WO2020158043A1 - Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens - Google Patents

Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens Download PDF

Info

Publication number
WO2020158043A1
WO2020158043A1 PCT/JP2019/037373 JP2019037373W WO2020158043A1 WO 2020158043 A1 WO2020158043 A1 WO 2020158043A1 JP 2019037373 W JP2019037373 W JP 2019037373W WO 2020158043 A1 WO2020158043 A1 WO 2020158043A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient index
index lens
mol
lens
glass composition
Prior art date
Application number
PCT/JP2019/037373
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 裕明
谷口 敏
徳史 金子
剛 山根
佐藤 健一
智孝 高城
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2020158043A1 publication Critical patent/WO2020158043A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a gradient index lens, an optical product, an optical device, a glass composition for a gradient index lens, and a method for manufacturing the gradient index lens.
  • Patent Document 1 describes a surface defect device including a light source, an irradiation unit, a condensing unit, and an observation unit.
  • the observation means is composed of an imaging lens and a CCD.
  • Patent Document 2 describes an inspection device suitable for the appearance inspection of the photosensitive drum of an electrophotographic copying machine or printer.
  • This inspection device is equipped with a camera device for photographing the photosensitive drum with a plurality of one-dimensional CCD cameras arranged in a line.
  • a contact image sensor is also known as an image sensor.
  • the CIS is equipped with a rod lens array.
  • a gradient index lens is usually used for the rod lens array.
  • Patent Documents 3 to 5 describe gradient index lenses.
  • the gradient index lens or the gradient index rod lens is a rod-shaped (rod-shaped) lens having a gradient index distribution in which the refractive index continuously decreases from the center toward the outer periphery.
  • the difference ⁇ n between the refractive index on the peripheral surface of the lens and the refractive index on the central axis is 0.003 or more.
  • the opening angle (2 ⁇ ) becomes smaller than about 10°, which suggests that this is not desirable.
  • Patent Document 3 suggests that an opening angle ( ⁇ ) of less than 5° is not desirable.
  • the aperture angle of the gradient index lens according to the example is about 10.1 to 12.9°.
  • the aperture angle of the gradient index lens according to the example is 10.1 to 12.0°.
  • Patent Documents 1 and 2 do not describe using a gradient index lens.
  • the gradient index lenses described in Patent Documents 3 to 5 have a large aperture angle. This cannot be said to be advantageous from the viewpoint of realizing a large depth of field in the gradient index lens, and it is considered that the gradient index lenses described in Patent Documents 3 to 5 have a small depth of field.
  • the present invention provides a gradient index lens having a large depth of field.
  • the present invention also provides an optical product including such a gradient index lens and an optical device including the optical product.
  • the present invention provides a glass composition for a gradient index lens, which is advantageous for increasing the depth of field of the gradient index lens.
  • the present invention also provides an advantageous method for manufacturing a gradient index lens having a large depth of field.
  • the present invention is With a depth of field of 1.5-3.0 mm, The depth of field is determined by subtracting the minimum value from the maximum value of the working distance, At the working distance, the value of the modulation transfer function (MTF) at a spatial frequency of 6 lines/mm is 30% or more, A gradient index lens is provided.
  • MTF modulation transfer function
  • the present invention is An optical product provided with the above-mentioned gradient index lens is provided.
  • the present invention is An optical device provided with the above optical product is provided.
  • the present invention is Shown in mol%, 40% ⁇ SiO 2 ⁇ 65% 0% ⁇ TiO 2 ⁇ 10% 0.1% ⁇ MgO ⁇ 22% 0.15% ⁇ ZnO ⁇ 15% 0.5% ⁇ Li 2 O ⁇ 4% 2% ⁇ Na 2 O ⁇ 20% 0% ⁇ B 2 O 3 ⁇ 20% 0% ⁇ Al 2 O 3 ⁇ 10% 0% ⁇ K 2 O ⁇ 3% 0% ⁇ Cs 2 O ⁇ 3% 0% ⁇ Y 2 O 3 ⁇ 5% 0% ⁇ ZrO 2 ⁇ 2% 0% ⁇ Nb 2 O 5 ⁇ 5% 0% ⁇ In 2 O 3 ⁇ 5% 0% ⁇ La 2 O 3 ⁇ 5% 0% ⁇ Ta 2 O 5 ⁇ 5%, At least two selected from the group consisting of CaO, SrO, and BaO, each containing 0.1 mol% or more and 15 mol% or less, Display in mol%, 2% ⁇ MgO+ZnO, 0.07 ⁇ ZnO/(MgO+ZnO) ⁇ 0.93,
  • the present invention is A method of manufacturing a gradient index lens, comprising: Forming a glass wire made of a glass composition containing an oxide of a first alkali metal element, The glass element wire is immersed in a molten salt containing a second alkali metal element different from the first alkali metal element, and the first alkali metal element in the glass element wire and the second alkali in the molten salt.
  • the glass composition By forming a refractive index distribution in the glass element wire by performing an ion exchange treatment with a metal element,
  • the glass composition expressed in mol %, 40% ⁇ SiO 2 ⁇ 65% 0% ⁇ TiO 2 ⁇ 10% 0.1% ⁇ MgO ⁇ 22% 0.15% ⁇ ZnO ⁇ 15% 0.5% ⁇ Li 2 O ⁇ 4% 2% ⁇ Na 2 O ⁇ 20% 0% ⁇ B 2 O 3 ⁇ 20% 0% ⁇ Al 2 O 3 ⁇ 10% 0% ⁇ K 2 O ⁇ 3% 0% ⁇ Cs 2 O ⁇ 3% 0% ⁇ Y 2 O 3 ⁇ 5% 0% ⁇ ZrO 2 ⁇ 2% 0% ⁇ Nb 2 O 5 ⁇ 5% 0% ⁇ In 2 O 3 ⁇ 5% 0% ⁇ La 2 O 3 ⁇ 5% 0% ⁇ Ta 2 O 5 ⁇ 5%,
  • the glass composition contains at least two selected from the group consisting of CaO, SrO, and BaO in an amount of 0.1 mol% or more and 15 mol%
  • the glass composition is expressed in mol%, 2% ⁇ MgO+ZnO, 0.07 ⁇ ZnO/(MgO+ZnO) ⁇ 0.93, 2.5% ⁇ Li 2 O+Na 2 O ⁇ 24%, and 0% ⁇ Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ⁇ 11%, Provide a way.
  • the above gradient index lens has a large depth of field.
  • the glass composition for a gradient index lens described above is advantageous for increasing the depth of field of the gradient index lens.
  • FIG. 1 is a diagram illustrating a method of determining a depth of field of an example of a gradient index lens according to the present invention.
  • FIG. 2 is a diagram showing an aperture angle of an example of the gradient index lens according to the present invention.
  • FIG. 3A is a diagram showing an ion exchange process in an example of a method of manufacturing a gradient index lens according to the present invention.
  • FIG. 3B is a graph conceptually showing the refractive index distribution in the gradient index lens.
  • FIG. 4 is a perspective view showing an example of an optical product according to the present invention.
  • FIG. 5 is a cross-sectional view showing an example of the optical device according to the present invention.
  • FIG. 6 is a sectional view showing another example of the optical device according to the present invention.
  • FIG. 1 is a diagram illustrating a method of determining a depth of field of an example of a gradient index lens according to the present invention.
  • FIG. 2 is a diagram showing an aperture angle of an example of the gradient index
  • FIG. 7 is a diagram showing still another example of the optical device according to the present invention.
  • FIG. 8 is a diagram showing still another example of the optical apparatus according to the present invention.
  • FIG. 9 is a graph showing the relationship between the MTF value and the working distance of the gradient index lenses according to Example 2, Comparative Example 3, and Reference Example 1.
  • Image data collected in the visual inspection of the subject must have a resolution that can identify defects in the subject.
  • the effective width that can be captured by one camera becomes small. Therefore, it may be difficult to image the entire subject with one camera.
  • the pixel size corresponding to the required resolution in the image data is 90 ⁇ m
  • the width of the area that can be imaged by the camera equipped with the one-dimensional CCD sensor of 4096 pixels is about 370 mm.
  • the CIS includes a plurality of one-dimensional light receiving elements arranged on a substrate and a rod lens array.
  • the rod lens array forms an erecting equal-magnification image. If CIS is used, a one-dimensional image having a width of 1200 mm can be obtained by one unit.
  • the rod lens array is an array of a plurality of rod-shaped gradient index lenses, for example.
  • the gradient index lens has a refractive index distribution in the radial direction, and the refractive index changes from the central portion to the peripheral portion in the radial direction of the gradient index lens.
  • the CIS including the rod lens array can reduce the distance between the image pickup element and the object to be photographed to about 1/10 of that of a conventional camera system including a CCD sensor and a lens, which makes the device compact. It is advantageous in terms of conversion.
  • the depth of field (DOF) which is a characteristic value indicating the allowable range of the distance between the object to be photographed and the lens, is small. This causes a problem that when the subject has a variation in thickness, a part of the subject that is in focus and a part that is not in focus occur. For this reason, the image of the out-of-focus portion is not clear, and oversight of the defect and erroneous recognition of the defect may occur.
  • the aperture angles of the gradient index lenses described in Patent Documents 3 to 5 are large, and this is hard to say from the viewpoint of increasing the DOF of the gradient index lens. Therefore, the present inventors drastically reviewed the conditions of the glass composition used for manufacturing the gradient index lens in order to realize the DOF in the desired range in the gradient index lens. As a result of many trials and errors, the present inventors finally found a gradient index lens that can realize a DOF in a desired range.
  • the gradient index lens according to the present invention can be used not only in the field of visual inspection of a subject but also in the field of image formation of image scanners, copiers, facsimiles, printers and the like.
  • the gradient index lens 1b has a depth of field (DOF) of 1.5 to 3.0 mm.
  • DOF depth of field
  • the DOF of the gradient index lens 1b is determined by subtracting the minimum value from the maximum value of the working distance.
  • the value of the modulation transfer function (MTF) at a spatial frequency of 6 lines/mm is 30% or more.
  • the lens array 10a, the line pattern 3, and the light receiving element 2 are arranged at a predetermined interval in the optical axis direction, and the lens array 10a and the line pattern 3 are arranged. It can be determined by calculating the value of MTF while varying the distance between and.
  • the lens array 10a is configured by arranging a plurality of gradient index lenses 1b in a direction perpendicular to the optical axis.
  • the line pattern 3 has black and white line pairs corresponding to a spatial frequency of 6 lines/mm.
  • the light receiving element 2 is, for example, a CCD sensor.
  • the light emitted from the halogen lamp is passed through the color filter and the light diffusion plate and then applied to the line pattern 3.
  • the color filter may be, for example, one that transmits light in the wavelength range of 500 to 600 nm, or may be one that mainly transmits the wavelength of 530 nm.
  • the value of MTF is formed on the light receiving element 2 by the lens array 10a with respect to the image (input image) of the line pattern 3 having a predetermined spatial frequency consisting of the bright portion and the dark portion before entering the lens array 10a. It can be determined as the reproducibility of the image obtained (output image).
  • a distance (distance between object point and image forming point) D max between the line pattern 3 and the light receiving element 2 where the value of MTF is maximum is determined.
  • the line pattern 3 is moved in the positive direction ( ⁇ L>0) and the negative direction ( ⁇ L ⁇ 0) of the Z axis parallel to the optical axis, and the MTF value is obtained at each position.
  • the maximum value and the minimum value of the working distance can be obtained by setting the allowable range of the predetermined MTF value.
  • the DOF of the gradient index lens 1b can be determined.
  • ⁇ L>0 the distance between the line pattern 3 and the lens array 10a is larger than the working distance corresponding to the distance D max .
  • the gradient index lens 1b can contribute to the improvement of the accuracy of the appearance inspection of the subject and the sophistication of the inspection standard.
  • DOF of the gradient index lens 1b is preferably 1.5 mm or more, more preferably 1.8 mm or more, and further preferably 2 mm or more.
  • the DOF of the gradient index lens 1b is preferably 2.8 mm or less, more preferably 2.5 mm or less.
  • the working distance corresponding to the object point-imaging point distance D max that maximizes the MTF value is, for example, 15 mm or more, and preferably 18 mm or more. Since the object point-imaging point distance D max is in these ranges, the DOF becomes an appropriate range.
  • the gradient index lens 1b has an aperture angle ⁇ of 3 to 6°, for example. Thereby, the DOF of the gradient index lens 1b is easily adjusted to a desired range.
  • the aperture angle ⁇ of the gradient index lens 1b is defined as shown in FIG. 2, for example.
  • the opening angle ⁇ is the maximum value of the angle formed by the light beam that can enter one end of the optical axis of the gradient index lens 1b and the optical axis.
  • F1 is a subject surface
  • F2 is a light receiving surface (image forming surface) of a light receiving element or the like.
  • Z 0 is the length of the gradient index lens 1b.
  • L o is the distance between the subject surface F1 and the gradient index lens 1b when the MTF value is maximum
  • L i is the refraction with the image formation plane F2 when the MTF value is maximum. It is a distance from the rate distribution type lens 1b.
  • the lens array 10a constitutes a substantially erecting equal-magnification imaging system, and the distance L i is substantially equal to the distance L o .
  • X 0 is the field radius of the gradient index lens 1b.
  • the aperture angle ⁇ of the gradient index lens 1b can be determined, for example, according to the method described in the examples.
  • the aperture angle ⁇ may be determined using the refractive index n 0 at the center of the gradient index lens 1b instead of the refractive index Nc of the glass element wire before ion exchange.
  • n 0 is the Japanese Industrial Standard (JIS) B 7071-2: can be obtained by using the V-block method described in 2018.
  • the aperture angle ⁇ of the gradient index lens 1b may be 3.5° or more, or 3.7° or more.
  • the aperture angle ⁇ of the gradient index lens 1b is preferably 5.5° or less, more preferably 5.2° or less.
  • the gradient index lens 1b may have, for example, a gradient index constant ( ⁇ A) of 0.130 to 0.230 mm ⁇ 1 .
  • Refractive index distribution constant gradient index lens 1b may also be 0.140 mm -1 or more, may be 0.145 mm -1 or more.
  • the refractive index distribution constant of the gradient index lens 1b is preferably 0.210 mm -1 or less, and more preferably 0.205 mm -1 or less.
  • the image forming distance of the erect image on the gradient index lens 1b is, for example, 45 to 80 mm. This is advantageous from the viewpoint of adjusting the DOF of the gradient index lens 1b within a desired range.
  • the image forming distance of the erect image on the gradient index lens 1b may be 47 mm or more, 50 mm or more, 53 mm or more, and 54 mm or more.
  • the image forming distance of the erect image on the gradient index lens 1b may be 75 mm or less, 70 mm or less, or 67 mm or less.
  • the gradient index lens 1b is typically a rod-shaped or fiber-shaped lens.
  • the gradient index lens 1b has, for example, a gradient index distribution as shown in FIG. 3B in the radial direction.
  • the refractive index n 0 at the origin means the refractive index at the central axis of the gradient index lens 1b.
  • r represents the position of the gradient index lens 1b in the radial direction.
  • the gradient index lens 1b prevents noise light (so-called white noise (stray light)) from being generated by reflecting incident light having an incident angle larger than the opening angle on the side surface of the lens, as necessary. It may have a structure. Such a structure may be, for example, a light absorbing layer or a light scattering layer provided on the side surface of the lens.
  • the gradient index lens 1b may have a core-clad structure in which a colored layer serving as a light absorbing layer is arranged on the side surface of the lens, or a fine uneven portion serving as a light scattering layer is located on the side surface. It may have a formed structure.
  • the gradient index lens 1b is typically a glass lens.
  • the glass composition for a gradient index lens has a mol% of 40% ⁇ SiO 2 ⁇ 65%, 0% ⁇ TiO 2 ⁇ 10%, 0.1% ⁇ MgO ⁇ 22%, 0.15% ⁇ .
  • the gradient index lens glass composition contains at least two selected from the group consisting of CaO, SrO, and BaO in an amount of 0.1 mol% or more and 15 mol% or less, respectively.
  • the glass composition for a gradient index lens is represented by mol %, 2% ⁇ MgO+ZnO, 0.07 ⁇ ZnO/(MgO+ZnO) ⁇ 0.93, 2.5% ⁇ Li 2 O+Na 2 O ⁇
  • the conditions of 24% and 0% ⁇ Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ⁇ 11% are satisfied.
  • the gradient index lens 1b can be manufactured, for example, by subjecting a glass element wire made of the above glass composition to an ion exchange treatment.
  • SiO 2 is an essential component that forms a glass network structure.
  • the content of SiO 2 is less than 40 mol %, the content of other components necessary for developing the optical characteristics as a gradient index lens after ion exchange becomes relatively large, and devitrification is likely to occur. Become. If the content is less than 40 mol%, the chemical durability of the glass composition will be significantly reduced. On the other hand, when the content exceeds 65 mol %, the content of other components such as an alkali component for forming a refractive index distribution, a refractive index increasing component, and a physical property value adjusting component is limited, which is practical. It becomes difficult to obtain a simple glass composition. Therefore, the content of SiO 2 is 40 mol% or more and 65% mol or less.
  • TiO 2 is an essential component that has the effect of increasing the refractive index of the glass composition.
  • the central refractive index of the gradient index lens obtained from the glass composition can be increased.
  • the content of TiO 2 the refractive index distribution in the gradient index lens can be brought closer to an ideal state, and it becomes possible to manufacture a gradient index lens having excellent resolution.
  • the content of TiO 2 is 10 mol %, no decrease in the resolution of the image based on the obtained lens is observed, but when the content is less than 1 mol %, the resolution of the image is obviously decreased, which is not practical. I can't get a lens.
  • the content of TiO 2 is 1 mol% or more and 10 mol% or less.
  • the content of TiO 2 is desirably 2 mol% or more and 8 mol% or less.
  • MgO MgO is an essential component that has a function of lowering the melting temperature of the glass composition and increasing the refractive index difference ( ⁇ n) between the lens central portion and the peripheral portion after ion exchange. If the MgO content exceeds 22 mol %, devitrification is likely to occur. On the other hand, if the content of MgO exceeds 22 mol %, the content of the other components is excessively reduced, and a practical glass composition cannot be obtained. Therefore, the MgO content is 0.1 mol% or more and 22 mol% or less. From the viewpoint of realizing a sufficient difference in refractive index, the content of MgO is preferably 2 mol% or more.
  • the content of MgO is 2 mol% or more
  • the content of the alkaline earth metal oxides (CaO, SrO, BaO) can be more appropriately controlled for the purpose of further reducing the mobility of alkali ions. .. That is, the content of MgO is preferably 2 mol% or more and 22 mol% or less, and more preferably 2 mol% or more and 16 mol% or less.
  • ZnO, MgO+ZnO, ZnO/(MgO+ZnO)) ZnO has the function of improving the weather resistance of the glass composition and the gradient index lens.
  • ZnO may be added to replace a part of MgO.
  • the ZnO content is 0.15 mol% or more and 15 mol% or less.
  • the content rates of MgO and ZnO are adjusted so that the total content rate of MgO and ZnO (MgO+ZnO) is 2 mol% or more.
  • the content of MgO and ZnO is such that the ratio of the content of ZnO to the total content of MgO and ZnO (ZnO/(MgO+ZnO)) is 0.07 ⁇ ZnO/(MgO+ZnO) ⁇ 0.93.
  • the rate is adjusted.
  • the ZnO content is desirably 3% by mole or more and 15% by mole or less.
  • MgO+ZnO may be 6 mol% or more, and the condition of 0.12 ⁇ ZnO/(MgO+ZnO) ⁇ 0.93 may be satisfied.
  • the ZnO content is preferably 8 mol% or less. From the viewpoint of further improving the weather resistance of the glass composition and the gradient index lens, the ZnO content is more preferably 4 mol% or more and 15 mol% or less. In this case, MgO+ZnO may be 6 mol% or more, and MgO+ZnO may be 6 mol% or more and 22 mol% or less. MgO+ZnO may be 15 mol% or less.
  • ZnO/(MgO+ZnO) is preferably 0.07 or more and 0.9 or less, more preferably 0.25 or more and 0.85 or less, and further preferably 0.25 or more and 0.8 or less, It is particularly preferably 0.3 or more and 0.8 or less.
  • Li 2 O is an essential component, and is one of the most important components in order to ion-exchange the glass composition of the present invention to obtain a gradient index lens.
  • a sufficient concentration distribution that is, a sufficient refractive index distribution cannot be expressed by ion exchange, and an appropriate gradient index lens cannot be obtained. It was being done.
  • the inventors of the present invention have a suitable refractive index distribution by performing ion exchange under predetermined conditions even for a glass composition having a Li 2 O content of 4 mol% or less, and , Newly found that a gradient index lens having a large DOF can be manufactured.
  • the content of Li 2 O is 0.5 mol% or more, preferably 0.7 mol% or more, and more preferably 1 mol% or more.
  • the content of Li 2 O is 4 mol% or less, preferably 3.5 mol% or less, more preferably 3 mol% or less, and further preferably 2 mol% or less.
  • the content of Li 2 O is lower than that of various prior arts.
  • the inventors of the present invention have made a new device such as limiting the amount of glass strands to be processed per batch by the ion exchange method and reducing the initial content of Li in the molten salt, thereby making it possible to reduce the field curvature and the like. It was newly found that it is possible to obtain a gradient index lens having a smaller aperture angle and a practical resolution while suppressing the aberration of the lens.
  • Na 2 O assists the ion exchange between Li and the ion of the ion exchange species (the ion contained in the molten salt) that replaces the Li ion by the so-called mixed alkali effect, so that the ion is easily exchanged.
  • the mobility moderate By keeping the ion mobility moderate, the ion exchange rate can be adjusted appropriately, and the optical characteristics of the gradient index lens can be adjusted. If the content of Na 2 O in the glass composition is less than 2 mol %, the glass becomes hard at the time of glass molding, which makes molding difficult. In addition, the melting temperature of the glass rises significantly, making it difficult to manufacture a lens.
  • the content of Na 2 O is 2 mol% or more, preferably 5 mol% or more, and more preferably 10 mol% or more.
  • the content of Na 2 O is 20 mol% or less, preferably 17 mol% or less.
  • Li 2 O+Na 2 O As described above, the total of the content of Li 2 O and the content of Na 2 O (Li 2 O+Na 2 O) in the glass composition is 2.5 mol% or more and less than 24 mol %. When Li 2 O+Na 2 O is in this range, an image with good resolution can be obtained by the gradient index lens manufactured using this glass composition.
  • Li 2 O+Na 2 O is preferably 6 mol% or more, more preferably 10 mol% or more.
  • Li 2 O/Na 2 O When Na 2 O Li 2 O ratio of content of the relative content of (Li 2 O / Na 2 O ) is large, it is possible to improve resolution of refractive index distribution type lenses produced using the glass composition .. On the other hand, if Li 2 O/Na 2 O is excessively large (for example, 1.0 or more), the aperture angle of the gradient index lens manufactured using the glass composition tends to be large and its DOF tends to be small. is there. Therefore, Li 2 O/Na 2 O is, for example, 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less.
  • the above glass composition may further contain the following components.
  • B 2 O 3 is an optional component that forms a network structure of glass, promotes vitrification of the glass composition and changes its viscosity without substantially changing the resolution and aperture angle ⁇ of the obtained gradient index lens. Has the effect of adjusting. It also has a slight effect of slowing the ion exchange rate of the glass composition.
  • B 2 O 3 has, for example, the content ratio of each of the above-mentioned essential components within the scope of the present invention, but when viewed as a composition, the content ratio of some components becomes relatively large, and B 2 O 3 is It may be added when the stability decreases (for example, devitrification tends to occur).
  • the content of B 2 O 3 that can be added without changing the resolving power and the aperture angle of the obtained gradient index lens is, for example, 20% mol or less. Therefore, the content of B 2 O 3 is 0% or more and 20% or less.
  • the content is preferably 0 mol% or more and 10 mol% or less, and when the glass composition contains B 2 O 3 , the content is preferably 1 mol% or more and 10 mol% or less.
  • the glass composition for a gradient index lens may contain Al 2 O 3 as an optional component, and the content thereof is 0 mol% or more and 10 mol% or less.
  • the total content of SiO 2 , TiO 2 , and B 2 O 3 is, for example, 41 mol% or more and 70 mol% or less. It is preferably 50 mol% or more and 70 mol% or less.
  • the glass composition for a gradient index lens includes Y 2 O 3 , ZrO 2 , Nb 2 O 5 , and In for the purpose of adjusting the refractive index of the gradient index lens obtained after ion exchange or improving the weather resistance. It may contain at least one component selected from the group consisting of 2 O 3 , La 2 O 3 , and Ta 2 O 5 .
  • the total content of these components is 0 mol% or more and 11 mol% or less.
  • the glass composition for a gradient index lens contains these components, the total content of these components is preferably 0% or less. It is at least 2 mol% and at most 6 mol %. Further, it is desirable that the sum of the content rates of these components and the ZnO content is 15 mol% or less.
  • the content of Y 2 O 3 is desirably 0 mol% or more and 5 mol% or less.
  • ZrO 2 The content of ZrO 2 is preferably 0 mol% or more and 2 mol% or less, and when the glass composition for a gradient index lens contains ZrO 2 , the content is 0.2 mol% or more and 2 mol% or less. Is.
  • Nb 2 O 5 , In 2 O 3 , La 2 O 3 and Ta 2 O 5 are desirably 0 mol% or more and 5 mol% or less.
  • K 2 O, Cs 2 O K 2 O and Cs 2 O are optional components having the action of reducing the mobility of alkali ions, like MgO, CaO, SrO, and BaO, due to the mixed alkali effect.
  • Each of the content rates of K 2 O and Cs 2 O is, for example, 0 mol% or more and 3 mol% or less.
  • the content of Cs 2 O is preferably less than 2 mol%, more preferably 0 mol% or more and 1 mol% or less, and further preferably Is 0.5 mol% or less.
  • the glass composition for gradient index lenses does not substantially contain Cs 2 O.
  • substantially free means that the content of the component is less than 0.1 mol %.
  • the glass composition for a gradient index lens may contain GeO 2 as another component.
  • the content of GeO 2 may be 0 mol% or more and 10 mol% or less.
  • the glass composition for gradient index lens may contain at least one selected from the group consisting of SnO 2 , As 2 O 3 , and Sb 2 O 3 as an additive.
  • the content of each of SnO 2 , As 2 O 3 , and Sb 2 O 3 may be 0 mol% or more and 1 mol% or less.
  • the gradient index lens glass composition may consist essentially of the above components. In this case, the content rate of each component contained in the glass composition and the relationship between the content rates of the respective components (total and content ratio) satisfy each of the above-mentioned conditions. In the present specification, “consisting essentially of” means that the content of impurities is less than 0.1 mol %.
  • the glass composition for a gradient index lens does not substantially contain lead (a typical compound is PbO). Further, the gradient index lens 1b also contains substantially no lead.
  • the water resistance determined according to Japan Optical Glass Industry Association Standard (JOGIS) 06-2009 is first grade.
  • the glass composition for a gradient index lens has high water resistance, and the gradient index lens manufactured using the glass composition for a gradient index lens also tends to have high water resistance.
  • the water resistance determined according to JOGIS 06-2009 may be first grade.
  • the gradient index lens glass composition contains an oxide of a first alkali metal element.
  • the gradient index lens 1b can be manufactured by, for example, a method including the following steps (I) and (II).
  • a glass element wire 1a made of the above glass composition for a gradient index lens is formed.
  • the glass element wire 1a is immersed in a molten salt S containing a second alkali metal element R different from the first alkali metal element Q contained in the glass composition for gradient index lens, The first alkali metal element Q and the second alkali metal element R in the molten salt are subjected to an ion exchange treatment to form a refractive index distribution in the glass element wire 1a.
  • the glass wire 1a is put into the molten salt S inside the container V, and the glass wire 1a is immersed in the molten salt S for a predetermined time.
  • the molten salt S for example, at least one of potassium nitrate and sodium nitrate is molten.
  • the cation of the first alkali metal element Q such as Li (lithium) contained in the glass element wire 1a is dissolved in the molten salt S.
  • the cations of the second alkali metal element R such as K (potassium) in the molten salt S enter the glass element wire 1a.
  • the optical product according to the present invention is not limited to a specific product as long as it has the gradient index lens 1b.
  • a predetermined lens array can be provided by using the gradient index lens 1b.
  • the lens array may have a zero-dimensional array, a one-dimensional array, or a two-dimensional array with respect to the array of the gradient index lenses 1b.
  • the 0-dimensional array is, for example, a configuration in which a single gradient index lens 1b is arranged, and is expected to have a desired action by an optical product including the single gradient index lens 1b.
  • the one-dimensional arrangement is a configuration in which a plurality of gradient index lenses 1b are arranged in a line in a specific direction.
  • the specific direction is called the main scanning direction, and the direction perpendicular to the main scanning direction and perpendicular to the optical axis is called the sub-scanning direction.
  • the plurality of gradient index lenses 1b are arranged such that their optical axes are substantially parallel.
  • the two-dimensional array is a configuration in which a plurality of lenses are arrayed in a direction different from that in addition to the one-dimensional array.
  • a configuration in which a plurality of gradient index lenses 1b are arranged in two or more rows along the main scanning direction may correspond to a two-dimensional arrangement. According to the lens array 10b, an erecting equal-magnification image in a wide range can be obtained even if the diameter of each gradient index lens is small.
  • the lens array 10b shown in FIG. 4 can be provided by using the gradient index lens 1b.
  • a plurality of gradient index lenses 1b are arranged so that their optical axes are substantially parallel.
  • the plurality of gradient index lenses 1b are arranged in two rows so as to form a two-dimensional array.
  • the plurality of gradient index lenses 1b are arranged, for example, between a pair of fiber reinforced plastic (FRP) substrates 5. Between the pair of FRP substrates 5, a space between the plurality of gradient index lenses 1b and a space between the FRP substrate 5 and the gradient index lenses 1b are filled with the black resin 7.
  • FRP fiber reinforced plastic
  • the plurality of gradient index lenses 1b are integrated between the pair of FRP substrates 5.
  • a lens array 10b can be manufactured as follows, for example. First, a plurality of gradient index lenses 1b are arranged substantially in parallel on the surface of one FRP substrate 5, and the other FRP substrate 5 holds the lenses. After that, the space between the pair of FRP substrates 5 is filled with the black resin 7, and the whole is integrated. Further, the end surface of the gradient index lens 1b is polished as needed.
  • the lens array 10b can be changed from various points of view, and the material of each part forming the lens array may be a known material in the production of the lens array.
  • the array of the plurality of gradient index lenses 1b is not limited to two rows.
  • the plurality of gradient index lenses 1b may be arranged in one line, or may be arranged in three or more lines. By arranging the gradient index lenses 1b in a large number of rows, it is possible to provide a lens array that can accommodate a large area.
  • the gradient index lens 1b may be a plastic rod lens having the above optical performance.
  • the plastic rod lens can be produced by a method such as a copolymerization method, a sol-gel method, and an interdiffusion method.
  • resins are laminated concentrically in such a manner that the refractive index gradually decreases from the center to the outer periphery, and then the materials between layers are mutually diffused so that the refractive index becomes continuous.
  • the rod-shaped rod lens is obtained by further heating and stretching. Due to the characteristics of the material, the plastic rod lens is easy to handle, is generally inexpensive, and may be advantageous in some cases.
  • the lens array provided with the gradient index lens 1b has a large DOF and is excellent in weather resistance in some cases, and can be widely used for optical devices such as a scanner, a copying machine, a facsimile, a printer, a CIS, and a line camera. it can. Furthermore, since the lens array provided with the gradient index lens 1b is particularly excellent in water resistance (moisture resistance), it can be used not only for general air conditioning in offices, but also for factories, storage warehouses, or transportation units that are exposed to hot and humid conditions. It can be applied to the above-mentioned optical devices even in various environments including physical distribution such as trucks.
  • the lens array 10b can be used to provide the CIS scanner 100 shown in FIG. 5, for example.
  • the CIS scanner 100 includes, for example, a lens array 10b, a housing 11, a linear light receiving element 12, a linear illumination device 13, and a document table 14.
  • the line-shaped light receiving element 12 extends in the main scanning direction of the lens array 10b.
  • the direction parallel to the X axis is the main scanning direction
  • the direction parallel to the Y axis is the sub scanning direction.
  • the line-shaped illumination device 13 extends in the main scanning direction of the lens array 10b.
  • the document table 14 is formed of a glass plate. The glass plate forming the document table 14 is arranged so as to cover the opening of the housing 11.
  • the lens array 10 b, the line-shaped light receiving element 12, and the line-shaped illumination device 13 are arranged inside the housing 11. Illumination light is linearly irradiated from the line-shaped illumination device 13 to the document P placed on the document table 14.
  • the lens array 10b is arranged so that the light reflected on the surface of the document P is incident on the linear light receiving element 12.
  • a two-dimensional image of the document P is obtained by scanning the scanner mechanism including the lens array 10b and the linear light receiving element 12 in the sub-scanning direction or by transporting the document P placed on the document table 14 in the sub-scanning direction. You can get the data.
  • the lens array 10b includes the gradient index lens 1b having a large DOF, the quality of the read image is high even in a portion where a part of the document P floats due to a wrinkle or a spread. Easy to be good.
  • the scanner 300 shown in FIG. 6 can be provided.
  • the scanner 300 includes a housing 31, a linear light receiving element 32, a linear illumination device 33, a first spacer 34a, a second spacer 34b, and a substrate 35.
  • the linear lighting device 33 is arranged outside the housing 31.
  • the lens array 10b in order to appropriately adjust the optical arrangement of the portion of the document P to be read and the line-shaped light receiving element 32, the lens array 10b includes a housing formed by the first spacer 34a and the second spacer 34b. It is positioned and fixed with respect to 31.
  • the scanner 300 may be applied to an apparatus that inspects the appearance of a subject, and may be used to obtain an image from a subject (inspection object) instead of the document P.
  • the light beam emitted from the line-shaped illumination device 33 is applied to the subject, and the light reflected on the surface of the subject is imaged on the line-shaped light receiving element 32 by the image forming action of the lens array 10b.
  • the line-shaped light receiving element 32 can sequentially convert one-dimensional image information of the surface of the subject into an electric signal and output the electric signal.
  • the printer 500 shown in FIG. 7 can be provided.
  • the printer 500 includes a writing head 51, a photosensitive drum 52, a charging device 53, a developing device 54, a transfer device 55, a fixing device 56, an erasing lamp 57, a cleaning device 58, and a paper feeding cassette 59. I have it.
  • the lens array 10b is arranged inside the write head 51.
  • the printer 500 is an electrophotographic printer.
  • the writing head 51 includes a lens array 10b and a light emitting element array (not shown).
  • the lens array 10b constitutes an image forming optical system that exposes the light emitted from the light emitting element array onto the photosensitive drum 52.
  • the focal point of the lens array 10b is located on the surface of the photosensitive drum 52 and constitutes an erecting equal-magnification optical system.
  • a photosensitive layer made of a photoconductive material (photoconductor) such as amorphous Si is formed on the surface of the photosensitive drum 52.
  • the surface of the rotating photosensitive drum 52 is uniformly charged by the charger 53.
  • the write head 51 irradiates the photosensitive layer of the photosensitive drum 52 with light of a dot image corresponding to the image to be formed, neutralizes the charge in the light-irradiated region of the photosensitive layer, and the latent image is formed on the photosensitive layer. An image is formed.
  • the toner adheres to the portion of the photosensitive layer where the latent image is formed according to the charged state of the photosensitive layer.
  • the adhered toner is transferred to the paper sent from the cassette by the transfer device 55, and then the paper is heated by the fixing device 56, so that the toner is fixed on the paper and an image is formed.
  • the charge on the photosensitive drum 52 after the transfer is neutralized by the erasing lamp 57 over the entire area, and then the cleaning device 58 removes the toner remaining on the photosensitive layer.
  • the inspection device 700 shown in FIG. 8 can be provided.
  • the inspection device 700 includes a CIS scanner 71, a linear illumination device 72, a controller 73, an output device 74, a transfer device 75, and a transfer control device 76.
  • a lens array 10b is arranged inside the CIS scanner 71.
  • the transport device 75 is, for example, a belt conveyor.
  • the transport device 75 transports a subject T such as a printed circuit board, a textile, and paper.
  • the transport control device 76 is a digital computer for controlling the transport device 75, and outputs a control signal for adjusting the transport speed of the transport device 75 to the transport device 75.
  • the CIS scanner 71 and the line-shaped illumination device 72 are arranged, for example, above the transport device 75, and the subject T passes directly below the CIS scanner 71 by the transport device 75.
  • the CIS scanner 71 and the line-shaped illumination device 72 are arranged so that clear image data of the subject T can be obtained.
  • the controller 73 is a digital computer for forming image data of the subject T. When the subject T passes beneath the CIS scanner 71, the controller 73 continuously acquires one-dimensional image information from the CIS scanner 71. In addition, the controller 73 acquires the transport position information of the subject T from the transport control device 76.
  • the controller 73 performs a calculation process based on the one-dimensional image information acquired from the CIS scanner 71 and the transportation position information acquired from the transportation control device 76 to form two-dimensional image information.
  • the formed two-dimensional image information is compared with information stored in the controller 73 in advance and characterizing defects such as foreign matter, cracks, and pinholes. Thereby, the controller 73 identifies the presence/absence of a defect in the subject T, the number of defects, and the position of the defect.
  • the controller 73 may judge pass/fail of the subject T based on the comparison result.
  • the output device 74 is, for example, a monitor, and displays the two-dimensional image information formed by the controller 73.
  • each glass element wire was immersed in a molten salt of sodium nitrate heated near the glass transition temperature of the glass composition forming each glass element wire, and an ion exchange treatment was performed. Thereby, a refractive index distribution was formed in each glass element wire. Then, the glass element wire after the ion exchange treatment was cut into one cycle length, and the cut end face was polished to obtain a gradient index lens according to each of Examples, Comparative Examples and Reference Example 1.
  • the refractive index Nc was obtained by evaluating the refractive index of the glass composition according to each example, each comparative example, and reference example 1.
  • a base material glass made of a glass composition was cut out to prepare a rectangular parallelepiped sample having a cross-sectional area of 15 mm square, and the refractive index Nc was evaluated according to the V block method described in JIS B7071-2:2018.
  • the sample is placed on the V-block prism, and the deflection angle of the light beam bent by the sample is measured when the spectral light beam is passed.
  • the present method is a method of relatively calculating the refractive index of the sample from the value of this deviation angle and the known refractive index of the V block prism.
  • KPR-3000 manufactured by Shimadzu Corporation was used for evaluation.
  • Water resistance evaluation The water resistance of each glass composition was evaluated according to JOGIS 06-2009. A sample prepared from each glass composition was placed in boiling water for 1 hour to measure the weight loss rate, and the water resistance of each glass composition was evaluated according to the weight loss rate. Water resistance according to JOGIS 06-2009 is classified into grades 1 to 6, and it can be said that a glass having a grade 1 water resistance has weather resistance, particularly excellent durability against moisture.
  • a predetermined process (concavo-convex forming process) was performed on the side surface of each gradient index lens for the purpose of removing noise light. After that, a plurality of respective gradient index lenses were two-dimensionally arranged to prepare a lens array in which a plurality of gradient index lenses were arranged in two rows as shown in FIG. In this way, lens arrays according to Examples, Comparative Examples, and Reference Example 1 were obtained. A line pattern having 6 black-and-white line pairs at intervals of 1 mm was prepared. That is, this line pattern had a spatial frequency of 6 lines/mm.
  • FIG. 9 shows the relationship between the value of MTF and ⁇ L in the lens arrays according to Example 2, Comparative Example 3, and Reference Example 1.
  • the DOF in the lens array including the gradient index lens according to each example is in the range of 1.5 to 3.0 mm, and the gradient index lens according to each example is desired. It was suggested to have DOF.
  • the water resistance of the glass composition according to each example was first grade.
  • the DOF in the lens array including the gradient index lens according to each comparative example was small.
  • the DOF of the lens array including the gradient index lens according to Reference Example 1 was 2.4 mm.
  • the water resistance of the glass composition according to Reference Example 1 is grade 4, and it is suggested that the glass composition according to Reference Example 1 is inferior in water resistance as compared with the glass compositions according to Examples. Was done.

Abstract

A gradient index lens (1b) has a depth of field of 1.5 to 3.0 mm. The depth of field is determined by subtracting the minimum operating distance from the maximum operating distance. The value of a modulation transfer function (MTF) for a spatial frequency of six lines per millimeter is 30% or greater in an operating distance.

Description

屈折率分布型レンズ、光学製品、光学機器、及び屈折率分布型レンズ用ガラス組成物、及び屈折率分布型レンズの製造方法Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens
 本発明は、屈折率分布型レンズ、光学製品、光学機器、及び屈折率分布型レンズ用ガラス組成物、及び屈折率分布型レンズの製造方法に関する。 The present invention relates to a gradient index lens, an optical product, an optical device, a glass composition for a gradient index lens, and a method for manufacturing the gradient index lens.
 従来、Charge-Coupled Device (CCD)を用いて被検体の表面の欠陥を観察する装置が知られている。例えば、特許文献1には、光源と、照射手段と、集光手段と、観察手段とを備えた表面欠陥装置が記載されている。観察手段は、結像レンズとCCDとからなっている。 Conventionally, a device for observing defects on the surface of a subject using a Charge-Coupled Device (CCD) is known. For example, Patent Document 1 describes a surface defect device including a light source, an irradiation unit, a condensing unit, and an observation unit. The observation means is composed of an imaging lens and a CCD.
 特許文献2には、電子写真方式の複写機やプリンタの感光体ドラムの外観検査に適した検査装置が記載されている。この検査装置は、一列に並べられた複数の1次元CCDカメラで感光体ドラムを撮影するカメラ装置を備えている。 Patent Document 2 describes an inspection device suitable for the appearance inspection of the photosensitive drum of an electrophotographic copying machine or printer. This inspection device is equipped with a camera device for photographing the photosensitive drum with a plurality of one-dimensional CCD cameras arranged in a line.
 一方、撮像センサとして密着型イメージセンサ(CIS)も知られている。CISはロッドレンズアレイを備えている。ロッドレンズアレイには、通常、屈折率分布型レンズが用いられる。 On the other hand, a contact image sensor (CIS) is also known as an image sensor. The CIS is equipped with a rod lens array. A gradient index lens is usually used for the rod lens array.
 例えば、特許文献3~5には、屈折率分布型レンズが記載されている。屈折率分布型レンズ又は屈折率分布型ロッドレンズは、中心から外周に向かって屈折率が連続的に減少している屈折率分布を有するロッド状(棒状)のレンズである。特許文献3に記載の屈折率分布型レンズにおいて、レンズの周表面における屈折率と中心軸における屈折率との差Δnは0.003以上である。特許文献3によれば、Δnが0.003よりも小さくなると開口角(2θ)が約10°よりも小さくなり、このことが望ましくないことが示唆されている。換言すると、特許文献3には、5°未満の開口角(θ)が望ましくないことが示唆されていると考えられる。 For example, Patent Documents 3 to 5 describe gradient index lenses. The gradient index lens or the gradient index rod lens is a rod-shaped (rod-shaped) lens having a gradient index distribution in which the refractive index continuously decreases from the center toward the outer periphery. In the gradient index lens described in Patent Document 3, the difference Δn between the refractive index on the peripheral surface of the lens and the refractive index on the central axis is 0.003 or more. According to Patent Document 3, when Δn is smaller than 0.003, the opening angle (2θ) becomes smaller than about 10°, which suggests that this is not desirable. In other words, it is considered that Patent Document 3 suggests that an opening angle (θ) of less than 5° is not desirable.
 特許文献4において実施例に係る屈折率分布型レンズの開口角は、約10.1~12.9°である。特許文献5において実施例に係る屈折率分布型レンズの開口角は、10.1~12.0°である。 In Patent Document 4, the aperture angle of the gradient index lens according to the example is about 10.1 to 12.9°. In Patent Document 5, the aperture angle of the gradient index lens according to the example is 10.1 to 12.0°.
特開平7-27709号公報JP-A-7-27709 特開2003-75906号公報JP-A-2003-75906 特公昭51-21594号公報Japanese Patent Publication No. 51-21594 特開2005-289775号公報JP 2005-289775 A 特開2008-230956号公報Japanese Patent Laid-Open No. 2008-230956
 特許文献1及び2には、屈折率分布型レンズを用いることは記載されていない。特許文献3~5に記載の屈折率分布型レンズは大きな開口角を有している。このことは、屈折率分布型レンズにおいて大きな被写界深度を実現する観点から有利とは言い難く、特許文献3~5に記載の屈折率分布型レンズの被写界深度は小さいと考えられる。 Patent Documents 1 and 2 do not describe using a gradient index lens. The gradient index lenses described in Patent Documents 3 to 5 have a large aperture angle. This cannot be said to be advantageous from the viewpoint of realizing a large depth of field in the gradient index lens, and it is considered that the gradient index lenses described in Patent Documents 3 to 5 have a small depth of field.
 このような事情に鑑み、本発明は、大きな被写界深度を有する屈折率分布型レンズを提供する。また、本発明は、このような屈折率分布型レンズを備えた光学製品、及びその光学製品を備えた光学機器を提供する。加えて、本発明は、屈折率分布型レンズの被写界深度を大きくするのに有利な屈折率分布型レンズ用ガラス組成物を提供する。また、本発明は、大きな被写界深度を有する屈折率分布型レンズを製造するのに有利な方法を提供する。 In view of such circumstances, the present invention provides a gradient index lens having a large depth of field. The present invention also provides an optical product including such a gradient index lens and an optical device including the optical product. In addition, the present invention provides a glass composition for a gradient index lens, which is advantageous for increasing the depth of field of the gradient index lens. The present invention also provides an advantageous method for manufacturing a gradient index lens having a large depth of field.
 本発明は、
 1.5~3.0mmの被写界深度を有し、
 前記被写界深度は、作動距離の最大値から最小値を差し引いて決定され、
 前記作動距離において、6本/mmの空間周波数における変調伝達関数(MTF)の値が30%以上である、
 屈折率分布型レンズを提供する。
The present invention is
With a depth of field of 1.5-3.0 mm,
The depth of field is determined by subtracting the minimum value from the maximum value of the working distance,
At the working distance, the value of the modulation transfer function (MTF) at a spatial frequency of 6 lines/mm is 30% or more,
A gradient index lens is provided.
 本発明は、
 上記の屈折率分布型レンズを備えた、光学製品を提供する。
The present invention is
An optical product provided with the above-mentioned gradient index lens is provided.
 本発明は、
 上記の光学製品を備えた、光学機器を提供する。
The present invention is
An optical device provided with the above optical product is provided.
 本発明は、
 モル%で示して、
 40%≦SiO2≦65%
 0%≦TiO2≦10%
 0.1%≦MgO≦22%
 0.15%≦ZnO≦15%
 0.5%≦Li2O<4%
 2%≦Na2O≦20%
 0%≦B23≦20%
 0%≦Al23≦10%
 0%≦K2O≦3%
 0%≦Cs2O≦3%
 0%≦Y23≦5%
 0%≦ZrO2≦2%
 0%≦Nb25≦5%
 0%≦In23≦5%
 0%≦La23≦5%
 0%≦Ta25≦5%、を含み、
 CaO、SrO、及びBaOからなる群より選ばれる少なくとも2つを、それぞれ0.1モル%以上15モル%以下含み、
 モル%で表示して、
 2%≦MgO+ZnO、
 0.07≦ZnO/(MgO+ZnO)≦0.93、
 2.5%≦Li2O+Na2O<24%、及び
 0%≦Y23+ZrO2+Nb25+In23+La23+Ta25≦11%の条件を満たす、
 屈折率分布型レンズ用ガラス組成物を提供する。
The present invention is
Shown in mol%,
40%≦SiO 2 ≦65%
0% ≤ TiO 2 ≤ 10%
0.1%≦MgO≦22%
0.15%≦ZnO≦15%
0.5%≦Li 2 O<4%
2% ≤ Na 2 O ≤ 20%
0% ≤ B 2 O 3 ≤ 20%
0% ≤ Al 2 O 3 ≤ 10%
0%≦K 2 O≦3%
0%≦Cs 2 O≦3%
0% ≤ Y 2 O 3 ≤ 5%
0% ≤ ZrO 2 ≤ 2%
0% ≤ Nb 2 O 5 ≤ 5%
0%≦In 2 O 3 ≦5%
0% ≤ La 2 O 3 ≤ 5%
0%≦Ta 2 O 5 ≦5%,
At least two selected from the group consisting of CaO, SrO, and BaO, each containing 0.1 mol% or more and 15 mol% or less,
Display in mol%,
2%≦MgO+ZnO,
0.07≦ZnO/(MgO+ZnO)≦0.93,
2.5%≦Li 2 O+Na 2 O<24%, and 0%≦Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ≦11%,
A glass composition for a gradient index lens is provided.
 本発明は、
 屈折率分布型レンズの製造方法であって、
 第一アルカリ金属元素の酸化物を含むガラス組成物からなるガラス素線を形成することと、
 前記第一アルカリ金属元素とは異なる第二アルカリ金属元素を含む溶融塩に前記ガラス素線を浸漬して、前記ガラス素線中の前記第一アルカリ金属元素と前記溶融塩中の前記第二アルカリ金属元素とをイオン交換処理することにより、前記ガラス素線に屈折率分布を形成することと、を備え、
 前記ガラス組成物は、モル%で示して、
 40%≦SiO2≦65%
 0%≦TiO2≦10%
 0.1%≦MgO≦22%
 0.15%≦ZnO≦15%
 0.5%≦Li2O<4%
 2%≦Na2O≦20%
 0%≦B23≦20%
 0%≦Al23≦10%
 0%≦K2O≦3%
 0%≦Cs2O≦3%
 0%≦Y23≦5%
 0%≦ZrO2≦2%
 0%≦Nb25≦5%
 0%≦In23≦5%
 0%≦La23≦5%
 0%≦Ta25≦5%、を含み、
 前記ガラス組成物は、CaO、SrO、及びBaOからなる群より選ばれる少なくとも2つを、それぞれ0.1モル%以上15モル%以下含み、
 前記ガラス組成物は、モル%で表示して、
 2%≦MgO+ZnO、
 0.07≦ZnO/(MgO+ZnO)≦0.93、
 2.5%≦Li2O+Na2O<24%、及び
 0%≦Y23+ZrO2+Nb25+In23+La23+Ta25≦11%の条件を満たす、
 方法を提供する。
The present invention is
A method of manufacturing a gradient index lens, comprising:
Forming a glass wire made of a glass composition containing an oxide of a first alkali metal element,
The glass element wire is immersed in a molten salt containing a second alkali metal element different from the first alkali metal element, and the first alkali metal element in the glass element wire and the second alkali in the molten salt. By forming a refractive index distribution in the glass element wire by performing an ion exchange treatment with a metal element,
The glass composition, expressed in mol %,
40%≦SiO 2 ≦65%
0% ≤ TiO 2 ≤ 10%
0.1%≦MgO≦22%
0.15%≦ZnO≦15%
0.5%≦Li 2 O<4%
2% ≤ Na 2 O ≤ 20%
0% ≤ B 2 O 3 ≤ 20%
0% ≤ Al 2 O 3 ≤ 10%
0%≦K 2 O≦3%
0%≦Cs 2 O≦3%
0% ≤ Y 2 O 3 ≤ 5%
0% ≤ ZrO 2 ≤ 2%
0% ≤ Nb 2 O 5 ≤ 5%
0%≦In 2 O 3 ≦5%
0% ≤ La 2 O 3 ≤ 5%
0%≦Ta 2 O 5 ≦5%,
The glass composition contains at least two selected from the group consisting of CaO, SrO, and BaO in an amount of 0.1 mol% or more and 15 mol% or less, respectively.
The glass composition is expressed in mol%,
2%≦MgO+ZnO,
0.07≦ZnO/(MgO+ZnO)≦0.93,
2.5%≦Li 2 O+Na 2 O<24%, and 0%≦Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ≦11%,
Provide a way.
 上記の屈折率分布型レンズは、大きな被写界深度を有する。また、上記の屈折率分布型レンズ用ガラス組成物は、屈折率分布型レンズの被写界深度を大きくするのに有利である。 The above gradient index lens has a large depth of field. Moreover, the glass composition for a gradient index lens described above is advantageous for increasing the depth of field of the gradient index lens.
図1は、本発明に係る屈折率分布型レンズの一例の被写界深度の決定方法を説明する図である。FIG. 1 is a diagram illustrating a method of determining a depth of field of an example of a gradient index lens according to the present invention. 図2は、本発明に係る屈折率分布型レンズの一例の開口角を示す図である。FIG. 2 is a diagram showing an aperture angle of an example of the gradient index lens according to the present invention. 図3Aは、本発明に係る屈折率分布型レンズの製造方法の一例におけるイオン交換処理を示す図である。FIG. 3A is a diagram showing an ion exchange process in an example of a method of manufacturing a gradient index lens according to the present invention. 図3Bは、屈折率分布型レンズにおける屈折率分布を概念的に示すグラフである。FIG. 3B is a graph conceptually showing the refractive index distribution in the gradient index lens. 図4は、本発明に係る光学製品の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of an optical product according to the present invention. 図5は、本発明に係る光学機器の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the optical device according to the present invention. 図6は、本発明に係る光学機器の別の一例を示す断面図である。FIG. 6 is a sectional view showing another example of the optical device according to the present invention. 図7は、本発明に係る光学機器のさらに別の一例を示す図である。FIG. 7 is a diagram showing still another example of the optical device according to the present invention. 図8は、本発明に係る光学機器のさらに別の一例を示す図である。FIG. 8 is a diagram showing still another example of the optical apparatus according to the present invention. 図9は、実施例2、比較例3、及び参考例1に係る屈折率分布型レンズのMTFの値と作動距離との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the MTF value and the working distance of the gradient index lenses according to Example 2, Comparative Example 3, and Reference Example 1.
 被検体の外観検査において収集される画像データは、被検体の欠陥を識別できる解像度を有していなければならない。一次元CCDセンサを備えたカメラを用いて高い解像度の画像データを得ようとすると、1つのカメラにおいて撮像できる有効幅は小さくなる。このため、1つのカメラで被検体の全体を撮像することが困難な場合がある。例えば、画像データにおいて必要とされる解像度に対応する画素サイズが90μmである場合、4096画素の一次元CCDセンサを備えたカメラで撮像できる領域の幅は約370mmである。この場合、1200mmの幅を有する被検体をくまなく検査するには一次元CCDセンサとカメラレンズとを備えた4台のカメラシステムを幅方向に並べる必要がある。一次元CCDセンサを備えた複数台のカメラシステムを搭載すると装置の製造コストが高くなる。加えて、被検体の種類の変更を変更する度に複数のカメラシステムの調整及びメンテナンスが必要になり、検査のランニングコストも高くなる。 Image data collected in the visual inspection of the subject must have a resolution that can identify defects in the subject. When trying to obtain high-resolution image data using a camera equipped with a one-dimensional CCD sensor, the effective width that can be captured by one camera becomes small. Therefore, it may be difficult to image the entire subject with one camera. For example, when the pixel size corresponding to the required resolution in the image data is 90 μm, the width of the area that can be imaged by the camera equipped with the one-dimensional CCD sensor of 4096 pixels is about 370 mm. In this case, in order to thoroughly inspect an object having a width of 1200 mm, it is necessary to arrange four camera systems each including a one-dimensional CCD sensor and a camera lens in the width direction. Mounting a plurality of camera systems equipped with a one-dimensional CCD sensor increases the manufacturing cost of the device. In addition, it is necessary to adjust and maintain a plurality of camera systems every time the type of subject is changed, which increases the running cost of the examination.
 そこで、CISを用いて被検体の外観検査を行うことが考えられる。CISは、基板上に配置された複数の一次元受光素子と、ロッドレンズアレイとを備える。CISにおいて、ロッドレンズアレイは正立等倍像を形成する。CISを用いれば、1200mmの幅の一次元画像を1つのユニットで得ることができる。ロッドレンズアレイは、例えば複数のロッド状の屈折率分布型レンズを配列したものである。屈折率分布型レンズは、その半径方向に屈折率分布を有し、屈折率分布型レンズの半径方向において中心部から周辺部に向かって屈折率が変化する。ロッドレンズアレイを備えたCISは、CCDセンサとレンズとを備えた従来のカメラシステムに比べて、撮像素子と撮影対象の物体との間の距離を10分の1程度に低減でき、装置の小型化の点で有利である。一方、CISにおいて、撮影対象の物体とレンズとの間隔の許容範囲を示す特性値である被写界深度(DOF)が小さい。このことは、被検体の厚みにばらつきがある場合に、被検体において焦点が合う部分と焦点が合わない部分とが発生するという問題を引き起こす。このため、焦点が合わない部分の画像は鮮明でなく、欠陥の見落とし及び欠陥の誤認が発生する可能性がある。 Therefore, it is possible to use CIS to perform a visual inspection of the subject. The CIS includes a plurality of one-dimensional light receiving elements arranged on a substrate and a rod lens array. In CIS, the rod lens array forms an erecting equal-magnification image. If CIS is used, a one-dimensional image having a width of 1200 mm can be obtained by one unit. The rod lens array is an array of a plurality of rod-shaped gradient index lenses, for example. The gradient index lens has a refractive index distribution in the radial direction, and the refractive index changes from the central portion to the peripheral portion in the radial direction of the gradient index lens. The CIS including the rod lens array can reduce the distance between the image pickup element and the object to be photographed to about 1/10 of that of a conventional camera system including a CCD sensor and a lens, which makes the device compact. It is advantageous in terms of conversion. On the other hand, in CIS, the depth of field (DOF), which is a characteristic value indicating the allowable range of the distance between the object to be photographed and the lens, is small. This causes a problem that when the subject has a variation in thickness, a part of the subject that is in focus and a part that is not in focus occur. For this reason, the image of the out-of-focus portion is not clear, and oversight of the defect and erroneous recognition of the defect may occur.
 上記の通り、特許文献3~5に記載の屈折率分布型レンズの開口角は大きく、このことは屈折率分布型レンズのDOFを大きくする観点から有利とは言い難い。そこで、本発明者らは、屈折率分布型レンズにおいて所望の範囲のDOFを実現すべく、屈折率分布型レンズの製造のために用いられるガラス組成物の条件を抜本的に見直した。本発明者らは、多大な試行錯誤を重ねた結果、所望の範囲のDOFを実現できる屈折率分布型レンズを遂に見出した。なお、本発明に係る屈折率分布型レンズは、被検体の外観検査の技術分野だけでなく、イメージスキャナ、複写機、ファクシミリ、及びプリンタ等の画像形成の技術分野の全般にわたって利用可能である。 As described above, the aperture angles of the gradient index lenses described in Patent Documents 3 to 5 are large, and this is hard to say from the viewpoint of increasing the DOF of the gradient index lens. Therefore, the present inventors drastically reviewed the conditions of the glass composition used for manufacturing the gradient index lens in order to realize the DOF in the desired range in the gradient index lens. As a result of many trials and errors, the present inventors finally found a gradient index lens that can realize a DOF in a desired range. The gradient index lens according to the present invention can be used not only in the field of visual inspection of a subject but also in the field of image formation of image scanners, copiers, facsimiles, printers and the like.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the following description relates to an example of the present invention, and the present invention is not limited to the following embodiments.
 屈折率分布型レンズ1bは、1.5~3.0mmの被写界深度(DOF)を有する。屈折率分布型レンズ1bのDOFは、作動距離の最大値から最小値を差し引いて決定される。屈折率分布型レンズ1bの作動距離において、6本/mmの空間周波数における変調伝達関数(MTF)の値が30%以上である。 The gradient index lens 1b has a depth of field (DOF) of 1.5 to 3.0 mm. The DOF of the gradient index lens 1b is determined by subtracting the minimum value from the maximum value of the working distance. At the working distance of the gradient index lens 1b, the value of the modulation transfer function (MTF) at a spatial frequency of 6 lines/mm is 30% or more.
 図1に示す通り、屈折率分布型レンズ1bのDOFは、例えば、レンズアレイ10aと、ラインパターン3と、受光素子2とを光軸方向に所定間隔で配置し、レンズアレイ10aとラインパターン3との距離を変動させながらMTFの値を求めることによって決定できる。レンズアレイ10aは、複数の屈折率分布型レンズ1bを光軸と垂直な方向に配列することによって構成されている。ラインパターン3は、6本/mmの空間周波数に対応する白黒のラインペアを有する。受光素子2は、例えば、CCDセンサである。例えば、ハロゲンランプからの出射光をカラーフィルター及び光拡散板を通過させた後ラインパターン3に照射する。カラーフィルターは、例えば、波長500~600nmの範囲の光を透過させるものであってもよく、主として波長530nmを透過させるものであってもよい。このとき、MTFの値は、レンズアレイ10aに入射する前の、明部と暗部からなる所定の空間周波数を有するラインパターン3の像(入力像)に対する、レンズアレイ10aによって受光素子2に結像して得られる像(出力像)の再現率として決定できる。 As shown in FIG. 1, in the DOF of the gradient index lens 1b, for example, the lens array 10a, the line pattern 3, and the light receiving element 2 are arranged at a predetermined interval in the optical axis direction, and the lens array 10a and the line pattern 3 are arranged. It can be determined by calculating the value of MTF while varying the distance between and. The lens array 10a is configured by arranging a plurality of gradient index lenses 1b in a direction perpendicular to the optical axis. The line pattern 3 has black and white line pairs corresponding to a spatial frequency of 6 lines/mm. The light receiving element 2 is, for example, a CCD sensor. For example, the light emitted from the halogen lamp is passed through the color filter and the light diffusion plate and then applied to the line pattern 3. The color filter may be, for example, one that transmits light in the wavelength range of 500 to 600 nm, or may be one that mainly transmits the wavelength of 530 nm. At this time, the value of MTF is formed on the light receiving element 2 by the lens array 10a with respect to the image (input image) of the line pattern 3 having a predetermined spatial frequency consisting of the bright portion and the dark portion before entering the lens array 10a. It can be determined as the reproducibility of the image obtained (output image).
 MTFの値が最大となるラインパターン3と受光素子2との距離(物点-結像点間距離)Dmaxを決定する。そのうえで、光軸に平行なZ軸の正方向(ΔL>0)及び負方向(ΔL<0)にラインパターン3を移動させ、それぞれの位置でMTFの値を求める。これにより、所定のMTFの値の許容できる範囲を設定することで、作動距離の最大値及び最小値を求めることができる。その結果、屈折率分布型レンズ1bのDOFを決定できる。なお、ΔL>0において、ラインパターン3とレンズアレイ10aとの距離は、距離Dmaxに対応する作動距離よりも大きい。一方、ΔL<0において、ラインパターン3とレンズアレイ10aとの距離は、距離Dmaxに対応する作動距離よりも小さい。ΔL=0において、ラインパターン3とレンズアレイ10aとの距離は、距離Dmaxに対応する作動距離と等しい。 A distance (distance between object point and image forming point) D max between the line pattern 3 and the light receiving element 2 where the value of MTF is maximum is determined. After that, the line pattern 3 is moved in the positive direction (ΔL>0) and the negative direction (ΔL<0) of the Z axis parallel to the optical axis, and the MTF value is obtained at each position. Thereby, the maximum value and the minimum value of the working distance can be obtained by setting the allowable range of the predetermined MTF value. As a result, the DOF of the gradient index lens 1b can be determined. When ΔL>0, the distance between the line pattern 3 and the lens array 10a is larger than the working distance corresponding to the distance D max . On the other hand, when ΔL<0, the distance between the line pattern 3 and the lens array 10a is smaller than the working distance corresponding to the distance D max . At ΔL=0, the distance between the line pattern 3 and the lens array 10a is equal to the working distance corresponding to the distance D max .
 屈折率分布型レンズ1bは、そのDOFが上記の範囲にあるので、例えば、不均一な厚み、段差、凹凸を有する被検体の外観検査に適した画像データを得るのに有利である。このため、屈折率分布型レンズ1bは、被検体の外観検査の精度向上及び検査基準の高度化に寄与しうる。 Since the DOF of the gradient index lens 1b is in the above range, it is advantageous for obtaining image data suitable for visual inspection of a subject having, for example, uneven thickness, steps, and irregularities. Therefore, the gradient index lens 1b can contribute to the improvement of the accuracy of the appearance inspection of the subject and the sophistication of the inspection standard.
 屈折率分布型レンズ1bのDOFは、望ましくは1.5mm以上であり、より望ましくは1.8mm以上であり、さらに望ましくは2mm以上である。屈折率分布型レンズ1bのDOFは、望ましくは2.8mm以下であり、より望ましくは2.5mm以下である。 DOF of the gradient index lens 1b is preferably 1.5 mm or more, more preferably 1.8 mm or more, and further preferably 2 mm or more. The DOF of the gradient index lens 1b is preferably 2.8 mm or less, more preferably 2.5 mm or less.
 MTFの値が最大となる物点-結像点間距離Dmaxに対応する作動距離は、例えば15mm以上であり、望ましくは18mm以上である。物点-結像点間距離Dmaxがこれらの範囲にあることにより、DOFが適切な範囲となる。このような屈折率分布型レンズ1bを含むロッドレンズアレイを検査装置に組み込むことにより、段差を有する対象物も検査できる。加えて、ロッドレンズアレイが対象物と適切な距離を保つことができ、光学系の組み立ての容易化を図ることができる。 The working distance corresponding to the object point-imaging point distance D max that maximizes the MTF value is, for example, 15 mm or more, and preferably 18 mm or more. Since the object point-imaging point distance D max is in these ranges, the DOF becomes an appropriate range. By incorporating the rod lens array including the gradient index lens 1b into the inspection device, an object having a step can be inspected. In addition, the rod lens array can maintain an appropriate distance from the object, and the assembly of the optical system can be facilitated.
 屈折率分布型レンズ1bは、例えば、3~6°の開口角θを有する。これにより、屈折率分布型レンズ1bのDOFが所望の範囲に調整されやすい。屈折率分布型レンズ1bの開口角θは、例えば、図2に示すように定義される。開口角θは、屈折率分布型レンズ1bの光軸の一端に入射可能な光線と光軸とがなす角度の最大値である。図2において、F1は、被写体面であり、F2は受光素子等における受光面(結像面)である。Z0は、屈折率分布型レンズ1bの長さである。Loは、MTFの値が最大となるときの被写体面F1と屈折率分布型レンズ1bとの間の距離であり、Liは、MTFの値が最大となるときの結像面F2と屈折率分布型レンズ1bとの間の距離である。図2において、レンズアレイ10aは、略正立等倍結像系を構成しており、距離Liは、距離Loと略等しい。図2において、X0は、屈折率分布型レンズ1bの視野半径である。屈折率分布型レンズ1bの開口角θは、例えば、実施例に記載の方法に従って決定できる。なお、実施例に記載の方法において、イオン交換前のガラス素線の屈折率Ncの代わりに、屈折率分布型レンズ1bの中心における屈折率n0を用いて開口角θを決定してもよい。Nc又はn0は日本工業規格(JIS)B 7071-2:2018に記載のVブロック法を用いて求めることができる。 The gradient index lens 1b has an aperture angle θ of 3 to 6°, for example. Thereby, the DOF of the gradient index lens 1b is easily adjusted to a desired range. The aperture angle θ of the gradient index lens 1b is defined as shown in FIG. 2, for example. The opening angle θ is the maximum value of the angle formed by the light beam that can enter one end of the optical axis of the gradient index lens 1b and the optical axis. In FIG. 2, F1 is a subject surface, and F2 is a light receiving surface (image forming surface) of a light receiving element or the like. Z 0 is the length of the gradient index lens 1b. L o is the distance between the subject surface F1 and the gradient index lens 1b when the MTF value is maximum, and L i is the refraction with the image formation plane F2 when the MTF value is maximum. It is a distance from the rate distribution type lens 1b. In FIG. 2, the lens array 10a constitutes a substantially erecting equal-magnification imaging system, and the distance L i is substantially equal to the distance L o . In FIG. 2, X 0 is the field radius of the gradient index lens 1b. The aperture angle θ of the gradient index lens 1b can be determined, for example, according to the method described in the examples. In the method described in the examples, the aperture angle θ may be determined using the refractive index n 0 at the center of the gradient index lens 1b instead of the refractive index Nc of the glass element wire before ion exchange. .. Nc or n 0 is the Japanese Industrial Standard (JIS) B 7071-2: can be obtained by using the V-block method described in 2018.
 屈折率分布型レンズ1bの開口角θは、3.5°以上であってもよく、3.7°以上であってもよい。屈折率分布型レンズ1bの開口角θは、望ましくは5.5°以下であり、より望ましくは5.2°以下である。 The aperture angle θ of the gradient index lens 1b may be 3.5° or more, or 3.7° or more. The aperture angle θ of the gradient index lens 1b is preferably 5.5° or less, more preferably 5.2° or less.
 屈折率分布型レンズ1bは、例えば、0.130~0.230mm-1の屈折率分布定数(√A))を有していてもよい。なお、√Aは、Aの平方根を意味する。屈折率分布型レンズの半径rにおける屈折率をn(r)とすると、レンズの近軸領域でn(r)=n0×{1-(A/2)×r2}が成り立つ。屈折率分布定数√Aがこのような範囲にあれば、屈折率分布型レンズ1bの開口角θが所望の範囲に収まりやすい。その結果、屈折率分布型レンズ1bのDOFが所望の範囲に調整されやすい。 The gradient index lens 1b may have, for example, a gradient index constant (√A) of 0.130 to 0.230 mm −1 . Note that √A means the square root of A. If the refractive index at the radius r of the gradient index lens is n(r), then n(r)=n 0 ×{1-(A/2)×r 2 } holds in the paraxial region of the lens. If the refractive index distribution constant √A is in such a range, the aperture angle θ of the gradient index lens 1b is likely to be within a desired range. As a result, the DOF of the gradient index lens 1b is easily adjusted to a desired range.
 屈折率分布型レンズ1bの屈折率分布定数は、0.140mm-1以上であってもよく、0.145mm-1以上であってもよい。屈折率分布型レンズ1bの屈折率分布定数は、望ましくは0.210mm-1以下であり、より望ましくは0.205mm-1以下である。 Refractive index distribution constant gradient index lens 1b may also be 0.140 mm -1 or more, may be 0.145 mm -1 or more. The refractive index distribution constant of the gradient index lens 1b is preferably 0.210 mm -1 or less, and more preferably 0.205 mm -1 or less.
 屈折率分布型レンズ1bにおける正立像の結像距離は、例えば、45~80mmである。このことは、屈折率分布型レンズ1bのDOFを所望の範囲に調整する観点から有利である。 The image forming distance of the erect image on the gradient index lens 1b is, for example, 45 to 80 mm. This is advantageous from the viewpoint of adjusting the DOF of the gradient index lens 1b within a desired range.
 屈折率分布型レンズ1bにおける正立像の結像距離は、47mm以上であってもよく、50mm以上であってもよく、53mm以上であってもよく、54mm以上であってもよい。屈折率分布型レンズ1bにおける正立像の結像距離は、75mm以下であってもよく、70mm以下であってもよく、67mm以下であってもよい。 The image forming distance of the erect image on the gradient index lens 1b may be 47 mm or more, 50 mm or more, 53 mm or more, and 54 mm or more. The image forming distance of the erect image on the gradient index lens 1b may be 75 mm or less, 70 mm or less, or 67 mm or less.
 屈折率分布型レンズ1bは、典型的には、ロッド状又はファイバー状のレンズである。屈折率分布型レンズ1bは、例えば、半径方向において図3Bに示すような屈折率分布を有する。ここで、図3Bにおいて原点における屈折率n0は、屈折率分布型レンズ1bの中心軸における屈折率を意味する。rは、屈折率分布型レンズ1bの半径方向における位置を表す。 The gradient index lens 1b is typically a rod-shaped or fiber-shaped lens. The gradient index lens 1b has, for example, a gradient index distribution as shown in FIG. 3B in the radial direction. Here, in FIG. 3B, the refractive index n 0 at the origin means the refractive index at the central axis of the gradient index lens 1b. r represents the position of the gradient index lens 1b in the radial direction.
 屈折率分布型レンズ1bは、必要に応じて、開口角よりも大きな入射角を有する入射光がレンズの側面で反射してノイズ光(いわゆる、ホワイトノイズ(迷光))が発生することを防止する構造を有していてもよい。このような構造は、例えば、レンズの側面に設けられた光吸収層又は光散乱層でありうる。例えば、屈折率分布型レンズ1bは、光吸収層となる着色層がレンズの側面に配置されたコア-クラッド構造を有していてもよいし、光散乱層となる微細な凹凸部が側面に形成された構造を有していてもよい。 The gradient index lens 1b prevents noise light (so-called white noise (stray light)) from being generated by reflecting incident light having an incident angle larger than the opening angle on the side surface of the lens, as necessary. It may have a structure. Such a structure may be, for example, a light absorbing layer or a light scattering layer provided on the side surface of the lens. For example, the gradient index lens 1b may have a core-clad structure in which a colored layer serving as a light absorbing layer is arranged on the side surface of the lens, or a fine uneven portion serving as a light scattering layer is located on the side surface. It may have a formed structure.
 屈折率分布型レンズ1bは、典型的にはガラス製のレンズである。屈折率分布型レンズ用ガラス組成物は、モル%で示して、40%≦SiO2≦65%、0%≦TiO2≦10%、0.1%≦MgO≦22%、0.15%≦ZnO≦15%、0.5%≦Li2O<4%、2%≦Na2O≦20%、0%≦B23≦20%、0%≦Al23≦10%、0%≦K2O≦3%、0%≦Cs2O≦3%、0%≦Y23≦5%、0%≦ZrO2≦2%、0%≦Nb25≦5%、0%≦In23≦5%、0%≦La23≦5%、及び0%≦Ta25≦5%を含む。加えて、屈折率分布型レンズ用ガラス組成物は、CaO、SrO、及びBaOからなる群より選ばれる少なくとも2つを、それぞれ0.1モル%以上15モル%以下含む。さらに、屈折率分布型レンズ用ガラス組成物は、モル%で表示して、2%≦MgO+ZnO、0.07≦ZnO/(MgO+ZnO)≦0.93、2.5%≦Li2O+Na2O<24%、及び0%≦Y23+ZrO2+Nb25+In23+La23+Ta25≦11%の条件を満たす。このようなガラス組成物を用いることにより、所望のDOFを有する屈折率分布型レンズを得ることができる。 The gradient index lens 1b is typically a glass lens. The glass composition for a gradient index lens has a mol% of 40%≦SiO 2 ≦65%, 0%≦TiO 2 ≦10%, 0.1%≦MgO≦22%, 0.15%≦. ZnO≦15%, 0.5%≦Li 2 O<4%, 2%≦Na 2 O≦20%, 0%≦B 2 O 3 ≦20%, 0%≦Al 2 O 3 ≦10%, 0 %≦K 2 O≦3%, 0%≦Cs 2 O≦3%, 0%≦Y 2 O 3 ≦5%, 0%≦ZrO 2 ≦2%, 0%≦Nb 2 O 5 ≦5%, Including 0%≦In 2 O 3 ≦5%, 0%≦La 2 O 3 ≦5%, and 0%≦Ta 2 O 5 ≦5%. In addition, the gradient index lens glass composition contains at least two selected from the group consisting of CaO, SrO, and BaO in an amount of 0.1 mol% or more and 15 mol% or less, respectively. Further, the glass composition for a gradient index lens is represented by mol %, 2%≦MgO+ZnO, 0.07≦ZnO/(MgO+ZnO)≦0.93, 2.5%≦Li 2 O+Na 2 O< The conditions of 24% and 0%≦Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ≦11% are satisfied. By using such a glass composition, it is possible to obtain a gradient index lens having a desired DOF.
 屈折率分布型レンズ1bは、例えば、上記のガラス組成物からなるガラス素線をイオン交換処理することによって製造できる。 The gradient index lens 1b can be manufactured, for example, by subjecting a glass element wire made of the above glass composition to an ion exchange treatment.
 (SiO2
 SiO2は、ガラスの網目構造を形成する必須成分である。SiO2の含有率が40モル%未満では、イオン交換後に屈折率分布型レンズとしての光学特性を発現させるために必要な他の成分の含有率が相対的に大きくなって、失透が生じやすくなる。また、当該含有率が40モル%未満では、ガラス組成物としての化学的な耐久性が著しく低下する。一方、当該含有率が65モル%を超えると、他の成分、例えば屈折率分布を形成するためのアルカリ成分、屈折率増加成分、及び物性値調整成分など、の含有率が限定され、実用的なガラス組成物とすることが困難となる。このため、SiO2の含有率は、40モル%以上65%モル以下である。
(SiO 2 )
SiO 2 is an essential component that forms a glass network structure. When the content of SiO 2 is less than 40 mol %, the content of other components necessary for developing the optical characteristics as a gradient index lens after ion exchange becomes relatively large, and devitrification is likely to occur. Become. If the content is less than 40 mol%, the chemical durability of the glass composition will be significantly reduced. On the other hand, when the content exceeds 65 mol %, the content of other components such as an alkali component for forming a refractive index distribution, a refractive index increasing component, and a physical property value adjusting component is limited, which is practical. It becomes difficult to obtain a simple glass composition. Therefore, the content of SiO 2 is 40 mol% or more and 65% mol or less.
 (TiO2
 TiO2は、ガラス組成物の屈折率を増大させる作用を有する必須成分である。母材ガラス組成物の屈折率を増大させることにより、当該ガラス組成物から得られた屈折率分布型レンズの中心屈折率を増大させることができる。また、TiO2の含有率を増加させることにより、屈折率分布型レンズにおける屈折率分布を、より理想的な状態に近づけることができ、解像度に優れる屈折率分布型レンズの製造が可能となる。TiO2の含有率が10モル%のときには、得られるレンズに基づく画像の解像度の低下は観察されないが、その含有率が1モル%未満のときには画像の解像度が明らかに低下して、実用的なレンズが得られない。一方、当該含有率が10モル%を超えると、着色が強くなることで色収差が大きくなり、実用的なレンズが得られない。そこで、画像の解像度を高めることができ、かつ、色収差が小さいレンズを得るために、TiO2の含有率は、1モル%以上10モル%以下である。TiO2の含有率は、望ましくは2モル%以上8モル%以下である。
(TiO 2 )
TiO 2 is an essential component that has the effect of increasing the refractive index of the glass composition. By increasing the refractive index of the base glass composition, the central refractive index of the gradient index lens obtained from the glass composition can be increased. Further, by increasing the content of TiO 2 , the refractive index distribution in the gradient index lens can be brought closer to an ideal state, and it becomes possible to manufacture a gradient index lens having excellent resolution. When the content of TiO 2 is 10 mol %, no decrease in the resolution of the image based on the obtained lens is observed, but when the content is less than 1 mol %, the resolution of the image is obviously decreased, which is not practical. I can't get a lens. On the other hand, when the content exceeds 10 mol %, the coloring becomes strong and the chromatic aberration increases, so that a practical lens cannot be obtained. Therefore, in order to obtain a lens with high image resolution and small chromatic aberration, the content of TiO 2 is 1 mol% or more and 10 mol% or less. The content of TiO 2 is desirably 2 mol% or more and 8 mol% or less.
 (MgO)
 MgOは、ガラス組成物の熔融温度を低下させ、イオン交換後における、レンズ中心部と周辺部との間の屈折率差(Δn)を大きくする作用を有する必須成分である。MgOの含有率が22モル%を超えると、失透が生じやすくなる。また、MgOの含有率が22モル%を超えると、その他の成分の含有率が過度に減少し、実用的なガラス組成物を得られない。このため、MgOの含有率は、0.1モル%以上22モル%以下である。十分な屈折率差を実現する観点から、MgOの含有率は、望ましくは2モル%以上である。MgOの含有率が2モル%以上であると、アルカリ土類金属酸化物(CaO、SrO、BaO)の含有率を、アルカリイオンの易動度をさらに低下させることを目的としてより適切に制御できる。すなわち、MgOの含有率は、望ましくは2モル%以上22モル%以下であり、より望ましくは2モル%以上16モル%以下である。
(MgO)
MgO is an essential component that has a function of lowering the melting temperature of the glass composition and increasing the refractive index difference (Δn) between the lens central portion and the peripheral portion after ion exchange. If the MgO content exceeds 22 mol %, devitrification is likely to occur. On the other hand, if the content of MgO exceeds 22 mol %, the content of the other components is excessively reduced, and a practical glass composition cannot be obtained. Therefore, the MgO content is 0.1 mol% or more and 22 mol% or less. From the viewpoint of realizing a sufficient difference in refractive index, the content of MgO is preferably 2 mol% or more. When the content of MgO is 2 mol% or more, the content of the alkaline earth metal oxides (CaO, SrO, BaO) can be more appropriately controlled for the purpose of further reducing the mobility of alkali ions. .. That is, the content of MgO is preferably 2 mol% or more and 22 mol% or less, and more preferably 2 mol% or more and 16 mol% or less.
 (ZnO、MgO+ZnO、ZnO/(MgO+ZnO))
 ZnOは、ガラス組成物及び屈折率分布型レンズの耐候性を向上させる作用を有する。本発明に係るガラス組成物において、ZnOは、MgOの一部を置換するために加えてもよい。ガラス組成物及び屈折率分布型レンズの耐候性を高める観点から、ZnOの含有率は、0.15モル%以上15モル%以下である。このとき、MgO及びZnOの含有率の合計(MgO+ZnO)が2モル%以上であるように、MgO及びZnOの含有率が調整される。加えて、MgO及びZnOの含有率の合計に対するZnOの含有率の比(ZnO/(MgO+ZnO))が、0.07≦ZnO/(MgO+ZnO)≦0.93となるように、MgO及びZnOの含有率が調整される。ガラス組成物及び屈折率分布型レンズの耐候性をより高める観点から、ZnOの含有率は、望ましくは3%モル以上15モル%以下である。この場合、MgO+ZnOが6モル%以上であってもよく、0.12≦ZnO/(MgO+ZnO)≦0.93の条件が満たされうる。耐失透性の観点から、ZnOの含有率は、望ましくは8モル%以下である。ガラス組成物及び屈折率分布型レンズの耐候性をさらに高める観点から、ZnOの含有率は、より望ましくは4モル%以上15モル%以下である。この場合、MgO+ZnOが6モル%以上であってもよく、MgO+ZnOが6モル%以上22モル%以下でありうる。MgO+ZnOは、15モル%以下であってもよい。また、ZnO/(MgO+ZnO)は、望ましくは0.07以上0.9以下であり、より望ましくは0.25以上0.85以下であり、さらに望ましくは0.25以上0.8以下であり、とりわけ望ましくは0.3以上0.8以下である。
(ZnO, MgO+ZnO, ZnO/(MgO+ZnO))
ZnO has the function of improving the weather resistance of the glass composition and the gradient index lens. In the glass composition according to the present invention, ZnO may be added to replace a part of MgO. From the viewpoint of enhancing the weather resistance of the glass composition and the gradient index lens, the ZnO content is 0.15 mol% or more and 15 mol% or less. At this time, the content rates of MgO and ZnO are adjusted so that the total content rate of MgO and ZnO (MgO+ZnO) is 2 mol% or more. In addition, the content of MgO and ZnO is such that the ratio of the content of ZnO to the total content of MgO and ZnO (ZnO/(MgO+ZnO)) is 0.07≦ZnO/(MgO+ZnO)≦0.93. The rate is adjusted. From the viewpoint of further improving the weather resistance of the glass composition and the gradient index lens, the ZnO content is desirably 3% by mole or more and 15% by mole or less. In this case, MgO+ZnO may be 6 mol% or more, and the condition of 0.12≦ZnO/(MgO+ZnO)≦0.93 may be satisfied. From the viewpoint of devitrification resistance, the ZnO content is preferably 8 mol% or less. From the viewpoint of further improving the weather resistance of the glass composition and the gradient index lens, the ZnO content is more preferably 4 mol% or more and 15 mol% or less. In this case, MgO+ZnO may be 6 mol% or more, and MgO+ZnO may be 6 mol% or more and 22 mol% or less. MgO+ZnO may be 15 mol% or less. Further, ZnO/(MgO+ZnO) is preferably 0.07 or more and 0.9 or less, more preferably 0.25 or more and 0.85 or less, and further preferably 0.25 or more and 0.8 or less, It is particularly preferably 0.3 or more and 0.8 or less.
 (Li2O)
 Li2Oは、必須成分であり、本発明のガラス組成物をイオン交換して屈折率分布型レンズを得るために、最も重要な成分の一つである。従来、ガラス組成物におけるLi2Oの含有率が少ないと、イオン交換によって、十分な濃度分布、即ち十分な屈折率分布を発現できず、適切な屈折率分布型レンズを得ることができないと考えられていた。しかし、本発明者らは、Li2Oの含有率が4モル%以下であるガラス組成物であっても、所定の条件でイオン交換を行うことにより、適切な屈折率分布を有し、かつ、大きなDOFを有する屈折率分布型レンズを作製できることを新たに見出した。Li2Oの含有率が4モル%以下を超えると、得られる屈折率分布型レンズの開口角が大きくなりやすく、DOFが小さくなりやすい。Li2Oの含有率は、0.5モル%以上であり、望ましくは0.7モル%以上であり、より望ましくは1モル%以上である。また、Li2Oの含有率は、4モル%以下であり、望ましくは3.5モル%以下であり、より望ましくは3モル%以下であり、さらに望ましくは2モル%以下である。
(Li 2 O)
Li 2 O is an essential component, and is one of the most important components in order to ion-exchange the glass composition of the present invention to obtain a gradient index lens. Conventionally, when the content of Li 2 O in a glass composition is low, it is considered that a sufficient concentration distribution, that is, a sufficient refractive index distribution cannot be expressed by ion exchange, and an appropriate gradient index lens cannot be obtained. It was being done. However, the inventors of the present invention have a suitable refractive index distribution by performing ion exchange under predetermined conditions even for a glass composition having a Li 2 O content of 4 mol% or less, and , Newly found that a gradient index lens having a large DOF can be manufactured. When the content of Li 2 O exceeds 4 mol% or less, the aperture angle of the obtained gradient index lens tends to be large and the DOF tends to be small. The content of Li 2 O is 0.5 mol% or more, preferably 0.7 mol% or more, and more preferably 1 mol% or more. The content of Li 2 O is 4 mol% or less, preferably 3.5 mol% or less, more preferably 3 mol% or less, and further preferably 2 mol% or less.
 屈折率分布型レンズ1bの特徴の一つは、Li2Oの含有率が様々な先行技術より少ないことである。従前は、Li2Oの含有率を少なくできない製造工程上の理由があった。本発明者らは、イオン交換法による1バッチあたりのガラス素線の処理量を制限すること及び溶融塩におけるLiの当初の含有量を少なくすること等の新たな工夫により、像面湾曲等のレンズの収差を抑制しつつ、開口角が従前より小さく、かつ実用的な解像度を備える屈折率分布型レンズが得られることを新たに見出した。 One of the characteristics of the gradient index lens 1b is that the content of Li 2 O is lower than that of various prior arts. In the past, there was a reason in the manufacturing process that the content of Li 2 O could not be reduced. The inventors of the present invention have made a new device such as limiting the amount of glass strands to be processed per batch by the ion exchange method and reducing the initial content of Li in the molten salt, thereby making it possible to reduce the field curvature and the like. It was newly found that it is possible to obtain a gradient index lens having a smaller aperture angle and a practical resolution while suppressing the aberration of the lens.
 (Na2O)
 Na2Oは、イオン交換の際に、いわゆる混合アルカリ効果によって、Liと、Liイオンを置換するイオン交換種のイオン(溶融塩中に含有されるイオン)とのイオン交換を助け、イオンの易動度を適度に保つ。イオン易動度を適度に保つことで、イオン交換速度を適度に調整でき、屈折率分布型レンズの光学特性を調整できる。ガラス組成物中のNa2Oの含有率が2モル%未満であると、ガラス成形時にガラスが硬くなるので、成形が困難となる。加えて、ガラスの溶融温度が著しく上昇し、レンズの作製が困難となる。また、イオンの易動度を適度に保つ効果を十分に得ることが難しい。一方、Na2Oの含有率が20%を超えると、ガラスの化学耐久性が低下し、実用性に欠ける。したがって、Na2Oの含有率は、2モル%以上であり、望ましくは5モル%以上であり、より望ましくは10モル%以上である。また、Na2Oの含有率は、20モル%以下であり、望ましくは17モル%以下である。
(Na 2 O)
At the time of ion exchange, Na 2 O assists the ion exchange between Li and the ion of the ion exchange species (the ion contained in the molten salt) that replaces the Li ion by the so-called mixed alkali effect, so that the ion is easily exchanged. Keep the mobility moderate. By keeping the ion mobility moderate, the ion exchange rate can be adjusted appropriately, and the optical characteristics of the gradient index lens can be adjusted. If the content of Na 2 O in the glass composition is less than 2 mol %, the glass becomes hard at the time of glass molding, which makes molding difficult. In addition, the melting temperature of the glass rises significantly, making it difficult to manufacture a lens. In addition, it is difficult to obtain a sufficient effect of keeping the mobility of ions moderate. On the other hand, when the content of Na 2 O exceeds 20%, the chemical durability of the glass is lowered and the practicality is impaired. Therefore, the content of Na 2 O is 2 mol% or more, preferably 5 mol% or more, and more preferably 10 mol% or more. The content of Na 2 O is 20 mol% or less, preferably 17 mol% or less.
 (Li2O+Na2O)
 上記の通り、ガラス組成物におけるLi2Oの含有率とNa2O含有率との合計(Li2O+Na2O)は、2.5モル%以上24モル%未満である。Li2O+Na2Oがこの範囲であると、このガラス組成物を用いて製造された屈折率分布型レンズによって良好な解像度の画像を得ることができる。Li2O+Na2Oは、望ましくは6モル%以上であり、より望ましくは10モル%以上である。
(Li 2 O+Na 2 O)
As described above, the total of the content of Li 2 O and the content of Na 2 O (Li 2 O+Na 2 O) in the glass composition is 2.5 mol% or more and less than 24 mol %. When Li 2 O+Na 2 O is in this range, an image with good resolution can be obtained by the gradient index lens manufactured using this glass composition. Li 2 O+Na 2 O is preferably 6 mol% or more, more preferably 10 mol% or more.
 (Li2O/Na2O)
 Na2Oの含有率に対するLi2Oの含有率の比(Li2O/Na2O)が大きいと、ガラス組成物を用いて製造された屈折率分布型レンズの解像力が向上することがある。一方、Li2O/Na2Oが過剰に大きい(例えば1.0以上)と、ガラス組成物を用いて製造された屈折率分布型レンズの開口角が大きくなり、そのDOFが小さくなる傾向にある。このため、Li2O/Na2Oは、例えば、0.2以下であり、望ましくは0.15以下であり、より望ましくは0.1以下である。
(Li 2 O/Na 2 O)
When Na 2 O Li 2 O ratio of content of the relative content of (Li 2 O / Na 2 O ) is large, it is possible to improve resolution of refractive index distribution type lenses produced using the glass composition .. On the other hand, if Li 2 O/Na 2 O is excessively large (for example, 1.0 or more), the aperture angle of the gradient index lens manufactured using the glass composition tends to be large and its DOF tends to be small. is there. Therefore, Li 2 O/Na 2 O is, for example, 0.2 or less, preferably 0.15 or less, and more preferably 0.1 or less.
 上記のガラス組成物は、さらに以下の成分を含んでいてもよい。 The above glass composition may further contain the following components.
 (B23
 B23は、ガラスの網目構造を形成する任意成分であり、得られる屈折率分布型レンズの解像力及び開口角θをほとんど変化させることなく、ガラス組成物のガラス化を促進し、その粘性を調整する作用を有する。また、若干ではあるが、ガラス組成物のイオン交換速度を遅くする作用も有する。B23は、例えば、上述した各必須成分の含有率は本発明の範囲内であるが、組成物として見たときに一部の成分の含有率が相対的に大きくなり、ガラスとしての安定性が低下する(例えば失透を生じやすくなる)場合に、加えてもよい。B23の添加により、必須成分間の含有率の比率を変えることなく、相対的に大きくなった上記一部の成分の含有率を小さくすることができる。得られる屈折率分布型レンズの解像力及び開口角を変化させることなく添加できるB23の含有率は、例えば、20%モル以下である。このため、B23の含有率は、0%モル以上20モル%以下である。当該含有率は、望ましくは0モル%以上10モル%以下であり、ガラス組成物がB23を含有する場合、その含有率は望ましくは1モル%以上10モル%以下である。
(B 2 O 3 )
B 2 O 3 is an optional component that forms a network structure of glass, promotes vitrification of the glass composition and changes its viscosity without substantially changing the resolution and aperture angle θ of the obtained gradient index lens. Has the effect of adjusting. It also has a slight effect of slowing the ion exchange rate of the glass composition. B 2 O 3 has, for example, the content ratio of each of the above-mentioned essential components within the scope of the present invention, but when viewed as a composition, the content ratio of some components becomes relatively large, and B 2 O 3 is It may be added when the stability decreases (for example, devitrification tends to occur). By adding B 2 O 3 , it is possible to reduce the content ratios of the above-mentioned some components which have become relatively large, without changing the content ratios of the essential components. The content of B 2 O 3 that can be added without changing the resolving power and the aperture angle of the obtained gradient index lens is, for example, 20% mol or less. Therefore, the content of B 2 O 3 is 0% or more and 20% or less. The content is preferably 0 mol% or more and 10 mol% or less, and when the glass composition contains B 2 O 3 , the content is preferably 1 mol% or more and 10 mol% or less.
 (Al23
 屈折率分布型レンズ用ガラス組成物は、任意成分としてAl23を含んでいてもよく、その含有率は、0モル%以上10モル%以下である。
(Al 2 O 3 )
The glass composition for a gradient index lens may contain Al 2 O 3 as an optional component, and the content thereof is 0 mol% or more and 10 mol% or less.
 (SiO2+TiO2+B23
 屈折率分布型レンズ用ガラス組成物において、SiO2、TiO2、及びB23の含有率の合計(SiO2+TiO2+B23)は、例えば41モル%以上70モル%以下であり、望ましくは50モル%以上70モル%以下である。
(SiO 2 +TiO 2 +B 2 O 3 )
In the glass composition for gradient index lenses, the total content of SiO 2 , TiO 2 , and B 2 O 3 (SiO 2 +TiO 2 +B 2 O 3 ) is, for example, 41 mol% or more and 70 mol% or less. It is preferably 50 mol% or more and 70 mol% or less.
 (Y23、ZrO2、Nb25、In23、La23、Ta25
 屈折率分布型レンズ用ガラス組成物は、イオン交換後に得られる屈折率分布型レンズの屈折率の調整、あるいは耐候性の向上を目的として、Y23、ZrO2、Nb25、In23、La23、及びTa25からなる群より選択される少なくとも1つの成分を含んでいてもよい。これらの成分の含有率の合計は0モル%以上11モル%以下であり、屈折率分布型レンズ用ガラス組成物がこれらの成分を含む場合、これらの成分の含有率の合計は、望ましくは0.2モル%以上6モル%以下である。また、これらの成分の含有率とZnOの含有率との合計が15モル%以下であることが望ましい。
(Y 2 O 3, ZrO 2 , Nb 2 O 5, In 2 O 3, La 2 O 3, Ta 2 O 5)
The glass composition for a gradient index lens includes Y 2 O 3 , ZrO 2 , Nb 2 O 5 , and In for the purpose of adjusting the refractive index of the gradient index lens obtained after ion exchange or improving the weather resistance. It may contain at least one component selected from the group consisting of 2 O 3 , La 2 O 3 , and Ta 2 O 5 . The total content of these components is 0 mol% or more and 11 mol% or less. When the glass composition for a gradient index lens contains these components, the total content of these components is preferably 0% or less. It is at least 2 mol% and at most 6 mol %. Further, it is desirable that the sum of the content rates of these components and the ZnO content is 15 mol% or less.
 (Y23
 Y23の含有率は、望ましくは0モル%以上5モル%以下である。
(Y 2 O 3 )
The content of Y 2 O 3 is desirably 0 mol% or more and 5 mol% or less.
 (ZrO2
 ZrO2の含有率は、望ましくは0モル%以上2モル%以下であり、屈折率分布型レンズ用ガラス組成物がZrO2を含む場合、その含有率は0.2モル%以上2モル%以下である。
(ZrO 2 )
The content of ZrO 2 is preferably 0 mol% or more and 2 mol% or less, and when the glass composition for a gradient index lens contains ZrO 2 , the content is 0.2 mol% or more and 2 mol% or less. Is.
 Nb25、In23、La23、及びTa25の含有率のそれぞれは、望ましくは0モル%以上5モル%以下である。 The respective contents of Nb 2 O 5 , In 2 O 3 , La 2 O 3 and Ta 2 O 5 are desirably 0 mol% or more and 5 mol% or less.
 (K2O、Cs2O)
 K2O及びCs2Oは、混合アルカリ効果により、MgO、CaO、SrO、及びBaOと同様に、アルカリイオンの易動度を小さくする作用を有する任意成分である。K2O及びCs2Oの含有率のそれぞれは、例えば、0モル%以上3モル%以下である。屈折率分布型レンズ用ガラス組成物の耐水性を高める観点から、Cs2Oの含有率は、望ましくは2モル%未満であり、より望ましくは0モル%以上1モル%以下であり、さらに望ましくは0.5モル%以下である。屈折率分布型レンズ用ガラス組成物の耐水性を高める観点から、屈折率分布型レンズ用ガラス組成物は、Cs2Oを実質的に含まないことが望ましい。本明細書において「実質的に含まない」とは、当該成分の含有率が0.1モル%未満であることを意味する。
(K 2 O, Cs 2 O)
K 2 O and Cs 2 O are optional components having the action of reducing the mobility of alkali ions, like MgO, CaO, SrO, and BaO, due to the mixed alkali effect. Each of the content rates of K 2 O and Cs 2 O is, for example, 0 mol% or more and 3 mol% or less. From the viewpoint of increasing the water resistance of the glass composition for a gradient index lens, the content of Cs 2 O is preferably less than 2 mol%, more preferably 0 mol% or more and 1 mol% or less, and further preferably Is 0.5 mol% or less. From the viewpoint of enhancing the water resistance of the glass composition for gradient index lenses, it is desirable that the glass composition for gradient index lenses does not substantially contain Cs 2 O. The term "substantially free" as used herein means that the content of the component is less than 0.1 mol %.
 (その他の成分)
 屈折率分布型レンズ用ガラス組成物において、その他の成分として、GeO2を含んでいてもよい。GeO2の含有率は0モル%以上10モル%以下でありうる。また、屈折率分布型レンズ用ガラス組成物は、添加物として、SnO2、As23、及びSb23からなる群より選択される少なくとも1つを含んでいてもよい。SnO2、As23、及びSb23の含有率のそれぞれは、0モル%以上1モル%以下でありうる。屈折率分布型レンズ用ガラス組成物は、実質的に上記の成分からなってもよい。この場合、ガラス組成物が含む各成分の含有率、ならびに各成分の含有率間の関係(合計及び含有比)は、上述した各条件を満たす。本明細書において、「実質的に~からなる」とは、含有率にして0.1モル%未満の不純物を許容することを意味する。
(Other ingredients)
The glass composition for a gradient index lens may contain GeO 2 as another component. The content of GeO 2 may be 0 mol% or more and 10 mol% or less. Further, the glass composition for gradient index lens may contain at least one selected from the group consisting of SnO 2 , As 2 O 3 , and Sb 2 O 3 as an additive. The content of each of SnO 2 , As 2 O 3 , and Sb 2 O 3 may be 0 mol% or more and 1 mol% or less. The gradient index lens glass composition may consist essentially of the above components. In this case, the content rate of each component contained in the glass composition and the relationship between the content rates of the respective components (total and content ratio) satisfy each of the above-mentioned conditions. In the present specification, “consisting essentially of” means that the content of impurities is less than 0.1 mol %.
 (PbO)
 屈折率分布型レンズ用ガラス組成物は、実質的に鉛(代表的な化合物としてはPbO)を含まない。また、屈折率分布型レンズ1bも実質的に鉛を含まない。
(PbO)
The glass composition for a gradient index lens does not substantially contain lead (a typical compound is PbO). Further, the gradient index lens 1b also contains substantially no lead.
 屈折率分布型レンズ用ガラス組成物において、例えば、日本光学硝子工業会規格(JOGIS)06-2009に準拠して決定される耐水性が1級である。この場合、屈折率分布型レンズ用ガラス組成物が高い耐水性を有し、屈折率分布型レンズ用ガラス組成物を用いて製造された屈折率分布型レンズも高い耐水性を有しやすい。屈折率分布型レンズをなすガラスにおいても、JOGIS 06-2009に準拠して決定される耐水性が1級であってもよい。 In the glass composition for a gradient index lens, for example, the water resistance determined according to Japan Optical Glass Industry Association Standard (JOGIS) 06-2009 is first grade. In this case, the glass composition for a gradient index lens has high water resistance, and the gradient index lens manufactured using the glass composition for a gradient index lens also tends to have high water resistance. Even in the glass forming the gradient index lens, the water resistance determined according to JOGIS 06-2009 may be first grade.
 屈折率分布型レンズ用ガラス組成物は、第一アルカリ金属元素の酸化物を含む。屈折率分布型レンズ1bは、例えば、以下の工程(I)及び(II)を含む方法によって製造できる。
(I)上記の屈折率分布型レンズ用ガラス組成物からなるガラス素線1aを形成する。
(II)屈折率分布型レンズ用ガラス組成物に含まれる第一アルカリ金属元素Qとは異なる第二アルカリ金属元素Rを含む溶融塩Sにガラス素線1aを浸漬して、ガラス素線1a中の第一アルカリ金属元素Qと溶融塩中の第二アルカリ金属元素Rとをイオン交換処理することにより、ガラス素線1aに屈折率分布を形成する。
The gradient index lens glass composition contains an oxide of a first alkali metal element. The gradient index lens 1b can be manufactured by, for example, a method including the following steps (I) and (II).
(I) A glass element wire 1a made of the above glass composition for a gradient index lens is formed.
(II) The glass element wire 1a is immersed in a molten salt S containing a second alkali metal element R different from the first alkali metal element Q contained in the glass composition for gradient index lens, The first alkali metal element Q and the second alkali metal element R in the molten salt are subjected to an ion exchange treatment to form a refractive index distribution in the glass element wire 1a.
 (II)の工程において、例えば、図3Aに示す通り、容器Vの内部の溶融塩Sにガラス素線1aを投入し、溶融塩Sにガラス素線1aを所定時間浸漬する。溶融塩Sにおいて、例えば、硝酸カリウム及び硝酸ナトリウムの少なくとも1つが溶融している。ガラス素線1aを溶融塩Sに浸漬すると、例えば、ガラス素線1aに含まれるLi(リチウム)等の第一アルカリ金属元素Qの陽イオンが溶融塩S中に溶け出す。一方、溶融塩S中のK(カリウム)等の第二アルカリ金属元素Rの陽イオンがガラス素線1aに侵入する。溶融塩Sの温度及び溶融塩Sへのガラス素線1aの浸漬時間を調整することにより、第一アルカリ金属元素Qの陽イオンと第二アルカリ金属元素Rの陽イオンとのイオン交換を適切に制御できる。ガラス素線1aの内部には、特定の1価の陽イオンの濃度分布が生じ、この濃度分布に応じて、図3Bに示すような屈折率分布がガラス素線1aに形成される。これにより、ガラス素線1aから屈折率分布型レンズ1bを製造できる。 In the step (II), for example, as shown in FIG. 3A, the glass wire 1a is put into the molten salt S inside the container V, and the glass wire 1a is immersed in the molten salt S for a predetermined time. In the molten salt S, for example, at least one of potassium nitrate and sodium nitrate is molten. When the glass element wire 1a is immersed in the molten salt S, for example, the cation of the first alkali metal element Q such as Li (lithium) contained in the glass element wire 1a is dissolved in the molten salt S. On the other hand, the cations of the second alkali metal element R such as K (potassium) in the molten salt S enter the glass element wire 1a. By adjusting the temperature of the molten salt S and the immersion time of the glass element wire 1a in the molten salt S, ion exchange between the cations of the first alkali metal element Q and the cations of the second alkali metal element R is appropriately performed. You can control. A specific monovalent cation concentration distribution occurs inside the glass element wire 1a, and a refractive index distribution as shown in FIG. 3B is formed on the glass element wire 1a according to this concentration distribution. Thereby, the gradient index lens 1b can be manufactured from the glass element wire 1a.
 本発明に係る光学製品は、屈折率分布型レンズ1bを備える限り、特定の製品に限定されない。屈折率分布型レンズ1bを用いて、例えば、所定のレンズアレイを提供できる。この場合、レンズアレイは、屈折率分布型レンズ1bの配列に関し、0次元の配列、1次元の配列、又は2次元の配列を有し得る。0次元の配列とは、例えば、単一の屈折率分布型レンズ1bが配置された構成であり、単一の屈折率分布型レンズ1bからなる光学製品によって所望の作用を期待するものである。1次元の配列とは、特定方向に複数の屈折率分布型レンズ1bが一列に配列された構成である。その特定方向を主走査方向といい、主走査方向に垂直であり、かつ、光軸に垂直な方向を副走査方向という。複数の屈折率分布型レンズ1bは、それらの光軸が略平行になるように配列される。2次元の配列とは、1次元の配列に加え、それとは異なる方向にレンズが複数配列された構成である。例えば、主走査方向に沿って複数の屈折率分布型レンズ1bが二列以上に配列された構成が2次元の配列に該当し得る。レンズアレイ10bによれば、個々の屈折率分布型レンズの径が小さくても、広範囲の正立等倍像を得ることができる。 The optical product according to the present invention is not limited to a specific product as long as it has the gradient index lens 1b. For example, a predetermined lens array can be provided by using the gradient index lens 1b. In this case, the lens array may have a zero-dimensional array, a one-dimensional array, or a two-dimensional array with respect to the array of the gradient index lenses 1b. The 0-dimensional array is, for example, a configuration in which a single gradient index lens 1b is arranged, and is expected to have a desired action by an optical product including the single gradient index lens 1b. The one-dimensional arrangement is a configuration in which a plurality of gradient index lenses 1b are arranged in a line in a specific direction. The specific direction is called the main scanning direction, and the direction perpendicular to the main scanning direction and perpendicular to the optical axis is called the sub-scanning direction. The plurality of gradient index lenses 1b are arranged such that their optical axes are substantially parallel. The two-dimensional array is a configuration in which a plurality of lenses are arrayed in a direction different from that in addition to the one-dimensional array. For example, a configuration in which a plurality of gradient index lenses 1b are arranged in two or more rows along the main scanning direction may correspond to a two-dimensional arrangement. According to the lens array 10b, an erecting equal-magnification image in a wide range can be obtained even if the diameter of each gradient index lens is small.
 例えば、屈折率分布型レンズ1bを用いて、図4に示すレンズアレイ10bを提供できる。レンズアレイ10bにおいて、複数の屈折率分布型レンズ1bが、それらの光軸が略平行になるように配列されている。レンズアレイ10bにおいて、複数の屈折率分布型レンズ1bは、2次元の配列をなすように二列に配置されている。レンズアレイ10bにおいて、複数の屈折率分布型レンズ1bは、例えば、一対の繊維強化プラスチック(FRP)基板5の間に配置されている。一対のFRP基板5の間において、複数の屈折率分布型レンズ1b同士の間の空間及びFRP基板5と屈折率分布型レンズ1bとの間の空間には黒色樹脂7が充填されている。これにより、一対のFRP基板5の間において、複数の屈折率分布型レンズ1bが一体化されている。このようなレンズアレイ10bは、例えば、下記のように作製できる。まず、一方のFRP基板5の表面に、複数の屈折率分布型レンズ1bをほぼ平行に配列させ、他方のFRP基板5によってレンズを狭持する。その後、一対のFRP基板5の間の空間に黒色樹脂7を充填し、全体を一体化する。さらに、必要に応じて屈折率分布型レンズ1bの端面が研磨される。 For example, the lens array 10b shown in FIG. 4 can be provided by using the gradient index lens 1b. In the lens array 10b, a plurality of gradient index lenses 1b are arranged so that their optical axes are substantially parallel. In the lens array 10b, the plurality of gradient index lenses 1b are arranged in two rows so as to form a two-dimensional array. In the lens array 10b, the plurality of gradient index lenses 1b are arranged, for example, between a pair of fiber reinforced plastic (FRP) substrates 5. Between the pair of FRP substrates 5, a space between the plurality of gradient index lenses 1b and a space between the FRP substrate 5 and the gradient index lenses 1b are filled with the black resin 7. Thereby, the plurality of gradient index lenses 1b are integrated between the pair of FRP substrates 5. Such a lens array 10b can be manufactured as follows, for example. First, a plurality of gradient index lenses 1b are arranged substantially in parallel on the surface of one FRP substrate 5, and the other FRP substrate 5 holds the lenses. After that, the space between the pair of FRP substrates 5 is filled with the black resin 7, and the whole is integrated. Further, the end surface of the gradient index lens 1b is polished as needed.
 レンズアレイ10bは、様々な観点から変更可能であり、レンズアレイを構成する各部分の材料には、レンズアレイの作製において公知の材料を用いてもよい。また、複数の屈折率分布型レンズ1bの配列は、二列に限定されない。複数の屈折率分布型レンズ1bは、一列に配列されていてもよいし、三列以上に配列されていてもよい。屈折率分布型レンズ1bを多数列に配列すると、大面積に対応可能なレンズアレイを提供できる。 The lens array 10b can be changed from various points of view, and the material of each part forming the lens array may be a known material in the production of the lens array. The array of the plurality of gradient index lenses 1b is not limited to two rows. The plurality of gradient index lenses 1b may be arranged in one line, or may be arranged in three or more lines. By arranging the gradient index lenses 1b in a large number of rows, it is possible to provide a lens array that can accommodate a large area.
 屈折率分布型レンズ1bは、上記の光学性能を備えるプラスチック製ロッドレンズでありうる。プラスチック製ロッドレンズは、例えば共重合法、ゾル-ゲル法、及び相互拡散法などの方法で作製できる。特に相互拡散法では、中心から外周に向かって屈折率が段階的に小さくなる樹脂を同心円状に積層したうえで、屈折率が連続的になるように層間の物資の相互的な拡散を行う。このような処理を行った後にさらに加熱延伸して棒状のロッドレンズを得る。プラスチック製ロッドレンズは、その材質の特性上、取扱いが簡便で一般的に廉価であり、場合によってはメリットがある。 The gradient index lens 1b may be a plastic rod lens having the above optical performance. The plastic rod lens can be produced by a method such as a copolymerization method, a sol-gel method, and an interdiffusion method. In particular, in the mutual diffusion method, resins are laminated concentrically in such a manner that the refractive index gradually decreases from the center to the outer periphery, and then the materials between layers are mutually diffused so that the refractive index becomes continuous. After such a treatment, the rod-shaped rod lens is obtained by further heating and stretching. Due to the characteristics of the material, the plastic rod lens is easy to handle, is generally inexpensive, and may be advantageous in some cases.
 屈折率分布型レンズ1bを備えたレンズアレイは、大きなDOFを有し、場合によっては耐候性に優れ、スキャナ、複写機、ファクシミリ、プリンタ、CIS、及びラインカメラ等の光学機器に幅広く用いることができる。さらには、屈折率分布型レンズ1bを備えたレンズアレイは、特に耐水性(耐湿性)に優れることから、オフィスなどの一般空調だけでなく、高温多湿な状況に晒される工場、保管倉庫又は輸送トラックなどの物流を含めた多様な環境においても、上記の光学機器などに適用可能である。 The lens array provided with the gradient index lens 1b has a large DOF and is excellent in weather resistance in some cases, and can be widely used for optical devices such as a scanner, a copying machine, a facsimile, a printer, a CIS, and a line camera. it can. Furthermore, since the lens array provided with the gradient index lens 1b is particularly excellent in water resistance (moisture resistance), it can be used not only for general air conditioning in offices, but also for factories, storage warehouses, or transportation units that are exposed to hot and humid conditions. It can be applied to the above-mentioned optical devices even in various environments including physical distribution such as trucks.
 レンズアレイ10bを用いて、例えば、図5に示すCISスキャナ100を提供できる。CISスキャナ100は、例えば、レンズアレイ10bと、筐体11と、ライン状受光素子12、ライン状照明装置13、原稿台14とを備える。ライン状受光素子12は、レンズアレイ10bの主走査方向に延びている。図5においてX軸に平行な方向が主走査方向であり、Y軸に平行な方向が副走査方向である。ライン状照明装置13は、レンズアレイ10bの主走査方向に延びている。原稿台14はガラス板によって形成されている。原稿台14をなすガラス板は、筐体11の開口を覆うように配置される。レンズアレイ10b、ライン状受光素子12、及びライン状照明装置13は、筐体11の内部に配置されている。ライン状照明装置13から原稿台14の上に置かれた原稿Pへ、線状に照明光が照射される。原稿Pの表面で反射した光が、ライン状受光素子12に入射するようにレンズアレイ10bが配置されている。レンズアレイ10b及びライン状受光素子12を含むスキャナ機構を副走査方向に走査すること又は原稿台14の上に置かれた原稿Pを副走査方向に搬送することによって、原稿Pに関する二次元の画像データを得ることができる。 The lens array 10b can be used to provide the CIS scanner 100 shown in FIG. 5, for example. The CIS scanner 100 includes, for example, a lens array 10b, a housing 11, a linear light receiving element 12, a linear illumination device 13, and a document table 14. The line-shaped light receiving element 12 extends in the main scanning direction of the lens array 10b. In FIG. 5, the direction parallel to the X axis is the main scanning direction, and the direction parallel to the Y axis is the sub scanning direction. The line-shaped illumination device 13 extends in the main scanning direction of the lens array 10b. The document table 14 is formed of a glass plate. The glass plate forming the document table 14 is arranged so as to cover the opening of the housing 11. The lens array 10 b, the line-shaped light receiving element 12, and the line-shaped illumination device 13 are arranged inside the housing 11. Illumination light is linearly irradiated from the line-shaped illumination device 13 to the document P placed on the document table 14. The lens array 10b is arranged so that the light reflected on the surface of the document P is incident on the linear light receiving element 12. A two-dimensional image of the document P is obtained by scanning the scanner mechanism including the lens array 10b and the linear light receiving element 12 in the sub-scanning direction or by transporting the document P placed on the document table 14 in the sub-scanning direction. You can get the data.
 レンズアレイ10bは、大きなDOFを有する屈折率分布型レンズ1bを備えているので、例えば、皺又は見開きの部分などにより、原稿Pの一部が浮いた部分においても、読み取られた画像の品質が良好になりやすい。 Since the lens array 10b includes the gradient index lens 1b having a large DOF, the quality of the read image is high even in a portion where a part of the document P floats due to a wrinkle or a spread. Easy to be good.
 レンズアレイ10bを用いて、例えば、図6に示すスキャナ300を提供できる。スキャナ300は、筐体31と、ライン状受光素子32と、ライン状照明装置33と、第一スペーサ34aと、第二スペーサ34bと、基板35とを備えている。スキャナ300では、ライン状照明装置33が筐体31の外部に配置されている。例えば、スキャナ300において、読取を予定する原稿Pの部分とライン状受光素子32との光学的配置を適切に調整するために、レンズアレイ10bは、第一スペーサ34a及び第二スペーサ34bによって筐体31に対し位置決めされて固定されている。スキャナ300は、被検体の外観を検査する装置に適用されてもよく、原稿Pの代わりに被検体(検査対象物)からの画像を得るために使用されてもよい。この場合、ライン状照明装置33から出射された光線が被検体に照射され、被検体の表面で反射した光はレンズアレイ10bの結像作用によって、ライン状受光素子32に結像される。ライン状受光素子32は、被検体の表面の1次元の画像情報を逐次電気信号に変換し、出力できる。 Using the lens array 10b, for example, the scanner 300 shown in FIG. 6 can be provided. The scanner 300 includes a housing 31, a linear light receiving element 32, a linear illumination device 33, a first spacer 34a, a second spacer 34b, and a substrate 35. In the scanner 300, the linear lighting device 33 is arranged outside the housing 31. For example, in the scanner 300, in order to appropriately adjust the optical arrangement of the portion of the document P to be read and the line-shaped light receiving element 32, the lens array 10b includes a housing formed by the first spacer 34a and the second spacer 34b. It is positioned and fixed with respect to 31. The scanner 300 may be applied to an apparatus that inspects the appearance of a subject, and may be used to obtain an image from a subject (inspection object) instead of the document P. In this case, the light beam emitted from the line-shaped illumination device 33 is applied to the subject, and the light reflected on the surface of the subject is imaged on the line-shaped light receiving element 32 by the image forming action of the lens array 10b. The line-shaped light receiving element 32 can sequentially convert one-dimensional image information of the surface of the subject into an electric signal and output the electric signal.
 レンズアレイ10bを用いて、例えば、図7に示すプリンタ500を提供できる。プリンタ500は、書込ヘッド51と、感光ドラム52と、帯電器53、現像器54と、転写器55と、定着器56と、消去ランプ57と、清掃器58と、給紙カセット59とを備えている。レンズアレイ10bは、書込ヘッド51の内部に配置されている。プリンタ500は、電子写真方式のプリンタである。書込ヘッド51は、レンズアレイ10bと、発光素子アレイ(図示省略)とを備えている。レンズアレイ10bは、発光素子アレイから発せられた光を、感光ドラム52上に露光させる結像光学系を構成している。詳細には、レンズアレイ10bは、その焦点が感光ドラム52の表面に位置しており、正立等倍光学系を構成している。感光ドラム52の表面には、アモルファスSiなどの光導電性を有する材料(感光体)からなる感光層が形成されている。最初に、回転している感光ドラム52の表面が帯電器53によって均一に帯電する。次に、書込ヘッド51によって、形成する画像に対応するドットイメージの光が感光ドラム52の感光層に照射され、感光層において光が照射された領域の帯電が中和され、感光層に潜像が形成される。次に、現像器54によって感光層にトナーを付着させると、トナーは感光層の帯電状態に従って、感光層における潜像が形成された部分に付着する。次に、付着したトナーを、転写器55によって、カセットから送られてきた用紙に転写し、その後、定着器56によって用紙を加熱すると、トナーが用紙に定着して画像が形成される。一方、転写の終了した感光ドラム52の帯電は消去ランプ57によって全領域にわたって中和され、その後、清掃器58によって感光層上に残ったトナーが除去される。 By using the lens array 10b, for example, the printer 500 shown in FIG. 7 can be provided. The printer 500 includes a writing head 51, a photosensitive drum 52, a charging device 53, a developing device 54, a transfer device 55, a fixing device 56, an erasing lamp 57, a cleaning device 58, and a paper feeding cassette 59. I have it. The lens array 10b is arranged inside the write head 51. The printer 500 is an electrophotographic printer. The writing head 51 includes a lens array 10b and a light emitting element array (not shown). The lens array 10b constitutes an image forming optical system that exposes the light emitted from the light emitting element array onto the photosensitive drum 52. Specifically, the focal point of the lens array 10b is located on the surface of the photosensitive drum 52 and constitutes an erecting equal-magnification optical system. On the surface of the photosensitive drum 52, a photosensitive layer made of a photoconductive material (photoconductor) such as amorphous Si is formed. First, the surface of the rotating photosensitive drum 52 is uniformly charged by the charger 53. Next, the write head 51 irradiates the photosensitive layer of the photosensitive drum 52 with light of a dot image corresponding to the image to be formed, neutralizes the charge in the light-irradiated region of the photosensitive layer, and the latent image is formed on the photosensitive layer. An image is formed. Next, when toner is attached to the photosensitive layer by the developing device 54, the toner adheres to the portion of the photosensitive layer where the latent image is formed according to the charged state of the photosensitive layer. Next, the adhered toner is transferred to the paper sent from the cassette by the transfer device 55, and then the paper is heated by the fixing device 56, so that the toner is fixed on the paper and an image is formed. On the other hand, the charge on the photosensitive drum 52 after the transfer is neutralized by the erasing lamp 57 over the entire area, and then the cleaning device 58 removes the toner remaining on the photosensitive layer.
 レンズアレイ10bを用いて、例えば、図8に示す検査装置700を提供できる。検査装置700は、CISスキャナ71と、ライン状状照明装置72と、制御器73と、出力装置74と、搬送装置75と、搬送制御装置76とを備えている。CISスキャナ71の内部にはレンズアレイ10bが配置されている。搬送装置75は、例えばベルトコンベヤーである。搬送装置75は、プリント基板、テキスタイル、及び紙等の被検体Tを搬送する。搬送制御装置76は、搬送装置75を制御するためのデジタルコンピュータであり、搬送装置75の搬送速度を調整するための制御信号を搬送装置75に向かって出力する。CISスキャナ71及びライン状照明装置72は、例えば、搬送装置75の上方に配置されており、被検体Tは、搬送装置75によってCISスキャナ71の真下を通過する。CISスキャナ71及びライン状照明装置72は、被検体Tの明瞭な画像データが得られるように配置されている。制御器73は、被検体Tの画像データを形成するためのデジタルコンピュータである。被検体TがCISスキャナ71の真下を通過するときに、制御器73は、CISスキャナ71から1次元の画像情報を連続的に取得する。加えて、制御器73は、搬送制御装置76から被検体Tの搬送位置情報を取得する。制御器73は、CISスキャナ71から取得した1次元の画像情報と、搬送制御装置76から取得した搬送位置情報とに基づいて計算処理を行い、2次元の画像情報を形成する。形成された2次元の画像情報は、制御器73に予め記憶された、異物、ワレ、ピンホール等の欠陥を特徴づける情報と比較される。これにより、制御器73は、被検体Tにおける欠陥の有無、欠陥の数、及び欠陥の位置を特定する。制御器73は、この比較結果に基づいて、被検体Tの良否を判断してもよい。出力装置74は、例えばモニターであり、制御器73によって形成された2次元の画像情報を表示する。 By using the lens array 10b, for example, the inspection device 700 shown in FIG. 8 can be provided. The inspection device 700 includes a CIS scanner 71, a linear illumination device 72, a controller 73, an output device 74, a transfer device 75, and a transfer control device 76. A lens array 10b is arranged inside the CIS scanner 71. The transport device 75 is, for example, a belt conveyor. The transport device 75 transports a subject T such as a printed circuit board, a textile, and paper. The transport control device 76 is a digital computer for controlling the transport device 75, and outputs a control signal for adjusting the transport speed of the transport device 75 to the transport device 75. The CIS scanner 71 and the line-shaped illumination device 72 are arranged, for example, above the transport device 75, and the subject T passes directly below the CIS scanner 71 by the transport device 75. The CIS scanner 71 and the line-shaped illumination device 72 are arranged so that clear image data of the subject T can be obtained. The controller 73 is a digital computer for forming image data of the subject T. When the subject T passes beneath the CIS scanner 71, the controller 73 continuously acquires one-dimensional image information from the CIS scanner 71. In addition, the controller 73 acquires the transport position information of the subject T from the transport control device 76. The controller 73 performs a calculation process based on the one-dimensional image information acquired from the CIS scanner 71 and the transportation position information acquired from the transportation control device 76 to form two-dimensional image information. The formed two-dimensional image information is compared with information stored in the controller 73 in advance and characterizing defects such as foreign matter, cracks, and pinholes. Thereby, the controller 73 identifies the presence/absence of a defect in the subject T, the number of defects, and the position of the defect. The controller 73 may judge pass/fail of the subject T based on the comparison result. The output device 74 is, for example, a monitor, and displays the two-dimensional image information formed by the controller 73.
 以下、実施例により本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples below.
(ガラス組成物の調製及び屈折率分布型レンズの作製)
 表1に示す組成となるようにガラス原料を混合し、混合物を熔融して、実施例1~4、比較例1~3、及び参考例1に係る熔融ガラス(ガラス組成物)を得た。表1における数値はモル%を示す。各ガラス組成物における所定の成分のモル%基準の含有率の関係を表2に示す。各熔融ガラスを紡糸してファイバー状に成形し、得られたガラスファイバーを所定の長さで切断し、切断面を研磨した。これにより、各実施例、各比較例、及び参考例1に係るガラス素線を得た。各ガラス素線の直径(線径)は、560μmであった。次に、各ガラス素線を構成するガラス組成物のガラス転移温度付近に加熱した硝酸ナトリウム溶融塩に各ガラス素線を浸漬し、イオン交換処理を行った。これにより、各ガラス素線に屈折率分布を形成した。その後、イオン交換処理後のガラス素線を1周期長に切断し、切断した端面を研磨して、各実施例、各比較例、及び参考例1に係る屈折率分布型レンズを得た。
(Preparation of glass composition and preparation of gradient index lens)
Glass raw materials were mixed so as to have the compositions shown in Table 1, and the mixtures were melted to obtain molten glass (glass compositions) according to Examples 1 to 4, Comparative Examples 1 to 3, and Reference Example 1. The numerical value in Table 1 shows mol%. Table 2 shows the relationship of the content percentage of the predetermined component in each glass composition based on mol %. Each molten glass was spun into a fiber shape, the obtained glass fiber was cut into a predetermined length, and the cut surface was polished. As a result, glass strands according to each example, each comparative example, and reference example 1 were obtained. The diameter (wire diameter) of each glass element wire was 560 μm. Next, each glass element wire was immersed in a molten salt of sodium nitrate heated near the glass transition temperature of the glass composition forming each glass element wire, and an ion exchange treatment was performed. Thereby, a refractive index distribution was formed in each glass element wire. Then, the glass element wire after the ion exchange treatment was cut into one cycle length, and the cut end face was polished to obtain a gradient index lens according to each of Examples, Comparative Examples and Reference Example 1.
(特性評価)
 上記のように作製した屈折率分布型レンズを適当な長さに切断して得られたサンプルの切断面を鏡面研磨した。次に、このサンプルの一方の端面に格子状のパターンが記載されたシートを接触させ、サンプルの他方の端面からそのパターンの正立像を観察して、各屈折率分布型レンズの周期長Pを決定した。次に、√A=2π/Pの関係に基づいて、各屈折率分布型レンズの屈折率分布係数√Aを決定した。次に、屈折率分布係数√A、屈折率分布型レンズの半径r0、及びイオン交換処理前のガラス素線の屈折率Ncの値と、下記の式(1)に示す関係に基づいて、各屈折率分布型レンズの開口角θを決定した。結果を表3に示す。なお、屈折率Ncは、1.60であり、各屈折率分布型レンズの光軸における屈折率とみなすことができた。
 θ=sin-1{√A・Nc・r0}   式(1)
(Characteristic evaluation)
The cut surface of the sample obtained by cutting the gradient index lens manufactured as described above into an appropriate length was mirror-polished. Next, a sheet on which a grid-like pattern is written is brought into contact with one end face of this sample, and an erect image of the pattern is observed from the other end face of the sample to determine the period length P of each gradient index lens. Decided. Next, the refractive index distribution coefficient √A of each gradient index lens was determined based on the relationship of √A=2π/P. Next, based on the relationship between the refractive index distribution coefficient √A, the radius r 0 of the gradient index lens, the refractive index Nc of the glass element wire before the ion exchange treatment, and the following expression (1), The aperture angle θ of each gradient index lens was determined. The results are shown in Table 3. The refractive index Nc was 1.60 and could be regarded as the refractive index of the gradient index lens on the optical axis.
θ=sin −1 {√A·Nc·r 0 } Equation (1)
 屈折率Ncは、各実施例、各比較例、及び参考例1に係るガラス組成物の屈折率を評価することで求めた。ガラス組成物からなる母材ガラスを切り出して15mm平方の断面積を有する直方体状の試料を作製し、JIS B 7071-2:2018に記載のVブロック法に従って屈折率Ncを評価した。本方法ではVブロックプリズムに試料を載せ、分光された光線を通した際に試料で曲げられた光線の偏角を測定する。本方法は、この偏角の値と既知のVブロックプリズムの屈折率から、相対的に試料の屈折率を計算する方法である。評価には島津製作所製のKPR-3000を用いた。 The refractive index Nc was obtained by evaluating the refractive index of the glass composition according to each example, each comparative example, and reference example 1. A base material glass made of a glass composition was cut out to prepare a rectangular parallelepiped sample having a cross-sectional area of 15 mm square, and the refractive index Nc was evaluated according to the V block method described in JIS B7071-2:2018. In this method, the sample is placed on the V-block prism, and the deflection angle of the light beam bent by the sample is measured when the spectral light beam is passed. The present method is a method of relatively calculating the refractive index of the sample from the value of this deviation angle and the known refractive index of the V block prism. KPR-3000 manufactured by Shimadzu Corporation was used for evaluation.
(耐水性評価)
 JOGIS 06-2009に準拠して各ガラス組成物の耐水性を評価した。各ガラス組成物から作製した試料を沸騰水中に1時間置いて減量率を測定し、減量率に応じて各ガラス組成物の耐水性を評価した。JOGIS 06-2009における耐水性は、1級から6級に区分されており、耐水性が1級であるガラスは、耐候性、特に水分に対して優れた耐久性を持つといえる。
(Water resistance evaluation)
The water resistance of each glass composition was evaluated according to JOGIS 06-2009. A sample prepared from each glass composition was placed in boiling water for 1 hour to measure the weight loss rate, and the water resistance of each glass composition was evaluated according to the weight loss rate. Water resistance according to JOGIS 06-2009 is classified into grades 1 to 6, and it can be said that a glass having a grade 1 water resistance has weather resistance, particularly excellent durability against moisture.
(DOFの測定)
 各屈折率分布型レンズに対し、その側面にノイズ光の除去を目的に所定の処理(凹凸形成処理)を施した。その後、複数の各屈折率分布型レンズを2次元に配列して、図4に示すような複数の屈折率分布型レンズが2列に配列されたレンズアレイを作製した。このようにして、各実施例、各比較例、及び参考例1に係るレンズアレイを得た。1mmの間隔に6組の黒白のラインペアを有するラインパターンを準備した。すなわち、このラインパターンは、6本/mmの空間周波数を有していた。ハロゲンランプからの出射光をカラーフィルター(透過中心波長:530nm、半値全幅15nm)を通過させてラインパターンに照射した。図1に示すように、MTFの値が最大となる位置に、ラインパターン、各レンズアレイ、及び受光素子を配置した。このときの、レンズアレイと受光素子との間の距離をレンズ-結像位置間距離Loと決定した。結果を表3に示す。その後、ラインパターンを光軸方向に移動させながら、各位置でMTFの値を求め、ΔLとMTFの値との関係からMTFの値が30%以上となる作動距離の範囲を特定した。そのうえで、作動距離の最大値から最小値を差し引いて、各屈折率分布型レンズの被写界深度(DOF)を決定した。結果を表3に示す。また、図9に、実施例2、比較例3、及び参考例1に係るレンズアレイにおける、MTFの値とΔLとの関係を示す。
(DOF measurement)
A predetermined process (concavo-convex forming process) was performed on the side surface of each gradient index lens for the purpose of removing noise light. After that, a plurality of respective gradient index lenses were two-dimensionally arranged to prepare a lens array in which a plurality of gradient index lenses were arranged in two rows as shown in FIG. In this way, lens arrays according to Examples, Comparative Examples, and Reference Example 1 were obtained. A line pattern having 6 black-and-white line pairs at intervals of 1 mm was prepared. That is, this line pattern had a spatial frequency of 6 lines/mm. Light emitted from the halogen lamp was passed through a color filter (transmission center wavelength: 530 nm, full width at half maximum 15 nm) to irradiate a line pattern. As shown in FIG. 1, the line pattern, each lens array, and the light receiving element were arranged at the position where the value of MTF was maximum. The distance between the lens array and the light receiving element at this time was determined as the lens-imaging position distance L o . The results are shown in Table 3. After that, the value of MTF was obtained at each position while moving the line pattern in the optical axis direction, and the range of working distance where the value of MTF was 30% or more was specified from the relationship between ΔL and the value of MTF. Then, the minimum value was subtracted from the maximum value of the working distance to determine the depth of field (DOF) of each gradient index lens. The results are shown in Table 3. Further, FIG. 9 shows the relationship between the value of MTF and ΔL in the lens arrays according to Example 2, Comparative Example 3, and Reference Example 1.
 表1に示す通り、各実施例に係る屈折率分布型レンズを備えたレンズアレイにおけるDOFは、1.5~3.0mmの範囲にあり、各実施例に係る屈折率分布型レンズが所望のDOFを有することが示唆された。加えて、各実施例に係るガラス組成物の耐水性は1級であった。一方、各比較例に係る屈折率分布型レンズを備えたレンズアレイにおけるDOFは小さかった。参照例1に係る屈折率分布型レンズを備えたレンズアレイにおけるDOFは2.4mmであった。しかし、参照例1に係るガラス組成物の耐水性は4級であり、参照例1に係るガラス組成物は各実施例に係るガラス組成物と比べると耐水性の点で劣っていることが示唆された。
 
As shown in Table 1, the DOF in the lens array including the gradient index lens according to each example is in the range of 1.5 to 3.0 mm, and the gradient index lens according to each example is desired. It was suggested to have DOF. In addition, the water resistance of the glass composition according to each example was first grade. On the other hand, the DOF in the lens array including the gradient index lens according to each comparative example was small. The DOF of the lens array including the gradient index lens according to Reference Example 1 was 2.4 mm. However, the water resistance of the glass composition according to Reference Example 1 is grade 4, and it is suggested that the glass composition according to Reference Example 1 is inferior in water resistance as compared with the glass compositions according to Examples. Was done.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  1.5~3.0mmの被写界深度を有し、
     前記被写界深度は、作動距離の最大値から最小値を差し引いて決定され、
     前記作動距離において、6本/mmの空間周波数における変調伝達関数(MTF)の値が30%以上である、
     屈折率分布型レンズ。
    With a depth of field of 1.5-3.0 mm,
    The depth of field is determined by subtracting the minimum value from the maximum value of the working distance,
    At the working distance, the value of the modulation transfer function (MTF) at a spatial frequency of 6 lines/mm is 30% or more,
    Gradient index lens.
  2.  3~6°の開口角を有する、請求項1に記載の屈折率分布型レンズ。 The gradient index lens according to claim 1, having an aperture angle of 3 to 6°.
  3.  正立像の結像距離が45~80mmである、請求項1又は2に記載の屈折率分布型レンズ。 The gradient index lens according to claim 1 or 2, wherein an erect image has an image forming distance of 45 to 80 mm.
  4.  請求項1~3のいずれか1項に記載の屈折率分布型レンズを備えた、光学製品。 An optical product equipped with the gradient index lens according to any one of claims 1 to 3.
  5.  請求項4に記載の光学製品を備えた、光学機器。 Optical equipment equipped with the optical product according to claim 4.
  6.  モル%で示して、
     40%≦SiO2≦65%
     0%≦TiO2≦10%
     0.1%≦MgO≦22%
     0.15%≦ZnO≦15%
     0.5%≦Li2O<4%
     2%≦Na2O≦20%
     0%≦B23≦20%
     0%≦Al23≦10%
     0%≦K2O≦3%
     0%≦Cs2O≦3%
     0%≦Y23≦5%
     0%≦ZrO2≦2%
     0%≦Nb25≦5%
     0%≦In23≦5%
     0%≦La23≦5%
     0%≦Ta25≦5%、を含み、
     CaO、SrO、及びBaOからなる群より選ばれる少なくとも2つを、それぞれ0.1モル%以上15モル%以下含み、
     モル%で表示して、
     2%≦MgO+ZnO、
     0.07≦ZnO/(MgO+ZnO)≦0.93、
     2.5%≦Li2O+Na2O<24%、及び
     0%≦Y23+ZrO2+Nb25+In23+La23+Ta25≦11%の条件を
    満たす、
     屈折率分布型レンズ用ガラス組成物。
    Shown in mol%,
    40%≦SiO 2 ≦65%
    0% ≤ TiO 2 ≤ 10%
    0.1%≦MgO≦22%
    0.15%≦ZnO≦15%
    0.5%≦Li 2 O<4%
    2% ≤ Na 2 O ≤ 20%
    0% ≤ B 2 O 3 ≤ 20%
    0% ≤ Al 2 O 3 ≤ 10%
    0%≦K 2 O≦3%
    0%≦Cs 2 O≦3%
    0% ≤ Y 2 O 3 ≤ 5%
    0% ≤ ZrO 2 ≤ 2%
    0% ≤ Nb 2 O 5 ≤ 5%
    0%≦In 2 O 3 ≦5%
    0% ≤ La 2 O 3 ≤ 5%
    0%≦Ta 2 O 5 ≦5%,
    At least two selected from the group consisting of CaO, SrO, and BaO, each containing 0.1 mol% or more and 15 mol% or less,
    Display in mol%,
    2%≦MgO+ZnO,
    0.07≦ZnO/(MgO+ZnO)≦0.93,
    2.5%≦Li 2 O+Na 2 O<24%, and 0%≦Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ≦11%,
    A glass composition for a gradient index lens.
  7.  日本光学硝子工業会規格(JOGIS)06-2009に準拠して決定される耐水性が1級である、請求項6に記載の屈折率分布型レンズ用ガラス組成物。 The glass composition for a gradient index lens according to claim 6, which has a first-class water resistance determined in accordance with the Japan Optical Glass Industry Association Standard (JOGIS) 06-2009.
  8.  屈折率分布型レンズの製造方法であって、
     第一アルカリ金属元素の酸化物を含むガラス組成物からなるガラス素線を形成することと、
     前記第一アルカリ金属元素とは異なる第二アルカリ金属元素を含む溶融塩に前記ガラス素線を浸漬して、前記ガラス素線中の前記第一アルカリ金属元素と前記溶融塩中の前記第二アルカリ金属元素とをイオン交換処理することにより、前記ガラス素線に屈折率分布を形成することと、を備え、
     前記ガラス組成物は、モル%で示して、
     40%≦SiO2≦65%
     0%≦TiO2≦10%
     0.1%≦MgO≦22%
     0.15%≦ZnO≦15%
     0.5%≦Li2O<4%
     2%≦Na2O≦20%
     0%≦B23≦20%
     0%≦Al23≦10%
     0%≦K2O≦3%
     0%≦Cs2O≦3%
     0%≦Y23≦5%
     0%≦ZrO2≦2%
     0%≦Nb25≦5%
     0%≦In23≦5%
     0%≦La23≦5%
     0%≦Ta25≦5%、を含み、
     前記ガラス組成物は、CaO、SrO、及びBaOからなる群より選ばれる少なくとも2つを、それぞれ0.1モル%以上15モル%以下含み、
     前記ガラス組成物は、モル%で表示して、
     2%≦MgO+ZnO、
     0.07≦ZnO/(MgO+ZnO)≦0.93、
     2.5%≦Li2O+Na2O<24%、及び
     0%≦Y23+ZrO2+Nb25+In23+La23+Ta25≦11%の条件を
    満たす、
     方法。
    A method of manufacturing a gradient index lens, comprising:
    Forming a glass strand made of a glass composition containing an oxide of a first alkali metal element,
    The glass element wire is immersed in a molten salt containing a second alkali metal element different from the first alkali metal element, and the first alkali metal element in the glass element wire and the second alkali in the molten salt. By forming a refractive index distribution in the glass element wire by performing an ion exchange treatment with a metal element,
    The glass composition, expressed in mol %,
    40%≦SiO 2 ≦65%
    0% ≤ TiO 2 ≤ 10%
    0.1%≦MgO≦22%
    0.15%≦ZnO≦15%
    0.5%≦Li 2 O<4%
    2% ≤ Na 2 O ≤ 20%
    0% ≤ B 2 O 3 ≤ 20%
    0% ≤ Al 2 O 3 ≤ 10%
    0%≦K 2 O≦3%
    0%≦Cs 2 O≦3%
    0% ≤ Y 2 O 3 ≤ 5%
    0% ≤ ZrO 2 ≤ 2%
    0% ≤ Nb 2 O 5 ≤ 5%
    0%≦In 2 O 3 ≦5%
    0% ≤ La 2 O 3 ≤ 5%
    0%≦Ta 2 O 5 ≦5%,
    The glass composition contains at least two selected from the group consisting of CaO, SrO, and BaO in an amount of 0.1 mol% or more and 15 mol% or less, respectively.
    The glass composition is expressed in mol%,
    2%≦MgO+ZnO,
    0.07≦ZnO/(MgO+ZnO)≦0.93,
    2.5%≦Li 2 O+Na 2 O<24%, and 0%≦Y 2 O 3 +ZrO 2 +Nb 2 O 5 +In 2 O 3 +La 2 O 3 +Ta 2 O 5 ≦11%,
    Method.
PCT/JP2019/037373 2019-01-29 2019-09-24 Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens WO2020158043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019012727A JP6875431B2 (en) 2019-01-29 2019-01-29 Refraction distribution type lenses, optical products, optical instruments, glass compositions for refraction distribution type lenses, and methods for manufacturing refraction distribution type lenses.
JP2019-012727 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020158043A1 true WO2020158043A1 (en) 2020-08-06

Family

ID=71840552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037373 WO2020158043A1 (en) 2019-01-29 2019-09-24 Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens

Country Status (3)

Country Link
JP (1) JP6875431B2 (en)
TW (1) TW202028135A (en)
WO (1) WO2020158043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194056A (en) * 2021-04-22 2021-07-30 西安交通大学 Orthogonal space-frequency index modulation method adopting Givens precoding and diagonal code word structure
WO2021261319A1 (en) * 2020-06-25 2021-12-30 日本板硝子株式会社 Rod lens array, optical equipment, image sensor, printer, inspection device, mother glass composition for refractive index distribution-type rod lens, and manufacturing method of refractive index distribution-type rod lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026574A1 (en) * 2021-08-26 2023-03-02 株式会社村田製作所 Optical element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276359A (en) * 1993-03-18 1994-09-30 Fuji Xerox Co Ltd Color picture reader
JPH07198979A (en) * 1993-12-06 1995-08-01 Xerox Corp Picture formation system and focal- depth increasing method
JP2000035519A (en) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd Optical transmission body, optical transmission body array and image sensor
JP2001174606A (en) * 1999-12-20 2001-06-29 Nippon Sheet Glass Co Ltd Image forming optical device
JP2004292215A (en) * 2003-03-26 2004-10-21 Nippon Sheet Glass Co Ltd Optical glass, optical element using the optical glass, and optical apparatus using the optical element
JP2007529398A (en) * 2004-03-19 2007-10-25 ディー.スワロフスキー アンド カンパニー Crystal glass free of lead and barium
WO2013146873A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Rod lens array and image sensor head that uses same
JP2013541722A (en) * 2010-08-24 2013-11-14 ウエイハイ ホアリン オプト−エレクトロニクス カンパニー リミテッド Composite rod lens array and image reading apparatus constituted by composite rod lens array
JP2013243635A (en) * 2012-04-23 2013-12-05 Rohm Co Ltd Document scanner
JP2014234487A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2018118904A (en) * 2016-07-28 2018-08-02 旭硝子株式会社 Optical glass and optical component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06276359A (en) * 1993-03-18 1994-09-30 Fuji Xerox Co Ltd Color picture reader
JPH07198979A (en) * 1993-12-06 1995-08-01 Xerox Corp Picture formation system and focal- depth increasing method
JP2000035519A (en) * 1998-07-17 2000-02-02 Mitsubishi Rayon Co Ltd Optical transmission body, optical transmission body array and image sensor
JP2001174606A (en) * 1999-12-20 2001-06-29 Nippon Sheet Glass Co Ltd Image forming optical device
JP2004292215A (en) * 2003-03-26 2004-10-21 Nippon Sheet Glass Co Ltd Optical glass, optical element using the optical glass, and optical apparatus using the optical element
JP2007529398A (en) * 2004-03-19 2007-10-25 ディー.スワロフスキー アンド カンパニー Crystal glass free of lead and barium
JP2013541722A (en) * 2010-08-24 2013-11-14 ウエイハイ ホアリン オプト−エレクトロニクス カンパニー リミテッド Composite rod lens array and image reading apparatus constituted by composite rod lens array
WO2013146873A1 (en) * 2012-03-30 2013-10-03 三菱レイヨン株式会社 Rod lens array and image sensor head that uses same
JP2013243635A (en) * 2012-04-23 2013-12-05 Rohm Co Ltd Document scanner
JP2014234487A (en) * 2013-06-05 2014-12-15 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
JP2018118904A (en) * 2016-07-28 2018-08-02 旭硝子株式会社 Optical glass and optical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261319A1 (en) * 2020-06-25 2021-12-30 日本板硝子株式会社 Rod lens array, optical equipment, image sensor, printer, inspection device, mother glass composition for refractive index distribution-type rod lens, and manufacturing method of refractive index distribution-type rod lens
CN113194056A (en) * 2021-04-22 2021-07-30 西安交通大学 Orthogonal space-frequency index modulation method adopting Givens precoding and diagonal code word structure

Also Published As

Publication number Publication date
JP6875431B2 (en) 2021-05-26
JP2020122810A (en) 2020-08-13
TW202028135A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
US7858546B2 (en) Mother glass composition for gradient-index lens, gradient-index lens, manufacturing method thereof, optical product, and optical device
US8193108B2 (en) Clad glass composition and mother glass rod for gradient-index rod lens formed using the same, gradient-index rod lens and method of manufacturing the same, rod lens array, and image processor
WO2020158043A1 (en) Gradient index lens, optical product, optical device, glass composition for gradient index lens, and method for manufacturing gradient index lens
US7382541B2 (en) Gradient-index rod lens, and rod lens array and image processor using the same
KR20080053278A (en) Image forming optical system, image reader using image forming optical system, and image writer
JP5594057B2 (en) Reading lens, image reading apparatus, and image forming apparatus
JP4013913B2 (en) Lead-free glass composition for refractive index distribution type lens, refractive index distribution type lens, method of manufacturing refractive index distribution type lens, optical product and optical apparatus
JP7308171B2 (en) Gradient index lenses, rod lens arrays, image scanners, printers, and inspection equipment
WO2021261319A1 (en) Rod lens array, optical equipment, image sensor, printer, inspection device, mother glass composition for refractive index distribution-type rod lens, and manufacturing method of refractive index distribution-type rod lens
JP2014035396A (en) Image reading lens, image reading device, and image forming device
US6999246B2 (en) Image scanning lens and image scanning device that uses same
JP2008076558A (en) Image reading lens, image reading device and image forming apparatus
US7903341B2 (en) Lens array of erecting unit magnification system, image reading apparatus and image writing apparatus using the lens array, as well as method for manufacturing the lens array
US7630137B2 (en) Lens array, exposure device, and image forming apparatus
US7012721B2 (en) Optical imaging system with rod lens array
US8848270B2 (en) Image reading lens and image reading apparatus using image reading lens
JP2012141465A (en) Image reading lens, image reading device and image forming device
JP5261220B2 (en) Lens array, LED head, exposure apparatus, image forming apparatus, and reading apparatus
JPH08204899A (en) Image reader
JPWO2021261319A5 (en)
JP2023169530A (en) Rod lens array, image sensor, printer, and inspection device
JP2003315729A (en) Imaging element array, optical writing unit and image forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913586

Country of ref document: EP

Kind code of ref document: A1