WO2020158480A1 - Fuel battery - Google Patents

Fuel battery Download PDF

Info

Publication number
WO2020158480A1
WO2020158480A1 PCT/JP2020/001728 JP2020001728W WO2020158480A1 WO 2020158480 A1 WO2020158480 A1 WO 2020158480A1 JP 2020001728 W JP2020001728 W JP 2020001728W WO 2020158480 A1 WO2020158480 A1 WO 2020158480A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
fuel gas
injector
fuel cell
Prior art date
Application number
PCT/JP2020/001728
Other languages
French (fr)
Japanese (ja)
Inventor
尚也 富本
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2020158480A1 publication Critical patent/WO2020158480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell.
  • a fuel cell has a stack structure in which a plurality of fuel cells, which are one unit of power generation, are stacked, and end plates are provided at both ends in the stacking direction (for example, see Patent Document 1).
  • the end plate has a fuel gas inlet for introducing a fuel gas, a fuel gas outlet for discharging a fuel gas, an oxidizing gas inlet for introducing an oxidizing gas, and an oxidizing gas for discharging. And an oxidant gas exhaust port are provided.
  • the fuel gas discharged from the fuel gas outlet includes the fuel gas not used for power generation by the fuel cell unit. Therefore, in order to effectively utilize the fuel gas, the fuel gas discharged from the fuel gas outlet is circulated by the fuel gas circulation pump, and the circulated fuel gas is also fueled with the fuel gas supplied from the fuel tank.
  • the technology to supply to is known.
  • the fuel gas circulation pump when the fuel gas is circulated by the fuel gas circulation pump, not only the fuel gas but also liquid water (generated water) generated by power generation and cation contaminants that are impurities eluted in the liquid water are also circulated. It When liquid water containing such impurities is supplied to the fuel cell, the fuel cell deteriorates. Further, when the fuel gas is circulated by the fuel gas circulation pump, the liquid water that circulates together with the fuel gas is concentratedly supplied to the fuel cells arranged near the fuel gas inlet. For this reason, the fuel cells near the fuel gas inlet are significantly deteriorated as compared with other fuel cells.
  • the present disclosure has been made to solve the above problems, and an object thereof is to provide a fuel cell capable of suppressing remarkable deterioration of a fuel battery cell arranged near a fuel gas inlet. is there.
  • the fuel cell according to the present disclosure includes a plurality of stacked fuel cells, an injector for supplying a fuel gas to the fuel cell, and a fuel gas discharged from the fuel cell to the fuel cell again.
  • a fuel gas circulation pump that circulates the fuel gas
  • a plurality of fuel cells are provided with a fuel gas supply passage extending in the stacking direction of the fuel cells, and the injector is directed toward the fuel gas supply passage. While injecting the fuel gas, the injection direction is set along the stacking direction, and the confluence portion of the fuel gas circulated by the fuel gas circulation pump and the fuel gas supplied by the injector is located upstream of the fuel cell unit. And on the downstream side of the injector.
  • the fuel cell according to the present disclosure further includes an end plate arranged on one side in the stacking direction, and a manifold arranged between the end plate and the fuel cell in the stacking direction, and the manifold is a fuel gas circulation pump. It may have a gas flow path for flowing the fuel gas sent out by in a direction different from the stacking direction, and a merging portion may be provided at an end of the gas flow path.
  • the gas flow path of the manifold may be formed obliquely so that the side of the merging portion is higher than the opposite side.
  • the fuel cell according to the present disclosure has an end plate arranged on one side in the stacking direction, an injector mounted with the injector block, and a gas connecting the fuel gas circulation pump and the injector block.
  • a flow passage forming portion is further provided, and the confluence portion is provided inside the injector block.
  • the gas introduction flow path from the injector to the confluence portion may be provided with a reduced diameter portion that causes cavitation in the liquid flowing into the confluence portion.
  • FIG. 2 is a cross-sectional view showing how the injector is mounted in the fuel cell of FIG. 1. It is a cross-sectional view showing a part of the fuel cell of FIG. FIG. 2 is a vertical cross-sectional view showing a mounted state of a fuel gas circulation pump in the fuel cell of FIG. 1. It is a cross-sectional view which shows the principal part of the fuel cell which concerns on 2nd Embodiment. It is a schematic perspective view which shows the structure of the fuel cell which concerns on 3rd Embodiment.
  • FIG. 9 is a cross-sectional view showing how the injector is mounted in the fuel cell of FIG. 8.
  • FIG. 1 is a schematic perspective view showing the configuration of the fuel cell according to the first embodiment of the present disclosure.
  • the fuel cell 100 is a polymer electrolyte fuel cell, and includes a first end plate 101, a manifold 102 disposed adjacent to the first end plate 101, and a stack structure. It has a plurality of fuel cells 103 which it has, and the 2nd end plate 104 arranged at the end opposite to the 1st end plate 101.
  • the first end plate 101, the manifold 102, the fuel cell 103, and the second end plate 104 are each formed in a rectangular shape when viewed from the front direction.
  • the fuel cell 100 includes a fuel gas circulation pump 105 for circulating the fuel gas, an injector 106 for supplying the fuel gas to the fuel cell 103, and an injector block 107 on which the injector 106 is mounted. There is.
  • the first end plate 101 and the second end plate 104 are arranged at both ends of the fuel cell 100.
  • the first end plate 101 and the second end plate 104 are arranged so as to sandwich the manifold 102 and the plurality of fuel cell units 103 from both sides.
  • the manifold 102 is sandwiched between the first end plate 101 and the fuel cell 103.
  • the respective fuel cells 103 are stacked in the Z direction (hereinafter, also referred to as “stacking direction”).
  • the fuel cell 100 is mounted on a moving body such as a vehicle so that the stacking direction Z of the fuel cell 103 is horizontal.
  • the fuel cell 100 is configured by stacking a large number of fuel cells 103.
  • the number of stacked fuel cells 103 is set according to the voltage or output required for the fuel cell 100.
  • the fuel battery cell 103 constitutes a unit fuel battery cell which is one unit of power generation.
  • the fuel cell 103 has a structure in which both sides of the electrolyte membrane are sandwiched by two separators.
  • a cathode electrode is arranged on one surface of the electrolyte membrane, and an anode electrode is arranged on the other surface of the electrolyte membrane.
  • the vertical direction will be referred to as the Y direction
  • the direction orthogonal to this Y direction will be referred to as the X direction, based on the state where the fuel cell 100 is mounted on the moving body.
  • the X direction corresponds to the width direction of the fuel cell 100
  • the Y direction corresponds to the height direction of the fuel cell 100.
  • the fuel cell 103 has a fuel gas supply channel 110, a fuel gas exhaust channel 112, an oxidizing gas supply channel 114, an oxidizing gas exhaust channel 116, and a cooling medium supply stream.
  • the passage 118 and the cooling medium discharge passage 120 are provided so as to penetrate in the stacking direction Z, respectively.
  • the fuel gas supply passage 110 serves as a gas passage for supplying the fuel gas to the fuel cell 103.
  • the fuel gas discharge flow path 112 serves as a flow path for flowing the fuel gas discharged from the fuel cell 103.
  • Hydrogen gas is used as the fuel gas.
  • the fuel gas is supplied to the anode electrode (not shown) of the fuel cell 103 through the fuel gas supply channel 110.
  • the oxidizing gas supply passage 114 serves as a passage for supplying an oxidizing gas to the fuel cell 103.
  • the oxidizing gas discharge passage 116 serves as a passage for flowing the oxidizing gas discharged from the fuel cell 103. Air is used as the oxidizing gas.
  • the oxidizing gas is supplied to the cathode electrode (not shown) of the fuel cell unit 103 through the oxidizing gas supply channel 114.
  • the cooling medium supply passage 118 serves as a passage for supplying the cooling medium to the fuel cell 103.
  • the cooling medium discharge channel 120 serves as a channel for flowing the cooling medium discharged from the fuel cell 103. Cooling water is used as the cooling medium.
  • the fuel cell 100 may be provided with an insulator plate for insulation and a terminal plate for taking out the generated power, which are not shown.
  • the insulator plate and the terminal plate are respectively arranged between the first end plate 101 and the fuel cell 103 and between the fuel cell 103 and the second end plate 104.
  • the fuel gas circulation pump 105 circulates the fuel gas discharged from the fuel cell 103 to supply the fuel gas to the fuel cell 103 again, and is attached to the outer surface of the first end plate 101.
  • the fuel gas circulation pump 105 pumps and circulates the fuel gas (hydrogen) not used for power generation by the fuel cell 103 in the fuel cell 100, that is, the off gas.
  • the fuel gas circulation pump 105 is driven by a drive pump motor (not shown).
  • FIG. 3 is a schematic front view of the manifold, showing a case where the manifold 102 is viewed from the first end plate 101 side. Further, in FIG. 3, notation of the gas flow path formed in the manifold 102 for flowing the oxidizing gas is omitted, and the position of the fuel gas circulation pump 105 is shown by a two-dot chain line. Note that FIG. 4 shows a cross section in the Z direction of the fuel cell 100 at the position IV-IV in FIG. 5 shows a Z-direction cross section of the fuel cell 100 at the VI position in FIG. 3, and FIG. 6 shows a Z-direction cross section of the fuel cell 100 at the VI-VI position in FIG.
  • the manifold 102 is made of resin.
  • a first gas flow channel 125 and a second gas flow channel 126 are formed in the manifold 102. These gas flow paths 125 and 126 are formed on one surface of the manifold 102 facing the fuel cell 103.
  • Each of the gas flow channels 125 and 126 is formed at a predetermined depth from one surface of the manifold 102.
  • the fuel gas supply passage 110 of the fuel cell 103 is arranged in communication with one end of the first gas passage 125, and the circulation gas discharge passage 135 connected to the fuel gas circulation pump is provided at the other end. It is placed in communication.
  • one end of the second gas flow passage 126 is arranged to communicate with the fuel gas discharge flow passage 112 of the fuel cell 103, and the other end thereof is connected to the introduction flow passage 136 of the fuel gas circulation pump. Are arranged.
  • the first gas passage 125 is a passage for flowing the fuel gas sent out by the fuel gas circulation pump 105 in the plane direction of the manifold 102, that is, in the direction orthogonal to the stacking direction Z.
  • a merging portion 127 is provided at the end of the first gas flow channel 125.
  • the first gas flow channel 125 is formed in an inclined state so that the side of the confluence portion 127 is higher than the opposite side (the side of the circulating gas introduction flow channel 135).
  • the second gas channel 126 is a channel for flowing the fuel gas discharged from the fuel cell unit 103 in the plane direction of the manifold 102, that is, in the direction orthogonal to the stacking direction Z.
  • the second gas flow passage 126 is formed in an inclined state so that the fuel gas discharge flow passage 112 side is lower than the opposite side (circulating gas discharge flow passage 136 side).
  • a fuel gas delivery channel 130 is formed in the manifold 102.
  • the fuel gas delivery channel 130 is formed along the stacking direction Z.
  • the fuel gas delivery channel 130 is formed so as to communicate with the merging portion 127.
  • the merging portion 127 is a portion where the fuel gas delivered by the fuel gas circulation pump 105 and the fuel gas supplied by the injector 106 join together.
  • the merging portion 127 is provided on the upstream side of the fuel cell 103 in the stacking direction Z.
  • the fuel gas delivery passage 130 communicates with the fuel gas supply passage 110 via the first gas passage 125. Will be placed.
  • a fuel gas delivery channel 129 is formed in the first end plate 101.
  • the fuel gas delivery passage 129 is arranged in communication with the fuel gas delivery passage 130.
  • the fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110 form one gas introduction passage 128 extending in the stacking direction Z.
  • the gas introduction flow path 128 is a gas flow path for introducing the fuel gas into each of the fuel cells 103 forming the stack structure.
  • the fuel gas delivery passage 129 and the fuel gas delivery passage 130 are passages for flowing the fuel gas delivered by the injector 106.
  • the fuel gas delivery channel 129 is arranged upstream of the fuel gas delivery channel 130, and the fuel gas supply channel 110 is downstream of the fuel gas delivery channel 130. It is located in. Further, as shown in FIG.
  • the manifold 102 is provided with a circulation gas introduction flow channel 135 and a circulation gas discharge flow channel 136.
  • the circulating gas introducing passage 135 and the circulating gas discharging passage 136 are formed along the stacking direction Z, respectively.
  • the circulating gas introduction flow channel 135 is formed in communication with the first gas flow channel 125, and the circulating gas discharge flow channel 136 is formed in communication with the second gas flow channel 126.
  • the circulating gas introducing passage 135 serves as a gas passage for introducing the gas sent from the fuel gas circulating pump 105 into the first gas passage 125.
  • the circulation gas introduction flow channel 135 is formed so as to communicate with the circulation gas supply flow channel 137 of the first end plate 101.
  • the circulating gas supply flow path 137 is formed so as to penetrate the first end plate 101 in the stacking direction Z.
  • a gas discharge port (not shown) of the fuel gas circulation pump 105 is connected to the circulation gas supply passage 137.
  • the circulation gas discharge flow path 136 serves as a gas flow path for discharging the gas flowing from the fuel gas discharge flow path 112 to the second gas flow path 126 toward the fuel gas circulation pump 105.
  • the circulating gas discharge passage 136 is formed so as to communicate with the circulating gas intake passage 138 of the first end plate 101.
  • the circulating gas intake passage 138 is formed so as to penetrate the first end plate 101 in the stacking direction Z.
  • the circulating gas intake passage 138 is connected to a gas inlet (not shown) of the fuel gas circulation pump 105.
  • the first end plate 101 is formed with a fuel gas delivery passage 129, a fuel gas delivery passage 130, and a fuel gas inlet 131 (see FIG. 4) communicating with the fuel gas supply passage 110.
  • the introduction port 131 opens on the outer surface of the first end plate 101.
  • the injector 106 is mounted on the injector block 107.
  • the injector block 107 is a block for mounting the injector, and is mounted on the outer surface 101 a of the first end plate 101.
  • a gas flow path 132 (see FIG. 4) communicating with the fuel gas delivery flow path 129 via the fuel gas inlet 131 is formed inside the injector block 107.
  • the gas flow passage 132 is formed coaxially with the gas introduction flow passage 128.
  • the injector 106 supplies the fuel gas fed from a fuel gas tank (not shown) to the respective fuel cell units 103 through the fuel gas delivery passage 129, the fuel gas delivery passage 130 and the fuel gas supply passage 110. Fuel gas is sent to the injector 106 from the P direction in FIG.
  • the injector 106 is an electronically controlled injector, and injects fuel gas by opening and closing the injector valve for a very short time.
  • the injection direction of the fuel gas by the injector 106 is set along the stacking direction Z.
  • the central axis of the injector valve is the fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110.
  • the injectors 106 are mounted on the injector block 107 so as to be arranged parallel to and coaxial with the respective central axes of, or arranged in a state close thereto.
  • the fuel gas injected by the injector 106 is sent to the downstream side along each of the fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110. There is.
  • the fuel gas sent to the injector 106 from a fuel gas tank (not shown) is injected by the injector 106.
  • the injector 106 injects the fuel gas toward the fuel gas supply passage 110.
  • the fuel gas injected by the injector 106 flows into the fuel gas supply passage 110 through the gas passage 132, the fuel gas delivery passage 129, and the fuel gas delivery passage 130. Therefore, the fuel gas is supplied to each fuel cell 103.
  • the oxidizing gas is supplied to each of the fuel cells 103 through a route different from the fuel gas supply route.
  • the off-gas (fuel gas) that has not been used for power generation in the fuel cell 103 flows from the fuel gas discharge flow path 112 to the second gas flow path 126, as indicated by arrow A in FIG.
  • the off gas flowing into the second gas flow passage 126 flows through the second gas flow passage 126 from the lower side to the higher side, as indicated by an arrow B in FIG. 3.
  • the off-gas that has flowed through the second gas flow passage 126 flows into the circulating gas discharge flow passage 136 that communicates with the higher end of the second gas flow passage 126.
  • the off-gas flowing into the circulating gas discharge passage 136 is taken into the fuel gas circulation pump 105 from the circulating gas discharge passage 136 through the circulating gas intake passage 138 as shown by an arrow C in FIG.
  • the off-gas thus taken into the fuel gas circulation pump 105 is sent to the circulation gas supply passage 137 by the fuel gas circulation pump 105.
  • the off gas sent to the circulating gas supply passage 137 flows into the first gas passage 125 through the circulating gas introduction passage 135 as shown by an arrow D in FIG.
  • the off gas flowing into the first gas flow channel 125 flows through the first gas flow channel 125 from the lower side to the higher side, as indicated by an arrow E in FIG.
  • liquid water containing impurities is wound up by the fuel gas circulation pump 105. It is conceivable that the gas flows into the merging portion 127 together with the off gas. In such a case, the liquid water flowing into the merging portion 127 is carried to the inner side of the gas introduction flow channel 128 by using the propulsive force of the fuel gas injected by the injector 106. As a result, liquid water containing impurities can be diffused widely in the stacking direction Z of the fuel cell 103.
  • liquid water is not concentratedly supplied to the fuel cells 103 arranged near the fuel gas inlet 131, particularly to the fuel cells 103 arranged next to the manifold 102. Therefore, it is possible to suppress the phenomenon in which the deterioration of the fuel cell 103 arranged near the fuel gas inlet 131 occurs more significantly than that of other fuel cells.
  • the first gas passage 125 of the manifold 102 is formed obliquely. For this reason, as shown in FIG. 3, even if liquid water 133 generated due to dew condensation in the manifold 102 exists in the first gas flow passage 125, for example, this liquid water 133 will not flow through the first gas flow passage 125. It is returned to the lower side according to the inclination of. Therefore, it is possible to prevent the liquid water 133 from reaching the merging portion 127.
  • FIG. 7 is a cross-sectional view showing the main parts of the fuel cell according to the second embodiment.
  • the second embodiment is different from the first embodiment in that a reduced diameter portion 139 is provided in the gas introduction flow path 128 from the injector 106 to the confluence portion 127.
  • the reduced diameter portion 139 is formed by gradually reducing the inner diameter of the fuel gas delivery passage 129 formed in the first end plate 101 from the upstream side to the downstream side of the gas introduction passage 128. ..
  • the reduced diameter portion 139 is for generating cavitation in the liquid flowing into the confluence portion 127 through the first gas flow path 125.
  • the cavitation described here forms a high-speed gas flow by narrowing down a part of the gas introduction flow channel 128, and sprays this gas flow onto the liquid flowing into the confluence portion 127, whereby liquid particles are generated. This is a phenomenon in which the particles are subdivided into multiple particles smaller than the original size.
  • the speed of the fuel gas injected by the injector 106 is increased when passing through the reduced diameter portion 139 of the fuel gas delivery passage 129.
  • the gas flow of the fuel gas that has been sped up is sprayed onto the liquid water when the liquid water flows into the merging portion 127 through the first gas flow path 125.
  • the liquid water particles are subdivided. Therefore, the liquid water can be diffused in a wider range with respect to the plurality of fuel cells 103 stacked in the stacking direction Z. Further, the liquid water can be more uniformly diffused into each fuel cell 103.
  • FIG. 8 is a schematic perspective view showing the configuration of the fuel cell according to the third embodiment.
  • a fuel gas circulation pump 105 and an injector block 107 are attached to the outer surface of the first end plate 101.
  • the fuel gas circulation pump 105 and the injector block 107 are connected by a gas pipe 141.
  • the gas pipe 141 constitutes a gas flow path forming portion.
  • One end of the gas pipe 141 is connected to a gas discharge port (not shown) of the fuel gas circulation pump 105.
  • the gas pipe 141 is a pipe for supplying the fuel gas delivered by the fuel gas circulation pump 105 to the injector block 107.
  • a gas flow path 132a and a gas flow path 132b are formed inside the injector block 107.
  • the gas passage 132a communicates with the fuel gas delivery passage 129 via the fuel gas inlet 131. Further, the gas flow passage 132a forms one gas introduction flow passage 128 together with the fuel gas delivery passage 129, the fuel gas delivery passage 130 and the fuel gas supply passage 110.
  • the end of the gas pipe 141 is connected to the gas flow path 132b.
  • the gas passage 132b is a passage for flowing the fuel gas supplied from the fuel gas circulation pump 105 through the gas pipe 141 toward the gas passage 132a.
  • the gas flow path 132b is connected to the gas flow path 132a inside the injector block 107.
  • a merging portion 145 is provided at a connecting portion between the gas flow passage 132a and the gas flow passage 132b.
  • the fuel gas sent to the injector 106 from a fuel gas tank (not shown) is injected by the injector 106 in the stacking direction Z.
  • the fuel gas vigorously flows through the gas flow path 132 a of the injector block 107 by receiving the propulsive force generated by the injection of the injector 106.
  • the off gas taken into the fuel gas circulation pump 105 is sent to the gas pipe 141 by the fuel gas circulation pump 105.
  • the off gas sent to the gas pipe 141 flows into the merging portion 145 through the gas flow path 132b of the injector block 107.
  • the off-gas that has flowed into the merging portion 145 merges with the fuel gas supplied by the injector 106 and flows into the downstream side of the gas introduction flow channel 128 together with the fuel gas.
  • liquid water containing impurities is rolled up by the fuel gas circulation pump 105 and flows into the merging portion 145 together with the off gas.
  • the liquid water that has flowed into the merging portion 145 is carried to the inner side of the gas introduction flow channel 128 by using the propulsive force of the fuel gas injected by the injector 106.
  • liquid water containing impurities can be diffused widely in the stacking direction Z of the fuel cell 103. Therefore, it is possible to suppress a phenomenon in which the deterioration of the fuel battery cells 103 arranged near the fuel gas inlet 131 of the first end plate 101 occurs more significantly than that of other fuel battery cells.
  • the fuel gas sent out by the fuel gas circulation pump 105 is made to flow into the merging portion 145 through the gas pipe 141 and the gas flow path 132b, and therefore the first manifold 102 is provided. It is not necessary to provide the gas passage 125 and the circulating gas introduction passage 135.
  • the fuel gas delivery passage 129 is provided with the reduced diameter portion 139
  • the present invention is not limited to this, and the fuel gas delivery passage 130 may be provided with the reduced diameter portion 139.
  • the configuration having the reduced diameter portion is also applicable to the third embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A fuel battery comprising a plurality of stacked fuel cells, an injector for supplying fuel gas to the fuel cells, and a fuel gas circulation pump which causes fuel gas to be circulated in order to resupply fuel gas discharged from the fuel cells to the fuel cells (103), wherein: a fuel gas supply passage extending in the stacking direction (Z) of the fuel cells is formed in the plurality of fuel cells of the fuel battery; the injector injects fuel gas towards the fuel gas supply passage, the injection direction being set in the stacking direction; and a merging part for merging fuel gas circulated by the fuel gas circulation pump and fuel gas supplied by the injector is provided upstream of the fuel cells and downstream of the injector.

Description

燃料電池Fuel cell
 本開示は、燃料電池に関する。 The present disclosure relates to a fuel cell.
 燃料電池は、発電の一つの単位となる燃料電池セルを複数積層したスタック構造を有し、その積層方向の両端部にエンドプレートを備えている(たとえば、特許文献1を参照)。エンドプレートには、燃料ガスを導入するための燃料ガス導入口と、燃料ガスを排出するための燃料ガス排出口と、酸化ガスを導入するための酸化ガス導入口と、酸化ガスを排出するための酸化ガス排出口とが設けられている。燃料ガス排出口から排出される燃料ガスには、燃料電池セルによる発電に使用されなかった燃料ガスが含まれる。そこで、燃料ガスを有効活用するために、燃料ガス排出口から排出される燃料ガスを燃料ガス循環ポンプで循環させるとともに、循環させた燃料ガスを、燃料タンクから供給される燃料ガスと共に燃料電池セルへ供給する技術が知られている。 A fuel cell has a stack structure in which a plurality of fuel cells, which are one unit of power generation, are stacked, and end plates are provided at both ends in the stacking direction (for example, see Patent Document 1). The end plate has a fuel gas inlet for introducing a fuel gas, a fuel gas outlet for discharging a fuel gas, an oxidizing gas inlet for introducing an oxidizing gas, and an oxidizing gas for discharging. And an oxidant gas exhaust port are provided. The fuel gas discharged from the fuel gas outlet includes the fuel gas not used for power generation by the fuel cell unit. Therefore, in order to effectively utilize the fuel gas, the fuel gas discharged from the fuel gas outlet is circulated by the fuel gas circulation pump, and the circulated fuel gas is also fueled with the fuel gas supplied from the fuel tank. The technology to supply to is known.
特開2003-338305号公報JP-A-2003-338305
 しかしながら、燃料ガス循環ポンプによって燃料ガスを循環させる場合は、その燃料ガスだけではなく、発電によって生じた液水(生成水)や、この液水に溶出した不純物であるカチオンコンタミも一緒に循環される。このような不純物を含む液水が燃料電池セルに供給されると、燃料電池セルが劣化する。また、燃料ガスを燃料ガス循環ポンプによって循環させると、燃料ガスと共に循環する液水が、燃料ガス導入口の近くに配置された燃料電池セルに集中的に供給される。このため、燃料ガス導入口の近くの燃料電池セルが他の燃料電池セルと比較して劣化が顕著に起こる。 However, when the fuel gas is circulated by the fuel gas circulation pump, not only the fuel gas but also liquid water (generated water) generated by power generation and cation contaminants that are impurities eluted in the liquid water are also circulated. It When liquid water containing such impurities is supplied to the fuel cell, the fuel cell deteriorates. Further, when the fuel gas is circulated by the fuel gas circulation pump, the liquid water that circulates together with the fuel gas is concentratedly supplied to the fuel cells arranged near the fuel gas inlet. For this reason, the fuel cells near the fuel gas inlet are significantly deteriorated as compared with other fuel cells.
 本開示は、上記課題を解決するためになされたもので、その目的は、燃料ガス導入口の近くに配置される燃料電池セルの顕著な劣化を抑制することができる燃料電池を提供することにある。 The present disclosure has been made to solve the above problems, and an object thereof is to provide a fuel cell capable of suppressing remarkable deterioration of a fuel battery cell arranged near a fuel gas inlet. is there.
 本開示に係る燃料電池は、積層された複数の燃料電池セルと、燃料電池セルに燃料ガスを供給するためのインジェクタと、燃料電池セルから排出される燃料ガスを再度燃料電池セルに供給するために燃料ガスを循環させる燃料ガス循環ポンプとを備え、複数の燃料電池セルには、燃料電池セルの積層方向に延びる燃料ガス供給流路が形成され、インジェクタは、燃料ガス供給流路に向けて燃料ガスを噴射するとともに、その噴射の方向が積層方向に沿って設定され、燃料ガス循環ポンプによって循環される燃料ガスとインジェクタによって供給される燃料ガスとの合流部が、燃料電池セルよりも上流側で、かつ、インジェクタよりも下流側に設けられている。 The fuel cell according to the present disclosure includes a plurality of stacked fuel cells, an injector for supplying a fuel gas to the fuel cell, and a fuel gas discharged from the fuel cell to the fuel cell again. And a fuel gas circulation pump that circulates the fuel gas, a plurality of fuel cells are provided with a fuel gas supply passage extending in the stacking direction of the fuel cells, and the injector is directed toward the fuel gas supply passage. While injecting the fuel gas, the injection direction is set along the stacking direction, and the confluence portion of the fuel gas circulated by the fuel gas circulation pump and the fuel gas supplied by the injector is located upstream of the fuel cell unit. And on the downstream side of the injector.
 本開示に係る燃料電池は、積層方向の一方側に配置されたエンドプレートと、積層方向においてエンドプレートと燃料電池セルとの間に配置されたマニホールドとをさらに備え、マニホールドは、燃料ガス循環ポンプによって送り出される燃料ガスを積層方向と異なる方向に流すためのガス流路を有し、ガス流路の端部に合流部が設けられていてもよい。 The fuel cell according to the present disclosure further includes an end plate arranged on one side in the stacking direction, and a manifold arranged between the end plate and the fuel cell in the stacking direction, and the manifold is a fuel gas circulation pump. It may have a gas flow path for flowing the fuel gas sent out by in a direction different from the stacking direction, and a merging portion may be provided at an end of the gas flow path.
 本開示に係る燃料電池において、マニホールドのガス流路は、合流部の側が反対側よりも高くなるように斜めに形成されていてもよい。 In the fuel cell according to the present disclosure, the gas flow path of the manifold may be formed obliquely so that the side of the merging portion is higher than the opposite side.
 本開示に係る燃料電池は、積層方向の一方側に配置されたエンドプレートと、インジェクタが搭載されるとともに、エンドプレートに取り付けられたインジェクタブロックと、燃料ガス循環ポンプとインジェクタブロックとを接続するガス流路形成部とをさらに備え、合流部がインジェクタブロックの内部に設けられているものである。 The fuel cell according to the present disclosure has an end plate arranged on one side in the stacking direction, an injector mounted with the injector block, and a gas connecting the fuel gas circulation pump and the injector block. A flow passage forming portion is further provided, and the confluence portion is provided inside the injector block.
 本開示に係る燃料電池において、インジェクタから合流部に至るまでのガス導入流路に、合流部に流れ込む液体にキャビテーションを発生させる縮径部が設けられていてもよい。 In the fuel cell according to the present disclosure, the gas introduction flow path from the injector to the confluence portion may be provided with a reduced diameter portion that causes cavitation in the liquid flowing into the confluence portion.
 本開示によれば、燃料ガス導入口の近くに配置される燃料電池セルの顕著な劣化を抑制することができる。 According to the present disclosure, it is possible to suppress remarkable deterioration of the fuel battery cells arranged near the fuel gas inlet.
第1実施形態に係る燃料電池の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fuel cell which concerns on 1st Embodiment. 図1の燃料電池に用いられる燃料電池セルの構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fuel cell unit used for the fuel cell of FIG. 図1の燃料電池に用いられるマニホールドの構造を示す概略正面図である。It is a schematic front view which shows the structure of the manifold used for the fuel cell of FIG. 図1の燃料電池においてインジェクタの取付状態を示す横断面図である。FIG. 2 is a cross-sectional view showing how the injector is mounted in the fuel cell of FIG. 1. 図1の燃料電池の一部を示す横断面図である。It is a cross-sectional view showing a part of the fuel cell of FIG. 図1の燃料電池において燃料ガス循環ポンプの取付状態を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a mounted state of a fuel gas circulation pump in the fuel cell of FIG. 1. 第2実施形態に係る燃料電池の要部を示す横断面図である。It is a cross-sectional view which shows the principal part of the fuel cell which concerns on 2nd Embodiment. 第3実施形態に係る燃料電池の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fuel cell which concerns on 3rd Embodiment. 図8の燃料電池においてインジェクタの取付状態を示す横断面図である。FIG. 9 is a cross-sectional view showing how the injector is mounted in the fuel cell of FIG. 8.
 以下、実施形態について図面を用いて説明する。なお、以下の説明において、同一要素または同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Embodiments will be described below with reference to the drawings. In the following description, the same elements or elements having the same function will be denoted by the same reference symbols, without redundant description.
 <第1実施形態>
 図1は、本開示の第1実施形態に係る燃料電池の構成を示す概略斜視図である。
 図1に示すように、燃料電池100は、固体高分子型燃料電池であって、第1のエンドプレート101と、第1のエンドプレート101に隣接して配置されるマニホールド102と、スタック構造を有する複数の燃料電池セル103と、第1のエンドプレート101と反対側の端部に配置される第2のエンドプレート104とを備えている。第1のエンドプレート101、マニホールド102、燃料電池セル103および第2のエンドプレート104は、それぞれ正面方向から見て長方形に形成されている。また、燃料電池100は、燃料ガスを循環させるための燃料ガス循環ポンプ105と、燃料電池セル103に燃料ガスを供給するためのインジェクタ106と、インジェクタ106が搭載されるインジェクタブロック107とを備えている。
<First Embodiment>
FIG. 1 is a schematic perspective view showing the configuration of the fuel cell according to the first embodiment of the present disclosure.
As shown in FIG. 1, the fuel cell 100 is a polymer electrolyte fuel cell, and includes a first end plate 101, a manifold 102 disposed adjacent to the first end plate 101, and a stack structure. It has a plurality of fuel cells 103 which it has, and the 2nd end plate 104 arranged at the end opposite to the 1st end plate 101. The first end plate 101, the manifold 102, the fuel cell 103, and the second end plate 104 are each formed in a rectangular shape when viewed from the front direction. Further, the fuel cell 100 includes a fuel gas circulation pump 105 for circulating the fuel gas, an injector 106 for supplying the fuel gas to the fuel cell 103, and an injector block 107 on which the injector 106 is mounted. There is.
 第1のエンドプレート101および第2のエンドプレート104は、燃料電池100の両端に配置されている。また、第1のエンドプレート101および第2のエンドプレート104は、マニホールド102と複数の燃料電池セル103とを両側から挟むように配置されている。マニホールド102は、第1のエンドプレート101と燃料電池セル103との間に挟まれている。 The first end plate 101 and the second end plate 104 are arranged at both ends of the fuel cell 100. The first end plate 101 and the second end plate 104 are arranged so as to sandwich the manifold 102 and the plurality of fuel cell units 103 from both sides. The manifold 102 is sandwiched between the first end plate 101 and the fuel cell 103.
 各々の燃料電池セル103は、Z方向(以下、「積層方向」ともいう。)に積層されている。燃料電池100は、燃料電池セル103の積層方向Zが水平方向となる向きで車両等の移動体に搭載される。燃料電池100は多数の燃料電池セル103を積層して構成される。燃料電池セル103の積層数は、燃料電池100に要求される電圧または出力に応じて設定される。 The respective fuel cells 103 are stacked in the Z direction (hereinafter, also referred to as “stacking direction”). The fuel cell 100 is mounted on a moving body such as a vehicle so that the stacking direction Z of the fuel cell 103 is horizontal. The fuel cell 100 is configured by stacking a large number of fuel cells 103. The number of stacked fuel cells 103 is set according to the voltage or output required for the fuel cell 100.
 燃料電池セル103は、発電の一つの単位となる単位燃料電池セルを構成するものである。燃料電池セル103は、図示はしないが、電解質膜の両面を2つのセパレータで挟んだ構造になっている。電解質膜の一方の面にはカソード電極が配置され、電解質膜の他方の面にはアノード電極が配置される。以降の説明では、燃料電池100を移動体に搭載した状態を基準に鉛直方向をY方向と記載し、このY方向に直交する方向をX方向と記載する。この場合、X方向は燃料電池100の幅方向に相当し、Y方向は燃料電池100の高さ方向に相当する。 The fuel battery cell 103 constitutes a unit fuel battery cell which is one unit of power generation. Although not shown, the fuel cell 103 has a structure in which both sides of the electrolyte membrane are sandwiched by two separators. A cathode electrode is arranged on one surface of the electrolyte membrane, and an anode electrode is arranged on the other surface of the electrolyte membrane. In the following description, the vertical direction will be referred to as the Y direction, and the direction orthogonal to this Y direction will be referred to as the X direction, based on the state where the fuel cell 100 is mounted on the moving body. In this case, the X direction corresponds to the width direction of the fuel cell 100, and the Y direction corresponds to the height direction of the fuel cell 100.
 燃料電池セル103には、図2に示すように、燃料ガス供給流路110と、燃料ガス排出流路112と、酸化ガス供給流路114と、酸化ガス排出流路116と、冷却媒体供給流路118と、冷却媒体排出流路120とが、それぞれ積層方向Zに貫通して設けられている。 As shown in FIG. 2, the fuel cell 103 has a fuel gas supply channel 110, a fuel gas exhaust channel 112, an oxidizing gas supply channel 114, an oxidizing gas exhaust channel 116, and a cooling medium supply stream. The passage 118 and the cooling medium discharge passage 120 are provided so as to penetrate in the stacking direction Z, respectively.
 燃料ガス供給流路110は、燃料電池セル103に対して燃料ガスを供給するためのガス流路となる。燃料ガス排出流路112は、燃料電池セル103から排出される燃料ガスを流すための流路となる。燃料ガスとしては、水素ガスが使用される。燃料ガスは、燃料ガス供給流路110を通して燃料電池セル103のアノード電極(図示せず)に供給される。 The fuel gas supply passage 110 serves as a gas passage for supplying the fuel gas to the fuel cell 103. The fuel gas discharge flow path 112 serves as a flow path for flowing the fuel gas discharged from the fuel cell 103. Hydrogen gas is used as the fuel gas. The fuel gas is supplied to the anode electrode (not shown) of the fuel cell 103 through the fuel gas supply channel 110.
 酸化ガス供給流路114は、燃料電池セル103に対して酸化ガスを供給するための流路となる。酸化ガス排出流路116は、燃料電池セル103から排出される酸化ガスを流すための流路となる。酸化ガスとしては、空気が使用される。酸化ガスは、酸化ガス供給流路114を通して燃料電池セル103のカソード電極(図示せず)に供給される。 The oxidizing gas supply passage 114 serves as a passage for supplying an oxidizing gas to the fuel cell 103. The oxidizing gas discharge passage 116 serves as a passage for flowing the oxidizing gas discharged from the fuel cell 103. Air is used as the oxidizing gas. The oxidizing gas is supplied to the cathode electrode (not shown) of the fuel cell unit 103 through the oxidizing gas supply channel 114.
 冷却媒体供給流路118は、燃料電池セル103に対して冷却媒体を供給するための流路となる。冷却媒体排出流路120は、燃料電池セル103から排出される冷却媒体を流すための流路となる。冷却媒体としては、冷却水が使用される。 The cooling medium supply passage 118 serves as a passage for supplying the cooling medium to the fuel cell 103. The cooling medium discharge channel 120 serves as a channel for flowing the cooling medium discharged from the fuel cell 103. Cooling water is used as the cooling medium.
 なお、図1では省略しているが、燃料電池100には、図示しない絶縁のためのインシュレータプレートや発電した電力を取り出すためのターミナルプレートが設けられる場合がある。インシュレータプレートやターミナルプレートは、第1のエンドプレート101と燃料電池セル103との間、および、燃料電池セル103と第2のエンドプレート104との間に、それぞれ配置される。 Note that although omitted in FIG. 1, the fuel cell 100 may be provided with an insulator plate for insulation and a terminal plate for taking out the generated power, which are not shown. The insulator plate and the terminal plate are respectively arranged between the first end plate 101 and the fuel cell 103 and between the fuel cell 103 and the second end plate 104.
 燃料ガス循環ポンプ105は、燃料電池セル103から排出される燃料ガスを再度燃料電池セル103に供給するために燃料ガスを循環させるもので、第1のエンドプレート101の外面に取り付けられている。燃料ガス循環ポンプ105は、燃料電池100において、燃料電池セル103による発電に使用されなかった燃料ガス(水素)、すなわちオフガスを圧送して循環させる。燃料ガス循環ポンプ105は、図示しない駆動用のポンプモータによって駆動される。 The fuel gas circulation pump 105 circulates the fuel gas discharged from the fuel cell 103 to supply the fuel gas to the fuel cell 103 again, and is attached to the outer surface of the first end plate 101. The fuel gas circulation pump 105 pumps and circulates the fuel gas (hydrogen) not used for power generation by the fuel cell 103 in the fuel cell 100, that is, the off gas. The fuel gas circulation pump 105 is driven by a drive pump motor (not shown).
 次に、図1の燃料電池に用いられるマニホールドの構造について、図3~図6を用いて説明する。図3は、マニホールドの概略正面図であり、第1のエンドプレート101側からマニホールド102を見た場合を示している。また、図3においては、酸化ガスを流すためにマニホールド102に形成されるガス流路の表記を省略するとともに、燃料ガス循環ポンプ105の位置を二点鎖線で示している。なお、図4は、図3のIV-IV位置における燃料電池100のZ方向の断面を示している。また、図5は、図3のV-I位置における燃料電池100のZ方向の断面を示し、図6は、図3のVI-VI位置における燃料電池100のZ方向の断面を示している。 Next, the structure of the manifold used in the fuel cell of FIG. 1 will be described with reference to FIGS. 3 to 6. FIG. 3 is a schematic front view of the manifold, showing a case where the manifold 102 is viewed from the first end plate 101 side. Further, in FIG. 3, notation of the gas flow path formed in the manifold 102 for flowing the oxidizing gas is omitted, and the position of the fuel gas circulation pump 105 is shown by a two-dot chain line. Note that FIG. 4 shows a cross section in the Z direction of the fuel cell 100 at the position IV-IV in FIG. 5 shows a Z-direction cross section of the fuel cell 100 at the VI position in FIG. 3, and FIG. 6 shows a Z-direction cross section of the fuel cell 100 at the VI-VI position in FIG.
 マニホールド102は、樹脂によって構成されている。マニホールド102には、第1のガス流路125と第2のガス流路126とが形成されている。これらのガス流路125,126は、燃料電池セル103と対向するマニホールド102の一方の面に形成されている。各々のガス流路125,126は、マニホールド102の一方の面から所定の深さで形成されている。第1のガス流路125の一端部には、燃料電池セル103の燃料ガス供給流路110が連通して配置され、他端部には燃料ガス循環ポンプに接続する循環ガス排出流路135が連通して配置されている。一方、第2のガス流路126の一端部には、燃料電池セル103の燃料ガス排出流路112が連通して配置され、他端部には燃料ガス循環ポンプの導入流路136が連通して配置されている。 The manifold 102 is made of resin. In the manifold 102, a first gas flow channel 125 and a second gas flow channel 126 are formed. These gas flow paths 125 and 126 are formed on one surface of the manifold 102 facing the fuel cell 103. Each of the gas flow channels 125 and 126 is formed at a predetermined depth from one surface of the manifold 102. The fuel gas supply passage 110 of the fuel cell 103 is arranged in communication with one end of the first gas passage 125, and the circulation gas discharge passage 135 connected to the fuel gas circulation pump is provided at the other end. It is placed in communication. On the other hand, one end of the second gas flow passage 126 is arranged to communicate with the fuel gas discharge flow passage 112 of the fuel cell 103, and the other end thereof is connected to the introduction flow passage 136 of the fuel gas circulation pump. Are arranged.
 第1のガス流路125は、燃料ガス循環ポンプ105によって送り出される燃料ガスをマニホールド102の面方向、すなわち積層方向Zと直交する方向に流すための流路になっている。また、第1のガス流路125の端部には合流部127が設けられている。第1のガス流路125は、合流部127の側がその反対側(循環ガス導入流路135の側)よりも高くなるように斜めに傾斜した状態で形成されている。第2のガス流路126は、燃料電池セル103から排出される燃料ガスをマニホールド102の面方向、すなわち積層方向Zと直交する方向に流すための流路になっている。第2のガス流路126は、燃料ガス排出流路112の側がその反対側(循環ガス排出流路136の側)よりも低くなるように斜めに傾斜した状態で形成されている。 The first gas passage 125 is a passage for flowing the fuel gas sent out by the fuel gas circulation pump 105 in the plane direction of the manifold 102, that is, in the direction orthogonal to the stacking direction Z. A merging portion 127 is provided at the end of the first gas flow channel 125. The first gas flow channel 125 is formed in an inclined state so that the side of the confluence portion 127 is higher than the opposite side (the side of the circulating gas introduction flow channel 135). The second gas channel 126 is a channel for flowing the fuel gas discharged from the fuel cell unit 103 in the plane direction of the manifold 102, that is, in the direction orthogonal to the stacking direction Z. The second gas flow passage 126 is formed in an inclined state so that the fuel gas discharge flow passage 112 side is lower than the opposite side (circulating gas discharge flow passage 136 side).
 また、マニホールド102には、図4に示すように、燃料ガス送出流路130が形成されている。燃料ガス送出流路130、積層方向Zに沿って形成されている。燃料ガス送出流路130は合流部127に連通して形成されている。合流部127は、燃料ガス循環ポンプ105によって送り出される燃料ガスとインジェクタ106によって供給される燃料ガスとが合流する部分である。合流部127は、積層方向Zにおいて燃料電池セル103よりも上流側に設けられている。そして、第1のエンドプレート101、マニホールド102および燃料電池セル103をZ方向に積層した状態では、燃料ガス送出流路130が第1のガス流路125を介して燃料ガス供給流路110に連通して配置される。また、第1のエンドプレート101には燃料ガス送出流路129が形成されている。燃料ガス送出流路129は、燃料ガス送出流路130に連通して配置される。 Further, as shown in FIG. 4, a fuel gas delivery channel 130 is formed in the manifold 102. The fuel gas delivery channel 130 is formed along the stacking direction Z. The fuel gas delivery channel 130 is formed so as to communicate with the merging portion 127. The merging portion 127 is a portion where the fuel gas delivered by the fuel gas circulation pump 105 and the fuel gas supplied by the injector 106 join together. The merging portion 127 is provided on the upstream side of the fuel cell 103 in the stacking direction Z. Then, in a state where the first end plate 101, the manifold 102 and the fuel cell 103 are stacked in the Z direction, the fuel gas delivery passage 130 communicates with the fuel gas supply passage 110 via the first gas passage 125. Will be placed. A fuel gas delivery channel 129 is formed in the first end plate 101. The fuel gas delivery passage 129 is arranged in communication with the fuel gas delivery passage 130.
 燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110は、積層方向Zに延びる一つのガス導入流路128を形成している。ガス導入流路128は、スタック構造をなす各々の燃料電池セル103に燃料ガスを導入するためのガス流路である。燃料ガス送出流路129および燃料ガス送出流路130は、インジェクタ106によって送り出される燃料ガスを流すための流路である。ガス導入流路128におけるガスの流れ方向において、燃料ガス送出流路129は燃料ガス送出流路130よりも上流側に配置され、燃料ガス供給流路110は燃料ガス送出流路130よりも下流側に配置されている。
 また、マニホールド102には、図6に示すように、循環ガス導入流路135と、循環ガス排出流路136が形成されている。循環ガス導入流路135および循環ガス排出流路136は、それぞれ積層方向Zに沿って形成されている。循環ガス導入流路135は第1のガス流路125に連通して形成され、循環ガス排出流路136は第2のガス流路126に連通して形成されている。
The fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110 form one gas introduction passage 128 extending in the stacking direction Z. The gas introduction flow path 128 is a gas flow path for introducing the fuel gas into each of the fuel cells 103 forming the stack structure. The fuel gas delivery passage 129 and the fuel gas delivery passage 130 are passages for flowing the fuel gas delivered by the injector 106. In the flow direction of the gas in the gas introduction channel 128, the fuel gas delivery channel 129 is arranged upstream of the fuel gas delivery channel 130, and the fuel gas supply channel 110 is downstream of the fuel gas delivery channel 130. It is located in.
Further, as shown in FIG. 6, the manifold 102 is provided with a circulation gas introduction flow channel 135 and a circulation gas discharge flow channel 136. The circulating gas introducing passage 135 and the circulating gas discharging passage 136 are formed along the stacking direction Z, respectively. The circulating gas introduction flow channel 135 is formed in communication with the first gas flow channel 125, and the circulating gas discharge flow channel 136 is formed in communication with the second gas flow channel 126.
 循環ガス導入流路135は、燃料ガス循環ポンプ105から送り出されるガスを第1のガス流路125へと導入するためのガス流路となる。循環ガス導入流路135は、図6に示すように、第1のエンドプレート101の循環ガス供給流路137に連通するように形成されている。循環ガス供給流路137は、第1のエンドプレート101を積層方向Zに貫通するように形成されている。循環ガス供給流路137には、燃料ガス循環ポンプ105のガス吐出口(図示せず)が接続されている。 The circulating gas introducing passage 135 serves as a gas passage for introducing the gas sent from the fuel gas circulating pump 105 into the first gas passage 125. As shown in FIG. 6, the circulation gas introduction flow channel 135 is formed so as to communicate with the circulation gas supply flow channel 137 of the first end plate 101. The circulating gas supply flow path 137 is formed so as to penetrate the first end plate 101 in the stacking direction Z. A gas discharge port (not shown) of the fuel gas circulation pump 105 is connected to the circulation gas supply passage 137.
 循環ガス排出流路136は、燃料ガス排出流路112から第2のガス流路126へと流れたガスを燃料ガス循環ポンプ105に向けて排出するためのガス流路となる。循環ガス排出流路136は、図6に示すように、第1のエンドプレート101の循環ガス取込流路138に連通するように形成されている。循環ガス取込流路138は、第1のエンドプレート101を積層方向Zに貫通するように形成されている。循環ガス取込流路138には、燃料ガス循環ポンプ105のガス取込口(図示せず)に接続されている。また、第1のエンドプレート101には、燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110に通じる燃料ガス導入口131(図4参照)が形成されている燃料ガス導入口131は、第1のエンドプレート101の外面に開口している。 The circulation gas discharge flow path 136 serves as a gas flow path for discharging the gas flowing from the fuel gas discharge flow path 112 to the second gas flow path 126 toward the fuel gas circulation pump 105. As shown in FIG. 6, the circulating gas discharge passage 136 is formed so as to communicate with the circulating gas intake passage 138 of the first end plate 101. The circulating gas intake passage 138 is formed so as to penetrate the first end plate 101 in the stacking direction Z. The circulating gas intake passage 138 is connected to a gas inlet (not shown) of the fuel gas circulation pump 105. Further, the first end plate 101 is formed with a fuel gas delivery passage 129, a fuel gas delivery passage 130, and a fuel gas inlet 131 (see FIG. 4) communicating with the fuel gas supply passage 110. The introduction port 131 opens on the outer surface of the first end plate 101.
 インジェクタ106は、インジェクタブロック107に搭載されている。インジェクタブロック107は、インジェクタ取付用のブロックであって、第1のエンドプレート101の外面101aに取り付けられている。インジェクタブロック107の内部には、燃料ガス導入口131を介して燃料ガス送出流路129に連通するガス流路132(図4参照)が形成されている。このガス流路132は、ガス導入流路128と同軸上に形成されている。 The injector 106 is mounted on the injector block 107. The injector block 107 is a block for mounting the injector, and is mounted on the outer surface 101 a of the first end plate 101. Inside the injector block 107, a gas flow path 132 (see FIG. 4) communicating with the fuel gas delivery flow path 129 via the fuel gas inlet 131 is formed. The gas flow passage 132 is formed coaxially with the gas introduction flow passage 128.
 インジェクタ106は、図示しない燃料ガスタンクから送り込まれる燃料ガスを、燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110を通して、各々の燃料電池セル103に供給するものである。インジェクタ106には、図1のP方向から燃料ガスが送り込まれる。インジェクタ106は、電子制御式のインジェクタであって、微小時間のインジェクタバルブの開閉によって燃料ガスを噴射する。 The injector 106 supplies the fuel gas fed from a fuel gas tank (not shown) to the respective fuel cell units 103 through the fuel gas delivery passage 129, the fuel gas delivery passage 130 and the fuel gas supply passage 110. Fuel gas is sent to the injector 106 from the P direction in FIG. The injector 106 is an electronically controlled injector, and injects fuel gas by opening and closing the injector valve for a very short time.
 インジェクタ106による燃料ガスの噴射方向は、積層方向Zに沿って設定されている。具体的には、インジェクタ106がインジェクタバルブの中心軸方向に燃料ガスを噴射する場合は、インジェクタバルブの中心軸が、燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110の各中心軸と平行かつ同軸に配置されるか、あるいはそれに近い状態で配置されるように、インジェクタ106がインジェクタブロック107に搭載されている。これにより、インジェクタ106によって噴射される燃料ガスは、燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110の各流路に沿って下流側へと送られる構成になっている。 The injection direction of the fuel gas by the injector 106 is set along the stacking direction Z. Specifically, when the injector 106 injects fuel gas in the direction of the central axis of the injector valve, the central axis of the injector valve is the fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110. The injectors 106 are mounted on the injector block 107 so as to be arranged parallel to and coaxial with the respective central axes of, or arranged in a state close thereto. As a result, the fuel gas injected by the injector 106 is sent to the downstream side along each of the fuel gas delivery passage 129, the fuel gas delivery passage 130, and the fuel gas supply passage 110. There is.
 続いて、第1実施形態に係る燃料電池の動作について説明する。
 まず、図示しない燃料ガスタンクからインジェクタ106へと送り込まれた燃料ガスは、インジェクタ106によって噴射される。このとき、インジェクタ106は、燃料ガス供給流路110に向けて燃料ガスを噴射する。これにより、インジェクタ106によって噴射された燃料ガスは、ガス流路132、燃料ガス送出流路129および燃料ガス送出流路130を通して燃料ガス供給流路110に流れ込む。このため、各々の燃料電池セル103に燃料ガスが供給される。また、各々の燃料電池セル103には、燃料ガスの供給経路とは別経路で酸化ガスが供給される。こうして燃料電池セル103に燃料ガスと酸化ガスとが供給されると、燃料ガスと酸化ガスとの電気化学反応によって燃料電池セル103が発電する。
Next, the operation of the fuel cell according to the first embodiment will be described.
First, the fuel gas sent to the injector 106 from a fuel gas tank (not shown) is injected by the injector 106. At this time, the injector 106 injects the fuel gas toward the fuel gas supply passage 110. As a result, the fuel gas injected by the injector 106 flows into the fuel gas supply passage 110 through the gas passage 132, the fuel gas delivery passage 129, and the fuel gas delivery passage 130. Therefore, the fuel gas is supplied to each fuel cell 103. Further, the oxidizing gas is supplied to each of the fuel cells 103 through a route different from the fuel gas supply route. When the fuel gas and the oxidizing gas are supplied to the fuel cell 103 in this manner, the fuel cell 103 generates power by the electrochemical reaction between the fuel gas and the oxidizing gas.
 そして、燃料電池セル103で発電に使用されなかったオフガス(燃料ガス)は、図5に矢印Aで示すように、燃料ガス排出流路112から第2のガス流路126へと流れ込む。第2のガス流路126に流れ込んだオフガスは、図3に矢印Bで示すように、第2のガス流路126を低い側から高い側に向かって流れる。さらに、第2のガス流路126を流れたオフガスは、第2のガス流路126の高い側の端部に連通している循環ガス排出流路136へと流れ込む。循環ガス排出流路136に流れ込んだオフガスは、図6に矢印Cで示すように、循環ガス排出流路136から循環ガス取込流路138を通して燃料ガス循環ポンプ105に取り込まれる。 Then, the off-gas (fuel gas) that has not been used for power generation in the fuel cell 103 flows from the fuel gas discharge flow path 112 to the second gas flow path 126, as indicated by arrow A in FIG. The off gas flowing into the second gas flow passage 126 flows through the second gas flow passage 126 from the lower side to the higher side, as indicated by an arrow B in FIG. 3. Further, the off-gas that has flowed through the second gas flow passage 126 flows into the circulating gas discharge flow passage 136 that communicates with the higher end of the second gas flow passage 126. The off-gas flowing into the circulating gas discharge passage 136 is taken into the fuel gas circulation pump 105 from the circulating gas discharge passage 136 through the circulating gas intake passage 138 as shown by an arrow C in FIG.
 こうして燃料ガス循環ポンプ105に取り込まれたオフガスは、燃料ガス循環ポンプ105によって循環ガス供給流路137へと送り込まれる。循環ガス供給流路137に送り込まれたオフガスは、図6に矢印Dで示すように、循環ガス導入流路135を通して第1のガス流路125へと流れ込む。第1のガス流路125に流れ込んだオフガスは、図3の矢印Eで示すように、第1のガス流路125を低い側から高い側に向かって流れる。 The off-gas thus taken into the fuel gas circulation pump 105 is sent to the circulation gas supply passage 137 by the fuel gas circulation pump 105. The off gas sent to the circulating gas supply passage 137 flows into the first gas passage 125 through the circulating gas introduction passage 135 as shown by an arrow D in FIG. The off gas flowing into the first gas flow channel 125 flows through the first gas flow channel 125 from the lower side to the higher side, as indicated by an arrow E in FIG.
 ここで、燃料電池セル103の燃料ガス排出流路112から燃料ガスと共に液水が排出され、この液水に不純物が溶出している場合は、不純物を含む液水が燃料ガス循環ポンプ105により巻き上げられ、オフガスと共に合流部127へと流れ込むことが考えられる。そうした場合、合流部127へと流れ込んだ液水は、インジェクタ106によって噴射される燃料ガスの推進力を利用して、ガス導入流路128の奥側へと運ばれる。これにより、不純物を含む液水を、燃料電池セル103の積層方向Zに広く拡散させることができる。このため、燃料ガス導入口131の近くに配置される燃料電池セル103、特に、マニホールド102の隣に配置される燃料電池セル103に液水が集中的に供給されることがない。したがって、燃料ガス導入口131の近くに配置される燃料電池セル103の劣化が他の燃料電池セルよりも顕著に起こる現象を抑制することができる。 Here, when liquid water is discharged together with the fuel gas from the fuel gas discharge passage 112 of the fuel cell 103 and impurities are eluted in the liquid water, the liquid water containing impurities is wound up by the fuel gas circulation pump 105. It is conceivable that the gas flows into the merging portion 127 together with the off gas. In such a case, the liquid water flowing into the merging portion 127 is carried to the inner side of the gas introduction flow channel 128 by using the propulsive force of the fuel gas injected by the injector 106. As a result, liquid water containing impurities can be diffused widely in the stacking direction Z of the fuel cell 103. For this reason, liquid water is not concentratedly supplied to the fuel cells 103 arranged near the fuel gas inlet 131, particularly to the fuel cells 103 arranged next to the manifold 102. Therefore, it is possible to suppress the phenomenon in which the deterioration of the fuel cell 103 arranged near the fuel gas inlet 131 occurs more significantly than that of other fuel cells.
 また、本第1実施形態においては、マニホールド102の第1のガス流路125が斜めに形成されている。このため、図3に示すように、たとえばマニホールド102内での結露によって発生した液水133が第1のガス流路125に存在していても、この液水133は第1のガス流路125の傾斜に従って低い側に戻される。このため、液水133が合流部127に達することを抑制することができる。 Further, in the first embodiment, the first gas passage 125 of the manifold 102 is formed obliquely. For this reason, as shown in FIG. 3, even if liquid water 133 generated due to dew condensation in the manifold 102 exists in the first gas flow passage 125, for example, this liquid water 133 will not flow through the first gas flow passage 125. It is returned to the lower side according to the inclination of. Therefore, it is possible to prevent the liquid water 133 from reaching the merging portion 127.
 <第2実施形態>
 続いて、第2実施形態について説明する。
 図7は、第2実施形態に係る燃料電池の要部を示す横断面図である。
 第2実施形態は、上記第1実施形態と比較して、インジェクタ106から合流部127に至るまでのガス導入流路128に縮径部139が設けられている点が異なる。縮径部139は、第1のエンドプレート101に形成された燃料ガス送出流路129の内径を、ガス導入流路128の上流側から下流側に向かって徐々に小さくすることにより形成されている。
<Second Embodiment>
Next, the second embodiment will be described.
FIG. 7 is a cross-sectional view showing the main parts of the fuel cell according to the second embodiment.
The second embodiment is different from the first embodiment in that a reduced diameter portion 139 is provided in the gas introduction flow path 128 from the injector 106 to the confluence portion 127. The reduced diameter portion 139 is formed by gradually reducing the inner diameter of the fuel gas delivery passage 129 formed in the first end plate 101 from the upstream side to the downstream side of the gas introduction passage 128. ..
 縮径部139は、第1のガス流路125を通して合流部127に流れ込む液体にキャビテーションを発生させるためのものである。ここで記述するキャビテーションとは、ガス導入流路128の一部を細く絞ることによって高速のガス流を形成し、このガス流を、合流部127へと流れ込む液体に吹き付けることにより、液体の粒子が元のサイズよりも小さい複数の粒子に細分化される現象である。 The reduced diameter portion 139 is for generating cavitation in the liquid flowing into the confluence portion 127 through the first gas flow path 125. The cavitation described here forms a high-speed gas flow by narrowing down a part of the gas introduction flow channel 128, and sprays this gas flow onto the liquid flowing into the confluence portion 127, whereby liquid particles are generated. This is a phenomenon in which the particles are subdivided into multiple particles smaller than the original size.
 第2実施形態においては、インジェクタ106によって噴射された燃料ガスが燃料ガス送出流路129の縮径部139を通過する際に高速化される。高速化された燃料ガスのガス流は、第1のガス流路125を通して合流部127に液水が流れ込んだときに、この液水に吹き付けられる。これにより、液水の粒子が細分化される。このため、積層方向Zに積層される複数の燃料電池セル103に対して、より広範囲に液水を拡散させることができる。また、各々の燃料電池セル103に対して、より均一に液水を拡散させることができる。 In the second embodiment, the speed of the fuel gas injected by the injector 106 is increased when passing through the reduced diameter portion 139 of the fuel gas delivery passage 129. The gas flow of the fuel gas that has been sped up is sprayed onto the liquid water when the liquid water flows into the merging portion 127 through the first gas flow path 125. As a result, the liquid water particles are subdivided. Therefore, the liquid water can be diffused in a wider range with respect to the plurality of fuel cells 103 stacked in the stacking direction Z. Further, the liquid water can be more uniformly diffused into each fuel cell 103.
 <第3実施形態>
 図8は、第3実施形態に係る燃料電池の構成を示す概略斜視図である。
 図8に示すように、第1のエンドプレート101の外面には、燃料ガス循環ポンプ105とインジェクタブロック107とが取り付けられている。燃料ガス循環ポンプ105とインジェクタブロック107とは、ガス配管141によって接続されている。ガス配管141は、ガス流路形成部を構成するものである。ガス配管141の一端部は、燃料ガス循環ポンプ105のガス吐出口(図示せず)に接続されている。ガス配管141は、燃料ガス循環ポンプ105によって送り出される燃料ガスをインジェクタブロック107へと供給する配管である。
<Third Embodiment>
FIG. 8 is a schematic perspective view showing the configuration of the fuel cell according to the third embodiment.
As shown in FIG. 8, a fuel gas circulation pump 105 and an injector block 107 are attached to the outer surface of the first end plate 101. The fuel gas circulation pump 105 and the injector block 107 are connected by a gas pipe 141. The gas pipe 141 constitutes a gas flow path forming portion. One end of the gas pipe 141 is connected to a gas discharge port (not shown) of the fuel gas circulation pump 105. The gas pipe 141 is a pipe for supplying the fuel gas delivered by the fuel gas circulation pump 105 to the injector block 107.
 図9に示すように、インジェクタブロック107の内部には、ガス流路132aとガス流路132bとが形成されている。ガス流路132aは、燃料ガス導入口131を介して燃料ガス送出流路129に連通している。また、ガス流路132aは、燃料ガス送出流路129、燃料ガス送出流路130および燃料ガス供給流路110と共に、一つのガス導入流路128を形成している。 As shown in FIG. 9, inside the injector block 107, a gas flow path 132a and a gas flow path 132b are formed. The gas passage 132a communicates with the fuel gas delivery passage 129 via the fuel gas inlet 131. Further, the gas flow passage 132a forms one gas introduction flow passage 128 together with the fuel gas delivery passage 129, the fuel gas delivery passage 130 and the fuel gas supply passage 110.
 一方、ガス流路132bにはガス配管141の端部が接続されている。ガス流路132bは、燃料ガス循環ポンプ105からガス配管141を通して供給される燃料ガスをガス流路132aに向かって流すための流路である。ガス流路132bは、インジェクタブロック107の内部でガス流路132aに接続されている。インジェクタブロック107の内部には、ガス流路132aとガス流路132bとの接続部分に合流部145が設けられている。 On the other hand, the end of the gas pipe 141 is connected to the gas flow path 132b. The gas passage 132b is a passage for flowing the fuel gas supplied from the fuel gas circulation pump 105 through the gas pipe 141 toward the gas passage 132a. The gas flow path 132b is connected to the gas flow path 132a inside the injector block 107. Inside the injector block 107, a merging portion 145 is provided at a connecting portion between the gas flow passage 132a and the gas flow passage 132b.
 第3実施形態においては、図示しない燃料ガスタンクからインジェクタ106へと送り込まれた燃料ガスが、インジェクタ106によって積層方向Zに噴射される。このとき、燃料ガスは、インジェクタ106の噴射による推進力を受けてインジェクタブロック107のガス流路132aを勢い良く流れる。一方、燃料ガス循環ポンプ105に取り込まれたオフガスは、燃料ガス循環ポンプ105によってガス配管141へと送り込まれる。ガス配管141に送り込まれたオフガスは、インジェクタブロック107のガス流路132bを通して合流部145へと流れ込む。合流部145に流れ込んだオフガスは、インジェクタ106によって供給される燃料ガスと合流し、燃料ガスと共にガス導入流路128の下流側へと流れ込む。 In the third embodiment, the fuel gas sent to the injector 106 from a fuel gas tank (not shown) is injected by the injector 106 in the stacking direction Z. At this time, the fuel gas vigorously flows through the gas flow path 132 a of the injector block 107 by receiving the propulsive force generated by the injection of the injector 106. On the other hand, the off gas taken into the fuel gas circulation pump 105 is sent to the gas pipe 141 by the fuel gas circulation pump 105. The off gas sent to the gas pipe 141 flows into the merging portion 145 through the gas flow path 132b of the injector block 107. The off-gas that has flowed into the merging portion 145 merges with the fuel gas supplied by the injector 106 and flows into the downstream side of the gas introduction flow channel 128 together with the fuel gas.
 その際、不純物を含む液水が燃料ガス循環ポンプ105により巻き上げられ、オフガスと共に合流部145へと流れ込むことが考えられる。そうした場合、合流部145へと流れ込んだ液水は、インジェクタ106によって噴射される燃料ガスの推進力を利用して、ガス導入流路128の奥側へと運ばれる。これにより、不純物を含む液水を、燃料電池セル103の積層方向Zに広く拡散させることができる。このため、第1のエンドプレート101の燃料ガス導入口131の近くに配置される燃料電池セル103の劣化が他の燃料電池セルよりも顕著に起こる現象を抑制することができる。 At that time, it is conceivable that liquid water containing impurities is rolled up by the fuel gas circulation pump 105 and flows into the merging portion 145 together with the off gas. In such a case, the liquid water that has flowed into the merging portion 145 is carried to the inner side of the gas introduction flow channel 128 by using the propulsive force of the fuel gas injected by the injector 106. As a result, liquid water containing impurities can be diffused widely in the stacking direction Z of the fuel cell 103. Therefore, it is possible to suppress a phenomenon in which the deterioration of the fuel battery cells 103 arranged near the fuel gas inlet 131 of the first end plate 101 occurs more significantly than that of other fuel battery cells.
 なお、本第3実施形態においては、燃料ガス循環ポンプ105によって送り出される燃料ガスを、ガス配管141およびガス流路132bを通して合流部145へと流し込む構成になっているため、マニホールド102に第1のガス流路125と循環ガス導入流路135とを設ける必要はない。 In the third embodiment, the fuel gas sent out by the fuel gas circulation pump 105 is made to flow into the merging portion 145 through the gas pipe 141 and the gas flow path 132b, and therefore the first manifold 102 is provided. It is not necessary to provide the gas passage 125 and the circulating gas introduction passage 135.
 <変形例等>
 本開示の技術的範囲は上述した実施形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
<Modifications, etc.>
The technical scope of the present disclosure is not limited to the above-described embodiments, and includes various modifications and improvements as long as specific effects obtained by the constituent features of the invention or combinations thereof can be derived.
 たとえば、上記第2実施形態においては、燃料ガス送出流路129に縮径部139を設けた例を示したが、これに限らず、燃料ガス送出流路130に縮径部139を設けてもよい。また、縮径部を有する構成は、第3実施形態にも適用可能である。 For example, in the above-described second embodiment, the example in which the fuel gas delivery passage 129 is provided with the reduced diameter portion 139 is shown, but the present invention is not limited to this, and the fuel gas delivery passage 130 may be provided with the reduced diameter portion 139. Good. Further, the configuration having the reduced diameter portion is also applicable to the third embodiment.
 100 燃料電池、101 第1のエンドプレート(エンドプレート)、102 マニホールド、103 燃料電池セル、105 燃料ガス循環ポンプ、106 インジェクタ、107 インジェクタブロック、110 燃料ガス供給流路、125 第1のガス流路(ガス流路)、127,145 合流部、128 ガス導入流路、131 燃料ガス導入口、141 ガス配管(ガス流路形成部)、Z 積層方向。 100 fuel cell, 101 first end plate (end plate), 102 manifold, 103 fuel cell, 105 fuel gas circulation pump, 106 injector, 107 injector block, 110 fuel gas supply passage, 125 first gas passage (Gas flow path) 127, 145 confluence part, 128 gas introduction flow path, 131 fuel gas introduction port, 141 gas pipe (gas flow path formation part), Z stacking direction.

Claims (5)

  1.  積層された複数の燃料電池セルと、
     前記燃料電池セルに燃料ガスを供給するためのインジェクタと、
     前記燃料電池セルから排出される燃料ガスを再度前記燃料電池セルに供給するために燃料ガスを循環させる燃料ガス循環ポンプと
     を備え、
     前記複数の燃料電池セルには、前記燃料電池セルの積層方向に延びる燃料ガス供給流路が形成され、
     前記インジェクタは、前記燃料ガス供給流路に向けて燃料ガスを噴射するとともに、前記噴射の方向が前記積層方向に沿って設定され、
     前記燃料ガス循環ポンプによって循環される燃料ガスと前記インジェクタによって供給される燃料ガスとの合流部が、前記燃料電池セルよりも上流側で、かつ、前記インジェクタよりも下流側に設けられている
     燃料電池。
    A plurality of stacked fuel cells,
    An injector for supplying a fuel gas to the fuel cell,
    A fuel gas circulation pump that circulates the fuel gas in order to supply the fuel gas discharged from the fuel cell to the fuel cell again.
    A fuel gas supply channel extending in the stacking direction of the fuel cells is formed in the plurality of fuel cells,
    The injector injects fuel gas toward the fuel gas supply passage, and the direction of the injection is set along the stacking direction,
    A merging portion of the fuel gas circulated by the fuel gas circulation pump and the fuel gas supplied by the injector is provided on the upstream side of the fuel cell and on the downstream side of the injector. battery.
  2.  前記積層方向の一方側に配置されたエンドプレートと、
     前記積層方向において前記エンドプレートと前記燃料電池セルとの間に配置されたマニホールドと
     をさらに備え、
     前記マニホールドは、前記燃料ガス循環ポンプによって送り出される燃料ガスを前記積層方向と異なる方向に流すためのガス流路を有し、前記ガス流路の端部に前記合流部が設けられている
     請求項1に記載の燃料電池。
    An end plate arranged on one side of the stacking direction,
    A manifold disposed between the end plate and the fuel cell in the stacking direction,
    The manifold has a gas flow path for flowing the fuel gas delivered by the fuel gas circulation pump in a direction different from the stacking direction, and the confluence portion is provided at an end of the gas flow path. 1. The fuel cell according to 1.
  3.  前記マニホールドの前記ガス流路は、前記合流部の側が反対側よりも高くなるように斜めに形成されている
     請求項2に記載の燃料電池。
    The fuel cell according to claim 2, wherein the gas flow path of the manifold is formed obliquely so that a side of the merging portion is higher than an opposite side.
  4.  前記積層方向の一方側に配置されたエンドプレートと、
     前記インジェクタが搭載されるとともに、前記エンドプレートに取り付けられたインジェクタブロックと、
     前記燃料ガス循環ポンプと前記インジェクタブロックとを接続するガス流路形成部と
     をさらに備え、
     前記合流部が前記インジェクタブロックの内部に設けられている
     請求項1に記載の燃料電池。
    An end plate arranged on one side of the stacking direction,
    With the injector mounted, an injector block attached to the end plate,
    Further comprising a gas flow channel forming unit connecting the fuel gas circulation pump and the injector block,
    The fuel cell according to claim 1, wherein the merging portion is provided inside the injector block.
  5.  前記インジェクタから前記合流部に至るまでのガス導入流路に、前記合流部に流れ込む液体にキャビテーションを発生させる縮径部が設けられている
     請求項1~4のいずれか一項に記載の燃料電池。
    The fuel cell according to any one of claims 1 to 4, wherein the gas introduction flow path from the injector to the confluence portion is provided with a reduced diameter portion that causes cavitation in the liquid flowing into the confluence portion. ..
PCT/JP2020/001728 2019-01-28 2020-01-20 Fuel battery WO2020158480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-012057 2019-01-28
JP2019012057A JP2020119850A (en) 2019-01-28 2019-01-28 Fuel cell

Publications (1)

Publication Number Publication Date
WO2020158480A1 true WO2020158480A1 (en) 2020-08-06

Family

ID=71842086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001728 WO2020158480A1 (en) 2019-01-28 2020-01-20 Fuel battery

Country Status (2)

Country Link
JP (1) JP2020119850A (en)
WO (1) WO2020158480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525031A1 (en) * 2021-09-15 2022-10-15 Avl List Gmbh Distribution device for distributing operating media in a fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143734A (en) * 1999-11-12 2001-05-25 Isuzu Motors Ltd Fuel cell assembly
JP2013109895A (en) * 2011-11-18 2013-06-06 Denso Corp Fuel cell system
JP2013251178A (en) * 2012-06-01 2013-12-12 Toyota Motor Corp Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143734A (en) * 1999-11-12 2001-05-25 Isuzu Motors Ltd Fuel cell assembly
JP2013109895A (en) * 2011-11-18 2013-06-06 Denso Corp Fuel cell system
JP2013251178A (en) * 2012-06-01 2013-12-12 Toyota Motor Corp Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT525031A1 (en) * 2021-09-15 2022-10-15 Avl List Gmbh Distribution device for distributing operating media in a fuel cell stack

Also Published As

Publication number Publication date
JP2020119850A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US8920999B2 (en) Multiple injector and ejector array
US11476472B2 (en) Separator plate for an electrochemical system
JP2018060757A (en) Ejector, fuel supply apparatus, and fuel cell system
US20060216572A1 (en) Fuel cell
JP2009238594A (en) Fuel cell system
KR101093700B1 (en) Fuel cell system and stack thereof
WO2020158480A1 (en) Fuel battery
TWI334239B (en)
CN110323468B (en) Fuel gas injection device and fuel cell system
US8101322B2 (en) Constant channel cross-section in a PEMFC outlet
US9065088B2 (en) Modification to stampable flowfields to improve flow distribution in the channels of PEM fuel cells
US8192887B2 (en) Fuel cell
US20060292428A1 (en) Fuel cell system with sealed fuel cell stack and method of making the same
CN110588381B (en) Fuel cell vehicle
JP4578997B2 (en) Fuel cell separator and fuel cell
JP2009238595A (en) Fuel cell system
JP2009238596A (en) Fuel battery system
JP2009054290A (en) Fuel cell system
CN110190297B (en) Fuel cell system
US9543595B2 (en) Separator plate with intermediate injection of gas, fuel cell, method of feeding a fuel cell
JP2007220356A (en) Solid polymer fuel cell separator
JP2009110838A (en) Separator for fuel cell
KR102680450B1 (en) Fuel cell stack structure and fuel cell system having the fuel cell stack structure
JP2009026524A (en) Fuel cell module and fuel cell
JP2002260688A (en) Separator of fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749078

Country of ref document: EP

Kind code of ref document: A1