WO2020157915A1 - Transmission and reception device and radar device - Google Patents

Transmission and reception device and radar device Download PDF

Info

Publication number
WO2020157915A1
WO2020157915A1 PCT/JP2019/003383 JP2019003383W WO2020157915A1 WO 2020157915 A1 WO2020157915 A1 WO 2020157915A1 JP 2019003383 W JP2019003383 W JP 2019003383W WO 2020157915 A1 WO2020157915 A1 WO 2020157915A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
module
antenna
reception
signal
Prior art date
Application number
PCT/JP2019/003383
Other languages
French (fr)
Japanese (ja)
Inventor
満 桐田
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/003383 priority Critical patent/WO2020157915A1/en
Publication of WO2020157915A1 publication Critical patent/WO2020157915A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present invention relates to a transmission/reception device and a radar device that emit a signal for detecting a target into space as a radio wave and receive a reflected wave of the emitted radio wave.
  • a radar device which is mounted on a vehicle and prevents the vehicle from colliding with the target by detecting the target.
  • An example of the target is a vehicle traveling in front of the vehicle when the vehicle equipped with the radar device travels, or an obstacle located in front of the vehicle when the vehicle equipped with the radar device travels.
  • the transmitting antenna emits radio waves
  • the receiving antenna receives the reflected wave from the target.
  • the transmitting antenna and the receiving antenna of the radar device are array antennas.
  • the array antenna is realized by arranging a plurality of radiating elements on a resin substrate at regular intervals (see, for example, Patent Document 1).
  • the detection performance depends on the performance of an antenna that emits radio waves and receives reflected waves, and it is necessary to enlarge the aperture in order to improve the performance of the antenna.
  • To enlarge the aperture of the array antenna it is necessary to enlarge the area where the radiating element is arranged, and the size of the antenna increases accordingly.
  • the installation position is the front of the automobile, for example, the front grill, front bumper, hood, and windshield, and it can be installed at any installation position. There is a limited area. Further, when the antenna becomes large, there is a problem that the visibility of the front of the driver of the automobile deteriorates. Therefore, it is difficult to improve the performance of the radar device by enlarging the area where the radiating element is arranged.
  • the present invention has been made in view of the above, and provides a transmission/reception device capable of improving the detection performance of a target by enlarging the opening of the antenna even when the installable area is limited.
  • the purpose is to get.
  • a transmitting/receiving device transmits a first signal for detecting a target toward the front of a vehicle in which it is mounted, and reflects the first signal.
  • the front transmitter/receiver module and the extended transmitter module include a synchronization circuit unit that transmits/receives a synchronization signal that is a reference signal that is the basis of the operation start timing, and uses a signal for target detection at a timing based on the timing of transmitting/receiving the synchronization signal. Is performed and the operation including the processing of receiving the reflected wave of the signal for detecting the target is executed, and the reflected wave of the second signal is received by the front transceiver module.
  • the transmitter/receiver according to the present invention has an effect that the aperture of the antenna can be enlarged to improve the detection performance of the target even when the installable area is limited.
  • FIG. 1 is a first diagram showing an example of mounting the transmission/reception device according to the embodiment on an automobile.
  • FIG. 2 is a second diagram showing an example of mounting the transmission/reception device according to the embodiment on an automobile.
  • the figure which shows the 3rd structural example of the transmitting/receiving antenna of the transmitting/receiving module for sides The figure which shows the 3rd example of a structure of the transmission antenna of an extended transmission module. The figure which shows the 3rd example of a structure of the receiving antenna of an extended receiving module. The figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for front. The figure which shows the 4th example of a structure of the receiving antenna of an extended receiving module. The figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for sides.
  • the figure which shows the 1st example of a structure of a transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 1st structure example.
  • the figure which shows the 2nd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 1st structure example.
  • the figure which shows the 1st example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example.
  • the figure which shows the 2nd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example.
  • the figure which shows the 3rd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example.
  • FIG. 1 is a diagram showing a configuration example of a radar device according to an embodiment of the present invention.
  • the radar device 100 is mounted on a vehicle and detects targets existing in front of and on the sides of the vehicle.
  • the radar device 100 includes a transmission/reception device 101 and a target detection processing unit 102.
  • the transmission/reception device 101 emits a target-detecting radio wave toward the front of the vehicle on which it is mounted, and receives the reflected wave to detect the target.
  • the transmission/reception device 101 emits a frequency-modulated continuous wave (FM-CW: Frequency Modulated Continuous Waves) as a radio wave for target detection.
  • the transmission/reception device 101 includes a front transmission/reception module 2, a side transmission/reception module 3, an extension transmission module 4, and an extension reception module 5.
  • the front transceiver module 2 is attached to the front of the automobile, and the side transceiver module 3 is attached to the side of the automobile.
  • the extended transmission module 4 is attached to a position where a radio wave for target detection can be radiated toward the front of the vehicle.
  • the extended reception module 5 is attached to a position capable of receiving a target detection radio wave reflected by a target existing in front of the vehicle.
  • the front transceiver module 2, the side transceiver module 3, the extended transmitter module 4, and the extended receiver module 5 may be simply referred to as modules.
  • the above-mentioned modules included in the transmission/reception device 101 are separated from each other and are connected to each other via the synchronization signal line 1.
  • the synchronization signal line 1 may be a wired signal line or a wireless signal line. Since a plurality of modules in separate forms form the transmitter/receiver 101, the transmitter/receiver 101 can be installed as long as the number of places where the area where each module can be installed is the same as the number of modules. , The degree of freedom in choosing the installation location increases.
  • Each module operates at a timing based on a synchronization signal transmitted/received via the synchronization signal line 1 so as to perform a process of radiating an electric wave for detecting a target, a process of receiving a reflected wave, and the like with other modules.
  • the process of radiating radio waves for target detection includes the process of generating modulated signals, adjusting the phase of the generated modulated signals, performing up-conversion to the radio frequency band, and generating transmission signals that are radiated as radio waves. Be done.
  • the process of receiving the reflected wave includes a process of down-converting the reflected wave into a baseband band, a process of detecting a target, and the like.
  • the front transceiver module 2 includes a transceiver antenna 21, a transceiver circuit section 22, a synchronization circuit section 23, and a signal processing circuit section 24.
  • the transmitting/receiving antenna 21 is an array antenna and emits radio waves for detecting a target and receives reflected waves.
  • the transmission/reception circuit unit 22 transmits a signal for detecting a target and receives a reflected wave of the signal for detecting a target via the transmission/reception antenna 21.
  • the signal for target detection transmitted by the transmission/reception circuit unit 22 is the first signal for target detection.
  • the synchronization circuit unit 23 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1.
  • the signal processing circuit unit 24 transmits various command signals to the transmission/reception circuit unit 22. Further, the signal processing circuit unit 24 detects the target based on the signal (reflected wave) for target detection received by the transmission/reception circuit unit 22. Details of each component of the front transceiver module 2 will be described later.
  • the side transceiver module 3 has the same configuration as the front transceiver module 2, and includes a transceiver antenna 31, a transceiver circuit section 32, a synchronization circuit section 33, and a signal processing circuit section 34. That is, the transmission/reception antenna 31, the transmission/reception circuit unit 32, the synchronization circuit unit 33, and the signal processing circuit unit 34 of the side transmission/reception module 3 are respectively the transmission/reception antenna 21, the transmission/reception circuit unit 22, and the synchronization circuit unit of the front transmission/reception module 2. 23 and the signal processing circuit unit 24. However, the transmission/reception antenna 31 and the transmission/reception antenna 21 differ in the number and arrangement of radiating elements forming the antenna. The signal for target detection transmitted by the transmission/reception circuit unit 32 is the third signal for target detection. The details of the number and arrangement of the radiating elements forming the antenna will be described later.
  • the extended transmission module 4 includes a transmission antenna 41, a transmission circuit unit 42, a synchronization circuit unit 43, and a signal processing circuit unit 44.
  • the transmitting antenna 41 emits a radio wave for target detection.
  • the transmission circuit unit 42 transmits a signal for target detection via the transmission antenna 41.
  • the signal for target detection transmitted by the transmission circuit unit 42 is the second signal for target detection.
  • the synchronization circuit unit 43 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1.
  • the signal processing circuit unit 44 transmits various command signals to the transmission circuit unit 42. Details of each component of the extended transmission module 4 will be described later.
  • the extended reception module 5 includes a reception antenna 51, a reception circuit unit 52, a synchronization circuit unit 53, and a signal processing circuit unit 54.
  • the receiving antenna 51 receives a reflected wave of a target detection radio wave transmitted from the front transmitter/receiver module 2, the side transmitter/receiver module 3, or the extended transmitter module 4.
  • the receiving circuit unit 52 receives a reflected wave of a signal for detecting a target transmitted from another module via the receiving antenna 51.
  • the synchronization circuit unit 53 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1.
  • the signal processing circuit unit 54 transmits various command signals to the receiving circuit unit 52.
  • the signal processing circuit unit 54 detects the target based on the reflected wave of the target detection signal received by the receiving circuit unit 52. Details of each component of the extended reception module 5 will be described later.
  • FIG. 2 is a first diagram showing an example of mounting the transmission/reception device 101 according to the embodiment on a vehicle.
  • FIG. 3 is a second diagram showing an example of mounting the transmission/reception device 101 according to the embodiment on a vehicle. 2 and 3 show examples of the mounting positions of the modules included in the transmission/reception device 101 to the automobile. FIG. 3 shows the mounting positions of the modules shown in FIG. 2 when viewed from above the vehicle.
  • the direction from the rear of the vehicle 6 to the front is defined as the x direction
  • the direction orthogonal to the x direction and extending from the right side to the left side of the vehicle 6 is defined as the y direction
  • the direction orthogonal to the x direction and the y direction is defined as the z direction.
  • the y direction may be described as a horizontal direction
  • the z direction may be described as a vertical direction.
  • the front transceiver module 2 is attached to the front grill of the vehicle 6 of the automobile.
  • the side transceiver modules 3 are attached to the right and left sides of the front bumper of the vehicle 6.
  • the extended transmission module 4 is attached to the upper right side of the windshield of the vehicle 6, and the extended receiving module 5 is attached to the upper left side thereof.
  • the transmitting/receiving device 101 has a configuration including two side transmitting/receiving modules 3.
  • the number of the side transceiver modules 3 forming the transceiver apparatus 101 may be three or more.
  • the number of front transmitter/receiver modules 2 constituting the transmitter/receiver 101 may be two or three or more.
  • the number of the extended transmission modules 4 and the extended reception modules 5 that configure the transmission/reception device 101 may be two or three or more.
  • FIG. 4 is a diagram showing a configuration example of the front transceiver module 2 of the transceiver apparatus 101 according to the embodiment.
  • the front transceiver module 2 includes a transceiver antenna 21, a transceiver circuit section 22, a synchronization circuit section 23, and a signal processing circuit section 24.
  • the transmission/reception antenna 21 includes a transmission antenna 211 and a reception antenna 212.
  • the transmission antenna 211 includes a plurality of transmission array antennas 211 1 to 211 m that radiate the transmission signal generated by the transmission circuit unit 221 as a transmission radio wave (hereinafter, referred to as a transmission wave) in space.
  • the receiving antenna 212 is composed of a plurality of receiving array antennas 212 1 to 212 n that receive the reflected wave in which the transmitted wave radiated from the transmitting antenna 211 is reflected by the target.
  • the transmission/reception circuit unit 22 generates a transmission signal radiated from the transmission antenna 211 into the space as a transmission wave, and a transmission circuit unit 221 and a baseband signal (for example, by down-converting the reflected wave received by the reception antenna 212).
  • a receiving circuit unit 222 that generates a baseband signal
  • the transmission circuit unit 221 includes a modulation circuit 2211, a VCO 2212 that is a voltage control oscillator (Voltage Control Oscillator), a power distributor 2213, phase shifters 2214 1 to 2214 m , multipliers 2215 1 to 2215 m , and power amplifiers 2216 1 to 2216. m and a transmission control circuit 2217.
  • the modulation circuit 2211 receives the information of the modulation parameter including the frequency modulation width and the modulation cycle from the signal processing circuit unit 24, and generates the modulation signal in cooperation with the VCO 2212 according to the received modulation parameter.
  • the modulation circuit 2211 divides the modulation signal output from the VCO 2212 when generating the modulation signal, and synchronizes the phase based on the synchronization signal from the synchronization circuit 231 to stabilize the modulation signal.
  • PLL Phase Locked Loop
  • the VCO 2212 generates a modulation signal by changing the frequency of the output signal corresponding to the change in the voltage of the modulation signal input from the modulation circuit 2211.
  • the signal processing circuit unit 24 outputs the information of the modulation parameter so as to appropriately correct the modulation signal generated by the modulation circuit 2211 according to the characteristic change of the oscillation frequency with respect to the input voltage of the VCO 2212 due to the temperature change, the secular change, and the like.
  • the changing operation may be performed.
  • the signal processing circuit unit 24 may change the information of the modulation parameter transmitted to the modulation circuit 2211 according to an external signal input from the target detection processing unit 102 to the signal processing circuit unit 24, for example.
  • the power distributor 2213 amplifies the modulated signal input from the VCO 2212 and distributes it to the transmitting antenna 211 side and the receiving circuit unit 222 side.
  • the modulated signal distributed to the receiving circuit section 222 side becomes an input signal to mixers 2223 1 to 2223 n described later.
  • the phase shifters 2214 1 to 2214 m change the phase of the modulation signal input from the power distributor 2213.
  • the multipliers 2215 1 to 2215 m multiply the frequencies of the modulation signals input from the corresponding phase shifters 2214 1 to 2214 m at the preceding stage, respectively, that is, multiples, to generate transmission signals.
  • the power amplifiers 2216 1 to 2216 m respectively amplify the transmission signals input from the corresponding multipliers 2215 1 to 2215 m in the preceding stage.
  • the respective transmission signals amplified by the power amplifiers 2216 1 to 2216 m are input to the transmission array antennas 211 1 to 211 m .
  • the transmission control circuit 2217 applies a control voltage for operating the modulation circuit 2211, the VCO 2212, and the power distributor 2213.
  • the transmission control circuit 2217 also receives a command signal from the signal processing circuit unit 24. That is, the transmission control circuit 2217 generates a control signal for controlling the operations of the modulation circuit 2211, the VCO 2212, and the power distributor 2213 according to the command signal received from the signal processing circuit unit 24.
  • the reception circuit section 222 includes AD (Analogue to Digital) converters 2221 1 to 2221 n , baseband amplifiers 2222 1 to 2222 n , mixers 2223 1 to 2223 n, and a reception control circuit 2224.
  • AD Analogue to Digital
  • the AD converters 2221 1 to 2221 n are described as “A/D 2221 1 to 2221 n ”.
  • the reflected waves received by the reception array antennas 212 1 to 212 n are input to the mixers 2223 1 to 2223 n as reception signals.
  • the mixers 2223 1 to 2223 n mix the modulated signals input from the power distributor 2213 with the received signals input from the receiving array antennas 212 1 to 212 n to down-convert and generate baseband signals. To do.
  • the baseband signals generated by the mixers 2223 1 to 2223 n are beat signals.
  • Baseband amplifiers 2222 1 ⁇ 2222 n respectively, to amplify the baseband signal input from the preceding stage of the corresponding mixers 2223 1 ⁇ 2223 n.
  • the AD converters 2221 1 to 2221 n respectively convert the amplified baseband signals input from the corresponding baseband amplifiers 2222 1 to 2222 n in the preceding stage into digital signals.
  • the reception control circuit 2224 applies control voltages for operating the mixers 2223 1 to 2223 n , the baseband amplifiers 2222 1 to 2222 n, and the AD converters 2221 1 to 2221 n .
  • the reception control circuit 2224 also receives a command signal from the signal processing circuit unit 24. That is, the reception control circuit 2224 generates control signals for controlling the operations of the mixers 2223 1 to 2223 n , the baseband amplifiers 2222 1 to 2222 n, and the AD converters 2221 1 to 2221 n according to the received command signal.
  • the synchronous circuit unit 23 includes a synchronous circuit 231.
  • the synchronization circuit 231 transmits the execution timing of the operation of radiating the transmission wave to the space and the reflected wave of the transmission wave to and from the other modules, that is, the side transmitting/receiving module 3, the extension transmitting module 4, and the extension receiving module 5. Performs processing to synchronize the execution timing of the received operation.
  • the synchronization circuit 231 repeatedly transmits and receives, for example, a synchronization signal, which is a reference signal serving as a source of operation start timing, to and from a synchronization circuit included in another module at a constant cycle.
  • the synchronization circuit 231 outputs an operation start signal for instructing the transmission/reception circuit unit 22 to start an operation at a timing based on the synchronization signal.
  • the transmission/reception circuit unit 22 operates according to the operation start signal to synchronize the generation timing of the modulation signal, the phase of the modulation signal, and the reception timing of the reflected wave with other modules.
  • the synchronization signal used for the synchronization processing is generated by any one of the synchronization circuits of the plurality of modules that configure the transmission/reception device 101 and transmitted to the synchronization circuits of the other modules.
  • the signal processing circuit unit 24 is realized by the microcomputer 241.
  • the microcomputer 241 is an example of a calculation unit that performs various calculations.
  • a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor) may be used.
  • a circuit may be used.
  • the signal processing circuit unit 24 transmits a command signal to the transmission circuit unit 221, the reception circuit unit 222, and the synchronization circuit unit 23.
  • the signal processing circuit unit 24 also receives baseband signals from the AD converters 2221 1 to 2221 n of the receiving circuit unit 222, and uses the received baseband signals to determine the position of the target and the speed of the target. Calculate the information of the mark.
  • the position of the target includes the direction in which the target exists and the distance to the target.
  • the signal processing circuit unit 24 outputs the calculated target object information to the target detection processing unit 102.
  • the transmission/reception circuit unit 32, the synchronization circuit unit 33, and the signal processing circuit unit 34 of the side transmission/reception module 3 are similar to the transmission/reception circuit unit 22, the synchronization circuit unit 23, and the signal processing circuit unit 24 of the front transmission/reception module 2, respectively.
  • FIG. 5 is a diagram showing a configuration example of the extended transmission module 4 of the transmission/reception device 101 according to the embodiment.
  • the extended transmission module 4 includes a transmission antenna 41, a transmission circuit unit 42, a synchronization circuit unit 43, and a signal processing circuit unit 44.
  • the transmission antenna 41 is composed of a plurality of transmission array antennas 411 1 to 411 k that radiate the transmission signals generated by the transmission circuit unit 42 into space as transmission waves.
  • the transmission circuit unit 42 generates a transmission signal radiated from the transmission antenna 41 into space as a transmission wave.
  • the transmission circuit unit 42 includes a modulation circuit 4211, a VCO 4212, a power distributor 4213, phase shifters 4214 1 to 4214 k , multipliers 4215 1 to 4215 k , power amplifiers 4216 1 to 4216 k, and a transmission control circuit 4217.
  • the modulation circuit 4211, the VCO 4212, the power distributor 4213, the phase shifters 4214 1 to 4214 k , the multipliers 4215 1 to 4215 k , the power amplifiers 4216 1 to 4216 k, and the transmission control circuit 4217 are respectively the above-mentioned front transceiver modules.
  • the synchronous circuit unit 43 includes a synchronous circuit 431.
  • the synchronization circuit 431 performs the same processing as the synchronization circuit 231 included in the synchronization circuit unit 23 of the front transceiver module 2 described above.
  • the signal processing circuit unit 44 is realized by the microcomputer 441.
  • the signal processing circuit unit 44 transmits a command signal to the transmission circuit unit 42 and the synchronization circuit unit 43.
  • FIG. 6 is a diagram showing a configuration example of the extended reception module 5 of the transmission/reception device 101 according to the embodiment.
  • the extended reception module 5 includes a reception antenna 51, a reception circuit unit 52, a synchronization circuit unit 53, and a signal processing circuit unit 54.
  • the receiving antenna 51 is composed of a plurality of receiving array antennas 512 1 to 512 l that receive the reflected waves of the transmitted waves radiated from other modules and reflected by the target.
  • the reception circuit unit 52 generates a baseband signal by down converting the reflected wave received by the reception antenna 51.
  • the reception circuit unit 52 includes a modulation circuit 5211, a VCO 5212, a power distributor 5213, AD converters 5221 1 to 5221 l , baseband amplifiers 5222 1 to 5222 l , mixers 5223 1 to 5223 l, and a reception control circuit 5224.
  • the modulation circuit 5211 and the VCO 5212 perform the same processing as the modulation circuit 2211 and the VCO 2212, respectively, which constitute the transmission circuit unit 221 of the front transceiver module 2 described above.
  • the power distributor 5213 amplifies the modulation signal input from the VCO 5212 and distributes it to the mixers 5223 1 to 5223 l .
  • the AD converters 5221 1 to 5221 l , the baseband amplifiers 5222 1 to 5222 l, and the mixers 5223 1 to 5223 l respectively configure the AD converters 2221 1 to 2221 n , which form the reception circuit unit 222 of the above-described front transceiver module 2, Processing similar to that of the baseband amplifiers 2222 1 to 2222 n and the mixers 2223 1 to 2223 n is performed.
  • the reception control circuit 5224 operates the modulation circuit 5211, the VCO 5212, the power distributor 5213, the mixers 5223 1 to 5223 l , the baseband amplifiers 5222 1 to 5222 l, and the AD converters 5221 1 to 5221 l . Apply a control voltage.
  • the reception control circuit 5224 also receives a command signal from the signal processing circuit unit 54. That is, the reception control circuit 5224 operates the modulation circuit 5211, the VCO 5212, the power distributor 5213, the mixers 5223 1 to 5223 l , the baseband amplifiers 5222 1 to 5222 l, and the AD converters 5221 1 to 5221 l in accordance with the received command signal.
  • a control signal for controlling is generated.
  • the synchronizing circuit unit 53 includes a synchronizing circuit 531.
  • the synchronization circuit 531 performs the same process as the synchronization circuit 231 included in the synchronization circuit unit 23 of the front transceiver module 2 described above.
  • the signal processing circuit unit 54 is realized by the microcomputer 541.
  • the signal processing circuit unit 54 transmits a command signal to the reception circuit unit 52 and the synchronization circuit unit 53. Further, the signal processing circuit unit 54 receives the baseband signals from the AD converters 5221 1 to 5221 l of the receiving circuit unit 52, and uses the received baseband signals to determine the position of the target and the speed of the target. Calculate the information of the mark.
  • the signal processing circuit unit 54 outputs the calculated target information to the target detection processing unit 102.
  • the target detection processing unit 102 confirms the information output from the front transmitter/receiver module 2, the side transmitter/receiver module 3, and the extended receiver module 5, and collects the detection results of the target in each module to make the radar device 100 as a whole. Generate the target detection result of.
  • the signal processing circuit unit of each module that receives the reflected wave calculates the target information, but the target detection processing unit 102 may perform this process.
  • each module outputs the beat signal generated by the reception circuit unit to the target detection processing unit 102, and the target detection processing unit 102 calculates the target information by using the beat signal output from each module. ..
  • the target detection processing unit 102 includes the signal processing circuit unit 24 of the front transceiver module 2, the signal processing circuit unit 34 of the lateral transceiver module 3, the signal processing circuit unit 44 of the extended transmission module 4, and the extended reception module 5.
  • a control signal for giving a command signal to the transmitting circuit unit, the receiving circuit unit, and the synchronizing circuit unit, a control signal for giving a modulation parameter to the modulation circuit, or the like may be sent to the signal processing circuit unit 54. ..
  • the transmission/reception antenna 21 of the front transmission/reception module 2 the transmission/reception antenna 31 of the side transmission/reception module 3, the transmission antenna 41 of the extended transmission module 4, and the reception antenna 51 of the extended reception module 5 that configure the transmission/reception device 101.
  • the four first to fourth configuration examples will be described.
  • FIG. 7 to 10 are diagrams showing a first configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment.
  • FIG. 7 is a diagram showing a first configuration example of the transmission/reception antenna of the front transmission/reception module
  • FIG. 8 is a diagram showing a first configuration example of the transmission/reception antenna of the side transmission/reception module
  • FIG. 10 is a diagram showing a first configuration example of a transmission antenna of the extended transmission module
  • FIG. 10 is a diagram showing a first configuration example of a reception antenna of the extended reception module.
  • the transmitting antenna 211 and the receiving antenna 212 included in the transmitting/receiving antenna 21 of the front transmitting/receiving module 2 are provided with a plurality of radiating elements 2122 formed on the resin substrate 213 and a feeding line 2123.
  • the radiating element 2122 is a patch antenna
  • the feeding line 2123 is a microstrip line.
  • the power feeding unit 2124 is realized by a waveguide-microstrip converter that performs impedance conversion between the power feeding line 2123 and the transmission/reception circuit unit 22. In the example shown in FIG.
  • one feeding unit 2124 feeds six radiating elements 2122 arranged in the vertical direction (z direction) and functions as one array antenna.
  • the transmitting/receiving antenna 31 of the lateral transmitting/receiving module 3, the transmitting antenna 41 of the extended transmitting module 4, and the receiving antenna 51 of the extended receiving module 5 which will be described later similarly include a plurality of radiating elements formed on the resin substrate, It is realized by an array antenna configured with a power feeding unit that feeds power to a plurality of radiating elements via a power feeding line.
  • each antenna provided in each module of the second to fourth configuration examples is also realized by an array antenna including a plurality of radiating elements formed on a resin substrate, a feed line, and a feed section.
  • one transmitting array antenna constitutes a transmitting sub array 2111.
  • 4-channel (CH) transmission sub-arrays 2111 are arranged in the horizontal direction (y direction) to form a 1-channel transmission antenna 211.
  • the transmission antenna 211 changes the amplitude and phase of the transmission signal radiated as a transmission wave from the 4-channel transmission sub-array 2111 by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 m of the transmission circuit unit 221 described above. By doing so, it is possible to perform horizontal beam scanning as an active phased array antenna (APAA: Active Phased Array Antenna).
  • APAA Active Phased Array Antenna
  • the receiving antenna 212 has a configuration in which eight-channel receiving array antennas 2121 are arranged in the horizontal direction (y direction).
  • the transmitting antenna 311 and the receiving antenna 312 included in the transmitting/receiving antenna 31 of the lateral transmitting/receiving module 3 are array antennas different from the transmitting antenna 211 and the receiving antenna 212 of the transmitting/receiving antenna 21 shown in FIG. 7. And the number of channels is different. Specifically, each array antenna constituting the transmission/reception antenna 31 of the side transmission/reception module 3 has four radiating elements arranged in the vertical direction, and these four radiating elements are fed to the feeding portion via feeding lines. And a power supply unit for performing. Further, the transmission antenna 311 is composed of a transmission sub array of 2 channels, and the reception antenna 312 is composed of a reception array antenna of 4 channels arranged in the horizontal direction. The intervals between the array antennas adjacent to each other are the same between the transmission/reception antenna 21 and the transmission/reception antenna 31.
  • the side transceiver module 3 that is attached to the side of the vehicle to detect a side target is closer than the front transceiver module 2 that is attached to the front of the vehicle to detect a front target. Used for wide-angle detection. Therefore, as shown in FIGS. 7 and 8, the transmitting/receiving antenna 31 of the side transmitting/receiving module 3 has a smaller number of radiating elements and channels than the transmitting/receiving antenna 21 of the front transmitting/receiving module 2. .. The same applies to the second to fourth configuration examples described later.
  • the transmission antenna 41 of the extended transmission module 4 includes an extended transmission antenna 41-1 that radiates a transmission wave of channel 1 and an extended transmission antenna 41-2 that radiates a transmission wave of channel 2.
  • the transmission antenna 41 has a configuration in which extended transmission antennas 41-1 and 41-2 are arranged in the vertical direction (z direction). Further, each of the extended transmission antennas 41-1 and 41-2 has the same configuration in which four-channel transmission subarrays are arranged in the horizontal direction.
  • the configurations of the extended transmission antennas 41-1 and 41-2 are the same as those of the transmission antenna 211 of the front transceiver module 2 shown in FIG. That is, the transmission antenna 41 has a configuration in which two transmission antennas 211 of the front transceiver module 2 shown in FIG.
  • the extended transmission antennas 41-1 and 41-2 of the transmission antenna 41 determine the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by using the power amplifiers 4216 1 to 4216 k and the phase shifter of the transmission circuit unit 42 described above. By changing the units 4214 1 to 4214 k, it is possible to perform beam scanning in the horizontal direction as an active phased array antenna.
  • FIG. 9 shows a configuration example of the transmission antenna 41 when the number of transmission channels is two, the number of transmission channels may be three or more. Also in this case, the configuration of the extended transmission antenna for each channel is the same as that of the transmission antenna 211 of the front transceiver module 2.
  • 16-channel receiving array antennas are arranged in the horizontal direction, and the receiving antenna 212 of the front transceiver module 2 and the receiving antenna 312 of the lateral transceiver module 3 are arranged.
  • the number of channels is larger than that of the above.
  • FIG. 11 to 14 are diagrams showing a second configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment.
  • FIG. 11 is a diagram showing a second configuration example of the transmission/reception antenna of the front transmission/reception module
  • FIG. 12 is a diagram showing a second configuration example of the transmission/reception antenna of the side transmission/reception module
  • FIG. FIG. 14 is a diagram showing a second configuration example of the transmission antenna of the extended transmission module
  • FIG. 14 is a diagram showing a second configuration example of the reception antenna of the extended reception module.
  • the transmission/reception antenna 21a of the second configuration example of the front transmission/reception module 2 includes a transmission antenna 211-1 that radiates a transmission wave of channel 1 and a transmission antenna 211 that radiates a transmission wave of channel 2. -2 and a reception antenna 212 in which 8-channel reception array antennas are arranged in the horizontal direction.
  • a transmission antenna 211-1, a transmission antenna 211-2 and a reception antenna 212 are arranged in the horizontal direction, and the transmission antenna 211-1 is arranged on both sides of the reception antenna 212 so as to sandwich the reception antenna 212.
  • a transmitting antenna 211-2 is arranged.
  • the transmitting antennas 211-1 and 211-2 have the same configuration in which transmitting sub-arrays of 4 channels are arranged in the horizontal direction. Further, each array antenna constituting the transmission/reception antenna 21a has six radiating elements in which one power feeding unit 2124 is arranged in the z direction, similarly to the array antenna constituting the transmission/reception antenna 21 of the first configuration example described above. , A power feeding unit that feeds power to each radiating element via a power feeding line.
  • the transmission antennas 211-1 and 211-2 determine the amplitude and phase of the transmission signal radiated from each transmission sub-array as a transmission wave by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above.
  • the beam can be scanned horizontally as an active phased array antenna by changing m .
  • the reception antenna 212 of the transmission/reception antenna 21 a is the same as the reception antenna 212 of the transmission/reception antenna 21 of the first configuration example of the front transceiver module 2.
  • the transmitting antenna 311-1, the transmitting antenna 311-2, and the receiving antenna 312 included in the transmitting/receiving antenna 31a of the second configuration example of the side transmitting/receiving module 3 are the transmitting/receiving antenna 21a shown in FIG.
  • the transmission antenna 211-1, the transmission antenna 211-2, and the reception antenna 212 have different array antenna configurations and channels.
  • the configurations of the transmission antenna 311-1 and the transmission antenna 311-2 are the same as the transmission antenna 311 of the transmission/reception antenna 31 of the first configuration example described above.
  • the configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example.
  • the transmission antenna 41 of the second configuration example of the extended transmission module 4 is the same as the transmission antenna 41 of the first configuration example of the extended transmission module 4 described above.
  • the receiving antenna 51 of the second configuration example of the extended receiving module 5 is the same as the receiving antenna 51 of the first configuration example of the extended receiving module 5 described above.
  • the second configuration example of the antenna of each module that constitutes the transmission/reception device 101 is the transmission/reception antenna 21 of the front transmission/reception module 2 and the transmission/reception antenna of the side transmission/reception module 3 of the above-described first configuration example. 31 is changed to the configuration shown in FIGS. 11 and 12.
  • FIG. 15 to 18 are diagrams showing a third configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment.
  • FIG. 15 is a diagram showing a third configuration example of the transmitting/receiving antenna of the front transmitting/receiving module
  • FIG. 16 is a diagram showing a third configuration example of the transmitting/receiving antenna of the side transmitting/receiving module
  • FIG. 18 is a diagram showing a third configuration example of the transmission antenna of the extended transmission module
  • FIG. 18 is a diagram showing a third configuration example of the reception antenna of the extended reception module.
  • the transmission/reception antenna 21b of the third configuration example of the front transmission/reception module 2 includes a transmission antenna 211-3 that radiates a transmission wave of channel 1 and a transmission antenna 211 that radiates a transmission wave of channel 2. -4 and a reception antenna 212 in which 8-channel reception array antennas are arranged in the horizontal direction.
  • a transmission antenna 211-3, a transmission antenna 211-4, and a reception antenna 212 are arranged in the horizontal direction, and the transmission antenna 211-3 is arranged on both sides of the reception antenna 212 so as to sandwich the reception antenna 212.
  • a transmitting antenna 211-4 is arranged.
  • Each of the transmission antennas 211-3 and 211-4 has a configuration in which three-channel transmission subarrays are arranged in the vertical direction (z direction).
  • the configuration of the transmitting antenna 211-3 and the configuration of the transmitting antenna 211-4 are line-symmetric with respect to the vertical direction.
  • two radiating element groups each consisting of four radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups. This is a configuration for supplying power.
  • each radiating element included in the transmitting/receiving antenna 21b of the third configuration example of the front transmitting/receiving module 2 is the same as that of each radiating element included in the transmitting/receiving antenna 21 of the first configuration example of the front transmitting/receiving module 2.
  • the transmission antennas 211-3 and 211-4 calculate the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above. It is possible to perform beam scanning in the vertical direction as an active phased array antenna by changing m .
  • the reception antenna 212 of the transmission/reception antenna 21b is the same as the reception antenna 212 of the transmission/reception antenna 21 of the first configuration example of the front transceiver module 2.
  • the transmitting antenna 311-3, the transmitting antenna 311-4, and the receiving antenna 312 included in the transmitting/receiving antenna 31b of the third configuration example of the lateral transmitting/receiving module 3 are the transmitting/receiving antenna 21b shown in FIG.
  • the transmission antenna 211-3, the transmission antenna 211-4, and the reception antenna 212 are different in the configuration of the array antenna and the number of channels.
  • each of the transmission antennas 311-3 and 311-4 has a configuration in which two-channel transmission subarrays are arranged in the vertical direction.
  • the configuration of the transmitting antenna 311-3 and the configuration of the transmitting antenna 311-4 are line-symmetric with respect to the vertical direction.
  • each transmitting sub-array two radiating element groups each including three radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups.
  • the configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example.
  • the transmitting antenna 41b of the third configuration example of the extended transmitting module 4 includes an extended transmitting antenna 41-3 that radiates a transmission wave of channel 1 and an extended transmitting antenna that radiates a transmission wave of channel 2. 41-4.
  • the transmission antenna 41b has a configuration in which the extended transmission antennas 41-3 and 41-4 are arranged in the vertical direction.
  • the extended transmission antennas 41-3 and 41-4 have the same configuration in which transmission sub-arrays of 3 channels are arranged in the vertical direction.
  • the configurations of the extended transmitting antennas 41-3 and 41-4 are the same as the transmitting antenna 211-3 of the transmitting/receiving antenna 21b described above.
  • the transmitting antenna 41b has a configuration in which two transmitting antennas 211-3 of the transmitting/receiving antenna 21b described above are arranged in the vertical direction.
  • the extended transmission antennas 41-3 and 41-4 calculate the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array, by using the power amplifiers 4216 1 to 4216 k and the phase shifters 4214 1 to By changing 4214 k, it is possible to perform beam scanning in the vertical direction as an active phased array antenna.
  • the reception antenna 51 of the third configuration example of the extension reception module 5 is the same as the reception antenna 51 of the first configuration example of the extension reception module 5 described above.
  • the third configuration example of the antenna of each module that constitutes the transmission/reception device 101 is the same as the transmission antennas 211-1 and 211-4 of the front transmission/reception module 2 of the second configuration example described above with reference to FIG.
  • the transmitting antennas 211-3 and 211-4 shown in FIG. 16 are replaced by the transmitting antennas 311-1 and 311-2 of the side transmitting/receiving module 3 of the second configuration example.
  • 311-4, and the extended transmission antennas 41-1 and 41-2 of the extended transmission module 4 of the second configuration example are changed to the extended transmission antennas 41-3 and 41-4 shown in FIG. It will be what you did.
  • FIG. 19 to 21 are diagrams illustrating a fourth configuration example of the antenna of each module that configures the transmission/reception device 101 according to the embodiment.
  • FIG. 19 is a diagram showing a fourth configuration example of the transmission/reception antenna of the front transceiver module
  • FIG. 20 is a diagram showing a fourth configuration example of the reception antenna of the extended reception module
  • FIG. It is a figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for sides.
  • the transmitting/receiving antenna 21b of the fourth configuration example of the front transmitting/receiving module 2 is the same as the transmitting/receiving antenna 21b of the third configuration example of the front transmitting/receiving module 2 described above.
  • the reception antenna 51 of the fourth configuration example of the extension reception module 5 is the same as the reception antenna 51 of the first configuration example of the extension reception module 5 described above.
  • the transmission/reception antenna 31c of the fourth configuration example of the side transmission/reception module 3 includes a transmission antenna 311-5 for radiating a transmission wave of channel 1 and a transmission antenna for radiating a transmission wave of channel 2. 311-6, a transmitting antenna 311-7 that radiates a transmitting wave of channel 3, and a receiving antenna 312 in which channel receiving array antennas are arranged in the horizontal direction.
  • a transmitting antenna 311-5, a transmitting antenna 311-6 and a receiving antenna 312 are arranged in a horizontal direction, and the transmitting antenna 311-5 is arranged on both sides of the receiving antenna 312 so as to sandwich the receiving antenna 312. And transmitting antennas 311-6 are arranged.
  • the transmitting antennas 311-7 are arranged in the vertical direction with respect to the transmitting antennas 311-6.
  • Each of the transmission antennas 311-5 to 311-7 has a configuration in which three-channel transmission sub-arrays are arranged in the vertical direction.
  • the configuration of the transmitting antenna 311-5 and the configuration of the transmitting antenna 311-6 are line-symmetric with respect to the vertical direction.
  • the configuration of the transmitting antenna 311-6 and the configuration of the transmitting antenna 311-7 are the same.
  • two radiating element groups each including two radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups. This is a configuration for supplying power.
  • the configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example.
  • the transmission antennas 311-5 to 311-7 determine the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above. By changing the circuit corresponding to m , it is possible to perform beam scanning in the vertical direction as an active phased array antenna.
  • the transmission/reception antenna 31c of the fourth configuration example of the lateral transmission/reception module 3 is the same as the transmission/reception antenna 31b (see FIG. 16) of the lateral transmission/reception module 3 of the above-described third configuration example and the extended transmission of the third configuration example.
  • the shape is a combination with the transmitting antenna 41b (see FIG. 17) of the module 4. Therefore, the side transmitting/receiving module 3 including the transmitting/receiving antenna 31c radiates a transmission wave similarly to the side transmitting/receiving module 3 including the transmitting/receiving antenna 31b illustrated in FIG. 16, and the transmission illustrated in FIG. It is possible to execute the process of radiating a transmission wave as in the case of the extended transmission module 4 including the antenna 41b.
  • the lateral transceiver module 3 including the transceiver antenna 31c uses the transmitting antennas 311-5 and 311-6 and the receiving antenna 312, so that the lateral transceiver module 3 includes the transceiver antenna 31b. Similarly, it is possible to emit a transmitted wave and receive a reflected wave. Further, the side transmitting/receiving module 3 having the transmitting/receiving antenna 31c uses the transmitting antennas 311-6 and 311-7 to radiate the transmitting wave similarly to the extended transmitting module 4 having the transmitting antenna 41b. Is possible.
  • the side transmitting/receiving module 3 is configured to include the transmitting/receiving antenna 31c shown in FIG. 21, it is not necessary to separately provide the extended transmitting module 4, so that the number of modules forming the transmitting/receiving apparatus 101 is reduced and the price is reduced. Can be realized.
  • FIG. 22 is a diagram showing a first example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the first configuration example.
  • the transmission wave is radiated from the transmission antenna 211 of the front transceiver module 2, the reflected wave of the transmission wave is received by the extended reception module 5 by the reception antenna 51, and the signal processing circuit unit 54 receives the reflected wave.
  • the target is detected.
  • the reflected wave received by the receiving antenna 212 of the front transceiver module 2 is not used for detecting the target.
  • the extended reception module 5 the reflected wave of the transmission wave radiated by the transmission/reception antenna 31 of the side transmission/reception module 3 is received by the reception antenna 51, and the signal processing circuit unit 54 detects the target.
  • the extended reception module 5 receives, for example, a process of receiving a reflected wave of the transmission wave transmitted from the front transceiver module 2 and a reflected wave of the transmission wave transmitted from the side transmission/reception module 3. And the processing to be performed are alternately executed.
  • the reception antenna 51 included in the extended reception module 5 has more channels than the reception antenna 212 included in the front transmission/reception module 2 and the reception antenna 312 included in the side transmission/reception module 3, and the antenna opening is enlarged in the horizontal direction. Therefore, the extended reception module 5 receives the reflected wave to detect the target, and thus the resolution of the angle measurement function of the radar device 100 including the transmission/reception device 101 is increased, and the angle measurement performance in the horizontal direction is improved. Further, since the extended reception module 5 is configured differently from the front transmitter/receiver module 2, it is possible to disperse and install each module constituting the transmitter/receiver 101. As a result, the target detection performance can be improved while preventing the overall size of the transmission/reception device 101 from increasing. In addition, restrictions on the mounting position can be relaxed.
  • FIG. 23 is a diagram showing a second example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the first configuration example.
  • the transmission antenna 41 of the extended transmission module 4 radiates two-channel transmission waves from the extended transmission antennas 41-1 and 41-2, and the front transmission/reception module 2 transmits reflected waves of each transmission wave.
  • the signal is received by the receiving antenna 212, and the signal processing circuit section 24 detects the target.
  • the reflected wave of the transmission wave radiated from the transmission antenna 211 of the front transceiver module 2 is not used for detecting the target.
  • the reflected wave received by the receiving antenna 212 includes the reflected wave component of the channel 1 transmitted wave and the reflected wave component of the channel 2 transmitted wave. Therefore, the transmission/reception device 101 virtually creates a reception antenna channel using the MIMO (Multi Input Multi Output) technology that multi-channels the transmission system and the reception system, and expands the antenna aperture size. That is, the signal processing circuit unit 24 of the front transceiver module 2 separates the reflected waves of two channels included in the signal received by the reception antenna 212 into the components of each reflected wave by the signal processing using the MIMO technique, The target is detected using each of the separated reflected waves of two channels.
  • MIMO Multi Input Multi Output
  • the reception channel is virtually expanded, that is, the antenna aperture is expanded vertically.
  • the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is improved, and the angle measurement performance in the vertical direction is improved.
  • examples of the MIMO technology applied to the transmission/reception device 101 include a method of time-division of a plurality of transmission antenna channels and a code division method of switching the phase between pulses (chirps) in multiple values.
  • the side transceiver module 3 performs the same processing as the front transceiver module 2. That is, in the side transceiver module 3, the reception antenna 312 receives the reflected waves of the two-channel transmission waves radiated from the extended transmission module 4, and the signal processing circuit unit 34 detects the target. The signal processing circuit unit 34 performs the same processing as the signal processing circuit unit 24 of the front transceiver module 2.
  • the configuration of the transmission channel and the reception channel when the antenna included in each module of the transmission/reception device 101 according to the embodiment is the first configuration example includes a module that radiates a transmission wave and a module that receives a reflected wave. It is possible to change by the combination of. Further, when the channel spacing of the transmitting antennas is smaller than the channel group of the receiving antennas, the channel groups of the virtual receiving antennas have an overlap. In this case, the signal processing circuit section 24 of the front transceiver module 2 determines whether or not to perform signal processing including overlap.
  • the forward transmission/reception module 2 radiates a transmission wave from the extended transmission module 4 equipped with a transmission antenna having a larger number of channels than the front transmission/reception module 2, and transmits the reflected wave of the transmission wave of each channel.
  • the antenna aperture can be virtually expanded.
  • the transmission/reception device 101 includes at least the front transmission/reception module 2 and the extended transmission module 4, or the side transmission/reception module 3 and the extended transmission module 4, thereby virtually expanding the antenna aperture to improve the performance of the radar device 100. Can be improved.
  • FIG. 24 is a diagram showing a first example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
  • the transmission/reception antenna 21a of the front transmission/reception module 2 radiates two-channel transmission waves from the transmission antennas 211-1 and 211-2, and the reflected waves of each transmission wave are transmitted to the front transmission/reception module 2
  • the transmission/reception antenna 21a of 1 is received by the reception antenna 212, and the signal processing circuit unit 24 detects the target.
  • the reflected wave received by the receiving antenna 51 of the extended receiving module 5 is not used for detecting the target.
  • the side transceiver module 3 operates similarly to the front transceiver module 2.
  • the transmitting/receiving antenna 31a of the side transmitting/receiving module 3 radiates two-channel transmission waves from the transmitting antennas 311-1 and 311-2, and the reflected waves of each transmission wave are transmitted from the side transmitting/receiving module 3.
  • the transmitting/receiving antenna 31a receives the signal at the receiving antenna 312, and the signal processing circuit unit 34 detects the target.
  • the signal processing circuit unit 24 of the front transmitter/receiver module 2 and the signal processing circuit unit 34 of the side transmitter/receiver module 3 process the reflected waves of two channels included in the received signal by signal processing using the MIMO technique. Each reflected wave component is separated, and a target is detected by using each of the separated reflected waves of two channels.
  • the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction.
  • the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved.
  • FIG. 25 is a diagram showing a second example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
  • the transmission/reception antenna 21a of the front transmission/reception module 2 radiates 2-channel transmission waves from the transmission antennas 211-1 and 211-2, and the reflected waves of each transmission wave are transmitted to the extended reception module 5
  • the signal is received by the receiving antenna 51, and the signal processing circuit unit 54 detects the target.
  • the reflected wave received by the transmission/reception antenna 21a of the front transmission/reception module 2 at the reception antenna 212 is not used for detecting the target.
  • the side transceiver module 3 operates similarly to the front transceiver module 2. Specifically, the transmission/reception antenna 31a of the side transmission/reception module 3 radiates two-channel transmission waves from the transmission antennas 311-1 and 311-2.
  • the reflected wave of the transmitted wave is received by the receiving antenna 51 of the extended receiving module 5, and the signal processing circuit unit 54 detects the target.
  • the signal processing circuit unit 54 of the extended reception module 5 separates the reflected waves of two channels included in the received signal into the components of each reflected wave by signal processing using the MIMO technique, and reflects the separated two channels.
  • Target detection is performed using each of the waves.
  • the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction.
  • the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved.
  • the extended reception module 5 receives, for example, a reflected wave of two-channel transmission waves transmitted from the front transmission/reception module 2 to detect a target and a transmission from the side transmission/reception module 3.
  • the process of receiving the reflected waves of the transmitted two-channel transmitted waves and detecting the target is alternately executed.
  • FIG. 26 is a diagram showing a third example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
  • the transmission antenna 41 of the extended transmission module 4 radiates two-channel transmission waves from the extended transmission antennas 41-1 and 41-2, and the reflected waves of each transmission wave are transmitted to the front transmission/reception module 2 Is received by the receiving antenna 212, and the signal processing circuit section 24 detects the target.
  • the reflected wave of the transmission wave radiated from the transmission antenna 211 of the front transceiver module 2 is not used for detecting the target.
  • the signal processing circuit unit 24 of the front transmitter/receiver module 2 separates the reflected waves of two channels included in the received signal into the components of each reflected wave by signal processing using the MIMO technique, and separates the separated two channels. The target is detected using each of the reflected waves.
  • the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction.
  • the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved.
  • the side transceiver module 3 performs the same processing as the front transceiver module 2. That is, in the side transceiver module 3, the reception antenna 312 receives the reflected waves of the two-channel transmission waves radiated from the extended transmission module 4, and the signal processing circuit unit 34 detects the target. The signal processing circuit unit 34 performs the same processing as the signal processing circuit unit 24 of the front transceiver module 2.
  • the configuration of the transmission channel and the reception channel when the antenna included in each module of the transmission/reception device 101 is the second configuration example is changed depending on the combination of the module that radiates the transmission wave and the module that receives the reflected wave. It is possible.
  • the configurations of the transmission channel and the reception channel in the case where the antenna included in each module of the transmission/reception device 101 is the first configuration example and the case where the antenna is included in the second configuration example have been described.
  • the configuration of the transmission channel and the configuration of the reception channel in the case of the above configuration example and the configuration of the fourth configuration example are similar.
  • the difference between the second configuration example and the third configuration example is whether the transmission subarrays included in each module are arranged horizontally or vertically.
  • the configurations of the transmission channel and the reception channel in the case of the third configuration example can be the same as those in the case of the second configuration example shown in FIGS. 24 to 26.
  • the transmitting/receiving antenna 31c see FIG.
  • the transmitting/receiving antenna 31b of the side transmitting/receiving module 3 of the third configuration example is used.
  • the transmission antenna 41b of the extended transmission module 4 of the third configuration example is used. Therefore, the configurations of the transmission channel and the reception channel in the case of the fourth configuration example can be the same as those in the case of the second configuration example and the case of the third configuration example.
  • FIG. 27 is a diagram illustrating a first operation example of the transmission/reception device 101 according to the embodiment.
  • the transmission operation is described in the upper part and the reception operation is described in the lower part.
  • the front transmitter/receiver module 2 and the side transmitter/receiver module 3 repeat the transmission operation at a predetermined cycle.
  • the transmission timings of the front transceiver module 2 and the side transceiver module 3 may be the same or different.
  • the front transceiver module 2 transmits a chirp signal whose frequency changes from f1 to f2 at a constant rate.
  • the side transceiver module 3 transmits a chirp signal whose frequency changes from f3 to f4 at a constant rate.
  • the inclination of the chirp of the chirp signals transmitted by the front transceiver module 2 and the side transceiver module 3 and the chirping time may be the same or different.
  • the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 and the reflected wave of the transmitted wave radiated from the side transceiver module 3. Is performed for each frame while switching between the process of receiving and.
  • the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the first frame, and receives the reflected wave of the transmitted wave radiated from the side transceiver module 3. Received in the second frame.
  • the extended reception module 5 generates the same signal as the local oscillation signal generated by the VCO 2212 in the transmission/reception circuit section 22 of the front transmission/reception module 2, and mixes this signal with the reflected wave that is the reception signal. And generate a beat signal.
  • the extended reception module 5 also generates the same signal as the local oscillation signal generated by the VCO in the transmission/reception circuit section 32 of the side transmission/reception module 3, and mixes this signal with the reflected wave that is the reception signal. And generate a beat signal.
  • the modulation circuit 5211 and the VCO 5212 of the reception circuit unit 52 generate a signal to be mixed with the reflected wave.
  • the extended receiving module 5 receives again the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the third frame, and reflects the transmitted wave radiated from the side transceiver module 3 in the fourth frame. Re-receive the waves.
  • the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the odd-numbered frame and reflects the transmitted wave radiated from the side transceiver module 3 in the even-numbered frame. Receive the waves.
  • FIG. 28 is a diagram illustrating a second operation example of the transmission/reception device 101 according to the embodiment.
  • the transmission operation is described in the uppermost stage, and the reception operation is described in the second and subsequent stages from the top.
  • the front transceiver module 2 performs a transmission operation in the first frame
  • the extended transmission module 4 performs a transmission operation in the second frame.
  • the front transmitter/receiver module 2 and the extended transmitter module 4 transmit a chirp signal whose frequency changes from f1 to f2 at a constant ratio.
  • the inclination of the chirp of the chirp signal transmitted by the front transmitter/receiver module 2 and the extension transmitter module 4 and the chirping time may be the same or different.
  • the front transceiver module 2 transmits the same chirp signal as in the first frame
  • the extended transmission module 4 transmits the same chirp signal as in the second frame.
  • the same processing is repeated. That is, the front transmitter/receiver module 2 performs transmission operation in odd-numbered frames, and the extended transmission module 4 performs transmission operation in even-numbered frames.
  • the reception operation of the front transceiver module 2 is described in the second row from the top of FIG.
  • the front transceiver module 2 receives the reflected wave of the signal transmitted by the front transceiver module 2 in the first frame, that is, the odd-numbered frame.
  • the front transmitter/receiver module 2 receives the reflected wave of the signal transmitted by the extended transmitter module 4 in the second frame, that is, in the even-numbered frame.
  • the receiving operation of the side transceiver module 3 is described in the third row from the top of FIG. Further, the reception operation of the extended reception module 5 is described in the fourth row from the top of FIG.
  • the side transmitting/receiving module 3 and the extension receiving module 5 receive the reflected wave of the signal transmitted by the extension transmitting module 4 in the second frame, that is, the even-numbered frame.
  • the side transceiver module 3 transmits a chirp signal whose frequency changes from f3 to f4 at a constant ratio. Then, the reflected wave is received by the side transmitting/receiving module 3 and the extended receiving module 5.
  • the transmission/reception device 101 executes the operation of the second frame illustrated in FIG. 28 in the next frame after the operation of the first frame and the second frame illustrated in FIG. 27 is executed.
  • the transmission operation and the reception operation by the front transmission/reception module 2, the transmission operation and the reception operation by the side transmission/reception module 3, the transmission operation by the extended transmission module 4, and the reception operation by the extended reception module 5 are performed for three frames. It can be done in-house.
  • the transmission/reception device 101 is attached to the front of the vehicle, and transmits/receives the signal for detecting the target and the reception of the reflected wave toward the front of the vehicle.
  • a lateral transmission/reception module 3 mounted near the side of the vehicle for transmitting a signal for detecting a target and receiving a reflected wave toward the front of the vehicle, and a module for detecting a target toward the front of the vehicle.
  • An extended transmission module 4 that transmits a signal and an extended reception module 5 that receives a reflected wave of a signal for detecting a target transmitted toward the front of the vehicle are provided.
  • each module transmits and receives a synchronization signal to and from each other, and performs a transmission operation, a reception operation, a modulation operation when generating a transmission signal, and the like at a timing based on the synchronization signal.
  • the number of transmission sub-arrays and the number of transmission channels of the transmission antennas included in the extended transmission module 4 are larger than those of the transmission antennas of the front transmission/reception module 2 and the side transmission/reception module 3;
  • the number of receiving channels of the provided receiving antenna is larger than that of the front transmitting/receiving module 2 and that of the side transmitting/receiving module 3.
  • the signal processing circuit unit of each module virtually increases the number of reception channels by using the MIMO technique.
  • the transmission/reception device 101 is composed of a plurality of separated modules, and each module operates in synchronization, so that the installation position can be made flexible and the installation position is limited. Can be prevented. Also, the antenna opening can be enlarged to improve the target detection performance.
  • the radar device 100 including the transmitting/receiving device 101 described above may perform the following operation.
  • the radar device 100 compares the antenna radiation pattern of the front transceiver module 2 with the antenna radiation pattern of the lateral transceiver module 3, and the radio wave received by the lateral transceiver module 3 is a side lobe of the front transceiver module. It is determined whether it is a received wave (unwanted wave) that has arrived from. Then, when it is determined that the side transmitting/receiving module 3 receives the received wave arriving from the side lobe of the front transmitting/receiving module 2, the radar device 100 forms a null in the arrival direction of the unnecessary wave. This makes it possible to detect the target while reducing the influence of unnecessary waves.
  • the radar device 100 receives reflected waves of the signal for detecting a target transmitted by the front transceiver module 2, the side transceiver module 3 or the extended transmitter module 4 in each module in a normal state, and receives each reflected wave.
  • the waveform of the reception signal for each module (reception waveform in the normal state) obtained by executing FFT (Fast Fourier Transform) on the signal is stored.
  • FFT Fast Fourier Transform
  • the radar device 100 compares the waveform of the signal received during operation with the stored received waveform in the normal state, and based on the comparison result, the operating parameter of APAA or the operating parameter of DBF (Digital Beam Forming). To correct.
  • the radar device 100 can detect contamination of each module by comparing the waveform of the signal received during operation with the stored received waveform of the normal state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A transmission and reception device (101) comprises: a front transmission and reception module (2) for transmitting a first signal for target detection toward the area in front of a vehicle that the module is mounted on and receiving the reflected waves of the first signal; and a transmission extension module (4) that is attached to a different position of the vehicle from the front transmission and reception module (2) and is for transmitting a second signal for target detection toward the area in front of the vehicle. The front transmission and reception module (2) and transmission extension module (4) respectively comprise synchronization circuit units (23, 43) for transmitting and receiving synchronization signals that are reference signals serving as the basis for the timings at which operations are started. At timings based on the timings of the transmission and reception of the synchronization signals, operations are carried out that include processing for the generation and transmission of the signals for target detection and processing for the reception of the reflected waves of the signals for target detection. The reflected waves of the second signal are received by the front transmission and reception module (2).

Description

送受信装置およびレーダ装置Transmission/reception device and radar device
 本発明は、物標を探知するための信号を電波として空間に放射するとともに、放射した電波の反射波を受信する送受信装置およびレーダ装置に関する。 The present invention relates to a transmission/reception device and a radar device that emit a signal for detecting a target into space as a radio wave and receive a reflected wave of the emitted radio wave.
 従来、自動車に搭載され、物標の探知を行うことで自動車が物標に衝突するのを防止するレーダ装置が開発されている。物標の一例は、レーダ装置が搭載される自動車が走行する場合の当該自動車の前方を走行する自動車、又は、レーダ装置が搭載される自動車が走行する場合の当該自動車の前方に位置する障害物である。レーダ装置は、送信アンテナが電波を放射し、受信アンテナが物標からの反射波を受信する。レーダ装置が備える送信アンテナおよび受信アンテナは、アレーアンテナで構成される。アレーアンテナは、複数の放射素子を樹脂基板上に一定の間隔で配置して実現される(例えば、特許文献1参照)。 Conventionally, a radar device has been developed which is mounted on a vehicle and prevents the vehicle from colliding with the target by detecting the target. An example of the target is a vehicle traveling in front of the vehicle when the vehicle equipped with the radar device travels, or an obstacle located in front of the vehicle when the vehicle equipped with the radar device travels. Is. In the radar device, the transmitting antenna emits radio waves, and the receiving antenna receives the reflected wave from the target. The transmitting antenna and the receiving antenna of the radar device are array antennas. The array antenna is realized by arranging a plurality of radiating elements on a resin substrate at regular intervals (see, for example, Patent Document 1).
特許第4394147号公報Japanese Patent No. 4394147
 自動車が物標に衝突するのを防止して安全性を高めるには、レーダ装置の探知性能を高める必要がある。探知性能は電波の放射及び反射波の受信を行うアンテナの性能に依存し、アンテナの性能を向上させるためには開口を拡大する必要がある。アレーアンテナの開口を拡大するには、放射素子を配置する領域の拡大が必要であり、これに伴いアンテナのサイズが大きくなる。しかしながら、自動車の前方の物標を探知するレーダ装置のアンテナの場合、設置位置が自動車の前面、例えば、フロントグリル、フロントバンパー、ボンネット、フロントガラスとなり、いずれの設置位置とした場合にも設置可能な領域に限りがある。また、アンテナが大きくなると、自動車の運転者の前方の視界が悪くなるという問題が生じる。そのため、放射素子を配置する領域を拡大してレーダ装置の性能を向上させることが難しい。  To prevent a car from colliding with a target and improve safety, it is necessary to improve the detection performance of the radar device. The detection performance depends on the performance of an antenna that emits radio waves and receives reflected waves, and it is necessary to enlarge the aperture in order to improve the performance of the antenna. To enlarge the aperture of the array antenna, it is necessary to enlarge the area where the radiating element is arranged, and the size of the antenna increases accordingly. However, in the case of an antenna of a radar device that detects a target in front of an automobile, the installation position is the front of the automobile, for example, the front grill, front bumper, hood, and windshield, and it can be installed at any installation position. There is a limited area. Further, when the antenna becomes large, there is a problem that the visibility of the front of the driver of the automobile deteriorates. Therefore, it is difficult to improve the performance of the radar device by enlarging the area where the radiating element is arranged.
 本発明は、上記に鑑みてなされたものであって、設置可能な領域が限定される場合であってもアンテナの開口を拡大して物標の探知性能を向上させることが可能な送受信装置を得ることを目的とする。 The present invention has been made in view of the above, and provides a transmission/reception device capable of improving the detection performance of a target by enlarging the opening of the antenna even when the installable area is limited. The purpose is to get.
 上述した課題を解決し、目的を達成するために、本発明にかかる送受信装置は、搭載される車両の前方に向けて物標探知用の第1の信号を送信するとともに第1の信号の反射波を受信する前方用送受信モジュールと、車両の前方用送受信モジュールとは異なる位置に取り付けられて車両の前方に向けて物標探知用の第2の信号を送信する拡張送信モジュールと、を備える。前方用送受信モジュールおよび拡張送信モジュールは、動作の開始タイミングの元となる基準信号である同期信号を送受信する同期回路部を備え、同期信号を送受信するタイミングに基づくタイミングで、物標探知用の信号を生成して送信する処理および物標探知用の信号の反射波を受信する処理を含む動作を実行し、第2の信号の反射波を前方用送受信モジュールが受信する。 In order to solve the above-mentioned problems and to achieve the object, a transmitting/receiving device according to the present invention transmits a first signal for detecting a target toward the front of a vehicle in which it is mounted, and reflects the first signal. A front transmitter/receiver module for receiving waves, and an extended transmitter module mounted at a position different from the front transmitter/receiver module of the vehicle and transmitting a second signal for detecting a target toward the front of the vehicle. The front transmitter/receiver module and the extended transmitter module include a synchronization circuit unit that transmits/receives a synchronization signal that is a reference signal that is the basis of the operation start timing, and uses a signal for target detection at a timing based on the timing of transmitting/receiving the synchronization signal. Is performed and the operation including the processing of receiving the reflected wave of the signal for detecting the target is executed, and the reflected wave of the second signal is received by the front transceiver module.
 本発明にかかる送受信装置は、設置可能な領域が限定される場合であってもアンテナの開口を拡大して物標の探知性能を向上させることができるという効果を奏する。 The transmitter/receiver according to the present invention has an effect that the aperture of the antenna can be enlarged to improve the detection performance of the target even when the installable area is limited.
本発明の実施の形態にかかるレーダ装置の構成例を示す図The figure which shows the structural example of the radar apparatus concerning embodiment of this invention. 実施の形態にかかる送受信装置の自動車へ搭載例を示す第1の図FIG. 1 is a first diagram showing an example of mounting the transmission/reception device according to the embodiment on an automobile. 実施の形態にかかる送受信装置の自動車へ搭載例を示す第2の図FIG. 2 is a second diagram showing an example of mounting the transmission/reception device according to the embodiment on an automobile. 実施の形態にかかる送受信装置の前方用送受信モジュールの構成例を示す図The figure which shows the structural example of the front transmitter-receiver module of the transmitter-receiver concerning embodiment. 実施の形態にかかる送受信装置の拡張送信モジュールの構成例を示す図The figure which shows the structural example of the extended transmission module of the transmission/reception apparatus concerning embodiment. 実施の形態にかかる送受信装置の拡張受信モジュールの構成例を示す図The figure which shows the structural example of the extended reception module of the transmission/reception apparatus concerning embodiment. 前方用送受信モジュールの送受信アンテナの第1の構成例を示す図The figure which shows the 1st structural example of the transmission/reception antenna of the transmission/reception module for front. 側方用送受信モジュールの送受信アンテナの第1の構成例を示す図The figure which shows the 1st structural example of the transmission/reception antenna of the transmission/reception module for sides. 拡張送信モジュールの送信アンテナの第1の構成例を示す図The figure which shows the 1st structural example of the transmission antenna of an extended transmission module. 拡張受信モジュールの受信アンテナの第1の構成例を示す図The figure which shows the 1st structural example of the receiving antenna of an extended receiving module. 前方用送受信モジュールの送受信アンテナの第2の構成例を示す図The figure which shows the 2nd structural example of the transmission/reception antenna of the transmission/reception module for front. 側方用送受信モジュールの送受信アンテナの第2の構成例を示す図The figure which shows the 2nd structural example of the transmission/reception antenna of the transmission/reception module for sides. 拡張送信モジュールの送信アンテナの第2の構成例を示す図The figure which shows the 2nd structural example of the transmission antenna of an extended transmission module. 拡張受信モジュールの受信アンテナの第2の構成例を示す図The figure which shows the 2nd structural example of the receiving antenna of an extended receiving module. 前方用送受信モジュールの送受信アンテナの第3の構成例を示す図The figure which shows the 3rd structural example of the transmission/reception antenna of the transmission/reception module for front. 側方用送受信モジュールの送受信アンテナの第3の構成例を示す図The figure which shows the 3rd structural example of the transmitting/receiving antenna of the transmitting/receiving module for sides. 拡張送信モジュールの送信アンテナの第3の構成例を示す図The figure which shows the 3rd example of a structure of the transmission antenna of an extended transmission module. 拡張受信モジュールの受信アンテナの第3の構成例を示す図The figure which shows the 3rd example of a structure of the receiving antenna of an extended receiving module. 前方用送受信モジュールの送受信アンテナの第4の構成例を示す図The figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for front. 拡張受信モジュールの受信アンテナの第4の構成例を示す図The figure which shows the 4th example of a structure of the receiving antenna of an extended receiving module. 側方用送受信モジュールの送受信アンテナの第4の構成例を示す図The figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for sides. 送受信装置の各モジュールが備えるアンテナを第1の構成例とした場合の送信チャネルおよび受信チャネルの構成の第1の例を示す図The figure which shows the 1st example of a structure of a transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 1st structure example. 送受信装置の各モジュールが備えるアンテナを第1の構成例とした場合の送信チャネルおよび受信チャネルの構成の第2の例を示す図The figure which shows the 2nd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 1st structure example. 送受信装置の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第1の例を示す図The figure which shows the 1st example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example. 送受信装置の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第2の例を示す図The figure which shows the 2nd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example. 送受信装置の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第3の例を示す図The figure which shows the 3rd example of a structure of the transmission channel and the receiving channel when the antenna with which each module of a transmitter/receiver is equipped is made into the 2nd structure example. 実施の形態にかかる送受信装置の第1の運用例を示す図The figure which shows the 1st example of operation|movement of the transmission/reception apparatus concerning embodiment. 実施の形態にかかる送受信装置の第2の運用例を示す図The figure which shows the 2nd operation example of the transmission/reception apparatus concerning embodiment.
 以下に、本発明の実施の形態にかかる送受信装置およびレーダ装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The transmission/reception device and the radar device according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかるレーダ装置の構成例を示す図である。レーダ装置100は、自動車に搭載され、自動車の前方および側方に存在する物標を探知する。レーダ装置100は、送受信装置101および目標検出処理部102を備える。
Embodiment.
FIG. 1 is a diagram showing a configuration example of a radar device according to an embodiment of the present invention. The radar device 100 is mounted on a vehicle and detects targets existing in front of and on the sides of the vehicle. The radar device 100 includes a transmission/reception device 101 and a target detection processing unit 102.
 送受信装置101は、搭載される自動車の前方に向けて物標探知用の電波を放射し、その反射波を受信して物標を探知する。送受信装置101は、物標探知用の電波として、周波数変調連続波(FM-CW:Frequency Modulated Continuous Waves)を放射する。送受信装置101は、前方用送受信モジュール2、側方用送受信モジュール3、拡張送信モジュール4および拡張受信モジュール5を備える。前方用送受信モジュール2は自動車の前方に取り付けられ、側方用送受信モジュール3は、自動車の側方に取り付けられる。拡張送信モジュール4は、自動車の前方に向けて物標探知用の電波を放射可能な位置に取り付けられる。拡張受信モジュール5は、自動車の前方に存在する物標で反射された物標探知用の電波を受信可能な位置に取り付けられる。なお、これ以降の説明では、前方用送受信モジュール2、側方用送受信モジュール3、拡張送信モジュール4および拡張受信モジュール5を単にモジュールと称する場合がある。 The transmission/reception device 101 emits a target-detecting radio wave toward the front of the vehicle on which it is mounted, and receives the reflected wave to detect the target. The transmission/reception device 101 emits a frequency-modulated continuous wave (FM-CW: Frequency Modulated Continuous Waves) as a radio wave for target detection. The transmission/reception device 101 includes a front transmission/reception module 2, a side transmission/reception module 3, an extension transmission module 4, and an extension reception module 5. The front transceiver module 2 is attached to the front of the automobile, and the side transceiver module 3 is attached to the side of the automobile. The extended transmission module 4 is attached to a position where a radio wave for target detection can be radiated toward the front of the vehicle. The extended reception module 5 is attached to a position capable of receiving a target detection radio wave reflected by a target existing in front of the vehicle. In the following description, the front transceiver module 2, the side transceiver module 3, the extended transmitter module 4, and the extended receiver module 5 may be simply referred to as modules.
 送受信装置101が備える上記の各モジュールは、互いに分離した形態であり、同期用信号線1を介して相互に接続されている。同期用信号線1は有線の信号線であってもよいし無線の信号線であってもよい。分離した形態の複数のモジュールが送受信装置101を形成しているため、送受信装置101は、各モジュールが設置可能な面積の場所がモジュールの数と同じ数だけ存在していれば設置することができ、設置場所の選択の自由度が上がる。各モジュールは、同期用信号線1を介して送受信する同期信号に基づくタイミングで動作を行うことにより、物標探知用の電波を放射する処理、反射波を受信する処理、などを他のモジュールと同期して実行する。物標探知用の電波を放射する処理には、変調信号の生成、生成した変調信号の位相調整、無線周波数帯へのアップコンバートなどを行って電波として放射する送信信号を生成する処理などが含まれる。反射波を受信する処理には、反射波をベースバンド帯域にダウンコンバートする処理、物標を探知する処理などが含まれる。 The above-mentioned modules included in the transmission/reception device 101 are separated from each other and are connected to each other via the synchronization signal line 1. The synchronization signal line 1 may be a wired signal line or a wireless signal line. Since a plurality of modules in separate forms form the transmitter/receiver 101, the transmitter/receiver 101 can be installed as long as the number of places where the area where each module can be installed is the same as the number of modules. , The degree of freedom in choosing the installation location increases. Each module operates at a timing based on a synchronization signal transmitted/received via the synchronization signal line 1 so as to perform a process of radiating an electric wave for detecting a target, a process of receiving a reflected wave, and the like with other modules. Execute synchronously. The process of radiating radio waves for target detection includes the process of generating modulated signals, adjusting the phase of the generated modulated signals, performing up-conversion to the radio frequency band, and generating transmission signals that are radiated as radio waves. Be done. The process of receiving the reflected wave includes a process of down-converting the reflected wave into a baseband band, a process of detecting a target, and the like.
 前方用送受信モジュール2は、送受信アンテナ21、送受信回路部22、同期回路部23および信号処理回路部24を備える。 The front transceiver module 2 includes a transceiver antenna 21, a transceiver circuit section 22, a synchronization circuit section 23, and a signal processing circuit section 24.
 送受信アンテナ21は、アレーアンテナであり、物標探知用の電波の放射および反射波の受信を行う。送受信回路部22は、送受信アンテナ21を介して物標探知用の信号の送信、および、物標探知用の信号の反射波の受信を行う。送受信回路部22が送信する物標探知用の信号は、物標探知用の第1の信号である。同期回路部23は、同期用信号線1を介して他のモジュールとの間で同期用信号を送受信する。信号処理回路部24は、送受信回路部22に対して各種の指令信号を送信する。また、信号処理回路部24は、送受信回路部22が受信した物標探知用の信号(反射波)に基づいて、物標を検出する。前方用送受信モジュール2の各構成要素の詳細については後述する。 The transmitting/receiving antenna 21 is an array antenna and emits radio waves for detecting a target and receives reflected waves. The transmission/reception circuit unit 22 transmits a signal for detecting a target and receives a reflected wave of the signal for detecting a target via the transmission/reception antenna 21. The signal for target detection transmitted by the transmission/reception circuit unit 22 is the first signal for target detection. The synchronization circuit unit 23 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1. The signal processing circuit unit 24 transmits various command signals to the transmission/reception circuit unit 22. Further, the signal processing circuit unit 24 detects the target based on the signal (reflected wave) for target detection received by the transmission/reception circuit unit 22. Details of each component of the front transceiver module 2 will be described later.
 側方用送受信モジュール3は前方用送受信モジュール2と同様の構成であり、送受信アンテナ31、送受信回路部32、同期回路部33および信号処理回路部34を備える。すなわち、側方用送受信モジュール3の送受信アンテナ31、送受信回路部32、同期回路部33および信号処理回路部34は、それぞれ、前方用送受信モジュール2の送受信アンテナ21、送受信回路部22、同期回路部23および信号処理回路部24と同様の処理を行う。ただし、送受信アンテナ31と送受信アンテナ21とは、アンテナを構成する放射素子の数および配置が異なる。送受信回路部32が送信する物標探知用の信号は、物標探知用の第3の信号である。アンテナを構成する放射素子の数および配置の詳細については後述する。 The side transceiver module 3 has the same configuration as the front transceiver module 2, and includes a transceiver antenna 31, a transceiver circuit section 32, a synchronization circuit section 33, and a signal processing circuit section 34. That is, the transmission/reception antenna 31, the transmission/reception circuit unit 32, the synchronization circuit unit 33, and the signal processing circuit unit 34 of the side transmission/reception module 3 are respectively the transmission/reception antenna 21, the transmission/reception circuit unit 22, and the synchronization circuit unit of the front transmission/reception module 2. 23 and the signal processing circuit unit 24. However, the transmission/reception antenna 31 and the transmission/reception antenna 21 differ in the number and arrangement of radiating elements forming the antenna. The signal for target detection transmitted by the transmission/reception circuit unit 32 is the third signal for target detection. The details of the number and arrangement of the radiating elements forming the antenna will be described later.
 拡張送信モジュール4は、送信アンテナ41、送信回路部42、同期回路部43および信号処理回路部44を備える。 The extended transmission module 4 includes a transmission antenna 41, a transmission circuit unit 42, a synchronization circuit unit 43, and a signal processing circuit unit 44.
 送信アンテナ41は、物標探知用の電波を放射する。送信回路部42は、送信アンテナ41を介して物標探知用の信号を送信する。送信回路部42が送信する物標探知用の信号は、物標探知用の第2の信号である。同期回路部43は、同期用信号線1を介して他のモジュールとの間で同期用信号を送受信する。信号処理回路部44は、送信回路部42に対して各種の指令信号を送信する。拡張送信モジュール4の各構成要素の詳細については後述する。 The transmitting antenna 41 emits a radio wave for target detection. The transmission circuit unit 42 transmits a signal for target detection via the transmission antenna 41. The signal for target detection transmitted by the transmission circuit unit 42 is the second signal for target detection. The synchronization circuit unit 43 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1. The signal processing circuit unit 44 transmits various command signals to the transmission circuit unit 42. Details of each component of the extended transmission module 4 will be described later.
 拡張受信モジュール5は、受信アンテナ51、受信回路部52、同期回路部53および信号処理回路部54を備える。 The extended reception module 5 includes a reception antenna 51, a reception circuit unit 52, a synchronization circuit unit 53, and a signal processing circuit unit 54.
 受信アンテナ51は、前方用送受信モジュール2、側方用送受信モジュール3または拡張送信モジュール4から送信される物標探知用の電波の反射波を受信する。受信回路部52は、他のモジュールから送信された物標探知用の信号の反射波を、受信アンテナ51を介して受信する。同期回路部53は、同期用信号線1を介して他のモジュールとの間で同期用信号を送受信する。信号処理回路部54は、受信回路部52に対して各種の指令信号を送信する。信号処理回路部54は、受信回路部52が受信した物標探知用の信号の反射波に基づいて、物標を検出する。拡張受信モジュール5の各構成要素の詳細については後述する。 The receiving antenna 51 receives a reflected wave of a target detection radio wave transmitted from the front transmitter/receiver module 2, the side transmitter/receiver module 3, or the extended transmitter module 4. The receiving circuit unit 52 receives a reflected wave of a signal for detecting a target transmitted from another module via the receiving antenna 51. The synchronization circuit unit 53 transmits/receives a synchronization signal to/from another module via the synchronization signal line 1. The signal processing circuit unit 54 transmits various command signals to the receiving circuit unit 52. The signal processing circuit unit 54 detects the target based on the reflected wave of the target detection signal received by the receiving circuit unit 52. Details of each component of the extended reception module 5 will be described later.
 図2は、実施の形態にかかる送受信装置101の自動車へ搭載例を示す第1の図である。図3は、実施の形態にかかる送受信装置101の自動車へ搭載例を示す第2の図である。図2および図3では、送受信装置101が備える各モジュールの自動車への取付位置の例を示している。図3は、図2に示した各モジュールの取付位置を自動車の上方から見た場合の取付位置を示している。本明細書では、車両6の後方から前方に向かう方向をx方向とし、x方向と直交しかつ車両6の右側から左側に向かう方向をy方向とし、x方向およびy方向に直交する方向をz方向と定義する。なお、y方向を水平方向、z方向を垂直方向と記載する場合がある。 FIG. 2 is a first diagram showing an example of mounting the transmission/reception device 101 according to the embodiment on a vehicle. FIG. 3 is a second diagram showing an example of mounting the transmission/reception device 101 according to the embodiment on a vehicle. 2 and 3 show examples of the mounting positions of the modules included in the transmission/reception device 101 to the automobile. FIG. 3 shows the mounting positions of the modules shown in FIG. 2 when viewed from above the vehicle. In this specification, the direction from the rear of the vehicle 6 to the front is defined as the x direction, the direction orthogonal to the x direction and extending from the right side to the left side of the vehicle 6 is defined as the y direction, and the direction orthogonal to the x direction and the y direction is defined as the z direction. Define as direction. Note that the y direction may be described as a horizontal direction and the z direction may be described as a vertical direction.
 図2および図3に示した例では、自動車の車両6のフロントグリルに前方用送受信モジュール2が取り付けられている。また、車両6のフロントバンパーの右側および左側の2か所に側方用送受信モジュール3が取り付けられている。さらに、車両6のフロントガラスの右側上部に拡張送信モジュール4が取り付けられ、左側上部に拡張受信モジュール5が取り付けられている。図2および図3に示した取付位置とする場合、送受信装置101は2台の側方用送受信モジュール3を備えた構成となる。なお、送受信装置101を構成する側方用送受信モジュール3の台数は3以上であってもよい。また、送受信装置101を構成する前方用送受信モジュール2の台数も2または3以上であってもよい。同様に、送受信装置101を構成する拡張送信モジュール4および拡張受信モジュール5の台数も2または3以上であってもよい。 In the example shown in FIGS. 2 and 3, the front transceiver module 2 is attached to the front grill of the vehicle 6 of the automobile. Further, the side transceiver modules 3 are attached to the right and left sides of the front bumper of the vehicle 6. Further, the extended transmission module 4 is attached to the upper right side of the windshield of the vehicle 6, and the extended receiving module 5 is attached to the upper left side thereof. When the mounting position is as shown in FIGS. 2 and 3, the transmitting/receiving device 101 has a configuration including two side transmitting/receiving modules 3. The number of the side transceiver modules 3 forming the transceiver apparatus 101 may be three or more. Further, the number of front transmitter/receiver modules 2 constituting the transmitter/receiver 101 may be two or three or more. Similarly, the number of the extended transmission modules 4 and the extended reception modules 5 that configure the transmission/reception device 101 may be two or three or more.
 図4は、実施の形態にかかる送受信装置101の前方用送受信モジュール2の構成例を示す図である。前方用送受信モジュール2は、送受信アンテナ21、送受信回路部22、同期回路部23および信号処理回路部24を備える。 FIG. 4 is a diagram showing a configuration example of the front transceiver module 2 of the transceiver apparatus 101 according to the embodiment. The front transceiver module 2 includes a transceiver antenna 21, a transceiver circuit section 22, a synchronization circuit section 23, and a signal processing circuit section 24.
 送受信アンテナ21は、送信アンテナ211および受信アンテナ212で構成される。送信アンテナ211は、送信回路部221で生成された送信信号を空間に送信電波(以下、送信波と称する)として放射する複数の送信アレーアンテナ2111~211mで構成される。受信アンテナ212は、送信アンテナ211から放射された送信波が物標に反射された反射波を受信する複数の受信アレーアンテナ2121~212nで構成される。 The transmission/reception antenna 21 includes a transmission antenna 211 and a reception antenna 212. The transmission antenna 211 includes a plurality of transmission array antennas 211 1 to 211 m that radiate the transmission signal generated by the transmission circuit unit 221 as a transmission radio wave (hereinafter, referred to as a transmission wave) in space. The receiving antenna 212 is composed of a plurality of receiving array antennas 212 1 to 212 n that receive the reflected wave in which the transmitted wave radiated from the transmitting antenna 211 is reflected by the target.
 送受信回路部22は、送信アンテナ211から空間に送信波として放射される送信信号を生成する送信回路部221と、受信アンテナ212が受信した反射波をダウンコンバートするなどしてベースバンド帯の信号(以下、ベースバンド信号と称する)を生成する受信回路部222を備える。 The transmission/reception circuit unit 22 generates a transmission signal radiated from the transmission antenna 211 into the space as a transmission wave, and a transmission circuit unit 221 and a baseband signal (for example, by down-converting the reflected wave received by the reception antenna 212). Hereinafter, a receiving circuit unit 222 that generates a baseband signal) is provided.
 送信回路部221は、変調回路2211、電圧制御発振器(Voltage Control Oscillator)であるVCO2212、電力分配器2213、移相器22141~2214m、逓倍器22151~2215m、パワーアンプ22161~2216mおよび送信制御回路2217を備える。 The transmission circuit unit 221 includes a modulation circuit 2211, a VCO 2212 that is a voltage control oscillator (Voltage Control Oscillator), a power distributor 2213, phase shifters 2214 1 to 2214 m , multipliers 2215 1 to 2215 m , and power amplifiers 2216 1 to 2216. m and a transmission control circuit 2217.
 変調回路2211は、信号処理回路部24から周波数変調幅および変調周期を含む変調パラメータの情報を受信し、受信した変調パラメータに従ってVCO2212と連携して変調信号を生成する。変調回路2211には、変調信号を生成する際に、VCO2212の出力する変調信号を分周し、同期回路231からの同期信号に基づいて、位相を同期させて変調信号を安定化させる位相同期制御(PLL:Phase Locked Loop)回路が含まれる。 The modulation circuit 2211 receives the information of the modulation parameter including the frequency modulation width and the modulation cycle from the signal processing circuit unit 24, and generates the modulation signal in cooperation with the VCO 2212 according to the received modulation parameter. The modulation circuit 2211 divides the modulation signal output from the VCO 2212 when generating the modulation signal, and synchronizes the phase based on the synchronization signal from the synchronization circuit 231 to stabilize the modulation signal. (PLL: Phase Locked Loop) circuit is included.
 VCO2212は、変調回路2211から入力される変調信号の電圧の変化に対応させて出力信号の周波数を変化させることで変調信号を生成する。 The VCO 2212 generates a modulation signal by changing the frequency of the output signal corresponding to the change in the voltage of the modulation signal input from the modulation circuit 2211.
 なお、信号処理回路部24は、温度変化や経年変化などによるVCO2212の入力電圧に対する発振周波数の特性変化に応じて、変調回路2211の生成する変調信号を適宜補正するように、変調パラメータの情報を変更する動作を行ってもよい。 In addition, the signal processing circuit unit 24 outputs the information of the modulation parameter so as to appropriately correct the modulation signal generated by the modulation circuit 2211 according to the characteristic change of the oscillation frequency with respect to the input voltage of the VCO 2212 due to the temperature change, the secular change, and the like. The changing operation may be performed.
 また、信号処理回路部24は、例えば目標検出処理部102から信号処理回路部24に入力される外部信号に従って、変調回路2211に送信する変調パラメータの情報を変更してもよい。 Further, the signal processing circuit unit 24 may change the information of the modulation parameter transmitted to the modulation circuit 2211 according to an external signal input from the target detection processing unit 102 to the signal processing circuit unit 24, for example.
 電力分配器2213は、VCO2212から入力される変調信号を増幅し、送信アンテナ211側と受信回路部222側とに分配する。なお、受信回路部222側に分配された変調信号は後述するミキサ22231~2223nへの入力信号となる。 The power distributor 2213 amplifies the modulated signal input from the VCO 2212 and distributes it to the transmitting antenna 211 side and the receiving circuit unit 222 side. The modulated signal distributed to the receiving circuit section 222 side becomes an input signal to mixers 2223 1 to 2223 n described later.
 移相器22141~2214mは、電力分配器2213から入力される変調信号の位相を変化させる。 The phase shifters 2214 1 to 2214 m change the phase of the modulation signal input from the power distributor 2213.
 逓倍器22151~2215mは、それぞれ、前段の対応する移相器22141~2214mから入力される変調信号の周波数を逓倍、すなわち整数倍して送信信号を生成する。 The multipliers 2215 1 to 2215 m multiply the frequencies of the modulation signals input from the corresponding phase shifters 2214 1 to 2214 m at the preceding stage, respectively, that is, multiples, to generate transmission signals.
 パワーアンプ22161~2216mは、それぞれ、前段の対応する逓倍器22151~2215mから入力される送信信号を増幅する。パワーアンプ22161~2216mで増幅された各送信信号は、送信アレーアンテナ2111~211mへの入力となる。 The power amplifiers 2216 1 to 2216 m respectively amplify the transmission signals input from the corresponding multipliers 2215 1 to 2215 m in the preceding stage. The respective transmission signals amplified by the power amplifiers 2216 1 to 2216 m are input to the transmission array antennas 211 1 to 211 m .
 送信制御回路2217は、変調回路2211、VCO2212および電力分配器2213に対して、これらを動作させるための制御電圧を印加する。また、送信制御回路2217は信号処理回路部24から指令信号を受信する。すなわち、送信制御回路2217は、信号処理回路部24から受信した指令信号に従って、変調回路2211、VCO2212および電力分配器2213の動作を制御するための制御信号を生成する。 The transmission control circuit 2217 applies a control voltage for operating the modulation circuit 2211, the VCO 2212, and the power distributor 2213. The transmission control circuit 2217 also receives a command signal from the signal processing circuit unit 24. That is, the transmission control circuit 2217 generates a control signal for controlling the operations of the modulation circuit 2211, the VCO 2212, and the power distributor 2213 according to the command signal received from the signal processing circuit unit 24.
 受信回路部222は、AD(Analogue to Digital)コンバータ22211~2221n、ベースバンドアンプ22221~2222n、ミキサ22231~2223nおよび受信制御回路2224を備える。なお、図4では、ADコンバータ22211~2221nを「A/D22211~2221n」と記載している。 The reception circuit section 222 includes AD (Analogue to Digital) converters 2221 1 to 2221 n , baseband amplifiers 2222 1 to 2222 n , mixers 2223 1 to 2223 n, and a reception control circuit 2224. In FIG. 4, the AD converters 2221 1 to 2221 n are described as “A/D 2221 1 to 2221 n ”.
 ミキサ22231~2223nには、受信アレーアンテナ2121~212nで受信された反射波が受信信号として入力される。ミキサ22231~2223nは、それぞれ、電力分配器2213から入力される変調信号を、受信アレーアンテナ2121~212nから入力される受信信号にミキシングしてダウンコンバートを行い、ベースバンド信号を生成する。ミキサ22231~2223nが生成するベースバンド信号はビート信号である。 The reflected waves received by the reception array antennas 212 1 to 212 n are input to the mixers 2223 1 to 2223 n as reception signals. The mixers 2223 1 to 2223 n mix the modulated signals input from the power distributor 2213 with the received signals input from the receiving array antennas 212 1 to 212 n to down-convert and generate baseband signals. To do. The baseband signals generated by the mixers 2223 1 to 2223 n are beat signals.
 ベースバンドアンプ22221~2222nは、それぞれ、前段の対応するミキサ22231~2223nから入力されるベースバンド信号を増幅する。 Baseband amplifiers 2222 1 ~ 2222 n, respectively, to amplify the baseband signal input from the preceding stage of the corresponding mixers 2223 1 ~ 2223 n.
 ADコンバータ22211~2221nは、それぞれ、前段の対応するベースバンドアンプ22221~2222nから入力される増幅後のベースバンド信号をディジタル信号に変換する。 The AD converters 2221 1 to 2221 n respectively convert the amplified baseband signals input from the corresponding baseband amplifiers 2222 1 to 2222 n in the preceding stage into digital signals.
 受信制御回路2224は、ミキサ22231~2223n、ベースバンドアンプ22221~2222nおよびADコンバータ22211~2221nに対して、これらを動作させるための制御電圧を印加する。また、受信制御回路2224は、信号処理回路部24から指令信号を受信する。すなわち受信制御回路2224は、受信した指令信号に従って、ミキサ22231~2223n、ベースバンドアンプ22221~2222nおよびADコンバータ22211~2221nの動作を制御するための制御信号を生成する。 The reception control circuit 2224 applies control voltages for operating the mixers 2223 1 to 2223 n , the baseband amplifiers 2222 1 to 2222 n, and the AD converters 2221 1 to 2221 n . The reception control circuit 2224 also receives a command signal from the signal processing circuit unit 24. That is, the reception control circuit 2224 generates control signals for controlling the operations of the mixers 2223 1 to 2223 n , the baseband amplifiers 2222 1 to 2222 n, and the AD converters 2221 1 to 2221 n according to the received command signal.
 同期回路部23は、同期回路231を備える。同期回路231は、他のモジュール、すなわち、側方用送受信モジュール3、拡張送信モジュール4および拡張受信モジュール5との間で、空間に送信波を放射する動作の実行タイミングおよび送信波の反射波を受信する動作の実行タイミングを同期させるための処理を行う。同期回路231は、例えば、他のモジュールが備える同期回路との間で、動作の開始タイミングの元となる基準信号である同期信号を一定の周期で繰り返し送受信する。同期回路231は、同期信号に基づくタイミングで、送受信回路部22に動作の開始を指示するための動作開始信号を出力する。送受信回路部22は、動作開始信号に従って動作を行うことで、変調信号の生成タイミング、変調信号の位相、および、反射波の受信タイミングを他のモジュールと同期させる。同期処理に使用する同期信号は、送受信装置101を構成する複数のモジュールの中のいずれか1つの同期回路が生成し、その他のモジュールの同期回路へ送信する。 The synchronous circuit unit 23 includes a synchronous circuit 231. The synchronization circuit 231 transmits the execution timing of the operation of radiating the transmission wave to the space and the reflected wave of the transmission wave to and from the other modules, that is, the side transmitting/receiving module 3, the extension transmitting module 4, and the extension receiving module 5. Performs processing to synchronize the execution timing of the received operation. The synchronization circuit 231 repeatedly transmits and receives, for example, a synchronization signal, which is a reference signal serving as a source of operation start timing, to and from a synchronization circuit included in another module at a constant cycle. The synchronization circuit 231 outputs an operation start signal for instructing the transmission/reception circuit unit 22 to start an operation at a timing based on the synchronization signal. The transmission/reception circuit unit 22 operates according to the operation start signal to synchronize the generation timing of the modulation signal, the phase of the modulation signal, and the reception timing of the reflected wave with other modules. The synchronization signal used for the synchronization processing is generated by any one of the synchronization circuits of the plurality of modules that configure the transmission/reception device 101 and transmitted to the synchronization circuits of the other modules.
 信号処理回路部24は、マイコン241で実現される。マイコン241は、各種の演算を行う演算手段の一例である。マイコン241に代えて、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)を用いてもよい。また、マイコン241に代えて、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせた処理回路を用いてもよい。信号処理回路部24は、送信回路部221、受信回路部222および同期回路部23へ指令信号を送信する。また、信号処理回路部24は、受信回路部222のADコンバータ22211~2221nからベースバンド信号を受信し、受信したベースバンド信号を用いて、物標の位置および物標の速度といった、物標の情報を算出する。物標の位置には、物標が存在する方位および物標までの距離が含まれる。信号処理回路部24は、算出した物標の情報を目標検出処理部102に出力する。 The signal processing circuit unit 24 is realized by the microcomputer 241. The microcomputer 241 is an example of a calculation unit that performs various calculations. Instead of the microcomputer 241, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor) may be used. Further, instead of the microcomputer 241, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. A circuit may be used. The signal processing circuit unit 24 transmits a command signal to the transmission circuit unit 221, the reception circuit unit 222, and the synchronization circuit unit 23. The signal processing circuit unit 24 also receives baseband signals from the AD converters 2221 1 to 2221 n of the receiving circuit unit 222, and uses the received baseband signals to determine the position of the target and the speed of the target. Calculate the information of the mark. The position of the target includes the direction in which the target exists and the distance to the target. The signal processing circuit unit 24 outputs the calculated target object information to the target detection processing unit 102.
 側方用送受信モジュール3の送受信回路部32、同期回路部33および信号処理回路部34は、それぞれ、前方用送受信モジュール2の送受信回路部22、同期回路部23および信号処理回路部24と同様の構成である。そのため、側方用送受信モジュール3の各部の説明は省略する。 The transmission/reception circuit unit 32, the synchronization circuit unit 33, and the signal processing circuit unit 34 of the side transmission/reception module 3 are similar to the transmission/reception circuit unit 22, the synchronization circuit unit 23, and the signal processing circuit unit 24 of the front transmission/reception module 2, respectively. The composition. Therefore, the description of each part of the side transceiver module 3 is omitted.
 図5は、実施の形態にかかる送受信装置101の拡張送信モジュール4の構成例を示す図である。拡張送信モジュール4は、送信アンテナ41、送信回路部42、同期回路部43および信号処理回路部44を備える。 FIG. 5 is a diagram showing a configuration example of the extended transmission module 4 of the transmission/reception device 101 according to the embodiment. The extended transmission module 4 includes a transmission antenna 41, a transmission circuit unit 42, a synchronization circuit unit 43, and a signal processing circuit unit 44.
 送信アンテナ41は、送信回路部42で生成された送信信号を空間に送信波として放射する複数の送信アレーアンテナ4111~411kで構成される。 The transmission antenna 41 is composed of a plurality of transmission array antennas 411 1 to 411 k that radiate the transmission signals generated by the transmission circuit unit 42 into space as transmission waves.
 送信回路部42は、送信アンテナ41から空間に送信波として放射される送信信号を生成する。送信回路部42は、変調回路4211、VCO4212、電力分配器4213、移相器42141~4214k、逓倍器42151~4215k、パワーアンプ42161~4216kおよび送信制御回路4217を備える。変調回路4211、VCO4212、電力分配器4213、移相器42141~4214k、逓倍器42151~4215k、パワーアンプ42161~4216kおよび送信制御回路4217は、それぞれ、上述した前方用送受信モジュール2の送信回路部221を構成する変調回路2211、VCO2212、電力分配器2213、移相器22141~2214m、逓倍器22151~2215m、パワーアンプ22161~2216mおよび送信制御回路2217と同様の処理を行う。 The transmission circuit unit 42 generates a transmission signal radiated from the transmission antenna 41 into space as a transmission wave. The transmission circuit unit 42 includes a modulation circuit 4211, a VCO 4212, a power distributor 4213, phase shifters 4214 1 to 4214 k , multipliers 4215 1 to 4215 k , power amplifiers 4216 1 to 4216 k, and a transmission control circuit 4217. The modulation circuit 4211, the VCO 4212, the power distributor 4213, the phase shifters 4214 1 to 4214 k , the multipliers 4215 1 to 4215 k , the power amplifiers 4216 1 to 4216 k, and the transmission control circuit 4217 are respectively the above-mentioned front transceiver modules. The modulation circuit 2211, the VCO 2212, the power distributor 2213, the phase shifters 2214 1 to 2214 m , the multipliers 2215 1 to 2215 m , the power amplifiers 2216 1 to 2216 m, and the transmission control circuit 2217, which constitute the second transmission circuit unit 221, Perform similar processing.
 同期回路部43は、同期回路431を備える。同期回路431は、上述した前方用送受信モジュール2の同期回路部23を構成する同期回路231と同様の処理を行う。 The synchronous circuit unit 43 includes a synchronous circuit 431. The synchronization circuit 431 performs the same processing as the synchronization circuit 231 included in the synchronization circuit unit 23 of the front transceiver module 2 described above.
 信号処理回路部44は、マイコン441で実現される。信号処理回路部44は、送信回路部42および同期回路部43へ指令信号を送信する。 The signal processing circuit unit 44 is realized by the microcomputer 441. The signal processing circuit unit 44 transmits a command signal to the transmission circuit unit 42 and the synchronization circuit unit 43.
 図6は、実施の形態にかかる送受信装置101の拡張受信モジュール5の構成例を示す図である。拡張受信モジュール5は、受信アンテナ51、受信回路部52、同期回路部53および信号処理回路部54を備える。 FIG. 6 is a diagram showing a configuration example of the extended reception module 5 of the transmission/reception device 101 according to the embodiment. The extended reception module 5 includes a reception antenna 51, a reception circuit unit 52, a synchronization circuit unit 53, and a signal processing circuit unit 54.
 受信アンテナ51は、他のモジュールから放射された送信波が物標に反射された反射波を受信する複数の受信アレーアンテナ5121~512lで構成される。 The receiving antenna 51 is composed of a plurality of receiving array antennas 512 1 to 512 l that receive the reflected waves of the transmitted waves radiated from other modules and reflected by the target.
 受信回路部52は、受信アンテナ51が受信した反射波をダウンコンバートするなどしてベースバンド信号を生成する。受信回路部52は、変調回路5211、VCO5212、電力分配器5213、ADコンバータ52211~5221l、ベースバンドアンプ52221~5222l、ミキサ52231~5223lおよび受信制御回路5224を備える。 The reception circuit unit 52 generates a baseband signal by down converting the reflected wave received by the reception antenna 51. The reception circuit unit 52 includes a modulation circuit 5211, a VCO 5212, a power distributor 5213, AD converters 5221 1 to 5221 l , baseband amplifiers 5222 1 to 5222 l , mixers 5223 1 to 5223 l, and a reception control circuit 5224.
 変調回路5211およびVCO5212は、それぞれ、上述した前方用送受信モジュール2の送信回路部221を構成する変調回路2211およびVCO2212と同様の処理を行う。 The modulation circuit 5211 and the VCO 5212 perform the same processing as the modulation circuit 2211 and the VCO 2212, respectively, which constitute the transmission circuit unit 221 of the front transceiver module 2 described above.
 電力分配器5213は、VCO5212から入力される変調信号を増幅し、ミキサ52231~5223lに分配する。 The power distributor 5213 amplifies the modulation signal input from the VCO 5212 and distributes it to the mixers 5223 1 to 5223 l .
 ADコンバータ52211~5221l、ベースバンドアンプ52221~5222lおよびミキサ52231~5223lは、それぞれ、上述した前方用送受信モジュール2の受信回路部222を構成するADコンバータ22211~2221n、ベースバンドアンプ22221~2222nおよびミキサ22231~2223nと同様の処理を行う。 The AD converters 5221 1 to 5221 l , the baseband amplifiers 5222 1 to 5222 l, and the mixers 5223 1 to 5223 l respectively configure the AD converters 2221 1 to 2221 n , which form the reception circuit unit 222 of the above-described front transceiver module 2, Processing similar to that of the baseband amplifiers 2222 1 to 2222 n and the mixers 2223 1 to 2223 n is performed.
 受信制御回路5224は、変調回路5211、VCO5212、電力分配器5213、ミキサ52231~5223l、ベースバンドアンプ52221~5222lおよびADコンバータ52211~5221lに対して、これらを動作させるための制御電圧を印加する。また、受信制御回路5224は、信号処理回路部54から指令信号を受信する。すなわち受信制御回路5224は、受信した指令信号に従って、変調回路5211、VCO5212、電力分配器5213、ミキサ52231~5223l、ベースバンドアンプ52221~5222lおよびADコンバータ52211~5221lの動作を制御するための制御信号を生成する。 The reception control circuit 5224 operates the modulation circuit 5211, the VCO 5212, the power distributor 5213, the mixers 5223 1 to 5223 l , the baseband amplifiers 5222 1 to 5222 l, and the AD converters 5221 1 to 5221 l . Apply a control voltage. The reception control circuit 5224 also receives a command signal from the signal processing circuit unit 54. That is, the reception control circuit 5224 operates the modulation circuit 5211, the VCO 5212, the power distributor 5213, the mixers 5223 1 to 5223 l , the baseband amplifiers 5222 1 to 5222 l, and the AD converters 5221 1 to 5221 l in accordance with the received command signal. A control signal for controlling is generated.
 同期回路部53は、同期回路531を備える。同期回路531は、上述した前方用送受信モジュール2の同期回路部23を構成する同期回路231と同様の処理を行う。 The synchronizing circuit unit 53 includes a synchronizing circuit 531. The synchronization circuit 531 performs the same process as the synchronization circuit 231 included in the synchronization circuit unit 23 of the front transceiver module 2 described above.
 信号処理回路部54は、マイコン541で実現される。信号処理回路部54は、受信回路部52および同期回路部53へ指令信号を送信する。また、信号処理回路部54は、受信回路部52のADコンバータ52211~5221lからベースバンド信号を受信し、受信したベースバンド信号を用いて、物標の位置および物標の速度といった、物標の情報を算出する。信号処理回路部54は、算出した物標の情報を目標検出処理部102に出力する。 The signal processing circuit unit 54 is realized by the microcomputer 541. The signal processing circuit unit 54 transmits a command signal to the reception circuit unit 52 and the synchronization circuit unit 53. Further, the signal processing circuit unit 54 receives the baseband signals from the AD converters 5221 1 to 5221 l of the receiving circuit unit 52, and uses the received baseband signals to determine the position of the target and the speed of the target. Calculate the information of the mark. The signal processing circuit unit 54 outputs the calculated target information to the target detection processing unit 102.
 目標検出処理部102は、前方用送受信モジュール2、側方用送受信モジュール3および拡張受信モジュール5から出力される情報を確認し、各モジュールでの物標の検出結果を取りまとめてレーダ装置100全体としての目標検出結果を生成する。なお、本実施の形態では、反射波を受信する各モジュールの信号処理回路部で物標の情報を算出することとしたが、この処理を目標検出処理部102が行うようにしてもよい。この場合、各モジュールは、受信回路部で生成したビート信号を目標検出処理部102へ出力し、目標検出処理部102は、各モジュールから出力されるビート信号を用いて物標の情報を算出する。 The target detection processing unit 102 confirms the information output from the front transmitter/receiver module 2, the side transmitter/receiver module 3, and the extended receiver module 5, and collects the detection results of the target in each module to make the radar device 100 as a whole. Generate the target detection result of. In the present embodiment, the signal processing circuit unit of each module that receives the reflected wave calculates the target information, but the target detection processing unit 102 may perform this process. In this case, each module outputs the beat signal generated by the reception circuit unit to the target detection processing unit 102, and the target detection processing unit 102 calculates the target information by using the beat signal output from each module. ..
 なお、目標検出処理部102は、前方用送受信モジュール2の信号処理回路部24、側方用送受信モジュール3の信号処理回路部34、拡張送信モジュール4の信号処理回路部44および拡張受信モジュール5の信号処理回路部54に対して、送信回路部、受信回路部および同期回路部への指令信号を与えるための制御信号や、変調回路への変調パラメータを与えるための制御信号などを送ってもよい。 The target detection processing unit 102 includes the signal processing circuit unit 24 of the front transceiver module 2, the signal processing circuit unit 34 of the lateral transceiver module 3, the signal processing circuit unit 44 of the extended transmission module 4, and the extended reception module 5. A control signal for giving a command signal to the transmitting circuit unit, the receiving circuit unit, and the synchronizing circuit unit, a control signal for giving a modulation parameter to the modulation circuit, or the like may be sent to the signal processing circuit unit 54. ..
 つづいて、送受信装置101の各モジュールが備えるアンテナの構成について説明する。本実施の形態では、送受信装置101を構成する前方用送受信モジュール2の送受信アンテナ21、側方用送受信モジュール3の送受信アンテナ31、拡張送信モジュール4の送信アンテナ41および拡張受信モジュール5の受信アンテナ51について、第1~第4の4つの構成例を説明する。 Next, the configuration of the antenna included in each module of the transmission/reception device 101 will be described. In the present embodiment, the transmission/reception antenna 21 of the front transmission/reception module 2, the transmission/reception antenna 31 of the side transmission/reception module 3, the transmission antenna 41 of the extended transmission module 4, and the reception antenna 51 of the extended reception module 5 that configure the transmission/reception device 101. With respect to, the four first to fourth configuration examples will be described.
(第1の構成例)
 図7~図10は、実施の形態にかかる送受信装置101を構成する各モジュールのアンテナの第1の構成例を示す図である。具体的には、図7は、前方用送受信モジュールの送受信アンテナの第1の構成例を示す図、図8は、側方用送受信モジュールの送受信アンテナの第1の構成例を示す図、図9は、拡張送信モジュールの送信アンテナの第1の構成例を示す図、図10は、拡張受信モジュールの受信アンテナの第1の構成例を示す図である。
(First configuration example)
7 to 10 are diagrams showing a first configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment. Specifically, FIG. 7 is a diagram showing a first configuration example of the transmission/reception antenna of the front transmission/reception module, FIG. 8 is a diagram showing a first configuration example of the transmission/reception antenna of the side transmission/reception module, and FIG. FIG. 10 is a diagram showing a first configuration example of a transmission antenna of the extended transmission module, and FIG. 10 is a diagram showing a first configuration example of a reception antenna of the extended reception module.
 図7に示すように、前方用送受信モジュール2の送受信アンテナ21に含まれる送信アンテナ211および受信アンテナ212は、樹脂基板213の上に形成された複数の放射素子2122と、給電線路2123を介して複数の放射素子2122に給電を行う給電部2124とで構成される。放射素子2122はパッチアンテナ、給電線路2123はマイクロストリップ線路である。給電部2124は、給電線路2123と送受信回路部22とのインピーダンス変換を行う導波管-マイクロストリップ変換器で実現される。図7に示した例では、1つの給電部2124が垂直方向(z方向)に配列された6つの放射素子2122に給電を行い1つのアレーアンテナとして機能する。なお、後述する側方用送受信モジュール3の送受信アンテナ31、拡張送信モジュール4の送信アンテナ41および拡張受信モジュール5の受信アンテナ51も同様に、樹脂基板の上に形成された複数の放射素子と、給電線路を介して複数の放射素子に給電を行う給電部とで構成されたアレーアンテナによって実現される。また、第2~第4の構成例の各モジュールが備える各アンテナも同様に、樹脂基板の上に形成された複数の放射素子、給電線路および給電部で構成されたアレーアンテナによって実現される。 As shown in FIG. 7, the transmitting antenna 211 and the receiving antenna 212 included in the transmitting/receiving antenna 21 of the front transmitting/receiving module 2 are provided with a plurality of radiating elements 2122 formed on the resin substrate 213 and a feeding line 2123. The radiating element 2122 and a power feeding unit 2124 that feeds power. The radiating element 2122 is a patch antenna, and the feeding line 2123 is a microstrip line. The power feeding unit 2124 is realized by a waveguide-microstrip converter that performs impedance conversion between the power feeding line 2123 and the transmission/reception circuit unit 22. In the example shown in FIG. 7, one feeding unit 2124 feeds six radiating elements 2122 arranged in the vertical direction (z direction) and functions as one array antenna. The transmitting/receiving antenna 31 of the lateral transmitting/receiving module 3, the transmitting antenna 41 of the extended transmitting module 4, and the receiving antenna 51 of the extended receiving module 5 which will be described later similarly include a plurality of radiating elements formed on the resin substrate, It is realized by an array antenna configured with a power feeding unit that feeds power to a plurality of radiating elements via a power feeding line. Similarly, each antenna provided in each module of the second to fourth configuration examples is also realized by an array antenna including a plurality of radiating elements formed on a resin substrate, a feed line, and a feed section.
 送信アンテナ211では、1つの送信アレーアンテナが送信サブアレー2111を構成する。また、4チャネル(CH)の送信サブアレー2111が水平方向(y方向)に配列され、1チャネルの送信アンテナ211を構成している。送信アンテナ211は、4チャネルの送信サブアレー2111から送信波として放射する送信信号の振幅および位相を、上述した送信回路部221のパワーアンプ22161~2216mおよび移相器22141~2214mが変化させることによりアクティブフェーズドアレーアンテナ(APAA:Active Phased Array Antenna)として水平方向にビーム走査をすることが可能である。 In the transmitting antenna 211, one transmitting array antenna constitutes a transmitting sub array 2111. Further, 4-channel (CH) transmission sub-arrays 2111 are arranged in the horizontal direction (y direction) to form a 1-channel transmission antenna 211. The transmission antenna 211 changes the amplitude and phase of the transmission signal radiated as a transmission wave from the 4-channel transmission sub-array 2111 by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 m of the transmission circuit unit 221 described above. By doing so, it is possible to perform horizontal beam scanning as an active phased array antenna (APAA: Active Phased Array Antenna).
 受信アンテナ212は、8チャネルの受信アレーアンテナ2121が水平方向(y方向)に配列された構成である。 The receiving antenna 212 has a configuration in which eight-channel receiving array antennas 2121 are arranged in the horizontal direction (y direction).
 図8に示すように、側方用送受信モジュール3の送受信アンテナ31に含まれる送信アンテナ311および受信アンテナ312は、図7に示す送受信アンテナ21の送信アンテナ211および受信アンテナ212とはアレーアンテナの構成およびチャネル数が異なる。具体的には、側方用送受信モジュール3の送受信アンテナ31を構成する各アレーアンテナは、垂直方向に配列された4つの放射素子と、これら4つの放射素子に給電部に給電線路を介して給電を行う給電部とで構成される。また、送信アンテナ311は、2チャネルの送信サブアレーで構成され、受信アンテナ312は、水平方向に配列された4チャネルの受信アレーアンテナで構成される。隣り合ったアレーアンテナ同士の間隔は、送受信アンテナ21と送受信アンテナ31とで同一である。 As shown in FIG. 8, the transmitting antenna 311 and the receiving antenna 312 included in the transmitting/receiving antenna 31 of the lateral transmitting/receiving module 3 are array antennas different from the transmitting antenna 211 and the receiving antenna 212 of the transmitting/receiving antenna 21 shown in FIG. 7. And the number of channels is different. Specifically, each array antenna constituting the transmission/reception antenna 31 of the side transmission/reception module 3 has four radiating elements arranged in the vertical direction, and these four radiating elements are fed to the feeding portion via feeding lines. And a power supply unit for performing. Further, the transmission antenna 311 is composed of a transmission sub array of 2 channels, and the reception antenna 312 is composed of a reception array antenna of 4 channels arranged in the horizontal direction. The intervals between the array antennas adjacent to each other are the same between the transmission/reception antenna 21 and the transmission/reception antenna 31.
 車両の側方に取り付けられて側方の物標を探知する側方用送受信モジュール3は、車両の前方に取り付けられて前方の物標を探知する前方用送受信モジュール2と比較して、近距離を広角に探知する目的で使用される。そのため、図7および図8に示すように、側方用送受信モジュール3の送受信アンテナ31は、前方用送受信モジュール2の送受信アンテナ21と比較して、放射素子の数およびチャネル数が少ない構成としている。なお、後述する第2~第4の構成例においても同様である。 The side transceiver module 3 that is attached to the side of the vehicle to detect a side target is closer than the front transceiver module 2 that is attached to the front of the vehicle to detect a front target. Used for wide-angle detection. Therefore, as shown in FIGS. 7 and 8, the transmitting/receiving antenna 31 of the side transmitting/receiving module 3 has a smaller number of radiating elements and channels than the transmitting/receiving antenna 21 of the front transmitting/receiving module 2. .. The same applies to the second to fourth configuration examples described later.
 図9に示すように、拡張送信モジュール4の送信アンテナ41は、チャネル1の送信波を放射する拡張送信アンテナ41-1と、チャネル2の送信波を放射する拡張送信アンテナ41-2とで構成される。送信アンテナ41は、拡張送信アンテナ41-1および41-2が垂直方向(z方向)に配列された構成である。また、拡張送信アンテナ41-1および41-2は、それぞれ、4チャネルの送信サブアレーが水平方向に配列された同一構成である。拡張送信アンテナ41-1および41-2の構成は、図7に示した前方用送受信モジュール2の送信アンテナ211と同一である。すなわち、送信アンテナ41は、図7に示した前方用送受信モジュール2の送信アンテナ211を垂直方向に2つ並べた構成である。送信アンテナ41の拡張送信アンテナ41-1および41-2は、各送信サブアレーから送信波として放射する送信信号の振幅および位相を、上述した送信回路部42のパワーアンプ42161~4216kおよび移相器42141~4214kが変化させることによりアクティブフェーズドアレーアンテナとして水平方向にビーム走査をすることが可能である。なお、図9では、送信チャネル数を2とした場合の送信アンテナ41の構成例を示したが、送信チャネル数を3以上としても構わない。この場合も、各チャネルの拡張送信アンテナの構成は、前方用送受信モジュール2の送信アンテナ211と同一とする。 As shown in FIG. 9, the transmission antenna 41 of the extended transmission module 4 includes an extended transmission antenna 41-1 that radiates a transmission wave of channel 1 and an extended transmission antenna 41-2 that radiates a transmission wave of channel 2. To be done. The transmission antenna 41 has a configuration in which extended transmission antennas 41-1 and 41-2 are arranged in the vertical direction (z direction). Further, each of the extended transmission antennas 41-1 and 41-2 has the same configuration in which four-channel transmission subarrays are arranged in the horizontal direction. The configurations of the extended transmission antennas 41-1 and 41-2 are the same as those of the transmission antenna 211 of the front transceiver module 2 shown in FIG. That is, the transmission antenna 41 has a configuration in which two transmission antennas 211 of the front transceiver module 2 shown in FIG. 7 are arranged vertically. The extended transmission antennas 41-1 and 41-2 of the transmission antenna 41 determine the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by using the power amplifiers 4216 1 to 4216 k and the phase shifter of the transmission circuit unit 42 described above. By changing the units 4214 1 to 4214 k, it is possible to perform beam scanning in the horizontal direction as an active phased array antenna. Although FIG. 9 shows a configuration example of the transmission antenna 41 when the number of transmission channels is two, the number of transmission channels may be three or more. Also in this case, the configuration of the extended transmission antenna for each channel is the same as that of the transmission antenna 211 of the front transceiver module 2.
 図10に示すように、拡張受信モジュール5の受信アンテナ51は、16チャネルの受信アレーアンテナが水平方向に配列され、前方用送受信モジュール2の受信アンテナ212および側方用送受信モジュール3の受信アンテナ312よりもチャネル数が多い構成である。 As shown in FIG. 10, in the receiving antenna 51 of the extended receiving module 5, 16-channel receiving array antennas are arranged in the horizontal direction, and the receiving antenna 212 of the front transceiver module 2 and the receiving antenna 312 of the lateral transceiver module 3 are arranged. The number of channels is larger than that of the above.
(第2の構成例)
 図11~図14は、実施の形態にかかる送受信装置101を構成する各モジュールのアンテナの第2の構成例を示す図である。具体的には、図11は、前方用送受信モジュールの送受信アンテナの第2の構成例を示す図、図12は、側方用送受信モジュールの送受信アンテナの第2の構成例を示す図、図13は、拡張送信モジュールの送信アンテナの第2の構成例を示す図、図14は、拡張受信モジュールの受信アンテナの第2の構成例を示す図である。
(Second configuration example)
11 to 14 are diagrams showing a second configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment. Specifically, FIG. 11 is a diagram showing a second configuration example of the transmission/reception antenna of the front transmission/reception module, FIG. 12 is a diagram showing a second configuration example of the transmission/reception antenna of the side transmission/reception module, and FIG. FIG. 14 is a diagram showing a second configuration example of the transmission antenna of the extended transmission module, and FIG. 14 is a diagram showing a second configuration example of the reception antenna of the extended reception module.
 図11に示すように、前方用送受信モジュール2の第2の構成例の送受信アンテナ21aは、チャネル1の送信波を放射する送信アンテナ211-1と、チャネル2の送信波を放射する送信アンテナ211-2と、8チャネルの受信アレーアンテナが水平方向に配列された受信アンテナ212とで構成される。送受信アンテナ21aでは、送信アンテナ211-1、送信アンテナ211-2および受信アンテナ212が水平方向に配列されており、また、受信アンテナ212を挟むように、受信アンテナ212の両側に送信アンテナ211-1および送信アンテナ211-2が配置されている。送信アンテナ211-1および211-2は、それぞれ、4チャネルの送信サブアレーが水平方向に配列された同一構成である。また、送受信アンテナ21aを構成する各アレーアンテナは、上述した第1の構成例の送受信アンテナ21を構成するアレーアンテナと同様に、1つの給電部2124がz方向に配列された6つの放射素子と、給電線路を介して各放射素子に給電を行う給電部で構成される。送信アンテナ211-1および211-2は、各送信サブアレーから送信波として放射する送信信号の振幅および位相を、上述した送信回路部221のパワーアンプ22161~2216mおよび移相器22141~2214mが変化させることによりアクティブフェーズドアレーアンテナとして水平方向にビーム走査をすることが可能である。送受信アンテナ21aの受信アンテナ212は、前方用送受信モジュール2の第1の構成例の送受信アンテナ21の受信アンテナ212と同一である。 As shown in FIG. 11, the transmission/reception antenna 21a of the second configuration example of the front transmission/reception module 2 includes a transmission antenna 211-1 that radiates a transmission wave of channel 1 and a transmission antenna 211 that radiates a transmission wave of channel 2. -2 and a reception antenna 212 in which 8-channel reception array antennas are arranged in the horizontal direction. In the transmission/reception antenna 21a, a transmission antenna 211-1, a transmission antenna 211-2 and a reception antenna 212 are arranged in the horizontal direction, and the transmission antenna 211-1 is arranged on both sides of the reception antenna 212 so as to sandwich the reception antenna 212. And a transmitting antenna 211-2 is arranged. The transmitting antennas 211-1 and 211-2 have the same configuration in which transmitting sub-arrays of 4 channels are arranged in the horizontal direction. Further, each array antenna constituting the transmission/reception antenna 21a has six radiating elements in which one power feeding unit 2124 is arranged in the z direction, similarly to the array antenna constituting the transmission/reception antenna 21 of the first configuration example described above. , A power feeding unit that feeds power to each radiating element via a power feeding line. The transmission antennas 211-1 and 211-2 determine the amplitude and phase of the transmission signal radiated from each transmission sub-array as a transmission wave by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above. The beam can be scanned horizontally as an active phased array antenna by changing m . The reception antenna 212 of the transmission/reception antenna 21 a is the same as the reception antenna 212 of the transmission/reception antenna 21 of the first configuration example of the front transceiver module 2.
 図12に示すように、側方用送受信モジュール3の第2の構成例の送受信アンテナ31aに含まれる送信アンテナ311-1、送信アンテナ311-2および受信アンテナ312は、図11に示す送受信アンテナ21aの送信アンテナ211-1、送信アンテナ211-2および受信アンテナ212とはアレーアンテナの構成およびチャネル数が異なる。なお、送信アンテナ311-1および送信アンテナ311-2の構成は、上述した第1の構成例の送受信アンテナ31の送信アンテナ311と同一である。受信アンテナ312の構成は、第1の構成例の送受信アンテナ31の受信アンテナ312と同一である。 As shown in FIG. 12, the transmitting antenna 311-1, the transmitting antenna 311-2, and the receiving antenna 312 included in the transmitting/receiving antenna 31a of the second configuration example of the side transmitting/receiving module 3 are the transmitting/receiving antenna 21a shown in FIG. The transmission antenna 211-1, the transmission antenna 211-2, and the reception antenna 212 have different array antenna configurations and channels. The configurations of the transmission antenna 311-1 and the transmission antenna 311-2 are the same as the transmission antenna 311 of the transmission/reception antenna 31 of the first configuration example described above. The configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example.
 図13に示すように、拡張送信モジュール4の第2の構成例の送信アンテナ41は、上述した拡張送信モジュール4の第1の構成例の送信アンテナ41と同一である。 As shown in FIG. 13, the transmission antenna 41 of the second configuration example of the extended transmission module 4 is the same as the transmission antenna 41 of the first configuration example of the extended transmission module 4 described above.
 図14に示すように、拡張受信モジュール5の第2の構成例の受信アンテナ51は、上述した拡張受信モジュール5の第1の構成例の受信アンテナ51と同一である。 As shown in FIG. 14, the receiving antenna 51 of the second configuration example of the extended receiving module 5 is the same as the receiving antenna 51 of the first configuration example of the extended receiving module 5 described above.
 以上のように、送受信装置101を構成する各モジュールのアンテナの第2の構成例は、上述した第1の構成例の前方用送受信モジュール2の送受信アンテナ21および側方用送受信モジュール3の送受信アンテナ31を、図11および図12に示した構成に変更したものである。 As described above, the second configuration example of the antenna of each module that constitutes the transmission/reception device 101 is the transmission/reception antenna 21 of the front transmission/reception module 2 and the transmission/reception antenna of the side transmission/reception module 3 of the above-described first configuration example. 31 is changed to the configuration shown in FIGS. 11 and 12.
(第3の構成例)
 図15~図18は、実施の形態にかかる送受信装置101を構成する各モジュールのアンテナの第3の構成例を示す図である。具体的には、図15は、前方用送受信モジュールの送受信アンテナの第3の構成例を示す図、図16は、側方用送受信モジュールの送受信アンテナの第3の構成例を示す図、図17は、拡張送信モジュールの送信アンテナの第3の構成例を示す図、図18は、拡張受信モジュールの受信アンテナの第3の構成例を示す図である。
(Third configuration example)
15 to 18 are diagrams showing a third configuration example of the antenna of each module constituting the transmission/reception device 101 according to the embodiment. Specifically, FIG. 15 is a diagram showing a third configuration example of the transmitting/receiving antenna of the front transmitting/receiving module, FIG. 16 is a diagram showing a third configuration example of the transmitting/receiving antenna of the side transmitting/receiving module, and FIG. FIG. 18 is a diagram showing a third configuration example of the transmission antenna of the extended transmission module, and FIG. 18 is a diagram showing a third configuration example of the reception antenna of the extended reception module.
 図15に示すように、前方用送受信モジュール2の第3の構成例の送受信アンテナ21bは、チャネル1の送信波を放射する送信アンテナ211-3と、チャネル2の送信波を放射する送信アンテナ211-4と、8チャネルの受信アレーアンテナが水平方向に配列された受信アンテナ212とで構成される。送受信アンテナ21bでは、送信アンテナ211-3、送信アンテナ211-4および受信アンテナ212が水平方向に配列されており、また、受信アンテナ212を挟むように、受信アンテナ212の両側に送信アンテナ211-3および送信アンテナ211-4が配置されている。送信アンテナ211-3および211-4は、それぞれ、3チャネルの送信サブアレーが垂直方向(z方向)に配列された構成である。送信アンテナ211-3の構成と送信アンテナ211-4の構成とは、垂直方向に対して線対称である。また、各送信サブアレーは、それぞれが水平方向に配列された4つの放射素子からなる2つの放射素子群が垂直方向に配列され、2つの放射素子群の各放射素子に対して1つの給電部が給電を行う構成である。なお、前方用送受信モジュール2の第3の構成例の送受信アンテナ21bに含まれる各放射素子の配置は、前方用送受信モジュール2の第1の構成例の送受信アンテナ21に含まれる各放射素子と同一である。送信アンテナ211-3および211-4は、各送信サブアレーから送信波として放射する送信信号の振幅および位相を、上述した送信回路部221のパワーアンプ22161~2216mおよび移相器22141~2214mが変化させることによりアクティブフェーズドアレーアンテナとして垂直方向にビーム走査をすることが可能である。送受信アンテナ21bの受信アンテナ212は、前方用送受信モジュール2の第1の構成例の送受信アンテナ21の受信アンテナ212と同一である。 As shown in FIG. 15, the transmission/reception antenna 21b of the third configuration example of the front transmission/reception module 2 includes a transmission antenna 211-3 that radiates a transmission wave of channel 1 and a transmission antenna 211 that radiates a transmission wave of channel 2. -4 and a reception antenna 212 in which 8-channel reception array antennas are arranged in the horizontal direction. In the transmission/reception antenna 21b, a transmission antenna 211-3, a transmission antenna 211-4, and a reception antenna 212 are arranged in the horizontal direction, and the transmission antenna 211-3 is arranged on both sides of the reception antenna 212 so as to sandwich the reception antenna 212. And a transmitting antenna 211-4 is arranged. Each of the transmission antennas 211-3 and 211-4 has a configuration in which three-channel transmission subarrays are arranged in the vertical direction (z direction). The configuration of the transmitting antenna 211-3 and the configuration of the transmitting antenna 211-4 are line-symmetric with respect to the vertical direction. Further, in each transmitting sub-array, two radiating element groups each consisting of four radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups. This is a configuration for supplying power. The arrangement of each radiating element included in the transmitting/receiving antenna 21b of the third configuration example of the front transmitting/receiving module 2 is the same as that of each radiating element included in the transmitting/receiving antenna 21 of the first configuration example of the front transmitting/receiving module 2. Is. The transmission antennas 211-3 and 211-4 calculate the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above. It is possible to perform beam scanning in the vertical direction as an active phased array antenna by changing m . The reception antenna 212 of the transmission/reception antenna 21b is the same as the reception antenna 212 of the transmission/reception antenna 21 of the first configuration example of the front transceiver module 2.
 図16に示すように、側方用送受信モジュール3の第3の構成例の送受信アンテナ31bに含まれる送信アンテナ311-3、送信アンテナ311-4および受信アンテナ312は、図15に示す送受信アンテナ21bの送信アンテナ211-3、送信アンテナ211-4および受信アンテナ212とはアレーアンテナの構成およびチャネル数が異なる。具体的には、送信アンテナ311-3および311-4は、それぞれ、2チャネルの送信サブアレーが垂直方向に配列された構成である。送信アンテナ311-3の構成と送信アンテナ311-4の構成とは、垂直方向に対して線対称である。また、各送信サブアレーは、それぞれが水平方向に配列された3つの放射素子からなる2つの放射素子群が垂直方向に配列され、2つの放射素子群の各放射素子に対して1つの給電部が給電を行う構成である。受信アンテナ312の構成は、第1の構成例の送受信アンテナ31の受信アンテナ312と同一である。 As shown in FIG. 16, the transmitting antenna 311-3, the transmitting antenna 311-4, and the receiving antenna 312 included in the transmitting/receiving antenna 31b of the third configuration example of the lateral transmitting/receiving module 3 are the transmitting/receiving antenna 21b shown in FIG. The transmission antenna 211-3, the transmission antenna 211-4, and the reception antenna 212 are different in the configuration of the array antenna and the number of channels. Specifically, each of the transmission antennas 311-3 and 311-4 has a configuration in which two-channel transmission subarrays are arranged in the vertical direction. The configuration of the transmitting antenna 311-3 and the configuration of the transmitting antenna 311-4 are line-symmetric with respect to the vertical direction. Further, in each transmitting sub-array, two radiating element groups each including three radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups. This is a configuration for supplying power. The configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example.
 図17に示すように、拡張送信モジュール4の第3の構成例の送信アンテナ41bは、チャネル1の送信波を放射する拡張送信アンテナ41-3と、チャネル2の送信波を放射する拡張送信アンテナ41-4とで構成される。送信アンテナ41bは、拡張送信アンテナ41-3および41-4が垂直方向に配列された構成である。また、拡張送信アンテナ41-3および41-4は、それぞれ、3チャネルの送信サブアレーが垂直方向に配列された同一構成である。また、拡張送信アンテナ41-3および41-4の構成は、上述した送受信アンテナ21bの送信アンテナ211-3と同一である。すなわち、送信アンテナ41bは、上述した送受信アンテナ21bの送信アンテナ211-3を垂直方向に2つ並べた構成である。拡張送信アンテナ41-3および41-4は、各送信サブアレーから送信波として放射する送信信号の振幅および位相を、上述した送信回路部42のパワーアンプ42161~4216kおよび移相器42141~4214kが変化させることによりアクティブフェーズドアレーアンテナとして垂直方向にビーム走査をすることが可能である。 As shown in FIG. 17, the transmitting antenna 41b of the third configuration example of the extended transmitting module 4 includes an extended transmitting antenna 41-3 that radiates a transmission wave of channel 1 and an extended transmitting antenna that radiates a transmission wave of channel 2. 41-4. The transmission antenna 41b has a configuration in which the extended transmission antennas 41-3 and 41-4 are arranged in the vertical direction. The extended transmission antennas 41-3 and 41-4 have the same configuration in which transmission sub-arrays of 3 channels are arranged in the vertical direction. The configurations of the extended transmitting antennas 41-3 and 41-4 are the same as the transmitting antenna 211-3 of the transmitting/receiving antenna 21b described above. That is, the transmitting antenna 41b has a configuration in which two transmitting antennas 211-3 of the transmitting/receiving antenna 21b described above are arranged in the vertical direction. The extended transmission antennas 41-3 and 41-4 calculate the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array, by using the power amplifiers 4216 1 to 4216 k and the phase shifters 4214 1 to By changing 4214 k, it is possible to perform beam scanning in the vertical direction as an active phased array antenna.
 図18に示すように、拡張受信モジュール5の第3の構成例の受信アンテナ51は、上述した拡張受信モジュール5の第1の構成例の受信アンテナ51と同一である。 As shown in FIG. 18, the reception antenna 51 of the third configuration example of the extension reception module 5 is the same as the reception antenna 51 of the first configuration example of the extension reception module 5 described above.
 以上のように、送受信装置101を構成する各モジュールのアンテナの第3の構成例は、上述した第2の構成例の前方用送受信モジュール2の送信アンテナ211-1および211-4を、図15に示した送信アンテナ211-3および211-4に変更し、第2の構成例の側方用送受信モジュール3の送信アンテナ311-1および311-2を、図16に示した送信アンテナ311-3および311-4に変更し、さらに、第2の構成例の拡張送信モジュール4の拡張送信アンテナ41-1および41-2を、図17に示した拡張送信アンテナ41-3および41-4に変更したものとなる。 As described above, the third configuration example of the antenna of each module that constitutes the transmission/reception device 101 is the same as the transmission antennas 211-1 and 211-4 of the front transmission/reception module 2 of the second configuration example described above with reference to FIG. The transmitting antennas 211-3 and 211-4 shown in FIG. 16 are replaced by the transmitting antennas 311-1 and 311-2 of the side transmitting/receiving module 3 of the second configuration example. And 311-4, and the extended transmission antennas 41-1 and 41-2 of the extended transmission module 4 of the second configuration example are changed to the extended transmission antennas 41-3 and 41-4 shown in FIG. It will be what you did.
(第4の構成例)
 図19~図21は、実施の形態にかかる送受信装置101を構成する各モジュールのアンテナの第4の構成例を示す図である。具体的には、図19は、前方用送受信モジュールの送受信アンテナの第4の構成例を示す図、図20は、拡張受信モジュールの受信アンテナの第4の構成例を示す図、図21は、側方用送受信モジュールの送受信アンテナの第4の構成例を示す図である。
(Fourth configuration example)
19 to 21 are diagrams illustrating a fourth configuration example of the antenna of each module that configures the transmission/reception device 101 according to the embodiment. Specifically, FIG. 19 is a diagram showing a fourth configuration example of the transmission/reception antenna of the front transceiver module, FIG. 20 is a diagram showing a fourth configuration example of the reception antenna of the extended reception module, and FIG. It is a figure which shows the 4th structural example of the transmission/reception antenna of the transmission/reception module for sides.
 図19に示すように、前方用送受信モジュール2の第4の構成例の送受信アンテナ21bは、上述した前方用送受信モジュール2の第3の構成例の送受信アンテナ21bと同一である。 As shown in FIG. 19, the transmitting/receiving antenna 21b of the fourth configuration example of the front transmitting/receiving module 2 is the same as the transmitting/receiving antenna 21b of the third configuration example of the front transmitting/receiving module 2 described above.
 図20に示すように、拡張受信モジュール5の第4の構成例の受信アンテナ51は、上述した拡張受信モジュール5の第1の構成例の受信アンテナ51と同一である。 As shown in FIG. 20, the reception antenna 51 of the fourth configuration example of the extension reception module 5 is the same as the reception antenna 51 of the first configuration example of the extension reception module 5 described above.
 図21に示すように、側方用送受信モジュール3の第4の構成例の送受信アンテナ31cは、チャネル1の送信波を放射する送信アンテナ311-5と、チャネル2の送信波を放射する送信アンテナ311-6と、チャネル3の送信波を放射する送信アンテナ311-7と、チャネルの受信アレーアンテナが水平方向に配列された受信アンテナ312とで構成される。送受信アンテナ31cでは、送信アンテナ311-5、送信アンテナ311-6および受信アンテナ312が水平方向に配列されており、また、受信アンテナ312を挟むように、受信アンテナ312の両側に送信アンテナ311-5および送信アンテナ311-6が配置されている。また、送信アンテナ311-7は、送信アンテナ311-6に対して垂直方向に配列される。送信アンテナ311-5~311-7は、それぞれ、3チャネルの送信サブアレーが垂直方向に配列された構成である。送信アンテナ311-5の構成と送信アンテナ311-6の構成とは、垂直方向に対して線対称である。また、送信アンテナ311-6の構成と送信アンテナ311-7の構成とは同一である。また、各送信サブアレーは、それぞれが水平方向に配列された2つの放射素子からなる2つの放射素子群が垂直方向に配列され、2つの放射素子群の各放射素子に対して1つの給電部が給電を行う構成である。受信アンテナ312の構成は、第1の構成例の送受信アンテナ31の受信アンテナ312と同一である。送信アンテナ311-5~311-7は、各送信サブアレーから送信波として放射する送信信号の振幅および位相を、上述した送信回路部221のパワーアンプ22161~2216mおよび移相器22141~2214mに相当する回路が変化させることによりアクティブフェーズドアレーアンテナとして垂直方向にビーム走査をすることが可能である。 As shown in FIG. 21, the transmission/reception antenna 31c of the fourth configuration example of the side transmission/reception module 3 includes a transmission antenna 311-5 for radiating a transmission wave of channel 1 and a transmission antenna for radiating a transmission wave of channel 2. 311-6, a transmitting antenna 311-7 that radiates a transmitting wave of channel 3, and a receiving antenna 312 in which channel receiving array antennas are arranged in the horizontal direction. In the transmitting/receiving antenna 31c, a transmitting antenna 311-5, a transmitting antenna 311-6 and a receiving antenna 312 are arranged in a horizontal direction, and the transmitting antenna 311-5 is arranged on both sides of the receiving antenna 312 so as to sandwich the receiving antenna 312. And transmitting antennas 311-6 are arranged. Further, the transmitting antennas 311-7 are arranged in the vertical direction with respect to the transmitting antennas 311-6. Each of the transmission antennas 311-5 to 311-7 has a configuration in which three-channel transmission sub-arrays are arranged in the vertical direction. The configuration of the transmitting antenna 311-5 and the configuration of the transmitting antenna 311-6 are line-symmetric with respect to the vertical direction. The configuration of the transmitting antenna 311-6 and the configuration of the transmitting antenna 311-7 are the same. Further, in each transmitting sub-array, two radiating element groups each including two radiating elements arranged in the horizontal direction are arranged in the vertical direction, and one feeding unit is provided for each radiating element of the two radiating element groups. This is a configuration for supplying power. The configuration of the reception antenna 312 is the same as the reception antenna 312 of the transmission/reception antenna 31 of the first configuration example. The transmission antennas 311-5 to 311-7 determine the amplitude and phase of the transmission signal radiated as a transmission wave from each transmission sub-array by the power amplifiers 2216 1 to 2216 m and the phase shifters 2214 1 to 2214 of the transmission circuit unit 221 described above. By changing the circuit corresponding to m , it is possible to perform beam scanning in the vertical direction as an active phased array antenna.
 側方用送受信モジュール3の第4の構成例の送受信アンテナ31cは、上述した第3の構成例の側方用送受信モジュール3の送受信アンテナ31b(図16参照)と第3の構成例の拡張送信モジュール4の送信アンテナ41b(図17参照)とを組み合わせた形状である。そのため、送受信アンテナ31cを備えた側方用送受信モジュール3は、図16に示した送受信アンテナ31bを備えた側方用送受信モジュール3と同様に送信波を放射する処理と、図17に示した送信アンテナ41bを備えた拡張送信モジュール4と同様に送信波を放射する処理とを実行することが可能である。すなわち、送受信アンテナ31cを備えた側方用送受信モジュール3は、送信アンテナ311-5および311-6と、受信アンテナ312とを使用することで、送受信アンテナ31bを備えた側方用送受信モジュール3と同様に送信波を放射して反射波を受信することが可能である。また、送受信アンテナ31cを備えた側方用送受信モジュール3は、送信アンテナ311-6および311-7を使用することで、送信アンテナ41bを備えた拡張送信モジュール4と同様に送信波を放射することが可能である。 The transmission/reception antenna 31c of the fourth configuration example of the lateral transmission/reception module 3 is the same as the transmission/reception antenna 31b (see FIG. 16) of the lateral transmission/reception module 3 of the above-described third configuration example and the extended transmission of the third configuration example. The shape is a combination with the transmitting antenna 41b (see FIG. 17) of the module 4. Therefore, the side transmitting/receiving module 3 including the transmitting/receiving antenna 31c radiates a transmission wave similarly to the side transmitting/receiving module 3 including the transmitting/receiving antenna 31b illustrated in FIG. 16, and the transmission illustrated in FIG. It is possible to execute the process of radiating a transmission wave as in the case of the extended transmission module 4 including the antenna 41b. That is, the lateral transceiver module 3 including the transceiver antenna 31c uses the transmitting antennas 311-5 and 311-6 and the receiving antenna 312, so that the lateral transceiver module 3 includes the transceiver antenna 31b. Similarly, it is possible to emit a transmitted wave and receive a reflected wave. Further, the side transmitting/receiving module 3 having the transmitting/receiving antenna 31c uses the transmitting antennas 311-6 and 311-7 to radiate the transmitting wave similarly to the extended transmitting module 4 having the transmitting antenna 41b. Is possible.
 側方用送受信モジュール3が図21に示した送受信アンテナ31cを備える構成とした場合、拡張送信モジュール4を別途設ける必要が無くなるため、送受信装置101を構成するモジュール数を削減して、低価格化を実現できる。 When the side transmitting/receiving module 3 is configured to include the transmitting/receiving antenna 31c shown in FIG. 21, it is not necessary to separately provide the extended transmitting module 4, so that the number of modules forming the transmitting/receiving apparatus 101 is reduced and the price is reduced. Can be realized.
 つづいて、送受信装置101の各モジュールが備えるアンテナを第1~第4の構成例とした場合の送信チャネルおよび受信チャネルの構成について、図22~図26を用いて説明する。 Next, the configurations of the transmission channel and the reception channel when the antennas included in the modules of the transmission/reception device 101 are the first to fourth configuration examples will be described with reference to FIGS. 22 to 26.
 図22は、送受信装置101の各モジュールが備えるアンテナを第1の構成例とした場合の送信チャネルおよび受信チャネルの構成の第1の例を示す図である。 FIG. 22 is a diagram showing a first example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the first configuration example.
 図22に示した例では、前方用送受信モジュール2の送信アンテナ211から送信波を放射し、送信波の反射波を拡張受信モジュール5が受信アンテナ51で受信して、信号処理回路部54で物標の検出を行う。図22に示した例では、前方用送受信モジュール2の受信アンテナ212で受信した反射波は物標の検出で使用しない。また、拡張受信モジュール5は、側方用送受信モジュール3の送受信アンテナ31が放射した送信波の反射波を受信アンテナ51で受信し、信号処理回路部54が物標の検出を行う。送受信装置101において、拡張受信モジュール5は、例えば、前方用送受信モジュール2から送信された送信波の反射波を受信する処理と、側方用送受信モジュール3から送信された送信波の反射波を受信する処理とを交互に実行する。 In the example shown in FIG. 22, the transmission wave is radiated from the transmission antenna 211 of the front transceiver module 2, the reflected wave of the transmission wave is received by the extended reception module 5 by the reception antenna 51, and the signal processing circuit unit 54 receives the reflected wave. The target is detected. In the example shown in FIG. 22, the reflected wave received by the receiving antenna 212 of the front transceiver module 2 is not used for detecting the target. Further, in the extended reception module 5, the reflected wave of the transmission wave radiated by the transmission/reception antenna 31 of the side transmission/reception module 3 is received by the reception antenna 51, and the signal processing circuit unit 54 detects the target. In the transmission/reception device 101, the extended reception module 5 receives, for example, a process of receiving a reflected wave of the transmission wave transmitted from the front transceiver module 2 and a reflected wave of the transmission wave transmitted from the side transmission/reception module 3. And the processing to be performed are alternately executed.
 拡張受信モジュール5が備える受信アンテナ51は、前方用送受信モジュール2が備える受信アンテナ212および側方用送受信モジュール3が備える受信アンテナ312よりもチャネル数が多くアンテナ開口が水平方向に拡大されている。そのため、拡張受信モジュール5が反射波を受信して物標の検出を行うことにより、送受信装置101を備えるレーダ装置100の測角機能の分解能が高まり、水平方向の測角性能が向上する。また、拡張受信モジュール5を前方用送受信モジュール2とは別構成としたので、送受信装置101を構成する各モジュールを分散させて取り付けることが可能となる。その結果、送受信装置101全体のサイズが大型化するのを防止しつつ目標の探知性能を向上させることができる。また、取付位置の制限を緩和することができる。 The reception antenna 51 included in the extended reception module 5 has more channels than the reception antenna 212 included in the front transmission/reception module 2 and the reception antenna 312 included in the side transmission/reception module 3, and the antenna opening is enlarged in the horizontal direction. Therefore, the extended reception module 5 receives the reflected wave to detect the target, and thus the resolution of the angle measurement function of the radar device 100 including the transmission/reception device 101 is increased, and the angle measurement performance in the horizontal direction is improved. Further, since the extended reception module 5 is configured differently from the front transmitter/receiver module 2, it is possible to disperse and install each module constituting the transmitter/receiver 101. As a result, the target detection performance can be improved while preventing the overall size of the transmission/reception device 101 from increasing. In addition, restrictions on the mounting position can be relaxed.
 図23は、送受信装置101の各モジュールが備えるアンテナを第1の構成例とした場合の送信チャネルおよび受信チャネルの構成の第2の例を示す図である。 FIG. 23 is a diagram showing a second example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the first configuration example.
 図23に示した例では、拡張送信モジュール4の送信アンテナ41が拡張送信アンテナ41-1および41-2から2チャネルの送信波を放射し、各送信波の反射波を前方用送受信モジュール2が受信アンテナ212で受信して、信号処理回路部24で物標の検出を行う。図23に示した例では、前方用送受信モジュール2の送信アンテナ211から放射する送信波の反射波は物標の検出で使用しない。 In the example shown in FIG. 23, the transmission antenna 41 of the extended transmission module 4 radiates two-channel transmission waves from the extended transmission antennas 41-1 and 41-2, and the front transmission/reception module 2 transmits reflected waves of each transmission wave. The signal is received by the receiving antenna 212, and the signal processing circuit section 24 detects the target. In the example shown in FIG. 23, the reflected wave of the transmission wave radiated from the transmission antenna 211 of the front transceiver module 2 is not used for detecting the target.
 ここで、受信アンテナ212が受信する反射波は、チャネル1の送信波の反射波の成分と、チャネル2の送信波の反射波の成分とを含んでいる。そのため、送受信装置101は、送信系および受信系をマルチチャネル化するMIMO(Multi Input Multi Output)技術を使用して仮想的に受信アンテナチャネルを作成し、アンテナ開口サイズを拡大する。すなわち、前方用送受信モジュール2の信号処理回路部24は、受信アンテナ212で受信した信号に含まれる2チャネル分の反射波を、MIMO技術を使用した信号処理によって各反射波の成分に分離し、分離後の2チャネル分の反射波のそれぞれを使用して物標の検出を行う。これにより、送受信装置101では、仮想的に受信チャネルが拡大、すなわち、アンテナ開口が垂直方向に拡大する。この結果、送受信装置101を備えるレーダ装置100の測角機能の分解能が高まり、垂直方向の測角性能が向上する。なお、送受信装置101に適用するMIMO技術の方式としては、複数の送信アンテナチャネルを時分割する方式、パルス(チャープ)間の位相を多値で切り替える符号分割方式などがある。 Here, the reflected wave received by the receiving antenna 212 includes the reflected wave component of the channel 1 transmitted wave and the reflected wave component of the channel 2 transmitted wave. Therefore, the transmission/reception device 101 virtually creates a reception antenna channel using the MIMO (Multi Input Multi Output) technology that multi-channels the transmission system and the reception system, and expands the antenna aperture size. That is, the signal processing circuit unit 24 of the front transceiver module 2 separates the reflected waves of two channels included in the signal received by the reception antenna 212 into the components of each reflected wave by the signal processing using the MIMO technique, The target is detected using each of the separated reflected waves of two channels. As a result, in the transmitter/receiver 101, the reception channel is virtually expanded, that is, the antenna aperture is expanded vertically. As a result, the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is improved, and the angle measurement performance in the vertical direction is improved. It should be noted that examples of the MIMO technology applied to the transmission/reception device 101 include a method of time-division of a plurality of transmission antenna channels and a code division method of switching the phase between pulses (chirps) in multiple values.
 また、側方用送受信モジュール3は前方用送受信モジュール2と同様の処理を行う。すなわち、側方用送受信モジュール3は、拡張送信モジュール4から放射された2チャネルの送信波の反射波を受信アンテナ312で受信して、信号処理回路部34で物標の検出を行う。信号処理回路部34は、前方用送受信モジュール2の信号処理回路部24と同様の処理を行う。 Also, the side transceiver module 3 performs the same processing as the front transceiver module 2. That is, in the side transceiver module 3, the reception antenna 312 receives the reflected waves of the two-channel transmission waves radiated from the extended transmission module 4, and the signal processing circuit unit 34 detects the target. The signal processing circuit unit 34 performs the same processing as the signal processing circuit unit 24 of the front transceiver module 2.
 なお、実施の形態にかかる送受信装置101の各モジュールが備えるアンテナを第1の構成例とした場合の送信チャネルおよび受信チャネルの構成は、送信波を放射するモジュールと、反射波を受信するモジュールとの組み合わせによって変化させることが可能である。また、送信アンテナのチャネルの間隔が受信アンテナのチャネル群よりも小さい場合、仮想受信アンテナのチャネル群は重なりを持つことになる。この場合、前方用送受信モジュール2の信号処理回路部24は、重なりを含めた信号処理を行うか否かを判断する。 The configuration of the transmission channel and the reception channel when the antenna included in each module of the transmission/reception device 101 according to the embodiment is the first configuration example includes a module that radiates a transmission wave and a module that receives a reflected wave. It is possible to change by the combination of. Further, when the channel spacing of the transmitting antennas is smaller than the channel group of the receiving antennas, the channel groups of the virtual receiving antennas have an overlap. In this case, the signal processing circuit section 24 of the front transceiver module 2 determines whether or not to perform signal processing including overlap.
 図23に示したように、前方用送受信モジュール2よりもチャネル数が多い送信アンテナを備えた拡張送信モジュール4から送信波を放射し、各チャネルの送信波の反射波を前方用送受信モジュール2が受信することにより、仮想的にアンテナ開口を拡大することができる。送受信装置101は、前方用送受信モジュール2および拡張送信モジュール4、または、側方用送受信モジュール3および拡張送信モジュール4を少なくとも備えることにより、仮想的にアンテナ開口を拡大してレーダ装置100の性能を向上させることができる。 As shown in FIG. 23, the forward transmission/reception module 2 radiates a transmission wave from the extended transmission module 4 equipped with a transmission antenna having a larger number of channels than the front transmission/reception module 2, and transmits the reflected wave of the transmission wave of each channel. By receiving, the antenna aperture can be virtually expanded. The transmission/reception device 101 includes at least the front transmission/reception module 2 and the extended transmission module 4, or the side transmission/reception module 3 and the extended transmission module 4, thereby virtually expanding the antenna aperture to improve the performance of the radar device 100. Can be improved.
 図24は、送受信装置101の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第1の例を示す図である。 FIG. 24 is a diagram showing a first example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
 図24に示した例では、前方用送受信モジュール2の送受信アンテナ21aが、送信アンテナ211-1および211-2から2チャネルの送信波を放射し、各送信波の反射波を前方用送受信モジュール2の送受信アンテナ21aが受信アンテナ212で受信して、信号処理回路部24が物標の検出を行う。図24に示した例では、拡張受信モジュール5の受信アンテナ51で受信した反射波は物標の検出で使用しない。また、側方用送受信モジュール3は、前方用送受信モジュール2と同様の動作を行う。具体的には、側方用送受信モジュール3の送受信アンテナ31aが、送信アンテナ311-1および311-2から2チャネルの送信波を放射し、各送信波の反射波を側方用送受信モジュール3の送受信アンテナ31aが受信アンテナ312で受信して、信号処理回路部34が物標の検出を行う。このとき、前方用送受信モジュール2の信号処理回路部24および側方用送受信モジュール3の信号処理回路部34は、受信信号に含まれる2チャネル分の反射波を、MIMO技術を使用した信号処理によって各反射波の成分に分離し、分離後の2チャネル分の反射波のそれぞれを使用して物標の検出を行う。これにより、送受信装置101では、仮想的に受信チャネルが拡大、すなわち、アンテナ開口が水平方向に拡大する。この結果、送受信装置101を備えるレーダ装置100の測角機能の分解能が高まり、水平方向の測角性能が向上する。 In the example shown in FIG. 24, the transmission/reception antenna 21a of the front transmission/reception module 2 radiates two-channel transmission waves from the transmission antennas 211-1 and 211-2, and the reflected waves of each transmission wave are transmitted to the front transmission/reception module 2 The transmission/reception antenna 21a of 1 is received by the reception antenna 212, and the signal processing circuit unit 24 detects the target. In the example shown in FIG. 24, the reflected wave received by the receiving antenna 51 of the extended receiving module 5 is not used for detecting the target. The side transceiver module 3 operates similarly to the front transceiver module 2. Specifically, the transmitting/receiving antenna 31a of the side transmitting/receiving module 3 radiates two-channel transmission waves from the transmitting antennas 311-1 and 311-2, and the reflected waves of each transmission wave are transmitted from the side transmitting/receiving module 3. The transmitting/receiving antenna 31a receives the signal at the receiving antenna 312, and the signal processing circuit unit 34 detects the target. At this time, the signal processing circuit unit 24 of the front transmitter/receiver module 2 and the signal processing circuit unit 34 of the side transmitter/receiver module 3 process the reflected waves of two channels included in the received signal by signal processing using the MIMO technique. Each reflected wave component is separated, and a target is detected by using each of the separated reflected waves of two channels. As a result, in the transmitter/receiver 101, the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction. As a result, the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved.
 図25は、送受信装置101の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第2の例を示す図である。 FIG. 25 is a diagram showing a second example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
 図25に示した例では、前方用送受信モジュール2の送受信アンテナ21aが、送信アンテナ211-1および211-2から2チャネルの送信波を放射し、各送信波の反射波を、拡張受信モジュール5の受信アンテナ51が受信して、信号処理回路部54が物標の検出を行う。図25に示した例では、前方用送受信モジュール2の送受信アンテナ21aが受信アンテナ212で受信した反射波は物標の検出で使用しない。また、側方用送受信モジュール3は、前方用送受信モジュール2と同様の動作を行う。具体的には、側方用送受信モジュール3の送受信アンテナ31aが、送信アンテナ311-1および311-2から2チャネルの送信波を放射する。この送信波の反射波は、拡張受信モジュール5の受信アンテナ51で受信され、信号処理回路部54で物標の検出が行われる。拡張受信モジュール5の信号処理回路部54は、受信信号に含まれる2チャネル分の反射波を、MIMO技術を使用した信号処理によって各反射波の成分に分離し、分離後の2チャネル分の反射波のそれぞれを使用して物標の検出を行う。これにより、送受信装置101では、仮想的に受信チャネルが拡大、すなわち、アンテナ開口が水平方向に拡大する。この結果、送受信装置101を備えるレーダ装置100の測角機能の分解能が高まり、水平方向の測角性能が向上する。送受信装置101において、拡張受信モジュール5は、例えば、前方用送受信モジュール2から送信された2チャネルの送信波の反射波を受信して物標を検出する処理と、側方用送受信モジュール3から送信された2チャネルの送信波の反射波を受信して物標を検出する処理とを交互に実行する。 In the example shown in FIG. 25, the transmission/reception antenna 21a of the front transmission/reception module 2 radiates 2-channel transmission waves from the transmission antennas 211-1 and 211-2, and the reflected waves of each transmission wave are transmitted to the extended reception module 5 The signal is received by the receiving antenna 51, and the signal processing circuit unit 54 detects the target. In the example shown in FIG. 25, the reflected wave received by the transmission/reception antenna 21a of the front transmission/reception module 2 at the reception antenna 212 is not used for detecting the target. The side transceiver module 3 operates similarly to the front transceiver module 2. Specifically, the transmission/reception antenna 31a of the side transmission/reception module 3 radiates two-channel transmission waves from the transmission antennas 311-1 and 311-2. The reflected wave of the transmitted wave is received by the receiving antenna 51 of the extended receiving module 5, and the signal processing circuit unit 54 detects the target. The signal processing circuit unit 54 of the extended reception module 5 separates the reflected waves of two channels included in the received signal into the components of each reflected wave by signal processing using the MIMO technique, and reflects the separated two channels. Target detection is performed using each of the waves. As a result, in the transmitter/receiver 101, the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction. As a result, the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved. In the transmission/reception device 101, the extended reception module 5 receives, for example, a reflected wave of two-channel transmission waves transmitted from the front transmission/reception module 2 to detect a target and a transmission from the side transmission/reception module 3. The process of receiving the reflected waves of the transmitted two-channel transmitted waves and detecting the target is alternately executed.
 図26は、送受信装置101の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成の第3の例を示す図である。 FIG. 26 is a diagram showing a third example of the configuration of the transmission channel and the reception channel when the antenna provided in each module of the transmission/reception device 101 is the second configuration example.
 図26に示した例では、拡張送信モジュール4の送信アンテナ41が、拡張送信アンテナ41-1および41-2から2チャネルの送信波を放射し、各送信波の反射波を前方用送受信モジュール2が受信アンテナ212で受信して、信号処理回路部24で物標の検出を行う。図26に示した例では、前方用送受信モジュール2の送信アンテナ211から放射する送信波の反射波は物標の検出で使用しない。前方用送受信モジュール2の信号処理回路部24は、受信信号に含まれる2チャネル分の反射波を、MIMO技術を使用した信号処理によって各反射波の成分に分離し、分離後の2チャネル分の反射波のそれぞれを使用して物標の検出を行う。これにより、送受信装置101では、仮想的に受信チャネルが拡大、すなわち、アンテナ開口が水平方向に拡大する。この結果、送受信装置101を備えるレーダ装置100の測角機能の分解能が高まり、水平方向の測角性能が向上する。 In the example shown in FIG. 26, the transmission antenna 41 of the extended transmission module 4 radiates two-channel transmission waves from the extended transmission antennas 41-1 and 41-2, and the reflected waves of each transmission wave are transmitted to the front transmission/reception module 2 Is received by the receiving antenna 212, and the signal processing circuit section 24 detects the target. In the example shown in FIG. 26, the reflected wave of the transmission wave radiated from the transmission antenna 211 of the front transceiver module 2 is not used for detecting the target. The signal processing circuit unit 24 of the front transmitter/receiver module 2 separates the reflected waves of two channels included in the received signal into the components of each reflected wave by signal processing using the MIMO technique, and separates the separated two channels. The target is detected using each of the reflected waves. As a result, in the transmitter/receiver 101, the reception channel is virtually expanded, that is, the antenna aperture is expanded in the horizontal direction. As a result, the resolution of the angle measurement function of the radar device 100 including the transmitter/receiver 101 is increased, and the angle measurement performance in the horizontal direction is improved.
 また、側方用送受信モジュール3は前方用送受信モジュール2と同様の処理を行う。すなわち、側方用送受信モジュール3は、拡張送信モジュール4から放射された2チャネルの送信波の反射波を受信アンテナ312で受信して、信号処理回路部34で物標の検出を行う。信号処理回路部34は、前方用送受信モジュール2の信号処理回路部24と同様の処理を行う。 Also, the side transceiver module 3 performs the same processing as the front transceiver module 2. That is, in the side transceiver module 3, the reception antenna 312 receives the reflected waves of the two-channel transmission waves radiated from the extended transmission module 4, and the signal processing circuit unit 34 detects the target. The signal processing circuit unit 34 performs the same processing as the signal processing circuit unit 24 of the front transceiver module 2.
 なお、送受信装置101の各モジュールが備えるアンテナを第2の構成例とした場合の送信チャネルおよび受信チャネルの構成は、送信波を放射するモジュールと、反射波を受信するモジュールとの組み合わせによって変化させることが可能である。 The configuration of the transmission channel and the reception channel when the antenna included in each module of the transmission/reception device 101 is the second configuration example is changed depending on the combination of the module that radiates the transmission wave and the module that receives the reflected wave. It is possible.
 送受信装置101の各モジュールが備えるアンテナを第1の構成例とした場合、および、第2の構成例とした場合の送信チャネルおよび受信チャネルの構成について説明したが、各モジュールが備えるアンテナを第3の構成例とした場合、および、第4の構成例とした場合の送信チャネルおよび受信チャネルの構成も同様である。図11~図18に示すように、第2の構成例と第3の構成例との違いは、各モジュールが備える送信サブアレーを水平方向に配列したか垂直方向に配列したかである。第3の構成例とした場合の送信チャネルおよび受信チャネルの構成は、図24~図26に示した第2の構成例とした場合と同様にできる。また、各モジュールが備えるアンテナを第4の構成例とした場合の側方用送受信モジュール3の送受信アンテナ31c(図21参照)は、第3の構成例の側方用送受信モジュール3の送受信アンテナ31bと第3の構成例の拡張送信モジュール4の送信アンテナ41bとを組み合わせた形状である。そのため、第4の構成例とした場合の送信チャネルおよび受信チャネルの構成は、第2の構成例とした場合、および、第3の構成例とした場合と同様にできる。 The configurations of the transmission channel and the reception channel in the case where the antenna included in each module of the transmission/reception device 101 is the first configuration example and the case where the antenna is included in the second configuration example have been described. The configuration of the transmission channel and the configuration of the reception channel in the case of the above configuration example and the configuration of the fourth configuration example are similar. As shown in FIGS. 11 to 18, the difference between the second configuration example and the third configuration example is whether the transmission subarrays included in each module are arranged horizontally or vertically. The configurations of the transmission channel and the reception channel in the case of the third configuration example can be the same as those in the case of the second configuration example shown in FIGS. 24 to 26. Further, the transmitting/receiving antenna 31c (see FIG. 21) of the side transmitting/receiving module 3 in the case where the antenna provided in each module is the fourth configuration example, the transmitting/receiving antenna 31b of the side transmitting/receiving module 3 of the third configuration example is used. And the transmission antenna 41b of the extended transmission module 4 of the third configuration example. Therefore, the configurations of the transmission channel and the reception channel in the case of the fourth configuration example can be the same as those in the case of the second configuration example and the case of the third configuration example.
 つづいて、本実施の形態にかかる送受信装置101の運用例について説明する。図27は、実施の形態にかかる送受信装置101の第1の運用例を示す図である。図27では、上段に送信動作を記載し、下段に受信動作を記載している。 Next, an operation example of the transmission/reception device 101 according to the present embodiment will be described. FIG. 27 is a diagram illustrating a first operation example of the transmission/reception device 101 according to the embodiment. In FIG. 27, the transmission operation is described in the upper part and the reception operation is described in the lower part.
 図27に示した第1の運用例では、前方用送受信モジュール2および側方用送受信モジュール3が、予め定められた周期で送信動作を繰り返し行う。前方用送受信モジュール2および側方用送受信モジュール3が送信を行うタイミングは同じであってもよいし異なっていてもよい。前方用送受信モジュール2は、一定の比率で周波数がf1からf2まで変化するチャープ信号を送信する。側方用送受信モジュール3は、一定の比率で周波数がf3からf4まで変化するチャープ信号を送信する。前方用送受信モジュール2および側方用送受信モジュール3が送信するチャープ信号のチャープの傾きおよびチャープを行う時間は同じであってもよいし異なっていてもよい。 In the first operation example shown in FIG. 27, the front transmitter/receiver module 2 and the side transmitter/receiver module 3 repeat the transmission operation at a predetermined cycle. The transmission timings of the front transceiver module 2 and the side transceiver module 3 may be the same or different. The front transceiver module 2 transmits a chirp signal whose frequency changes from f1 to f2 at a constant rate. The side transceiver module 3 transmits a chirp signal whose frequency changes from f3 to f4 at a constant rate. The inclination of the chirp of the chirp signals transmitted by the front transceiver module 2 and the side transceiver module 3 and the chirping time may be the same or different.
 図27の下段に示すように、拡張受信モジュール5は、前方用送受信モジュール2から放射された送信波の反射波を受信する処理と、側方用送受信モジュール3から放射された送信波の反射波を受信する処理とを1フレームごとに切り替えながら行う。図27の例では、拡張受信モジュール5は、前方用送受信モジュール2から放射された送信波の反射波を1フレーム目に受信し、側方用送受信モジュール3から放射された送信波の反射波を2フレーム目に受信する。このとき、拡張受信モジュール5は、1フレーム目では、前方用送受信モジュール2の送受信回路部22においてVCO2212が生成する局部発振信号と同じ信号を生成し、この信号を受信信号である反射波にミキシングしてビート信号を生成する。また、拡張受信モジュール5は、2フレーム目では、側方用送受信モジュール3の送受信回路部32においてVCOが生成する局部発振信号と同じ信号を生成し、この信号を受信信号である反射波にミキシングしてビート信号を生成する。なお、拡張受信モジュール5において、反射波にミキシングする信号の生成は、受信回路部52の変調回路5211およびVCO5212が行う。 As shown in the lower part of FIG. 27, the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 and the reflected wave of the transmitted wave radiated from the side transceiver module 3. Is performed for each frame while switching between the process of receiving and. In the example of FIG. 27, the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the first frame, and receives the reflected wave of the transmitted wave radiated from the side transceiver module 3. Received in the second frame. At this time, in the first frame, the extended reception module 5 generates the same signal as the local oscillation signal generated by the VCO 2212 in the transmission/reception circuit section 22 of the front transmission/reception module 2, and mixes this signal with the reflected wave that is the reception signal. And generate a beat signal. In the second frame, the extended reception module 5 also generates the same signal as the local oscillation signal generated by the VCO in the transmission/reception circuit section 32 of the side transmission/reception module 3, and mixes this signal with the reflected wave that is the reception signal. And generate a beat signal. In addition, in the extended reception module 5, the modulation circuit 5211 and the VCO 5212 of the reception circuit unit 52 generate a signal to be mixed with the reflected wave.
 拡張受信モジュール5は、3フレーム目では、前方用送受信モジュール2から放射された送信波の反射波の受信を再度行い、4フレーム目では、側方用送受信モジュール3から放射された送信波の反射波の受信を再度行う。以下、同様の処理を繰り返す。すなわち、拡張受信モジュール5は、奇数番目のフレームでは前方用送受信モジュール2から放射された送信波の反射波を受信し、偶数番目のフレームでは側方用送受信モジュール3から放射された送信波の反射波を受信する。 The extended receiving module 5 receives again the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the third frame, and reflects the transmitted wave radiated from the side transceiver module 3 in the fourth frame. Re-receive the waves. Hereinafter, the same processing is repeated. That is, the extended reception module 5 receives the reflected wave of the transmitted wave radiated from the front transceiver module 2 in the odd-numbered frame and reflects the transmitted wave radiated from the side transceiver module 3 in the even-numbered frame. Receive the waves.
 図28は、実施の形態にかかる送受信装置101の第2の運用例を示す図である。図28では、最上段に送信動作を記載し、上から2段目以降に受信動作を記載している。 FIG. 28 is a diagram illustrating a second operation example of the transmission/reception device 101 according to the embodiment. In FIG. 28, the transmission operation is described in the uppermost stage, and the reception operation is described in the second and subsequent stages from the top.
 図28に示した第2の運用例では、最上段に示すように、1フレーム目は、前方用送受信モジュール2が送信動作を行い、2フレーム目は、拡張送信モジュール4が送信動作を行う。前方用送受信モジュール2および拡張送信モジュール4は、一定の比率で周波数がf1からf2まで変化するチャープ信号を送信する。前方用送受信モジュール2および拡張送信モジュール4が送信するチャープ信号のチャープの傾きおよびチャープを行う時間は同じであってもよいし異なっていてもよい。3フレーム目は、前方用送受信モジュール2が1フレーム目と同様のチャープ信号を送信し、4フレーム目は、拡張送信モジュール4が2フレーム目と同様のチャープ信号を送信する。以下、同様の処理を繰り返す。すなわち、前方用送受信モジュール2は奇数番目のフレームで送信動作を行い、拡張送信モジュール4は偶数番目のフレームで送信動作を行う。 In the second operation example shown in FIG. 28, as shown in the top row, the front transceiver module 2 performs a transmission operation in the first frame, and the extended transmission module 4 performs a transmission operation in the second frame. The front transmitter/receiver module 2 and the extended transmitter module 4 transmit a chirp signal whose frequency changes from f1 to f2 at a constant ratio. The inclination of the chirp of the chirp signal transmitted by the front transmitter/receiver module 2 and the extension transmitter module 4 and the chirping time may be the same or different. In the third frame, the front transceiver module 2 transmits the same chirp signal as in the first frame, and in the fourth frame, the extended transmission module 4 transmits the same chirp signal as in the second frame. Hereinafter, the same processing is repeated. That is, the front transmitter/receiver module 2 performs transmission operation in odd-numbered frames, and the extended transmission module 4 performs transmission operation in even-numbered frames.
 図28の上から2段目には前方用送受信モジュール2の受信動作が記載されている。前方用送受信モジュール2は、1フレーム目、すなわち、奇数番目のフレームでは、前方用送受信モジュール2が送信した信号の反射波を受信する。また、前方用送受信モジュール2は、2フレーム目、すなわち、偶数番目のフレームでは、拡張送信モジュール4が送信した信号の反射波を受信する。 28. The reception operation of the front transceiver module 2 is described in the second row from the top of FIG. The front transceiver module 2 receives the reflected wave of the signal transmitted by the front transceiver module 2 in the first frame, that is, the odd-numbered frame. The front transmitter/receiver module 2 receives the reflected wave of the signal transmitted by the extended transmitter module 4 in the second frame, that is, in the even-numbered frame.
 図28の上から3段目には側方用送受信モジュール3の受信動作が記載されている。また、図28の上から4段目には拡張受信モジュール5の受信動作が記載されている。側方用送受信モジュール3および拡張受信モジュール5は、2フレーム目、すなわち、偶数番目のフレームにおいて、拡張送信モジュール4が送信した信号の反射波を受信する。また、図28への記載は省略しているが、1フレーム目、すなわち、奇数番目のフレームでは、側方用送受信モジュール3が、一定の比率で周波数がf3からf4まで変化するチャープ信号を送信し、この反射波を側方用送受信モジュール3および拡張受信モジュール5が受信する。 28. The receiving operation of the side transceiver module 3 is described in the third row from the top of FIG. Further, the reception operation of the extended reception module 5 is described in the fourth row from the top of FIG. The side transmitting/receiving module 3 and the extension receiving module 5 receive the reflected wave of the signal transmitted by the extension transmitting module 4 in the second frame, that is, the even-numbered frame. Although not shown in FIG. 28, in the first frame, that is, in the odd-numbered frame, the side transceiver module 3 transmits a chirp signal whose frequency changes from f3 to f4 at a constant ratio. Then, the reflected wave is received by the side transmitting/receiving module 3 and the extended receiving module 5.
 また、その他の運用例として、図27に示した第1の運用例と図28に示した第2の運用例の一部または全部を組み合わせてもよい。例えば、送受信装置101は、図27に記載の1フレーム目および2フレーム目の動作を実行した後の次のフレームにおいて、図28に示した2フレーム目の動作を実行する。この場合、前方用送受信モジュール2による送信動作および受信動作と、側方用送受信モジュール3による送信動作および受信動作と、拡張送信モジュール4による送信動作と、拡張受信モジュール5による受信動作とを3フレーム内で行うことが可能となる。 As another operation example, a part or all of the first operation example shown in FIG. 27 and the second operation example shown in FIG. 28 may be combined. For example, the transmission/reception device 101 executes the operation of the second frame illustrated in FIG. 28 in the next frame after the operation of the first frame and the second frame illustrated in FIG. 27 is executed. In this case, the transmission operation and the reception operation by the front transmission/reception module 2, the transmission operation and the reception operation by the side transmission/reception module 3, the transmission operation by the extended transmission module 4, and the reception operation by the extended reception module 5 are performed for three frames. It can be done in-house.
 以上のように、本実施の形態にかかる送受信装置101は、車両の前方に取り付けられ、車両の前方に向けて物標検知用の信号の送信および反射波の受信を行う前方用送受信モジュール2と、車両の側方付近に取り付けられ、車両の前方に向けて物標検知用の信号の送信および反射波の受信を行う側方用送受信モジュール3と、車両の前方に向けて物標検知用の信号を送信する拡張送信モジュール4と、車両の前方に向けて送信された物標検知用の信号の反射波を受信する拡張受信モジュール5と、を備える。また、各モジュールは、同期信号を相互に送受信し、同期信号に基づくタイミングで、送信動作、受信動作、送信信号を生成する際の変調動作などを行う。また、拡張送信モジュール4が備える送信アンテナは、送信サブアレーの数および送信チャネルの数が、前方用送受信モジュール2の送信アンテナおよび側方用送受信モジュール3の送信アンテナよりも大きく、拡張受信モジュール5が備える受信アンテナは、受信チャネル数が、前方用送受信モジュール2の受信アンテナおよび側方用送受信モジュール3の受信アンテナよりも大きい。また、各モジュールの信号処理回路部は、MIMO技術を使用して仮想的に受信チャネル数を拡大させる。本実施の形態にかかる送受信装置101は、分離された複数のモジュールで構成され、各モジュールが同期して動作するため、設置位置に柔軟性を持たせることができ、設置位置が限定されるのを防止できる。また、アンテナ開口を拡大して物標の探知性能を向上させることができる。 As described above, the transmission/reception device 101 according to the present embodiment is attached to the front of the vehicle, and transmits/receives the signal for detecting the target and the reception of the reflected wave toward the front of the vehicle. , A lateral transmission/reception module 3 mounted near the side of the vehicle for transmitting a signal for detecting a target and receiving a reflected wave toward the front of the vehicle, and a module for detecting a target toward the front of the vehicle. An extended transmission module 4 that transmits a signal and an extended reception module 5 that receives a reflected wave of a signal for detecting a target transmitted toward the front of the vehicle are provided. In addition, each module transmits and receives a synchronization signal to and from each other, and performs a transmission operation, a reception operation, a modulation operation when generating a transmission signal, and the like at a timing based on the synchronization signal. The number of transmission sub-arrays and the number of transmission channels of the transmission antennas included in the extended transmission module 4 are larger than those of the transmission antennas of the front transmission/reception module 2 and the side transmission/reception module 3; The number of receiving channels of the provided receiving antenna is larger than that of the front transmitting/receiving module 2 and that of the side transmitting/receiving module 3. In addition, the signal processing circuit unit of each module virtually increases the number of reception channels by using the MIMO technique. The transmission/reception device 101 according to the present embodiment is composed of a plurality of separated modules, and each module operates in synchronization, so that the installation position can be made flexible and the installation position is limited. Can be prevented. Also, the antenna opening can be enlarged to improve the target detection performance.
 なお、上述した送受信装置101を備えるレーダ装置100は、以下のような動作を実行するようにしてもよい。 Note that the radar device 100 including the transmitting/receiving device 101 described above may perform the following operation.
 レーダ装置100は、前方用送受信モジュール2のアンテナ放射パターンと、側方用送受信モジュール3のアンテナの放射パターンとを比較し、側方用送受信モジュール3が受信した電波が前方用送受信モジュールのサイドローブから到来した受信波(不要波)かどうかを判定する。そして、前方用送受信モジュール2のサイドローブから到来した受信波を側方用送受信モジュール3が受信すると判断した場合、レーダ装置100は、不要波の到来方向にナルを形成する。これにより、不要波の影響を小さくして物標を探知することができる。また、レーダ装置100は、正常状態のときに前方用送受信モジュール2、側方用送受信モジュール3または拡張送信モジュール4が送信した物標探知用の信号の反射波を各モジュールで受信し、各受信信号に対してFFT(Fast Fourier Transform)を実行して得られるモジュールごとの受信信号の波形(正常状態の受信波形)を記憶しておく。そして、レーダ装置100は、運用中に受信した信号の波形と記憶している正常状態の受信波形とを比較し、比較結果に基づいて、APAAの動作パラメータまたはDBF(Digital Beam Formaing)の動作パラメータを補正する。同様に、レーダ装置100は、運用中に受信した信号の波形と記憶している正常状態の受信波形とを比較することで各モジュールの汚れを検知することもできる。 The radar device 100 compares the antenna radiation pattern of the front transceiver module 2 with the antenna radiation pattern of the lateral transceiver module 3, and the radio wave received by the lateral transceiver module 3 is a side lobe of the front transceiver module. It is determined whether it is a received wave (unwanted wave) that has arrived from. Then, when it is determined that the side transmitting/receiving module 3 receives the received wave arriving from the side lobe of the front transmitting/receiving module 2, the radar device 100 forms a null in the arrival direction of the unnecessary wave. This makes it possible to detect the target while reducing the influence of unnecessary waves. Further, the radar device 100 receives reflected waves of the signal for detecting a target transmitted by the front transceiver module 2, the side transceiver module 3 or the extended transmitter module 4 in each module in a normal state, and receives each reflected wave. The waveform of the reception signal for each module (reception waveform in the normal state) obtained by executing FFT (Fast Fourier Transform) on the signal is stored. Then, the radar device 100 compares the waveform of the signal received during operation with the stored received waveform in the normal state, and based on the comparison result, the operating parameter of APAA or the operating parameter of DBF (Digital Beam Forming). To correct. Similarly, the radar device 100 can detect contamination of each module by comparing the waveform of the signal received during operation with the stored received waveform of the normal state.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with other known techniques, and the configurations of the configurations are not departing from the scope of the present invention. It is also possible to omit or change parts.
 1 同期用信号線、2 前方用送受信モジュール、3 側方用送受信モジュール、4 拡張送信モジュール、5 拡張受信モジュール、6 車両、21,21a,21b,31,31a,31b,31c 送受信アンテナ、22,32 送受信回路部、23,33,43,53 同期回路部、24,34,44,54 信号処理回路部、41,41b,211,211-1,211-2,211-3,211-4,311,311-1,311-2,311-3,311-4,311-5,311-6,311-7 送信アンテナ、41-1,41-2,41-3,41-4 拡張送信アンテナ、42,221 送信回路部、51,212,312 受信アンテナ、52,222 受信回路部、100 レーダ装置、101 送受信装置、102 目標検出処理部、2111~211m,4111~411k 送信アレーアンテナ、2121~212n,5121~512l,2121 受信アレーアンテナ、213 樹脂基板、231,431,531 同期回路、241,441,541 マイコン、2111 送信サブアレー、2122 放射素子、2123 給電線路、2124 給電部、2211,4211,5211 変調回路、2212,4212,5212 電圧制御発振器(VCO)、2213,4213,5213 電力分配器、22141~2214m,42141~4214k 移相器、22151~2215m,42151~4215k 逓倍器、22161~2216m,42161~4216k パワーアンプ、2217,4217 送信制御回路、22211~2221n,52211~5221l ADコンバータ、22221~2222n,52221~5222l ベースバンドアンプ、22231~2223n,52231~5223l ミキサ、2224,5224 受信制御回路。 1 synchronization signal line, 2 front transmission/reception module, 3 side transmission/reception module, 4 extended transmission module, 5 extended reception module, 6 vehicle 21,21a, 21b, 31, 31a, 31b, 31c transmission/reception antenna, 22, 32 transmitter/receiver circuit section, 23, 33, 43, 53 synchronous circuit section, 24, 34, 44, 54 signal processing circuit section, 41, 41b, 211, 211-1, 211-2, 211-3, 211-4, 311, 311-1, 311-2, 311-3, 311-4, 311-5, 311-6, 311-7 transmission antenna, 41-1, 41-2, 41-3, 41-4 extended transmission antenna , 42,221 transmission circuit section, 51,212,312 reception antenna, 52,222 reception circuit section, 100 radar apparatus, 101 transmission/reception apparatus, 102 target detection processing section, 211 1 to 211 m , 411 1 to 411 k transmission array Antennas, 212 1 to 212 n , 512 1 to 512 l , 2121 receiving array antenna, 213 resin substrate, 231, 431, 531 synchronous circuit, 241, 441, 541 microcomputer, 2111 transmitting sub array, 2122 radiating element, 2123 feeding line, 2124 power feeding unit, 2211, 4211, 5211 modulation circuit, 2212, 4212, 5212 voltage controlled oscillator (VCO), 2213, 4213, 5213 power distributor, 2214 1 to 2214 m , 4214 1 to 4214 k phase shifter, 2215 1 Up to 2215 m , 4215 1 to 4215 k multiplier, 2216 1 to 2216 m , 4216 1 to 4216 k power amplifier, 2217, 4217 transmission control circuit, 2221 1 to 2221 n , 5221 1 to 5221 l AD converter, 2222 1 to 2222 n , 5222 1 to 5222 l baseband amplifier, 2223 1 to 2223 n , 5223 1 to 5223 l mixer, 2224, 5224 reception control circuit.

Claims (9)

  1.  搭載される車両の前方に向けて物標探知用の第1の信号を送信するとともに前記第1の信号の反射波を受信する前方用送受信モジュールと、
     前記車両の前記前方用送受信モジュールとは異なる位置に取り付けられて前記車両の前方に向けて物標探知用の第2の信号を送信する拡張送信モジュールと、
     を備え、
     前記前方用送受信モジュールおよび前記拡張送信モジュールは、動作の開始タイミングの元となる基準信号である同期信号を送受信する同期回路部を備え、前記同期信号を送受信するタイミングに基づくタイミングで、物標探知用の信号を生成して送信する処理および前記物標探知用の信号の反射波を受信する処理を含む動作を実行し、
     前記第2の信号の反射波を前記前方用送受信モジュールが受信する、
     ことを特徴とする送受信装置。
    A front transmitter/receiver module that transmits a first signal for detecting a target toward the front of a vehicle on which the vehicle is mounted and receives a reflected wave of the first signal;
    An extended transmission module mounted at a position different from the front transceiver module of the vehicle and transmitting a second signal for detecting a target toward the front of the vehicle;
    Equipped with
    The front transmitter/receiver module and the extended transmitter module include a synchronization circuit unit that transmits and receives a synchronization signal that is a reference signal that is a start timing of operation, and detects a target at a timing based on the timing of transmitting and receiving the synchronization signal. Performing an operation including a process of generating and transmitting a signal for and a process of receiving a reflected wave of the signal for detecting the target,
    The reflected wave of the second signal is received by the front transceiver module,
    A transmitting/receiving device characterized by the above.
  2.  前記拡張送信モジュールは、前記前方用送受信モジュールよりも多い送信チャネル数で前記第2の信号を送信する、
     ことを特徴とする請求項1に記載の送受信装置。
    The extended transmission module transmits the second signal with a larger number of transmission channels than the front transmission/reception module,
    The transmitter/receiver according to claim 1, wherein the transmitter/receiver is a transmitter/receiver.
  3.  前記拡張送信モジュールは、複数の送信チャネルが垂直方向に配列された構成の送信アンテナを備える、
     ことを特徴とする請求項1または2に記載の送受信装置。
    The extended transmission module includes a transmission antenna configured to have a plurality of transmission channels arranged in a vertical direction.
    The transmitter/receiver according to claim 1 or 2, characterized in that.
  4.  前記同期信号に基づくタイミングで前記第1の信号の反射波および前記第2の信号の反射波の一方または双方を受信する拡張受信モジュール、
     をさらに備えることを特徴とする請求項1から3のいずれか一つに記載の送受信装置。
    An extended receiving module that receives one or both of the reflected wave of the first signal and the reflected wave of the second signal at a timing based on the synchronization signal,
    The transmitter/receiver according to claim 1, further comprising:
  5.  前記拡張受信モジュールは、前記前方用送受信モジュールよりも大きなアンテナ開口を有する、
     ことを特徴とする請求項4に記載の送受信装置。
    The extended reception module has a larger antenna opening than the front transceiver module.
    The transmitter/receiver according to claim 4, wherein
  6.  前記拡張受信モジュールは、複数の受信チャネルが水平方向に配列された構成の受信アンテナを備える、
     ことを特徴とする請求項4または5に記載の送受信装置。
    The extended receiving module includes a receiving antenna configured to have a plurality of receiving channels arranged in a horizontal direction.
    The transmitter/receiver according to claim 4 or 5, characterized in that.
  7.  前記車両の前方に向けて物標探知用の第3の信号を送信するとともに、前記第3の信号の反射波および前記第2の信号の反射波を受信する側方用送受信モジュール、
     をさらに備えることを特徴とする請求項1から4のいずれか一つに記載の送受信装置。
    A side transceiver module that transmits a third signal for detecting a target toward the front of the vehicle and receives a reflected wave of the third signal and a reflected wave of the second signal,
    The transmitter/receiver according to any one of claims 1 to 4, further comprising:
  8.  前記側方用送受信モジュールは、複数の送信チャネルが垂直方向に配列された構成の送信アンテナを備える、
     ことを特徴とする請求項7に記載の送受信装置。
    The lateral transceiver module includes a transmission antenna having a configuration in which a plurality of transmission channels are arranged in a vertical direction.
    The transmitter/receiver according to claim 7, wherein the transmitter/receiver is a transmitter/receiver.
  9.  請求項1から8のいずれか一つに記載の送受信装置を備え、
     前記送受信装置が受信した反射波に基づいて物標を探知することを特徴とするレーダ装置。
    A transceiver according to any one of claims 1 to 8 is provided,
    A radar device for detecting a target based on a reflected wave received by the transmitting/receiving device.
PCT/JP2019/003383 2019-01-31 2019-01-31 Transmission and reception device and radar device WO2020157915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003383 WO2020157915A1 (en) 2019-01-31 2019-01-31 Transmission and reception device and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003383 WO2020157915A1 (en) 2019-01-31 2019-01-31 Transmission and reception device and radar device

Publications (1)

Publication Number Publication Date
WO2020157915A1 true WO2020157915A1 (en) 2020-08-06

Family

ID=71842400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003383 WO2020157915A1 (en) 2019-01-31 2019-01-31 Transmission and reception device and radar device

Country Status (1)

Country Link
WO (1) WO2020157915A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204031A (en) * 2009-03-05 2010-09-16 Fuji Heavy Ind Ltd Radar device for vehicle
JP2016180720A (en) * 2015-03-25 2016-10-13 パナソニック株式会社 Radar device
JP2017058359A (en) * 2015-09-17 2017-03-23 パナソニック株式会社 Radar device
WO2018122926A1 (en) * 2016-12-26 2018-07-05 三菱電機株式会社 Radar device and antenna arrangement method
JP2018205218A (en) * 2017-06-07 2018-12-27 三菱電機株式会社 Radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204031A (en) * 2009-03-05 2010-09-16 Fuji Heavy Ind Ltd Radar device for vehicle
JP2016180720A (en) * 2015-03-25 2016-10-13 パナソニック株式会社 Radar device
JP2017058359A (en) * 2015-09-17 2017-03-23 パナソニック株式会社 Radar device
WO2018122926A1 (en) * 2016-12-26 2018-07-05 三菱電機株式会社 Radar device and antenna arrangement method
JP2018205218A (en) * 2017-06-07 2018-12-27 三菱電機株式会社 Radar device

Similar Documents

Publication Publication Date Title
JP3393204B2 (en) Multi-beam radar device
WO2020157916A1 (en) Antenna device and radar device
US7289058B2 (en) Radar apparatus
US10230176B2 (en) Radar apparatus
US11802958B2 (en) Hybrid multiple-input multiple-output (MIMO) radar system
JPH06242230A (en) Time sharing type radar system
JP2015514970A (en) Hybrid radar integrated in a single package
JP7306573B2 (en) RADAR DEVICE, VEHICLE AND POSITION DETECTION DEVICE INCLUDING THE SAME
US11069987B2 (en) Radar device
CN111381213A (en) Electronic device, radar device, and radar control method
JP2012159349A (en) Antenna device, lader apparatus and vehicle-mounted lader system
JP2020201280A (en) Radar system
JP4615542B2 (en) Millimeter wave radar equipment
JP4371124B2 (en) Antenna device
JP3456167B2 (en) Multifunctional antenna device
WO2020157915A1 (en) Transmission and reception device and radar device
JPH06291535A (en) Array antenna
JP2008151582A (en) Radar system
JP2004279147A (en) Antenna device
JP3602259B2 (en) Multi-beam radar equipment
JP2013152201A (en) Radar apparatus
JP3818898B2 (en) Antenna device
JP3780904B2 (en) Radar equipment
JP2964947B2 (en) Time-division radar system
JP4005949B2 (en) Space-feed antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP