID NO: 4), AAAAAAA (SEQ ID NO: 5) and TKEDGRQ (SEQ ID NO: 1) are shown. 「TAAAAAQ (配列番号4) のN末端ビオチン化の影響」を示す図である。比較対象としてTKEDGRQ (配列番号1) を用いた結果も示す。It is a figure which shows "the influence of N-terminal biotinylation of TAAAAAQ (sequence number 4)." The results using TKEDGRQ (SEQ ID NO: 1) as a comparison target are also shown. 「MAAAAAQ (配列番号7) の効果:凍結乾燥なし」を示す図である。比較対象としてTAAAAAQ (配列番号4) を用いた結果も示す。It is a figure which shows "the effect of MAAAAAQ (sequence number 7): There is no freeze-drying." The results using TAAAAAQ (SEQ ID NO: 4) as a comparison target are also shown. 「TAAAAAA (配列番号10) の効果:凍結乾燥処理なし」を示す図である。It is a figure which shows "the effect of TAAAAA (sequence number 10): No freeze-drying process". 「TAAAAAA (配列番号10) の効果:凍結乾燥処理あり」を示す図である。比較対象としてTAAAAAQ (配列番号4) および TKEDGRQ (配列番号1) を用いた結果も示す。It is a figure which shows "the effect of TAAAAA (sequence number 10): Freeze-drying processing". The results using TAAAAAQ (SEQ ID NO: 4) and TKEDGRQ (SEQ ID NO: 1) as comparison targets are also shown. 「TAAAAAQGG (配列番号11) の効果:凍結乾燥処理なし」を示す図である。比較対象としてTAAAAAQ (配列番号4) および AAAAAAA (配列番号5) を用いた結果も示す。It is a figure which shows "the effect of TAAAAAQGG (sequence number 11): No freeze-drying process". The results of using TAAAAAQ (SEQ ID NO: 4) and AAAAAAA (SEQ ID NO: 5) as comparison targets are also shown. 「SAAAAAQ (配列番号12) の効果:(1)凍結乾燥処理なし、(2)凍結乾燥処理あり」を示す図である。比較対象としてTAAAAAQ (配列番号4) および TAAAAAQGG (配列番号11) を用いた結果も示す。It is a figure which shows "the effect of SAAAAAQ (sequence number 12): (1) no freeze-drying process, (2) freeze-drying process". The results of using TAAAAAQ (SEQ ID NO: 4) and TAAAAAQGG (SEQ ID NO: 11) as comparison targets are also shown. 「YAAAAAQ (配列番号13) , DAAAAAQ (配列番号14) , KAAAAAQ (配列番号15) , TAAAAAE (配列番号16) の効果:凍結乾燥処理なし」を示す図である。比較対象として TAAAAAQGG (配列番号11) を用いた結果も示す。It is a figure which shows "the effect of YAAAAAQ (sequence number 13), DAAAAAQ (sequence number 14), KAAAAAQ (sequence number 15), TAAAAAE (sequence number 16): No freeze-drying process. The results using TAAAAAQGG (SEQ ID NO: 11) are also shown as comparison targets. 「YAAAAAQ (配列番号13) , DAAAAAQ (配列番号14) , KAAAAAQ (配列番号15) , TAAAAAE (配列番号16) の効果:凍結乾燥処理あり」を示す図である。比較対象として TAAAAAQGG (配列番号11) を用いた結果も示す。It is a figure which shows "the effect of YAAAAAQ (sequence number 13), DAAAAAQ (sequence number 14), KAAAAAQ (sequence number 15), TAAAAAE (sequence number 16): freeze-drying processing. The results using TAAAAAQGG (SEQ ID NO: 11) are also shown as comparison targets. 「食餌誘発性肥満マウスへのTAAAAAQ (配列番号4) 投与による血糖値低下」を示す図である。比較対象として KEDGRQ (配列番号1のアミノ酸2-7番目) を用いた結果も示す。FIG. 4 is a diagram showing “a decrease in blood glucose level by administration of TAAAAAQ (SEQ ID NO: 4) to diet-induced obese mice”. The results using KEDGRQ (amino acids 2 to 7 of SEQ ID NO: 1) are also shown as a comparison target. 「ob/obマウスへのTAAAAAQ (配列番号4) 投与による血糖値低下とインスリン分泌促進」を示す図である。比較対象として TKEDGRQ (配列番号1) を用いた結果も示す。FIG. 3 is a diagram showing “a decrease in blood glucose level and promotion of insulin secretion by administration of TAAAAAQ (SEQ ID NO: 4) to ob/ob mice”. The results of using TKEDGRQ (SEQ ID NO: 1) as a comparison target are also shown. 「GlpTKEDGR (配列番号22) とGlpTKEdGR (配列番号23) の効果:凍結乾燥処理なし」を示す図である。It is a figure which shows "the effect of GlpTKEDGR (sequence number 22) and GlpTKEDGR (sequence number 23): No freeze-drying process." 「インスリン分泌不全マウス(境界型糖尿病)へのTAAAAAQGG(配列番号11)投与による耐糖能改善」を示す図である。比較対象として GlpTKEdGR (配列番号23)を用いた結果も示す。FIG. 8 is a diagram showing “improved glucose tolerance by administration of TAAAAAQGG (SEQ ID NO: 11) to insulin deficient mice (borderline diabetes)”. The results using GlpTKEdGR (SEQ ID NO:23) are also shown as comparison targets. 「インスリン分泌不全マウス(1型糖尿病)へのTAAAAAQGG (配列番号11)投与による耐糖能改善」を示す図である。比較対象として GlpTKEdGR (配列番号23) を用いた結果も示す。FIG. 2 is a diagram showing “improved glucose tolerance by administration of TAAAAAQGG (SEQ ID NO: 11) to insulin deficient mice (type 1 diabetes)”. The results using GlpTKEdGR (SEQ ID NO:23) are also shown as comparison targets.
 本発明は、αへリックス構造を形成しうるアミノ酸配列を持つペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つペプチドおよびその利用に関する。本発明において、αへリックス様のヘリックスを形成しうる短鎖ペプチドは、膵β細胞に作用してインスリンの分泌を促進させる作用を有することが判明した。また当該ペプチドは、高血糖状態のマウスに投与することにより血糖値を低下させる作用を発揮する。よって本発明のペプチドは、インスリン分泌の促進、血糖値の低下、および/または糖代謝促進等に有用である。 The present invention relates to a peptide having an amino acid sequence capable of forming an α-helix structure, the peptide and/or its active form having insulinotropic activity and its use. In the present invention, it was revealed that a short-chain peptide capable of forming an α-helix-like helix has an action of acting on pancreatic β-cells to promote insulin secretion. In addition, the peptide exerts the action of lowering the blood glucose level when administered to a hyperglycemic mouse. Therefore, the peptide of the present invention is useful for promoting insulin secretion, lowering blood glucose level, and/or promoting glucose metabolism.
 本発明においてαヘリックス構造とは、αヘリックスまたはそれと類似したヘリックス)(αへリックス様のヘリックス)の構造をいう。例えば本発明においてαヘリックス構造は、4残基離れたアミノ酸(すなわち3残基を挟んで位置する2つのアミノ酸)が相互作用することで形成されるヘリックス構造であってよい。本発明においてαヘリックス構造には、図5の上に示した典型的なαヘリックス、および図5の下に示したヘリックスが包含される。本発明においてαヘリックス構造には、例えばアミノ酸3.6残基程度、例えばアミノ酸3.2~4.0残基、3.3~3.9残基、3.4~3.8残基、または3.5~3.7残基、例えば平均約3.5残基または約3.6残基で一回転するらせん構造または環状構造が包含される。例えば7残基で約2回転、例えば1.5~2.5回転、好ましくは1.6~2.4回転、1.7~2.3回転、1.8~2.2回転、または1.9~2.1回転するらせん構造は、本発明においてαヘリックス構造に包含される。 In the present invention, the α-helix structure means an α-helix or a helix similar thereto (α-helix-like helix) structure. For example, in the present invention, the α-helix structure may be a helix structure formed by the interaction of amino acids 4 residues apart (that is, 2 amino acids located across 3 residues). In the present invention, the α-helix structure includes the typical α-helix shown above in FIG. 5 and the helix shown below in FIG. In the present invention, the α-helix structure has, for example, about 3.6 amino acid residues, for example, amino acid 3.2 to 4.0 residues, 3.3 to 3.9 residues, 3.4 to 3.8 residues, or 3.5 to 3.7 residues, such as an average of about 3.5 residues or Included are helical or cyclic structures that rotate about 3.6 residues. For example, a helix having about 2 turns about 7 residues, for example, about 1.5 to 2.5 turns, preferably 1.6 to 2.4 turns, 1.7 to 2.3 turns, 1.8 to 2.2 turns, or 1.9 to 2.1 turns is included in the present invention in the α-helix structure. To be done.
 ペプチドのインスリン分泌促進活性は、膵β細胞などのインスリン産生能を有する細胞にペプチドを投与することにより決定することができる。インスリン産生能を有する細胞は適宜選択してよいが、例えば膵ベータ細胞株であるMIN6細胞(Miyazakiら、Endocrinology 127: 126-132, 1990)やラット膵島等を用いることができる。当該細胞を培養し、ペプチドを添加して培養上清中のインスリン濃度を測定する。インスリン濃度が有意に上昇すれば、当該ペプチドはインスリン分泌促進活性を持つと判断される。 The insulin secretagogue activity of a peptide can be determined by administering the peptide to cells having insulin-producing ability such as pancreatic β cells. Although cells having insulin-producing ability may be appropriately selected, for example, pancreatic beta cell line MIN6 cells (Miyazaki et al., Endocrinology 127: 126-132, 1990), rat pancreatic islets and the like can be used. The cells are cultured, a peptide is added, and the insulin concentration in the culture supernatant is measured. If the insulin concentration is significantly increased, the peptide is considered to have insulinotropic activity.
 例えば本発明のペプチドとしては、BA-SUPの活性分画の質量分析から同定されたインスリン分泌促進活性ペプチドが挙げられる。本発明による「BA-SUPの活性分画の質量分析から同定されたインスリン分泌促進活性ペプチド」のアミノ酸配列とは、スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(TKEDGRQ/配列番号1)の線状ペプチドがアミノ末端(N末端)とカルボキシル末端(C末端)がペプチド結合したラクタム環状ペプチド(以下、circ-TKEDGRQと記載)である。したがって、TKEDGRQ(配列番号1)のアミノ酸配列を含む環状ペプチドは、本発明のペプチドとして好適である。 Examples of the peptide of the present invention include insulin secretagogue-active peptides identified by mass spectrometry of the active fraction of BA-SUP. The amino acid sequence of the “insulin secretagogue active peptide identified by mass spectrometry of the active fraction of BA-SUP” according to the present invention is threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1). ) Is a lactam cyclic peptide having an amino terminus (N terminus) and a carboxyl terminus (C terminus) bonded to each other (hereinafter, referred to as circ-TKEDGRQ). Therefore, a cyclic peptide containing the amino acid sequence of TKEDGRQ (SEQ ID NO: 1) is suitable as the peptide of the present invention.
 また、上記のラクタム環状ペプチド「circ-TKEDGRQ」は、物理化学的処理に供することでインスリン分泌促進作用を強く発揮する「活性型構造異性体」に変換することができる。インスリン分泌促進作用を発揮する「活性型構造異性体」に変換する物理化学的処理とは、例えば、10 mM程度、pH7.6程度のHEPES緩衝液に溶解後に凍結乾燥させる工程が好適である。 Also, the above-mentioned lactam cyclic peptide "circ-TKEDGRQ" can be converted into "active structural isomers" that exert a strong insulin secretagogue action by being subjected to physicochemical treatment. As the physicochemical treatment for converting into an “active structural isomer” that exerts an insulin secretagogue action, for example, a step of dissolving in a HEPES buffer solution having a pH of about 10 mM and a pH of about 7.6 and then freeze-drying is preferable.
 また、上記のラクタム環状ペプチドが強いインスリン分泌促進作用を発揮する「活性型構造異性体」へ変換するための物理化学的処理としては、例えば、0.1%程度のギ酸、140 mM程度の塩化ナトリウム含む溶液にペプチドを溶解し、60℃程度で1時間程度加熱した後に室温程度に徐々に冷却させる工程も好適である。 Further, as the physicochemical treatment for converting the above-mentioned lactam cyclic peptide into the “active structural isomer” that exerts a strong insulin secretagogue action, for example, about 0.1% formic acid and about 140 mM sodium chloride are included. A step of dissolving the peptide in the solution, heating at about 60° C. for about 1 hour, and then gradually cooling to about room temperature is also suitable.
 また本発明は、上記のラクタム環状ペプチドが、安定にインスリン分泌促進作用を発揮するようアミノ酸置換を施された「活性型変異体ペプチド」にも関する。当該ペプチドは、上記の凍結乾燥工程および/または熱酸処理工程により形成されることが類推される3次元構造を形成し得るペプチドであり、環状ペプチドであっても、線状ペプチドであってもよい。 The present invention also relates to an “active mutant peptide” in which the above-mentioned lactam cyclic peptide has been subjected to amino acid substitution so as to stably exert an insulin secretagogue action. The peptide is a peptide capable of forming a three-dimensional structure which is presumed to be formed by the freeze-drying step and/or the thermal acid treatment step, and may be a cyclic peptide or a linear peptide. Good.
 以下に本発明のポリペプチドについてより詳細に記載する。 The polypeptide of the present invention will be described in more detail below.
 本発明においてペプチドとは短鎖のポリペプチドをいい、その長さは特に制限されるものではないが、典型的には数個から十数個である。本発明においてペプチドは、オリゴペプチドまたはオリゴマーなどと呼ばれるようなものも包含される。また本発明においてペプチドには、線状、環状、分岐を有するものなどが包含される。 In the present invention, the peptide means a short-chain polypeptide, and the length thereof is not particularly limited, but it is typically several to ten and several. In the present invention, the peptides include those called oligopeptides or oligomers. Further, in the present invention, the peptides include those having a linear shape, a cyclic shape, a branched shape and the like.
 本発明において数個とは、2や3よりも多い数、例えば5~15個程度であってよく、好ましくは5~12個、5~11個、5~10個、5~9個、5~8個、5~7個、6~12個、6~11個、6~10個、6~9個、または6~8個であり、より好ましくは6~10個、7~10個、または7~9個である。また本発明において十数個とは、例えば11~19個程度であってよく、好ましくは12~18個、12~17個、12~16個、12~15個、12~14個、または12~13個であってよい。本発明のペプチドの長さは、以下に制限されるものではないが例えば20アミノ酸以下、あるいは20アミノ酸未満、例えば5~19アミノ酸であり、好ましくは5~17アミノ酸、5~16アミノ酸、6~15アミノ酸、6~12アミノ酸、6~11アミノ酸、6~11アミノ酸、6~10アミノ酸、7~10アミノ酸、またはアミノ酸十個程度であり、より好ましくは9個以下、例えば6~9アミノ酸であり、より好ましくは7~9アミノ酸、例えば7アミノ酸、8アミノ酸、または9アミノ酸である。ヘプタペプチド、および当該ヘプタペプチドに1個または2個程度のアミノ酸を付加したペプチドは、本発明のペプチドとして特に好適である。アミノ酸は、例えばC末端に付加することができる。 In the present invention, the term "several" may be a number greater than 2 or 3, for example, about 5 to 15, preferably 5 to 12, 5 to 11, 5 to 10, 5 to 9, 5 ~8, 5-7, 6-12, 6-11, 6-10, 6-9, or 6-8, more preferably 6-10, 7-10, Or 7 to 9 pieces. In the present invention, the number of ten and several may be, for example, about 11 to 19, preferably 12 to 18, 12 to 17, 12 to 16, 12 to 15, 12 to 14, or 12. Can be up to 13. The length of the peptide of the present invention is not limited to the following, but is, for example, 20 amino acids or less, or less than 20 amino acids, for example, 5 to 19 amino acids, preferably 5 to 17 amino acids, 5 to 16 amino acids, 6 to 15 amino acids, 6-12 amino acids, 6-11 amino acids, 6-11 amino acids, 6-10 amino acids, 7-10 amino acids, or about 10 amino acids, more preferably 9 or less, for example 6-9 amino acids , More preferably 7-9 amino acids, for example 7 amino acids, 8 amino acids, or 9 amino acids. A heptapeptide and a peptide obtained by adding about 1 or 2 amino acids to the heptapeptide are particularly suitable as the peptide of the present invention. Amino acids can be added, for example, at the C-terminus.
 本発明のペプチドに含まれるαへリックス構造を形成しうるアミノ酸配列は、適宜選択することができる。当該アミノ酸配列には、αヘリックス構造を形成しやすいアミノ酸(これをαヘリックス形成性アミノ酸という)が含まれることが好ましいが、それ以外のアミノ酸が含まれていてもよい。αヘリックス構造を形成しにくいアミノ酸(例えばプロリン、グリシン、チロシン、セリン)は、本発明のペプチド自体には含まれていてもよいが、αへリックス構造を形成しうるアミノ酸配列中には含まれないことが好ましい。αヘリックス形成性アミノ酸としては、メチオニン、アラニン、ロイシン、グルタミン酸、リジンなどが挙げられる。本発明においてαへリックス構造を形成しうるアミノ酸配列中のアミノ酸は、αヘリックス形成性アミノ酸が例えば50%以上、好ましくは60%以上、より好ましくは80%以上、より好ましくは90%以上を占めていてよい。より好ましくは、αへリックス構造を形成しうるアミノ酸配列は、αヘリックス形成性アミノ酸のみで構成される。 The amino acid sequence capable of forming an α-helix structure contained in the peptide of the present invention can be appropriately selected. The amino acid sequence preferably contains an amino acid that easily forms an α-helix structure (this is referred to as an α-helix forming amino acid), but may include other amino acids. Amino acids that are difficult to form an α-helix structure (for example, proline, glycine, tyrosine, and serine) may be included in the peptide of the present invention, but are included in the amino acid sequence that can form an α-helix structure. Preferably not. Examples of the α-helix forming amino acid include methionine, alanine, leucine, glutamic acid and lysine. In the present invention, the amino acids in the amino acid sequence capable of forming an α-helix structure, α-helix-forming amino acids occupy, for example, 50% or more, preferably 60% or more, more preferably 80% or more, more preferably 90% or more. You can stay. More preferably, the amino acid sequence capable of forming an α-helix structure is composed of only α-helix forming amino acids.
 αへリックス構造を形成しうるアミノ酸配列の長さは適宜選択してよいが、例えば4アミノ酸以上、好ましくは5アミノ酸以上、より好ましくは6アミノ酸以上、より好ましくは7アミノ酸以上である。例えば、5、6、7、または8アミノ酸からなるαへリックス構造を形成しうるアミノ酸配列を好適に用いることができる。例えば5アミノ酸からなるαへリックス構造を形成しうるアミノ酸配列を含むペプチドは、本発明のペプチドとして好適である。 The length of the amino acid sequence capable of forming an α-helix structure may be appropriately selected, but is, for example, 4 amino acids or more, preferably 5 amino acids or more, more preferably 6 amino acids or more, and further preferably 7 amino acids or more. For example, an amino acid sequence capable of forming an α-helix structure consisting of 5, 6, 7, or 8 amino acids can be preferably used. For example, a peptide containing an amino acid sequence capable of forming an α-helix structure consisting of 5 amino acids is suitable as the peptide of the present invention.
 また本発明において当該アミノ酸配列により形成されるαヘリックス構造は、回転半径が比較的小さいことが好ましい。回転半径を小さくするためには、側鎖の小さなアミノ酸を選択することができる。例えば、αへリックス構造を形成しうるアミノ酸配列を構成するアミノ酸の側鎖の平均分子量は、天然のアミノ酸20種の側鎖の平均的な分子量よりも小さいことが好ましく、例えば天然のアミノ酸20種の側鎖の平均的な分子量に比べ、80%以下、70%以下、60%以下、または50%以下であることが好ましい。より具体的には、αへリックス構造を形成しうるアミノ酸配列を構成するアミノ酸の側鎖の分子量は、例えば74以下のものが過半(例えば50%以上、好ましくは60%以上、より好ましくは80%以上)を占めることが好ましく、例えば側鎖の分子量が73以下、72以下、70以下、68以下、65以下、62以下、60以下、40以下、30以下、または20以下のアミノ酸が、αへリックス構造を形成しうるアミノ酸配列を構成するアミノ酸過半(例えば50%以上、好ましくは60%以上、より好ましくは80%以上、90%以上、または100%)を占めることが好ましい。例えば5アミノ酸からなるαへリックス構造を形成しうるアミノ酸配列を含む本発明のペプチドは、側鎖の分子量が74以下、73以下、72以下、70以下、68以下、65以下、62以下、60以下、40以下、30以下、または20以下のアミノ酸が、5アミノ酸中3個以上、4個以上、または5個含まれるものであってよい。 In the present invention, the α-helix structure formed by the amino acid sequence preferably has a relatively small radius of gyration. In order to reduce the radius of gyration, amino acids with small side chains can be selected. For example, the average molecular weight of the side chains of amino acids that form the amino acid sequence capable of forming an α-helix structure is preferably smaller than the average molecular weight of the side chains of 20 types of natural amino acids, for example, 20 types of natural amino acids. The average molecular weight of the side chain is preferably 80% or less, 70% or less, 60% or less, or 50% or less. More specifically, the molecular weight of the side chain of amino acids constituting the amino acid sequence capable of forming an α-helix structure is, for example, 74 or less of the majority (for example, 50% or more, preferably 60% or more, more preferably 80% or more). % Or more), for example, the molecular weight of the side chain is 73 or less, 72 or less, 70 or less, 68 or less, 65 or less, 62 or less, 60 or less, 40 or less, 30 or less, or 20 or less amino acids, α It is preferable to occupy a majority of amino acids (for example, 50% or more, preferably 60% or more, more preferably 80% or more, 90% or more, or 100%) constituting an amino acid sequence capable of forming a helix structure. For example, the peptide of the present invention containing an amino acid sequence capable of forming an α-helix structure consisting of 5 amino acids has a side chain molecular weight of 74 or less, 73 or less, 72 or less, 70 or less, 68 or less, 65 or less, 62 or less, 60 or less. Hereinafter, 40 or less, 30 or less, or 20 or less amino acids may be contained in 3 or more, 4 or more, or 5 of 5 amino acids.
 また本発明のペプチドにおいては、例えばαヘリックス構造を形成するアミノ酸配列中にアラニンを含むことが好ましい。アラニンの割合は適宜選択してよいが、例えば30%以上、好ましくは40%以上、50%以上、60%以上、より好ましくは80%以上、または100%である。例えば5アミノ酸からなるαへリックス構造を形成しうるアミノ酸配列を含む本発明のペプチドは、5アミノ酸中、アラニンを3個以上、4個以上、または5個含んでいてよい。好ましくは本発明のペプチドは、αヘリックス構造を形成するアミノ酸配列として、連続する3残基またはそれ以上のアラニン、より好ましくは連続する4残基またはそれ以上のアラニンを含む。5つの連続するアラニン(AAAAA/配列番号3)は、αへリックス構造を形成しうるアミノ酸配列として好適である。 Further, in the peptide of the present invention, it is preferable to include alanine in the amino acid sequence forming the α-helix structure, for example. The ratio of alanine may be appropriately selected, but is, for example, 30% or more, preferably 40% or more, 50% or more, 60% or more, more preferably 80% or more, or 100%. For example, the peptide of the present invention containing an amino acid sequence capable of forming an α-helix structure consisting of 5 amino acids may contain 3 or more, 4 or more, or 5 alanines in 5 amino acids. Preferably, the peptide of the present invention contains, as an amino acid sequence forming an α-helix structure, 3 consecutive alanines or more, more preferably 4 consecutive alanines or more. Five consecutive alanines (AAAAA/SEQ ID NO: 3) are suitable as an amino acid sequence capable of forming an α-helix structure.
 また本発明のペプチドは、αへリックス構造を形成しうるアミノ酸配列のN末端側に、水酸基を持つアミノ酸および/または親水性アミノ酸が連結されていることが好ましい。すなわち本発明のペプチドは、水酸基を持つアミノ酸および/または親水性アミノ酸に続き、αへリックス構造を形成しうるアミノ酸配列を含むペプチドが好適である。当該水酸基を持つアミノ酸および/または親水性アミノ酸は、ペプチドのN末端のアミノ酸であることが好ましい。 Further, in the peptide of the present invention, an amino acid having a hydroxyl group and/or a hydrophilic amino acid is preferably linked to the N-terminal side of an amino acid sequence capable of forming an α-helix structure. That is, the peptide of the present invention is preferably a peptide containing an amino acid sequence having an α-helix structure, following an amino acid having a hydroxyl group and/or a hydrophilic amino acid. The amino acid having a hydroxyl group and/or the hydrophilic amino acid is preferably the N-terminal amino acid of the peptide.
 当該水酸基を持つアミノ酸および/または親水性アミノ酸として好ましいものとしてはスレオニン、セリン、およびチロシン等が挙げられるが、それに限定されるものではない。親水性アミノ酸としては、アルギニン、アスパラギン、アスパラギン酸、グルタミン酸、グルタミン、リジン、セリン、スレオニン、システイン、ヒスチジン、メチオニンが挙げられ、特にアルギニン、アスパラギン、アスパラギン酸、グルタミン酸、グルタミン、リジン、セリン、スレオニンが好ましい。また当該アミノ酸は、親水性の中性アミノ酸(例えばスレオニン、セリン、アスパラギン、グルタミン)であってもよい。特に好ましいアミノ酸は、水酸基を持つ親水性アミノ酸であり、例えばスレオニンまたはセリンである。 Preferred examples of the amino acid having the hydroxyl group and/or the hydrophilic amino acid include threonine, serine, and tyrosine, but are not limited thereto. Examples of the hydrophilic amino acid include arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine, cysteine, histidine, and methionine, and particularly arginine, asparagine, aspartic acid, glutamic acid, glutamine, lysine, serine, threonine. preferable. Further, the amino acid may be a hydrophilic neutral amino acid (for example, threonine, serine, asparagine, glutamine). Particularly preferred amino acids are hydrophilic amino acids having a hydroxyl group, such as threonine or serine.
 また本発明のペプチドは、αへリックス構造を形成しうるアミノ酸配列のC末端側に、親水性アミノ酸が連結されているものが好ましい。すなわち本発明のペプチドは、αへリックス構造を形成しうるアミノ酸配列に続き、親水性アミノ酸を含むペプチドが好適である。当該アミノ酸は適宜選択してよいが、好ましくは親水性の中性アミノ酸、例えばスレオニン、セリン、グルタミン、アスパラギンなどが挙げられ、より好ましいアミノ酸としてはグルタミンが挙げられる。 Also, the peptide of the present invention is preferably one in which a hydrophilic amino acid is linked to the C-terminal side of an amino acid sequence capable of forming an α-helix structure. That is, the peptide of the present invention is preferably a peptide containing a hydrophilic amino acid following an amino acid sequence capable of forming an α-helix structure. The amino acid may be appropriately selected, but hydrophilic neutral amino acids such as threonine, serine, glutamine and asparagine are preferred, and glutamine is more preferred.
 すなわち本発明のペプチドは、N末端に水酸基を持つアミノ酸および/または親水性アミノ酸があり、それに続いてαへリックス構造を形成しうるアミノ酸配列が連結され、それに続いて親水性の中性アミノ酸が連結された配列を含むペプチドが好ましい。換言すれば、αへリックス構造を形成しうるアミノ酸配列が、水酸基を持つアミノ酸および/または親水性アミノ酸と親水性の中性アミノ酸とで挟み込まれた構造を持つペプチド、すなわち、水酸基を持つアミノ酸および/または親水性アミノ酸と親水性の中性アミノ酸との間にαへリックス構造を形成しうるアミノ酸配列が位置するペプチドが好ましい。
 より具体的には、N末端にスレオニン、セリン、およびチロシンなどの水酸基を持つアミノ酸および/または親水性アミノ酸があり、それに続いて、例えばアラニンを3個以上、4個以上、または5個含むαへリックス構造を形成しうるアミノ酸配列が連結され、それに続いてグルタミンなどの親水性の中性アミノ酸が連結された配列を含むペプチドが、本発明のペプチドとして特に好適である。当該αへリックス構造を形成しうるアミノ酸配列は、例えば5アミノ酸からなる配列であってよく、好ましい配列としては5つの連続するアラニン(AAAAA/配列番号3)を挙げることができる。
That is, the peptide of the present invention has an amino acid having a hydroxyl group at the N-terminal and/or a hydrophilic amino acid, which is subsequently linked with an amino acid sequence capable of forming an α-helix structure, followed by a hydrophilic neutral amino acid. Peptides containing linked sequences are preferred. In other words, an amino acid sequence capable of forming an α-helix structure has a structure in which an amino acid having a hydroxyl group and/or a hydrophilic amino acid and a hydrophilic neutral amino acid are sandwiched, that is, an amino acid having a hydroxyl group and Preference is given to a peptide in which an amino acid sequence capable of forming an α-helix structure is located between a hydrophilic amino acid and a hydrophilic neutral amino acid.
More specifically, there are amino acids having a hydroxyl group such as threonine, serine, and tyrosine at the N-terminus and/or hydrophilic amino acids, and subsequently, for example, α containing 3 or more, 4 or more, or 5 alanines. A peptide containing a sequence in which amino acid sequences capable of forming a helix structure are linked, followed by a hydrophilic neutral amino acid such as glutamine is particularly suitable as the peptide of the present invention. The amino acid sequence capable of forming the α-helix structure may be, for example, a sequence consisting of 5 amino acids, and a preferable sequence includes 5 consecutive alanines (AAAAA/SEQ ID NO: 3).
 上記のグルタミンなどの親水性の中性アミノ酸は、ペプチドのC末端のアミノ酸であってもよいが、インスリン分泌促進活性を保持する限り、そのC末端側にさらにアミノ酸等を付加してもよい。例えば、活性を維持する限度において、数個のアミノ酸、具体的には、1個、2個、3個、4個、または5個程度のアミノ酸を付加することができる。付加するアミノ酸に特に制限はないが、例えばグリシンを挙げることができ、例えば1個のグリシン(G)、または2個のグリシン(GG)を付加したものも、本発明のペプチドとして好適である。 The above-mentioned hydrophilic neutral amino acid such as glutamine may be the C-terminal amino acid of the peptide, but an amino acid or the like may be further added to the C-terminal side as long as it retains insulin secretagogue activity. For example, a few amino acids, specifically, about 1, 2, 3, 4, or 5 amino acids can be added as long as the activity is maintained. Although the amino acid to be added is not particularly limited, examples thereof include glycine, and for example, one to which one glycine (G) or two glycines (GG) are added is also suitable as the peptide of the present invention.
 より具体的に本発明のペプチドを例示すれば、スレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(TAAAAAQ/配列番号4)、セリン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(SAAAAAQ/配列番号12)、およびスレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン-グリシン-グリシン(TAAAAAQGG/配列番号11)のアミノ酸配列が挙げられ、さらにはTAAAAAQG(配列番号19)、SAAAAAQG(配列番号20)、およびSAAAAAQGG(配列番号21)などのアミノ酸配列も挙げられる。これらのアミノ酸配列を含むペプチドは、本発明において好適であり、当該アミノ酸配列からなるペプチドは、本発明において特に好適である。 More specifically, examples of the peptide of the present invention include threonine-alanine-alanine-alanine-alanine-alanine-glutamine (TAAAAAQ/SEQ ID NO: 4), serine-alanine-alanine-alanine-alanine-alanine-glutamine (SAAAAAQ/ SEQ ID NO: 12), and the amino acid sequences of threonine-alanine-alanine-alanine-alanine-alanine-glutamine-glycine-glycine (TAAAAAQGG/SEQ ID NO: 11), and also TAAAAAQG (SEQ ID NO: 19), SAAAAAQG (SEQ ID NO: 19). 20), and also amino acid sequences such as SAAAAAQGG (SEQ ID NO: 21). Peptides containing these amino acid sequences are preferable in the present invention, and peptides having the amino acid sequences are particularly preferable in the present invention.
 また本発明は、上に具体的に例示したペプチドにおいて1または数個のアミノ酸を置換、欠失、付加、および/または挿入したペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つペプチドに関する。改変されるアミノ酸の数は、例えば1~3個、好ましくは1~2個であり、最も好ましくは1個である。 The present invention also provides a peptide in which one or several amino acids are substituted, deleted, added, and/or inserted in the peptide specifically exemplified above, wherein the peptide and/or its active form promotes insulin secretion. It relates to active peptides. The number of amino acids modified is, for example, 1 to 3, preferably 1 to 2, and most preferably 1.
 また本発明は、上に具体的に例示したペプチドのアミノ酸を保存的に置換したペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つペプチドに関する。このようなアミノ酸の保存的置換は、当業者にはよく知られている。保存的置換に相当するアミノ酸のグループとしては、例えば、塩基性アミノ酸(例えばリジン、アルギニン、ヒスチジン)、酸性アミノ酸 (例えばアスパラギン酸、グルタミン酸)、非荷電極性アミノ酸 (例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性アミノ酸 (例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐アミノ酸 (例えばスレオニン、バリン、イソロイシン)、および芳香族アミノ酸 (例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)などが挙げられる。また、例えばBLOSUM62マトリックス(Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919)の値が2以下、より好ましくは1以下、より好ましくは0のアミノ酸に置換が挙げられる。アミノ酸の置換数は、例えば1~3個、好ましくは1~2個であり、より好ましくは1個である。 The present invention also relates to a peptide in which the amino acids of the peptides specifically exemplified above are conservatively substituted, and the peptide and/or its active form has insulinotropic activity. Conservative substitutions of such amino acids are well known to those skilled in the art. Examples of groups of amino acids corresponding to conservative substitutions include basic amino acids (eg, lysine, arginine, histidine), acidic amino acids (eg, aspartic acid, glutamic acid), uncharged polar amino acids (eg, glycine, asparagine, glutamine, serine, Threonine, tyrosine, cysteine), non-polar amino acids (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta branched amino acids (e.g. threonine, valine, isoleucine), and aromatic amino acids (e.g. tyrosine, phenylalanine). , Tryptophan, histidine) and the like. Also, for example, the value of BLOSUM62 matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919) is 2 or less, more preferably 1 or less, and more preferably Substitutions can be given to 0 amino acids. The number of amino acid substitutions is, for example, 1 to 3, preferably 1 to 2, and more preferably 1.
 本発明のペプチドには、インスリン分泌促進活性を持つことが知られている既知のペプチドが含まれないことは言うまでもない。本発明のペプチドには、例えばインスリン分泌促進活性を持つことが知られているペプチド、例えばインスリン分泌促進活性を持つことが知られているジペプチドやトリペプチド、具体的には特開2018-123065、特開2016-034930、およびWO2012/109561に記載されているようなジペプチドやトリペプチドは含まれない。また本発明のペプチドには、既知のインレクチン(GLP-1、GIP)、GLP-1アナログ(既知の糖尿病薬)は含まれない。すなわち本発明のペプチドは、インスリン分泌促進活性を持つことが既知のペプチドではないペプチドである。 Needless to say, the peptides of the present invention do not include known peptides known to have insulinotropic activity. The peptide of the present invention, for example, a peptide known to have insulinotropic activity, for example, a dipeptide or tripeptide known to have insulinotropic activity, specifically, JP2018-123065, It does not include dipeptides or tripeptides as described in JP-A-2016-034930 and WO2012/109561. Further, the peptides of the present invention do not include known inlectins (GLP-1, GIP) and GLP-1 analogs (known diabetes drugs). That is, the peptide of the present invention is a peptide which is not known to have insulinotropic activity.
 本発明のペプチドは、天然のペプチドであっても、合成ペプチドであってもよい。また、ペプチドを構成するアミノ酸は、天然のアミノ酸であっても非天然のアミノ酸であってもよい。またペプチドやアミノ酸は修飾されていてもよく、修飾されていなくてもよい。修飾は、天然に修飾されていても、人工的に修飾されていてもよい。修飾には、ペプチドのバックボーン、アミノ酸側鎖、アミノ(N)末端、またはカルボキシル(C)末端などの修飾が含まれる。修飾には、アセチル化、アシル化、ADPリボシル化、アミド化、環状化、ジスルフィド結合形成、メチル化、脱メチル化、ピログルタミン酸化、γ-カルボキシル化、グリコシル化、ヒドロキシル化、ヨード化、ミリストイル化、酸化、リン酸化、ユビキチン化などが含まれるが、これらに制限されない。また修飾は、フラビン、ヌクレオチド、ヌクレオチド誘導体、脂質、脂質誘導体、またはホスファチジルイノシトール等の化合物を付加するものであってもよい。 The peptide of the present invention may be a natural peptide or a synthetic peptide. The amino acids that compose the peptide may be natural amino acids or non-natural amino acids. The peptide or amino acid may or may not be modified. The modification may be naturally modified or artificially modified. Modifications include modifications such as peptide backbones, amino acid side chains, amino (N) termini, or carboxyl (C) termini. Modifications include acetylation, acylation, ADP ribosylation, amidation, cyclization, disulfide bond formation, methylation, demethylation, pyroglutamine oxidation, γ-carboxylation, glycosylation, hydroxylation, iodination, myristoyl. Oxidization, oxidation, phosphorylation, ubiquitination and the like, but are not limited thereto. The modification may be addition of a compound such as flavin, nucleotide, nucleotide derivative, lipid, lipid derivative, or phosphatidylinositol.
 また、本発明のペプチドは、誘導体、修飾体、および類縁体が含まれる。このような誘導体等には、本発明のペプチドの官能基を修飾、付加、変異、置換、または削除などにより改変された形態を持つ分子が含まれる。官能基の改変は、例えば、ポリペプチドに存在する官能基の保護(例えば官能基の保護基による置換)、ペプチドの安定性または組織移行性の制御、あるいはペプチドの活性の制御等を目的として行われうる。例えば、本発明のペプチドには、そのN末端、C末端、およびポリペプチドを構成するアミノ酸の側鎖の官能基のいずれかが保護基等の他の置換基によって修飾されているものが含まれる。置換基としては、例えば各種のアルキル基、アシル基、アミド体、リン酸基、アミノ基、カルボキシル基、エステル基など挙げられるがこれらに制限されない。 Further, the peptides of the present invention include derivatives, modified products and analogs. Such derivatives include molecules having a modified form of the functional group of the peptide of the present invention by modification, addition, mutation, substitution or deletion. The modification of the functional group is carried out for the purpose of, for example, protecting the functional group existing in the polypeptide (for example, replacing the functional group with a protecting group), controlling the stability or tissue translocation of the peptide, or controlling the activity of the peptide. Can be broken. For example, the peptides of the present invention include those in which any of the N-terminal, C-terminal, and side chain functional groups of amino acids constituting the polypeptide is modified with other substituents such as a protecting group. .. Examples of the substituent include, but are not limited to, various alkyl groups, acyl groups, amides, phosphoric acid groups, amino groups, carboxyl groups and ester groups.
 また、本発明のペプチドには、ペプチド同士を結合させた二量体、三量体、四量体などの多量体、分枝状分子、環化分子が含まれる。また、ペプチドは担体に結合していてもよい。例えば、本発明のペプチドは、ポリエチレングリコール(PEG)、デキストラン(dextran)、あるいは他のポリマーなどと結合していてもよい。 Further, the peptides of the present invention include multimers such as dimers, trimers, and tetramers in which peptides are bound to each other, branched molecules, and cyclized molecules. Also, the peptide may be bound to a carrier. For example, the peptide of the present invention may be linked to polyethylene glycol (PEG), dextran, or another polymer.
 また本発明のペプチドを構成するアミノ酸は、L体および/またはD体であることができる。D体のアミノ酸の使用は、ペプチダーゼによる分解を低下させるために有用である。また、アミノ酸は上述のとおり天然のアミノ酸に限定されず、非天然のアミノ酸でもよい。また、本発明のペプチドのペプチド結合は、適宜ペプチド結合以外の共有結合に置換することが考えられる。非ペプチド結合への置換により、ペプチダーゼによる感受性を下げ、薬効の持続性を向上させることができる。非ペプチド結合の例としては、イミノ結合、エステル結合、ケトメチレン結合、α-アザ結合、カルバ結合、ヒドロキシエチレン結合、チオアミド結合、オレフィン性二重結合などが挙げられるが、これらに制限されない。 The amino acids that compose the peptide of the present invention may be L-form and/or D-form. Use of D-form amino acids is useful for reducing degradation by peptidases. Moreover, the amino acid is not limited to the natural amino acid as described above, and may be a non-natural amino acid. Further, the peptide bond of the peptide of the present invention may be appropriately replaced with a covalent bond other than the peptide bond. Substitution with a non-peptide bond can reduce the sensitivity to peptidases and improve the duration of drug efficacy. Examples of non-peptide bonds include, but are not limited to, imino bonds, ester bonds, ketomethylene bonds, α-aza bonds, carba bonds, hydroxyethylene bonds, thioamide bonds, olefinic double bonds and the like.
 また、本発明のポリペプチドには、その塩も含まれる。このような塩は酸または塩基から誘導される。具体的には、例えば、塩酸塩、リン酸塩、臭化水素酸塩、硫酸塩、硝酸塩などの無機酸との塩や、酢酸塩、乳酸塩、ギ酸塩、酪酸塩、グリコール酸塩、プロピオン酸塩、フマル酸塩、マレイン酸塩、コハク酸塩、酒石酸塩、クエン酸塩、リンゴ酸塩、シュウ酸塩、安息香酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩などの有機酸との塩、あるいはアンモニウム塩、ナトリウム塩やカリウム塩などのアルカリ金属塩、カルシウム塩およびマグネシウム塩などのアルカリ土類金属塩、有機塩基との塩、およびアルギニンやリジンなどのアミノ酸との塩などが挙げられる。 The polypeptide of the present invention also includes a salt thereof. Such salts are derived from acids or bases. Specifically, for example, salts with inorganic acids such as hydrochlorides, phosphates, hydrobromides, sulfates, nitrates, acetates, lactates, formates, butyrates, glycolates and propiones. Salts with organic acids such as acid salts, fumarates, maleates, succinates, tartrates, citrates, malates, oxalates, benzoates, methanesulfonates, benzenesulfonates Or ammonium salts, alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, salts with organic bases, salts with amino acids such as arginine and lysine, and the like.
 また本発明は、本発明のペプチドをコードする核酸、および当該核酸を保持するベクターに関する。本発明の核酸およびベクターは、本発明のペプチドを発現および/または産生するために有用である。本発明の核酸はDNAであってもRNAであってもよい。またベクターはプラスミド、ウイルスベクター、非ウイルスベクター(例えばリポソーム)など所望のベクターを使用することができる。ウイルスベクターとしてはアデノウイルスベクター、レトロウイルスベクター(レンチウイルスベクターを含む)、およびパラミクソウイルスベクター(センダイウイルスベクターを含む)などが挙げられるがそれらに限定されない。 The present invention also relates to a nucleic acid encoding the peptide of the present invention and a vector carrying the nucleic acid. The nucleic acids and vectors of the present invention are useful for expressing and/or producing the peptides of the present invention. The nucleic acid of the present invention may be DNA or RNA. As the vector, a desired vector such as a plasmid, a viral vector, a non-viral vector (for example, liposome) can be used. Viral vectors include, but are not limited to, adenovirus vectors, retrovirus vectors (including lentivirus vectors), paramyxovirus vectors (including Sendai virus vectors), and the like.
 例えば本発明のペプチドは、そのまま、および/または適当な処理により活性型に変換することによって、有意なインスリン分泌促進活性を示す。ペプチドは、その高次構造の変化により活性が変わりうることから、適当な処理によってペプチドを活性型に変換することによって、インスリン分泌促進活性を付与または上昇させることが可能である。一般に、ペプチドの高次構造を変化させる方法としては、酸処理、アルカリ処理、熱処理、遷移金属添加、それらの組み合わせなどが挙げられ、それらのいずれの処理によって活性化を行ってもよい。酸処理としては、例えば、ギ酸、酢酸、クエン酸、リン酸等の酸性溶媒で処理することが挙げられるが、それらに限定されるものではない。また酸処理におけるpHは適宜選択することができる。アルカリ処理としては、アンモニア液、塩化アンモニム液等のアルカリ性溶媒が挙げられる。添加する金属としては、ナトリウム、亜鉛、リチウム、マンガンなどが挙げられ、適宜、塩化ナトリウム、塩化亜鉛、硫酸亜鉛、塩化リチウム、塩化マンガンなどの塩として添加することができる。 For example, the peptide of the present invention shows significant insulin secretagogue activity as it is and/or when it is converted to an active form by an appropriate treatment. Since the activity of a peptide can be changed by the change of its higher-order structure, it is possible to impart or increase the insulin secretagogue activity by converting the peptide to an active form by appropriate treatment. Generally, as a method for changing the higher-order structure of a peptide, acid treatment, alkali treatment, heat treatment, transition metal addition, a combination thereof and the like can be mentioned, and activation may be carried out by any of these treatments. Examples of the acid treatment include, but are not limited to, treatment with an acidic solvent such as formic acid, acetic acid, citric acid and phosphoric acid. Further, the pH in the acid treatment can be appropriately selected. Examples of the alkali treatment include alkaline solvents such as ammonia solution and ammonium chloride solution. Examples of the metal to be added include sodium, zinc, lithium, manganese, and the like, and salts such as sodium chloride, zinc chloride, zinc sulfate, lithium chloride, and manganese chloride can be appropriately added.
 例えば本発明のペプチドが環状ぺプチドである場合は、酸処理と加熱処理を組み合わせることでインスリン分泌促進活性を付与または上昇させることが可能であることが判明した。特に、酸処理後に塩類を添加して加温する熱酸処理により活性を上昇させることが可能である。 For example, when the peptide of the present invention is a cyclic peptide, it was found that it is possible to impart or increase insulin secretagogue activity by combining acid treatment and heat treatment. In particular, the activity can be increased by a hot acid treatment in which salts are added and heated after the acid treatment.
 すなわち本発明は、
(1)本発明のペプチドを酸処理する工程、
(2)本発明のペプチドに塩類を添加する工程、および
(3)本発明のペプチドを加熱する工程、
を含む熱酸処理により製造された、インスリン分泌促進活性が付与または上昇したペプチドに関する。また本発明は、上記の工程を含む、インスリン分泌促進活性が付与または上昇したペプチドの製造方法、ならびに、上記の工程を含む、本発明のペプチドにインスリン分泌促進活性を付与または上昇させる方法に関する。
That is, the present invention is
(1) a step of acid-treating the peptide of the present invention,
(2) adding a salt to the peptide of the present invention, and (3) heating the peptide of the present invention,
And a peptide having an increased insulin secretagogue activity, which is produced by the treatment with a hot acid containing The present invention also relates to a method for producing a peptide having an insulin secretagogue-promoting activity imparted or increased, including the steps described above, and a method for imparting or increasing the insulin secretion-promoting activity to the peptide of the present invention, comprising the steps described above.
 酸処理としては、例えば pH 2.0~6.4程度の酸性溶媒で処理することであってよく、例えばpH 2.5~6.0、pH 2.8~5.5、pH 3.0~5.0、pH 3.0~4.5、pH 3.0~4.0、pH 3.2~3.8、例えば約pH 3.5とすることができる。ここで一般に「約」とは、例えば±15%、より好ましくは±10%を意味する。 The acid treatment may be, for example, treatment with an acidic solvent having a pH of about 2.0 to 6.4. For example, pH 2.5 to 6.0, pH 2.8 to 5.5, pH 3.0 to 5.0, pH 3.0 to 4.5, pH 3.0 to 4.0, pH It can be 3.2 to 3.8, for example about pH 3.5. The term “about” as used herein generally means, for example, ±15%, more preferably ±10%.
 酸性溶媒としては、上記のpHを達成できる限り特に制限はないが、例えばギ酸、酢酸、クエン酸、リン酸等の酸性溶媒が挙げられ、特に好ましくはギ酸、または酢酸で処理することが挙げられる。 The acidic solvent is not particularly limited as long as the above pH can be achieved, but examples thereof include acidic solvents such as formic acid, acetic acid, citric acid, and phosphoric acid, and particularly preferably treatment with formic acid or acetic acid. ..
 ギ酸または酢酸の濃度は適宜調節してよいが、例えば0.01~1%(v/v)、好ましくは0.02~0.8%(v/v)、0.03~0.5%(v/v)、0.05~0.3%(v/v)、0.08~0.2%(v/v)、例えば約0.1%(v/v)とすることができる。処理時間は適宜調節してよい。 The concentration of formic acid or acetic acid may be adjusted appropriately, for example, 0.01 to 1% (v/v), preferably 0.02 to 0.8% (v/v), 0.03 to 0.5% (v/v), 0.05 to 0.3% (V/v), 0.08 to 0.2% (v/v), for example, about 0.1% (v/v). The treatment time may be adjusted appropriately.
 酸処理の後で、ペプチドに塩類が添加される。添加する塩類は適宜選択してよいが、例えばナトリウム塩や亜鉛塩が挙げられ、具体的には塩化ナトリウムや塩化亜鉛が挙げられるが、それに限定されない。 After the acid treatment, salts are added to the peptide. The salt to be added may be appropriately selected, and examples thereof include sodium salt and zinc salt, and specific examples thereof include sodium chloride and zinc chloride, but are not limited thereto.
 塩類の濃度は適宜調節してよいが、例えばナトリウム塩については、終濃度10 mM~1 M、好ましくは20~800 mM、30~600 mM、50~500 mM、80~300 mM、100~200 mM、110~180 mM、例えば約140 mMとすることができる。また、亜鉛塩については、終濃度1 μM~1 M、好ましくは10 μM ~100 mM、300 μM~30 mM、例えば約10 mMとすることができる。 The concentration of salts may be adjusted appropriately. For example, for sodium salts, the final concentration is 10 mM to 1 M, preferably 20 to 800 mM, 30 to 600 mM, 50 to 500 mM, 80 to 300 mM, 100 to 200 It can be mM, 110-180 mM, for example about 140 mM. The final concentration of zinc salt can be 1 μM to 1 M, preferably 10 μM to 100 mM, 300 μM to 30 mM, for example, about 10 mM.
 塩類を添加後、ペプチドを加熱する。加熱温度は適宜選択してよいが、例えば37~90℃、好ましくは45~85℃、50~85℃、または55~80℃が挙げられ、例えば、酸性溶媒として0.1%ギ酸を使用する場合は、37~90℃であり、好ましくは45~80℃、50~75℃、55~70℃、58~65℃、例えば約60℃である。また、0.1%酢酸を使用する場合は、37~90℃であり、好ましくは45~85℃、50~85℃、60~85℃、例えば約80℃である。加熱時間は適宜調節してよい。具体的には、例えば10分~一晩の間で適宜選択することができ、例えば20分~10時間、30分~5時間、40分~3時間、または50分~2時間の範囲で適宜選択することができ、例えば約1時間とすることができる。しかしこれらは例示に過ぎず、当業者であれば、用いる塩類等にあわせて、適宜最適な条件を設定してよい。加熱後は、例えば緩徐に冷却することができる。 Heat the peptide after adding the salts. The heating temperature may be appropriately selected, and examples thereof include 37 to 90°C, preferably 45 to 85°C, 50 to 85°C, or 55 to 80°C. For example, when 0.1% formic acid is used as the acidic solvent, , 37-90°C, preferably 45-80°C, 50-75°C, 55-70°C, 58-65°C, for example about 60°C. When 0.1% acetic acid is used, the temperature is 37 to 90°C, preferably 45 to 85°C, 50 to 85°C, 60 to 85°C, for example, about 80°C. The heating time may be adjusted appropriately. Specifically, it can be appropriately selected, for example, from 10 minutes to overnight, and is appropriately in the range of, for example, 20 minutes to 10 hours, 30 minutes to 5 hours, 40 minutes to 3 hours, or 50 minutes to 2 hours. It can be selected, for example, about 1 hour. However, these are merely examples, and those skilled in the art may appropriately set the optimum conditions according to the salt or the like to be used. After heating, it can be cooled slowly, for example.
 また本発明のペプチドは、その形態、例えば環状ぺプチドか線状ペプチドであるかを問わず、凍結乾燥の工程によりインスリン分泌促進活性を付与または上昇させることが可能であることが判明した。特に、緩衝液に溶解後に凍結乾燥する処理により、その活性を上昇させることが可能である。 It was also found that the peptide of the present invention can impart or increase the insulin secretagogue activity by the process of freeze-drying regardless of its form, for example, cyclic peptide or linear peptide. In particular, the activity can be increased by a treatment of lyophilization after dissolution in a buffer solution.
 緩衝液のpHは適宜選択してよいが、例えばpH 6.2~8.2、pH 6.5~8.0、pH7.0~8.0、pH7.2~8.0、pH7.4~8.0、pH 6.7~7.9、pH 6.8~7.9、pH 7.0~7.8、pH 7.2~7.8、pH 7.3~7.8、またはpH 7.5~7.8の範囲で適宜選択することができ、例えば約pH 7.6とすることができる。緩衝剤も適宜選択されるが、例えばHEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) やTRIS(tris(hydroxymethyl)aminomethane)などが挙げられる。本発明においては、好ましくはHEPESが用いられる。 The pH of the buffer solution may be appropriately selected, for example, pH 6.2 to 8.2, pH 6.5 to 8.0, pH 7.0 to 8.0, pH 7.2 to 8.0, pH 7.4 to 8.0, pH 6.7 to 7.9, pH 6.8 to 7.9 , PH 7.0 to 7.8, pH 7.2 to 7.8, pH 7.3 to 7.8, or pH 7.5 to 7.8 can be appropriately selected, for example, about pH 7.6. A buffering agent is also appropriately selected, and examples thereof include HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane). In the present invention, HEPES is preferably used.
 緩衝溶液中の緩衝剤の濃度も適宜選択されるが、例えば0.1~500 mM、好ましくは0.2~300 mM、0.5~200 mM、1~100 mM、2~80 mM、5~50 mM、または8~30 mMの範囲で適宜選択することができ、例えば約10 mMとすることができる。 The concentration of the buffering agent in the buffer solution is appropriately selected, but is, for example, 0.1 to 500 mM, preferably 0.2 to 300 mM, 0.5 to 200 mM, 1 to 100 mM, 2 to 80 mM, 5 to 50 mM, or 8 It can be appropriately selected within a range of up to 30 mM, for example, it can be about 10 mM.
 また本発明のペプチドにインターカレーターを添加してもよい。ペプチド鎖にインタカレートする物質を添加することにより、本発明のペプチドの構造を活性型に変換し、インスリン分泌促進活性を付与または上昇させることができる。インターカレーターを添加した後で、本発明のペプチドを凍結乾燥してもよい。凍結乾燥は、周知の手順にしたがって実施すればよい。なお本発明においてαへリックス構造を形成しうるアミノ酸配列を持つペプチドには、熱酸処理や緩衝溶液に溶解後に凍結乾燥する処理、あるいはインターカレーターの添加によりαへリックス構造を形成するペプチドも包含される。 Also, an intercalator may be added to the peptide of the present invention. By adding a substance that intercalates to the peptide chain, the structure of the peptide of the present invention can be converted to the active form, and the insulin secretagogue activity can be imparted or increased. After adding the intercalator, the peptide of the present invention may be lyophilized. Lyophilization may be performed according to a well-known procedure. In the present invention, the peptide having an amino acid sequence capable of forming an α-helix structure also includes a peptide that forms an α-helix structure by treatment with hot acid, dissolution in a buffer solution and freeze-drying, or addition of an intercalator. To be done.
 また本発明は、本発明の上記ペプチドであって、所望の他の化合物が切断可能に連結されたペプチドに関する。当該化合物は、切断してペプチドから分離できる限り、本発明のペプチドが持つインスリン分泌促進活性を阻害するものであっても、阻害しないものであってもよい。すなわち、当該化合物が結合したペプチドは、インスリン分泌促進活性を持っているもの、および持たないものが含まれる。インスリン分泌促進活性を持たないペプチドは、当該化合物をペプチドから切り離すことによって、ペプチドを活性型に変換することができる。 The present invention also relates to the above-mentioned peptide of the present invention, wherein the desired other compound is cleavably linked. The compound may or may not inhibit the insulin secretagogue activity possessed by the peptide of the present invention, as long as it can be cleaved and separated from the peptide. That is, the peptides to which the compound is bound include those having insulinotropic activity and those having no insulinotropic activity. A peptide having no insulin secretagogue activity can be converted into an active form by cleaving the compound from the peptide.
 化合物としては特に制限はないが、他の化合物としてアミノ酸やポリペプチド(ペプチドと呼ばれるような短鎖のポリペプチドであってもよい)を採用し、これを本発明のペプチドと融合させた融合ペプチド(または融合ポリペプチド)とすることもできる。融合した境界部分を切断することにより両者が分離できるようにしておけば、切断によって(インスリン分泌促進活性を発揮しうる)本発明のペプチドを生成させることができる。そのためには、例えば境界部分がプロテアーゼ切断部位となるように他のポリペプチドを付加するとよい。融合させる他のペプチドに特に制限はなく、例えばタグのような数残基の短いペプチドから、蛋白質のような長いポリペプチドまで任意のポリペプチドが挙げられる。具体的には、Hisタグ、HAタグ、Mycタグ、FLAG、GFP、マルトース結合蛋白質、グルタチオン S-トランスフェラーゼ (GST)、アルカリホスファターゼ、HRP等の酵素などが挙げられるが、それらに限定されない。また、抗体断片(例えばFc断片)などを融合させてもよい。さらに、リーダー配列、分泌シグナル、プレ蛋白質またはプロ蛋白質の配列などを融合させてもよい。 The compound is not particularly limited, but is a fusion peptide in which an amino acid or a polypeptide (which may be a short-chain polypeptide called a peptide) is adopted as another compound and is fused with the peptide of the present invention. (Or a fusion polypeptide). If the fused boundary portion is cleaved so that the two can be separated from each other, the peptide of the present invention (which can exert insulinotropic activity) can be produced by the cleaving. For that purpose, for example, another polypeptide may be added so that the boundary becomes a protease cleavage site. The other peptide to be fused is not particularly limited, and examples thereof include any polypeptide from a short peptide having a few residues such as a tag to a long polypeptide such as a protein. Specific examples thereof include, but are not limited to, His tag, HA tag, Myc tag, FLAG, GFP, maltose binding protein, glutathione S-transferase (GST), alkaline phosphatase, HRP and other enzymes. Alternatively, an antibody fragment (eg, Fc fragment) or the like may be fused. Further, a leader sequence, a secretory signal, a preprotein or proprotein sequence, etc. may be fused.
 また本発明は、インスリン分泌を促進するため、および/または糖代謝促進のための、本発明のペプチドの使用を提供する。また本発明は、血糖値を低下させるための、本発明のペプチドの使用を提供する。また本発明は、インスリン分泌を促進するため、および/または糖代謝促進のための医薬または試薬の製造における、本発明のペプチドの使用を提供する。また本発明は、血糖値を低下させるための医薬または試薬の製造における、本発明のペプチドの使用を提供する。また本発明は、本発明のペプチドを含むインスリン分泌促進剤および糖代謝促進剤を提供する。また本発明は、本発明のペプチドを含む血糖値低下剤を提供する。また本発明は、糖尿病または前糖尿病の治療または予防のための本発明のペプチドの使用、糖尿病または前糖尿病の治療または予防のための医薬の製造における、本発明のペプチドの使用、および本発明のペプチドを含む糖尿病または前糖尿病の治療剤および予防剤を提供する。本発明において糖尿病には、上述のとおり境界型糖尿病も包含される。
 また本発明のペプチドは、高血糖状態において特異的にインスリン分泌を促進して血糖値を下げ、血糖が高くない状態ではインスリン分泌を促進せず低血糖を誘発しない(実施例11~13)。したがって、本発明のインスリン分泌促進剤および糖代謝促進剤は、それぞれ高血糖状態特異的なインスリン分泌促進剤および糖代謝促進剤として有用であり、また本発明の血糖低下剤は、高血糖状態特異的な血糖低下剤として有用である。
The present invention also provides the use of the peptide of the present invention for promoting insulin secretion and/or promoting glucose metabolism. The invention also provides the use of the peptides of the invention for lowering blood glucose levels. The present invention also provides the use of the peptide of the present invention in the manufacture of a medicament or reagent for promoting insulin secretion and/or promoting glucose metabolism. The invention also provides the use of the peptides of the invention in the manufacture of a medicament or reagent for lowering blood glucose levels. The present invention also provides an insulin secretagogue and a sugar metabolism enhancer containing the peptide of the present invention. The present invention also provides a blood glucose lowering agent containing the peptide of the present invention. The present invention also provides the use of the peptide of the present invention for the treatment or prevention of diabetes or pre-diabetes, the use of the peptide of the present invention in the manufacture of a medicament for the treatment or prevention of diabetes or pre-diabetes, and the invention Provided are therapeutic and prophylactic agents for diabetes or pre-diabetes containing peptides. In the present invention, diabetes includes borderline diabetes as described above.
Further, the peptide of the present invention specifically promotes insulin secretion in a hyperglycemic state to lower the blood glucose level, and does not promote insulin secretion and induces hypoglycemia in a state where the blood glucose is not high (Examples 11 to 13). Therefore, the insulin secretagogue and the glucose metabolism promoter of the present invention are useful as a hyperglycemic state-specific insulin secretagogue and a glucose metabolism promoter, respectively, and the hypoglycemic agent of the present invention is a hyperglycemic condition-specific. It is useful as an effective hypoglycemic agent.
 本発明のペプチドは、膵β細胞に作用してインスリン分泌を促進する作用を有し、これにより糖代謝を促進し、血糖値を下げる効果を発揮する。したがって本発明のペプチドは、膵β細胞のインスリン分泌制御機構に関する研究ツールとして、更には肥満や高脂血症などに対する療法ツールとしての使用が可能である。そのような利用には、インビトロにおける使用およびインビボにおける使用、エクスビボにおける使用が含まれる。特に本発明のペプチドは、糖代謝改善が必要な各種病態や症状に対する治療および予防のために用いることができる。 The peptide of the present invention acts on pancreatic β cells to promote insulin secretion, thereby promoting glucose metabolism and exerting an effect of lowering blood glucose level. Therefore, the peptide of the present invention can be used as a research tool for the insulin secretion control mechanism of pancreatic β-cells and as a therapeutic tool for obesity, hyperlipidemia and the like. Such uses include in vitro use and in vivo use, ex vivo use. In particular, the peptide of the present invention can be used for the treatment and prevention of various pathological conditions and symptoms that require improved glucose metabolism.
 また本発明のペプチドは、体重や体脂肪の増加の防止や減少、痩せ(部分痩せを含む)、体形改善等を目的とする各種美容目的にも有用である。 The peptide of the present invention is also useful for various cosmetic purposes for the purpose of preventing or reducing an increase in body weight and body fat, reducing weight (including partial weight loss), improving body shape, and the like.
 例えば本発明は、肥満の予防または治療のための内科的療法または美容方法であって、ペプチドを投与することを含む療法または方法を提供する。 For example, the present invention provides a medical or cosmetic method for the prevention or treatment of obesity, which method comprises administering a peptide.
 同様に、本発明は、インスリン抵抗性の改善、および/または、糖尿病または前糖尿病の予防または治療のための内科的療法であって、本発明のペプチドを投与することを含む療法を提供する。 Similarly, the present invention provides a medical therapy for improving insulin resistance and/or preventing or treating diabetes or pre-diabetes, which comprises administering a peptide of the present invention.
 また本発明の内科療法は、肥満の予防または治療、インスリン抵抗性の改善、糖尿病の予防または治療、高脂血症の予防または治療、造血を促進させるための治療、冠動脈のバイパス血行路を作製する手術のいずれかと併用する内科療法であって、本発明のペプチドを投与することを含む療法を包含する。 In addition, the medical therapy of the present invention prevents or treats obesity, improves insulin resistance, prevents or treats diabetes, prevents or treats hyperlipidemia, treats to promote hematopoiesis, and creates a coronary bypass circulation. Medical treatment in combination with any of the following surgery, which comprises the administration of a peptide of the invention.
 また本発明は、本発明のペプチドを有効成分とする、肥満および/または過体重、代謝症候群、2型糖尿病、1型糖尿病などの代謝異常を示す諸疾患への予防および/または治療用組成物を提供する。また本発明は、本発明のペプチドを有効成分とする、体重や体脂肪の増加の防止や減少、痩せ(部分痩せを含む)、体形改善等を目的とする美容用組成物を提供する。 Further, the present invention is a composition for preventing and/or treating various diseases showing metabolic disorders such as obesity and/or overweight, metabolic syndrome, type 2 diabetes and type 1 diabetes, which comprises the peptide of the present invention as an active ingredient. I will provide a. The present invention also provides a cosmetic composition containing the peptide of the present invention as an active ingredient for the purpose of preventing or reducing an increase in body weight or body fat, thinning (including partial thinning), improving body shape and the like.
 特に本発明のペプチドは、随時血糖値が高い状態(糖尿病型)ではインスリン分泌を促進して血糖値を低下させる強い作用を発揮し、随時血糖が高くない状態(正常型)ではインスリン分泌の促進活性は相対的に低いことが期待される(実施例11参照)。また、境界例糖尿病を発症例において、血糖値が正常レベルにある空腹時血糖を低下させることはなく、糖負荷時の高血糖を特異的に抑制して正常値に近づけることができ、低血糖を引き起こすこともない(実施例12~13)。したがって本発明のペプチドは、インビボでは高血糖状態でのみ効果が発揮されること、すなわち、低血糖を誘発しない安全性の高いものである点で有利だと考えられる。 In particular, the peptide of the present invention exerts a strong action of promoting insulin secretion and lowering the blood glucose level when the blood glucose level is high at any time (diabetes type), and promotes insulin secretion when the blood glucose level is not high at any time (normal type). The activity is expected to be relatively low (see Example 11). Also, in cases of onset of borderline diabetes, there is no decrease in fasting blood glucose, which has a normal blood glucose level, and it is possible to specifically suppress hyperglycemia during glucose load and bring it closer to the normal value, resulting in hypoglycemia. Does not occur (Examples 12 to 13). Therefore, the peptide of the present invention is considered to be advantageous in that it exhibits an effect only in a hyperglycemic state in vivo, that is, it is highly safe without inducing hypoglycemia.
 また本発明のペプチドによってインスリン基礎分泌を亢進させることで、随時血糖を低下させ、食事に伴う糖負荷への対応能力(耐糖能)を向上させることができる。また2型糖尿病の進行とともにインスリン基礎分泌能が低下した病態に対して、本発明のペプチドを用いてインスリン基礎分泌を亢進させることも考えられる。また本発明のペプチドを用いて、1型糖尿病における残存膵β細胞のインスリン分泌機能を向上させることも可能である。このように本発明のペプチド薬は、幅広い2型糖尿病、および1型糖尿病(特に緩徐進行型1型糖尿病)の症例に対して有効な血糖コントロールの方策を提供する。 Further, by enhancing the basal insulin secretion by the peptide of the present invention, it is possible to lower the blood glucose at any time and improve the ability to cope with the glucose load accompanying meals (glucose tolerance). It is also considered that the peptide of the present invention is used to enhance basal insulin secretion in the pathological condition in which the basal insulin secretory ability is decreased with the progress of type 2 diabetes. The peptide of the present invention can also be used to improve the insulin secretory function of residual pancreatic β cells in type 1 diabetes. Thus, the peptide drug of the present invention provides an effective glycemic control strategy for a wide range of cases of type 2 diabetes and type 1 diabetes (in particular, slowly progressive type 1 diabetes).
 本発明のペプチドは、適宜組成物とすることができる。すなわち本発明は、本発明のペプチド(上記の融合ポリペプチド等を包含する)および薬学的に許容される担体もしくは媒体を含む組成物に関する。当該組成物は、特に医薬組成物として有用であり、例えばインスリン分泌促進、糖代謝促進、および/または糖代謝改善のために、また、糖尿病または前糖尿病の治療または予防のために使用することができる。また、本発明の組成物は美容用組成物としても有用である。製剤化は、公知の製剤学的方法により実施することができる。薬理学上許容される担体もしくは媒体は適宜選択されるが、例えば、水(例えば滅菌水)、生理食塩水(例えばリン酸緩衝生理食塩水)、グリコール、エタノール、グリセロール、ラクトース、スクロース、リン酸カルシウム、ゼラチン、デキストラン、寒天、ペクチン、オリーブオイル、ピーナッツ油、ゴマ油などのオイル等が挙げられ、乳化剤、懸濁剤、界面活性剤、緩衝剤、香味剤、希釈剤、保存剤、安定剤、賦形剤、ベヒクル、防腐剤、徐放剤等も挙げられる。 The peptide of the present invention can be formed into a composition as appropriate. That is, the present invention relates to a composition comprising the peptide of the present invention (including the above-mentioned fusion polypeptide and the like) and a pharmaceutically acceptable carrier or medium. The composition is particularly useful as a pharmaceutical composition, and can be used, for example, for promoting insulin secretion, promoting glucose metabolism, and/or improving glucose metabolism, and for treating or preventing diabetes or prediabetes. it can. The composition of the present invention is also useful as a cosmetic composition. The formulation can be carried out by a known pharmaceutical method. A pharmacologically acceptable carrier or medium is appropriately selected, and examples thereof include water (eg, sterile water), physiological saline (eg, phosphate buffered saline), glycol, ethanol, glycerol, lactose, sucrose, calcium phosphate, Examples include oils such as gelatin, dextran, agar, pectin, olive oil, peanut oil, and sesame oil.Emulsifiers, suspending agents, surfactants, buffers, flavoring agents, diluents, preservatives, stabilizers, shaping agents. Agents, vehicles, preservatives, sustained-release agents and the like.
 注射剤として製剤化するためには、注射用蒸留水等の担体を用いて処方することができる。注射用の水溶液としては、例えば生理食塩水、ブドウ糖、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムなどのその他の成分を含む水溶液が挙げられる。また、アルコール、プロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤等を含んでもよい。 For formulation as an injection, it can be formulated using a carrier such as distilled water for injection. Examples of the aqueous solution for injection include an aqueous solution containing other components such as physiological saline, glucose, D-sorbitol, D-mannose, D-mannitol and sodium chloride. In addition, alcohol, propylene glycol, polyethylene glycol, nonionic surfactant and the like may be contained.
 本発明の医薬組成物および美容用組成物は、好ましくは非経口投与により投与される。例えば、注射剤、経鼻投与剤、経肺投与剤、経皮投与剤等として製剤化することができる。投与は、例えば静脈内注射、筋肉内注射、腹腔内注射、皮下注射などにより全身または局部的に投与してよい。投与方法の詳細は、患者の年齢、症状により適宜選択され得る。投与量は、例えば、ペプチドの乾燥物に換算して、一回につき体重1 kgあたり0.0001 mgから1000 mgの範囲、例えば体重1 kgあたり0.0005~500 mg、0.001~400 mg、0.002~300 mg、0.005~200 mgに設定され得るが、これに限定されない。または、例えば、患者あたり0.001~100000 mgの投与量例えば0.002~70000 mg、0.003~50000 mg、0.005~40000 mg、0.01~20000 mgに設定され得るが、これに限定されない。当業者であれば、患者の体重、年齢、症状などを考慮し、適宜適当な投与量及び投与方法を決定することが可能である。 The pharmaceutical composition and cosmetic composition of the present invention are preferably administered by parenteral administration. For example, it can be formulated as an injection, a nasal agent, a pulmonary agent, a transdermal agent and the like. Administration may be systemic or local, for example, by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection and the like. The details of the administration method can be appropriately selected depending on the age and symptoms of the patient. The dose is, for example, in the range of 0.0001 mg to 1000 mg per 1 kg of body weight, for example, 0.0005 to 500 mg, 0.001 to 400 mg, 0.002 to 300 mg per 1 kg of body weight, calculated as a dry peptide. It can be set to 0.005-200 mg, but is not limited to this. Alternatively, for example, the dose may be set to 0.001 to 100,000 mg per patient, for example, 0.002 to 70000 mg, 0.003 to 50000 mg, 0.005 to 40,000 mg, 0.01 to 20000 mg, but is not limited thereto. Those skilled in the art can appropriately determine an appropriate dose and administration method in consideration of the body weight, age, symptoms, etc. of the patient.
 本発明のペプチドは、所望の対象に投与することができる。投与対象は適宜選択することができるが、例えば哺乳動物、具体的にはマウス、ラット、モルモットなどのげっ歯類、ウシ、ブタ、ヤギ、ウサギなどの非げっ歯類動物、所望の霊長類、例えばサルなどの非ヒト霊長類、およびヒトが含まれる。 The peptide of the present invention can be administered to a desired subject. The administration subject can be appropriately selected, for example, mammals, specifically, rodents such as mice, rats, guinea pigs, non-rodent animals such as cows, pigs, goats, rabbits, desired primates, Non-human primates such as monkeys, and humans are included.
 以下に、本発明の実施形態を、図面に示す実施例を基に説明する。なお、実施形態は下記の例示に限らず、本発明の趣旨から逸脱しない範囲で、前記文献など従来公知の技術を用いて適宜設計変更可能である。 The embodiments of the present invention will be described below based on the examples shown in the drawings. Note that the embodiments are not limited to the following examples, and the design can be appropriately changed by using a conventionally known technique such as the above-described document without departing from the spirit of the present invention.
 なお本明細書において引用された文献は、すべて参照として本明細書に組み入れられる。 All documents cited in this specification are incorporated herein by reference.
[実施例1] circ-TKEDGRQの物理化学的処理とインスリン分泌促進活性との関連:
 アミノ酸配列が「スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン」(配列番号1)であるペプチドのN末端とC末端がペプチド結合したラクタム環状ペプチドcirc-TKEDGRQを有機化学的に合成した(ユーロフィンジェノミクス株式会社)。これを純水に溶解して5 mg/ml(6.1 mM)のストック溶液を作製した。これをマウス膵ベータ細胞株MIN6(Miyazakiら、Endocrinology 127: 126-132, 1990)に種々の濃度で添加し、参考例2に記載の方法でインスリン分泌促進活性を評価した。
 結果、期待されたほど高いレベルのインスリン分泌促進活性は検出されなかった(図1A, N=1)。実験を繰り返しても高レベルの活性が検出されることはなかったことから、有機化学合成品circ-TKEDGRQをそのまま水溶しただけでは「活性型構造異性体」は高い割合では形成されないと結論された。
[Example 1] Relationship between physicochemical treatment of circ-TKEDGRQ and insulin secretagogue activity:
A lactam cyclic peptide circ-TKEDGRQ in which the N-terminal and the C-terminal of the peptide having the amino acid sequence "threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine" (SEQ ID NO: 1) were peptide-bonded was synthesized organically. (Eurofin Genomics Co., Ltd.). This was dissolved in pure water to prepare a 5 mg/ml (6.1 mM) stock solution. This was added to mouse pancreatic beta cell line MIN6 (Miyazaki et al., Endocrinology 127: 126-132, 1990) at various concentrations, and the insulin secretagogue activity was evaluated by the method described in Reference Example 2.
As a result, the expected high level of insulin secretagogue activity was not detected (FIG. 1A, N=1). Since no high level of activity was detected even after repeated experiments, it was concluded that "active structural isomers" were not formed at a high ratio by simply dissolving the organic chemical synthesis product circ-TKEDGRQ in water. ..
 次に、有機化学合成品circ-TKEDGRQを活性型構造異性体に高い割合で変換するための方法につき検討した。一般に、短鎖ペプチドの高次構造を変化させる方法として、「酸処理」「アルカリ処理」「熱処理」「遷移金属添加」が知られる。そこで、「pH」「温度」「共存する金属塩の種類と濃度」をパラメータとして条件検討を行った。具体的には、ギ酸、酢酸、クエン酸、リン酸を用いて酸性溶媒(pH 3.5- pH 7.4)、塩化アンモニム液を用いてアルカリ性溶媒(pH 10-11)、酢酸アンモニウム液を用いて中性溶媒を作製し、ここに塩化ナトリウム、塩化亜鉛、硫酸亜鉛、塩化リチウム、または塩化マンガンを添加し、ヒートブロック、PCR機器、ウォーターバス、または恒温培養器を用いて40℃~90℃、10分~60分の加温処理を行い、PD-10カラムで脱塩後に濃縮したサンプルのインスリン分泌促進活性を評価した。
 結果、1μLの有機化学合成品circ-TKEDGRQの水溶液 (1 mM)を、0.1%ギ酸で希釈して1000μLにしたもの(最終濃度1μM)に、最終濃度140 mMの塩化ナトリウムを添加したのち、60℃のヒートブロックで1時間反応させてから室温放置により除熱後にPD-10カラムで脱塩濃縮したものにおいて、マウス膵ベータ細胞株MIN6に種々の濃度で添加した際に、用量依存的にインスリン分泌促進活性を認めた(図1B, N=1)。なお、実験を繰り返してインスリン分泌促進活性の検出に関する頑強性を調べたところ、活性の検出に成功する確率は2割程度であった。すなわち「酸処理」「アルカリ処理」「熱処理」「金属塩」というパラメータに注目した処理では、構造異性体変換における実験系の安定性は極めて高いとまでは言えないと考えられた。その理由として、短鎖ペプチドの高次構造変換は上記パラメータのもとでは確率的事象にとどまること(注:複数種の構造異性体が化学熱力学的な平衡状態で共存するため活性型構造異性体を高純度に形成することができないこと)、上記パラメータ以外の未同定の要素により構造異性体変換の効率は大きく影響を受けること、が考えられた。
Next, the method for converting the organic chemically synthesized product circ-TKEDGRQ into active structural isomers at a high rate was examined. Generally, "acid treatment", "alkali treatment", "heat treatment", and "transition metal addition" are known as methods for changing the higher-order structure of a short-chain peptide. Therefore, the conditions were examined using "pH", "temperature", and "types and concentrations of coexisting metal salts" as parameters. Specifically, formic acid, acetic acid, citric acid, and phosphoric acid are used as an acidic solvent (pH 3.5-pH 7.4), ammonium chloride solution is used as an alkaline solvent (pH 10-11), and ammonium acetate solution is used as a neutral solvent. Make a solvent, add sodium chloride, zinc chloride, zinc sulfate, lithium chloride, or manganese chloride to it, and use a heat block, PCR device, water bath, or incubator at 40°C to 90°C for 10 minutes. A sample which was heated for 60 minutes and desalted on a PD-10 column and then concentrated was evaluated for insulin secretagogue activity.
As a result, 1 μL of an organic chemical synthesis product circ-TKEDGRQ in water (1 mM) was diluted with 0.1% formic acid to 1000 μL (final concentration 1 μM), and then 140 mM final concentration of sodium chloride was added. Incubated in a heat block at ℃ for 1 hour, allowed to stand at room temperature for heat removal, and then desalted and concentrated on a PD-10 column. When added to mouse pancreatic beta cell line MIN6 at various concentrations, insulin was dose-dependently administered. A secretagogue activity was observed (FIG. 1B, N=1). When the robustness related to the detection of insulin secretagogue activity was examined by repeating the experiment, the probability of successful detection of the activity was about 20%. That is, it was considered that the stability of the experimental system in the conversion of structural isomers cannot be said to be extremely high in the treatments focused on the parameters of “acid treatment”, “alkali treatment”, “heat treatment”, and “metal salt”. The reason for this is that the conformational transformation of short-chain peptides is limited to stochastic events under the above parameters (Note: active structural isomerism due to coexistence of multiple structural isomers in chemical thermodynamic equilibrium). It was considered that the efficiency of structural isomer conversion is greatly affected by unidentified factors other than the above parameters).
 以上、有機化学合成品circ-TKEDGRQはインスリン分泌促進活性を持っており、酸処理後に塩類を添加して加温する熱酸処理により、その活性を上昇させることが可能であることが判明した。但しこの方法では、有機化学合成品circ-TKEDGRQを、極めて高い再現性を持って「活性型構造異性体」に変換することができたとまでは言えなかった。 As mentioned above, it was found that the organic chemically synthesized product circ-TKEDGRQ has an insulin secretagogue promoting activity, and it is possible to increase the activity by thermal acid treatment in which salts are added and heated after acid treatment. However, it could not be said that this method could convert the organic chemically synthesized product circ-TKEDGRQ into the “active structural isomer” with extremely high reproducibility.
 しかし、上記の条件検討を行う過程で、「凍結乾燥」という作業工程に活性型構造異性体への変換効率を上昇させる傾向が見られることに気づいた。そこで、さまざまな水系緩衝液(TRIS緩衝液, HEPES緩衝液, BIS-TRIS緩衝液, MES緩衝液、リン酸緩衝液)や有機性溶媒(メタノール、エタノール、イソプロパノール、ジエチルエーテル、アセトニトリル)に有機化学合成品circ-TKEDGRQを溶解し、塩を含有する溶媒を用いた場合はPD-10カラムでの脱塩操作を行った後に、凍結乾燥したものを用いてインスリン分泌促進活性を評価した。
 結果、有機化学合成品circ-TKEDGRQの水溶液(6.1 mM)を100μMに希釈したもの2μlを、10 mM のTRIS緩衝液(pH 8.0)、または10 mMのHEPES緩衝液 (pH7.4) で100倍に希釈して200μlにしたのち凍結乾燥し、それぞれ200μlのKRTBに溶解したものを用いてインスリン分泌促進能を評価したところ(最終濃度 1μM)、インスリン分泌促進活性が検出された(図2, N=1)。実験を繰り返してインスリン分泌促進活性の検出に関する頑強性を調べたところ、活性の検出に成功する確率は6割程度であり、緩衝液による処理によって頑強性も向上できることが判明した。
However, in the process of examining the above-mentioned conditions, it was found that there is a tendency to increase the conversion efficiency to the active structural isomer in the working process called "lyophilization". Therefore, organic chemistry was applied to various aqueous buffers (TRIS buffer, HEPES buffer, BIS-TRIS buffer, MES buffer, phosphate buffer) and organic solvents (methanol, ethanol, isopropanol, diethyl ether, acetonitrile). The synthetic product circ-TKEDGRQ was dissolved, and when a solvent containing a salt was used, desalting was carried out on a PD-10 column, and then the freeze-dried product was used to evaluate the insulin secretagogue activity.
As a result, 2 μl of an aqueous solution of the circ-TKEDGRQ organic chemical synthesis product (6.1 mM) diluted to 100 μM was 100 times diluted with 10 mM TRIS buffer (pH 8.0) or 10 mM HEPES buffer (pH 7.4). The insulin secretagogue activity was detected when the insulin secretagogue activity was evaluated by using each of them diluted to 200 μl, lyophilized, and dissolved in 200 μl of KRTB (final concentration 1 μM) (FIG. 2, N = 1). When the robustness regarding the detection of insulin secretagogue activity was examined by repeating the experiment, the probability that the activity was successfully detected was about 60%, and it was found that the robustness can be improved by the treatment with the buffer solution.
 なお、circ-TKEDGRQがラクタム環状構造を持つことのインスリン分泌促進活性における重要性を評価するため、線状ペプチド(スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン: TKEDGRQ)(配列番号1)を有機化学的に合成し、HEPES 緩衝液(pH7.6)を用いて上記の方法で凍結乾燥処理を行い、インスリン分泌促進活性を評価した。
 結果、高濃度(240μM)の線状ペプチドを用いても環状ペプチドほどの高い活性は検出されなかった(図3, N=3)。実験を繰り返しても結果が変わることはなく、circ-TKEDGRQが高いインスリン分泌促進活性を発揮するにはラクタム環構造が重要であると結論された。
In order to evaluate the importance of circ-TKEDGRQ having a lactam cyclic structure in the insulin secretagogue activity, a linear peptide (threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine: TKEDGRQ) (SEQ ID NO: 1 Was organically synthesized, and freeze-dried by the above method using HEPES buffer (pH 7.6) to evaluate the insulin secretagogue activity.
As a result, the activity as high as that of the cyclic peptide was not detected even when a high concentration (240 μM) of the linear peptide was used (FIG. 3, N=3). The results did not change even after repeated experiments, and it was concluded that the lactam ring structure is important for circ-TKEDGRQ to exert a high insulin secretagogue activity.
 前項の結果を確認するため、さらに「スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(TKEDGRQ)」(配列番号1)より短い線状ペプチドである「リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(KEDGRQ)」(配列番号1の2-7)、「スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン(TKEDGR)」(配列番号1の1-6)、「スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン(TKEDG)」(配列番号1の1-5)を有機化学的に合成し、HEPES 緩衝液(pH7.6)を用いて上記の方法で凍結乾燥処理を行い、インスリン分泌促進活性を評価した。
 結果、どの線状ペプチドを用いても環状ペプチドほどの高レベルの活性は検出されず(図4, N=3)、circ-TKEDGRQが高レベルのインスリン分泌促進活性を発揮するためには、ラクタム環構造が鍵となると判断された。
In order to confirm the results of the preceding paragraph, a linear peptide shorter than "threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ)" (SEQ ID NO: 1), "lysine-glutamic acid-aspartic acid-glycine- "Arginine-Glutamine (KEDGRQ)" (2-7 of SEQ ID NO: 1), "Threonine-Lysine-Glutamic acid-Aspartic acid-Glycine-Arginine (TKEDGR)" (1-6 of SEQ ID NO: 1), "Threonine-Lysine-Glutamic acid" -Aspartic acid-glycine (TKEDG)" (1-5 of SEQ ID NO: 1) was synthesized organically and lyophilized by the above method using HEPES buffer (pH 7.6) to promote insulin secretion. The activity was evaluated.
As a result, no activity as high as that of the cyclic peptide was detected with any of the linear peptides (FIG. 4, N=3), and in order for circ-TKEDGRQ to exert a high level of insulin secretagogue activity, lactam was required. The ring structure was determined to be the key.
 以上、TKEDGRQ(配列番号1)のN末端とC末端がラクタム環を形成したペプチドであるcirc-TKEDGRQは、ある特定の高次構造を形成した際に高レベルのインスリン分泌促進活性を発揮し、熱酸処理および/または緩衝液による処理により頑強性が向上した活性型ペプチドを取得することが可能であることが示された。但し、「pH」「温度」「金属塩」をパラメータとした処理により、極めて安定かつ高確率に「活性型構造異性体」に変換することは困難であることが示唆された。 As described above, circ-TKEDGRQ, which is a peptide in which the N-terminal and C-terminal of TKEDGRQ (SEQ ID NO: 1) form a lactam ring, exhibits a high level of insulin secretagogue activity when it forms a specific conformation, It was shown that it is possible to obtain an active peptide with improved robustness by treatment with thermal acid and/or treatment with a buffer solution. However, it was suggested that it is difficult to convert into an “active structural isomer” with extremely high stability and high probability by the treatment using “pH”, “temperature” and “metal salt” as parameters.
[実施例2] TAAAAAQ(配列番号4)の膵β細胞のインスリン分泌促進作用:
 実施例1から、7つのアミノ酸配列「TKEDGRQ」(配列番号1)は、1)N末端とC末端がペプチド結合することでラクタム環状ペプチドを形成させ、かつ2)HEPES緩衝液中で凍結乾燥する、という2つの工程により高レベルのインスリン分泌促進活性を発揮するよう高次構造が変化することが示唆された。しかし、ラクタム環状ペプチドは合成に時間と費用がかかるため、同様の活性を発揮する線状ペプチドが取得できれば大きなアドバンテージとなる。どのような線状ペプチドであればインスリン分泌促進活性を持つかを考察するに際して、線状ペプチドは環状化することで分子サイズが小さくなることを鑑みれば、まず、側鎖がより小さいアミノ酸を構成員として選択することは有効である。次に、環状ペプチドTKEDGRQに「HEPES緩衝液中で凍結乾燥する」との工程を賦与した際にどのような高次構造変化が生じるかを考察した。
[Example 2] Insulin secretion promoting action of TAAAAAQ (SEQ ID NO: 4) in pancreatic β cells:
From Example 1, the seven amino acid sequence "TKEDGRQ" (SEQ ID NO: 1) is 1) formed a lactam cyclic peptide by peptide-bonding the N-terminus and the C-terminus, and 2) is lyophilized in HEPES buffer. It was suggested that the higher order structure is changed to exert a high level of insulin secretagogue activity by the two steps of. However, since lactam cyclic peptides are time-consuming and expensive to synthesize, it would be a great advantage if linear peptides exhibiting similar activities could be obtained. In considering what kind of linear peptide has insulinotropic activity, considering that the linear peptide has a smaller molecular size due to cyclization, first, an amino acid having a smaller side chain is constructed. It is effective to select them as members. Next, we examined what kind of conformational change would occur when the process of "lyophilize in HEPES buffer" was applied to the cyclic peptide TKEDGRQ.
 TKEDGRというペプチドが形成しうる高次構造に考察するために、フリーソフトウェア(QARRK ONLINE, https://zhanglab.ccmb.med.umich.edu/QUARK2/)(D. Xu and Y. Zhang., Proteins, 2012, 80, 1715-1735; D. Xu and Y. Zhang., Proteins, 2013, 81: 229-239)にTKEDGRをタンデムにつなげた配列を入力して高次構造を予測したところ、αヘリックス(図5上、安定にαヘリックスを形成することが報告されているDDAAAAAAAAAAKK (配列番号17) (Perutz、PNAS誌 99: 5596-5600, 2002)を入力した結果)よりもピッチが小さいと思われる構造が得られた(図5下)。ここで、HEPES分子は、Z型DNA二重らせんにインタカレートしてhelical stackingの角度を広げることが知られており(de Rosaら、PNAS誌 107: 9088-9092, 2010)、ペプチド分子にHEPESがインタカレートした際にはヘリックスのピッチを大きくすることが想定される。
 以上より、線状ペプチドTKEDGR(配列番号1)に、1)環状化、2)HEPES緩衝液中での凍結乾燥、という2つの工程を賦与すると、側鎖の小さいアミノ酸が形成するαヘリックスに類似した高次構造をとる確率が高くなることが推測された。
Free software (QARRK ONLINE, https://zhanglab.ccmb.med.umich.edu/QUARK2/) (D. Xu and Y. Zhang., Proteins) , 2012, 80, 1715-1735; D. Xu and Y. Zhang., Proteins, 2013, 81: 229-239), a sequence in which TKEDGR was connected in tandem was input to predict the higher-order structure. It seems that the pitch is smaller than (the result of inputting DDAAAAAAAAAAKK (SEQ ID NO: 17) (Perutz, PNAS 99: 5596-5600, 2002), which is reported to stably form α-helix on Fig. 5). The structure was obtained (Fig. 5, bottom). Here, the HEPES molecule is known to intercalate into a Z-type DNA double helix to broaden the angle of helical stacking (de Rosa et al., PNAS 107: 9088-9092, 2010), It is expected that the pitch of the helix will be increased when HEPES intercalates.
Based on the above, when the two steps of 1) cyclization and 2) lyophilization in HEPES buffer are applied to the linear peptide TKEDGR (SEQ ID NO: 1), it is similar to the α-helix formed by amino acids with small side chains. It was speculated that the probability of adopting the higher-order structure described above would increase.
 αヘリックスを形成しやすいアミノ酸は例えばアラニンとメチオニンであるが(Scholtzら、Annu. Rev. Biophys. Biomol. Struct誌、第21巻、第95-118頁、1992年)、このうち側鎖の小さいのは、すなわち、半径の小さいαヘリックスを形成すると考えられるのはアラニンである。すなわち「活性型circ-TKEDGRQの高次構造を模倣する線状ペプチド」の候補として、アラニンが連続した短鎖ペプチド(アラニンストレッチペプチド)を想定した。ただし、アラニンは疎水性アミノ酸であるため、アラニンストレッチペプチドはβシートを形成して自己凝集しやすいことも知られている(Ma B & Nussinov R. Protein Science 11:2335-2350, 2002)。 Amino acids that easily form α-helix are, for example, alanine and methionine (Scholtz et al., Annu. Rev.Biophys. Biomol.Struct, Vol. 21, pages 95-118, 1992), of which the side chain is small. It is alanine that is thought to form an α-helix with a small radius. That is, a short-chain peptide with continuous alanine (alanine stretch peptide) was assumed as a candidate for “a linear peptide that mimics the higher-order structure of active circ-TKEDGRQ”. However, since alanine is a hydrophobic amino acid, it is also known that alanine stretch peptide easily forms a β sheet and self-aggregates (Ma B&Nussinov R. Protein Science 11:2335-2350, 2002).
 そこで、TKEDGRQの7つのアミノ酸のうち、N末端(スレオニン)とC末端(グルタミン)はそのままに、内部の5つのアミノ酸をアラニン(AAAAA/配列番号3)に置換したペプチドであるTAAAAAQ(配列番号4)を「活性型circ-TKEDGRQの高次構造を模倣する線状ペプチド」の候補と考え、これを有機化学合成してインスリン分泌促進活性を評価した。
 具体的には、有機化学合成品TAAAAAQを純水に溶解し(5 mg/ml; 8.32 mM)、膵β細胞株MIN6を用いたアッセイ系50μl に種々の量で添加してインスリン分泌促進能を評価した(最終濃度5.6μM, 90μM, 350μM)。結果、用量依存性にインスリン分泌促進作用が検出された(図6)。さらにHEPES緩衝液中での凍結乾燥によりTAAAAAQのインスリン分泌促進作用が増強されるかを検討した。具体的には、2μlの有機化学合成品TAAAAAQの水溶液(5 mg/ml)を、10 mM HEPES緩衝液(pH7.6) で1/100に希釈して200μlにしたものを凍結乾燥し、200μlの KRTB に再溶解したものを用いてインスリン分泌促進評価を行なった(最終濃度83μM)。結果、未処理の場合(図6)よりも低い濃度でインスリン分泌促進活性が検出された(図7)。これらの結果は、実験を繰り返しても高い頑強性をもって再現された。
Therefore, of the 7 amino acids of TKEDGRQ, the NAA (threonine) and C-terminus (glutamine) were left unchanged, while the internal 5 amino acids were replaced with alanine (AAAAA/SEQ ID NO: 3), which is a peptide TAAAAAQ (SEQ ID NO: 4). ) Was considered as a candidate for "a linear peptide that mimics the higher-order structure of active circ-TKEDGRQ", and this was chemically synthesized to evaluate the insulin secretagogue activity.
Specifically, the chemically-synthesized product TAAAAAQ was dissolved in pure water (5 mg/ml; 8.32 mM) and added in various amounts to 50 μl of an assay system using the pancreatic β-cell line MIN6 to enhance the insulin secretion promoting ability. Evaluation was carried out (final concentration 5.6 μM, 90 μM, 350 μM). As a result, an insulin secretagogue action was detected in a dose-dependent manner (Fig. 6). Furthermore, it was examined whether freeze-drying in HEPES buffer enhances the action of TAAAAAQ to promote insulin secretion. Specifically, 2 μl of an organic chemical synthetic product TAAAAAQ aqueous solution (5 mg/ml) was diluted to 1/100 with 10 mM HEPES buffer (pH 7.6) to make 200 μl, which was freeze-dried to 200 μl. Insulin secretagogue evaluation was performed using the redissolved KRTB of the above (final concentration 83 μM). As a result, the insulin secretagogue activity was detected at a lower concentration than that in the untreated case (Fig. 6) (Fig. 7). These results were reproduced with high robustness even after repeated experiments.
 以上、TAAAAAQは、未処理でもインスリン分泌促進活性を発揮すること、HEPES緩衝液中での凍結乾燥処理後には、より低濃度でインスリン分泌促進活性を発揮すること、が明らかとなった。 From the above, it was revealed that TAAAAAQ exerts insulin secretagogue activity even without treatment, and exerts insulin secretagogue activity at a lower concentration after freeze-drying treatment in HEPES buffer.
[実施例3] AAAAAAAのインスリン分泌促進作用に関する評価:
 実施例2からTAAAAAQ(配列番号4)がインスリン分泌促進活性を持つことが確認されたが、N末端のT(スレオニン)、C末端のQ(グルタミン)が活性に必須であるかは不明である。そこで、7つのアミノ酸の全てをアラニンにした線状ペプチドAAAAAAA(配列番号5)を有機化学的に合成し、インスリン分泌促進活性を評価した。
 結果、2μlの有機化学合成品AAAAAAAの水溶液(5 mg/ml)を、膵β細胞株MIN6を用いてインスリン分泌促進能を評価したが(最終濃度 10μg/50μl)、有意なインスリン分泌促進活性は検出されなかった(図8, N=3)。実験を繰り返しても有意なインスリン分泌促進活性が検出されることはなく、AAAAAAAはそのままでは有意なインスリン分泌促進活性をもたないことが判明した。
[Example 3] Evaluation of AAAAAAA on insulin secretagogue action:
From Example 2, it was confirmed that TAAAAAQ (SEQ ID NO: 4) has insulinotropic activity, but it is unclear whether T (threonine) at the N terminus and Q (glutamine) at the C terminus are essential for the activity. .. Therefore, a linear peptide AAAAAAA (SEQ ID NO: 5) in which all seven amino acids were converted to alanine was organically synthesized to evaluate the insulin secretagogue activity.
As a result, 2 μl of an aqueous solution of the chemically synthesized product AAAAAAA (5 mg/ml) was used to evaluate the insulin secretagogue activity using the pancreatic β cell line MIN6 (final concentration 10 μg/50 μl), but no significant insulin secretagogue activity was observed. It was not detected (FIG. 8, N=3). No significant insulin secretagogue activity was detected even after repeated experiments, and it was found that AAAAAAA does not have significant insulin secretagogue activity as it is.
 次に、HEPES緩衝液中での凍結乾燥処理により活性型構造異性体に変換される可能性につき検討した。すなわち、2μlの有機化学合成品AAAAAAAの水溶液(5 mg/ml)を、10 mM HEPES緩衝液(pH 7.6) で100倍に希釈して200μlにしたものを凍結乾燥し、200μlのKRTBに再溶解したものを用いてインスリン分泌促進活性を評価した(最終濃度 2.5μg/50μl; 97μM)。結果、顕著なインスリン分泌促進活性が検出された(図9, N=3)。ただし実験を繰り返して活性型構造異性体変換の成功率を評価したところ6割程度であったことから、AAAAAAAのHEPES緩衝液中での凍結乾燥による活性型構造異性体への変換は極めて高い頑強性をもって再現される現象とまでは言えないと判断された。 Next, we investigated the possibility of conversion into active structural isomers by freeze-drying in HEPES buffer. That is, 2 μl of an organic chemical compound AAAAAAA solution (5 mg/ml) was diluted 100-fold with 10 mM HEPES buffer (pH 7.6) to 200 μl, freeze-dried, and redissolved in 200 μl KRTB. The insulin secretion-promoting activity was evaluated using the prepared product (final concentration 2.5 μg/50 μl; 97 μM). As a result, a remarkable insulin secretagogue activity was detected (Fig. 9, N=3). However, the success rate of conversion of active structural isomers was evaluated by repeating the experiment, and it was about 60%. Therefore, conversion of AAAAAA to active structural isomers by freeze-drying in HEPES buffer was extremely high. It was judged that the phenomenon cannot be said to be reproduced with sex.
 以上、AAAAAAAは、未処理では有意なインスリン分泌促進活性を認めないものの、HEPES緩衝液中での凍結乾燥処理後に高レベルのインスリン分泌促進活性を発揮しうることから、実施例2におけるペプチドのN末端のT、C末端のQは活性に必須ではないことが確認されるとともに、その活性型には若干の不安定性を認めること、が明らかとなった。 As described above, AAAAAAA does not show any significant insulin secretagogue activity when untreated, but since it can exert a high level of insulin secretagogue activity after freeze-drying treatment in HEPES buffer, the peptide N in Example 2 It was confirmed that the T at the terminal and the Q at the C terminal are not essential for the activity, and that the active form has some instability.
[実施例4] biotin-TAAAAAQのインスリン分泌促進作用に関する評価:
 Avidinに特異的に結合するbiotinは、ペプチドのN末端への修飾因子として様々な目的に汎用されている。実施例3から、N末端のアミノ酸(スレオニン)はインスリン分泌促進活性の活性型構造異性体の形成に寄与していることが示唆されたが、ペプチドN末端へのbiotin修飾がインスリン分泌促進活性にどのような影響を与えるかを知ることは、TAAAAAQ(配列番号4)の受容体や結合パートナーの同定作業を実行するうえで重要な情報となる。そこでTAAAAAQ のN末端のT(スレオニン)のアミノ基にbiotinを付加したペプチドbiotin-TAAAAAQを有機化学的に合成し、実施例2(図4)と同様にしてインスリン分泌促進活性を評価した。
 結果、biotin-TAAAAAQには有意なインスリン分泌促進活性がないことが判明した(図10, N=3)。また実験を繰り返しても有意なインスリン分泌促進活性が検出されることはなかったことから、biotin-TAAAAAQは有意なインスリン分泌促進活性をもたないことが明らかとなった。
[Example 4] Evaluation of biotin-TAAAAAQ on insulin secretagogue action:
Biotin, which specifically binds to Avidin, is widely used for various purposes as a modifier for the N-terminal of peptides. From Example 3, it was suggested that the N-terminal amino acid (threonine) contributes to the formation of active structural isomers of insulin secretagogue activity, but biotin modification to the N-terminal of the peptide contributes to insulin secretagogue activity. Knowing what kind of effect it will have is important information for carrying out the task of identifying the TAAAAAQ (SEQ ID NO: 4) receptor and binding partner. Therefore, a peptide biotin-TAAAAAQ in which biotin was added to the amino group of T (threonine) at the N terminus of TAAAAAQ was organically synthesized and the insulin secretagogue activity was evaluated in the same manner as in Example 2 (FIG. 4).
As a result, it was revealed that biotin-TAAAAAQ did not have a significant insulin secretagogue activity (FIG. 10, N=3). Further, no significant insulin secretagogue activity was detected even after repeated experiments, indicating that biotin-TAAAAAQ does not have significant insulin secretagogue activity.
 以上より、TAAAAAQのN末端はインスリン分泌促進活性に重要である可能性があり、TAAAAAQの結合パートナーの同定にはN末端にビオチン付加したプローブを用いることは好ましくないことが示された。 From the above, it was shown that the N-terminal of TAAAAAQ may be important for the insulin secretagogue activity, and it is not preferable to use a probe with biotin added to the N-terminal to identify the binding partner of TAAAAAQ.
[実施例5] AAAAAAQ,MAAAAAQ,GAAAAAQ,CAAAAAQのインスリン分泌促進作用に関する評価:
 線状へプタペプチドがインスリン分泌促進活性を持つためには、アラニンストレッチAAAAA(配列番号3)を挟んで、N末端に例えばT(スレオニン)などのアミノ酸が存在し、C末端に例えばQ(グルタミン)などのアミノ酸が存在することが有効であること、N末端のアミノ基は修飾を受けないことが好ましいことが示唆された。
 次に、N末端がどのようなアミノ酸であればインスリン分泌促進活性が発揮されるかを検討する目的で、N末端のT(スレオニン)を、αヘリックスを構成しやすいアミノ酸であるA(アラニン)またはM(メチオニン)に置換したペプチド(AAAAAAQ (配列番号6), MAAAAAQ (配列番号7))、分子量が最も小さいアミノ酸であるG(グリシン)に置換したペプチドGAAAAAQ (配列番号8)、二量体形成に関与するアミノ酸であるC(システイン)に置換したペプチドCAAAAAQ (配列番号9)、のインスリン分泌促進活性を調べた。
[Example 5] Evaluation of insulin secretion promoting action of AAAAAAQ, MAAAAAQ, GAAAAAQ, CAAAAAQ:
In order for the linear heptapeptide to have an insulinotropic activity, an amino acid such as T (threonine) is present at the N-terminal and an Q (glutamine) is present at the C-terminal with the alanine stretch AAAAA (SEQ ID NO: 3) sandwiched between them. It is suggested that the presence of amino acids such as is effective, and that the N-terminal amino group is preferably not modified.
Next, for the purpose of investigating which amino acid at the N-terminus exerts insulin secretagogue activity, T (threonine) at the N-terminus is replaced with A (alanine), which is an amino acid that easily forms an α-helix. Or peptide substituted with M (methionine) (AAAAAAQ (SEQ ID NO:6), MAAAAAQ (SEQ ID NO:7)), peptide substituted with G (glycine) with the smallest molecular weight GAAAAAQ (SEQ ID NO:8), dimer The peptide CAAAAAQ (SEQ ID NO: 9) substituted for C (cysteine), which is an amino acid involved in formation, was investigated for its insulin secretagogue activity.
 有機化学的合成品AAAAAAQは、純水に溶解(5 mg/ml)した際に沈殿が形成され、超音波処理を施しても沈殿は消失しなかった。このため、膵β細胞株MIN6を用いたインスリン分泌促進能を適切に評価することができなかった。 Organochemically synthesized product AAAAAAQ formed a precipitate when dissolved in pure water (5 mg/ml), and the precipitate did not disappear even after ultrasonic treatment. Therefore, the ability to promote insulin secretion using the pancreatic β cell line MIN6 could not be properly evaluated.
 有機化学的合成品MAAAAAQは、純水に溶解(5 mg/ml)が可能であった。そこで、実施例3と同様にしてインスリン分泌促進能を評価した(最終濃度 10μg/50μl)。しかし、有意なインスリン分泌促進活性は検出されなかった(図11, N=3)。この結果は実験を繰り返しても同様であった。 The organic chemically synthesized product MAAAAAQ could be dissolved in pure water (5 mg/ml). Therefore, the insulin secretion promoting ability was evaluated in the same manner as in Example 3 (final concentration: 10 μg/50 μl). However, no significant insulin secretagogue activity was detected (Fig. 11, N=3). This result was the same even when the experiment was repeated.
 有機化学的合成品GAAAAAQは、純水に溶解(5 mg/ml)した際に沈殿が形成された。一方、有機化学的合成品CAAAAAQは、純水に溶解(5 mg/ml, 8.26 mM)が可能であったが、4℃で保存中に沈殿が形成された。このため、両者ともに膵β細胞株MIN6を用いたインスリン分泌促進能を適切に評価することができなかった。 Organochemically synthesized product GAAAAAQ formed a precipitate when dissolved in pure water (5 mg/ml). On the other hand, the organic chemical compound CAAAAAQ could be dissolved in pure water (5 mg/ml, 8.26 mM), but a precipitate was formed during storage at 4°C. Therefore, in both cases, the ability to promote insulin secretion using the pancreatic β-cell line MIN6 could not be properly evaluated.
 以上、AAAAAAQ, GAAAAAQ, CAAAAAQは水に不溶または難溶であること、MAAAAAQは水に可溶であるが有意なインスリン分泌促進活性を認めないこと、が判明した。すなわち、TAAAAAQのインスリン分泌促進活性には、ペプチドがαへリックスを形成しうることが重要であるが、ペプチドが可溶性を保持することも重要であることが示唆された。したがって、N末端のアミノ酸はT(スレオニン)などの親水性アミノ酸または水酸基を持つアミノ酸であることが好ましいと考えられる。 As mentioned above, it was revealed that AAAAAAQ, GAAAAAQ, CAAAAAQ are insoluble or sparingly soluble in water, and MAAAAAQ is soluble in water but has no significant insulin secretagogue activity. In other words, it was suggested that the peptide is capable of forming an α-helix, but it is also important that the peptide retains solubility in the insulin secretagogue activity of TAAAAAQ. Therefore, it is considered that the N-terminal amino acid is preferably a hydrophilic amino acid such as T (threonine) or an amino acid having a hydroxyl group.
[実施例6] TAAAAAAのインスリン分泌促進作用に関する評価:
 実施例3から、インスリン分泌促進活性の活性型ペプチドの効率的な形成にはN末端のT(スレオニン)などのアミノ酸とC末端のQ(グルタミン)などのアミノ酸の重要性が、実施例4、実施例5からはN末端の親水性アミノ酸または水酸基を持つアミノ酸の重要性が示唆された。
 続いて、C末端のQ の重要性を検討すべく、これをA(アラニン)に置換したペプチドTAAAAAA(配列番号10)のインスリン分泌促進活性を評価した。具体的には、有機化学的合成したTAAAAAAを純水に溶解(5 mg/ml)したもの 2μlを、膵β細胞株MIN6を用いたアッセイ系に添加してインスリン分泌促進能を評価した(最終濃度 10μg/50μl)。
 結果、TAAAAAAにはインスリン分泌促進活性を認めた(図12, N=3)。但し、TAAAAAQと比べて活性は低かった。実験を繰り返しても結果が変わることはなかった。
[Example 6] Evaluation of insulin secretion promoting action of TAAAAAA:
From Example 3, the importance of amino acids such as T (threonine) at the N-terminus and amino acids such as Q (glutamine) at the C-terminus for efficient formation of active peptides having insulinotropic activity is shown in Example 4, Example 5 suggested the importance of N-terminal hydrophilic amino acids or amino acids having a hydroxyl group.
Subsequently, in order to examine the importance of Q at the C terminus, the insulin secretagogue activity of the peptide TAAAAAA (SEQ ID NO: 10) in which it was replaced with A (alanine) was evaluated. Specifically, 2 μl of organic chemically synthesized TAAAAAA dissolved in pure water (5 mg/ml) was added to the assay system using pancreatic β cell line MIN6 to evaluate the insulin secretagogue ability (final Concentration 10 μg/50 μl).
As a result, TAAAAA showed insulin secretagogue activity (Fig. 12, N=3). However, the activity was lower than that of TAAAAAQ. Repeating the experiment did not change the results.
 次に、HEPES緩衝液中での凍結乾燥により活性型構造異性体に変換される可能性を検討した。すなわち、2μlの有機化学合成品TAAAAAAの水溶液(5 mg/ml)を、10 mM HEPES緩衝液(pH 7.6) で100倍に希釈して200μlにしたものを凍結乾燥し、200μlのKRTBに再溶解したものを用いてインスリン分泌促進活性を評価した(最終濃度 2.5μg/50μl)。
 結果、有意なインスリン分泌促進活性は検出されなかった(図13, N=3)。実験を繰り返しても有意なインスリン分泌促進活性が検出されることはなかった。
Next, the possibility of conversion into active structural isomers by freeze-drying in HEPES buffer was examined. That is, 2 μl of an organic chemical synthesis product TAAAAAA (5 mg/ml) was diluted 100-fold with 10 mM HEPES buffer (pH 7.6) to 200 μl, freeze-dried, and redissolved in 200 μl KRTB. The insulin secretion-promoting activity was evaluated using the prepared product (final concentration 2.5 μg/50 μl).
As a result, no significant insulin secretagogue activity was detected (FIG. 13, N=3). Even when the experiment was repeated, no significant insulin secretagogue activity was detected.
 以上、TAAAAAAはインスリン分泌促進活性を持つものの、その活性はTAAAAAQに比べて低いと結論された。この結果は、TAAAAAQにおけるC末端のQ(グルタミン)などの親水性アミノ酸の重要性を示すものである。なお、実施例1より、末端のQ(グルタミン)ペプチドであるTKEDGRQ(配列番号1)(図3、図4)やKEDGRQ(配列番号1のアミノ酸2-7番目)(図4)は高いインスリン分泌促進活性を持たなかったことから、C末端のQ(グルタミン)は、それよりN末側に存在する特定のアミノ酸配列を持つペプチドにおいてインスリン分泌促進活性に重要であると考えられた。 Above, it was concluded that TAAAAAA has an insulinotropic activity, but its activity is lower than TAAAAAQ. This result shows the importance of hydrophilic amino acids such as C-terminal Q (glutamine) in TAAAAAQ. From Example 1, TKEDGRQ (SEQ ID NO: 1) (FIGS. 3 and 4) and KEDGRQ (amino acids 2 to 7 of SEQ ID NO: 1) (FIG. 4), which are terminal Q (glutamine) peptides, have high insulin secretion. Since it had no stimulatory activity, C-terminal Q (glutamine) was considered to be important for insulin secretagogue activity in a peptide having a specific amino acid sequence located on the N-terminal side.
[実施例7] TAAAAAQGGの膵ベータ細胞のインスリン分泌促進効果:
 TAAAAAQの受容体や結合パートナーの同定に向けては、TAAAAAQにタグを付加することが有用であるが、実施例4で示したように、N末端へのbiotin付加はインスリン分泌促進活性を消失させる。そこで、C末端への付加についてさらに検討すべく、タグを連結するためのスペーサーとして汎用される「グリシルグリシン(GG)」をC末端に付加したペプチドTAAAAAQGG(配列番号11)を有機化学的に合成し、図11と同様にしてインスリン分泌促進活性を評価した。
 結果、TAAAAAQGGはTAAAAAQと同等のインスリン分泌促進活性を示した(図14)。この結果は実験を繰り返しても再現された。以上、C末端へのスペーサー配列GGの付加はインスリン分泌促進活性に影響を与えないことが判明した。またこの結果は、C末端のアミノ酸はQ(グルタミン)であることは必須ではないことも示している。
[Example 7] Effect of TAAAAAQGG on insulin secretion promotion in pancreatic beta cells:
To identify a TAAAAAQ receptor or binding partner, it is useful to add a tag to TAAAAAQ, but as shown in Example 4, addition of biotin to the N-terminus abolishes insulin secretagogue activity. .. Therefore, in order to further investigate the addition to the C terminus, the peptide TAAAAAQGG (SEQ ID NO: 11), in which "glycylglycine (GG)" commonly used as a spacer for linking tags is added to the C terminus, They were synthesized and evaluated for insulin secretagogue activity in the same manner as in FIG.
As a result, TAAAAAQGG showed insulin secretagogue activity equivalent to that of TAAAAAQ (Fig. 14). This result was reproduced even after repeated experiments. As described above, it was revealed that the addition of the spacer sequence GG to the C terminus does not affect the insulin secretagogue activity. The results also indicate that it is not essential that the C-terminal amino acid be Q (glutamine).
[実施例8] SAAAAAQの膵β細胞のインスリン分泌促進作用:
 実施例4~実施例7から、高レベルのインスリン分泌促進活性にはN末端のT(スレオニン)などのアミノ酸が重要であることが示されたが、Tは特に「水酸基を持つ親水性アミノ酸」であることから、同じく「水酸基を持つ親水性アミノ酸」であるS(セリン)にも同様の効果がある可能性が想定される。そこで、N末端をTをSに置換したペプチドSAAAAAQ(配列番号12)を有機化学的に合成し、図12, 図13と同様にしてインスリン分泌促進活性を評価した。
 結果、SAAAAAQ は、無処理の場合も(図15 (1)、N=3)、HEPES緩衝液中での凍結乾燥無処理を行った場合も(図15 (2), N=3)、TAAAAAQ及びTAAAAAQGGと同様にインスリン分泌促進活性を示した。これらの結果は実験を繰り返しても再現された。
 以上、SAAAAAQはインスリン分泌促進活性を持つことが判明した。これはN末端のアミノ酸としては、TやSと類似した性質を持つアミノ酸、例えばTやSなどの水酸基を持つ親水性アミノ酸が特に好ましいことを示唆している。
[Example 8] Insulin secretion promoting action of pancreatic β cells by SAAAAAQ:
From Examples 4 to 7, it was shown that amino acids such as N-terminal T (threonine) are important for high-level insulin secretagogue activity. In particular, T is "a hydrophilic amino acid having a hydroxyl group". Therefore, S (serine), which is also a “hydrophilic amino acid having a hydroxyl group”, may have the same effect. Therefore, a peptide SAAAAAQ (SEQ ID NO: 12) in which N at the N-terminal was replaced by S at the S-position was organically synthesized, and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 12 and 13.
As a result, SAAAAAQ was TAAAAAQ both when untreated (Fig. 15(1), N=3) and when freeze-dried in HEPES buffer (Fig. 15(2), N=3). And TAAAAAQGG showed insulin secretagogue activity. These results were reproduced even after repeated experiments.
As described above, SAAAAAQ was found to have insulinotropic activity. This suggests that an amino acid having similar properties to T and S, for example, a hydrophilic amino acid having a hydroxyl group such as T and S is particularly preferable as the N-terminal amino acid.
[実施例9] YAAAAAQ, 及び、DAAAAAQ, KAAAAAQ, TAAAAAEのインスリン分泌促進作用に関する評価:
 実施例2および実施例8から、インスリン分泌促進活性にはN末端が「水酸基を持つアミノ酸」であることが好ましいことが示唆されたが、水酸基を持つアミノ酸には、親水性アミノ酸に分類されるT(スレオニン)やS(セリン)以外にも、疎水性アミノ酸に分類されるY(チロシン)がある。そこで、TAAAAAQのTをYに置換したペプチドYAAAAAQ(配列番号13)を有機化学的に合成し、図12, 図13と同様にしてインスリン分泌促進活性を評価した。
 結果、無処理のYAAAAAQは高いインスリン分泌促進活性を示さなかった(図16)。一方、HEPES緩衝液中での凍結乾燥無処理後には比較的高いインスリン分泌促進活性が検出されたが(図17)、力価はTAAAAAQGGよりも低かった。
[Example 9] Evaluation of YAAAAAQ, and DAAAAAQ, KAAAAAQ, and TAAAAAE on insulin secretion promoting action:
Although it was suggested from Examples 2 and 8 that the N-terminal "amino acid having a hydroxyl group" is preferable for the insulin secretagogue activity, amino acids having a hydroxyl group are classified as hydrophilic amino acids. In addition to T (threonine) and S (serine), there is Y (tyrosine), which is classified as a hydrophobic amino acid. Therefore, a peptide YAAAAAQ (SEQ ID NO: 13) in which T in TAAAAAQ was replaced with Y was synthesized organically, and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 12 and 13.
As a result, untreated YAAAAAQ did not show high insulin secretagogue activity (Fig. 16). On the other hand, a relatively high insulin secretagogue activity was detected after no lyophilization treatment in HEPES buffer (Fig. 17), but the titer was lower than that of TAAAAAQGG.
 以上より、TAAAAAQのインスリン分泌促進活性には、N末端が「水酸基を持つアミノ酸」であることが好ましいが、「水酸基を持つ親水性アミノ酸」であることがより好ましいことが判明した。 From the above, it was found that TAAAAAQ is preferably an amino acid having a hydroxyl group at the N-terminus, but more preferably a hydrophilic amino acid having a hydroxyl group, for the insulin secretion promoting activity of TAAAAAQ.
 次に、TAAAAAQがインスリン分泌促進活性を発揮するためには、N末端は「水酸基を持つ親水性アミノ酸」である必要があるのか、または「親水性アミノ酸」でも同様の効果を持つのかを明らかにするために、「荷電側鎖を持つアミノ酸(酸性アミノ酸、塩基性アミノ酸)」の効果を調べた。具体的には、N末端のTをカルボキシ基側鎖を持つ親水性アミノ酸のD(アスパラギン酸)に置換したペプチドDAAAAAQ(配列番号14)、アミノ基側鎖を持つ親水性アミノ酸のK(リジン)に置換したペプチドKAAAAAQ(配列番号15)を有機化学的に合成し、図11, 図12と同様にしてインスリン分泌促進活性を評価した。
 さらに、C末端のQ(グルタミン)に関しても、これがQである必要があるのか、または類似の構造を持つ「親水性アミノ酸」である E(グルタミン酸)にも同様の効果があるのかを調べるために、TAAAAAQのC末端のQをEに置換したペプチドTAAAAAE(配列番号16)を有機化学的に合成し、図11, 図12と同様にしてインスリン分泌促進活性を評価した。
 結果、無処理ではKAAAAAQは高いインスリン分泌促進活性を示さなかったものの、DAAAAAQやTAAAAAEは比較的高いインスリン分泌促進活性を示すことが確認された(図16)。また、HEPES緩衝液中での凍結乾燥無処理を行うことでYAAAAAQ、DAAAAAQ、KAAAAAQ、およびTAAAAAEはいずれもインスリン分泌促進活性の回復が見られた(図17)。但し、いずれのペプチドもTAAAAAQGGと比べればその活性は低かった。
Next, in order for TAAAAAQ to exert insulin secretagogue activity, it was clarified whether the N-terminal needs to be a "hydrophilic amino acid having a hydroxyl group", or whether "hydrophilic amino acid" has a similar effect. In order to do so, the effect of "amino acids having charged side chains (acidic amino acids, basic amino acids)" was investigated. Specifically, the peptide DAAAAAQ (SEQ ID NO: 14) in which T at the N-terminus is replaced with D (aspartic acid), which is a hydrophilic amino acid having a carboxyl side chain, and K (lysine), which is a hydrophilic amino acid having an amino side chain, is used. The peptide KAAAAAQ (SEQ ID NO: 15) substituted with was chemically synthesized and evaluated for insulin secretagogue activity in the same manner as in FIGS. 11 and 12.
In addition, regarding C-terminal Q (glutamine), it is necessary to investigate whether this needs to be Q, or whether E (glutamic acid), which is a “hydrophilic amino acid” having a similar structure, has a similar effect. , TAAAAAQ (SEQ ID NO: 16), a peptide in which the C-terminal Q of TAAAAAQ was replaced with E, was synthesized organically and the insulin secretagogue activity was evaluated in the same manner as in FIGS. 11 and 12.
As a result, it was confirmed that KAAAAAQ did not show a high insulin secretagogue activity without treatment, whereas DAAAAAQ and TAAAAAE showed a relatively high insulin secretagogue activity (Fig. 16). Further, YAAAAAQ, DAAAAAQ, KAAAAAQ, and TAAAAAE all showed recovery of insulin secretagogue activity by performing no freeze-drying treatment in HEPES buffer (Fig. 17). However, the activity of each peptide was lower than that of TAAAAAQGG.
 以上、線状ヘプタペプチドがインスリン分泌促進活性を発揮するためには、1)N末端は水酸基を持つ親水性アミノ酸(T, S)であること、2)中央部は5つのアラニンなどのαヘリックスを形成し得るアミノ酸からなるストレッチであること、3)そのC末端側は荷電側鎖を持たないQなどの親水性の中性アミノ酸であること、が好ましいことが判明した。また、実施例7により、C末端にはさらにアミノ酸を付加し得ることも判明した。 As mentioned above, in order for the linear heptapeptide to exert the insulin secretagogue activity, 1) N-terminal is a hydrophilic amino acid (T, S) having a hydroxyl group, 2) The central part is an α-helix such as five alanines It has been found that it is preferable that it is a stretch consisting of amino acids capable of forming 3) and that 3) its C-terminal side is a hydrophilic neutral amino acid such as Q having no charged side chain. Further, it was revealed from Example 7 that an amino acid can be further added to the C-terminus.
[実施例10] 食事誘発性肥満マウスおけるTAAAAAQ投与による血糖降下
 7週齢のC57BL/6マウスに19週間の高脂肪食(D12492、Research Diets社)を負荷した。26週齢の段階において、2μl のTAAAAAQ水溶液(8.32 mM)を200μl の10mM HEPES緩衝液(pH7.6)に希釈して(100倍希釈)凍結乾燥したサンプルを、150μlの生食に溶解して腹腔内に投与した(10μg/匹)。以後は摂食させず、2時間後に採血して血糖値と血清インスリン値を測定した。コントロールとして、インビトロ試験で高いインスリン分泌促進活性が検出されなかったTKEDGRQ(図3、図4)を用いて同様の処置を行なった。なお、TKEDGRQ (配列番号1)、TAAAAAQ (配列番号4) ともに、3匹ずつのC57BL/6マウスに投与実験を行い、「投与前」「投与2時間後」の血糖値を比較した。
 結果、図18に示すように、TKEDGRQ投与マウスは「2時間の絶食」に伴って血糖値の低下傾向を認め、TAAAAAQ投与マウスでは血糖値は顕著に低下した。
 以上、食事誘発性肥満マウスに対してTKEDGRQおよびTAAAAAQはどちらも血糖降下傾向を示すものの、特にTAAAAAQは顕著な血糖降下作用を発揮することが示された。
[Example 10] Blood glucose reduction by TAAAAAQ administration in diet-induced obese mice Seven-week-old C57BL/6 mice were loaded with a high-fat diet (D12492, Research Diets) for 19 weeks. At the age of 26 weeks, 2 μl of TAAAAAQ aqueous solution (8.32 mM) was diluted with 200 μl of 10 mM HEPES buffer (pH 7.6) (100-fold dilution), and the lyophilized sample was dissolved in 150 μl of saline and intraperitoneally injected. (10 μg/animal). Thereafter, the animals were not fed and blood was collected 2 hours later to measure blood glucose level and serum insulin level. As a control, the same treatment was performed using TKEDGRQ (FIG. 3 and FIG. 4) in which a high insulin secretagogue activity was not detected in the in vitro test. In addition, both TKEDGRQ (SEQ ID NO: 1) and TAAAAAQ (SEQ ID NO: 4) were administered to three C57BL/6 mice, and the blood glucose levels of “before administration” and “after 2 hours after administration” were compared.
As a result, as shown in FIG. 18, the TKEDGRQ-administered mice showed a tendency for a decrease in blood glucose level along with “fasting for 2 hours”, and the TAAAAAQ-administered mice showed a marked decrease in blood glucose level.
As described above, both TKEDGRQ and TAAAAAQ showed a hypoglycemic tendency in diet-induced obese mice, but TAAAAAQ was shown to exert a remarkable hypoglycemic effect.
[実施例11]  ob/obマウスにおけるTAAAAAQ投与による血糖降下
 13週齢のob/obマウスに12週間の高脂肪食(D12492、Research Diets社)を負荷した。25週齢の段階において、2μl のTAAAAAQ水溶液(8.32 mM)を200μl の10mM HEPES緩衝液(pH7.6)に希釈して(100倍希釈)凍結乾燥したサンプルを、150μlの生食に溶解して腹腔内に投与した(10μg/匹)。以後は摂食させず、2時間後に採血して血糖値と血清インスリン値を測定した。コントロールとして、インビトロ試験で高いインスリン分泌促進活性が検出されなかったKEDGRQ (配列番号1のアミノ酸2-7番目)(図4)を用いて同様の処置を行なった。なお、KEDGRQ、TAAAAAQ (配列番号4) ともに、2匹ずつのob/obマウスに投与実験を行い、「投与前」「投与2時間後」の血糖値と血清インスリン値を比較した。
 結果は図19に示すように、KEDGRQ投与マウスは、随時血糖(投与前血糖)の値に関係なく、2匹とも血糖値は変化は乏しいものの低下傾向を示し(160 mg/dL→149 mg/dL, 126 mg/dL→119 mg/dL)、血清インスリン値は2時間の非摂食状態を反映して約半分に減少した(2.22 OD450nm → 1.10 OD450nm, 1.27 OD450nm → 0.61 OD450nm)。一方、TAAAAAQ投与マウスは、1匹は随時血糖(投与前血糖)が199 mg/dLと高値であったが(糖尿病型)、TAAAAAQ投与により血糖値は131 mg/dLまで顕著に低下した。また、血清インスリン値は2時間の非摂食状態にも関わらず減少率は低く(2.47 OD450nm → 1.92 OD450nm)、摂食時の78%の値を示した。もう1匹は、随時血糖値(投与前血糖値)が134 mg/dLと正常型であり、TAAAAAQ投与後も125 mg/dLであり、血清インスリンも非摂食状態を反映して減少した(1.88 OD450nm → 0.53 OD450nm)。
 以上より、TAAAAAQは、随時血糖値が高い状態(糖尿病型)ではインスリン分泌を促進して血糖値を低下させる作用があること、しかし、随時血糖が高くない状態(正常型)ではインスリン分泌を促進しないこと、が示された。この結果は、TAAAAAQのインスリン分泌促進作用はインビボでは高血糖状態でのみ効果が発揮されること、すなわち、低血糖を誘発しない安全性の高いものであることが強く示唆された。
[Example 11] Blood glucose reduction by TAAAAAQ administration in ob/ob mice 13-week-old ob/ob mice were loaded with a high-fat diet (D12492, Research Diets) for 12 weeks. At the age of 25 weeks, 2 μl of TAAAAAQ aqueous solution (8.32 mM) was diluted with 200 μl of 10 mM HEPES buffer (pH 7.6) (100-fold dilution), and the freeze-dried sample was dissolved in 150 μl of saline and intraperitoneal. (10 μg/animal). Thereafter, the animals were not fed and blood was collected 2 hours later to measure blood glucose level and serum insulin level. As a control, the same treatment was performed using KEDGRQ (amino acids 2 to 7 of SEQ ID NO: 1) (FIG. 4) in which a high insulin secretagogue activity was not detected in the in vitro test. Both KEDGRQ and TAAAAAQ (SEQ ID NO: 4) were administered to two ob/ob mice to compare the blood glucose level and the serum insulin level “before administration” and “2 hours after administration”.
As shown in FIG. 19, the KEDGRQ-administered mice showed a slight decrease in blood glucose level (160 mg/dL→149 mg/ml) regardless of the blood glucose level (pre-dose blood glucose) at any time. dL, 126 mg/dL → 119 mg/dL), serum insulin level decreased to about half (2.22 OD 450nm → 1.10 OD 450nm , 1.27 OD 450nm → 0.61 OD 450nm ) reflecting the non-fed state for 2 hours. .. On the other hand, one TAAAAAQ-administered mouse had a high blood glucose level (pre-dose blood glucose) of 199 mg/dL at any time (diabetes type), but the TAAAAAQ administration significantly lowered the blood glucose level to 131 mg/dL. Further, the serum insulin level showed a low decrease rate (2.47 OD 450nm → 1.92 OD 450nm ) despite the non-feeding state for 2 hours, showing a value of 78% at the time of feeding. The other animal had a normal blood glucose level (pre-dose blood glucose level) of 134 mg/dL, which was normal, and 125 mg/dL even after TAAAAAQ administration, and serum insulin also decreased reflecting the non-fed state ( 1.88 OD 450nm → 0.53 OD 450nm ).
Based on the above, TAAAAAQ has the effect of promoting insulin secretion by lowering the blood glucose level when the blood glucose level is high (diabetic type), but promoting insulin secretion when the blood glucose level is not high (normal type). Not to be shown. This result strongly suggests that the insulin secretagogue action of TAAAAAQ is exerted only in the hyperglycemic state in vivo, that is, it is highly safe and does not induce hypoglycemia.
[実施例12] 低用量ストレプトゾトシン単回投与により境界型糖尿病を発症したマウスにおけるTAAAAAQGG投与による耐糖能改善
 6週齢のC57BL/6マウスに、低用量(90 - 100 mg/Kg)のストレプトゾトシン(streptozotocin; STZ)(ナカライテスク株式会社、32238-91、水に溶解して使用)を尾静注し、以後、週に2回程度の頻度で採血して随時血糖値を測定した。3~5週間後には随時血糖が180 mg/dLを超え、糖代謝障害を発症していることが確認されたマウス6匹を用いて、経口ブドウ糖負荷試験(oral glucose tolerance test: OGTT)を行った。OGTTに際しては、事前に、3匹のマウスに対して、4μlのTAAAAAQGG(配列番号11)水溶液(5 mg/ml)を150μlの生食に希釈して腹腔内に投与した(20 μg/匹)。また、コントロールとして、残りの3匹のマウスに対しては、4μlの変異体ペプチド(配列番号22、GlpTKEdGR)水溶液(5 mg/ml)を150μlの生食に希釈したものを腹腔内に投与した(20μg/匹)。ここでGlpTKEdGRにおける「Glp」はピログルタミン酸を表す(注:配列番号1のTKEDGRQのC末端のQをN末端に移動させたもの。ペプチド合成時に不可避的に生じる酸化反応によりQはピログルタミン酸となる)。また「d」は「D型アスパラギン酸」を表す(注:生体のタンパク質を構成するアミノ酸はL型であるが、アスパラギン酸はごく少量であるがD型も混在する)。なお、GlpTKEdGR およびGlpTKEDGR(配列番号23)は、図8と同様にして、それぞれ2μlの水溶液(5 mg/ml)を膵β細胞株MIN6に添加して施行したインスリン分泌促進能の評価試験において(最終濃度 10μg/50μl)、インスリン分泌促進活性がないことを確認している(図20、N=3)。ペプチド投与後はマウスを絶食させ、16時間後に尾静脈より採血して空腹時血糖値を測定した。結果、6匹ともに空腹時血糖値は110 mg/dL未満であることが確認された。すなわち、インスリン分泌機能障害により随時血糖値は上昇しているものの空腹時血糖は正常範囲にあり、境界型糖尿病の病状を呈していることが確認された。そこで、ゾンデを用いて0.2 g/kg のブドウ糖液を経口投与し、15分後、30分後、60分後、120分後の血糖値を測定した(経口ブドウ糖負荷試験)。
 結果、全ての時点において、TAAAAAQGG投与群ではコントロールペプチド投与群よりも血糖値は低下しており、特にブドウ糖負荷15分後の血糖値は低下していた(図21)。
 以上より、TAAAAAQGGは、インスリン分泌障害により境界型糖尿病を発症しているマウスに対して耐糖能を改善する作用があることが示された。
[Example 12] Improvement of glucose tolerance by administration of TAAAAAQGG in mice with borderline diabetes caused by single administration of low-dose streptozotocin Single-dose streptozotocin (90-100 mg/Kg) of streptozotocin was administered to 6-week old C57BL/6 mice. STZ) (Nacalai Tesque, Inc., 32238-91, used by dissolving in water) was intravenously injected into the tail, and thereafter, blood was collected about twice a week to measure the blood glucose level at any time. Three to five weeks later, an oral glucose tolerance test (OGTT) was conducted using 6 mice whose blood glucose exceeded 180 mg/dL at any time and confirmed to have impaired glucose metabolism. It was Before OGTT, 4 μl of TAAAAAQGG (SEQ ID NO: 11) aqueous solution (5 mg/ml) was diluted to 150 μl of saline and intraperitoneally administered to 3 mice (20 μg/mouse). As a control, 4 μl of the mutant peptide (SEQ ID NO: 22, GlpTKEdGR) aqueous solution (5 mg/ml) diluted to 150 μl of saline was intraperitoneally administered to the remaining 3 mice (( 20 μg/animal). Here, “Glp” in GlpTKEdGR represents pyroglutamic acid (Note: TKEDGRQ of SEQ ID NO: 1 has been moved from the C-terminal Q to the N-terminal. Q becomes pyroglutamic acid due to the inevitable oxidation reaction during peptide synthesis. ). In addition, “d” represents “D-type aspartic acid” (Note: the amino acids that make up proteins in living organisms are L-type, but aspartic acid is a very small amount, but D-type is mixed). In addition, GlpTKEdGR and GlpTKEDGR (SEQ ID NO: 23) were tested in the same manner as in FIG. 8 in an insulin secretion promoting ability evaluation test performed by adding 2 μl of an aqueous solution (5 mg/ml) to the pancreatic β cell line MIN6 ( It has been confirmed that there is no insulin secretagogue activity (final concentration 10 μg/50 μl) (FIG. 20, N=3). After administration of the peptide, the mice were fasted, and 16 hours later, blood was collected from the tail vein to measure the fasting blood glucose level. As a result, it was confirmed that the fasting blood glucose level of all 6 animals was less than 110 mg/dL. In other words, it was confirmed that the fasting blood glucose was in the normal range although the blood glucose level was increased at any time due to impaired insulin secretion function, and the condition of borderline diabetes was exhibited. Therefore, 0.2 g/kg glucose solution was orally administered using a sonde, and blood glucose levels were measured after 15, 30, 60, 120 minutes (oral glucose tolerance test).
As a result, at all time points, the blood sugar level in the TAAAAAQGG administration group was lower than that in the control peptide administration group, and particularly, the blood glucose level 15 minutes after glucose loading was decreased (FIG. 21).
From the above, TAAAAAQGG was shown to have an effect of improving glucose tolerance in mice with borderline diabetes caused by impaired insulin secretion.
[実施例13] 低用量ストレプトゾトシン単回投与により糖尿病を発症したマウスにおけるTAAAAAQGG投与によるインスリン分泌の回復
 実施例12と同様に、6週齢のC57BL/6マウスに低用量(100 mg/Kg)のSTZを尾静注し、2回/週の頻度で採血して随時血糖値を追跡した。第2週の後半には随時血糖が250 mg/dLを超えて糖尿病を発症していることが明らかとなったマウスに対して、第3週間めに、4μlのTAAAAAQGG(配列番号11)水溶液(5 mg/ml)を150μlの生食に希釈して腹腔内に投与した(20 μg/匹)。以後、絶食させて、0時間後、2時間後、6時間後に採血し、血糖値および血清インスリン値を測定した。
 結果、0時間後では血糖値は250 mg/dLを超え、血清インスリン値も測定限界以下であったが、2時間後には血清インスリン値は実測可能なレベルに回復した。その値は、実施例12で得られた境界型糖尿病マウスに、4μlの変異型ペプチド(GlpTKEdGR)(配列番号23)水溶液(5 mg/ml)を150μlの生食に希釈して腹腔内に投与(20 μg/匹)した場合、すなわち、糖尿病をまだ発症していないマウスに低用量のコントロールペプチドを投与した場合と同等のレベルにまで回復していることが判明した。その後、TAAAAAQGG投与群では6時間後の血清インスリン値も維持されており、絶食していることもあって血糖値はさらに低下した。しかし、低血糖を起こすことはなく、その値は、糖尿病をまだ発症していないマウスにコントロールペプチドを投与して6時間絶食された場合と同程度であった。
 以上より、TAAAAAQGGは、インスリン分泌不全により糖尿病を発症したマウスに対して、インスリン分泌を回復させることで耐糖能を改善する作用があることが示された。
[Example 13] Restoration of insulin secretion by administration of TAAAAAQGG in mice that developed diabetes by single administration of low-dose streptozotocin In the same manner as in Example 12, 6-week-old C57BL/6 mice were treated with a low dose (100 mg/Kg). STZ was intravenously injected into the tail, and blood was collected twice/week to monitor the blood glucose level at any time. In the second half of the second week, 4 μl of a TAAAAAQGG (SEQ ID NO: 11) aqueous solution ( 5 mg/ml) was diluted in 150 μl of saline and administered intraperitoneally (20 μg/animal). Thereafter, the animals were fasted, and blood was sampled at 0 hours, 2 hours, and 6 hours, and blood glucose levels and serum insulin levels were measured.
As a result, the blood glucose level exceeded 250 mg/dL at 0 hours and the serum insulin level was below the measurement limit, but the serum insulin level recovered to a measurable level after 2 hours. The value was obtained by diluting 4 μl of the mutant peptide (GlpTKEdGR) (SEQ ID NO: 23) aqueous solution (5 mg/ml) into 150 μl of saline and intraperitoneally administered to the borderline diabetic mouse obtained in Example 12 ( (20 μg/animal), that is, it was found to recover to a level equivalent to that when a low dose of the control peptide was administered to a mouse that had not yet developed diabetes. After that, in the TAAAAAQGG-administered group, the serum insulin level was maintained at 6 hours, and the blood glucose level was further lowered due to fasting. However, it did not cause hypoglycemia, and its value was comparable to that obtained when the control peptide was administered to mice that had not yet developed diabetes and they were fasted for 6 hours.
From the above, it was shown that TAAAAAQGG has an action of improving glucose tolerance by recovering insulin secretion in a mouse in which diabetes was caused by insufficient insulin secretion.
[参考例1] ヒト胚性幹細胞からの褐色脂肪細胞誘導:
 ヒト胚性幹細胞(KhES-3, Suemoriら、Biochem Biophys Res Commun 345:926-932,2006;Cellosaurus ID CVCL_B233;Cellosaurus ID CVCL_B233;理研細胞バンク ID HES0003)は京都大学・再生医科学研究所より供与されたものを用いた。KhES-3は、X線照射処理済みのMEF上で、20% Knockout Serum Replacement(KSR)(Life Technologies, Inc.)、5ng/ml FGF2、1% non-essential amino acids solution、100μM 2-mercaptethanol、2mM L-glutamine含有DMEM/F12(Life Technologies, Inc.)培地を用いて維持培養を行った。
[Reference Example 1] Induction of brown adipocytes from human embryonic stem cells:
Human embryonic stem cells (KhES-3, Suemori et al., Biochem Biophys Res Commun 345:926-932, 2006; Cellosaurus ID CVCL_B233; Cellosaurus ID CVCL_B233; RIKEN Cell Bank ID HES0003) were provided by Institute for Regenerative Medicine, Kyoto University. I used the one. KhES-3 is 20% Knockout Serum Replacement (KSR) (Life Technologies, Inc.), 5ng/ml FGF2, 1% non-essential amino acids solution, 100μM 2-mercaptethanol, on MEF after X-ray irradiation treatment. Maintenance culture was performed using DMEM/F12 (Life Technologies, Inc.) medium containing 2 mM L-glutamine.
 褐色脂肪細胞への分化誘導にあたっては、まずKhES-3からMEFを分離・除去するため、剥離液処理により回収された多能性幹細胞の浮遊液を、遠沈管内で30秒程度静置することで多能性幹細胞のみを選択的に沈降させた。 When inducing differentiation into brown adipocytes, first, the MEF is separated and removed from KhES-3, so the suspension of pluripotent stem cells recovered by the stripping solution treatment is allowed to stand in a centrifuge tube for about 30 seconds. Only pluripotent stem cells were selectively sedimented at.
 褐色脂肪細胞への分化誘導は次の2段階の工程で行った。
(1)工程A
 多能性幹細胞からなる沈降物を、4 mlの細胞凝集物作製用培地(5 mg/ml BSA、1%体積 合成脂質溶液、1%体積 x100 ITS-A、450μM MTG、2mM L-Glutamine、5%体積 PFHII、50μg/ml ascorbic acidを含有するIMDM/F12培地であって、20ng/ml BMP4、5ng/ml VEGF、20ng/ml SCF、2.5ng/ml Flt3L、2.5ng/ml IL6、5ng/ml IGF2を含む培地)に浮遊させ、これを6穴型のMPCコート培養皿に移し入れて、37℃で5% CO2インキュベータ内で培養した。以後、3日ごとに半量の培地を交換しながら8~10日間培養した。なお培地交換は、MPCコート培養皿全体を30度程傾けて1分ほど放置し、細胞凝集物が完全に沈むのを確認した上で、培養上清のみを半量ピペットで静かに吸い出した後、同量の新鮮な細胞凝集物作製用培地を添加し、MPCコート培養皿全体を軽く揺すりながら細胞凝集物を均一に分散させることで行った。
Induction of differentiation into brown adipocytes was performed in the following two steps.
(1) Process A
Precipitate consisting of pluripotent stem cells was added to 4 ml of medium for cell aggregate preparation (5 mg/ml BSA, 1% volume synthetic lipid solution, 1% volume x100 ITS-A, 450 μM MTG, 2 mM L-Glutamine, 5%). %DM PFHII, IMDM/F12 medium containing 50 μg/ml ascorbic acid, 20 ng/ml BMP4, 5 ng/ml VEGF, 20 ng/ml SCF, 2.5 ng/ml Flt3L, 2.5 ng/ml IL6, 5 ng/ml IGF2-containing medium), the cells were transferred to a 6-well MPC-coated culture dish, and cultured at 37°C in a 5% CO 2 incubator. Thereafter, the culture was continued for 8 to 10 days while changing the half amount of the medium every 3 days. For medium exchange, tilt the entire MPC-coated culture dish about 30 degrees and leave it for about 1 minute, and after confirming that the cell aggregates have completely settled, gently aspirate only the culture supernatant with a half volume pipette, The same amount of fresh medium for producing cell aggregates was added, and the cell aggregates were uniformly dispersed by gently shaking the entire MPC-coated culture dish.
(2)工程B
 上述で作製された多能性幹細胞由来細胞凝集物を、10 ml程度の遠沈管に移し入れ、30秒~1分ほど静置して細胞成分を沈降させてから、上清を除去して3mlの褐色脂肪細胞誘導培地(5 mg/ml BSA、1%体積 合成脂質溶液、1%体積x100 ITS-A、450μM MTG、2mM L-Glutamine、5%体積 PFHII、50μg/ml ascorbic acid を含有するIMDM/F12培地であって、10ng/ml BMP7、5ng/ml VEGF、20ng/ml SCF、2.5ng/ml Flt3L、2.5ng/ml IL6、5ng/ml IGF2を含む培地)を加えて、1100rpmで5分間遠心をした。これを、あらかじめ0.1%ブタゼラチン水溶液で室温で10分間反応させた細胞培養皿に移し入れ、37℃で5% CO2インキュベータ内で培養した。以後、3日ごとに培地を交換しながら1週間培養した。
(2) Process B
Transfer the pluripotent stem cell-derived cell aggregate prepared above to a 10 ml centrifuge tube and let stand for 30 seconds to 1 minute to sediment the cell components, then remove the supernatant and remove 3 ml. Brown adipocyte induction medium (5 mg/ml BSA, 1% volume synthetic lipid solution, 1% volume x100 ITS-A, 450 μM MTG, 2 mM L-Glutamine, 5% volume PFHII, IMDM containing 50 μg/ml ascorbic acid) /F12 medium, containing 10 ng/ml BMP7, 5 ng/ml VEGF, 20 ng/ml SCF, 2.5 ng/ml Flt3L, 2.5 ng/ml IL6, 5 ng/ml IGF2), and add at 1100 rpm for 5 minutes. It was centrifuged. This was transferred to a cell culture dish previously reacted with 0.1% porcine gelatin aqueous solution for 10 minutes at room temperature, and cultured at 37° C. in a 5% CO 2 incubator. Thereafter, the cells were cultured for 1 week while changing the medium every 3 days.
 その結果、細胞質に多胞性脂肪滴(多数の黄身がかった光沢のある球形物)を持つ細胞が得られた。なお、この球形物が脂肪滴であることは、oil red O染色(中性脂肪を紅色に発色させる試験)により確認された。 As a result, cells with multivesicular lipid droplets (a large number of yolky, glossy spheres) in the cytoplasm were obtained. In addition, it was confirmed by oil red O staining (a test for making neutral fat develop a red color) that these spherical objects were lipid droplets.
 またRT-PCRにより、褐色脂肪細胞に特徴的な遺伝子群(UCP1、PRDM16、PGC1α、Cyt-c、CIDE-A、ELOVL3、PPARα、EVA1、NTRK3)の発現が誘導されていることが電気泳動により確認された。さらに、褐色脂肪細胞と白色脂肪細胞の共通マーカーであるPPARγ及びadiponectinの発現が誘導されていることも確認された。一方、白色脂肪細胞のマーカーであるresistin、ホスホセリントランスアミナーゼ1(PSAT1)、エンドセリン受容体アルファ(EDNRA)の発現は誘導されていないことも確認された。
 なお、resistinはインスリン抵抗性を惹起するのみならず、癌化や動脈硬化とも関連する遺伝子である。ヒト多能性幹細胞由来褐色脂肪細胞においてresistinの発現が誘導されていないことは、ヒト多能性幹細胞由来褐色脂肪細胞を用いた創薬研究はもちろんのこと、ヒト多能性幹細胞由来褐色脂肪細胞を用いた細胞療法における安全性を考える上で極めて重要な点である。
In addition, by RT-PCR, expression of genes characteristic of brown adipocytes (UCP1, PRDM16, PGC1α, Cyt-c, CIDE-A, ELOVL3, PPARα, EVA1, NTRK3) was induced by electrophoresis. confirmed. Furthermore, it was also confirmed that the expression of PPARγ and adiponectin, which are common markers for brown adipocytes and white adipocytes, was induced. On the other hand, it was also confirmed that the expression of resistin, phosphoserine transaminase 1 (PSAT1), and endothelin receptor alpha (EDNRA), which are markers for white adipocytes, was not induced.
Note that resistin is a gene that not only causes insulin resistance but is also associated with canceration and arteriosclerosis. The fact that the expression of resistin was not induced in human pluripotent stem cell-derived brown adipocytes means that not only drug discovery research using human pluripotent stem cell-derived brown adipocytes but also human pluripotent stem cell-derived brown adipocytes This is an extremely important point in considering the safety of cell therapy using saccharin.
 また電子顕微鏡観察により、褐色脂肪細胞に特徴的な微細構造である多胞性脂肪滴、縦に長く融合したミトコンドリアの存在が確認された。更に、褐色脂肪細胞に特徴的な梯子状に発達したクリステがミトコンドリア内部に確認された。 Also, electron microscopic observation confirmed the presence of multivesicular lipid droplets, which are the fine structure characteristic of brown adipocytes, and mitochondria that were long and vertically fused. Furthermore, the cristae that developed like a ladder characteristic of brown adipocytes were confirmed inside the mitochondria.
[参考例2] 「塩類と低濃度ブドウ糖のみを含有するバッファー」で調製したヒトESC由来BA上清または合成ペプチドの、膵ベータ細胞に対するインスリン分泌促進作用:
 以下のとおり、ヒトESC由来BAのSUPを調製した。即ち、MEF上で維持培養しているヒトESCから参考例1に記載の方法によりBAを分化誘導し、Day 10の成熟BAから分化培地を除去した後、2.8 mMブドウ糖を含有するKrebs-Ringer-TRIS-Bicarbonate (KRTB)バッファー(NaCl:119 mM, KCl:4.74 mM, CaCl2 1.19 mM, MgCl2 1.19 mM, KH2PO4:1.19 mM, NaHCO3:25 mM, TRIS(pH7.4):10 mM, Glucose 2.8 mM)を添加し、炭酸ガス培養装置(37℃、5% CO2)内で16時間培養後に上清を回収した(以下、ここで回収した上清をBA-SUPと記載)。一方、マウス膵ベータ細胞株であるMIN6細胞(宮崎純一大阪大学産学連携本部特任教授(現在)より分与)を推奨法(Miyazakiら、Endocrinology 127: 126-132, 1990)にて96穴プレートで培養した。これをPBSバッファーでwashした後、2.8 mMブドウ糖含有KRHバッファーで1時間培養し(低ブドウ糖処理)、細胞上清を除去した後、BA-SUPまたは、コントロールSUP、を添加して、炭酸ガス培養装置(37℃、5% CO2)内で2時間培養した。ペプチド添加実験では、BA-SUPに代えて合成ペプチドを上記KRTBに溶解して添加した(コントロールはKRTB)。その後、MIN6細胞の上清中を回収し、インスリン濃度をELISA法(超高感度マウスインスリン測定キット、株式会社森永生科学研究所)で測定した。
[Reference Example 2] Insulin secretion promoting action on pancreatic beta cells of human ESC-derived BA supernatant or synthetic peptide prepared with "buffer containing only salts and low concentration glucose":
Human ESC-derived BA SUP was prepared as follows. That is, BA was induced to be differentiated from the human ESC maintained in culture on MEF by the method described in Reference Example 1, and the differentiation medium was removed from the mature BA on Day 10, and then Krebs-Ringer-containing 2.8 mM glucose was added. TRIS-Bicarbonate (KRTB) buffer (NaCl: 119 mM, KCl: 4.74 mM, CaCl 2 1.19 mM, MgCl 2 1.19 mM, KH 2 PO 4: 1.19 mM, NaHCO 3: 25 mM, TRIS (pH7.4): 10 mM, Glucose 2.8 mM) was added, and the supernatant was recovered after culturing for 16 hours in a carbon dioxide gas culture device (37°C, 5% CO 2 ) (hereinafter, the recovered supernatant is referred to as BA-SUP). .. On the other hand, a 96-well plate using the recommended method (Miyazaki et al., Endocrinology 127: 126-132, 1990) was MIN6 cells, a mouse pancreatic beta cell line (distributed by Junichi Miyazaki, specially appointed professor of the University-Industry Collaboration Division of Osaka University (current)) It was cultured in. After washing this with PBS buffer, culturing for 1 hour in KRH buffer containing 2.8 mM glucose (low glucose treatment), removing the cell supernatant, and then adding BA-SUP or control SUP, and culturing with carbon dioxide The cells were cultured in the device (37°C, 5% CO 2 ) for 2 hours. In the peptide addition experiment, a synthetic peptide was dissolved in the above KRTB instead of BA-SUP and added (control is KRTB). Then, the supernatant of the MIN6 cells was collected, and the insulin concentration was measured by the ELISA method (ultrasensitive mouse insulin measurement kit, Morinaga Institute of Bioscience).
 本発明によると、これまで全く手段がなかったインスリン基礎分泌促進作用を有する短鎖ペプチド薬の提供が可能となる。インスリン基礎分泌が亢進すると、随時血糖が低下するため、食事に伴う糖負荷への対応能力(耐糖能)も向上する。さらに、インスリン基礎分泌能の低下は2型糖尿病の進行例で見られる病態であるため、病気の進行とともに従来のインスリン分泌促進剤が無効となった症例にも有効な血糖降下作用を発揮することが期待される。すなわち、幅広い2型糖尿病の症例に対して、有効な血糖コントロールの方策を提供することが可能となる。また、1型糖尿病の約1/3の症例では膵β細胞が残存しており、残存膵β細胞のインスリン分泌機能の向上は1型糖尿病の新しい治療戦略として注目されている。このため、本発明による短鎖ペプチド薬は、1型糖尿病(特に緩徐進行型1型糖尿病)の症例に対しても有効な血糖コントロールの方策を提供する。
 本発明による、インスリン分泌促進性短鎖ペプチドの合成は、世界の多くの国と地域において実施が可能であるので、巨大プラント産業に展開し得て、実用的であり産業上利用価値が高い。
According to the present invention, it becomes possible to provide a short-chain peptide drug having an action of promoting basal insulin secretion, which has never been available until now. When the basal insulin secretion is increased, the blood glucose is lowered at any time, so that the ability to cope with the glucose load accompanying meals (glucose tolerance) is also improved. Furthermore, since a decrease in basal insulin secretion ability is a pathological condition seen in advanced cases of type 2 diabetes, it is possible to exert an effective hypoglycemic effect even in cases where conventional insulin secretagogues have become ineffective as the disease progresses. There is expected. That is, it is possible to provide an effective blood glucose control strategy for a wide range of type 2 diabetes cases. In addition, pancreatic β cells remain in about 1/3 of the cases of type 1 diabetes, and improvement of insulin secretory function of residual pancreatic β cells has attracted attention as a new therapeutic strategy for type 1 diabetes. Therefore, the short-chain peptide drug according to the present invention provides an effective glycemic control strategy even in cases of type 1 diabetes (particularly slowly progressive type 1 diabetes).
Since the synthesis of insulin secretagogue short-chain peptides according to the present invention can be carried out in many countries and regions in the world, it can be applied to the giant plant industry, is practical and has high industrial utility value.

Claims (20)

  1.  αへリックス構造を形成しうるアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。 A peptide containing an amino acid sequence capable of forming an α-helix structure, and the peptide and/or its active form has insulinotropic activity.
  2.  数個から十数個のアミノ酸からなる、請求項1に記載のペプチド。 The peptide according to claim 1, which consists of several to a dozen or more amino acids.
  3.  水酸基を持つアミノ酸および/または親水性アミノ酸に続き、該へリックスを形成しうる5残基以上のアミノ酸配列を含む、請求項1または2に記載のペプチド。 The peptide according to claim 1 or 2, which contains an amino acid sequence having 5 or more residues capable of forming the helix, following an amino acid having a hydroxyl group and/or a hydrophilic amino acid.
  4.  該αヘリックス構造を形成する5残基以上のアミノ酸配列が、αヘリックス形成性アミノ酸で構成される、請求項3に記載のペプチド。 The peptide according to claim 3, wherein the amino acid sequence of 5 or more residues forming the α-helix structure is composed of α-helix-forming amino acids.
  5.  該αヘリックス形成性アミノ酸が、メチオニン、アラニン、ロイシン、グルタミン酸、リジンからなる群より選択される、請求項4に記載のペプチド。 The peptide according to claim 4, wherein the α-helix forming amino acid is selected from the group consisting of methionine, alanine, leucine, glutamic acid and lysine.
  6.  該αヘリックス構造を形成する5残基以上のアミノ酸配列が5つのアラニン(AAAAA/配列番号3)を含む、請求項5に記載のペプチド。 The peptide according to claim 5, wherein the amino acid sequence of 5 or more residues forming the α-helix structure contains 5 alanines (AAAAA/SEQ ID NO: 3).
  7.  水酸基を持つアミノ酸および/または親水性アミノ酸が、スレオニン、セリン、チロシンから選択されるアミノ酸である、請求項3から6のいずれかに記載のペプチド。 The peptide according to any one of claims 3 to 6, wherein the amino acid having a hydroxyl group and/or the hydrophilic amino acid is an amino acid selected from threonine, serine and tyrosine.
  8.  水酸基を持つアミノ酸および/または親水性アミノ酸が、スレオニンまたはセリンである、請求項3から6のいずれかに記載のペプチド。 The peptide according to any one of claims 3 to 6, wherein the amino acid having a hydroxyl group and/or the hydrophilic amino acid is threonine or serine.
  9.  該αヘリックス構造を形成する5残基以上のアミノ酸配列に続き、親水性の中性アミノ酸を含む、請求項3から8のいずれかに記載のペプチド。 The peptide according to any one of claims 3 to 8, which contains a hydrophilic neutral amino acid following an amino acid sequence of 5 residues or more forming the α-helix structure.
  10.  該親水性の中性アミノ酸がグルタミンである、請求項9に記載のペプチド。 The peptide according to claim 9, wherein the hydrophilic neutral amino acid is glutamine.
  11.  スレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(TAAAAAQ/配列番号4)、セリン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン(SAAAAAQ/配列番号12)、またはスレオニン-アラニン-アラニン-アラニン-アラニン-アラニン-グルタミン-グリシン-グリシン(TAAAAAQGG/配列番号11)のアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。 Threonine-alanine-alanine-alanine-alanine-alanine-glutamine (TAAAAAQ/SEQ ID NO:4), serine-alanine-alanine-alanine-alanine-alanine-glutamine (SAAAAAQ/SEQ ID NO:12), or threonine-alanine-alanine-alanine A peptide comprising an amino acid sequence of -alanine-alanine-glutamine-glycine-glycine (TAAAAAQGG/SEQ ID NO: 11), wherein the peptide and/or its active form has insulinotropic activity.
  12.  スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン(TKEDGRQ/配列番号1)のアミノ酸配列を含むペプチドであって、該ペプチドおよび/またはその活性型がインスリン分泌促進活性を持つ、ペプチド。 A peptide containing the amino acid sequence of threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1), and the peptide and/or its active form have insulinotropic activity.
  13.  スレオニン-リジン-グルタミン酸-アスパラギン酸-グリシン-アルギニン-グルタミン (TKEDGRQ/配列番号1)のアミノ末端とカルボキシル末端のアミノ酸がペプチド結合によりラクタム環を形成した環状ペプチドである、請求項12に記載のペプチド。 The peptide according to claim 12, which is a cyclic peptide in which amino acids at the amino terminal and the carboxyl terminal of threonine-lysine-glutamic acid-aspartic acid-glycine-arginine-glutamine (TKEDGRQ/SEQ ID NO: 1) form a lactam ring by a peptide bond. ..
  14.  活性型が、酸性条件下で加熱後冷却する工程、および/または緩衝液に溶解後に凍結乾燥する工程で処理されたペプチドである、請求項1から13のいずれかに記載のペプチド。 The peptide according to any one of claims 1 to 13, wherein the active form is a peptide that has been treated in the step of heating and cooling under acidic conditions and/or the step of dissolving in a buffer solution and freeze-drying.
  15.  他の化合物が分離可能に連結されている、請求項1から14のいずれかに記載のペプチド。 The peptide according to any one of claims 1 to 14, wherein another compound is separably linked.
  16.  請求項1から15のいずれかに記載のペプチドおよび薬学的に許容される担体を含む組成物。 A composition comprising the peptide according to any one of claims 1 to 15 and a pharmaceutically acceptable carrier.
  17.  医薬組成物である、請求項16に記載の組成物。 The composition according to claim 16, which is a pharmaceutical composition.
  18.  インスリン分泌促進および/または糖代謝促進のために用いられる、請求項16または17に記載の組成物。 The composition according to claim 16 or 17, which is used for promoting insulin secretion and/or promoting glucose metabolism.
  19.  糖尿病または前糖尿病の治療または予防のために用いられる、請求項16から18のいずれかに記載の組成物。 The composition according to any one of claims 16 to 18, which is used for treating or preventing diabetes or prediabetes.
  20.  請求項1から15のいずれかに記載のペプチドを投与する工程を含む、糖尿病または前糖尿病の療法または予防方法。 A method for treating or preventing diabetes or pre-diabetes, which comprises the step of administering the peptide according to any one of claims 1 to 15.
PCT/JP2020/001791 2019-01-29 2020-01-21 Insulin secretion promoting peptide WO2020158491A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012945 2019-01-29
JP2019012945A JP2022049715A (en) 2019-01-29 2019-01-29 Insulin secretion promotion peptide

Publications (1)

Publication Number Publication Date
WO2020158491A1 true WO2020158491A1 (en) 2020-08-06

Family

ID=71842109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001791 WO2020158491A1 (en) 2019-01-29 2020-01-21 Insulin secretion promoting peptide

Country Status (2)

Country Link
JP (1) JP2022049715A (en)
WO (1) WO2020158491A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956334A (en) * 2021-12-22 2022-01-21 南京市妇幼保健院 Application of brown adipocyte secretory peptide and derivative thereof in prevention and treatment of obesity
CN114306569A (en) * 2021-12-22 2022-04-12 南京市妇幼保健院 Function of brown fat secretory peptide in promoting energy metabolism of fat cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040214272A1 (en) * 1999-05-06 2004-10-28 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
WO2017223528A1 (en) * 2016-06-24 2017-12-28 The Scripps Research Institute Novel nucleoside triphosphate transporter and uses thereof
WO2018209127A1 (en) * 2017-05-11 2018-11-15 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Antimicrobial peptides with alpha-core helices
WO2020036184A1 (en) * 2018-08-14 2020-02-20 国立研究開発法人国立国際医療研究センター Supernatant of brown adipocytes, method for preparing same and utilization thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040214272A1 (en) * 1999-05-06 2004-10-28 La Rosa Thomas J Nucleic acid molecules and other molecules associated with plants
WO2017223528A1 (en) * 2016-06-24 2017-12-28 The Scripps Research Institute Novel nucleoside triphosphate transporter and uses thereof
WO2018209127A1 (en) * 2017-05-11 2018-11-15 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Antimicrobial peptides with alpha-core helices
WO2020036184A1 (en) * 2018-08-14 2020-02-20 国立研究開発法人国立国際医療研究センター Supernatant of brown adipocytes, method for preparing same and utilization thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB 5 February 2008 (2008-02-05), "SubName: Full=Predicted protein {ECO:0000313|EMBL:EDQ59095.1}", XP055726296, Database accession no. A9TBS2 *
DATABASE UniProtKB 7 November 2018 (2018-11-07), "SubName: Full=Uncharacterized protein {ECO:0000313|EMBL:RBP35336.1}", XP055726297, Database accession no. AOA366H3G4 *
DIKEAKOS, J. D. ET AL.: "A Hydrophobic Patch in a Charged alfa-Helix Is Sufficient to Target Proteins to Dense Core Secretory Granules", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 282, no. 2, 12 January 2007 (2007-01-12), pages 1136 - 1143, XP055726288 *
ODDO, A. ET AL.: "a-Helix or beta-Turn? An Investigation into N-Terminally Constrained Analogues of Glucagon-like Peptide 1 (GLP-1) and Exendin-4", BIOCHEMISTRY, vol. 57, 7 June 2018 (2018-06-07), pages 4148 - 4154, XP055726291 *
PERU TZ, M. F. ET AL.: "Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques", PNAS, vol. 99, no. 8, 16 April 2002 (2002-04-16), pages 5596 - 5600, XP055726293 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956334A (en) * 2021-12-22 2022-01-21 南京市妇幼保健院 Application of brown adipocyte secretory peptide and derivative thereof in prevention and treatment of obesity
CN113956334B (en) * 2021-12-22 2022-03-18 南京市妇幼保健院 Application of brown adipocyte secretory peptide and derivative thereof in prevention and treatment of obesity
CN114306569A (en) * 2021-12-22 2022-04-12 南京市妇幼保健院 Function of brown fat secretory peptide in promoting energy metabolism of fat cells
CN114306569B (en) * 2021-12-22 2023-04-25 南京市妇幼保健院 Use of brown fat secretion peptide in promoting energy metabolism of fat cell

Also Published As

Publication number Publication date
JP2022049715A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
AU2013295035B2 (en) Glucagon analogues
KR100529270B1 (en) Promotion or Inhibition of Angiogenesis and Cardiovascularization
CN107921085B (en) Methods and compositions for treating aging-related disorders
AU2009240884B8 (en) Agent for recruitment of bone-marrow-derived pluripotent stem cell into peripheral circulation
JP2009543580A (en) Composition for cell reprogramming and use thereof
WO2020158491A1 (en) Insulin secretion promoting peptide
EP1196450B1 (en) Fibrin citrulline derivatives and their use for diagnosing or treating rheumatoid arthritis
JP2020518261A (en) C-terminal CDNF fragment and C-terminal MANF fragment, pharmaceutical compositions containing them, and uses thereof
KR101064914B1 (en) Pharmaceutical composition for treating autoimmune, allergic and inflammatory diseases and delivery method thereof
JP2008530029A (en) Neuroprotective agents and methods for their use
JP2010239971A (en) Promotion of peroxisomal catalase function in cell
JP2013071904A (en) Peptide having anti-influenza virus activity
US11053290B2 (en) Modified Tamm-Horsfall protein and related compositions and methods of use
US20030077757A1 (en) Method of treating aging-related disorders
AU2003282660A1 (en) Vasoregulating compounds and methods of their use
JPWO2007139120A1 (en) Amyloid β clearance promoter
JP2019512216A (en) Calcium channel peptide inhibitors
Nakajima et al. Establishment of an appropriate animal model for lacritin studies: cloning and characterization of lacritin in monkey eyes
WO2020091068A1 (en) Fusion protein
JP2021519578A (en) C-terminal CDNF fragments, pharmaceutical compositions containing them, and their use
JP2002509693A (en) Cadherin-derived growth factor and uses thereof
JP6207507B2 (en) Shortened tetranectin-apolipoprotein AI fusion protein, lipid particles containing the same, and uses thereof
JPH07179496A (en) Polypeptide having specific inhibiting action on cathepsin l
WO2015077317A1 (en) Compositions and methods for the purification and production of butyrylcholinesterase
JP2013241402A (en) Gapdh aggregation inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP