WO2020157886A1 - Optical transmitter and method for controlling same - Google Patents

Optical transmitter and method for controlling same Download PDF

Info

Publication number
WO2020157886A1
WO2020157886A1 PCT/JP2019/003301 JP2019003301W WO2020157886A1 WO 2020157886 A1 WO2020157886 A1 WO 2020157886A1 JP 2019003301 W JP2019003301 W JP 2019003301W WO 2020157886 A1 WO2020157886 A1 WO 2020157886A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
monitor
target
thermoelectric element
temperature range
Prior art date
Application number
PCT/JP2019/003301
Other languages
French (fr)
Japanese (ja)
Inventor
優輔 三井
聡志 石飛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/003301 priority Critical patent/WO2020157886A1/en
Publication of WO2020157886A1 publication Critical patent/WO2020157886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters

Definitions

  • the present invention relates to an optical transmitter and its control method.
  • APC Automatic Power Control
  • PD photodiode
  • Patent Documents 1 and 2). reference there has been proposed a method of suppressing fluctuations in output power of laser light output from a semiconductor laser by cooling or heating the semiconductor laser and adjusting the temperature of the semiconductor laser.
  • the present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to maintain a constant output power of laser light transmitted through an optical fiber even when a temperature change occurs.
  • An object is to provide a transmitter and a control method thereof.
  • An optical transmitter is an optical transmitter that outputs laser light, and outputs the laser light having a first output power corresponding to a laser drive current and at the same time outputs the first output power.
  • a semiconductor laser that outputs a monitor current corresponding to, a holding unit that holds the optical fiber so that the laser light output from the semiconductor laser enters the optical fiber, and a monitor temperature that corresponds to the temperature of the holding unit.
  • a temperature monitor unit for measuring, a laser drive unit for supplying the laser drive current to the semiconductor laser, and a target voltage for the laser drive unit so that the monitor voltage corresponding to the monitor current approaches the target voltage.
  • a target voltage control section a first thermoelectric element for cooling or heating the semiconductor laser, a first thermoelectric element driving section for driving the first thermoelectric element, and a temperature of the first thermoelectric element as a target temperature.
  • a target temperature control unit that gives a first drive control signal that approaches the first thermoelectric element drive unit to the first thermoelectric element drive unit, and an actual measurement of the relationship between the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter.
  • the target temperature control unit includes a storage unit that stores drive condition information determined based on a value in advance.
  • the driving of the first thermoelectric element by the element driving unit is stopped, and the target voltage control unit is based on the information corresponding to the current monitored temperature output from the temperature monitoring unit in the driving condition information.
  • the target temperature control unit determines the current monitor temperature in the drive condition information. Determines the target temperature based on the information corresponding to, the target voltage control unit determines the target voltage based on the information corresponding to the current monitor temperature of the drive condition information, the monitor temperature. Is within a third temperature range lower than the first temperature range, the target temperature control unit determines the target temperature based on the information corresponding to the current monitor temperature in the drive condition information. And the target voltage control unit determines the target voltage based on information corresponding to the current monitor temperature in the drive condition information.
  • a method for controlling an optical transmitter is a semiconductor that outputs laser light having a first output power corresponding to a laser drive current and outputs a monitor current corresponding to the first output power.
  • a laser a holding unit that holds the optical fiber so that the laser light output from the semiconductor laser is incident on the optical fiber, a temperature monitor unit that measures a monitor temperature corresponding to the temperature of the holding unit, and
  • a laser drive unit that supplies the laser drive current to the semiconductor laser, a target voltage control unit that supplies the target voltage to the laser drive unit, and a semiconductor laser so that the monitor voltage corresponding to the monitor current approaches the target voltage.
  • a first thermoelectric element that cools or heats the first thermoelectric element, a first thermoelectric element drive unit that drives the first thermoelectric element, and a first drive control signal that brings the temperature of the first thermoelectric element close to the target temperature.
  • Target temperature control unit given to the first thermoelectric element drive unit, drive conditions determined based on measured values of the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter
  • a method of controlling an optical transmitter including a storage unit that stores information in advance, wherein when the monitor temperature is within a first temperature range, the first thermoelectric element driving unit performs the The driving of the first thermoelectric element is stopped, the target voltage is determined based on the information corresponding to the current monitor temperature output from the temperature monitor unit in the drive condition information, and the monitor temperature is When in the second temperature range higher than the first temperature range, the target temperature is determined based on the information corresponding to the current monitor temperature in the driving condition information, If the target voltage is determined based on the information corresponding to the current monitor temperature, and the monitor temperature is within the third temperature
  • FIG. 1 is a block diagram schematically showing a configuration of an optical transmitter according to a first embodiment of the present invention.
  • (A) to (F) are graphs showing the operation of the optical transmitter according to the first embodiment.
  • 4 is a flowchart showing the operation of the optical transmitter according to the first embodiment. It is a block diagram which shows roughly the structure of the optical transmitter which concerns on Embodiment 2 of this invention.
  • (A) to (F) are graphs showing the operation of the optical transmitter according to the second embodiment. 4 is a flowchart showing the operation of the optical transmitter according to the first embodiment.
  • FIG. 11 is a diagram showing an example of a hardware configuration of an optical transmitter according to a modification of the first and second embodiments.
  • FIG. 1 is a block diagram schematically showing a configuration of the optical transmitter 1 according to the first embodiment of the present invention.
  • the optical transmitter 1 is, for example, a device that transmits an optical signal to an optical communication system.
  • the optical transmitter 1 includes an optical module 10, a monitor current detection unit 20, a laser drive unit 30, a memory 40, a control unit 50, and a thermoelectric element drive unit 60.
  • the optical transmitter 1 also includes a device housing 1a that houses the optical module 10, the monitor current detection unit 20, the laser drive unit 30, the memory 40, the control unit 50, and the thermoelectric element drive unit 60.
  • the monitor current detector 20 may be a part of the laser driver 30.
  • the monitor current detection unit 20, the laser drive unit 30, the control unit 50, and the thermoelectric element drive unit 60 can be configured by an electric circuit.
  • the optical module 10 includes a semiconductor laser 11, a thermoelectric element 12, a thermistor 13, and a module housing 15 that houses these.
  • the thermoelectric element 12 is a temperature adjusting element that cools or heats the semiconductor laser 11.
  • the thermoelectric element 12 is, for example, a Peltier element.
  • the thermoelectric element 12 is arranged near the semiconductor laser 11. The vicinity of the semiconductor laser 11 includes the state of being in contact with the semiconductor laser 11, the state of being in contact with the semiconductor laser 11 via another member, and the information slightly separated from the semiconductor laser 11.
  • the thermoelectric element 12 is also referred to as a "first thermoelectric element".
  • the thermoelectric element 12 and the thermistor 13 constitute a thermoelectric element section 14 as a temperature adjusting section.
  • the thermoelectric element drive unit 60 supplies the thermoelectric element drive current to the thermoelectric element 12 so as to change the temperature of the thermoelectric element 12 to the target temperature Tld [°C] according to the drive control signal C1 provided from the control unit 50. Change Ite.
  • the thermoelectric element driving unit 60 is also referred to as a “first thermoelectric element driving unit”.
  • the thermoelectric element drive unit 60 reads the detected temperature Tt of the thermistor 13 and supplies the thermoelectric element drive current Ite to the thermoelectric element 12 based on the difference between the detected temperature Tt and the target temperature Tld [° C.] targeted by the semiconductor laser 11. Thus, the temperature of the semiconductor laser 11 is controlled.
  • the thermistor 13 is arranged near the thermoelectric element 12 and the semiconductor laser 11. Therefore, the detected temperature Tt of the thermistor 13 can be regarded as indicating the temperature of the thermoelectric element 12 and the temperature of the semiconductor laser 11.
  • thermoelectric element drive unit 60 reads the detected temperature Tt of the thermistor 13, and the larger the difference between the detected temperature Tt and the target temperature Tld [° C.] of the thermoelectric element 12, the larger the thermoelectric element drive current Ite can flow. ..
  • the drive control method of the thermoelectric element 12 is not limited to the above control method as long as it is a control method that brings the temperature of the thermoelectric element 12 and the temperature of the semiconductor laser 11 close to the target temperature Tld [° C.].
  • the module housing 15 has a function as a holding unit that holds the optical fiber 90.
  • the laser light L1 output from the light emitting surface of the semiconductor laser 11 advances toward the end of the optical fiber 90 as the light incident end. In this way, the light emitting surface of the semiconductor laser 11 and the end of the optical fiber 90 are optically coupled by having a predetermined positional relationship.
  • the semiconductor laser 11 outputs a monitor current Im corresponding to the output power P1 [dB] of the laser light L1 by detecting a part of the laser light (LD) as a laser light emitting element that generates a laser light. It has PD as a photodetector.
  • the output power of the laser light L1 is the output power P1 [dB] of the laser light L1 output from the semiconductor laser 11.
  • the output power P1 [dB] of the laser beam L1 output from the semiconductor laser 11 is also referred to as “first output power”.
  • the conversion efficiency of light output changes depending on the temperature.
  • the conversion efficiency of the semiconductor laser 11 decreases as the temperature of the semiconductor laser 11 increases, and improves as the temperature decreases.
  • the optical transmitter 1 may include an optical modulator that modulates the laser light L1 output from the semiconductor laser 11 according to the transmission information.
  • the laser light L1 output from the semiconductor laser 11 is transmitted to the optical network forming the optical communication system through the optical fiber 90.
  • the output power P1a [dBm] of the laser light transmitted from the semiconductor laser 11 through the optical fiber 90 is the output power P1 [dB] of the laser light L1 output from the semiconductor laser 11 due to the output power loss L [dB] caused by the tracking error. ] Is lower than.
  • the output power P1a [dBm] is also referred to as “second output power”.
  • the actual measurement data that is, the product
  • the output power P1a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant by the control using the drive condition information D1 based on the actual measurement data).
  • the driving condition information D1 is used for compensation of the output power loss L [dB], and is also referred to as “compensation profile”.
  • the optical transmitter 1 controls the laser drive current Id [mA] by the APC in the temperature range in which the output power P1a [dBm] of the laser light can be kept constant by the APC. Then, the output power P1a [dBm] of the laser light cannot be maintained constant only by APC, or in the temperature range in which the central wavelength ⁇ [nm] of the laser light deviates from the desired wavelength range, the laser drive current Id by APC It is configured to perform [mA] control and temperature control using the thermoelectric element 12.
  • the monitor current detection unit 20 is an electric circuit that receives the monitor current Im output from the PD of the semiconductor laser 11 and outputs the monitor voltage Vm corresponding to the monitor current Im.
  • the monitor voltage Vm is proportional to the monitor current Im.
  • the laser drive unit 30 is an electric circuit having an APC unit 31 that performs feedback control.
  • the APC unit 31 has a target voltage comparison unit 32.
  • the target voltage comparison unit 32 compares the monitor voltage Vm [V] corresponding to the monitor current Im with the target voltage Vr [V] that is the reference voltage.
  • the APC unit 31 controls the laser drive current Id [mA] so that the monitor voltage Vm approaches the target voltage Vr [V].
  • the target voltage Vr [V] is provided by the control unit 50.
  • the target voltage Vr [V] is the driving condition information D1 based on the actual measurement data unique to each optical transmitter acquired in advance by measurement, and the monitor temperature Ta measured by the temperature monitor unit 51 described later. [° C.] and determined.
  • the target voltage Vr [V] is changed based on the driving condition information D1 and the monitor temperature Ta [°C] measured by the temperature monitor 51.
  • the drive control compensates for a tracking error that changes according to changes in the temperature of the outside air. Further, in the first embodiment, the control unit 50 compensates for the tracking error by different methods in each of the plurality of temperature ranges.
  • the memory 40 is a non-volatile storage unit that stores information.
  • the memory 40 is, for example, a semiconductor memory device.
  • the memory 40 stores in advance measurement data for each optical transmitter, which is used by the control unit 50, that is, various information based on the measurement data for each product.
  • the memory 40 shows the relationship among the target temperature Tld [°C], the target voltage Vr [V], and the power consumption [W] of the optical transmitter 1 at each of the monitor temperatures Ta [°C] measured by the temperature monitor unit 51.
  • the drive condition information D1 shown is stored in advance.
  • the memory 40 may store in advance information about the center wavelength ⁇ [nm] of the laser light L1 at each of the monitor temperatures Ta [° C.] measured by the temperature monitor unit 51.
  • the information on the central wavelength ⁇ [nm] of the laser light L1 at each of the plurality of monitor temperatures Ta [° C.] is acquired, for example, by the following procedures (1) to (5).
  • a wavelength measuring device is connected to the optical fiber 90 shown in FIG. (2)
  • the optical transmitter 1 outputs the laser beam L1.
  • the monitor temperature Ta [°C] measured by the temperature monitor unit 51 is changed.
  • the wavelength detected by the wavelength measuring device is detected at each of the plurality of monitor temperatures Ta [° C.].
  • the optical transmitter 1 is stopped, the wavelength measuring device is removed, and information indicating the relationship between the monitor temperature Ta [°C] and the wavelength of the laser light is recorded in the memory 40 as the driving condition information D1.
  • Information indicating the relationship between the target temperature Tld [°C], the target voltage Vr [V], and the power consumption [W] of the optical transmitter 1 at each of the plurality of monitor temperatures Ta [°C] is, for example, the following procedure. It is acquired in (15) from (11). (11) A power meter, which is a measuring instrument capable of measuring optical power, is connected to the optical fiber 90 shown in FIG. (12) The optical transmitter 1 outputs the laser beam L1. (13) By changing the temperature of the optical transmitter 1, the monitor temperature Ta [°C] measured by the temperature monitor unit 51 is changed. (14) At each of the plurality of monitor temperatures Ta [°C], the target temperature Tld [°C] and the target voltage Vr [V] are set so that the optical power measured by the power meter is maintained constant.
  • the power consumption [W] for each combination of Tld [° C.] and target voltage Vr [V] is measured. (15) Stop the optical transmitter 1, remove the power meter, and combine the monitor temperature Ta [°C] with the target temperature Tld [°C] and the target voltage Vr [V] that minimize the power consumption [W], The information indicating the relationship is recorded in the memory 40 as the driving condition information D1.
  • the control unit 50 has a temperature monitor unit 51, a target voltage control unit 52, a target temperature control unit 53, and an optical output monitor unit 54.
  • the temperature monitor unit 51 outputs the monitor temperature Ta [° C.] by measuring the temperature corresponding to the temperature of the optical module 10.
  • the temperature monitor unit 51 may be arranged outside the control unit 50. In FIG. 1, the temperature monitor 51 and the optical module 10 are arranged separately, but they may be arranged in contact with each other.
  • the temperature monitor unit 51 can measure the temperature inside the device housing 1a to measure the temperature corresponding to the temperature of the optical module 10.
  • the target voltage control unit 52 determines the target voltage Vr [V] used when compensating for the tracking error by APC.
  • the target temperature control unit 53 determines the target temperature Tld [° C.] used for driving control of the thermoelectric element 12 by the thermoelectric element driving unit 60.
  • the control unit 50 executes control for compensating for tracking errors.
  • the tracking error is an optical coupling state determined by the relative position between the light emitting surface of the semiconductor laser 11 arranged in the optical module 10 and the end of the optical fiber 90 held in the module housing 15. It is caused by the change of 10 due to the thermal expansion accompanying the temperature change.
  • the tracking error is a phenomenon caused by the displacement of the relative position between the components of the optical system due to the temperature change. That is, the tracking error occurs due to the positional deviation between the optical axis of the light emitting end of the semiconductor laser 11 and the optical axis of the end of the optical fiber 90.
  • the output power loss L [dB] increases, and the output power P1a [dBm] of the laser light output from the semiconductor laser 11 and transmitted through the optical fiber 90 decreases. ..
  • the target voltage control unit 52 repeatedly performs control to change the target voltage Vr[V] used in the target voltage comparison unit 32 using the driving condition information D1 stored in the memory 40 in advance.
  • the target temperature control unit 53 repeatedly performs control to change the target temperature Tld [° C.] used for drive control of the thermoelectric element 12 using the drive condition information D1 stored in the memory 40 in advance.
  • the drive condition information D1 is stored in the memory 40 as a calculation formula or a look-up table (LUT), for example. That is, the target voltage control unit 52 changes the target voltage Vr [V] to an appropriate value based on the monitor temperature Ta [° C.] measured by the temperature monitoring unit 51, and then the target voltage comparison unit 32 sets the target voltage Vr [V]. V] is provided.
  • the target temperature control unit 53 drives the thermoelectric element by driving the drive control signal C1 instructing to change the target temperature Tld [°C] to an appropriate value based on the monitor temperature Ta [°C] measured by the temperature monitor 51. It is provided to the part 60. That is, the control unit 50 executes variable control for changing the target voltage Vr [V] and the target temperature Tld [°C] in synchronization with the output of the monitor temperature Ta [°C] by the temperature monitoring unit 51.
  • the optical output monitor unit cannot output a signal that accurately indicates the output power of the laser light output through the optical fiber. This is because the general optical output monitor unit calculates the output power based on the monitor current detected by the monitor PD of the semiconductor laser, but this output power is a value that does not take the influence of the tracking error into consideration. Because. Therefore, the optical output monitor unit 54 in the optical transmitter 1 according to the first embodiment uses the drive condition information D1 stored in the memory 40 in advance to obtain the output power in consideration of the influence of the tracking error. There is. Therefore, the optical output monitor unit 54 in the first embodiment can provide the host device with a signal indicating an output power close to the output power P1a [dBm] of the laser light output through the optical fiber 90.
  • DDM Digital Diagnostic Monitoring
  • FIGS. 2A to 2F are graphs showing the operation of the optical transmitter 1 according to the first embodiment.
  • the graphs of FIGS. 2A to 2F are graphs based on actual measurement values.
  • 2A to 2F the graph drawn by a solid line shows the operation of the optical transmitter 1 according to the first embodiment
  • the graph drawn by a broken line shows the operation of the optical transmitter of the comparative example. Is shown.
  • the laser drive current is controlled by the laser drive unit and the temperature of the semiconductor laser is controlled by the thermoelectric element in the entire range of the monitor temperature Ta [° C.], and the dashed line is shown in FIG.
  • the output power of the laser light output from the semiconductor laser is constant.
  • the graph of FIG. 2A shows the power consumption [W] of the optical transmitter 1 according to the first embodiment and the power consumption [W] of the optical transmitter of the comparative example at each monitor temperature Ta [° C.]. ing.
  • the graph of FIG. 2B shows the output power P1a [dBm] of the laser light transmitted from the optical transmitter 1 according to the first embodiment through the optical fiber 90 and the light of the comparative example at each monitor temperature Ta [° C.].
  • the output power [dBm] of the laser light transmitted from the transmitter through the optical fiber 90 is shown.
  • the graph of FIG. 2C shows the output power P1 [dB] of the laser light output from the semiconductor laser 11 of the optical transmitter 1 according to the first embodiment and the light of the comparative example at each monitor temperature Ta [° C.].
  • the output power [dB] of the laser light output from the semiconductor laser of the transmitter is shown.
  • the graph of FIG. 2D shows the laser drive current Id [mA] output from the laser drive unit 30 of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [° C.].
  • the graph in FIG. 2E shows the target temperature Tld [°C] determined by the controller 50 of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [°C].
  • the graph of FIG. 2F shows the output power loss L [dB] caused by the tracking error of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [° C.].
  • the target voltage Vr [V] is fixed and APC is performed, and the target temperature Tld [°C] is fixed and the thermoelectric element is controlled.
  • different control is performed in each of the temperature range TR1, the temperature range TR2 higher than the temperature range TR1, and the temperature range TR3 lower than the temperature range TR1.
  • temperature range TR1 is also referred to as “first temperature range”.
  • the temperature range TR2 is also referred to as a "second temperature range”.
  • the temperature range TR3 is also referred to as a "third temperature range”.
  • the temperature range TR1 is a temperature range above the temperature T2 [°C] and below the temperature T3 [°C].
  • the temperature range TR2 is a range higher than the temperature T3 [°C] and lower than the temperature T4 [°C].
  • the temperature range TR3 is a temperature range equal to or higher than the temperature T1 [° C.] and lower than the temperature T2 [° C.].
  • the temperature T1 [° C.] and the temperature T4 [° C.] are temperatures specified by the specifications of the optical transmitter 1.
  • the temperature T1 [° C.] indicates the minimum value of the specified temperature
  • the temperature T4 [° C.] indicates the maximum value of the specified temperature.
  • the performance of the optical transmitter 1 is guaranteed within the range from the minimum specification temperature to the maximum specification temperature.
  • the central wavelength ⁇ [nm] of the laser light output from the semiconductor laser 11 shifts depending on the temperature.
  • the minimum specification temperature and the maximum specification temperature are determined, for example, based on the central wavelength ⁇ [nm] of the laser light. That is, when the optical transmitter 1 is used in a temperature environment within the range from the minimum value of the specified temperature to the maximum value of the specified temperature, the center wavelength ⁇ [nm] within the wavelength range determined by the specification, that is, the desired center Laser light having a wavelength ⁇ [nm] can be output.
  • ⁇ Temperature range TR1> The boundary temperature between the temperature range TR1 and the temperature range TR2 (that is, the temperature T3 [° C.]) is the upper limit temperature of the temperature range TR1.
  • the upper limit temperature of the temperature range TR1 is based on the center wavelength ⁇ [nm] of the laser beam L1 output from the semiconductor laser 11 at this upper limit temperature or the upper limit value of the laser drive current Id [mA] at the upper limit temperature of the temperature range TR1. It is the determined temperature.
  • the upper limit temperature of temperature range TR1 is determined based on the upper limit value of laser drive current Id [mA] at this upper limit temperature.
  • the boundary temperature between the temperature range TR1 and the temperature range TR3 is the lower limit temperature of the temperature range TR1 (that is, the temperature T2 [° C.]).
  • the lower limit temperature of the temperature range TR1 is based on the center wavelength ⁇ [nm] of the laser beam L1 output from the semiconductor laser 11 at this lower limit temperature or the upper limit value of the laser drive current Id [mA] at the lower limit temperature of the temperature range TR1. It is the determined temperature.
  • the lower limit temperature of temperature range TR1 is determined based on the center wavelength ⁇ [nm] of laser light L1 output from semiconductor laser 11 at this lower limit temperature.
  • the target temperature control unit 53 stops the driving of the thermoelectric element 12 by the thermoelectric element driving unit 60,
  • the target voltage control unit 52 determines the target voltage Vr [V] based on the information corresponding to the current monitor temperature Ta [°C] in the drive condition information D1.
  • the output power P1 [dB] of the laser beam L1 output from the semiconductor laser 11 is low as shown in FIG. 2C, but as shown in FIG. L[dB] is also low. Therefore, as shown in FIG. 2B, the optical output power P1a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant.
  • the thermoelectric element 12 requiring relatively large driving power is not driven, so as shown in FIG. 2(A), the optical transmitter The power consumption [W] of 1 is lower than the power consumption [W] of the optical transmitter of the comparative example.
  • the temperature range TR1 In the temperature range TR1, the driving of the thermoelectric element 12 by the thermoelectric element driving unit 60 is stopped, so the temperature of the semiconductor laser 11 changes.
  • the oscillation wavelength of the modulated laser light output from the semiconductor laser 11 changes at about 0.1 nm/°C. Therefore, when the oscillation wavelength of the semiconductor laser 11, that is, the center wavelength ⁇ [nm] is within a certain wavelength range, the temperature range TR1 can be controlled.
  • the fixed wavelength range is, for example, a range of 1575 nm to 1580 nm.
  • ⁇ Temperature range TR2> When the current monitor temperature Ta [°C] output from the temperature monitor 51 is within the temperature range TR2, the target temperature controller 53 causes the target monitor temperature Ta [°C] of the drive condition information D1.
  • the target temperature Tld [°C] is determined based on the information corresponding to the target voltage Vr[, and the target voltage control unit 52 determines the target voltage Vr[ based on the information corresponding to the current monitor temperature Ta [°C] in the driving condition information D1. V] is determined.
  • the target temperature control unit 53 and the target voltage control unit 52 of the control unit 50 combine the target temperature Tld [° C.] and the target voltage Vr [V] that minimize the power consumption [W] of the optical transmitter 1. It is desirable to select.
  • the target temperature control unit 53 controls the target temperature Tld [°C] to decrease as the monitor temperature Ta [°C] increases in the temperature range TR2 higher than the temperature range TR1.
  • the target temperature control unit 53 can control the target temperature Tld [° C.] shown in the temperature range TR2 of FIG.
  • the target temperature control unit 53 can control the target temperature Tld [° C.] shown in the temperature range TR2 of FIG. 2(E) based on the driving condition information D1 which is the actually measured data.
  • the actual measurement data is obtained by measuring the output power P1a [dBm] of the laser light transmitted through the optical fiber 90 with the measuring device while the target temperature control unit 53 outputs the output power loss L [dB] shown in FIG. Can be obtained by changing the target temperature Tld [° C.] so as to compensate the output power of
  • the target temperature control unit 53 When the target temperature control unit 53 outputs the drive control signal C1 instructing to set the target temperature Tld [°C], the thermoelectric element driving unit 60 causes the thermoelectric element 12 to reach the target temperature Tld [°C].
  • the drive current Ite is supplied to 12.
  • the target temperature control unit 53 uses the drive condition information D1 stored in the memory 40, that is, the compensation profile, according to the monitor temperature Ta [° C.] measured by the temperature monitor unit 51, and the required target temperature Tld. Determine [°C].
  • the monitor temperature Ta [°C] is higher than the target temperature Tld [°C] in the temperature range TR2, the higher the target temperature Tld [°C], the smaller the thermoelectric element drive current Ite and the smaller the power consumption [W]. Therefore, in the temperature range TR2, near the boundary temperature between the temperature range TR1 and the temperature range TR2 where the output power loss L[dB] caused by the tracking error is relatively small, that is, near the temperature T3[°C], the target temperature Tld[°C]. Is set to a predetermined maximum value. In this way, as shown in FIG.
  • the target temperature Tld [°C] by setting the target temperature Tld [°C] to the maximum in the vicinity of the temperature T3 [°C], that is, the target temperature Tld [°C] is set to the monitor temperature Ta [.
  • the power consumption [W] of the optical transmitter 1 can be reduced.
  • the output power loss L[dB] caused by the tracking error increases as the temperature becomes higher than the temperature T3[° C.], and thus the output power loss L[dB].
  • the target temperature Tld [° C.] By lowering the target temperature Tld [° C.] by the amount, compensation is performed.
  • the optical transmitter 1 gradually lowers the target temperature Tld [° C.] so as to compensate for the output power loss L [dB] caused by the tracking error, and transmits through the optical fiber 90 with the minimum power consumption [W].
  • the output power P1a [dBm] of the generated laser light can be maintained constant.
  • the control unit 50 turns on the thermoelectric element driving unit 60 to drive the thermoelectric element 12, and the optical fiber 90 While measuring the center wavelength ⁇ [nm] of the output laser light with a wavelength measuring device, the target temperature Tld [°C] in the temperature range TR2 is gradually decreased from the maximum value, and the center wavelength ⁇ [nm] is the wavelength.
  • the thermoelectric element drive unit 60 is controlled so that the maximum target temperature Tld [° C.] that satisfies the range is reached.
  • the control unit 50 When the laser drive current Id [mA] does not reach the upper limit value, the control unit 50 confirms the output power P1a [dBm] and controls the target voltage Vr [V] of the APC so as to obtain a desired output power. To do. If the central wavelength ⁇ [nm] reaches the limit value of the wavelength range defined in the specification before the laser drive current Id [mA] reaches the upper limit value, the control unit 50 causes the laser drive current The output power loss L [dB] is compensated by APC that changes Id [mA] and control of the target temperature Tld [°C].
  • the output power loss L [dB] in the temperature range TR2 is compensated by increasing the target voltage Vr [V] of the APC first, and not by increasing the target voltage Vr [V] of the APC.
  • the target temperature Tld [° C.] is controlled so that the output power P2a [dBm] becomes constant and the center wavelength ⁇ [nm] falls within the wavelength range specified in the specifications.
  • ⁇ Temperature range TR3> When the current monitor temperature Ta [°C] measured by the temperature monitor unit 51 is within the temperature range TR3, the target temperature control unit 53 sets the current monitor temperature Ta [°C] in the drive condition information D1. The target temperature Tld [°C] is determined based on the corresponding information, and the target voltage control unit 52 determines the target voltage Vr [V] based on the information corresponding to the current monitor temperature Ta [°C] in the driving condition information D1. ] Is decided. At this time, the target temperature control unit 53 and the target voltage control unit 52 of the control unit 50 select the combination of the target temperature Tld [° C.] and the target voltage Vr [V] that minimizes the power consumption [W].
  • the target temperature Tld [° C.] is lowered to drive the thermoelectric element 12, and the target voltage Vr [V] is adjusted.
  • the laser drive current Id [mA] is controlled to the upper limit value or in the vicinity of the upper limit value, transmission is performed through the optical fiber 90 as shown in FIG. 2B.
  • the optical output power P1a [dBm] of the generated laser light can be maintained constant.
  • the thermoelectric element 12 is driven, but the laser drive current Id [mA] is set to the upper limit value or in the vicinity of the upper limit value.
  • the power consumption [W] of the optical transmitter 1 is lower than the power consumption [W] of the optical transmitter of the comparative example.
  • the influence of the output power loss L [dB] shown by the broken line in FIG. 2B can be confirmed from the output power of the laser light transmitted from the optical transmitter of the comparative example through the optical fiber.
  • the effect of the output power loss L [dB] cannot be known from the output power of the laser light output from the semiconductor laser of the optical transmitter of the comparative example. ..
  • the target voltage control unit 52 compensates the output power loss L [dB] shown in FIG.
  • the target voltage control unit 52 compensates the output power loss L [dB] shown in FIG.
  • the target voltage Vr [V] provided to the target voltage comparison unit 32, as shown by the solid line in FIG. 2B, the output power P1a [dBm] in which the tracking error is compensated, and The target voltage Vr [V] can be obtained.
  • the target voltage control unit 52 uses the driving condition information D1 based on the actual measurement data. Then, the target voltage Vr [V] is increased and the laser drive current Id [mA] is increased so as to compensate the output power loss L [dB] caused by the tracking error caused by the temperature change.
  • the target voltage control unit 52 starts from the monitor temperature Ta [° C.] corresponding to the temperature of the optical module 10 based on the output power loss L [dB] caused by the tracking error caused by the temperature change, and outputs the target voltage Vr [ V] is determined and the target voltage Vr [V] is notified to the target voltage comparison unit 32.
  • the APC unit 31 controls the laser drive current Id [mA] based on the target voltage Vr [V] received by the target voltage comparison unit 32.
  • the optical transmitter 1 can output a laser beam having a desired output power P1a [dBm] through the optical fiber 90 as shown by the solid line in FIG.
  • the thermoelectric element drive current Ite is kept at the minimum target temperature Tld [° C.] with the central wavelength ⁇ [nm] within the desired wavelength range, and thus the optical transmitter 1 Power consumption [W] can be minimized.
  • the recording of the compensation profile at each monitor temperature Ta [° C.] is preferably performed after the temperature becomes stable in consideration of the self-heating of the semiconductor laser 11 and the self-heating of the thermoelectric element 12. Further, it is desirable from the viewpoint of improving accuracy that the compensation profile is recorded at each monitor temperature Ta [° C.] a plurality of times after temperature stabilization.
  • the compensation profile including the optimum values of the target voltage Vr[V] of the APC and the target temperature Tld[°C] at each of the plurality of monitor temperatures Ta[°C] is stored in the memory 40 in the form of LUT or as a calculation formula. Held in.
  • the calculation formula for example, a fitting function of the second order or lower in each of the temperature ranges TR1, TR2, TR3 can be used.
  • FIG. 3 is a flowchart showing the operation of the optical transmitter 1 according to the first embodiment.
  • the control unit 50 controls the output power P1a [dBm] of the laser beam transmitted through the optical fiber 90 to be constant without depending on the monitor temperature Ta [° C.]. So that the target voltage Vr[V] is controlled, or the target voltage Vr[V] and the target temperature Tld[°C. ] Control is performed.
  • step S1 the control unit 50 reads the monitor temperature Ta [° C.] of the temperature monitor unit 51.
  • step S2 the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR1.
  • the process proceeds to step S4a, and when the monitor temperature Ta [°C] is not within the temperature range TR1 (that is, the determination is made). Is NO), the process proceeds to step S3.
  • step S4a the control unit 50 controls the temperature range TR1. That is, the control unit 50 determines the target voltage Vr [V] used for APC to a value according to the monitor temperature Ta [°C], and executes APC. At this time, the control unit 50 does not instruct to drive the thermoelectric element 12.
  • step S5a the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
  • step S6a the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR1. That is, the control unit 50 determines whether or not the monitor temperature Ta [°C] changes across the temperature T2 [°C] that is the lower limit or the upper limit temperature T3 [°C] of the temperature range TR1. If the monitor temperature Ta [°C] is outside the temperature range TR1 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR1 (that is, the determination is made). Is NO), the process returns to step S4a.
  • step S3 the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR2.
  • the monitor temperature Ta [°C] is within the temperature range TR2 (that is, when the determination is YES)
  • step S4b the process proceeds to step S4b, and when the monitor temperature Ta [°C] is not within the temperature range TR2 (that is, the determination is made). Is NO), the process proceeds to step S4c.
  • the control unit 50 controls the temperature range TR2. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. Is determined and the target voltage Vr [V] is applied to the laser drive unit 30, and the drive control signal C1 is applied to the thermoelectric element drive unit 60.
  • step S5b the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
  • step S6b the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR2. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T3 [°C] or the upper limit temperature T4 [°C] of the temperature range TR2. If the monitor temperature Ta [°C] is out of the temperature range TR2 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR2 (that is, the determination is made). Is NO), the process returns to step S4b.
  • the control unit 50 controls the temperature range TR3. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. Is determined and the target voltage Vr [V] is applied to the laser drive unit 30, and the drive control signal C1 is applied to the thermoelectric element drive unit 60.
  • step S5c the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
  • step S6c the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR3. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T1 [°C] or the upper limit temperature T2 [°C] of the temperature range TR3. If the monitor temperature Ta [°C] is outside the temperature range TR3 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR3 (that is, the determination is made). Is NO), the process returns to step S4c.
  • the drive condition information D1 based on the actual measurement data measured in advance for each product is stored in the memory 40. Further, when the optical transmitter 1 is used, the control unit 50 reads the monitor temperature Ta [° C.] and sets the drive condition according to the monitor temperature Ta [° C.] of the drive condition information D1 stored in the memory 40. , LUT or using a formula. Therefore, the optical transmitter 1 can drive the semiconductor laser 11 under the driving condition suitable for each of the temperature ranges TR1, TR2, and TR3, and the output power P1a [dBm] of the laser light transmitted through the optical fiber 90. Can be kept constant.
  • the set value of the target temperature Tld [° C.] is set to a value considering the power consumption [W], so that the power consumption [W] can be suppressed.
  • FIG. 4 is a block diagram schematically showing a configuration of the optical transmitter 2 according to the second embodiment of the present invention. 4, constituent elements that are the same as or correspond to the constituent elements shown in FIG. 1 are assigned the same reference numerals as those shown in FIG.
  • the optical transmitter 2 according to the second embodiment is provided with a thermoelectric element 80 that directly cools or heats the optical module 10 so that it can be used in a wider temperature range than the optical transmitter 1 according to the first embodiment.
  • a thermoelectric element drive unit 70 for driving the same is also referred to as a "second thermoelectric element”.
  • the thermoelectric element driving unit 70 is also referred to as a “second thermoelectric element driving unit”.
  • the thermoelectric element drive unit 70 is composed of an electric circuit.
  • the thermoelectric element 80 has the same configuration as the thermoelectric element 12.
  • the control unit 50a provides the thermoelectric element drive unit 70 with the drive control signal C2.
  • the optical transmitter 2 according to the second embodiment is the same as the optical transmitter 1 according to the first embodiment.
  • 5A to 5F are graphs showing the operation of the optical transmitter 2 according to the second embodiment. 5A to 5F, the same or corresponding portions as those shown in FIGS. 2A to 2F have the same reference numerals as those shown in FIGS. 5A to 5F. It is attached.
  • the graphs of FIGS. 5A to 5F are graphs based on actual measurement values.
  • the graph drawn by the solid line shows the operation of the optical transmitter 2 according to the second embodiment
  • the graph drawn by the broken line shows the operation of the optical transmitter of the comparative example. Is shown.
  • the laser drive current is controlled by the laser drive section and the temperature of the semiconductor laser is controlled by the thermoelectric element in the entire range of the monitor temperature Ta [° C.], and the dashed line is shown in FIG. 5C.
  • the output power of the laser light output from the semiconductor laser is constant.
  • the graph of FIG. 5A shows the power consumption [W] of the optical transmitter 2 according to the second embodiment and the power consumption [W] of the optical transmitter of the comparative example at each monitor temperature Ta [° C.]. ing.
  • the graph of FIG. 5B shows the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 from the optical transmitter 2 according to the second embodiment and the light of the comparative example at each monitor temperature Ta [° C.].
  • the output power [dBm] of the laser light transmitted from the transmitter through the optical fiber 90 is shown.
  • the graph of FIG. 5C shows the output power P2 [dB] of the laser light output from the semiconductor laser 11 of the optical transmitter 2 according to the second embodiment and the light of the comparative example at each monitor temperature Ta [° C.].
  • the output power [dB] of the laser light output from the semiconductor laser of the transmitter is shown.
  • the graph of FIG. 5D shows the laser drive current Id [mA] output from the laser drive unit 30 of the optical transmitter 2 according to the second embodiment at each monitor temperature Ta [° C.].
  • the graph in FIG. 5E shows the target temperature Tld [°C] determined by the controller 50 of the optical transmitter 2 according to the second embodiment at each monitor temperature Ta [°C].
  • the graph of FIG. 5F shows the output power loss L [dB] caused by the tracking error of the optical transmitter 2 according to the second embodiment and the tracking error of the optical transmitter of the comparative example at each monitor temperature Ta [° C.].
  • the resulting output power loss [dB] is shown.
  • the target voltage Vr [V] is fixed and APC is performed, and the target temperature Tld [°C] is fixed and the thermoelectric element is controlled.
  • the temperature range TR1 the temperature range TR2 higher than the temperature range TR1, the temperature range TR3 lower than the temperature range TR1, the temperature range TR4 higher than the temperature range TR2, and the temperature range lower than the temperature range TR3.
  • Different control is performed in each of TR5.
  • temperature range TR4 is also referred to as "fourth temperature range”.
  • the temperature range TR5 is also referred to as a "fifth temperature range”.
  • the temperature ranges TR1, TR2, TR3 in the second embodiment are the same as the temperature ranges TR1, TR2, TR3 in the first embodiment.
  • the temperature range TR4 in the second embodiment is a range higher than the temperature T4 [°C] and lower than the temperature T5 [°C].
  • the temperature range TR5 is lower than the temperature T1 [° C.] and is the temperature T0 [° C.] or higher.
  • thermoelectric element drive unit 70 is turned on to supply the thermoelectric element drive current to the thermoelectric element 80.
  • the power consumption [W] in the temperature ranges TR4 and TR5 increases as shown in FIG. 5(A).
  • cooling by the thermoelectric element 80 or cooling by the thermoelectric element 80 and the thermoelectric element 12 is performed so that the monitor temperature Ta [° C.] maintains the maximum monitor temperature within the temperature range TR2.
  • heating by the thermoelectric element 80 or heating by the thermoelectric elements 80 and 12 is performed so that the monitor temperature Ta [° C.] maintains the minimum monitor temperature in the temperature range TR3.
  • the cooling or heating of the optical module 10 suppresses the influence of the output power loss L [dB] shown in FIG. 5(F) as shown in FIG. 5(B). Moreover, it can be realized in a wide temperature range. As a result, as shown in FIG. 5B, the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant in a wide temperature range.
  • the laser drive current Id [mA] at the upper limit temperature T4 [° C.] in the temperature range TR2. The target temperature Tld [° C.], and the output power P2 [dB] of the semiconductor laser 11 are maintained.
  • the laser drive current Id [mA] at the lower limit temperature T1 [° C.] in the temperature range TR3. The target temperature Tld [° C.], and the output power P2 [dB] of the semiconductor laser 11 are maintained.
  • FIG. 6 is a flowchart showing the operation of the optical transmitter 2 according to the second embodiment. 6, steps that are the same as or correspond to the steps shown in FIG. 3 are given the same step numbers as the step numbers shown in FIG.
  • the processing of steps S7, S8, S9, S4d, S4e, S5d, S5e, S6d, S6e, and S10 is added.
  • the operation differs from that of the optical transmitter 1 according to the first embodiment.
  • step S7 When the process proceeds from step S7 to step S8 (that is, when the determination in step S7 is NO), the control unit 50 outputs the drive control signal C2 for starting the driving of the thermoelectric element 80. To provide.
  • step S9 the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR4.
  • the monitor temperature Ta [°C] is within the temperature range TR4 (that is, when the determination is YES)
  • the process proceeds to step S4d, and when the monitor temperature Ta [°C] is not within the temperature range TR4 (that is, the determination is made). Is NO), the process proceeds to step S4e.
  • step S4d the control unit 50 controls the temperature range TR4. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. To supply the target voltage Vr [V] to the laser driving unit 30, provide the driving control signal C1 to the thermoelectric element driving unit 60, and supply the driving control signal C2 for executing the cooling by the thermoelectric element 80. It is given to the drive unit 70.
  • step S5d the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
  • step S6d the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR4. That is, the control unit 50 determines whether the monitor temperature Ta [°C] has changed across the lower limit temperature T4 [°C] or the upper limit temperature T5 [°C] of the temperature range TR4.
  • the monitor temperature Ta [°C] is out of the temperature range TR4 (that is, when the determination is YES)
  • the driving of the thermoelectric element 80 is stopped in step S10, the process returns to step S2, and the monitor temperature Ta [°C]. Is within the temperature range TR4 (that is, the determination is NO), the process returns to step S4d.
  • step S9 When the process proceeds from step S9 to step S4e (that is, when the determination in step S9 is NO), the control unit 50 outputs the drive control signal C2 for starting the driving of the thermoelectric element 80. To provide.
  • step S4e the control unit 50 performs control in the temperature range TR5. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. To supply the target voltage Vr [V] to the laser driving unit 30, provide the driving control signal C1 to the thermoelectric element driving unit 60, and supply the driving control signal C2 for performing the heating by the thermoelectric element 80. It is given to the drive unit 70.
  • step S5e the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
  • step S6e the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR5. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T0 [°C] or the upper limit temperature T1 [°C] of the temperature range TR5.
  • the monitor temperature Ta [°C] is out of the temperature range TR5 (that is, when the determination is YES)
  • the driving of the thermoelectric element 80 is stopped in step S10, the process returns to step S2, and the monitor temperature Ta [°C]. Is within the temperature range TR4 (that is, the determination is NO), the process returns to step S4e.
  • the optical transmitter 2 cools the optical module 10 at the upper limit temperature T4 [° C.] of the temperature range TR2 and lowers the lower limit of the temperature range TR3.
  • the optical module 10 is configured to be heated at the temperature T1 [° C.]. Therefore, in the optical transmitter 2, the temperature range TR4 that is higher than the upper limit temperature T4 [°C] of the temperature range TR2 and the temperature range TR5 that is lower than the lower limit temperature T1 [°C] of the temperature range TR3. Also in, it is possible to suppress the tracking error. Therefore, by using the optical transmitter 2, the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant in a wider temperature range TR5, TR3, TR1, TR2, TR4. ..
  • FIG. 7 is a diagram showing an example of the hardware configuration of the optical transmitter according to the modification of the first or second embodiment.
  • the optical transmitter 1 according to the first embodiment uses a memory 101 that is a storage device that stores a program as software and a processor 102 that is an information processing unit that executes the program stored in the memory 101 (for example, , A computer, etc.).
  • a memory 101 that is a storage device that stores a program as software
  • a processor 102 that is an information processing unit that executes the program stored in the memory 101 (for example, , A computer, etc.).
  • all or part of the control unit 50 and all or part of the laser driving unit 30 in FIG. 1 can be realized by the memory 101 storing the program and the processor 102.
  • the optical transmitter 2 according to the second embodiment can be realized by using a memory 101 that stores a program as software and a processor 102 that executes the program stored in the memory 101.
  • the whole or part of the control unit 50a and the whole or part of the laser driving unit 30 in FIG. 4 can be realized by the memory 101 storing the program and the processor 102.
  • thermoelectric element 1, 2 optical transmitters, 1a, 2a device housings, 10 optical modules, 11 semiconductor lasers, 12 thermoelectric elements, 13 thermistors, 14 thermoelectric element parts, 15 module housings, 20 monitor current detection parts, 30 laser drive parts, 31 APC section, 40 memory, 50 control section, 51 temperature monitor section, 52 target voltage control section, 53 target temperature control section, 54 optical output monitor section, 60 thermoelectric element drive section, 70 thermoelectric element drive section, 80 thermoelectric element, 90 optical fiber.

Abstract

An optical transmitter (1) comprises: a semiconductor laser (11); a holding unit (15) for optical fibers (90); a temperature monitor unit (51); a laser drive unit (30); a target voltage control unit (52); a thermoelectric element (12); a thermoelectric element drive unit (60); a target temperature control unit (53); and a memory (40) that pre-stores drive conditions information (D1) on the basis of a measured value. If a monitored temperature (Ta) is within a temperature range (TR1), operation of the thermoelectric element (12) is stopped and a target voltage (Vr) is determined on the basis of information corresponding to the present monitored temperature (Ta) in the drive conditions information (D1). If the monitored temperature (Ta) is within temperature ranges (TR2, TR3), a target temperature (Tld) is determined on the basis of information corresponding to the present monitored temperature (Ta) in the drive conditions information (D1), and the target voltage (Vr) is determined on the basis of information corresponding to the present monitored temperature (Ta) in the drive conditions information (D1).

Description

光送信器及びその制御方法Optical transmitter and control method thereof
 本発明は、光送信器及びその制御方法に関する。 The present invention relates to an optical transmitter and its control method.
 光送信器の半導体レーザから出力されるレーザ光の出力パワーを一定に維持する制御方法として、APC(Automatic Power Control)が知られている。APCでは、半導体レーザから出力されるレーザ光の一部をフォトダイオード(PD)で検出し、PDから出力されるモニタ電流の値を一定にするようにレーザ駆動電流を制御する(例えば、特許文献1参照)。 APC (Automatic Power Control) is known as a control method for maintaining a constant output power of laser light output from a semiconductor laser of an optical transmitter. In APC, a part of laser light output from a semiconductor laser is detected by a photodiode (PD), and a laser drive current is controlled so that a value of a monitor current output from the PD is constant (for example, Patent Document 1). 1).
 また、半導体レーザを冷却又は加熱して半導体レーザの温度を調整することによって、半導体レーザから出力されるレーザ光の出力パワーの変動を抑制する方法が提案されている(例えば、特許文献1及び2参照)。 Further, there has been proposed a method of suppressing fluctuations in output power of laser light output from a semiconductor laser by cooling or heating the semiconductor laser and adjusting the temperature of the semiconductor laser (for example, Patent Documents 1 and 2). reference).
国際公開第2015/162964号International Publication No. 2015/162964 特開平11-126939号公報Japanese Patent Laid-Open No. 11-126939
 しかしながら、光送信器が設置されている環境の温度変化に伴う熱膨張などにより、半導体レーザと、光ファイバが保持されている光モジュールの筐体との間の相対位置の変化(すなわち、光学系変化)が生じると、トラッキングエラーによって生じる出力パワーロスL[dB]の値が変化する。したがって、温度変化が生じた場合に、上記従来技術によって半導体レーザから出力されるレーザ光の出力パワーが一定に維持されていても、光ファイバを通して送信されるレーザ光の出力パワーが変動するという課題がある。 However, due to thermal expansion caused by temperature changes in the environment where the optical transmitter is installed, changes in the relative position between the semiconductor laser and the optical module housing holding the optical fiber (that is, the optical system). (Change), the value of the output power loss L [dB] caused by the tracking error changes. Therefore, when the temperature changes, the output power of the laser light transmitted through the optical fiber fluctuates even if the output power of the laser light output from the semiconductor laser is maintained constant by the above-mentioned conventional technique. There is.
 本発明は、上記従来の課題を解決するためになされたものであり、温度変化が生じた場合であっても、光ファイバを通して送信されるレーザ光の出力パワーを一定に維持することができる光送信器及びその制御方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned conventional problems, and it is possible to maintain a constant output power of laser light transmitted through an optical fiber even when a temperature change occurs. An object is to provide a transmitter and a control method thereof.
 本発明の一態様に係る光送信器は、レーザ光を出力する光送信器であって、レーザ駆動電流に対応する第1の出力パワーの前記レーザ光を出力すると共に、前記第1の出力パワーに対応するモニタ電流を出力する半導体レーザと、前記半導体レーザから出力された前記レーザ光が光ファイバに入射するように前記光ファイバを保持する保持部と、前記保持部の温度に対応するモニタ温度を測定する温度モニタ部と、前記モニタ電流に対応するモニタ電圧をターゲット電圧に近づけるように、前記レーザ駆動電流を前記半導体レーザに供給するレーザ駆動部と、前記ターゲット電圧を前記レーザ駆動部に与えるターゲット電圧制御部と、前記半導体レーザを冷却又は加熱する第1の熱電素子と、前記第1の熱電素子を駆動する第1の熱電素子駆動部と、前記第1の熱電素子の温度をターゲット温度に近づける第1の駆動制御信号を前記第1の熱電素子駆動部に与えるターゲット温度制御部と、前記各モニタ温度における前記ターゲット電圧と前記ターゲット温度と前記光送信器の消費電力との関係の実測値に基づいて決められた駆動条件情報を、予め記憶する記憶部と、を備え、前記モニタ温度が第1の温度範囲内にある場合には、前記ターゲット温度制御部は、前記第1の熱電素子駆動部による前記第1の熱電素子の駆動を停止させ、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記温度モニタ部から出力されている現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記モニタ温度が前記第1の温度範囲より高い第2の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記モニタ温度が前記第1の温度範囲より低い第3の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定することを特徴とする。 An optical transmitter according to an aspect of the present invention is an optical transmitter that outputs laser light, and outputs the laser light having a first output power corresponding to a laser drive current and at the same time outputs the first output power. A semiconductor laser that outputs a monitor current corresponding to, a holding unit that holds the optical fiber so that the laser light output from the semiconductor laser enters the optical fiber, and a monitor temperature that corresponds to the temperature of the holding unit. A temperature monitor unit for measuring, a laser drive unit for supplying the laser drive current to the semiconductor laser, and a target voltage for the laser drive unit so that the monitor voltage corresponding to the monitor current approaches the target voltage. A target voltage control section, a first thermoelectric element for cooling or heating the semiconductor laser, a first thermoelectric element driving section for driving the first thermoelectric element, and a temperature of the first thermoelectric element as a target temperature. A target temperature control unit that gives a first drive control signal that approaches the first thermoelectric element drive unit to the first thermoelectric element drive unit, and an actual measurement of the relationship between the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter. When the monitor temperature is within a first temperature range, the target temperature control unit includes a storage unit that stores drive condition information determined based on a value in advance. The driving of the first thermoelectric element by the element driving unit is stopped, and the target voltage control unit is based on the information corresponding to the current monitored temperature output from the temperature monitoring unit in the driving condition information. When the target voltage is determined and the monitor temperature is within the second temperature range higher than the first temperature range, the target temperature control unit determines the current monitor temperature in the drive condition information. Determines the target temperature based on the information corresponding to, the target voltage control unit determines the target voltage based on the information corresponding to the current monitor temperature of the drive condition information, the monitor temperature. Is within a third temperature range lower than the first temperature range, the target temperature control unit determines the target temperature based on the information corresponding to the current monitor temperature in the drive condition information. And the target voltage control unit determines the target voltage based on information corresponding to the current monitor temperature in the drive condition information.
 本発明の他の態様に係る光送信器の制御方法は、レーザ駆動電流に対応する第1の出力パワーのレーザ光を出力すると共に、前記第1の出力パワーに対応するモニタ電流を出力する半導体レーザと、前記半導体レーザから出力された前記レーザ光が光ファイバに入射するように前記光ファイバを保持する保持部と、前記保持部の温度に対応するモニタ温度を測定する温度モニタ部と、前記モニタ電流に対応するモニタ電圧をターゲット電圧に近づけるように、前記レーザ駆動電流を前記半導体レーザに供給するレーザ駆動部と、前記ターゲット電圧を前記レーザ駆動部に与えるターゲット電圧制御部と、前記半導体レーザを冷却又は加熱する第1の熱電素子と、前記第1の熱電素子を駆動する第1の熱電素子駆動部と、前記第1の熱電素子の温度をターゲット温度に近づける第1の駆動制御信号を前記第1の熱電素子駆動部に与えるターゲット温度制御部と、前記各モニタ温度における前記ターゲット電圧と前記ターゲット温度と前記光送信器の消費電力との関係の実測値に基づいて決められた駆動条件情報を、予め記憶する記憶部と、を備えた光送信器、の制御方法であって、前記モニタ温度が第1の温度範囲内にある場合には、前記第1の熱電素子駆動部による前記第1の熱電素子の駆動を停止させ、前記駆動条件情報のうちの前記温度モニタ部から出力されている現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記モニタ温度が前記第1の温度範囲より高い第2の温度範囲内にある場合には、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記モニタ温度が前記第1の温度範囲より低い第3の温度範囲内にある場合には、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定することを特徴とする。 A method for controlling an optical transmitter according to another aspect of the present invention is a semiconductor that outputs laser light having a first output power corresponding to a laser drive current and outputs a monitor current corresponding to the first output power. A laser, a holding unit that holds the optical fiber so that the laser light output from the semiconductor laser is incident on the optical fiber, a temperature monitor unit that measures a monitor temperature corresponding to the temperature of the holding unit, and A laser drive unit that supplies the laser drive current to the semiconductor laser, a target voltage control unit that supplies the target voltage to the laser drive unit, and a semiconductor laser so that the monitor voltage corresponding to the monitor current approaches the target voltage. A first thermoelectric element that cools or heats the first thermoelectric element, a first thermoelectric element drive unit that drives the first thermoelectric element, and a first drive control signal that brings the temperature of the first thermoelectric element close to the target temperature. Target temperature control unit given to the first thermoelectric element drive unit, drive conditions determined based on measured values of the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter A method of controlling an optical transmitter including a storage unit that stores information in advance, wherein when the monitor temperature is within a first temperature range, the first thermoelectric element driving unit performs the The driving of the first thermoelectric element is stopped, the target voltage is determined based on the information corresponding to the current monitor temperature output from the temperature monitor unit in the drive condition information, and the monitor temperature is When in the second temperature range higher than the first temperature range, the target temperature is determined based on the information corresponding to the current monitor temperature in the driving condition information, If the target voltage is determined based on the information corresponding to the current monitor temperature, and the monitor temperature is within the third temperature range lower than the first temperature range, the drive condition information Characterized in that the target temperature is determined based on the information corresponding to the current monitor temperature, and the target voltage is determined based on the information corresponding to the current monitor temperature in the drive condition information. To do.
 本発明によれば、温度変化が生じた場合であっても、光ファイバを通して送信されるレーザ光の出力パワーを一定に維持することができるという効果がある。 According to the present invention, there is an effect that the output power of the laser light transmitted through the optical fiber can be maintained constant even when the temperature changes.
本発明の実施の形態1に係る光送信器の構成を概略的に示すブロック図である。1 is a block diagram schematically showing a configuration of an optical transmitter according to a first embodiment of the present invention. (A)から(F)は、実施の形態1に係る光送信器の動作を示すグラフである。(A) to (F) are graphs showing the operation of the optical transmitter according to the first embodiment. 実施の形態1に係る光送信器の動作を示すフローチャートである。4 is a flowchart showing the operation of the optical transmitter according to the first embodiment. 本発明の実施の形態2に係る光送信器の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the optical transmitter which concerns on Embodiment 2 of this invention. (A)から(F)は、実施の形態2に係る光送信器の動作を示すグラフである。(A) to (F) are graphs showing the operation of the optical transmitter according to the second embodiment. 実施の形態1に係る光送信器の動作を示すフローチャートである。4 is a flowchart showing the operation of the optical transmitter according to the first embodiment. 実施の形態1及び2の変形例の光送信器のハードウェア構成の例を示す図である。FIG. 11 is a diagram showing an example of a hardware configuration of an optical transmitter according to a modification of the first and second embodiments.
 以下に、本発明の実施の形態に係る光送信器及びその制御方法を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、本発明の範囲内で種々の変更が可能である。 An optical transmitter and a control method thereof according to the embodiment of the present invention will be described below with reference to the drawings. The following embodiments are merely examples, and various modifications can be made within the scope of the present invention.
《1》実施の形態1.
《1-1》構成
 図1は、本発明の実施の形態1に係る光送信器1の構成を概略的に示すブロック図である。光送信器1は、例えば、光通信システムに光信号を送信する装置である。図1に示されるように、光送信器1は、光モジュール10と、モニタ電流検出部20と、レーザ駆動部30と、メモリ40と、制御部50と、熱電素子駆動部60とを備えている。また、光送信器1は、光モジュール10、モニタ電流検出部20、レーザ駆動部30、メモリ40、制御部50、及び熱電素子駆動部60、を収容する装置筐体1aを備えている。モニタ電流検出部20は、レーザ駆動部30の一部であってもよい。モニタ電流検出部20、レーザ駆動部30、制御部50、及び熱電素子駆動部60は、電気回路によって構成されることができる。
<<1>> Embodiment 1.
<<1-1>> Configuration FIG. 1 is a block diagram schematically showing a configuration of the optical transmitter 1 according to the first embodiment of the present invention. The optical transmitter 1 is, for example, a device that transmits an optical signal to an optical communication system. As shown in FIG. 1, the optical transmitter 1 includes an optical module 10, a monitor current detection unit 20, a laser drive unit 30, a memory 40, a control unit 50, and a thermoelectric element drive unit 60. There is. The optical transmitter 1 also includes a device housing 1a that houses the optical module 10, the monitor current detection unit 20, the laser drive unit 30, the memory 40, the control unit 50, and the thermoelectric element drive unit 60. The monitor current detector 20 may be a part of the laser driver 30. The monitor current detection unit 20, the laser drive unit 30, the control unit 50, and the thermoelectric element drive unit 60 can be configured by an electric circuit.
 光モジュール10は、半導体レーザ11と、熱電素子12と、サーミスタ13と、これらを収容するモジュール筐体15とを備えている。熱電素子12は、半導体レーザ11を冷却又は加熱する温度調節素子である。熱電素子12は、例えば、ペルチェ素子である。熱電素子12は、半導体レーザ11の近傍に配置されている。半導体レーザ11の近傍は、半導体レーザ11に接触している状態、半導体レーザ11に他の部材を介して接触している状態、及び半導体レーザ11から僅かに離れている情報を含む。熱電素子12は、「第1の熱電素子」とも言う。熱電素子12とサーミスタ13とは、温度調節部としての熱電素子部14を構成している。熱電素子駆動部60は、制御部50から提供される駆動制御信号C1にしたがって、熱電素子12の温度をターゲット温度Tld[℃]に変更するように、熱電素子12に供給される熱電素子駆動電流Iteを変更する。熱電素子駆動部60は、「第1の熱電素子駆動部」とも言う。熱電素子駆動部60は、サーミスタ13の検出温度Ttを読み取り、検出温度Ttと半導体レーザ11がターゲットとしているターゲット温度Tld[℃]との差に基づく熱電素子駆動電流Iteを熱電素子12に供給することで半導体レーザ11の温度を制御する。サーミスタ13は、熱電素子12及び半導体レーザ11の近傍に配置されている。したがって、サーミスタ13の検出温度Ttは、熱電素子12の温度及び半導体レーザ11の温度を示しているとみなすことができる。 The optical module 10 includes a semiconductor laser 11, a thermoelectric element 12, a thermistor 13, and a module housing 15 that houses these. The thermoelectric element 12 is a temperature adjusting element that cools or heats the semiconductor laser 11. The thermoelectric element 12 is, for example, a Peltier element. The thermoelectric element 12 is arranged near the semiconductor laser 11. The vicinity of the semiconductor laser 11 includes the state of being in contact with the semiconductor laser 11, the state of being in contact with the semiconductor laser 11 via another member, and the information slightly separated from the semiconductor laser 11. The thermoelectric element 12 is also referred to as a "first thermoelectric element". The thermoelectric element 12 and the thermistor 13 constitute a thermoelectric element section 14 as a temperature adjusting section. The thermoelectric element drive unit 60 supplies the thermoelectric element drive current to the thermoelectric element 12 so as to change the temperature of the thermoelectric element 12 to the target temperature Tld [°C] according to the drive control signal C1 provided from the control unit 50. Change Ite. The thermoelectric element driving unit 60 is also referred to as a “first thermoelectric element driving unit”. The thermoelectric element drive unit 60 reads the detected temperature Tt of the thermistor 13 and supplies the thermoelectric element drive current Ite to the thermoelectric element 12 based on the difference between the detected temperature Tt and the target temperature Tld [° C.] targeted by the semiconductor laser 11. Thus, the temperature of the semiconductor laser 11 is controlled. The thermistor 13 is arranged near the thermoelectric element 12 and the semiconductor laser 11. Therefore, the detected temperature Tt of the thermistor 13 can be regarded as indicating the temperature of the thermoelectric element 12 and the temperature of the semiconductor laser 11.
 例えば、熱電素子駆動部60は、サーミスタ13の検出温度Ttを読み取り、検出温度Ttと熱電素子12のターゲット温度Tld[℃]との差が大きいほど、大きい熱電素子駆動電流Iteを流すことができる。ただし、熱電素子12の駆動制御方法は、熱電素子12の温度及び半導体レーザ11の温度をターゲット温度Tld[℃]に近づける制御方法であれば、上記した制御方法に限定されない。 For example, the thermoelectric element drive unit 60 reads the detected temperature Tt of the thermistor 13, and the larger the difference between the detected temperature Tt and the target temperature Tld [° C.] of the thermoelectric element 12, the larger the thermoelectric element drive current Ite can flow. .. However, the drive control method of the thermoelectric element 12 is not limited to the above control method as long as it is a control method that brings the temperature of the thermoelectric element 12 and the temperature of the semiconductor laser 11 close to the target temperature Tld [° C.].
 モジュール筐体15は、光ファイバ90が保持される保持部としての機能を持つ。モジュール筐体15に光ファイバ90が保持されることによって、半導体レーザ11の光出射面から出力されるレーザ光L1が光ファイバ90の光入射端としての端部に向かって進む。このように、半導体レーザ11の光出射面と光ファイバ90の端部とは、予め決められた位置関係を持つことによって、光学的に結合される。 The module housing 15 has a function as a holding unit that holds the optical fiber 90. By holding the optical fiber 90 in the module housing 15, the laser light L1 output from the light emitting surface of the semiconductor laser 11 advances toward the end of the optical fiber 90 as the light incident end. In this way, the light emitting surface of the semiconductor laser 11 and the end of the optical fiber 90 are optically coupled by having a predetermined positional relationship.
 半導体レーザ11は、レーザ光を発生させるレーザ発光素子としてのレーザダイオード(LD)と、レーザ光の一部を検出してレーザ光L1の出力パワーP1[dB]に対応するモニタ電流Imを出力する光検出素子としてのPDとを有している。レーザ光L1の出力パワーは、半導体レーザ11から出力されたレーザ光L1の出力パワーP1[dB]である。半導体レーザ11から出力されたレーザ光L1の出力パワーP1[dB]は、「第1の出力パワー」とも言う。半導体レーザ11では、温度によって光出力の変換効率が変化する。半導体レーザ11の変換効率は、半導体レーザ11が高温になるほど低下し、低温になるほど向上する。なお、光送信器1は、送信情報に応じて半導体レーザ11から出力されるレーザ光L1を変調する光変調部を備えてもよい。 The semiconductor laser 11 outputs a monitor current Im corresponding to the output power P1 [dB] of the laser light L1 by detecting a part of the laser light (LD) as a laser light emitting element that generates a laser light. It has PD as a photodetector. The output power of the laser light L1 is the output power P1 [dB] of the laser light L1 output from the semiconductor laser 11. The output power P1 [dB] of the laser beam L1 output from the semiconductor laser 11 is also referred to as “first output power”. In the semiconductor laser 11, the conversion efficiency of light output changes depending on the temperature. The conversion efficiency of the semiconductor laser 11 decreases as the temperature of the semiconductor laser 11 increases, and improves as the temperature decreases. The optical transmitter 1 may include an optical modulator that modulates the laser light L1 output from the semiconductor laser 11 according to the transmission information.
 半導体レーザ11から出力されたレーザ光L1は、光ファイバ90を通して光通信システムを構成する光ネットワークに送信される。半導体レーザ11から光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]は、トラッキングエラーによって生じる出力パワーロスL[dB]によって、半導体レーザ11から出力されたレーザ光L1の出力パワーP1[dB]よりも低下している。出力パワーP1a[dBm]は、「第2の出力パワー」とも言う。実施の形態1に係る光送信器1は、トラッキングエラーによって生じる出力パワーロスL[dB]が変動した場合であっても、実測によって予め取得された各光送信器に固有の実測データ(すなわち、製品ごとの実測データ)に基づく駆動条件情報D1を用いた制御によって、光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]を一定に維持することができるように構成されている。駆動条件情報D1は、出力パワーロスL[dB]の補償に用いられるので、「補償プロファイル」とも言う。 The laser light L1 output from the semiconductor laser 11 is transmitted to the optical network forming the optical communication system through the optical fiber 90. The output power P1a [dBm] of the laser light transmitted from the semiconductor laser 11 through the optical fiber 90 is the output power P1 [dB] of the laser light L1 output from the semiconductor laser 11 due to the output power loss L [dB] caused by the tracking error. ] Is lower than. The output power P1a [dBm] is also referred to as “second output power”. In the optical transmitter 1 according to the first embodiment, even when the output power loss L [dB] caused by a tracking error varies, the actual measurement data (that is, the product) specific to each optical transmitter that is acquired in advance by actual measurement. The output power P1a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant by the control using the drive condition information D1 based on the actual measurement data). The driving condition information D1 is used for compensation of the output power loss L [dB], and is also referred to as “compensation profile”.
 一般に、レーザ駆動電流Id[mA]の供給によって消費される電力は、熱電素子駆動部60による熱電素子駆動電流Iteの供給によって消費される電力よりも小さい。したがって、実施の形態1に係る光送信器1は、APCによってレーザ光の出力パワーP1a[dBm]を一定に維持することができる温度範囲においては、APCによるレーザ駆動電流Id[mA]の制御を行い、APCだけではレーザ光の出力パワーP1a[dBm]を一定に維持することができない又はレーザ光の中心波長λ[nm]が所望の波長範囲から外れる温度範囲においては、APCによるレーザ駆動電流Id[mA]の制御と熱電素子12を用いた温度制御とを行うように構成されている。 Generally, the power consumed by supplying the laser driving current Id [mA] is smaller than the power consumed by supplying the thermoelectric element driving current Ite by the thermoelectric element driving unit 60. Therefore, the optical transmitter 1 according to the first embodiment controls the laser drive current Id [mA] by the APC in the temperature range in which the output power P1a [dBm] of the laser light can be kept constant by the APC. Then, the output power P1a [dBm] of the laser light cannot be maintained constant only by APC, or in the temperature range in which the central wavelength λ [nm] of the laser light deviates from the desired wavelength range, the laser drive current Id by APC It is configured to perform [mA] control and temperature control using the thermoelectric element 12.
 モニタ電流検出部20は、半導体レーザ11のPDから出力されるモニタ電流Imを受け取り、モニタ電流Imに対応するモニタ電圧Vmを出力する電気回路である。モニタ電圧Vmは、モニタ電流Imに比例する。 The monitor current detection unit 20 is an electric circuit that receives the monitor current Im output from the PD of the semiconductor laser 11 and outputs the monitor voltage Vm corresponding to the monitor current Im. The monitor voltage Vm is proportional to the monitor current Im.
 レーザ駆動部30は、フィードバック制御を行うAPC部31を有する電気回路である。APC部31は、ターゲット電圧比較部32を有している。ターゲット電圧比較部32は、モニタ電流Imに対応するモニタ電圧Vm[V]と基準電圧であるターゲット電圧Vr[V]との比較を行う。APC部31は、モニタ電圧Vmをターゲット電圧Vr[V]に近づけるように、レーザ駆動電流Id[mA]を制御する。ターゲット電圧Vr[V]は、制御部50によって提供される。実施の形態1において、ターゲット電圧Vr[V]は、実測によって予め取得された各光送信器に固有の実測データに基づく駆動条件情報D1と、後述する温度モニタ部51によって計測されるモニタ温度Ta[℃]とに基づいて決定される。また、ターゲット電圧Vr[V]は、駆動条件情報D1と、温度モニタ部51によって計測されるモニタ温度Ta[℃]とに基づいて、変更される。 The laser drive unit 30 is an electric circuit having an APC unit 31 that performs feedback control. The APC unit 31 has a target voltage comparison unit 32. The target voltage comparison unit 32 compares the monitor voltage Vm [V] corresponding to the monitor current Im with the target voltage Vr [V] that is the reference voltage. The APC unit 31 controls the laser drive current Id [mA] so that the monitor voltage Vm approaches the target voltage Vr [V]. The target voltage Vr [V] is provided by the control unit 50. In the first embodiment, the target voltage Vr [V] is the driving condition information D1 based on the actual measurement data unique to each optical transmitter acquired in advance by measurement, and the monitor temperature Ta measured by the temperature monitor unit 51 described later. [° C.] and determined. The target voltage Vr [V] is changed based on the driving condition information D1 and the monitor temperature Ta [°C] measured by the temperature monitor 51.
 実施の形態1においては、制御部50によって変更されるターゲット電圧Vr[V]を用いて行われるAPCと、制御部50によって変更されるターゲット温度Tld[℃]を用いて行われる熱電素子12の駆動制御とにより、外気の温度変化などに応じて変化するトラッキングエラーの補償が行われる。また、実施の形態1においては、制御部50は、複数の温度範囲の各々において、互いに異なる方法で、トラッキングエラーの補償を行う。 In the first embodiment, the APC performed using the target voltage Vr [V] changed by the control unit 50 and the thermoelectric element 12 performed using the target temperature Tld [° C.] changed by the control unit 50. The drive control compensates for a tracking error that changes according to changes in the temperature of the outside air. Further, in the first embodiment, the control unit 50 compensates for the tracking error by different methods in each of the plurality of temperature ranges.
 メモリ40は、情報を記憶する不揮発性の記憶部である。メモリ40は、例えば、半導体記憶装置である。メモリ40は、制御部50によって使用される、各光送信器についての実測データ、すなわち、製品ごとの実測データに基づく各種の情報を予め記憶している。メモリ40は、温度モニタ部51によって測定されたモニタ温度Ta[℃]の各々における、ターゲット温度Tld[℃]とターゲット電圧Vr[V]と光送信器1の消費電力[W]との関係を示す駆動条件情報D1を、予め記憶している。メモリ40は、温度モニタ部51によって測定されたモニタ温度Ta[℃]の各々におけるレーザ光L1の中心波長λ[nm]に関する情報を、予め記憶してもよい。 The memory 40 is a non-volatile storage unit that stores information. The memory 40 is, for example, a semiconductor memory device. The memory 40 stores in advance measurement data for each optical transmitter, which is used by the control unit 50, that is, various information based on the measurement data for each product. The memory 40 shows the relationship among the target temperature Tld [°C], the target voltage Vr [V], and the power consumption [W] of the optical transmitter 1 at each of the monitor temperatures Ta [°C] measured by the temperature monitor unit 51. The drive condition information D1 shown is stored in advance. The memory 40 may store in advance information about the center wavelength λ [nm] of the laser light L1 at each of the monitor temperatures Ta [° C.] measured by the temperature monitor unit 51.
 複数のモニタ温度Ta[℃]の各々におけるレーザ光L1の中心波長λ[nm]に関する情報は、例えば、以下の手順(1)から(5)で取得される。
(1)図1に示される光ファイバ90に波長測定器を接続する。
(2)光送信器1が、レーザ光L1を出力する。
(3)光送信器1の温度を変更することで、温度モニタ部51で測定されるモニタ温度Ta[℃]を変更する。
(4)複数のモニタ温度Ta[℃]の各々において、波長測定器が検出する波長を検出する。
(5)光送信器1を停止し、波長測定器を取り外し、モニタ温度Ta[℃]とレーザ光の波長との関係を示す情報を駆動条件情報D1としてメモリ40に記録する。
The information on the central wavelength λ [nm] of the laser light L1 at each of the plurality of monitor temperatures Ta [° C.] is acquired, for example, by the following procedures (1) to (5).
(1) A wavelength measuring device is connected to the optical fiber 90 shown in FIG.
(2) The optical transmitter 1 outputs the laser beam L1.
(3) By changing the temperature of the optical transmitter 1, the monitor temperature Ta [°C] measured by the temperature monitor unit 51 is changed.
(4) The wavelength detected by the wavelength measuring device is detected at each of the plurality of monitor temperatures Ta [° C.].
(5) The optical transmitter 1 is stopped, the wavelength measuring device is removed, and information indicating the relationship between the monitor temperature Ta [°C] and the wavelength of the laser light is recorded in the memory 40 as the driving condition information D1.
 また、複数のモニタ温度Ta[℃]の各々におけるターゲット温度Tld[℃]とターゲット電圧Vr[V]と光送信器1の消費電力[W]との関係を示す情報は、例えば、以下の手順(11)から(15)で取得される。
(11)図1に示される光ファイバ90に光パワーを測定することができる測定器であるパワーメータを接続する。
(12)光送信器1が、レーザ光L1を出力する。
(13)光送信器1の温度を変更することで、温度モニタ部51で測定されるモニタ温度Ta[℃]を変更する。
(14)複数のモニタ温度Ta[℃]の各々において、パワーメータが測定する光パワーが一定に維持されるように、ターゲット温度Tld[℃]とターゲット電圧Vr[V]を設定し、ターゲット温度Tld[℃]とターゲット電圧Vr[V]の組み合わせの各々についての消費電力[W]を測定する。
(15)光送信器1を停止し、パワーメータを取り外し、モニタ温度Ta[℃]と、消費電力[W]を最小とするターゲット温度Tld[℃]及びターゲット電圧Vr[V]の組み合わせと、の関係を示す情報を駆動条件情報D1としてメモリ40に記録する。
Information indicating the relationship between the target temperature Tld [°C], the target voltage Vr [V], and the power consumption [W] of the optical transmitter 1 at each of the plurality of monitor temperatures Ta [°C] is, for example, the following procedure. It is acquired in (15) from (11).
(11) A power meter, which is a measuring instrument capable of measuring optical power, is connected to the optical fiber 90 shown in FIG.
(12) The optical transmitter 1 outputs the laser beam L1.
(13) By changing the temperature of the optical transmitter 1, the monitor temperature Ta [°C] measured by the temperature monitor unit 51 is changed.
(14) At each of the plurality of monitor temperatures Ta [°C], the target temperature Tld [°C] and the target voltage Vr [V] are set so that the optical power measured by the power meter is maintained constant. The power consumption [W] for each combination of Tld [° C.] and target voltage Vr [V] is measured.
(15) Stop the optical transmitter 1, remove the power meter, and combine the monitor temperature Ta [°C] with the target temperature Tld [°C] and the target voltage Vr [V] that minimize the power consumption [W], The information indicating the relationship is recorded in the memory 40 as the driving condition information D1.
 制御部50は、温度モニタ部51と、ターゲット電圧制御部52と、ターゲット温度制御部53と、光出力モニタ部54とを有している。温度モニタ部51は、光モジュール10の温度に対応する温度を計測することによってモニタ温度Ta[℃]を出力する。温度モニタ部51は、制御部50の外部に配置されてもよい。図1では、温度モニタ部51と光モジュール10とは離れて配置されているが、互いに接触して配置されてもよい。温度モニタ部51は、装置筐体1a内の温度を測定することで、光モジュール10の温度に対応する温度を測定することができる。ターゲット電圧制御部52は、APCによってトラッキングエラーを補償する際に使用されるターゲット電圧Vr[V]を決定する。ターゲット温度制御部53は、熱電素子駆動部60による熱電素子12の駆動制御に使用されるターゲット温度Tld[℃]を決定する。 The control unit 50 has a temperature monitor unit 51, a target voltage control unit 52, a target temperature control unit 53, and an optical output monitor unit 54. The temperature monitor unit 51 outputs the monitor temperature Ta [° C.] by measuring the temperature corresponding to the temperature of the optical module 10. The temperature monitor unit 51 may be arranged outside the control unit 50. In FIG. 1, the temperature monitor 51 and the optical module 10 are arranged separately, but they may be arranged in contact with each other. The temperature monitor unit 51 can measure the temperature inside the device housing 1a to measure the temperature corresponding to the temperature of the optical module 10. The target voltage control unit 52 determines the target voltage Vr [V] used when compensating for the tracking error by APC. The target temperature control unit 53 determines the target temperature Tld [° C.] used for driving control of the thermoelectric element 12 by the thermoelectric element driving unit 60.
 制御部50は、トラッキングエラーを補償するための制御を実行する。トラッキングエラーとは、光モジュール10内に配置された半導体レーザ11の光出射面とモジュール筐体15に保持された光ファイバ90の端部との相対位置によって決まる光学的な結合状態が、光モジュール10の温度変化に伴う熱膨張などによって変化することで生じる。言い換えれば、トラッキングエラーは、温度変化に伴う光学系の部品間の相対位置のズレによって生じる現象である。つまり、トラッキングエラーは、半導体レーザ11の光出射端の光軸と光ファイバ90の端部の光軸との位置ずれによるによって発生する。トラッキングエラーの発生時に、その補償をしない場合には、出力パワーロスL[dB]が増加して、半導体レーザ11から出力され光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]は低下する。 The control unit 50 executes control for compensating for tracking errors. The tracking error is an optical coupling state determined by the relative position between the light emitting surface of the semiconductor laser 11 arranged in the optical module 10 and the end of the optical fiber 90 held in the module housing 15. It is caused by the change of 10 due to the thermal expansion accompanying the temperature change. In other words, the tracking error is a phenomenon caused by the displacement of the relative position between the components of the optical system due to the temperature change. That is, the tracking error occurs due to the positional deviation between the optical axis of the light emitting end of the semiconductor laser 11 and the optical axis of the end of the optical fiber 90. When the tracking error is not compensated when the tracking error occurs, the output power loss L [dB] increases, and the output power P1a [dBm] of the laser light output from the semiconductor laser 11 and transmitted through the optical fiber 90 decreases. ..
 ターゲット電圧制御部52は、ターゲット電圧比較部32で使用されるターゲット電圧Vr[V]を、メモリ40に予め保持されている駆動条件情報D1を用いて変更する制御を繰り返し行う。ターゲット温度制御部53は、熱電素子12の駆動制御に使用されるターゲット温度Tld[℃]を、メモリ40に予め保持されている駆動条件情報D1を用いて変更する制御を繰り返し行う。駆動条件情報D1は、例えば、計算式、又は、ルックアップテーブル(LUT)としてメモリ40に記憶されている。つまり、ターゲット電圧制御部52は、温度モニタ部51が計測するモニタ温度Ta[℃]に基づいてターゲット電圧Vr[V]を適切な値に変更して、ターゲット電圧比較部32にターゲット電圧Vr[V]を提供する。また、ターゲット温度制御部53は、温度モニタ部51が計測するモニタ温度Ta[℃]に基づいてターゲット温度Tld[℃]を適切な値に変更することを指示する駆動制御信号C1を熱電素子駆動部60に提供する。つまり、制御部50は、温度モニタ部51によるモニタ温度Ta[℃]の出力に同期して、ターゲット電圧Vr[V]とターゲット温度Tld[℃]とを変更する可変制御を実行する。 The target voltage control unit 52 repeatedly performs control to change the target voltage Vr[V] used in the target voltage comparison unit 32 using the driving condition information D1 stored in the memory 40 in advance. The target temperature control unit 53 repeatedly performs control to change the target temperature Tld [° C.] used for drive control of the thermoelectric element 12 using the drive condition information D1 stored in the memory 40 in advance. The drive condition information D1 is stored in the memory 40 as a calculation formula or a look-up table (LUT), for example. That is, the target voltage control unit 52 changes the target voltage Vr [V] to an appropriate value based on the monitor temperature Ta [° C.] measured by the temperature monitoring unit 51, and then the target voltage comparison unit 32 sets the target voltage Vr [V]. V] is provided. Further, the target temperature control unit 53 drives the thermoelectric element by driving the drive control signal C1 instructing to change the target temperature Tld [°C] to an appropriate value based on the monitor temperature Ta [°C] measured by the temperature monitor 51. It is provided to the part 60. That is, the control unit 50 executes variable control for changing the target voltage Vr [V] and the target temperature Tld [°C] in synchronization with the output of the monitor temperature Ta [°C] by the temperature monitoring unit 51.
 APCに用いられるターゲット電圧Vr[V]及び熱電素子12の駆動制御に用いられるターゲット温度Tld[℃]を変化させる制御方法を採用する場合には、DDM(Digital Diagnostic Monitoring)に代表される一般的な光出力モニタ部は、光ファイバを通して出力されるレーザ光の出力パワーを正確に示す信号を出力することができない。これは、一般的な光出力モニタ部は、半導体レーザのモニタPDで検出されたモニタ電流に基づいて出力パワーを算出しているが、この出力パワーはトラッキングエラーの影響を考慮に入れていない値からである。そこで、実施の形態1に係る光送信器1における光出力モニタ部54は、予めメモリ40に記憶されている駆動条件情報D1を用いて、トラッキングエラーの影響を考慮に入れた出力パワーを求めている。したがって、実施の形態1における光出力モニタ部54は、光ファイバ90を通して出力されるレーザ光の出力パワーP1a[dBm]に近い値の出力パワーを示す信号を上位装置に提供することができる。 When adopting a control method that changes the target voltage Vr [V] used for APC and the target temperature Tld [°C] used for drive control of the thermoelectric element 12, a general method represented by DDM (Digital Diagnostic Monitoring) The optical output monitor unit cannot output a signal that accurately indicates the output power of the laser light output through the optical fiber. This is because the general optical output monitor unit calculates the output power based on the monitor current detected by the monitor PD of the semiconductor laser, but this output power is a value that does not take the influence of the tracking error into consideration. Because. Therefore, the optical output monitor unit 54 in the optical transmitter 1 according to the first embodiment uses the drive condition information D1 stored in the memory 40 in advance to obtain the output power in consideration of the influence of the tracking error. There is. Therefore, the optical output monitor unit 54 in the first embodiment can provide the host device with a signal indicating an output power close to the output power P1a [dBm] of the laser light output through the optical fiber 90.
《1-2》動作
 図2(A)から(F)は、実施の形態1に係る光送信器1の動作を示すグラフである。図2(A)から(F)のグラフは、実測値に基づくグラフである。図2(A)から(F)において、実線で描かれたグラフは、実施の形態1に係る光送信器1の動作を示し、破線で描かれたグラフは、比較例の光送信器の動作を示している。比較例の光送信器では、モニタ温度Ta[℃]の全範囲において、レーザ駆動部によるレーザ駆動電流の制御と熱電素子による半導体レーザの温度制御を行い、図2(C)に破線で示されるように、半導体レーザから出力されるレーザ光の出力パワーを一定にしている。
<<1-2>> Operation FIGS. 2A to 2F are graphs showing the operation of the optical transmitter 1 according to the first embodiment. The graphs of FIGS. 2A to 2F are graphs based on actual measurement values. 2A to 2F, the graph drawn by a solid line shows the operation of the optical transmitter 1 according to the first embodiment, and the graph drawn by a broken line shows the operation of the optical transmitter of the comparative example. Is shown. In the optical transmitter of the comparative example, the laser drive current is controlled by the laser drive unit and the temperature of the semiconductor laser is controlled by the thermoelectric element in the entire range of the monitor temperature Ta [° C.], and the dashed line is shown in FIG. Thus, the output power of the laser light output from the semiconductor laser is constant.
 図2(A)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1の消費電力[W]と比較例の光送信器の消費電力[W]とを示している。図2(B)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1から光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]と比較例の光送信器から光ファイバ90を通して送信されるレーザ光の出力パワー[dBm]とを示している。図2(C)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1の半導体レーザ11から出力されるレーザ光の出力パワーP1[dB]と比較例の光送信器の半導体レーザから出力されるレーザ光の出力パワー[dB]とを示している。図2(D)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1のレーザ駆動部30から出力されるレーザ駆動電流Id[mA]を示している。図2(E)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1の制御部50によって決定されるターゲット温度Tld[℃]を示している。図2(F)のグラフは、各モニタ温度Ta[℃]における、実施の形態1に係る光送信器1のトラッキングエラーによって生じる出力パワーロスL[dB]を示している。 The graph of FIG. 2A shows the power consumption [W] of the optical transmitter 1 according to the first embodiment and the power consumption [W] of the optical transmitter of the comparative example at each monitor temperature Ta [° C.]. ing. The graph of FIG. 2B shows the output power P1a [dBm] of the laser light transmitted from the optical transmitter 1 according to the first embodiment through the optical fiber 90 and the light of the comparative example at each monitor temperature Ta [° C.]. The output power [dBm] of the laser light transmitted from the transmitter through the optical fiber 90 is shown. The graph of FIG. 2C shows the output power P1 [dB] of the laser light output from the semiconductor laser 11 of the optical transmitter 1 according to the first embodiment and the light of the comparative example at each monitor temperature Ta [° C.]. The output power [dB] of the laser light output from the semiconductor laser of the transmitter is shown. The graph of FIG. 2D shows the laser drive current Id [mA] output from the laser drive unit 30 of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [° C.]. The graph in FIG. 2E shows the target temperature Tld [°C] determined by the controller 50 of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [°C]. The graph of FIG. 2F shows the output power loss L [dB] caused by the tracking error of the optical transmitter 1 according to the first embodiment at each monitor temperature Ta [° C.].
 比較例では、ターゲット電圧Vr[V]が固定でAPCが行われ、ターゲット温度Tld[℃]が固定で熱電素子が制御される。実施の形態1に係る光送信器1では、温度範囲TR1、温度範囲TR1より高い温度範囲TR2、温度範囲TR1より低い温度範囲TR3のそれぞれにおいて、異なる制御が行われる。実施の形態1において、温度範囲TR1は、「第1の温度範囲」とも言う。温度範囲TR2は、「第2の温度範囲」とも言う。温度範囲TR3は、「第3の温度範囲」とも言う。 In the comparative example, the target voltage Vr [V] is fixed and APC is performed, and the target temperature Tld [°C] is fixed and the thermoelectric element is controlled. In the optical transmitter 1 according to the first embodiment, different control is performed in each of the temperature range TR1, the temperature range TR2 higher than the temperature range TR1, and the temperature range TR3 lower than the temperature range TR1. In the first embodiment, temperature range TR1 is also referred to as “first temperature range”. The temperature range TR2 is also referred to as a "second temperature range". The temperature range TR3 is also referred to as a "third temperature range".
 実施の形態1においては、温度範囲TR1は、温度T2[℃]以上で、温度T3[℃]以下の範囲である。温度範囲TR2は、温度T3[℃]より高く、温度T4[℃]以下の範囲である。温度範囲TR3は、温度T1[℃]以上で、温度T2[℃]より低い範囲である。また、温度T1[℃]及び温度T4[℃]は、光送信器1の仕様書によって規定されている温度である。温度T1[℃]は、仕様温度最小値を示し、温度T4[℃]は、仕様温度最大値を示している。光送信器1の性能は、仕様温度最小値から仕様温度最大値までの範囲内において、保証されている。半導体レーザ11から出力されるレーザ光の中心波長λ[nm]は、温度によってシフトする。仕様温度最小値及び仕様温度最大値は、例えば、レーザ光の中心波長λ[nm]に基づいて定められる。つまり、仕様温度最小値から仕様温度最大値までの範囲内の温度環境で光送信器1を使用すれば、仕様書で決められた波長範囲内の中心波長λ[nm]、すなわち、所望の中心波長λ[nm]を持つレーザ光を出力することができる。 In the first embodiment, the temperature range TR1 is a temperature range above the temperature T2 [°C] and below the temperature T3 [°C]. The temperature range TR2 is a range higher than the temperature T3 [°C] and lower than the temperature T4 [°C]. The temperature range TR3 is a temperature range equal to or higher than the temperature T1 [° C.] and lower than the temperature T2 [° C.]. Further, the temperature T1 [° C.] and the temperature T4 [° C.] are temperatures specified by the specifications of the optical transmitter 1. The temperature T1 [° C.] indicates the minimum value of the specified temperature, and the temperature T4 [° C.] indicates the maximum value of the specified temperature. The performance of the optical transmitter 1 is guaranteed within the range from the minimum specification temperature to the maximum specification temperature. The central wavelength λ [nm] of the laser light output from the semiconductor laser 11 shifts depending on the temperature. The minimum specification temperature and the maximum specification temperature are determined, for example, based on the central wavelength λ [nm] of the laser light. That is, when the optical transmitter 1 is used in a temperature environment within the range from the minimum value of the specified temperature to the maximum value of the specified temperature, the center wavelength λ [nm] within the wavelength range determined by the specification, that is, the desired center Laser light having a wavelength λ [nm] can be output.
〈温度範囲TR1〉
 温度範囲TR1と温度範囲TR2との境界温度(すなわち、温度T3[℃])は、温度範囲TR1の上限温度である。温度範囲TR1の上限温度は、この上限温度において半導体レーザ11から出力されるレーザ光L1の中心波長λ[nm]又は温度範囲TR1の上限温度におけるレーザ駆動電流Id[mA]の上限値に基づいて決定された温度である。図2(D)に示されるように、実施の形態1においては、温度範囲TR1の上限温度は、この上限温度におけるレーザ駆動電流Id[mA]の上限値に基づいて決定されている。
<Temperature range TR1>
The boundary temperature between the temperature range TR1 and the temperature range TR2 (that is, the temperature T3 [° C.]) is the upper limit temperature of the temperature range TR1. The upper limit temperature of the temperature range TR1 is based on the center wavelength λ [nm] of the laser beam L1 output from the semiconductor laser 11 at this upper limit temperature or the upper limit value of the laser drive current Id [mA] at the upper limit temperature of the temperature range TR1. It is the determined temperature. As shown in FIG. 2D, in the first embodiment, the upper limit temperature of temperature range TR1 is determined based on the upper limit value of laser drive current Id [mA] at this upper limit temperature.
 温度範囲TR1と温度範囲TR3との境界温度は、温度範囲TR1の下限温度(すなわち、温度T2[℃])である。温度範囲TR1の下限温度は、この下限温度において半導体レーザ11から出力されるレーザ光L1の中心波長λ[nm]又は温度範囲TR1の下限温度におけるレーザ駆動電流Id[mA]の上限値に基づいて決定された温度である。実施の形態1においては、温度範囲TR1の下限温度は、この下限温度において半導体レーザ11から出力されるレーザ光L1の中心波長λ[nm]に基づいて決定されている。 The boundary temperature between the temperature range TR1 and the temperature range TR3 is the lower limit temperature of the temperature range TR1 (that is, the temperature T2 [° C.]). The lower limit temperature of the temperature range TR1 is based on the center wavelength λ [nm] of the laser beam L1 output from the semiconductor laser 11 at this lower limit temperature or the upper limit value of the laser drive current Id [mA] at the lower limit temperature of the temperature range TR1. It is the determined temperature. In the first embodiment, the lower limit temperature of temperature range TR1 is determined based on the center wavelength λ [nm] of laser light L1 output from semiconductor laser 11 at this lower limit temperature.
 温度モニタ部51から出力されている現在のモニタ温度Ta[℃]が温度範囲TR1内にある場合には、ターゲット温度制御部53は、熱電素子駆動部60による熱電素子12の駆動を停止させ、ターゲット電圧制御部52は、駆動条件情報D1のうちの現在のモニタ温度Ta[℃]に対応する情報に基づいてターゲット電圧Vr[V]を決定する。温度範囲TR1内では、図2(C)に示されるように半導体レーザ11から出力されるレーザ光L1の出力パワーP1[dB]は低いが、図2(F)に示されるように、出力パワーロスL[dB]も低い。このため、図2(B)に示されるように、光ファイバ90を通して送信されるレーザ光の光出力パワーP1a[dBm]を一定に維持することができる。また、温度範囲TR1内では、図2(E)に示されるように、比較的大きな駆動電力を要する熱電素子12を駆動していないので、図2(A)に示されるように、光送信器1の消費電力[W]は、比較例の光送信器の消費電力[W]より低い。 When the current monitor temperature Ta [° C.] output from the temperature monitor unit 51 is within the temperature range TR1, the target temperature control unit 53 stops the driving of the thermoelectric element 12 by the thermoelectric element driving unit 60, The target voltage control unit 52 determines the target voltage Vr [V] based on the information corresponding to the current monitor temperature Ta [°C] in the drive condition information D1. Within the temperature range TR1, the output power P1 [dB] of the laser beam L1 output from the semiconductor laser 11 is low as shown in FIG. 2C, but as shown in FIG. L[dB] is also low. Therefore, as shown in FIG. 2B, the optical output power P1a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant. Further, within the temperature range TR1, as shown in FIG. 2(E), the thermoelectric element 12 requiring relatively large driving power is not driven, so as shown in FIG. 2(A), the optical transmitter The power consumption [W] of 1 is lower than the power consumption [W] of the optical transmitter of the comparative example.
 温度範囲TR1では、熱電素子駆動部60による熱電素子12の駆動を停止させているので、半導体レーザ11の温度は変動する。一般に、半導体レーザ11から出力される変調されたレーザ光の発振波長は、約0.1nm/℃で変化する。このため、半導体レーザ11の発振波長、すなわち、中心波長λ[nm]が、一定の波長範囲内にある場合には、温度範囲TR1の制御が可能である。一定の波長範囲は、例えば、1575nm~1580nmの範囲である。 In the temperature range TR1, the driving of the thermoelectric element 12 by the thermoelectric element driving unit 60 is stopped, so the temperature of the semiconductor laser 11 changes. Generally, the oscillation wavelength of the modulated laser light output from the semiconductor laser 11 changes at about 0.1 nm/°C. Therefore, when the oscillation wavelength of the semiconductor laser 11, that is, the center wavelength λ [nm] is within a certain wavelength range, the temperature range TR1 can be controlled. The fixed wavelength range is, for example, a range of 1575 nm to 1580 nm.
〈温度範囲TR2〉
 温度モニタ部51から出力されている現在のモニタ温度Ta[℃]が温度範囲TR2内にある場合には、ターゲット温度制御部53は、駆動条件情報D1のうちの現在のモニタ温度Ta[℃]に対応する情報に基づいてターゲット温度Tld[℃]を決定し、ターゲット電圧制御部52は、駆動条件情報D1のうちの現在のモニタ温度Ta[℃]に対応する情報に基づいてターゲット電圧Vr[V]を決定する。このとき、制御部50のターゲット温度制御部53及びターゲット電圧制御部52は、光送信器1の消費電力[W]を最も小さくするターゲット温度Tld[℃]とターゲット電圧Vr[V]との組み合わせを選択することが望ましい。
<Temperature range TR2>
When the current monitor temperature Ta [°C] output from the temperature monitor 51 is within the temperature range TR2, the target temperature controller 53 causes the target monitor temperature Ta [°C] of the drive condition information D1. The target temperature Tld [°C] is determined based on the information corresponding to the target voltage Vr[, and the target voltage control unit 52 determines the target voltage Vr[ based on the information corresponding to the current monitor temperature Ta [°C] in the driving condition information D1. V] is determined. At this time, the target temperature control unit 53 and the target voltage control unit 52 of the control unit 50 combine the target temperature Tld [° C.] and the target voltage Vr [V] that minimize the power consumption [W] of the optical transmitter 1. It is desirable to select.
 温度範囲TR2内では、図2(E)に示されるように、モニタ温度Ta[℃]が高いほどターゲット温度Tld[℃]を低く設定して熱電素子12を駆動しており、また、ターゲット電圧Vr[V]を調整することで、図2(D)に示されるように、レーザ駆動電流Id[mA]をその上限値にする制御を行っている。このため、図2(B)に示されるように、光ファイバ90を通して送信されるレーザ光の光出力パワーP1a[dBm]を一定に維持することができる。また、温度範囲TR2内では、図2(E)に示されるように、熱電素子12を駆動しているが、レーザ駆動電流Id[mA]を上限値としているので、図2(A)に示されるように、光送信器1の消費電力[W]は、比較例の光送信器の消費電力[W]よりも低い。 In the temperature range TR2, as shown in FIG. 2(E), the higher the monitor temperature Ta[° C.] is, the lower the target temperature Tld[° C.] is set to drive the thermoelectric element 12, and the target voltage By adjusting Vr [V], the laser drive current Id [mA] is controlled to its upper limit value as shown in FIG. Therefore, as shown in FIG. 2B, the optical output power P1a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant. Further, within the temperature range TR2, as shown in FIG. 2(E), the thermoelectric element 12 is driven, but since the laser drive current Id [mA] is set as the upper limit value, it is shown in FIG. 2(A). As described above, the power consumption [W] of the optical transmitter 1 is lower than the power consumption [W] of the optical transmitter of the comparative example.
 例えば、図2(D)に示されるように、レーザ駆動電流Id[mA]が上限値である場合には、トラッキングエラーによって生じる出力パワーロスL[dB]の補償は、図2(E)に示されるように、熱電素子駆動部60による熱電素子12の駆動によって行われる。半導体レーザ11から出力されるレーザ光の出力パワーP1[dB]は、半導体レーザ11の温度が下がることで増加する。このため、ターゲット温度制御部53は、温度範囲TR1より高温側の温度範囲TR2において、モニタ温度Ta[℃]が上昇するほど、ターゲット温度Tld[℃]を下げるように制御を行う。ターゲット温度制御部53は、図2(E)の温度範囲TR2に示されるターゲット温度Tld[℃]の制御を、予め実測された実測データである駆動条件情報D1に基づいて行うことができる。また、ターゲット温度制御部53は、図2(E)の温度範囲TR2に示されるターゲット温度Tld[℃]の制御を、予め実測された実測データである駆動条件情報D1に基づいて行うことができる。実測データは、光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]を測定装置で測定しながら、ターゲット温度制御部53が、図2(F)に示される出力パワーロスL[dB]分の出力パワーを補うようにターゲット温度Tld[℃]を変化させることによって、得ることができる。 For example, as shown in FIG. 2D, when the laser drive current Id [mA] is the upper limit value, the compensation of the output power loss L [dB] caused by the tracking error is shown in FIG. 2E. As described above, it is performed by driving the thermoelectric element 12 by the thermoelectric element driving unit 60. The output power P1 [dB] of the laser light output from the semiconductor laser 11 increases as the temperature of the semiconductor laser 11 decreases. Therefore, the target temperature control unit 53 controls the target temperature Tld [°C] to decrease as the monitor temperature Ta [°C] increases in the temperature range TR2 higher than the temperature range TR1. The target temperature control unit 53 can control the target temperature Tld [° C.] shown in the temperature range TR2 of FIG. 2(E) based on the driving condition information D1 which is the actually measured data. Further, the target temperature control unit 53 can control the target temperature Tld [° C.] shown in the temperature range TR2 of FIG. 2(E) based on the driving condition information D1 which is the actually measured data. .. The actual measurement data is obtained by measuring the output power P1a [dBm] of the laser light transmitted through the optical fiber 90 with the measuring device while the target temperature control unit 53 outputs the output power loss L [dB] shown in FIG. Can be obtained by changing the target temperature Tld [° C.] so as to compensate the output power of
 ターゲット温度制御部53が、ターゲット温度Tld[℃]を設定することを指示する駆動制御信号C1を出力すると、熱電素子駆動部60は、熱電素子12がターゲット温度Tld[℃]になるよう熱電素子12に駆動電流Iteを供給する。ターゲット温度制御部53は、メモリ40に記憶されている駆動条件情報D1、すなわち、補償プロファイルを用いて、温度モニタ部51によって測定されるモニタ温度Ta[℃]に応じて、必要なターゲット温度Tld[℃]を決定する。 When the target temperature control unit 53 outputs the drive control signal C1 instructing to set the target temperature Tld [°C], the thermoelectric element driving unit 60 causes the thermoelectric element 12 to reach the target temperature Tld [°C]. The drive current Ite is supplied to 12. The target temperature control unit 53 uses the drive condition information D1 stored in the memory 40, that is, the compensation profile, according to the monitor temperature Ta [° C.] measured by the temperature monitor unit 51, and the required target temperature Tld. Determine [°C].
 温度範囲TR2においてモニタ温度Ta[℃]が、ターゲット温度Tld[℃]より高い場合には、ターゲット温度Tld[℃]が高いほど熱電素子駆動電流Iteが小さくなり消費電力[W]も小さくなる。このため、温度範囲TR2では、トラッキングエラーによって生じる出力パワーロスL[dB]が比較的小さい温度範囲TR1と温度範囲TR2の境界温度付近、すなわち、温度T3[℃]付近において、ターゲット温度Tld[℃]は、予め決められた最高値に設定される。このように、図2(E)に示されるように、温度T3[℃]付近において、ターゲット温度Tld[℃]を最大に設定することで、すなわち、ターゲット温度Tld[℃]をモニタ温度Ta[℃]に近い温度に設定することで、光送信器1の消費電力[W]を低減することができる。 When the monitor temperature Ta [°C] is higher than the target temperature Tld [°C] in the temperature range TR2, the higher the target temperature Tld [°C], the smaller the thermoelectric element drive current Ite and the smaller the power consumption [W]. Therefore, in the temperature range TR2, near the boundary temperature between the temperature range TR1 and the temperature range TR2 where the output power loss L[dB] caused by the tracking error is relatively small, that is, near the temperature T3[°C], the target temperature Tld[°C]. Is set to a predetermined maximum value. In this way, as shown in FIG. 2E, by setting the target temperature Tld [°C] to the maximum in the vicinity of the temperature T3 [°C], that is, the target temperature Tld [°C] is set to the monitor temperature Ta [. By setting the temperature close to [° C.], the power consumption [W] of the optical transmitter 1 can be reduced.
 また、図2(E)に示されるように、温度範囲TR2では、温度T3[℃]より高温になるにつれて、トラッキングエラーによって生じる出力パワーロスL[dB]が大きくなるため、出力パワーロスL[dB]の分だけターゲット温度Tld[℃]を下げることで、補償が行われる。 Further, as shown in FIG. 2E, in the temperature range TR2, the output power loss L[dB] caused by the tracking error increases as the temperature becomes higher than the temperature T3[° C.], and thus the output power loss L[dB]. By lowering the target temperature Tld [° C.] by the amount, compensation is performed.
 このように、ターゲット温度Tld[℃]をモニタ温度Ta[℃]に応じて変更できるようにするための補償プロファイルを、メモリ40に記録することで、モニタ温度Ta[℃]に応じてターゲット温度Tld[℃]を変更する処理が可能となる。つまり、光送信器1は、トラッキングエラーによって生じる出力パワーロスL[dB]を補償するようにターゲット温度Tld[℃]を徐々に下げることで、最小の消費電力[W]で、光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]を一定に維持することができる。 In this way, by recording the compensation profile for changing the target temperature Tld [°C] according to the monitor temperature Ta [°C] in the memory 40, the target temperature according to the monitor temperature Ta [°C] is recorded. A process for changing Tld [°C] is possible. That is, the optical transmitter 1 gradually lowers the target temperature Tld [° C.] so as to compensate for the output power loss L [dB] caused by the tracking error, and transmits through the optical fiber 90 with the minimum power consumption [W]. The output power P1a [dBm] of the generated laser light can be maintained constant.
 中心波長λ[nm]が仕様書で規定されている波長範囲の限界値になったときに、制御部50は、熱電素子駆動部60をONにして熱電素子12を駆動し、光ファイバ90から出力されるレーザ光の中心波長λ[nm]を波長測定器で測定しながら、温度範囲TR2でのターゲット温度Tld[℃]を最大値から徐々に下げていき、中心波長λ[nm]が波長範囲を満足する最大のターゲット温度Tld[℃]になるように、熱電素子駆動部60を制御する。制御部50は、レーザ駆動電流Id[mA]が上限値に達していない場合には、出力パワーP1a[dBm]を確認し、所望の出力パワーとなるようAPCのターゲット電圧Vr[V]を制御する。なお、レーザ駆動電流Id[mA]が上限値に達する前に、中心波長λ[nm]が仕様書で規定されている波長範囲の限界値に達した場合は、制御部50は、レーザ駆動電流Id[mA]を変更するAPCと、ターゲット温度Tld[℃]の制御とによって、出力パワーロスL[dB]の補償を行う。 When the central wavelength λ [nm] reaches the limit value of the wavelength range specified in the specification, the control unit 50 turns on the thermoelectric element driving unit 60 to drive the thermoelectric element 12, and the optical fiber 90 While measuring the center wavelength λ [nm] of the output laser light with a wavelength measuring device, the target temperature Tld [°C] in the temperature range TR2 is gradually decreased from the maximum value, and the center wavelength λ [nm] is the wavelength. The thermoelectric element drive unit 60 is controlled so that the maximum target temperature Tld [° C.] that satisfies the range is reached. When the laser drive current Id [mA] does not reach the upper limit value, the control unit 50 confirms the output power P1a [dBm] and controls the target voltage Vr [V] of the APC so as to obtain a desired output power. To do. If the central wavelength λ [nm] reaches the limit value of the wavelength range defined in the specification before the laser drive current Id [mA] reaches the upper limit value, the control unit 50 causes the laser drive current The output power loss L [dB] is compensated by APC that changes Id [mA] and control of the target temperature Tld [°C].
 つまり、温度範囲TR2における出力パワーロスL[dB]の補償は、APCのターゲット電圧Vr[V]を上げることによる補償を先に行い、APCのターゲット電圧Vr[V]を上げることで行われる補償では、出力パワーロスL[dB]を補償できない場合に、図2(E)に示されるように、熱電素子駆動部60を用いてターゲット温度Tld[℃]をモニタ温度Ta[℃]に追従させる制御を行う。なお、レーザ駆動電流Id[mA]が上限値に達し、レーザ光の中心波長λ[nm]が仕様書で規定されている波長範囲の限界値になったときは、図2(B)に示されるように出力パワーP2a[dBm]が一定になり且つ中心波長λ[nm]が仕様書で規定されている波長範囲内になるように、ターゲット温度Tld[℃]を制御する。 That is, the output power loss L [dB] in the temperature range TR2 is compensated by increasing the target voltage Vr [V] of the APC first, and not by increasing the target voltage Vr [V] of the APC. When the output power loss L [dB] cannot be compensated, control for making the target temperature Tld [°C] follow the monitor temperature Ta [°C] by using the thermoelectric element driving unit 60 as shown in FIG. To do. Note that when the laser drive current Id [mA] reaches the upper limit and the central wavelength λ [nm] of the laser light reaches the limit value of the wavelength range specified in the specification, it is shown in FIG. As described above, the target temperature Tld [° C.] is controlled so that the output power P2a [dBm] becomes constant and the center wavelength λ [nm] falls within the wavelength range specified in the specifications.
〈温度範囲TR3〉
 温度モニタ部51によって測定される現在のモニタ温度Ta[℃]が温度範囲TR3内にある場合には、ターゲット温度制御部53は、駆動条件情報D1のうちの現在のモニタ温度Ta[℃]に対応する情報に基づいてターゲット温度Tld[℃]を決定し、ターゲット電圧制御部52は、駆動条件情報D1のうちの現在のモニタ温度Ta[℃]に対応する情報に基づいてターゲット電圧Vr[V]を決定する。このとき、制御部50のターゲット温度制御部53及びターゲット電圧制御部52は、消費電力[W]を最も小さくするターゲット温度Tld[℃]とターゲット電圧Vr[V]との組み合わせを選択する。
<Temperature range TR3>
When the current monitor temperature Ta [°C] measured by the temperature monitor unit 51 is within the temperature range TR3, the target temperature control unit 53 sets the current monitor temperature Ta [°C] in the drive condition information D1. The target temperature Tld [°C] is determined based on the corresponding information, and the target voltage control unit 52 determines the target voltage Vr [V] based on the information corresponding to the current monitor temperature Ta [°C] in the driving condition information D1. ] Is decided. At this time, the target temperature control unit 53 and the target voltage control unit 52 of the control unit 50 select the combination of the target temperature Tld [° C.] and the target voltage Vr [V] that minimizes the power consumption [W].
 温度範囲TR3内では、図2(E)に示されるように、ターゲット温度Tld[℃]を低くして熱電素子12を駆動しており、ターゲット電圧Vr[V]を調整することで、図2(D)に示されるように、レーザ駆動電流Id[mA]をその上限値又は上限値の近傍にする制御を行っているので、図2(B)に示されるように、光ファイバ90を通して送信されるレーザ光の光出力パワーP1a[dBm]を一定に維持することができる。また、温度範囲TR3内では、図2(E)に示されるように、熱電素子12を駆動しているが、レーザ駆動電流Id[mA]を上限値又は上限値の近傍にしているので、図2(A)に示されるように、光送信器1の消費電力[W]は、比較例の光送信器の消費電力[W]よりも低い。 Within the temperature range TR3, as shown in FIG. 2(E), the target temperature Tld [° C.] is lowered to drive the thermoelectric element 12, and the target voltage Vr [V] is adjusted. As shown in (D), since the laser drive current Id [mA] is controlled to the upper limit value or in the vicinity of the upper limit value, transmission is performed through the optical fiber 90 as shown in FIG. 2B. The optical output power P1a [dBm] of the generated laser light can be maintained constant. In the temperature range TR3, as shown in FIG. 2(E), the thermoelectric element 12 is driven, but the laser drive current Id [mA] is set to the upper limit value or in the vicinity of the upper limit value. As shown in FIG. 2A, the power consumption [W] of the optical transmitter 1 is lower than the power consumption [W] of the optical transmitter of the comparative example.
 図2(B)に破線で示される出力パワーロスL[dB]の影響は、比較例の光送信器から光ファイバを通して送信されるレーザ光の出力パワーから確認することが可能である。しかし、図2(C)に破線で示されるように、出力パワーロスL[dB]の影響は、比較例の光送信器の半導体レーザから出力されるレーザ光の出力パワーからは、知ることができない。 The influence of the output power loss L [dB] shown by the broken line in FIG. 2B can be confirmed from the output power of the laser light transmitted from the optical transmitter of the comparative example through the optical fiber. However, as indicated by the broken line in FIG. 2C, the effect of the output power loss L [dB] cannot be known from the output power of the laser light output from the semiconductor laser of the optical transmitter of the comparative example. ..
 実施の形態1に係る光送信器1では、図2(F)に示される出力パワーロスL[dB]を補償するために、複数のモニタ温度Ta[℃]の各々におけるトラッキングエラーによって生じる出力パワーロスL[dB]の影響を含む実測データを、製品ごとに、予め取得する。実測データの取得は、製造工程における調整段階において、製品ごとに行われる。例えば、光ファイバ90を通して出力されるレーザ光の出力パワーP1a[dBm]を測定しながら、ターゲット電圧制御部52が、図2(F)に示される出力パワーロスL[dB]を補償するように、ターゲット電圧比較部32に提供されるターゲット電圧Vr[V]を変化させることによって、図2(B)に実線で示されるグラフのように、トラッキングエラーが補償された出力パワーP1a[dBm]、及びターゲット電圧Vr[V]を得ることができる。 In the optical transmitter 1 according to the first embodiment, in order to compensate the output power loss L [dB] shown in FIG. 2(F), the output power loss L caused by the tracking error at each of the plurality of monitor temperatures Ta [° C.] Actual measurement data including the influence of [dB] is acquired in advance for each product. The actual measurement data is acquired for each product at the adjustment stage in the manufacturing process. For example, while measuring the output power P1a [dBm] of the laser light output through the optical fiber 90, the target voltage control unit 52 compensates the output power loss L [dB] shown in FIG. By changing the target voltage Vr [V] provided to the target voltage comparison unit 32, as shown by the solid line in FIG. 2B, the output power P1a [dBm] in which the tracking error is compensated, and The target voltage Vr [V] can be obtained.
 例えば、トラッキングエラーによって生じる出力パワーロスL[dB]が発生し、出力パワーP1a[dBm]が所望の出力パワーより低くなる場合は、ターゲット電圧制御部52は、実測データに基づく駆動条件情報D1を用いて、温度変化に起因するトラッキングエラーによって生じる出力パワーロスL[dB]を補償するようにターゲット電圧Vr[V]を上げてレーザ駆動電流Id[mA]を大きくする。具体的には、ターゲット電圧制御部52は、光モジュール10の温度に対応したモニタ温度Ta[℃]から、温度変化に起因するトラッキングエラーによって生じる出力パワーロスL[dB]に基づいてターゲット電圧Vr[V]を決定し、ターゲット電圧Vr[V]をターゲット電圧比較部32に通知する。APC部31は、ターゲット電圧比較部32が受け取ったターゲット電圧Vr[V]に基づいてレーザ駆動電流Id[mA]を制御する。このような制御により、光送信器1は、図2(B)に実線で示されるように、光ファイバ90を通して所望の出力パワーP1a[dBm]のレーザ光を出力することができる。 For example, when the output power loss L [dB] caused by the tracking error occurs and the output power P1a [dBm] becomes lower than the desired output power, the target voltage control unit 52 uses the driving condition information D1 based on the actual measurement data. Then, the target voltage Vr [V] is increased and the laser drive current Id [mA] is increased so as to compensate the output power loss L [dB] caused by the tracking error caused by the temperature change. Specifically, the target voltage control unit 52 starts from the monitor temperature Ta [° C.] corresponding to the temperature of the optical module 10 based on the output power loss L [dB] caused by the tracking error caused by the temperature change, and outputs the target voltage Vr [ V] is determined and the target voltage Vr [V] is notified to the target voltage comparison unit 32. The APC unit 31 controls the laser drive current Id [mA] based on the target voltage Vr [V] received by the target voltage comparison unit 32. By such control, the optical transmitter 1 can output a laser beam having a desired output power P1a [dBm] through the optical fiber 90 as shown by the solid line in FIG.
 また、温度範囲TR3においてモニタ温度Ta[℃]がターゲット温度Tld[℃]より低い場合、ターゲット温度Tld[℃]が低いほど熱電素子駆動電流Iteが小さくなり消費電力[W]も小さくなる。このため、温度範囲TR3では、熱電素子駆動電流Iteを、中心波長λ[nm]が所望の波長の範囲内になり、且つ、最小のターゲット温度Tld[℃]に保つことで、光送信器1の消費電力[W]を最小にすることができる。各モニタ温度Ta[℃]における補償プロファイルの記録は、半導体レーザ11の自己発熱と熱電素子12の自己発熱を考慮して、温度が安定した後に行うことが望ましい。また、各モニタ温度Ta[℃]における補償プロファイルの記録は、温度安定化後に複数回行うことでが、精度向上の観点から望ましい。 When the monitor temperature Ta [°C] is lower than the target temperature Tld [°C] in the temperature range TR3, the lower the target temperature Tld [°C], the smaller the thermoelectric element drive current Ite and the smaller the power consumption [W]. Therefore, in the temperature range TR3, the thermoelectric element drive current Ite is kept at the minimum target temperature Tld [° C.] with the central wavelength λ [nm] within the desired wavelength range, and thus the optical transmitter 1 Power consumption [W] can be minimized. The recording of the compensation profile at each monitor temperature Ta [° C.] is preferably performed after the temperature becomes stable in consideration of the self-heating of the semiconductor laser 11 and the self-heating of the thermoelectric element 12. Further, it is desirable from the viewpoint of improving accuracy that the compensation profile is recorded at each monitor temperature Ta [° C.] a plurality of times after temperature stabilization.
 このように複数のモニタ温度Ta[℃]の各々におけるAPCのターゲット電圧Vr[V]とターゲット温度Tld[℃]の最適値を含む補償プロファイルは、LUTの形式で、又は計算式として、メモリ40に保持される。計算式としては、例えば、温度範囲TR1,TR2,TR3のそれぞれにおける2次以下のフィッテング関数を用いることができる。 In this way, the compensation profile including the optimum values of the target voltage Vr[V] of the APC and the target temperature Tld[°C] at each of the plurality of monitor temperatures Ta[°C] is stored in the memory 40 in the form of LUT or as a calculation formula. Held in. As the calculation formula, for example, a fitting function of the second order or lower in each of the temperature ranges TR1, TR2, TR3 can be used.
 図3は、実施の形態1に係る光送信器1の動作を示すフローチャートである。半導体レーザ11がレーザ光L1を出力しているときに、制御部50は、光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]が、モニタ温度Ta[℃]に依存せず、一定に維持されるように、メモリ40に記憶されている駆動条件情報D1である計算式又はLUTを用いて、ターゲット電圧Vr[V]の制御、又はターゲット電圧Vr[V]とターゲット温度Tld[℃]の制御、を行う。 FIG. 3 is a flowchart showing the operation of the optical transmitter 1 according to the first embodiment. When the semiconductor laser 11 is outputting the laser beam L1, the control unit 50 controls the output power P1a [dBm] of the laser beam transmitted through the optical fiber 90 to be constant without depending on the monitor temperature Ta [° C.]. So that the target voltage Vr[V] is controlled, or the target voltage Vr[V] and the target temperature Tld[°C. ] Control is performed.
 先ず、ステップS1において、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 First, in step S1, the control unit 50 reads the monitor temperature Ta [° C.] of the temperature monitor unit 51.
 ステップS2において、制御部50は、モニタ温度Ta[℃]が温度範囲TR1内であるか否かを判断する。モニタ温度Ta[℃]が温度範囲TR1内である場合(すなわち、判断がYESである場合)、処理はステップS4aに進み、モニタ温度Ta[℃]が温度範囲TR1内にない場合(すなわち、判断がNOである場合)、処理はステップS3に進む。 In step S2, the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR1. When the monitor temperature Ta [°C] is within the temperature range TR1 (that is, when the determination is YES), the process proceeds to step S4a, and when the monitor temperature Ta [°C] is not within the temperature range TR1 (that is, the determination is made). Is NO), the process proceeds to step S3.
 処理がステップS2からステップS4aに進んだ場合、制御部50は、温度範囲TR1のときの制御を行う。つまり、制御部50は、APCに用いられるターゲット電圧Vr[V]をモニタ温度Ta[℃]に応じた値に決定して、APCを実行する。このとき、制御部50は、熱電素子12の駆動を指示しない。 When the process proceeds from step S2 to step S4a, the control unit 50 controls the temperature range TR1. That is, the control unit 50 determines the target voltage Vr [V] used for APC to a value according to the monitor temperature Ta [°C], and executes APC. At this time, the control unit 50 does not instruct to drive the thermoelectric element 12.
 ステップS5aにおいて、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 In step S5a, the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
 ステップS6aにおいて、制御部50は、モニタ温度Ta[℃]が温度範囲TR1から外れたか否かを判断する。つまり、制御部50は、モニタ温度Ta[℃]が温度範囲TR1の下限である温度T2[℃]又は上限である温度T3[℃]を跨いで変化したか否かを判断する。モニタ温度Ta[℃]が温度範囲TR1から外れた場合(すなわち、判断がYESである場合)、処理はステップS2に戻り、モニタ温度Ta[℃]が温度範囲TR1内にある場合(すなわち、判断がNOである場合)、処理はステップS4aに戻る。 In step S6a, the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR1. That is, the control unit 50 determines whether or not the monitor temperature Ta [°C] changes across the temperature T2 [°C] that is the lower limit or the upper limit temperature T3 [°C] of the temperature range TR1. If the monitor temperature Ta [°C] is outside the temperature range TR1 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR1 (that is, the determination is made). Is NO), the process returns to step S4a.
 処理がステップS2からステップS3に進んだ場合、制御部50は、モニタ温度Ta[℃]が温度範囲TR2内であるか否かを判断する。モニタ温度Ta[℃]が温度範囲TR2内である場合(すなわち、判断がYESである場合)、処理はステップS4bに進み、モニタ温度Ta[℃]が温度範囲TR2内にない場合(すなわち、判断がNOである場合)、処理はステップS4cに進む。 When the process proceeds from step S2 to step S3, the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR2. When the monitor temperature Ta [°C] is within the temperature range TR2 (that is, when the determination is YES), the process proceeds to step S4b, and when the monitor temperature Ta [°C] is not within the temperature range TR2 (that is, the determination is made). Is NO), the process proceeds to step S4c.
 処理がステップS3からステップS4bに進んだ場合、制御部50は、温度範囲TR2のときの制御を行う。つまり、制御部50は、モニタ温度Ta[℃]に応じて、APCに用いられるターゲット電圧Vr[V]と、熱電素子駆動部60による熱電素子12の駆動に用いられるターゲット温度Tld[℃]とを決定して、レーザ駆動部30にターゲット電圧Vr[V]を与え、熱電素子駆動部60に駆動制御信号C1を与える。 When the process proceeds from step S3 to step S4b, the control unit 50 controls the temperature range TR2. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. Is determined and the target voltage Vr [V] is applied to the laser drive unit 30, and the drive control signal C1 is applied to the thermoelectric element drive unit 60.
 ステップS5bにおいて、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 In step S5b, the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
 ステップS6bにおいて、制御部50は、モニタ温度Ta[℃]が温度範囲TR2から外れたか否かを判断する。つまり、制御部50は、モニタ温度Ta[℃]が温度範囲TR2の下限の温度T3[℃]又は上限の温度T4[℃]を跨いで変化したか否かを判断する。モニタ温度Ta[℃]が温度範囲TR2から外れた場合(すなわち、判断がYESである場合)、処理はステップS2に戻り、モニタ温度Ta[℃]が温度範囲TR2内にある場合(すなわち、判断がNOである場合)、処理はステップS4bに戻る。 In step S6b, the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR2. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T3 [°C] or the upper limit temperature T4 [°C] of the temperature range TR2. If the monitor temperature Ta [°C] is out of the temperature range TR2 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR2 (that is, the determination is made). Is NO), the process returns to step S4b.
 処理がステップS3からステップS4cに進んだ場合、制御部50は、温度範囲TR3のときの制御を行う。つまり、制御部50は、モニタ温度Ta[℃]に応じて、APCに用いられるターゲット電圧Vr[V]と、熱電素子駆動部60による熱電素子12の駆動に用いられるターゲット温度Tld[℃]とを決定して、レーザ駆動部30にターゲット電圧Vr[V]を与え、熱電素子駆動部60に駆動制御信号C1を与える。 When the process proceeds from step S3 to step S4c, the control unit 50 controls the temperature range TR3. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. Is determined and the target voltage Vr [V] is applied to the laser drive unit 30, and the drive control signal C1 is applied to the thermoelectric element drive unit 60.
 ステップS5cにおいて、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 In step S5c, the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
 ステップS6cにおいて、制御部50は、モニタ温度Ta[℃]が温度範囲TR3から外れたか否かを判断する。つまり、制御部50は、モニタ温度Ta[℃]が温度範囲TR3の下限の温度T1[℃]又は上限の温度T2[℃]を跨いで変化したか否かを判断する。モニタ温度Ta[℃]が温度範囲TR3から外れた場合(すなわち、判断がYESである場合)、処理はステップS2に戻り、モニタ温度Ta[℃]が温度範囲TR3内にある場合(すなわち、判断がNOである場合)、処理はステップS4cに戻る。 In step S6c, the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR3. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T1 [°C] or the upper limit temperature T2 [°C] of the temperature range TR3. If the monitor temperature Ta [°C] is outside the temperature range TR3 (that is, if the determination is YES), the process returns to step S2, and if the monitor temperature Ta [°C] is within the temperature range TR3 (that is, the determination is made). Is NO), the process returns to step S4c.
《1-3》効果
 以上に説明したように、実施の形態1に係る光送信器1では、製品ごとに予め実測された実測データに基づく駆動条件情報D1がメモリ40に格納される。また、光送信器1の使用時には、制御部50は、モニタ温度Ta[℃]を読み取り、メモリ40に記憶されている駆動条件情報D1のうちのモニタ温度Ta[℃]に応じた駆動条件を、LUTから又は計算式を用いて取得する。このため、光送信器1は、温度範囲TR1、TR2、TR3の各々に適した駆動条件で半導体レーザ11を駆動することができ、光ファイバ90を通して送信されるレーザ光の出力パワーP1a[dBm]を一定に維持することができる。
<<1-3>> Effect As described above, in the optical transmitter 1 according to the first embodiment, the drive condition information D1 based on the actual measurement data measured in advance for each product is stored in the memory 40. Further, when the optical transmitter 1 is used, the control unit 50 reads the monitor temperature Ta [° C.] and sets the drive condition according to the monitor temperature Ta [° C.] of the drive condition information D1 stored in the memory 40. , LUT or using a formula. Therefore, the optical transmitter 1 can drive the semiconductor laser 11 under the driving condition suitable for each of the temperature ranges TR1, TR2, and TR3, and the output power P1a [dBm] of the laser light transmitted through the optical fiber 90. Can be kept constant.
 また、温度範囲TR1では、熱電素子駆動部60をOFFにして熱電素子12を駆動しないので、消費電力[W]を抑制することができる。また、温度範囲TR2及び温度範囲TR3では、ターゲット温度Tld[℃]の設定値を、消費電力[W]を考慮した値に設定しているので、消費電力[W]を抑制することができる。 Further, in the temperature range TR1, since the thermoelectric element driving unit 60 is turned off and the thermoelectric element 12 is not driven, the power consumption [W] can be suppressed. Further, in the temperature ranges TR2 and TR3, the set value of the target temperature Tld [° C.] is set to a value considering the power consumption [W], so that the power consumption [W] can be suppressed.
《2》実施の形態2.
《2-1》構成
 図4は、本発明の実施の形態2に係る光送信器2の構成を概略的に示すブロック図である。図4において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付されている。
<<2>> Embodiment 2.
<<2-1>> Configuration FIG. 4 is a block diagram schematically showing a configuration of the optical transmitter 2 according to the second embodiment of the present invention. 4, constituent elements that are the same as or correspond to the constituent elements shown in FIG. 1 are assigned the same reference numerals as those shown in FIG.
 実施の形態2に係る光送信器2は、実施の形態1に係る光送信器1よりも広い温度範囲で使用できるようにするために、光モジュール10を直接、冷却又は加熱する熱電素子80と、これを駆動する熱電素子駆動部70とを備えている。熱電素子80は、「第2の熱電素子」とも言う。熱電素子駆動部70は、「第2の熱電素子駆動部」とも言う。熱電素子駆動部70は、電気回路で構成される。熱電素子80は、熱電素子12と同様の構成を有する。また、実施の形態2に係る光送信器2では、制御部50aは、熱電素子駆動部70に駆動制御信号C2を提供する。熱電素子80と、熱電素子駆動部70とを用いることにより、温度変化に起因するトラッキングエラーによって生じる出力パワーロスL[dB]を広い温度範囲で抑制することができる。この点以外に関して、実施の形態2に係る光送信器2は、実施の形態1に係る光送信器1と同じである。 The optical transmitter 2 according to the second embodiment is provided with a thermoelectric element 80 that directly cools or heats the optical module 10 so that it can be used in a wider temperature range than the optical transmitter 1 according to the first embodiment. , And a thermoelectric element drive unit 70 for driving the same. The thermoelectric element 80 is also referred to as a "second thermoelectric element". The thermoelectric element driving unit 70 is also referred to as a “second thermoelectric element driving unit”. The thermoelectric element drive unit 70 is composed of an electric circuit. The thermoelectric element 80 has the same configuration as the thermoelectric element 12. Further, in the optical transmitter 2 according to the second embodiment, the control unit 50a provides the thermoelectric element drive unit 70 with the drive control signal C2. By using the thermoelectric element 80 and the thermoelectric element drive unit 70, the output power loss L [dB] caused by the tracking error caused by the temperature change can be suppressed in a wide temperature range. Except for this point, the optical transmitter 2 according to the second embodiment is the same as the optical transmitter 1 according to the first embodiment.
《2-2》動作 <<2-2>> operation
 図5(A)から(F)は、実施の形態2に係る光送信器2の動作を示すグラフである。図5(A)から(F)において、図2(A)から(F)に示される部分と同一又は対応する部分には、図5(A)から(F)に示される符号と同じ符号が付されている。図5(A)から(F)のグラフは、実測値に基づくグラフである。図5(A)から(F)において、実線で描かれたグラフは、実施の形態2に係る光送信器2の動作を示し、破線で描かれたグラフは、比較例の光送信器の動作を示している。比較例の光送信器では、モニタ温度Ta[℃]の全範囲において、レーザ駆動部によるレーザ駆動電流の制御と熱電素子による半導体レーザの温度制御を行い、図5(C)に破線で示されるように、半導体レーザから出力されるレーザ光の出力パワーを一定にしている。 5A to 5F are graphs showing the operation of the optical transmitter 2 according to the second embodiment. 5A to 5F, the same or corresponding portions as those shown in FIGS. 2A to 2F have the same reference numerals as those shown in FIGS. 5A to 5F. It is attached. The graphs of FIGS. 5A to 5F are graphs based on actual measurement values. In FIGS. 5A to 5F, the graph drawn by the solid line shows the operation of the optical transmitter 2 according to the second embodiment, and the graph drawn by the broken line shows the operation of the optical transmitter of the comparative example. Is shown. In the optical transmitter of the comparative example, the laser drive current is controlled by the laser drive section and the temperature of the semiconductor laser is controlled by the thermoelectric element in the entire range of the monitor temperature Ta [° C.], and the dashed line is shown in FIG. 5C. Thus, the output power of the laser light output from the semiconductor laser is constant.
 図5(A)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2の消費電力[W]と比較例の光送信器の消費電力[W]とを示している。図5(B)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2から光ファイバ90を通して送信されるレーザ光の出力パワーP2a[dBm]と比較例の光送信器から光ファイバ90を通して送信されるレーザ光の出力パワー[dBm]とを示している。図5(C)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2の半導体レーザ11から出力されるレーザ光の出力パワーP2[dB]と比較例の光送信器の半導体レーザから出力されるレーザ光の出力パワー[dB]とを示している。図5(D)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2のレーザ駆動部30から出力されるレーザ駆動電流Id[mA]を示している。図5(E)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2の制御部50によって決定されるターゲット温度Tld[℃]を示している。図5(F)のグラフは、各モニタ温度Ta[℃]における、実施の形態2に係る光送信器2のトラッキングエラーによって生じる出力パワーロスL[dB]と比較例の光送信器のトラッキングエラーによって生じる出力パワーロス[dB]とを示している。 The graph of FIG. 5A shows the power consumption [W] of the optical transmitter 2 according to the second embodiment and the power consumption [W] of the optical transmitter of the comparative example at each monitor temperature Ta [° C.]. ing. The graph of FIG. 5B shows the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 from the optical transmitter 2 according to the second embodiment and the light of the comparative example at each monitor temperature Ta [° C.]. The output power [dBm] of the laser light transmitted from the transmitter through the optical fiber 90 is shown. The graph of FIG. 5C shows the output power P2 [dB] of the laser light output from the semiconductor laser 11 of the optical transmitter 2 according to the second embodiment and the light of the comparative example at each monitor temperature Ta [° C.]. The output power [dB] of the laser light output from the semiconductor laser of the transmitter is shown. The graph of FIG. 5D shows the laser drive current Id [mA] output from the laser drive unit 30 of the optical transmitter 2 according to the second embodiment at each monitor temperature Ta [° C.]. The graph in FIG. 5E shows the target temperature Tld [°C] determined by the controller 50 of the optical transmitter 2 according to the second embodiment at each monitor temperature Ta [°C]. The graph of FIG. 5F shows the output power loss L [dB] caused by the tracking error of the optical transmitter 2 according to the second embodiment and the tracking error of the optical transmitter of the comparative example at each monitor temperature Ta [° C.]. The resulting output power loss [dB] is shown.
 比較例では、ターゲット電圧Vr[V]が固定でAPCが行われ、ターゲット温度Tld[℃]が固定で熱電素子が制御される。実施の形態2に係る光送信器2では、温度範囲TR1、温度範囲TR1より高い温度範囲TR2、温度範囲TR1より低い温度範囲TR3、温度範囲TR2より高い温度範囲TR4、温度範囲TR3より低い温度範囲TR5のそれぞれにおいて、異なる制御が行われる。実施の形態2において、温度範囲TR4は、「第4の温度範囲」とも言う。温度範囲TR5は、「第5の温度範囲」とも言う。 In the comparative example, the target voltage Vr [V] is fixed and APC is performed, and the target temperature Tld [°C] is fixed and the thermoelectric element is controlled. In the optical transmitter 2 according to the second embodiment, the temperature range TR1, the temperature range TR2 higher than the temperature range TR1, the temperature range TR3 lower than the temperature range TR1, the temperature range TR4 higher than the temperature range TR2, and the temperature range lower than the temperature range TR3. Different control is performed in each of TR5. In the second embodiment, temperature range TR4 is also referred to as "fourth temperature range". The temperature range TR5 is also referred to as a "fifth temperature range".
 実施の形態2における温度範囲TR1、TR2、TR3は、実施の形態1における温度範囲TR1、TR2、TR3と、同様である。実施の形態2における温度範囲TR4は、温度T4[℃]より高く、温度T5[℃]以下の範囲である。温度範囲TR5は、温度T1[℃]より低く、温度T0[℃]以上の範囲である。 The temperature ranges TR1, TR2, TR3 in the second embodiment are the same as the temperature ranges TR1, TR2, TR3 in the first embodiment. The temperature range TR4 in the second embodiment is a range higher than the temperature T4 [°C] and lower than the temperature T5 [°C]. The temperature range TR5 is lower than the temperature T1 [° C.] and is the temperature T0 [° C.] or higher.
 温度範囲TR2より高温である温度範囲TR4、又は温度範囲TR3より低温である温度範囲TR5では、熱電素子駆動部70をONにして、熱電素子80に熱電素子駆動電流を供給する。熱電素子駆動部70の動作によって、図5(A)に示されるように、温度範囲TR4及び温度範囲TR5における消費電力[W]が増加する。しかし、温度範囲TR4では、モニタ温度Ta[℃]が、温度範囲TR2内のときの最大のモニタ温度を保つように熱電素子80による冷却、又は熱電素子80及び熱電素子12による冷却が行われる。また、温度範囲TR5では、モニタ温度Ta[℃]が、温度範囲TR3のときの最小のモニタ温度を保つように熱電素子80による加熱、又は熱電素子80及び熱電素子12による加熱が行われる。 In the temperature range TR4, which is higher than the temperature range TR2, or in the temperature range TR5, which is lower than the temperature range TR3, the thermoelectric element drive unit 70 is turned on to supply the thermoelectric element drive current to the thermoelectric element 80. By the operation of the thermoelectric element driving unit 70, the power consumption [W] in the temperature ranges TR4 and TR5 increases as shown in FIG. 5(A). However, in the temperature range TR4, cooling by the thermoelectric element 80 or cooling by the thermoelectric element 80 and the thermoelectric element 12 is performed so that the monitor temperature Ta [° C.] maintains the maximum monitor temperature within the temperature range TR2. Further, in the temperature range TR5, heating by the thermoelectric element 80 or heating by the thermoelectric elements 80 and 12 is performed so that the monitor temperature Ta [° C.] maintains the minimum monitor temperature in the temperature range TR3.
 実施の形態2に係る光送信器2では、光モジュール10の冷却又は加熱によって、図5(F)に示される出力パワーロスL[dB]による影響の抑制を、図5(B)に示されるように、広い温度範囲において実現できる。その結果、図5(B)に示されるように、光ファイバ90を通して送信されるレーザ光の出力パワーP2a[dBm]を、広い温度範囲において、一定に維持することができる。 In the optical transmitter 2 according to the second embodiment, the cooling or heating of the optical module 10 suppresses the influence of the output power loss L [dB] shown in FIG. 5(F) as shown in FIG. 5(B). Moreover, it can be realized in a wide temperature range. As a result, as shown in FIG. 5B, the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant in a wide temperature range.
 なお、図5(D)、図5(E)、及び図5(C)に示されるように、温度範囲TR4では、温度範囲TR2における上限の温度T4[℃]におけるレーザ駆動電流Id[mA]、ターゲット温度Tld[℃]、及び半導体レーザ11の出力パワーP2[dB]が、維持される。また、図5(D)、図5(E)、及び図5(C)に示されるように、温度範囲TR5では、温度範囲TR3における下限の温度T1[℃]におけるレーザ駆動電流Id[mA]、ターゲット温度Tld[℃]、及び半導体レーザ11の出力パワーP2[dB]が、維持される。 As shown in FIGS. 5D, 5E, and 5C, in the temperature range TR4, the laser drive current Id [mA] at the upper limit temperature T4 [° C.] in the temperature range TR2. , The target temperature Tld [° C.], and the output power P2 [dB] of the semiconductor laser 11 are maintained. Further, as shown in FIGS. 5D, 5E, and 5C, in the temperature range TR5, the laser drive current Id [mA] at the lower limit temperature T1 [° C.] in the temperature range TR3. , The target temperature Tld [° C.], and the output power P2 [dB] of the semiconductor laser 11 are maintained.
 図6は、実施の形態2に係る光送信器2の動作を示すフローチャートである。図6において、図3に示されるステップと同一又は対応するステップには、図1に示されるステップ番号と同じステップ番号が付されている。 FIG. 6 is a flowchart showing the operation of the optical transmitter 2 according to the second embodiment. 6, steps that are the same as or correspond to the steps shown in FIG. 3 are given the same step numbers as the step numbers shown in FIG.
 図6に示されるように、実施の形態2に係る光送信器2の動作は、ステップS7、S8、S9、S4d、S4e、S5d、S5e、S6d、S6e、S10の処理が追加されている点で、実施の形態1に係る光送信器1の動作と相違する。 As shown in FIG. 6, in the operation of the optical transmitter 2 according to the second embodiment, the processing of steps S7, S8, S9, S4d, S4e, S5d, S5e, S6d, S6e, and S10 is added. The operation differs from that of the optical transmitter 1 according to the first embodiment.
 処理がステップS7からステップS8に進んだ場合(すなわち、ステップS7における判断がNOである場合)、制御部50は、熱電素子80の駆動を開始するための駆動制御信号C2を熱電素子駆動部70に提供する。 When the process proceeds from step S7 to step S8 (that is, when the determination in step S7 is NO), the control unit 50 outputs the drive control signal C2 for starting the driving of the thermoelectric element 80. To provide.
 ステップS9において、制御部50は、モニタ温度Ta[℃]が温度範囲TR4内であるか否かを判断する。モニタ温度Ta[℃]が温度範囲TR4内である場合(すなわち、判断がYESである場合)、処理はステップS4dに進み、モニタ温度Ta[℃]が温度範囲TR4内にない場合(すなわち、判断がNOである場合)、処理はステップS4eに進む。 In step S9, the control unit 50 determines whether the monitor temperature Ta [°C] is within the temperature range TR4. When the monitor temperature Ta [°C] is within the temperature range TR4 (that is, when the determination is YES), the process proceeds to step S4d, and when the monitor temperature Ta [°C] is not within the temperature range TR4 (that is, the determination is made). Is NO), the process proceeds to step S4e.
 ステップS4dにおいて、制御部50は、温度範囲TR4のときの制御を行う。つまり、制御部50は、モニタ温度Ta[℃]に応じて、APCに用いられるターゲット電圧Vr[V]と、熱電素子駆動部60による熱電素子12の駆動に用いられるターゲット温度Tld[℃]とを決定して、レーザ駆動部30にターゲット電圧Vr[V]を提供し、熱電素子駆動部60に駆動制御信号C1を与え、熱電素子80による冷却を実行させるための駆動制御信号C2を熱電素子駆動部70に与える。 In step S4d, the control unit 50 controls the temperature range TR4. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. To supply the target voltage Vr [V] to the laser driving unit 30, provide the driving control signal C1 to the thermoelectric element driving unit 60, and supply the driving control signal C2 for executing the cooling by the thermoelectric element 80. It is given to the drive unit 70.
 ステップS5dおいて、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 In step S5d, the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
 ステップS6dにおいて、制御部50は、モニタ温度Ta[℃]が温度範囲TR4から外れたか否かを判断する。つまり、制御部50は、モニタ温度Ta[℃]が温度範囲TR4の下限温度T4[℃]又は上限温度T5[℃]を跨いで変化したか否かを判断する。モニタ温度Ta[℃]が温度範囲TR4から外れた場合(すなわち、判断がYESである場合)、ステップS10において熱電素子80の駆動を停止し、処理はステップS2に戻り、モニタ温度Ta[℃]が温度範囲TR4内にある場合(すなわち、判断がNOである場合)、処理はステップS4dに戻る。 In step S6d, the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR4. That is, the control unit 50 determines whether the monitor temperature Ta [°C] has changed across the lower limit temperature T4 [°C] or the upper limit temperature T5 [°C] of the temperature range TR4. When the monitor temperature Ta [°C] is out of the temperature range TR4 (that is, when the determination is YES), the driving of the thermoelectric element 80 is stopped in step S10, the process returns to step S2, and the monitor temperature Ta [°C]. Is within the temperature range TR4 (that is, the determination is NO), the process returns to step S4d.
 処理がステップS9からステップS4eに進んだ場合(すなわち、ステップS9における判断がNOである場合)、制御部50は、熱電素子80の駆動を開始するための駆動制御信号C2を熱電素子駆動部70に提供する。 When the process proceeds from step S9 to step S4e (that is, when the determination in step S9 is NO), the control unit 50 outputs the drive control signal C2 for starting the driving of the thermoelectric element 80. To provide.
 ステップS4eにおいて、制御部50は、温度範囲TR5のときの制御を行う。つまり、制御部50は、モニタ温度Ta[℃]に応じて、APCに用いられるターゲット電圧Vr[V]と、熱電素子駆動部60による熱電素子12の駆動に用いられるターゲット温度Tld[℃]とを決定して、レーザ駆動部30にターゲット電圧Vr[V]を提供し、熱電素子駆動部60に駆動制御信号C1を与え、熱電素子80による加熱を実行させるための駆動制御信号C2を熱電素子駆動部70に与える。 In step S4e, the control unit 50 performs control in the temperature range TR5. That is, the control unit 50 sets the target voltage Vr [V] used for APC and the target temperature Tld [° C.] used for driving the thermoelectric element 12 by the thermoelectric element driving unit 60 according to the monitor temperature Ta [° C.]. To supply the target voltage Vr [V] to the laser driving unit 30, provide the driving control signal C1 to the thermoelectric element driving unit 60, and supply the driving control signal C2 for performing the heating by the thermoelectric element 80. It is given to the drive unit 70.
 ステップS5eおいて、制御部50は、温度モニタ部51のモニタ温度Ta[℃]を読み取る。 In step S5e, the control unit 50 reads the monitor temperature Ta [°C] of the temperature monitor unit 51.
 ステップS6eにおいて、制御部50は、モニタ温度Ta[℃]が温度範囲TR5から外れたか否かを判断する。つまり、制御部50は、モニタ温度Ta[℃]が温度範囲TR5の下限の温度T0[℃]又は上限の温度T1[℃]を跨いで変化したか否かを判断する。モニタ温度Ta[℃]が温度範囲TR5から外れた場合(すなわち、判断がYESである場合)、ステップS10において熱電素子80の駆動を停止し、処理はステップS2に戻り、モニタ温度Ta[℃]が温度範囲TR4内にある場合(すなわち、判断がNOである場合)、処理はステップS4eに戻る。 In step S6e, the control unit 50 determines whether the monitor temperature Ta [°C] is out of the temperature range TR5. That is, the control unit 50 determines whether the monitor temperature Ta [°C] changes across the lower limit temperature T0 [°C] or the upper limit temperature T1 [°C] of the temperature range TR5. When the monitor temperature Ta [°C] is out of the temperature range TR5 (that is, when the determination is YES), the driving of the thermoelectric element 80 is stopped in step S10, the process returns to step S2, and the monitor temperature Ta [°C]. Is within the temperature range TR4 (that is, the determination is NO), the process returns to step S4e.
《2-3》効果
 以上に説明したように、実施の形態2に係る光送信器2は、温度範囲TR2の上限の温度T4[℃]において光モジュール10を冷却し、温度範囲TR3の下限の温度T1[℃]において光モジュール10を加熱するように構成されている。このため、光送信器2は、温度範囲TR2の上限の温度T4[℃]よりも高温である温度範囲TR4、及び、温度範囲TR3の下限の温度T1[℃]よりも低温である温度範囲TR5においても、トラッキングエラーを抑制することが可能である。よって、光送信器2を用いれば、より一層広い温度範囲TR5、TR3、TR1、TR2、TR4において、光ファイバ90を通して送信されるレーザ光の出力パワーP2a[dBm]を一定に維持することができる。
<<2-3>> Effects As described above, the optical transmitter 2 according to the second embodiment cools the optical module 10 at the upper limit temperature T4 [° C.] of the temperature range TR2 and lowers the lower limit of the temperature range TR3. The optical module 10 is configured to be heated at the temperature T1 [° C.]. Therefore, in the optical transmitter 2, the temperature range TR4 that is higher than the upper limit temperature T4 [°C] of the temperature range TR2 and the temperature range TR5 that is lower than the lower limit temperature T1 [°C] of the temperature range TR3. Also in, it is possible to suppress the tracking error. Therefore, by using the optical transmitter 2, the output power P2a [dBm] of the laser light transmitted through the optical fiber 90 can be kept constant in a wider temperature range TR5, TR3, TR1, TR2, TR4. ..
《3》変形例.
 図7は、実施の形態1又は2の変形例の光送信器のハードウェア構成の例を示す図である。実施の形態1に係る光送信器1は、ソフトウェアとしてのプログラムを格納する記憶装置であるメモリ101と、メモリ101に格納されたプログラムを実行する情報処理部としてのプロセッサ102とを用いて(例えば、コンピュータなどにより)実現することもできる。この場合には、図1における制御部50の全体又は一部、及びレーザ駆動部30の全体又は一部を、プログラムを格納したメモリ101とプロセッサ102とによって実現することができる。
<<3>> Modification.
FIG. 7 is a diagram showing an example of the hardware configuration of the optical transmitter according to the modification of the first or second embodiment. The optical transmitter 1 according to the first embodiment uses a memory 101 that is a storage device that stores a program as software and a processor 102 that is an information processing unit that executes the program stored in the memory 101 (for example, , A computer, etc.). In this case, all or part of the control unit 50 and all or part of the laser driving unit 30 in FIG. 1 can be realized by the memory 101 storing the program and the processor 102.
 同様に、実施の形態2に係る光送信器2は、ソフトウェアとしてのプログラムを格納するメモリ101と、メモリ101に格納されたプログラムを実行するプロセッサ102とを用いて実現することもできる。この場合には、図4における制御部50aの全体又は一部、及びレーザ駆動部30の全体又は一部を、プログラムを格納したメモリ101とプロセッサ102とによって実現することができる。 Similarly, the optical transmitter 2 according to the second embodiment can be realized by using a memory 101 that stores a program as software and a processor 102 that executes the program stored in the memory 101. In this case, the whole or part of the control unit 50a and the whole or part of the laser driving unit 30 in FIG. 4 can be realized by the memory 101 storing the program and the processor 102.
 1,2 光送信器、 1a,2a 装置筐体、 10 光モジュール、 11 半導体レーザ、 12 熱電素子、 13 サーミスタ、 14 熱電素子部、 15 モジュール筐体、 20 モニタ電流検出部、 30 レーザ駆動部、 31 APC部、 40 メモリ、 50 制御部、 51 温度モニタ部、 52 ターゲット電圧制御部、 53 ターゲット温度制御部、 54 光出力モニタ部、 60 熱電素子駆動部、 70 熱電素子駆動部、 80 熱電素子、 90 光ファイバ。 1, 2 optical transmitters, 1a, 2a device housings, 10 optical modules, 11 semiconductor lasers, 12 thermoelectric elements, 13 thermistors, 14 thermoelectric element parts, 15 module housings, 20 monitor current detection parts, 30 laser drive parts, 31 APC section, 40 memory, 50 control section, 51 temperature monitor section, 52 target voltage control section, 53 target temperature control section, 54 optical output monitor section, 60 thermoelectric element drive section, 70 thermoelectric element drive section, 80 thermoelectric element, 90 optical fiber.

Claims (11)

  1.  レーザ光を出力する光送信器であって、
     レーザ駆動電流に対応する第1の出力パワーの前記レーザ光を出力すると共に、前記第1の出力パワーに対応するモニタ電流を出力する半導体レーザと、
     前記半導体レーザから出力された前記レーザ光が光ファイバに入射するように前記光ファイバを保持する保持部と、
     前記保持部の温度に対応するモニタ温度を測定する温度モニタ部と、
     前記モニタ電流に対応するモニタ電圧をターゲット電圧に近づけるように、前記レーザ駆動電流を前記半導体レーザに供給するレーザ駆動部と、
     前記ターゲット電圧を前記レーザ駆動部に与えるターゲット電圧制御部と、
     前記半導体レーザを冷却又は加熱する第1の熱電素子と、
     前記第1の熱電素子を駆動する第1の熱電素子駆動部と、
     前記第1の熱電素子の温度をターゲット温度に近づける第1の駆動制御信号を前記第1の熱電素子駆動部に与えるターゲット温度制御部と、
     前記各モニタ温度における前記ターゲット電圧と前記ターゲット温度と前記光送信器の消費電力との関係の実測値に基づいて決められた駆動条件情報を、予め記憶する記憶部と、
     を備え、
     前記モニタ温度が第1の温度範囲内にある場合には、前記ターゲット温度制御部は、前記第1の熱電素子駆動部による前記第1の熱電素子の駆動を停止させ、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記温度モニタ部から出力されている現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、
     前記モニタ温度が前記第1の温度範囲より高い第2の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、
     前記モニタ温度が前記第1の温度範囲より低い第3の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定する
     ことを特徴とする光送信器。
    An optical transmitter that outputs laser light,
    A semiconductor laser that outputs the laser light having a first output power corresponding to a laser drive current and outputs a monitor current corresponding to the first output power;
    A holding unit that holds the optical fiber so that the laser light output from the semiconductor laser is incident on the optical fiber,
    A temperature monitor unit for measuring a monitor temperature corresponding to the temperature of the holding unit,
    A laser drive unit that supplies the laser drive current to the semiconductor laser so that a monitor voltage corresponding to the monitor current approaches a target voltage,
    A target voltage control unit for applying the target voltage to the laser drive unit;
    A first thermoelectric element for cooling or heating the semiconductor laser;
    A first thermoelectric element drive unit for driving the first thermoelectric element;
    A target temperature control unit that gives a first drive control signal for bringing the temperature of the first thermoelectric element close to a target temperature to the first thermoelectric element driving unit;
    Drive condition information determined based on an actual measurement value of the relationship between the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter, a storage unit that stores in advance.
    Equipped with
    When the monitor temperature is within the first temperature range, the target temperature control unit stops the driving of the first thermoelectric element by the first thermoelectric element driving unit, and the target voltage control unit Determining the target voltage based on information corresponding to the current monitor temperature output from the temperature monitor unit in the drive condition information,
    When the monitor temperature is in the second temperature range higher than the first temperature range, the target temperature control unit is based on the information corresponding to the current monitor temperature in the drive condition information. Determining the target temperature, the target voltage control unit determines the target voltage based on the information corresponding to the current monitor temperature of the driving condition information,
    When the monitor temperature is in the third temperature range lower than the first temperature range, the target temperature control unit is based on the information corresponding to the current monitor temperature in the drive condition information. The optical transmitter, wherein the target voltage is determined, and the target voltage control unit determines the target voltage based on information corresponding to the current monitor temperature in the drive condition information.
  2.  前記第1の温度範囲と前記第2の温度範囲との境界温度は、前記第1の温度範囲の上限温度であり、前記第1の温度範囲の前記上限温度において前記半導体レーザから出力される前記レーザ光の中心波長又は前記第1の温度範囲の前記上限温度における前記レーザ駆動電流の上限値に基づいて決定された温度であり、
     前記第1の温度範囲と前記第3の温度範囲との境界温度は、前記第1の温度範囲の下限温度であり、前記第1の温度範囲の前記下限温度において前記半導体レーザから出力される前記レーザ光の中心波長又は前記第1の温度範囲の前記下限温度における前記レーザ駆動電流の上限値に基づいて決定された温度である
     ことを特徴とする請求項1に記載の光送信器。
    A boundary temperature between the first temperature range and the second temperature range is an upper limit temperature of the first temperature range, and the semiconductor laser is output at the upper limit temperature of the first temperature range. A temperature determined based on the upper limit value of the laser drive current at the upper limit temperature of the central wavelength of the laser light or the first temperature range,
    A boundary temperature between the first temperature range and the third temperature range is a lower limit temperature of the first temperature range, and the semiconductor laser is output at the lower limit temperature of the first temperature range. The optical transmitter according to claim 1, wherein the temperature is determined based on a center wavelength of laser light or an upper limit value of the laser drive current at the lower limit temperature of the first temperature range.
  3.  前記保持部を冷却又は加熱する第2の熱電素子と、
     前記第2の熱電素子を駆動する第2の熱電素子駆動部と、
     をさらに備え、
     前記モニタ温度が前記第2の温度範囲より高い第4の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記ターゲット温度制御部は、前記第2の熱電素子による冷却を実行させる第2の駆動制御信号を前記第2の熱電素子駆動部に与え、
     前記モニタ温度が前記第3の温度範囲より低い第5の温度範囲内にある場合には、前記ターゲット温度制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記ターゲット電圧制御部は、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、前記ターゲット温度制御部は、前記第2の熱電素子による加熱を実行させる第2の駆動制御信号を前記第2の熱電素子駆動部に与える
     ことを特徴とする請求項1又は2に記載の光送信器。
    A second thermoelectric element for cooling or heating the holding part;
    A second thermoelectric element drive unit for driving the second thermoelectric element;
    Further equipped with,
    When the monitor temperature is in the fourth temperature range higher than the second temperature range, the target temperature control unit is based on the information corresponding to the current monitor temperature in the drive condition information. The target temperature is determined, the target voltage control unit determines the target voltage based on information corresponding to the current monitor temperature in the driving condition information, and the target temperature control unit determines the second target temperature. Applying a second drive control signal for executing cooling by the thermoelectric element to the second thermoelectric element drive unit,
    When the monitor temperature is in the fifth temperature range lower than the third temperature range, the target temperature control unit is based on the information corresponding to the current monitor temperature in the drive condition information. The target temperature is determined, the target voltage control unit determines the target voltage based on information corresponding to the current monitor temperature in the driving condition information, and the target temperature control unit determines the second target temperature. The optical transmitter according to claim 1 or 2, wherein a second drive control signal for executing heating by the thermoelectric element is given to the second thermoelectric element driving unit.
  4.  前記第2の温度範囲と前記第4の温度範囲との境界温度は、前記第2の温度範囲の上限温度であり、前記第2の温度範囲の前記上限温度において前記半導体レーザから出力される前記レーザ光の中心波長に基づいて決定された温度であり、
     前記第3の温度範囲と前記第5の温度範囲との境界温度は、前記第3の温度範囲の下限温度であり、前記第3の温度範囲の前記下限温度において前記半導体レーザから出力される前記レーザ光の中心波長に基づいて決定された温度である
     ことを特徴とする請求項3に記載の光送信器。
    A boundary temperature between the second temperature range and the fourth temperature range is an upper limit temperature of the second temperature range, and the semiconductor laser is output at the upper limit temperature of the second temperature range. It is the temperature determined based on the central wavelength of the laser light,
    A boundary temperature between the third temperature range and the fifth temperature range is a lower limit temperature of the third temperature range, and the semiconductor laser is output at the lower limit temperature of the third temperature range. The optical transmitter according to claim 3, wherein the temperature is determined based on the center wavelength of the laser light.
  5.  前記記憶部は、前記駆動条件情報として、計算式又はルックアップテーブルを記憶していることを特徴とする請求項1から4のいずれか1項に記載の光送信器。 The optical transmitter according to any one of claims 1 to 4, wherein the storage unit stores a calculation formula or a lookup table as the driving condition information.
  6.  前記記憶部は、前記駆動条件情報として、前記各モニタ温度において、前記光送信器の前記消費電力を最小とする前記ターゲット電圧と前記ターゲット温度との組み合わせを記憶していることを特徴とする請求項1から5のいずれか1項に記載の光送信器。 The storage unit stores, as the driving condition information, a combination of the target voltage and the target temperature that minimizes the power consumption of the optical transmitter at each monitor temperature. Item 6. The optical transmitter according to any one of items 1 to 5.
  7.  前記ターゲット電圧制御部及び前記ターゲット温度制御部は、前記駆動条件情報から、前記各モニタ温度において、前記光送信器の前記消費電力が最小である前記ターゲット電圧と前記ターゲット温度との組み合わせを取得することを特徴とする請求項1から5のいずれか1項に記載の光送信器。 The target voltage control unit and the target temperature control unit obtain, from the driving condition information, a combination of the target voltage and the target temperature at which the power consumption of the optical transmitter is minimum at each monitor temperature. The optical transmitter according to any one of claims 1 to 5, wherein:
  8.  前記第2の温度範囲において、前記ターゲット温度制御部が前記駆動条件情報から取得する前記ターゲット温度は、前記モニタ温度の上昇に伴い低下することを特徴とする請求項1から7のいずれか1項に記載の光送信器。 8. The target temperature obtained by the target temperature control unit from the drive condition information in the second temperature range decreases with an increase in the monitor temperature, according to any one of claims 1 to 7. The optical transmitter described in 1.
  9.  前記第2の温度範囲において、前記ターゲット温度制御部が前記駆動条件情報から取得する前記ターゲット温度は、前記モニタ温度と前記ターゲット温度との差が、前記モニタ温度の上昇に伴い増加することを特徴とする請求項1から8のいずれか1項に記載の光送信器。 In the second temperature range, the target temperature acquired from the driving condition information by the target temperature control unit is such that a difference between the monitor temperature and the target temperature increases as the monitor temperature rises. The optical transmitter according to any one of claims 1 to 8.
  10.  前記第3の温度範囲において、前記ターゲット温度制御部が前記駆動条件情報から取得する前記ターゲット温度は、一定値であることを特徴とする請求項1から9のいずれか1項に記載の光送信器。 The optical transmission according to any one of claims 1 to 9, wherein in the third temperature range, the target temperature that the target temperature control unit acquires from the drive condition information is a constant value. vessel.
  11.  レーザ駆動電流に対応する第1の出力パワーのレーザ光を出力すると共に、前記第1の出力パワーに対応するモニタ電流を出力する半導体レーザと、
     前記半導体レーザから出力された前記レーザ光が光ファイバに入射するように前記光ファイバを保持する保持部と、
     前記保持部の温度に対応するモニタ温度を測定する温度モニタ部と、
     前記モニタ電流に対応するモニタ電圧をターゲット電圧に近づけるように、前記レーザ駆動電流を前記半導体レーザに供給するレーザ駆動部と、
     前記ターゲット電圧を前記レーザ駆動部に与えるターゲット電圧制御部と、
     前記半導体レーザを冷却又は加熱する第1の熱電素子と、
     前記第1の熱電素子を駆動する第1の熱電素子駆動部と、
     前記第1の熱電素子の温度をターゲット温度に近づける第1の駆動制御信号を前記第1の熱電素子駆動部に与えるターゲット温度制御部と、
     前記各モニタ温度における前記ターゲット電圧と前記ターゲット温度と光送信器の消費電力との関係の実測値に基づいて決められた駆動条件情報を、予め記憶する記憶部と、
     を備えた光送信器、の制御方法であって、
     前記モニタ温度が第1の温度範囲内にある場合には、前記第1の熱電素子駆動部による前記第1の熱電素子の駆動を停止させ、前記駆動条件情報のうちの前記温度モニタ部から出力されている現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、
     前記モニタ温度が前記第1の温度範囲より高い第2の温度範囲内にある場合には、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定し、
     前記モニタ温度が前記第1の温度範囲より低い第3の温度範囲内にある場合には、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット温度を決定し、前記駆動条件情報のうちの前記現在のモニタ温度に対応する情報に基づいて前記ターゲット電圧を決定する
     ことを特徴とする光送信器の制御方法。
    A semiconductor laser which outputs a laser beam having a first output power corresponding to a laser drive current and outputs a monitor current corresponding to the first output power;
    A holding unit that holds the optical fiber so that the laser light output from the semiconductor laser is incident on the optical fiber,
    A temperature monitor unit for measuring a monitor temperature corresponding to the temperature of the holding unit,
    A laser drive unit that supplies the laser drive current to the semiconductor laser so that a monitor voltage corresponding to the monitor current approaches a target voltage,
    A target voltage control unit for applying the target voltage to the laser drive unit;
    A first thermoelectric element for cooling or heating the semiconductor laser;
    A first thermoelectric element drive unit for driving the first thermoelectric element;
    A target temperature control unit that gives a first drive control signal for bringing the temperature of the first thermoelectric element close to a target temperature to the first thermoelectric element driving unit;
    Drive condition information determined based on an actual measurement value of the relationship between the target voltage at each monitor temperature, the target temperature, and the power consumption of the optical transmitter, a storage unit that stores in advance.
    A method of controlling an optical transmitter, comprising:
    When the monitored temperature is within the first temperature range, the driving of the first thermoelectric element by the first thermoelectric element drive unit is stopped and the temperature monitor unit outputs the drive condition information from the temperature monitor unit. Determining the target voltage based on information corresponding to the current monitor temperature being
    When the monitor temperature is in the second temperature range higher than the first temperature range, the target temperature is determined based on the information corresponding to the current monitor temperature in the driving condition information, Determining the target voltage based on the information corresponding to the current monitor temperature of the driving condition information,
    When the monitor temperature is in the third temperature range lower than the first temperature range, the target temperature is determined based on the information corresponding to the current monitor temperature in the drive condition information, The control method of an optical transmitter, wherein the target voltage is determined based on information corresponding to the current monitor temperature in the drive condition information.
PCT/JP2019/003301 2019-01-31 2019-01-31 Optical transmitter and method for controlling same WO2020157886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003301 WO2020157886A1 (en) 2019-01-31 2019-01-31 Optical transmitter and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003301 WO2020157886A1 (en) 2019-01-31 2019-01-31 Optical transmitter and method for controlling same

Publications (1)

Publication Number Publication Date
WO2020157886A1 true WO2020157886A1 (en) 2020-08-06

Family

ID=71840000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003301 WO2020157886A1 (en) 2019-01-31 2019-01-31 Optical transmitter and method for controlling same

Country Status (1)

Country Link
WO (1) WO2020157886A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059418A (en) * 2007-08-31 2009-03-19 Pioneer Electronic Corp Laser diode output power controller, optical disk drive, and laser diode output power control method
WO2015162964A1 (en) * 2014-04-21 2015-10-29 三菱電機株式会社 Optical transmitter and method for controlling temperature of semiconductor laser
US20160329681A1 (en) * 2015-05-05 2016-11-10 Boreal Laser Inc. Packaged laser thermal control system
JP2018056735A (en) * 2016-09-28 2018-04-05 三菱電機株式会社 Station side termination device
WO2018179306A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Optical transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059418A (en) * 2007-08-31 2009-03-19 Pioneer Electronic Corp Laser diode output power controller, optical disk drive, and laser diode output power control method
WO2015162964A1 (en) * 2014-04-21 2015-10-29 三菱電機株式会社 Optical transmitter and method for controlling temperature of semiconductor laser
US20160329681A1 (en) * 2015-05-05 2016-11-10 Boreal Laser Inc. Packaged laser thermal control system
JP2018056735A (en) * 2016-09-28 2018-04-05 三菱電機株式会社 Station side termination device
WO2018179306A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Optical transmitter

Similar Documents

Publication Publication Date Title
JP7175264B2 (en) optical transmitter
JP4124845B2 (en) Optical wavelength stability controller
CN1130870C (en) Wave length stabilizer in wave division shared optic transmission system
JP5148815B2 (en) Optical transmission module
JP5919679B2 (en) Optical transmitter
US8472488B2 (en) Algorithm to drive semiconductor laser diode
US8345721B2 (en) Method for driving optical transmitter
JP2005521232A (en) External cavity laser with selective thermal control
US20060153259A1 (en) Laser drive, optical disc apparatus, and laser-driving method
US6914921B2 (en) Optical filter, laser module, and wavelength locker module
US20060072867A1 (en) Optical transmitter
CN100472900C (en) Wavelength control circuit for tunable laser
JP2013175517A (en) Method of manufacturing optical data link
JP2006080677A (en) Optical data link
US9466943B2 (en) Heat-swap device and method
WO2020157886A1 (en) Optical transmitter and method for controlling same
US6246511B1 (en) Apparatus and method to compensate for optical fiber amplifier gain variation
JP4336091B2 (en) Optical module, optical transmitter, and WDM optical transmitter
JP2004079989A (en) Optical module
US6697388B1 (en) Control system for use with DBR lasers
JP2009253065A (en) Optical transmitting module
JP5473451B2 (en) Optical transmitter, stabilized light source, and laser diode control method
JP2003060294A (en) Optical transmitter, wdm optical transmitter, and optical module
JP2007096954A (en) Optical transmitter, optical transmission method and optical transmission program
JP2006005042A (en) Optical transmitter and method for optical transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP