WO2020157532A1 - Vehicle travel control method and travel control device - Google Patents

Vehicle travel control method and travel control device Download PDF

Info

Publication number
WO2020157532A1
WO2020157532A1 PCT/IB2019/000108 IB2019000108W WO2020157532A1 WO 2020157532 A1 WO2020157532 A1 WO 2020157532A1 IB 2019000108 W IB2019000108 W IB 2019000108W WO 2020157532 A1 WO2020157532 A1 WO 2020157532A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
area
map
occupancy
information
Prior art date
Application number
PCT/IB2019/000108
Other languages
French (fr)
Japanese (ja)
Inventor
福重孝志
田家智
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2020568858A priority Critical patent/JP7192890B2/en
Priority to PCT/IB2019/000108 priority patent/WO2020157532A1/en
Publication of WO2020157532A1 publication Critical patent/WO2020157532A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle travel control method and a travel control device.
  • a travel control device is known in which coordinates are converted and projected, and a region in which a vehicle can travel is calculated based on a lane boundary line and an object in a lane coordinate system (Patent Document 1). Further, in this travel control device, the travelable area calculated in the lane coordinate system is inversely converted into a plane coordinate system, and a travel locus for automatically driving the vehicle is generated in the travelable area in the plane coordinate system.
  • the travel control device of Patent Document 1 calculates the travelable area based on the position of the lane boundary line and the positions of objects around the vehicle, a section where the lane boundary line does not exist, such as an intersection ( Hereinafter, the travelable area cannot be calculated for the area (also referred to as an area). Therefore, in the traveling control device of Patent Document 1, when traveling in an area where the lane boundary does not exist, it is necessary to stop automatic traveling and switch to manual operation.
  • the problem to be solved by the present invention is to provide a traveling control method and a traveling control device for a vehicle that can continue automatic traveling in an area where a lane boundary does not exist.
  • the present invention uses lane marker information and object information in an area where lane marker information about a lane marker of a traveling road, which is a road area where the vehicle can travel, and object information about an object existing around the vehicle can be acquired.
  • the own vehicle can travel based on the other information after generating the own vehicle travelable region. The problem is solved by generating an area, generating a target route in the generated travelable area, and executing automatic traveling control of the own vehicle.
  • automatic traveling is not stopped even in an area where a lane boundary line (lane marker) such as an intersection does not exist, so there is no need to switch from automatic traveling to manual operation, and the range of situations in which automatic traveling control can be executed is expanded.
  • 1 is a block diagram showing an embodiment of a vehicle travel control device according to the present invention. It is a block diagram which shows the functional structure of the drivable area production
  • 4 is a lane marker occupancy map showing a lane marker occupancy state in the traveling scene of FIG. 3.
  • 4 is an LRF occupancy map showing an occupancy state of objects in the traveling scene of FIG. 3.
  • 4 is a radar occupancy map showing an occupancy state of an object in the traveling scene of FIG. 3.
  • It is explanatory drawing which shows the procedure which integrates several occupancy maps and produces
  • FIG. 6 is a plan view of a crossroad-shaped intersection taken as an example of a traveling section in which no lane marker exists. It is a chart figure which shows the occupied grid map which handled the unknown area
  • a discrete value version logical table showing an analog judgment value i1 of a lane marker occupancy map, an analog judgment value i2 of an LRF occupancy map, and a region iN in which i1 and i2 are integrated is shown.
  • FIG. It is a figure which shows the graph created so that the intermediate state of judgment value i1 and i2 might be included from the logic table of FIG. 12A.
  • a continuous value version logical table showing the analog judgment value i1 of the lane marker occupancy map, the analog judgment value i2 of the LRF occupancy map, and the region iN in which i1 and i2 are integrated is shown.
  • FIG. 13A It is a figure which shows the graph created so that the intermediate state of the determination values i1 and i2 might be included from the logic table of FIG. 13A. It is a block diagram which shows the functional structure of the drivable area production
  • FIG. 1 is a block diagram showing the configuration of the travel control device VTC according to the present embodiment.
  • the travel control device VTC according to the present embodiment is also an embodiment for implementing the vehicle travel control method according to the present invention.
  • the travel control device VTC is, for example, an in-vehicle device mounted in a vehicle, and has various functions for controlling the travel of the host vehicle V 0 (see FIG. 3A) in which the travel control device VTC is mounted. ..
  • the travel control device VTC has an automatic travel control function that sets a travel route toward a set destination and automatically drives the host vehicle V 0 according to the travel route.
  • the travel control device VTC includes a destination setting unit 1, a vehicle position detection unit 2, a map database 3, a route setting unit 4, a sensor 5, a travelable area generation unit 6, and a target.
  • the stationary obstacle deceleration control unit 16, the stop line vehicle stop control unit 17, the preceding vehicle recognition unit 18, the headway distance control unit 19, and the presentation device 20 are provided.
  • a route setting part 4 a travelable area generation part 6, a target route generation part 7, a route following control part 8, a corner deceleration control part 11, and a vehicle speed adjustment part 12 are provided.
  • the stationary obstacle deceleration control unit 16, the stop line stop control unit 17, the preceding vehicle recognition unit 18, and the headway distance control unit 19 are configured by one or more computers and software installed in the computers.
  • the computer includes a ROM that stores a program for causing the above-described units to function, a CPU that executes the program stored in the ROM, and a RAM that functions as an accessible storage device. Note that an MPU, DSP, ASIC, FPGA, or the like can be used instead of or together with the CPU.
  • the computer configuring each of the above-mentioned units, with respect to the destination setting unit 1, the vehicle position detection unit 2, the map database 3, the sensor 5, the steering actuator 9, the vehicle speed servo 13, and the presentation device 20, In order to send and receive information to and from each other, they are connected by, for example, a CAN (Controller Area Network) or other in-vehicle LAN.
  • CAN Controller Area Network
  • the destination setting unit 1 sets a destination when the vehicle V 0 travels by the automatic travel control function.
  • the destination setting unit 1 includes a display device and an input device.
  • the display device is, for example, a display such as a liquid crystal panel, and displays map information read from the map database 3, setting information for setting a destination, and the like.
  • the input device is, for example, a device such as a touch panel arranged on a display screen, a dial switch, or a microphone capable of inputting by a driver's voice, and is used for input operation of a destination for setting information displayed on the display device. Used.
  • the destination setting unit 1 generates destination information indicating the position of the destination based on the map information, the setting information, and the input information input from the input device.
  • the host vehicle position detection unit 2 detects the current position of the host vehicle V 0 .
  • the vehicle position detection unit 2 includes a GPS unit, a gyro sensor, a vehicle speed sensor and the like.
  • the own vehicle position detection unit 2 detects radio waves transmitted from a plurality of satellite communications by the GPS unit, periodically acquires the position information of the own vehicle V 0 , and the acquired position information of the own vehicle V 0 ,
  • the current position of the host vehicle V 0 is detected based on the angle change information acquired from the gyro sensor and the speed information acquired from the vehicle speed sensor, and host vehicle position information indicating the current position is generated.
  • the map database 3 stores low-precision map information 31 (see FIG. 2) used to generate a driving route and high-precision map information 32 (see FIG. 2) used for automatic driving control.
  • the low-precision map information 31 is map information used in a general car navigation device and the like, and information about roads is recorded together with position information of various facilities and specific points.
  • the information about roads includes information such as merge points, branch points, toll gates, lane number reduction positions, and service area (SA)/parking area (PA) position information.
  • SA service area
  • PA parking area
  • the high-precision map information 32 is three-dimensional map information based on the road shape detected when the vehicle used for data acquisition travels on an actual road, and together with the map information, the number of lanes, the lane width, and the lane marker (lane boundary). This is map information in which the type and position of a line is associated as three-dimensional information.
  • the route setting unit 4 sets the traveling route of the host vehicle V 0 to the destination.
  • the route setting unit 4 includes a route generation unit 41 and a lane setting unit 42.
  • the route generation unit 41 based on the destination information acquired from the destination setting unit 1, the own vehicle position information acquired from the own vehicle position detection unit 2, and the map information acquired from the map database 3, the own vehicle V Generate a travel route from the current position of 0 to the destination.
  • the lane setting unit 42 sets the lane in which the vehicle V 0 travels on the travel route based on the high-precision map information acquired from the map database 3.
  • this lane corresponds to a traveling road in a road region in which the host vehicle V 0 can travel in the present invention.
  • the sensor 5 detects the situation around the vehicle V 0 .
  • the sensor 5 includes, for example, a lane camera 51 (see FIG. 2), a laser range finder 52 (see FIG. 2), and a radar device 53 (see FIG. 2).
  • the lane camera 51 includes an image pickup section and an image analysis section.
  • the image capturing unit is an image sensor that captures image data by capturing a predetermined area in front of the host vehicle V 0 , and includes, for example, a CCD wide-angle camera provided above the front window in the vehicle interior.
  • the image capturing unit may be a stereo camera or an omnidirectional camera, or may include a plurality of image sensors.
  • the image analysis unit analyzes the image data captured by the image capturing unit, detects a lane marker such as a center line existing in front of the vehicle V 0 , a boundary line on the side of the curb, and the type and position of the detected lane marker. Is specified and is output as lane marker information.
  • a laser range finder (hereinafter, also referred to as LRF) 52 irradiates a laser beam, which is an output wave for distance measurement, around the vehicle and detects a reflected wave (detection wave) of the vehicle to detect the surroundings of the vehicle V 0 . It detects objects such as other vehicles, motorcycles, bicycles, pedestrians, curbs on road shoulders, guardrails, wall surfaces, and embankments existing in.
  • the LRF 52 outputs the detection result as object information around the vehicle V 0 .
  • the radar device 53 another vehicle millimeter wave or ultrasonic is irradiated to the front of the own vehicle V 0 scanning a predetermined range around the vehicle V 0, present around the vehicle V 0, motorcycles, bicycles Detects objects such as pedestrians, guardrails, walls, and embankments.
  • the radar device 53 detects the relative position (azimuth) between the detected object and the host vehicle V 0 , the relative speed of the object, the distance from the host vehicle V 0 to the object, and the like to detect the surroundings of the host vehicle V 0 . Output as object information.
  • the drivable area generation unit 6 generates an area in which the vehicle V 0 can travel within the travel route.
  • the travelable area generation unit 6 acquires the travel route from the route setting unit 4, and acquires the object information around the vehicle V 0 and the lane marker information from the lane camera 51, the LRF 52, and the radar device 53.
  • the drivable area generation unit 6 generates a drivable area of the host vehicle V 0 in the lane set as the travel route based on the acquired travel route, the object information, and the lane marker information.
  • the target route generation unit 7 generates a target route that is a follow-up target when the host vehicle V 0 travels within the travelable area.
  • the target route generation unit 7 acquires the travelable region information regarding the travelable region from the travelable region generation unit 6 and generates a target route in the travelable region based on the acquired travelable region information.
  • the route tracking control unit 8 causes the host vehicle V 0 to travel so as to follow the target route. Specifically, the route tracking control unit 8 acquires the target route from the target route generation unit 7, and the vehicle center line set along the front-back direction of the host vehicle V 0 is generated by the target route generation unit 7. The steering device 10 is controlled via the steering actuator 9 so as to move on the target route. As a result, the host vehicle V 0 travels along the travel route so as to follow the target route.
  • the corner deceleration control unit 11 decelerates the speed of the host vehicle V 0 so that the occupant does not feel uncomfortable when the target route generated by the target route generation unit 7 has a right turn, a left turn, a curve, or the like. .. Specifically, the corner deceleration control unit 11 acquires the target route from the target route generation unit 7, sets the speed after deceleration based on the right turn angle, the left turn angle of the target route, the radius of the curve, etc., and adjusts the vehicle speed. The deceleration information regarding the speed after deceleration is input to the unit 12. The vehicle speed adjustment unit 12 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 based on the deceleration information input from the corner deceleration control unit 11 to reduce the speed of the host vehicle V 0 .
  • the stationary obstacle deceleration control unit 16 avoids a stationary obstacle without giving a feeling of strangeness to an occupant when a stationary obstacle such as a parked vehicle or a traveling control area due to construction exists in a lane set as a traveling route.
  • the speed of the host vehicle V 0 is reduced so that it can be performed.
  • the stationary obstacle deceleration control unit 16 acquires the travelable area information from the travelable area generation unit 6 and the object information around the host vehicle V 0 from the sensor 5.
  • the stationary obstacle deceleration control unit 16 sets the speed after deceleration based on the acquired travelable area information and the object information around the own vehicle V 0 , and the vehicle speed adjusting unit 12 decelerates the speed after deceleration. Enter the information.
  • the stationary obstacle deceleration control unit 16 may acquire the target route from the target route generation unit 7 and set the decelerated speed based on the target route and the object information around the host vehicle V 0 .
  • the vehicle speed adjustment unit 12 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 based on the deceleration information input from the stationary obstacle deceleration control unit 16 to reduce the speed of the host vehicle V 0 .
  • the stop line stop control unit 17 stops the own vehicle V 0 according to the stop line when the own vehicle V 0 reaches a temporary stop point such as an intersection. Specifically, the stop line stop control unit 17 determines that the own vehicle V 0 is an intersection or the like based on the own vehicle position information acquired from the own vehicle position detection unit 2 and the traveling route set by the route setting unit 4. The lane camera 51 of the sensor 5 detects the position of the stop lane as well as the arrival of the vehicle. Then, the stop line stop control unit 17 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 by the vehicle speed adjustment unit 12 to stop the host vehicle V 0 in line with the stop line.
  • the preceding vehicle recognizing unit 18 and the following distance control unit 19 determine the speed of the own vehicle V 0 in order to maintain a predetermined distance between the preceding vehicle and the preceding vehicle. Slow down. Specifically, the preceding vehicle recognition unit 18 recognizes the preceding vehicle based on the object information output from the radar device 53 of the sensor 5, determines the distance between the preceding vehicle and the host vehicle V 0, and the relative speed with respect to the preceding vehicle. Is calculated, and the calculation result is input to the following distance control unit 19 as the following distance information and the relative speed information.
  • the following distance control unit 19 Based on the inter-vehicle distance information and the relative speed information input from the preceding vehicle recognizing unit 18, the following distance control unit 19 causes the vehicle speed adjusting unit 12 to perform a vehicle speed servo control 13 so that a predetermined following distance is provided between the preceding vehicle and the preceding vehicle.
  • the engine 14 and the brake device 15 are controlled via the.
  • the presentation device 20 presents information to the driver of the own vehicle V 0 .
  • the presentation device 20 includes, for example, a display included in a navigation device, a display incorporated in a room mirror, a display incorporated in a meter unit, a head-up display projected on a windshield, a speaker included in an audio device, and a vibrating body. It is a device such as a seat seat device.
  • the target route generation unit 7 cannot generate the target route during the execution of the automatic traveling control
  • the presentation device 20 presents the driver of the own vehicle V 0 with the cancellation of the automatic traveling control.
  • FIG. 2 is a block diagram showing the functional configuration of the travelable area generation unit 6 according to this embodiment.
  • the drivable area generation unit 6 includes traveling road occupancy map generation units 61 to 64 and a map integration unit 65.
  • the traveling road occupancy map generation unit 61 determines the occupancy status of the lane markers around the host vehicle V 0 based on the lane marker information acquired from the lane camera 51 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. judge.
  • the lane marker occupancy status indicates whether or not a lane marker is provided on the road, and when the lane marker is provided on the road, the area where the lane marker is provided on the road is occupied by the lane marker. If the lane marker is not provided on the road, it is determined that the area on the road where the lane marker is not provided is not occupied by the lane marker (not occupied) and whether the lane marker is provided on the road. Areas where is unknown are unknown.
  • the road occupancy map generation unit 61 determines the lane marker information based on the above-described determination class, so that the area around the host vehicle V 0 is an occupied area occupied by the lane marker and an unoccupied area not occupied by the lane marker. , A first lane marker occupancy map classified into unknown regions whose occupancy status by the lane markers is unknown. The first lane marker occupancy map corresponds to the first traveling road occupancy map of the present invention.
  • the own lane the vehicle V 0 is, as shown in FIG. 3, when the vehicle is traveling on a one-lane road left-hand traffic having a branch path JL to the left, lane camera 51, the vehicle V 0 is traveling
  • the center line CL of L1 and the boundary line BL arranged on the road shoulder side are detected as lane markers, the type and position of the detected lane markers are specified, lane marker information is generated, and the generated lane marker information is used as a travel road occupation map.
  • the travel route occupancy map generation unit 61 determines, based on the lane marker information acquired from the lane camera 51, the occupancy status of the lane marker around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown.
  • the traveling road occupancy map generation unit 61 generates the first lane marker occupancy map OM1 (hereinafter also referred to as an occupancy map OM1) shown in FIG. 4A by determining the lane marker information according to the above-described determination class.
  • the first lane marker occupancy map OM1 the area where the center line CL and the boundary line BL exist (the area shown by hatching in the figure) is classified as the occupied area OA1.
  • a region between the center line CL and the boundary line BL (region shown by hatching of minute points in the figure) is classified into the unoccupied region NA1. Further, a region outside the center line CL and the boundary line BL (a region shown by a solid color in the figure) is classified as an unknown region UA1 as a region in which the lane marker cannot be detected due to the out-of-range of the lane camera 51 or a blind spot.
  • the traveling road occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the LRF 52 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. .. Note that if the occupancy status of the object, the region on the road indicates whether the vehicle V 0 other object is present, the object other than the vehicle V 0 is present in the region on the road, the object is It is assumed that the existing area is occupied by the object, and when there is no object other than the own vehicle V 0 on the road, the area where the object does not exist is not occupied by the object (unoccupied), and The case where it is unknown whether or not there is an object other than the vehicle V 0 is unknown.
  • the travel route occupancy map generation unit 62 based on the determination result of the occupancy state, occupies an area occupied by the object, an unoccupied area not occupied by the object, and an object around the host vehicle V 0.
  • An LRF occupancy map classified into an unknown area whose occupancy status is unknown is generated.
  • the LRF occupation map corresponds to the second road occupancy map of the present invention.
  • the LRF 52 installs a curb C on the shoulder side of the host lane L1 and a distribution box installed on the sidewalk SW.
  • the object Q and the preceding vehicle V 1 traveling in front of the own vehicle V 0 in the own lane L1 are detected as objects around the own vehicle V 0 , and object information including position information of the detected object is generated.
  • the travel route occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown, and the determination is made. Based on the result, the LRF occupation map OM3 (hereinafter, also referred to as an occupation map OM3) shown in FIG. 4B is generated.
  • this LRF occupation map OM3 the area where the object exists is classified into the occupation area OA3.
  • the area where no object exists is classified into the unoccupied area NA3.
  • a region where the object cannot be detected due to a range outside the LRF 52, a blind spot, or the like is classified into the unknown region UA3.
  • the occupied area OA3, the unoccupied area NA3, and the unknown area UA3 are indicated by hatching, hatching of minute points, and solid color, as in the first lane marker occupancy map OM1.
  • the traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. judge.
  • the definition of the occupancy status of the object is the same as that in the case of the road occupancy map generation unit 62, and thus detailed description will be omitted.
  • the traveling road occupancy map generation unit 63 occupies the area around the host vehicle V 0 based on the determination result of the occupancy state, the occupied area occupied by the object, the unoccupied area not occupied by the object, and the object occupied by the object.
  • a radar occupancy map classified into an unknown region whose condition is unknown is generated.
  • the radar occupancy map corresponds to the second road occupancy map of the present invention.
  • the radar device 53 sets the installation object Q on the sidewalk SW and the preceding vehicle V 1 on the host lane L 1 to the host vehicle V 0. It is detected as an object around 0 and object information including position information of the detected object is generated.
  • the traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 by three types of determination classes, occupied, unoccupied, and unknown, Based on the determination result, the radar occupancy map OM4 (hereinafter also referred to as occupancy map OM4) shown in FIG. 4C is generated.
  • the area where the object exists is classified into the occupied area OA4, and the other areas are classified into the unknown area UA4.
  • the occupied area OA4 and the unknown area UA4 are indicated by hatching and solid areas, respectively, like the first lane marker occupancy map OM1.
  • the radar device 53 used for automatic vehicle traveling control is generally configured to detect only an object having a predetermined height or higher from the road surface, the center line CL, the curb C, etc. are not detected. Therefore, in the radar occupancy map OM4 of FIG. 4C generated based on the detection result of the radar device 53, there is no unoccupied area.
  • the radar device 53 can detect the guardrail or the retaining wall on the road where the guardrail or the retaining wall is installed instead of the center line CL or the curb C, the radar occupation map OM4 includes the guardrail. An unoccupied area NA4 recognized based on the retaining wall is generated.
  • the travel route occupancy map generation unit 64 based on the high-accuracy map information acquired from the map database 3 and the vehicle position information acquired from the vehicle position detection unit 2, detects the lane markers existing around the vehicle V 0 .
  • the lane marker information is generated by specifying the type and position.
  • the travel route occupancy map generation unit 64 determines the occupancy status of the object around the host vehicle V 0 based on the generated lane marker information by using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. Based on the determination result of 1. , the surroundings of the vehicle V 0 are classified into an occupied area occupied by the lane marker, an unoccupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown.
  • a second lane marker occupancy map OM2 (hereinafter also referred to as an occupancy map OM2) is generated.
  • the second lane marker occupancy map OM2 is substantially the same as the first lane marker occupancy map OM1 generated based on the lane marker information of the lane camera 51, and therefore is not shown.
  • the map unifying unit 65 unifies the first lane marker occupancy map OM1, the second lane marker occupancy map OM2, the LRF occupancy map OM3, and the radar occupancy map OM4 to integrate the travel route integrated occupancy map. Generate IOM. Specifically, as shown in steps A to D of FIG. 5, the map integration unit 65 generates a base map M0 including the own vehicle V 0 , and the radar occupancy map OM4 and the first map are included in the base map M0. The lane marker occupancy map OM1 and the second lane marker occupancy map OM2 and the LRF occupancy map OM3 are sequentially overlapped to generate a travel route integrated occupancy map IOM.
  • the map integration unit 65 determines the occupied area, the unoccupied area and the unknown area of the travel route integrated occupied map IMO according to the combination of the occupied area, the unoccupied area and the unknown area of the occupied maps OM1 to OM4.
  • the map generated according to the combination of the occupied area and the unoccupied area in this way is generally called an occupied grid map (Occupancy grid map).
  • the map integration unit 65 considers safety in the area where at least one of the occupancy maps OM1 to OM4 is an occupancy area, and occupies the travel route integrated occupancy map IOM. Classify into area IOA.
  • the map unifying unit 65 gives priority to the continuation of the self-propelled driving control to the unoccupied area INA of the traveling route integrated occupancy map IOM for the area where the unoccupied areas of the occupancy maps OM1 to OM4 and the unknown area overlap. Classify.
  • the map integration unit 65 determines that an area where only the unknown areas of the occupancy maps OM1 to OM4 overlap is certain to be an unknown area, and classifies it into the unknown area IUA of the travel route integrated occupancy map IOM.
  • the map unifying unit 65 sets priorities for the occupied area, the unoccupied area, and the unknown area, and the travel path integrated occupancy map IOM unifies the maps so that the occupied area is preferentially set. Is going.
  • the occupied area IOA, the unoccupied area INA, and the unknown area IUA are indicated by hatching, hatching of minute dots, and solid color, respectively, as in the first lane marker occupancy map OM1.
  • the target route generation unit 7 generates the target route TP only in the unoccupied area INA where it is certain that there are no obstacles based on the travel route integrated occupancy map IOM generated by the map integration unit 65. For example, in the travel route integrated occupancy map IOM shown in FIG. 6, the target route generation unit 7 generates the target route TP in the central portion that is equidistant from the left and right boundary lines of the unoccupied area INA of the travel route integrated occupancy map IOM. To do.
  • the route follow-up control unit 8 executes the automatic traveling control of the own vehicle V 0 so as to follow the target route TP generated by the target route generation unit 7.
  • the target route generation unit 7 sets the target of the travel route integrated occupancy map IOM depending on the combination of the occupancy maps OM1 to OM4 used to generate the travel route integrated occupancy map IOM. Do not generate the route TP. That is, if the unoccupied area INA is generated in the travel route integrated occupancy map IOM on the basis of either the lane marker information or the surrounding object information, the target route generation unit 7 is within the unoccupied area INA. Although the target route TP is generated in the above, the target route TP is not generated when the unoccupied area INA is not generated in the travel route integrated occupation map IOM.
  • FIG. 7 is generated by integrating the first lane marker occupancy map generated based on the lane marker information of the lane camera 51 and the LRF occupancy map generated based on the object information of the LRF 52 by the map integrating unit 65.
  • It is a chart figure which shows the example of a combination of a traveling path integrated occupation map.
  • the first lane marker occupancy map in which the lane marker is detected from the lane marker information of the lane camera 51 and the object around the host vehicle V 0 are detected from the object information of the LRF 52.
  • the LRF occupancy map is integrated, a non-occupied area is generated in the travel route integrated occupancy map, so that automatic travel control is possible.
  • the first lane marker occupancy map in which the lane marker is detected from the lane camera information of the lane camera 51 and the object around the host vehicle V 0 are detected from the object information of the LRF 52.
  • the unoccupied region is generated by the first lane marker occupancy map in the travel route integrated occupancy map, so that the automatic traveling control is possible.
  • the lane marker cannot be detected from the lane marker information of the lane camera 51, and the first lane marker occupancy map in which only the unknown area is present and the object information of the LRF 52 show the own vehicle V 0.
  • the non-occupied region is generated by the LRF occupancy map in the travel route integrated occupancy map, so that the automatic traveling control is possible.
  • the lane marker cannot be detected from the lane marker information of the lane camera 51, and the first lane marker occupancy map is only the unknown area.
  • the object around the host vehicle V 0 cannot be detected from the object information of the LRF 52, and the LRF occupancy map having only the unknown region is integrated, and the unoccupied region is not generated in the travel route integrated occupancy map. In this case, automatic traveling control is disabled.
  • the target route generation unit 7 uses the travel route integrated occupancy map generated based on the lane marker information and the object information in the unoccupied region in the area where the lane marker information and the surrounding object information can be acquired. Generate a target route.
  • a target route On the other hand, in an area in which one of the lane marker information or the surrounding object information is unknown and the other information can be acquired, it is generated based on either the lane marker information or the surrounding object information. Since the target route is generated in the unoccupied area of the integrated roadway occupancy map, even if the vehicle is traveling in an area where the lane marker does not temporarily exist during automatic travel control, or if object information cannot be acquired, The traveling control can be continued. For example, the crossroads-shaped intersection CS shown in FIG.
  • the automatic travel control is stopped and the operation is switched to the manual operation.
  • the target route can be generated. Can be generated to continue the automatic travel control.
  • the target route is not generated in the travel route integrated occupancy map, so that the automatic travel control can be reliably stopped. Therefore, the safety of the automatic traveling control can be further enhanced.
  • FIG. 9 is a chart of an occupied grid map used to generate a travelable area in the conventional automatic travel control, and shows Conventional Example 1 in which an unknown area is treated as a non-occupied area.
  • the hatching of the occupied area and the unoccupied area is the same as in the chart of FIG. 7.
  • the lane marker or surrounding objects can be detected by at least one of the lane marker information of the lane camera 51 and the object information of the LRF 52.
  • the travelable area is generated and the target route can be set as in the present embodiment.
  • Conventional Example 1 as shown in the lower right part of the chart of FIG. 9, when the lane marker and the surrounding object could not be detected by the lane marker information of the lane camera 51 and the object information of the LRF 52, it is originally necessary. If so, the unknown area is treated as an unoccupied area, so that automatic traveling control becomes possible.
  • FIG. 10 is a chart of an occupancy grid map used to generate a travelable area in conventional automatic traveling control, and shows a second conventional example in which an unknown area is treated as an occupied area.
  • the hatching of the occupied area and the unoccupied area is the same as in the chart of FIG. 7.
  • the cruise control device VTC activates the lane camera 51, the LRF 52, and the radar device 53 of the sensor 5, and a lane marker around the host vehicle V 0 , An object around the host vehicle V 0 is detected.
  • the travel route occupancy map generation unit 61 determines, based on the lane marker information acquired from the lane camera 51, the occupancy status of the lane markers around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown, based on the determination result of the occupancy status, the area around the vehicle V 0, an occupation area OA1 occupied by the lane marker, the unoccupied area NA1 unoccupied lane marker, the unknown region occupancy is unknown by lane markers UA1 And the first lane marker occupancy map OM1 classified into
  • the travel route occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the LRF 52, using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. based on the determination result, the area around the vehicle V 0, the occupied region OA3 occupied by the object, the unoccupied areas NA3 not occupied on the object, the unknown region UA3 occupation state is unknown by the object, The LRF occupation map OM3 classified into 1.
  • the traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 by three types of determination classes, occupied, unoccupied, and unknown, based on the determination result of the occupancy status, the area around the vehicle V 0, the occupied region OA4 occupied by the object, the unoccupied area NA4 not occupied on the object, the unknown occupancy by the object is unknown regions UA4 And a radar occupancy map OM4 classified into
  • the travel route occupancy map generation unit 64 based on the high-accuracy map information acquired from the map database 3 and the vehicle position information acquired from the vehicle position detection unit 2, detects the lane markers existing around the vehicle V 0 .
  • the lane marker information is generated by specifying the type and position.
  • the travel route occupancy map generation unit 64 determines the occupancy status of the object around the host vehicle V 0 based on the generated lane marker information by using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. Based on the determination result of 1. , the surroundings of the vehicle V 0 are classified into an occupied area occupied by the lane marker, an unoccupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown.
  • the second lane marker occupancy map OM2 is generated.
  • the map integration unit 65 integrates the first lane marker occupancy map OM1, the second lane marker occupancy map OM2, the LRF occupancy map OM3, and the radar occupancy map OM4 to generate a travel route integrated occupancy map IOM.
  • the map integration unit 65 also determines the occupied area IOA, the unoccupied area INA, and the unknown area IUA of the travel route integrated occupied map IMO according to the combination of the occupied area, the unoccupied area, and the unknown area of the occupied maps OM1 to OM4. To do.
  • the travel control device VTC determines whether or not the lane marker information or the object information can be acquired from the generated travel route integrated occupation map IOM, and from the travel route integrated occupation map IOM.
  • the automatic traveling control is executed in the next step S2.
  • the target route generation unit 7 generates the target route TP in the unoccupied area INA of the travel route integrated occupancy map IOM, and the route tracking control unit 8 sets the generated target route TP to the own vehicle V.
  • the steering actuator 9 and the vehicle speed adjustment unit 12 are controlled so that 0 follows, and the host vehicle V 0 is automatically driven.
  • the travel control device VTC travels in an area where a lane marker such as an intersection does not exist or an area where high-precision map information including information about the lane marker does not exist during execution of the automatic travel control. If the lane marker information cannot be acquired and the lane marker information cannot be acquired from the road integrated occupancy map IOM, the object information of the road integrated occupancy map IOM whose lane marker information cannot be acquired as shown in step S4. From this, it is determined whether the target route TP can be generated.
  • the traveling control device VTC determines the target route TP according to the generated target route TP as shown in step S5. 2
  • the automatic traveling control is continued for the predetermined time T2.
  • the second predetermined time T2 is, for example, the vehicle V 0 is set an area where lane marker is not present, such as crossing time can pass.
  • the traveling control device VTC performs step S6 as shown in step S6. to S3 to the fifth predetermined time in T5, presented to the driver of the host vehicle V 0 to the effect to stop the automatic travel control by the presentation device 20, abort the automatic travel control to the driver of the vehicle V 0, i.e., the manual operation Prompt for preparation.
  • the traveling control device VTC stops the automatic traveling control within the first predetermined time T1 from step S3, and causes the driver of the own vehicle V 0 to start the manual driving operation.
  • the first predetermined time T1 and the fifth predetermined time T5 are set to be shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start the manual driving operation quickly. Is T2>T1>T5.
  • the traveling control device VTC uses the lane marker from the integrated lane map IOM during the second predetermined time T2 in which the vehicle V 0 travels in an area where the lane marker such as an intersection does not exist by automatic traveling control.
  • the presentation device 20 that the automatic traveling control is stopped within the fifth predetermined time T5 from step S8.
  • the traveling control device VTC stops the automatic traveling control within the third predetermined time T3 from step S8, and causes the driver of the own vehicle V 0 to start the manual driving operation.
  • the third predetermined time T3 and the fifth predetermined time T5 are set to times shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start the manual driving operation quickly. Is T2>T3>T5.
  • the travel control device VTC uses the travel path integrated occupation IOM map during the second predetermined time T2 in which the vehicle V 0 travels in an area where no lane marker exists, such as an intersection, by automatic travel control.
  • the process proceeds to step S2 and the normal automatic traveling control is executed.
  • step S12 after the second predetermined time T2 has passed, that is, although the vehicle V 0 has passed through an area such as an intersection where no lane marker exists, the lane marker information is acquired from the integrated lane marker information IOM map. If the object information cannot be recognized and the target route TP cannot be generated, as shown in step S13, the presenting device 20 informs that the automatic traveling control is stopped within the fifth predetermined time T5 from step S12. Present to V 0 drivers. Further, as shown in step S14, the traveling control device VTC stops the automatic traveling control within the fourth predetermined time T4 from step S12, and causes the driver of the own vehicle V 0 to start the manual driving operation.
  • the fourth predetermined time T4 and the fifth predetermined time T5 are set to be shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start a manual driving operation quickly. Is T2>T4>T5.
  • the first predetermined time T1, the third predetermined time T3, and the fourth predetermined time T4 for stopping the automatic traveling control of the host vehicle V 0 may use the same time or may be set to different times. Good.
  • the traveling control device VTC and the traveling control method for a vehicle include the lane marker information regarding the lane marker of the traveling road that is the road area in which the own vehicle V 0 can travel and the surroundings of the own vehicle V 0 .
  • Object information regarding an existing object is acquired, a drivable area of the vehicle V 0 is generated based on the lane marker information and the object information, and a target for the vehicle V 0 to travel within the generated drivable area.
  • a path TP is intended to perform the automatic travel control of the vehicle V 0, the section where the vehicle V 0 is not present in the lane marker, i.e., a region where the lane marker information can not be acquired
  • a travelable area of the host vehicle V 0 is generated based on the object information
  • a target route TP is generated within the generated travelable area
  • automatic travel control of the host vehicle V 0 is continued. ..
  • the host vehicle V 0 travels in a region where the object information cannot be acquired, a travelable region of the host vehicle V 0 is generated based on the lane marker information, and the generated travelable region is generated.
  • the target route TP is generated therein, and the automatic traveling control of the host vehicle V 0 is continued.
  • the automatic traveling control can be continued even in an area such as an intersection where no lane marker exists or an area where object information cannot be acquired.
  • the safety of the automatic driving control can be further enhanced.
  • the occupancy status of the lane markers around the host vehicle V 0 is determined by the occupied, unoccupied, and unknown determination classes based on the lane marker information. Based on the determination result of the occupancy status, the occupancy area occupied by the lane marker, the unoccupied area not occupied by the lane marker, and the unknown area in which the occupancy status by the lane marker is unknown around the host vehicle V 0.
  • the first lane marker occupancy map OM1 and the second lane marker occupancy map OM2 classified into Furthermore, based on the object information, the occupancy status of the object around the host vehicle V 0 is determined by three types of determination classes, occupied, unoccupied, and unknown, and the host vehicle V 0 is determined based on the determination result of the occupancy status.
  • LRF occupancy map OM3 and radar occupancy map OM4 classified into an area occupied by an object, an unoccupied area not occupied by the object, and an unknown area whose occupancy by the object is unknown. To do. Then, the occupancy maps OM1 to OM4 are integrated to generate the travel route integrated occupancy map IOM, and the target route TP is generated based on the travel route integrated occupancy map IOM.
  • generating a target route TP analyzes the situation in the vicinity of the vehicle V 0 in detail be able to. Therefore, even when the target route TP is generated based on only the object information, the safety of the automatic driving control can be further enhanced.
  • the automatic travel control is executed when the lane marker information can be acquired from the integrated road occupancy map IOM, and during execution of the automatic travel control. If the lane marker information cannot be acquired from the travel route integrated occupancy map IOM, the automatic travel control is stopped within the first predetermined time T1. Further, if the target route TP can be generated from the object information of the integrated travel route integrated map IOM before the automatic travel control is stopped, the automatic travel control is continued for the second predetermined time T2. According to this, for example, by setting the first predetermined time T1 to an appropriate time, it is possible to stop the automatic travel control until the host vehicle V 0 finishes traveling in the area where the lane marker information cannot be acquired.
  • the automatic travel control can be continued until the host vehicle V 0 finishes passing through the area where the lane marker information cannot be acquired. Therefore, the stop and the continuation of the automatic traveling control can be switched at an appropriate timing, so that the safety of the automatic driving control can be further enhanced.
  • the automatic travel control device VTC and the travel control method of the present embodiment if the target route TP cannot be generated from the travel route integrated occupancy map IOM within the second predetermined time T2, the automatic travel is performed.
  • the control is stopped within the third predetermined time T3.
  • the automatic travel control is performed by the time the vehicle V0 finishes traveling in the area where the lane marker information cannot be acquired. Can be canceled. Therefore, the automatic traveling control can be stopped at an appropriate timing, so that the safety of the automatic driving control can be further enhanced.
  • the vehicle travel control device VTC and the travel control method of the present embodiment when the lane marker information can be acquired from the travel route integrated occupancy map IOM within the second predetermined time, the normal Since the automatic traveling control is continued, the safety of the automatic driving control can be further enhanced.
  • the vehicle travel control device VTC and the travel control method according to the present embodiment if the lane marker information cannot be acquired from the road integrated occupancy map IOM within the second predetermined time, the automatic Since the driving control is stopped within the fourth predetermined time T4, if the fourth predetermined time T4 is set to an appropriate time, it is possible to safely stop the automatic driving control and transfer the driving operation to the occupant of the vehicle V 0. Therefore, the safety of the automatic driving control can be further enhanced.
  • the vehicle travel control device VTC and the travel control method according to the present embodiment when the automatic travel control is stopped, the fact that the vehicle occupant is in the fifth predetermined time T5 is notified to the occupant of the vehicle V 0. Since the notification is given, if the fifth predetermined time T5 is set to an appropriate time, the occupant of the own vehicle V 0 can be prompted to prepare for the suspension of the automatic travel control, and the switching from the automatic travel control to the manual operation can be smoothly performed. It can be carried out.
  • the travel route integrated occupancy map IOM is generated by superimposing the occupancy maps OM1 to OM4, and at least one of the occupancy maps OM1 to OM4 is generated.
  • An area that is an occupied area in one occupancy map is an occupied area of the travel route integrated occupancy map IOM, and an area that is an unoccupied area in at least one of the occupancy maps OM1 to OM4 is an unknown area in another occupancy map.
  • the unoccupied area of the travel route integrated occupancy map IOM, and the area that is an unknown area in all the occupancy maps of the occupancy maps OM1 to OM4 is an unknown area in the travel route integrated occupancy map IOM.
  • the occupied areas of the occupancy maps OM1 to OM4 are integrated by giving priority to each other, so that the occupied areas are preferentially set in the travel route integrated occupancy map IOM. Therefore, the automatic traveling control can be executed by giving priority to safety.
  • the target is set only in the unoccupied area INA of the travel route integrated occupancy map IOM in which it is certain that there is no other object such as an obstacle. Since the route TP is generated, the safety of automatic driving control can be further enhanced.
  • the occupancy of lane markers and objects around the host vehicle V 0 is so-called digitally determined by three types of determination classes, occupied, unoccupied, and unknown, to determine the occupancy. Based on the result, the surroundings of the own vehicle V 0 are classified into an occupied area, a non-occupied area, and an unknown area.
  • the occupied, unoccupied, and unknown determination classes are analog intermediate states of each determination class. May be included.
  • the analog intermediate state of each determination class is, for example, when the unknown determination value is 0, the occupation determination value is +1 and the non-occupancy determination value is -1, the intermediate state of these determination values is Include it.
  • the determination class is made to include the intermediate state of the determination value, because the reliability of the detection result of the lane marker or the object by the sensor 5 is the road condition at the time of detection, the environment such as weather, time, season, etc. This is because it changes with changes in.
  • FIG. 12A shows an analog determination value i1 of the first lane marker occupancy map generated based on the lane marker information of the lane camera 51 and an analog determination value i1 of the LRF occupancy map generated based on the object information of the LRF 52.
  • It is a logic table of the discrete value version which shows the area
  • the unknown judgment values of i1 and i2 are 0, the judgment value of occupancy is +1 and the judgment value of non-occupancy is -1, and the logic table is arranged so as to include an intermediate state of these judgment values.
  • the graph is as shown in FIG.
  • the occupied, unoccupied, and unknown determination classes are made to include the intermediate state of each determination class in an analog manner, and thus the lane marker and the object around the vehicle V 0 can be more detailed.
  • the target route can be generated by grasping the occupation status.
  • FIG. 12 the graph based on the discrete value version of the logical table showing the judgment value i1, the judgment value i2, and the region iN in which the judgment values i2 and i1 and i2 are integrated has been described, but as shown in FIG. , A determination value i1, a determination value i2, and a graph as shown in FIG. 13B, which is created based on the logical table of the continuous value version showing the region iN in which i1 and i2 are integrated may be used.
  • the area where the judgment value i1 and the judgment value i2 have the same sign the area where the judgment value has a large absolute value is the area iN of the roadway integrated occupation map, and the judgment value i1 and the judgment value i2 are areas with different signs. Then, the area of iN obtained by calculating i2-i1 ⁇ i2+i1 is set as the area iN of the roadway integrated occupation map. As a result, it is possible to generate a target route by grasping a more detailed occupancy status of lane markers and objects around the host vehicle V 0 .
  • the vehicle travel control device VTC and the travel control method according to the present embodiment include the intermediate states of the determination classes in an analog manner with respect to the occupied, unoccupied, and unknown determination classes. , The occupancy status based on the detection result of the sensor 5 can be reflected in the generation of the target route even when the reliability and the confidence are low.
  • the vehicle travel control device VTC and the travel control method according to the present embodiment have an unknown determination value of 0, an occupancy determination value of +1, and a non-occupancy determination value as intermediate states of analog determination classes. Since the intermediate state between these determination values is included when -1, the state with low reliability and certainty of the occupancy state based on the detection result by the sensor 5 is held as a scalar value, and the target route Will be able to be reflected in the generation of.
  • the determination value of each region of the first traveling road occupancy map is i1
  • the determination value of each region of the second traveling road occupancy map is i2.
  • the judgment value i1 and the judgment value i2 have the same sign
  • the judgment value i1 and the judgment value i2 have different signs when the judgment value i1 and the judgment value i2 have different signs.
  • I2 ⁇ i1 ⁇ i2+i1 is used as the area of the roadway integrated occupancy map, the reliability of the occupancy situation based on the detection result of the sensor 5 and even from a state of low confidence
  • the occupancy status after integration can be obtained and reflected in the generation of the target route.
  • the first lane marker occupancy map OM1 based on the lane camera 51 the second lane marker occupancy map OM2 based on the high-precision map information 32, the LRF occupancy map OM3 based on the LRF52, and the radar device 53.
  • the radar occupancy map OM4 is integrated to generate the traveling road integrated occupancy map IOM, an occupancy map other than these may be further added to generate the traveling road integrated occupancy map.
  • the LRF 52 and the radar device 53 Although there is a possibility that the direction of returning from the intersection to the lane set on the target route TP may not be known only with the travelable area generated from the object information, the moving direction from the intersection to the lane using the low-precision map information 31. It is possible to reduce the lateral shift amount of the host vehicle V 0 when returning from the intersection into the lane by using the movement trajectory of the preceding vehicle V 1 .
  • FIG. 14 is a block diagram showing a functional configuration of the drivable area generation unit 6A according to this embodiment.
  • the drivable area generation unit 6A includes a traveling road occupancy map generation unit 66, a traveling road occupancy map generation unit 66, in addition to the traveling road occupancy map generation units 61 to 64 and the map integration unit 65 according to the first embodiment.
  • the preceding vehicle trajectory recognition unit 68 is provided.
  • the travel route occupancy map generation unit 66 acquires the low-precision map information acquired from the map database 3 and the vehicle position.
  • a low-precision map occupancy map OM5 (see FIG. 15) that can be used to calculate the target angle from the intersection to the lane in which the target route TP was generated is generated based on the own vehicle position information acquired from the detection unit 2. To do.
  • the traveling road occupancy map generation unit 67 and the preceding vehicle trajectory recognition unit 68 determine the movement trajectory of the preceding vehicle V 1 when traveling in a section such as an intersection where the lane marker information cannot be obtained from the lane camera 51 or the high precision map information 32. By using this, the preceding vehicle occupancy map OM6 (see FIG. 15) that can be used to obtain the target angle from the intersection to the lane in which the target route TP was generated is generated.
  • the preceding vehicle locus recognition unit 68 records the moving position of the preceding vehicle detected by the radar device 53 at predetermined time intervals, and generates preceding vehicle locus information regarding the moving locus of the preceding vehicle V 1 .
  • the traveling road occupancy map generation unit 67 generates the preceding vehicle occupancy map OM6 in which the preceding vehicle locus is a non-occupied region based on the preceding vehicle locus information acquired from the preceding vehicle locus recognition unit 68.
  • the drivable area generation unit 6A of the present embodiment uses the first lane marker occupancy map OM1 based on the lane marker information of the lane camera 51 and the second lane marker occupancy map based on the lane marker information of the high accuracy map information 32.
  • OM2 cannot be obtained, the LRF occupancy map OM3 and the radar occupancy map OM4 are integrated with one or both of the low-precision map occupancy map OM5 and the preceding vehicle occupancy map OM6, and the map integration unit 65 A travel route integrated occupation map IOM1 is generated.
  • the target route TP is corrected by using the unoccupied area INA1 to reduce the lateral shift amount of the host vehicle V 0 when returning to the lane from the intersection. Is possible.
  • a vehicle position information about the current position of the vehicle V 0 obtains the low-precision map information 31 in the periphery of the current position of the vehicle V 0, an intersection or the like based on the vehicle position information and the low-precision map information 31 Since the target angle to the lane in which the target route TP is generated can be calculated from, it is possible to reduce the lateral deviation amount of the host vehicle V 0 when returning from the intersection into the lane.
  • the vehicle travel control device VTC and the travel control method according to the present embodiment are arranged in front of the host vehicle V 0 when the lane marker information cannot be acquired from the roadway integrated occupation map during execution of the automatic travel control. Since it is possible to detect the traveling locus of the preceding vehicle V 1 traveling on the road and calculate the target direction from the intersection or the like to the lane in which the target route TP is generated based on the traveling locus, when returning to the lane from the intersection. It is possible to reduce the lateral shift amount of the subject vehicle V 0 .
  • first 2-lane marker occupancy map OM3 LRF occupancy map OM4... Radar occupancy map IOM... Roadway integrated occupancy map OA1, OA2, OA3, OA4, IOA... Occupied areas NA1, NA2, NA3, NA4, NOA... Non-occupied areas UA1, UA2, UA3, UA4, UOA... Unknown area TP... Target route

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

According to the present invention: lane marker information and object information are obtained, wherein the lane marker information relates to a lane marker for a travel path that is a road region where a host vehicle (V0) can travel, and the object information relates to objects present around the host vehicle (V0); a travelable region for the host vehicle (V0) is generated on the basis of the lane marker information and the object information; a target path (TP) along which the host vehicle (V0) is to travel is generated in the travelable region; when automated travel control of the host vehicle (V0) is performed in accordance with the generated target path (TP), if there is a region for which lane marker information and object information are available, then the lane marker information and the object information are used to generate a travelable region for the host vehicle (V0); if there is a region for which one of marker information and object information is not available but the other information is available, then a travelable region for the host vehicle (V0) is generated on the basis of the other information; and a target path is generated in each generated travelable region, and automated travel control of the host vehicle (V0) is performed.

Description

車両の走行制御方法及び走行制御装置Vehicle traveling control method and traveling control device
 本発明は、車両の走行制御方法及び走行制御装置に関する。 The present invention relates to a vehicle travel control method and a travel control device.
 車両が走行するレーンのレーン境界線の位置と、車両の周囲に存在する物体の位置とを平面座標系で認識し、認識したレーン境界線と物体との位置を平面座標系からレーン座標系に座標変換して投影し、レーン座標系におけるレーン境界線と物体とに基づいて、車両が走行可能な領域を算出する走行制御装置が知られている(特許文献1)。また、この走行制御装置では、レーン座標系において算出した走行可能領域を平面座標系に逆変換し、平面座標系の走行可能領域で、車両を自動運転するための走行軌跡を生成している。 The position of the lane boundary line of the lane on which the vehicle travels and the position of the object existing around the vehicle are recognized in the plane coordinate system, and the recognized lane boundary line and the position of the object are changed from the plane coordinate system to the lane coordinate system. A travel control device is known in which coordinates are converted and projected, and a region in which a vehicle can travel is calculated based on a lane boundary line and an object in a lane coordinate system (Patent Document 1). Further, in this travel control device, the travelable area calculated in the lane coordinate system is inversely converted into a plane coordinate system, and a travel locus for automatically driving the vehicle is generated in the travelable area in the plane coordinate system.
特開2017−151764号公報Japanese Unexamined Patent Application Publication No. 2017-151768
 特許文献1の走行制御装置は、レーン境界線の位置と、車両の周囲の物体の位置とに基づいて走行可能領域を算出しているので、交差点等のようにレーン境界線が存在しない区間(以下、領域ともいう)では、走行可能領域を算出することはできない。そのため、特許文献1の走行制御装置では、レーン境界線が存在しない領域を走行する場合、自動走行を中止して手動運転に切り換える必要がある。 Since the travel control device of Patent Document 1 calculates the travelable area based on the position of the lane boundary line and the positions of objects around the vehicle, a section where the lane boundary line does not exist, such as an intersection ( Hereinafter, the travelable area cannot be calculated for the area (also referred to as an area). Therefore, in the traveling control device of Patent Document 1, when traveling in an area where the lane boundary does not exist, it is necessary to stop automatic traveling and switch to manual operation.
 本発明が解決しようとする課題は、レーン境界線が存在しない領域において自動走行を継続することができる車両の走行制御方法及び走行制御装置を提供することである。 The problem to be solved by the present invention is to provide a traveling control method and a traveling control device for a vehicle that can continue automatic traveling in an area where a lane boundary does not exist.
 本発明は、自車両が走行可能な道路領域である走行路のレーンマーカに関するレーンマーカ情報と、自車両の周囲に存在する物体に関する物体情報とが取得可能な領域では、レーンマーカ情報及び物体情報を用いて自車両の走行可能領域を生成し、レーンマーカ情報もしくは物体情報の一方の情報が不明な領域であって、かつ、他方の情報が取得可能な領域では、他方の情報に基づいて自車両の走行可能領域を生成し、生成された走行可能領域内に目標経路を生成して、自車両の自動走行制御を実行することにより、上記課題を解決する。 The present invention uses lane marker information and object information in an area where lane marker information about a lane marker of a traveling road, which is a road area where the vehicle can travel, and object information about an object existing around the vehicle can be acquired. In a region in which one of the lane marker information and the object information is unknown and the other information can be acquired, the own vehicle can travel based on the other information after generating the own vehicle travelable region. The problem is solved by generating an area, generating a target route in the generated travelable area, and executing automatic traveling control of the own vehicle.
 本発明によれば、交差点等のレーン境界線(レーンマーカ)が存在しない領域でも自動走行を中止しないので、自動走行から手動運転に切り換える必要がなくなり、自動走行制御を実行可能な状況範囲を広げることができる。 According to the present invention, automatic traveling is not stopped even in an area where a lane boundary line (lane marker) such as an intersection does not exist, so there is no need to switch from automatic traveling to manual operation, and the range of situations in which automatic traveling control can be executed is expanded. You can
本発明に係る車両の走行制御装置の一実施の形態を示すブロック図である。1 is a block diagram showing an embodiment of a vehicle travel control device according to the present invention. 第1実施形態に係る走行可能領域生成部の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the drivable area production|generation part which concerns on 1st Embodiment. 本実施形態に係る自動走行制御の走行シーンを示す平面図である。It is a top view showing a run scene of automatic run control concerning this embodiment. 図3の走行シーンにおけるレーンマーカの占有状況を示すレーンマーカ占有マップである。4 is a lane marker occupancy map showing a lane marker occupancy state in the traveling scene of FIG. 3. 図3の走行シーンにおける物体の占有状況を示すLRF占有マップである。4 is an LRF occupancy map showing an occupancy state of objects in the traveling scene of FIG. 3. 図3の走行シーンにおける物体の占有状況を示すレーダ占有マップである。4 is a radar occupancy map showing an occupancy state of an object in the traveling scene of FIG. 3. 複数の占有マップを統合して走行路統合占有マップ生成する手順を示す説明図である。It is explanatory drawing which shows the procedure which integrates several occupancy maps and produces|generates a traveling path integrated occupancy map. 走行路統合占有マップの構成を示す説明図である。It is an explanatory view showing composition of a runway integrated occupation map. レーンマーカ占有マップとLRF占有マップとを統合して生成される走行路統合占有マップの組み合わせ例を示すチャート図である。It is a chart figure which shows the example of a combination of the driving|running road integrated occupation map produced|generated by integrating a lane marker occupation map and an LRF occupation map. レーンマーカが存在しない走行区間の一例として挙げた十字路状の交差点の平面図である。FIG. 6 is a plan view of a crossroad-shaped intersection taken as an example of a traveling section in which no lane marker exists. 従来の自動走行制御で走行可能領域を生成する際に、未知領域を非占有領域として扱っていた占有グリッドマップを示すチャート図である。It is a chart figure which shows the occupied grid map which handled the unknown area|region as an unoccupied area|region, when generating the drivable area|region by the conventional automatic traveling control. 従来の自動走行制御で走行可能領域を生成する際に、未知領域を占有領域として扱っていた占有グリッドマップを示すチャート図である。It is a chart figure which shows the occupied grid map which handled the unknown area|region as an occupied area, when generating a drivable area by the conventional automatic driving control. 第1実施形態に係る自動走行制御の手順を示すフローチャートである。It is a flow chart which shows the procedure of automatic run control concerning a 1st embodiment. 第2実施形態に係り、レーンマーカ占有マップのアナログ的な判定値i1と、LRF占有マップのアナログ的な判定値i2と、i1とi2とを統合した領域iNとを示す離散値版の論理表を示す図である。According to the second embodiment, a discrete value version logical table showing an analog judgment value i1 of a lane marker occupancy map, an analog judgment value i2 of an LRF occupancy map, and a region iN in which i1 and i2 are integrated is shown. FIG. 図12Aの論理表から判定値i1とi2の中間の状態を含むように作成したグラフを示す図である。It is a figure which shows the graph created so that the intermediate state of judgment value i1 and i2 might be included from the logic table of FIG. 12A. 第2実施形態に係り、レーンマーカ占有マップのアナログ的な判定値i1と、LRF占有マップのアナログ的な判定値i2と、i1とi2とを統合した領域iNとを示す連続値版の論理表を示す図である。According to the second embodiment, a continuous value version logical table showing the analog judgment value i1 of the lane marker occupancy map, the analog judgment value i2 of the LRF occupancy map, and the region iN in which i1 and i2 are integrated is shown. FIG. 図13Aの論理表から判定値i1とi2の中間の状態を含むように作成したグラフを示す図である。It is a figure which shows the graph created so that the intermediate state of the determination values i1 and i2 might be included from the logic table of FIG. 13A. 第3実施形態に係る走行可能領域生成部の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the drivable area production|generation part which concerns on 3rd Embodiment. 第3実施形態に係る、複数の占有マップを統合して走行路統合占有マップ生成する手順を示す説明図である。It is explanatory drawing which shows the procedure which integrates several occupancy maps based on 3rd Embodiment, and produces|generates a driveway integrated occupancy map.
 図1は、本実施形態に係る走行制御装置VTCの構成を示すブロック図である。本実施形態に係る走行制御装置VTCは、本発明に係る車両の走行制御方法を実施する一実施の形態でもある。走行制御装置VTCは、例えば、車両に搭載された車載装置であり、走行制御装置VTCが搭載された自車両V(図3(A)参照)の走行を制御する各種の機能を備えている。例えば、走行制御装置VTCは、設定された目的地に向けて走行ルートを設定し、この走行ルートにしたがって自車両Vを自動で走行させる自動走行制御機能等を備えている。 FIG. 1 is a block diagram showing the configuration of the travel control device VTC according to the present embodiment. The travel control device VTC according to the present embodiment is also an embodiment for implementing the vehicle travel control method according to the present invention. The travel control device VTC is, for example, an in-vehicle device mounted in a vehicle, and has various functions for controlling the travel of the host vehicle V 0 (see FIG. 3A) in which the travel control device VTC is mounted. .. For example, the travel control device VTC has an automatic travel control function that sets a travel route toward a set destination and automatically drives the host vehicle V 0 according to the travel route.
 本実施形態に係る走行制御装置VTCは、目的地設定部1と、自車位置検出部2と、地図データベース3と、ルート設定部4と、センサ5と、走行可能領域生成部6と、目標経路生成部7と、経路追従制御部8と、ステアリングアクチュエータ9と、ステアリング装置10と、コーナー減速制御部11と、車速調整部12と、車速サーボ13と、エンジン14と、ブレーキ装置15と、静止障害物減速制御部16と、停止線停車制御部17と、先行車認識部18と、車間制御部19と、提示装置20と、を備える。 The travel control device VTC according to the present embodiment includes a destination setting unit 1, a vehicle position detection unit 2, a map database 3, a route setting unit 4, a sensor 5, a travelable area generation unit 6, and a target. The route generation unit 7, the route tracking control unit 8, the steering actuator 9, the steering device 10, the corner deceleration control unit 11, the vehicle speed adjustment unit 12, the vehicle speed servo 13, the engine 14, and the brake device 15. The stationary obstacle deceleration control unit 16, the stop line vehicle stop control unit 17, the preceding vehicle recognition unit 18, the headway distance control unit 19, and the presentation device 20 are provided.
 走行制御装置VTCを構成する各部のうち、ルート設定部4と、走行可能領域生成部6と、目標経路生成部7と、経路追従制御部8と、コーナー減速制御部11と、車速調整部12と、静止障害物減速制御部16と、停止線停車制御部17と、先行車認識部18と、車間制御部19とは、一又は複数のコンピュータ及び当該コンピュータにインストールされたソフトウェアにより構成されている。コンピュータは、上述した各部を機能させるためのプログラムを格納したROMと、このROMに格納されたプログラムを実行するCPUと、アクセス可能な記憶装置として機能するRAMとから構成される。なお、CPUに代えて又はこれとともに、MPU、DSP、ASIC、FPGAなどを用いることができる。 Among the various parts that make up the travel control device VTC, a route setting part 4, a travelable area generation part 6, a target route generation part 7, a route following control part 8, a corner deceleration control part 11, and a vehicle speed adjustment part 12 are provided. The stationary obstacle deceleration control unit 16, the stop line stop control unit 17, the preceding vehicle recognition unit 18, and the headway distance control unit 19 are configured by one or more computers and software installed in the computers. There is. The computer includes a ROM that stores a program for causing the above-described units to function, a CPU that executes the program stored in the ROM, and a RAM that functions as an accessible storage device. Note that an MPU, DSP, ASIC, FPGA, or the like can be used instead of or together with the CPU.
 上述した各部を構成するコンピュータは、目的地設定部1と、自車位置検出部2と、地図データベース3と、センサ5と、ステアリングアクチュエータ9と、車速サーボ13と、提示装置20とに対し、相互に情報の送受信を行うために、たとえばCAN(Controller Area Network)その他の車載LANによって接続されている。 The computer configuring each of the above-mentioned units, with respect to the destination setting unit 1, the vehicle position detection unit 2, the map database 3, the sensor 5, the steering actuator 9, the vehicle speed servo 13, and the presentation device 20, In order to send and receive information to and from each other, they are connected by, for example, a CAN (Controller Area Network) or other in-vehicle LAN.
 目的地設定部1は、自動走行制御機能により自車両Vが走行する際の目的地を設定する。この目的地設定部1は、表示装置と入力装置とを備える。表示装置は、例えば、液晶パネル等のディスプレイであり、地図データベース3から読み出した地図情報と、目的地を設定するための設定情報等を表示する。入力装置は、例えば、ディスプレイ画面上に配置されたタッチパネルや、ダイヤルスイッチ、ドライバーの音声による入力が可能なマイクなどの装置であり、表示装置に表示された設定情報に対する目的地の入力操作等に利用される。目的地設定部1は、地図情報と、設定情報と、入力装置から入力された入力情報とに基づいて、目的地の位置を表す目的地情報を生成する。 The destination setting unit 1 sets a destination when the vehicle V 0 travels by the automatic travel control function. The destination setting unit 1 includes a display device and an input device. The display device is, for example, a display such as a liquid crystal panel, and displays map information read from the map database 3, setting information for setting a destination, and the like. The input device is, for example, a device such as a touch panel arranged on a display screen, a dial switch, or a microphone capable of inputting by a driver's voice, and is used for input operation of a destination for setting information displayed on the display device. Used. The destination setting unit 1 generates destination information indicating the position of the destination based on the map information, the setting information, and the input information input from the input device.
 自車位置検出部2は、自車両Vの現在の位置を検出する。この自車位置検出部2は、GPSユニットと、ジャイロセンサと、車速センサ等を備える。自車位置検出部2は、GPSユニットにより複数の衛星通信から送信される電波を検出し、自車両Vの位置情報を周期的に取得するとともに、取得した自車両Vの位置情報と、ジャイロセンサから取得した角度変化情報と、車速センサから取得した速度情報とに基づいて、自車両Vの現在位置を検出し、現在位置を表す自車位置情報を生成する。 The host vehicle position detection unit 2 detects the current position of the host vehicle V 0 . The vehicle position detection unit 2 includes a GPS unit, a gyro sensor, a vehicle speed sensor and the like. The own vehicle position detection unit 2 detects radio waves transmitted from a plurality of satellite communications by the GPS unit, periodically acquires the position information of the own vehicle V 0 , and the acquired position information of the own vehicle V 0 , The current position of the host vehicle V 0 is detected based on the angle change information acquired from the gyro sensor and the speed information acquired from the vehicle speed sensor, and host vehicle position information indicating the current position is generated.
 地図データベース3は、走行ルートの生成に用いる低精度地図情報31(図2参照)と、自動走行制御に用いる高精度地図情報32(図2参照)とを格納している。低精度地図情報31は、一般的なカーナビゲーション装置等で用いられている地図情報であり、各種施設や特定の地点の位置情報とともに、道路に関する情報が記録されている。道路に関する情報としては、合流地点、分岐地点、料金所、車線数の減少位置、サービスエリア(SA)/パーキングエリア(PA)などの位置情報などの情報が含まれている。高精度地図情報32は、データ取得用車両を用いて実際の道路を走行した際に検出された道路形状に基づく三次元地図情報であり、地図情報とともに、車線数や車線幅、レーンマーカ(車線境界線)の種類や位置等が三次元情報として関連付けられた地図情報である。 The map database 3 stores low-precision map information 31 (see FIG. 2) used to generate a driving route and high-precision map information 32 (see FIG. 2) used for automatic driving control. The low-precision map information 31 is map information used in a general car navigation device and the like, and information about roads is recorded together with position information of various facilities and specific points. The information about roads includes information such as merge points, branch points, toll gates, lane number reduction positions, and service area (SA)/parking area (PA) position information. The high-precision map information 32 is three-dimensional map information based on the road shape detected when the vehicle used for data acquisition travels on an actual road, and together with the map information, the number of lanes, the lane width, and the lane marker (lane boundary). This is map information in which the type and position of a line is associated as three-dimensional information.
 ルート設定部4は、自車両Vの目的地までの走行ルートを設定する。このルート設定部4は、ルート生成部41と、車線設定部42とを備える。ルート生成部41は、目的地設定部1から取得した目的地情報と、自車位置検出部2から取得した自車位置情報と、地図データベース3から取得した地図情報とに基づいて、自車両Vの現在位置から目的地までの走行ルートを生成する。車線設定部42は、地図データベース3から取得した高精度地図情報に基づいて、走行ルート上で自車両Vが走行する車線を設定する。なお、この車線とは、本発明における、自車両Vが走行可能な道路領域の走行路に相当する。 The route setting unit 4 sets the traveling route of the host vehicle V 0 to the destination. The route setting unit 4 includes a route generation unit 41 and a lane setting unit 42. The route generation unit 41, based on the destination information acquired from the destination setting unit 1, the own vehicle position information acquired from the own vehicle position detection unit 2, and the map information acquired from the map database 3, the own vehicle V Generate a travel route from the current position of 0 to the destination. The lane setting unit 42 sets the lane in which the vehicle V 0 travels on the travel route based on the high-precision map information acquired from the map database 3. In addition, this lane corresponds to a traveling road in a road region in which the host vehicle V 0 can travel in the present invention.
 センサ5は、自車両Vの周囲の状況を検出する。センサ5は、例えば、レーンカメラ51(図2参照)と、レーザレンジファインダ52(図2参照)と、レーダ装置53(図2参照)と、を備える。 The sensor 5 detects the situation around the vehicle V 0 . The sensor 5 includes, for example, a lane camera 51 (see FIG. 2), a laser range finder 52 (see FIG. 2), and a radar device 53 (see FIG. 2).
 レーンカメラ51は、撮像部と、画像解析部とを備える。撮像部は、自車両Vの前方の所定の範囲を撮像して画像データを取得するイメージセンサであり、例えば車室内のフロントウィンドウ上部に設けられたCCD広角カメラからなる。撮像部は、ステレオカメラや全方位カメラであってもよく、複数のイメージセンサを含むようにしてもよい。画像解析部は、撮像部により撮像された画像データを解析して、自車両Vの前方に存在するセンターライン、縁石側の境界ライン等のレーンマーカを検出し、検出したレーンマーカの種類や位置等を特定して、レーンマーカ情報として出力する。 The lane camera 51 includes an image pickup section and an image analysis section. The image capturing unit is an image sensor that captures image data by capturing a predetermined area in front of the host vehicle V 0 , and includes, for example, a CCD wide-angle camera provided above the front window in the vehicle interior. The image capturing unit may be a stereo camera or an omnidirectional camera, or may include a plurality of image sensors. The image analysis unit analyzes the image data captured by the image capturing unit, detects a lane marker such as a center line existing in front of the vehicle V 0 , a boundary line on the side of the curb, and the type and position of the detected lane marker. Is specified and is output as lane marker information.
 レーザレンジファインダ(以下、LRFともいう)52は、距離測定用の出力波であるレーザ光を車両の周囲に照射し、その反射波(検知波)を検出することで、自車両Vの周囲に存在する他車両、二輪車、自転車、歩行者、路肩の縁石、ガードレール、壁面、盛り土等の物体を検出する。LRF52は、検出結果を自車両Vの周囲の物体情報として出力する。 A laser range finder (hereinafter, also referred to as LRF) 52 irradiates a laser beam, which is an output wave for distance measurement, around the vehicle and detects a reflected wave (detection wave) of the vehicle to detect the surroundings of the vehicle V 0 . It detects objects such as other vehicles, motorcycles, bicycles, pedestrians, curbs on road shoulders, guardrails, wall surfaces, and embankments existing in. The LRF 52 outputs the detection result as object information around the vehicle V 0 .
 レーダ装置53は、ミリ波や超音波を自車両Vの前方に照射して自車両Vの周囲の所定の範囲を走査し、自車両Vの周囲に存在する他車両、二輪車、自転車、歩行者、ガードレール、壁面、盛り土等の物体を検出する。例えば、レーダ装置53は、検出した物体と自車両Vとの相対位置(方位)、物体の相対速度、自車両Vから物体までの距離等を検出して、自車両Vの周囲の物体情報として出力する。 The radar device 53, another vehicle millimeter wave or ultrasonic is irradiated to the front of the own vehicle V 0 scanning a predetermined range around the vehicle V 0, present around the vehicle V 0, motorcycles, bicycles Detects objects such as pedestrians, guardrails, walls, and embankments. For example, the radar device 53 detects the relative position (azimuth) between the detected object and the host vehicle V 0 , the relative speed of the object, the distance from the host vehicle V 0 to the object, and the like to detect the surroundings of the host vehicle V 0 . Output as object information.
 走行可能領域生成部6は、走行ルート内に自車両Vが走行可能な領域を生成する。走行可能領域生成部6は、ルート設定部4から走行ルートを取得し、レーンカメラ51、LRF52及びレーダ装置53から、自車両Vの周囲の物体情報と、レーンマーカ情報とを取得する。走行可能領域生成部6は、取得した走行ルートと、物体情報と、レーンマーカ情報とに基づいて、走行ルートとして設定された車線内に自車両Vの走行可能領域を生成する。 The drivable area generation unit 6 generates an area in which the vehicle V 0 can travel within the travel route. The travelable area generation unit 6 acquires the travel route from the route setting unit 4, and acquires the object information around the vehicle V 0 and the lane marker information from the lane camera 51, the LRF 52, and the radar device 53. The drivable area generation unit 6 generates a drivable area of the host vehicle V 0 in the lane set as the travel route based on the acquired travel route, the object information, and the lane marker information.
 目標経路生成部7は、走行可能領域内に自車両Vの走行時の追従目標となる目標経路を生成する。目標経路生成部7は、走行可能領域生成部6から走行可能領域に関する走行可能領域情報を取得し、取得した走行可能領域情報に基づいて、走行可能領域内に目標経路を生成する。 The target route generation unit 7 generates a target route that is a follow-up target when the host vehicle V 0 travels within the travelable area. The target route generation unit 7 acquires the travelable region information regarding the travelable region from the travelable region generation unit 6 and generates a target route in the travelable region based on the acquired travelable region information.
 経路追従制御部8は、自車両Vを目標経路に追従するように走行させる。具体的には、経路追従制御部8は、目標経路生成部7から目標経路を取得し、自車両Vの前後方向に沿って設定された車両中心線が、目標経路生成部7により生成された目標経路上を移動するように、ステアリングアクチュエータ9を介してステアリング装置10を制御する。これにより、自車両Vは、目標経路に追従するように走行ルートを走行する。 The route tracking control unit 8 causes the host vehicle V 0 to travel so as to follow the target route. Specifically, the route tracking control unit 8 acquires the target route from the target route generation unit 7, and the vehicle center line set along the front-back direction of the host vehicle V 0 is generated by the target route generation unit 7. The steering device 10 is controlled via the steering actuator 9 so as to move on the target route. As a result, the host vehicle V 0 travels along the travel route so as to follow the target route.
 コーナー減速制御部11は、目標経路生成部7により生成された目標経路に、右折又は左折、あるいはカーブ等が存在する場合に、乗員に違和感を与えないように自車両Vの速度を減速する。具体的には、コーナー減速制御部11は、目標経路生成部7から目標経路を取得し、目標経路の右折角度や左折角度、カーブの半径等に基づいて減速後の速度を設定し、車速調整部12に減速後の速度に関する減速情報を入力する。車速調整部12は、コーナー減速制御部11から入力された減速情報に基づいて、車速サーボ13を介してエンジン14及びブレーキ装置15を制御し、自車両Vの速度を減速する。 The corner deceleration control unit 11 decelerates the speed of the host vehicle V 0 so that the occupant does not feel uncomfortable when the target route generated by the target route generation unit 7 has a right turn, a left turn, a curve, or the like. .. Specifically, the corner deceleration control unit 11 acquires the target route from the target route generation unit 7, sets the speed after deceleration based on the right turn angle, the left turn angle of the target route, the radius of the curve, etc., and adjusts the vehicle speed. The deceleration information regarding the speed after deceleration is input to the unit 12. The vehicle speed adjustment unit 12 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 based on the deceleration information input from the corner deceleration control unit 11 to reduce the speed of the host vehicle V 0 .
 静止障害物減速制御部16は、走行ルートとして設定された車線内に駐車車両や工事による走行制御区域等の静止した障害物が存在する場合に、乗員に違和感を与えずに静止障害物を回避できるように、自車両Vの速度を減速する。具体的には、静止障害物減速制御部16は、走行可能領域生成部6から走行可能領域情報を取得し、センサ5から自車両Vの周囲の物体情報を取得する。静止障害物減速制御部16は、取得した走行可能領域情報と、自車両Vの周囲の物体情報とに基づいて、減速後の速度を設定し、車速調整部12に減速後の速度に関する減速情報を入力する。なお静止障害物減速制御部16は、目標経路生成部7から目標経路を取得し、目標経路と自車両Vの周囲の物体情報とに基づいて減速後の速度を設定してもよい。車速調整部12は、静止障害物減速制御部16から入力された減速情報に基づいて、車速サーボ13を介してエンジン14及びブレーキ装置15を制御し、自車両Vの速度を減速する。 The stationary obstacle deceleration control unit 16 avoids a stationary obstacle without giving a feeling of strangeness to an occupant when a stationary obstacle such as a parked vehicle or a traveling control area due to construction exists in a lane set as a traveling route. The speed of the host vehicle V 0 is reduced so that it can be performed. Specifically, the stationary obstacle deceleration control unit 16 acquires the travelable area information from the travelable area generation unit 6 and the object information around the host vehicle V 0 from the sensor 5. The stationary obstacle deceleration control unit 16 sets the speed after deceleration based on the acquired travelable area information and the object information around the own vehicle V 0 , and the vehicle speed adjusting unit 12 decelerates the speed after deceleration. Enter the information. The stationary obstacle deceleration control unit 16 may acquire the target route from the target route generation unit 7 and set the decelerated speed based on the target route and the object information around the host vehicle V 0 . The vehicle speed adjustment unit 12 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 based on the deceleration information input from the stationary obstacle deceleration control unit 16 to reduce the speed of the host vehicle V 0 .
 停止線停車制御部17は、自車両Vが交差点などの一時停止地点に到達した場合に、停止線に合わせて自車両Vを停車する。具体的には、停止線停車制御部17は、自車位置検出部2から取得した自車位置情報と、ルート設定部4により設定された走行ルートとに基づいて、自車両Vが交差点等に到達したことを特定するとともに、センサ5のレーンカメラ51によって停車線の位置を検出する。そして、停止線停車制御部17は、車速調整部12により車速サーボ13を介してエンジン14及びブレーキ装置15を制御することにより、停止線に合わせて自車両Vを停車する。 The stop line stop control unit 17 stops the own vehicle V 0 according to the stop line when the own vehicle V 0 reaches a temporary stop point such as an intersection. Specifically, the stop line stop control unit 17 determines that the own vehicle V 0 is an intersection or the like based on the own vehicle position information acquired from the own vehicle position detection unit 2 and the traveling route set by the route setting unit 4. The lane camera 51 of the sensor 5 detects the position of the stop lane as well as the arrival of the vehicle. Then, the stop line stop control unit 17 controls the engine 14 and the brake device 15 via the vehicle speed servo 13 by the vehicle speed adjustment unit 12 to stop the host vehicle V 0 in line with the stop line.
 先行車認識部18及び車間制御部19は、自車両Vと同じ車線を走行する先行車両が存在する場合に、先行車両との間に所定の車間距離を空けるために自車両Vの速度を減速する。具体的には、先行車認識部18は、センサ5のレーダ装置53から出力された物体情報に基づいて先行車両を認識し、先行車両と自車両Vとの距離と、先行車両に対する相対速度とを算出し、算出結果を車間距離情報及び相対速度情報として車間制御部19に入力する。車間制御部19は、先行車認識部18から入力された車間距離情報と相対速度情報とに基づいて、先行車両との間に所定の車間距離が空くように、車速調整部12により車速サーボ13を介してエンジン14及びブレーキ装置15を制御する。 When there is a preceding vehicle traveling in the same lane as the own vehicle V 0 , the preceding vehicle recognizing unit 18 and the following distance control unit 19 determine the speed of the own vehicle V 0 in order to maintain a predetermined distance between the preceding vehicle and the preceding vehicle. Slow down. Specifically, the preceding vehicle recognition unit 18 recognizes the preceding vehicle based on the object information output from the radar device 53 of the sensor 5, determines the distance between the preceding vehicle and the host vehicle V 0, and the relative speed with respect to the preceding vehicle. Is calculated, and the calculation result is input to the following distance control unit 19 as the following distance information and the relative speed information. Based on the inter-vehicle distance information and the relative speed information input from the preceding vehicle recognizing unit 18, the following distance control unit 19 causes the vehicle speed adjusting unit 12 to perform a vehicle speed servo control 13 so that a predetermined following distance is provided between the preceding vehicle and the preceding vehicle. The engine 14 and the brake device 15 are controlled via the.
 提示装置20は、自車両Vのドライバーに情報を提示する。提示装置20は、例えば、ナビゲーション装置が備えるディスプレイ、ルームミラーに組み込まれたディスプレイ、メーター部に組み込まれたディスプレイ、フロントガラスに映し出されるヘッドアップディスプレイ、オーディオ装置が備えるスピーカー、および振動体が埋設された座席シート装置などの装置である。提示装置20は、自動走行制御の実行中に、目標経路生成部7で目標経路が生成できなくなった場合に、自車両Vのドライバーに対して、自動走行制御の中止を提示する。 The presentation device 20 presents information to the driver of the own vehicle V 0 . The presentation device 20 includes, for example, a display included in a navigation device, a display incorporated in a room mirror, a display incorporated in a meter unit, a head-up display projected on a windshield, a speaker included in an audio device, and a vibrating body. It is a device such as a seat seat device. When the target route generation unit 7 cannot generate the target route during the execution of the automatic traveling control, the presentation device 20 presents the driver of the own vehicle V 0 with the cancellation of the automatic traveling control.
《第1実施形態》
 図2は、本実施形態に係る走行可能領域生成部6の機能的な構成を示すブロック図である。走行可能領域生成部6は、走行路占有マップ生成部61~64と、マップ統合部65と、を備える。
<<1st Embodiment>>
FIG. 2 is a block diagram showing the functional configuration of the travelable area generation unit 6 according to this embodiment. The drivable area generation unit 6 includes traveling road occupancy map generation units 61 to 64 and a map integration unit 65.
 走行路占有マップ生成部61は、センサ5のレーンカメラ51から取得したレーンマーカ情報に基づいて、自車両Vの周囲におけるレーンマーカの占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定する。なお、レーンマーカの占有状況とは、道路上にレーンマーカが設けられているか否かを表し、道路上にレーンマーカが設けられている場合に、道路上のレーンマーカが設けられている領域がレーンマーカに占有されているとし、道路上にレーンマーカが設けられていない場合に、道路上のレーンマーカが設けられていない領域がレーンマーカに占有されていない(非占有)とし、道路上にレーンマーカが設けられているか否かが不明な領域は未知とする。走行路占有マップ生成部61は、上述した判定クラスによってレーンマーカ情報を判定することにより、自車両Vの周囲を、レーンマーカにより占有されている占有領域と、レーンマーカに占有されていない非占有領域と、レーンマーカによる占有状況が不明な未知領域と、に分類した第1レーンマーカ占有マップを生成する。第1レーンマーカ占有マップは、本発明の第1走行路占有マップに相当する。 The traveling road occupancy map generation unit 61 determines the occupancy status of the lane markers around the host vehicle V 0 based on the lane marker information acquired from the lane camera 51 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. judge. The lane marker occupancy status indicates whether or not a lane marker is provided on the road, and when the lane marker is provided on the road, the area where the lane marker is provided on the road is occupied by the lane marker. If the lane marker is not provided on the road, it is determined that the area on the road where the lane marker is not provided is not occupied by the lane marker (not occupied) and whether the lane marker is provided on the road. Areas where is unknown are unknown. The road occupancy map generation unit 61 determines the lane marker information based on the above-described determination class, so that the area around the host vehicle V 0 is an occupied area occupied by the lane marker and an unoccupied area not occupied by the lane marker. , A first lane marker occupancy map classified into unknown regions whose occupancy status by the lane markers is unknown. The first lane marker occupancy map corresponds to the first traveling road occupancy map of the present invention.
 例えば、自車両Vが、図3に示すように、左側への分岐路JLを有する左側通行の1車線道路を走行している場合、レーンカメラ51は、自車両Vが走行する自車線L1のセンターラインCLと、路肩側に配された境界ラインBLとをレーンマーカとして検出し、検出したレーンマーカの種類と位置とを特定してレーンマーカ情報を生成し、生成したレーンマーカ情報を走行路占有マップ生成部61に出力する。 For example, the own lane the vehicle V 0 is, as shown in FIG. 3, when the vehicle is traveling on a one-lane road left-hand traffic having a branch path JL to the left, lane camera 51, the vehicle V 0 is traveling The center line CL of L1 and the boundary line BL arranged on the road shoulder side are detected as lane markers, the type and position of the detected lane markers are specified, lane marker information is generated, and the generated lane marker information is used as a travel road occupation map. Output to the generation unit 61.
 走行路占有マップ生成部61は、レーンカメラ51から取得したレーンマーカ情報に基づいて、自車両Vの周囲におけるレーンマーカの占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定する。走行路占有マップ生成部61は、上述した判定クラスによってレーンマーカ情報を判定することにより、図4(A)に示す第1レーンマーカ占有マップOM1(以下、占有マップOM1ともいう)を生成する。この第1レーンマーカ占有マップOM1では、センターラインCLと境界ラインBLとが存在する領域(図中、斜線のハッチングで示す領域)は、占有領域OA1に分類される。また、センターラインCLと境界ラインBLとの間の領域(図中、微小な点のハッチングによって示す領域)は、非占有領域NA1に分類される。さらに、センターラインCLと境界ラインBLとの外側の領域(図中、無地によって示す領域)は、レーンカメラ51のレンジ外や死角等によってレーンマーカが検出できなかった領域として、未知領域UA1に分類される。 The travel route occupancy map generation unit 61 determines, based on the lane marker information acquired from the lane camera 51, the occupancy status of the lane marker around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown. The traveling road occupancy map generation unit 61 generates the first lane marker occupancy map OM1 (hereinafter also referred to as an occupancy map OM1) shown in FIG. 4A by determining the lane marker information according to the above-described determination class. In the first lane marker occupancy map OM1, the area where the center line CL and the boundary line BL exist (the area shown by hatching in the figure) is classified as the occupied area OA1. A region between the center line CL and the boundary line BL (region shown by hatching of minute points in the figure) is classified into the unoccupied region NA1. Further, a region outside the center line CL and the boundary line BL (a region shown by a solid color in the figure) is classified as an unknown region UA1 as a region in which the lane marker cannot be detected due to the out-of-range of the lane camera 51 or a blind spot. It
 走行路占有マップ生成部62は、センサ5のLRF52から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定する。なお、物体の占有状況とは、道路上の領域に自車両V以外の物体が存在するか否かを表し、道路上の領域に自車両V以外の物体が存在する場合に、物体が存在する領域が物体に占有されているとし、道路上に自車両V以外の物体が存在しない場合に、物体が存在しない領域が物体に占有されていない(非占有)とし、道路上に自車両V以外の物体が存在するか否かが不明な場合を未知とする。また、走行路占有マップ生成部62は、占有状況の判定結果に基づいて、自車両Vの周囲を、物体により占有されている占有領域と、物体に占有されていない非占有領域と、物体による占有状況が不明な未知領域と、に分類したLRF占有マップを生成する。LRF占有マップは、本発明の第2走行路占有マップに相当する。 The traveling road occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the LRF 52 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. .. Note that if the occupancy status of the object, the region on the road indicates whether the vehicle V 0 other object is present, the object other than the vehicle V 0 is present in the region on the road, the object is It is assumed that the existing area is occupied by the object, and when there is no object other than the own vehicle V 0 on the road, the area where the object does not exist is not occupied by the object (unoccupied), and The case where it is unknown whether or not there is an object other than the vehicle V 0 is unknown. Further, the travel route occupancy map generation unit 62, based on the determination result of the occupancy state, occupies an area occupied by the object, an unoccupied area not occupied by the object, and an object around the host vehicle V 0. An LRF occupancy map classified into an unknown area whose occupancy status is unknown is generated. The LRF occupation map corresponds to the second road occupancy map of the present invention.
 例えば、自車両Vが、図3に示す左側通行の1車線道路を走行している場合、LRF52は、自車線L1の路肩側の縁石Cと、歩道SWに設置された配電ボックス等の設置物Qと、自車線L1において自車両Vの前方を走行する先行車両Vとを自車両Vの周囲の物体として検出し、検出した物体の位置情報を含む物体情報を生成する。 For example, when the host vehicle V 0 is traveling on the left lane 1 lane road shown in FIG. 3, the LRF 52 installs a curb C on the shoulder side of the host lane L1 and a distribution box installed on the sidewalk SW. The object Q and the preceding vehicle V 1 traveling in front of the own vehicle V 0 in the own lane L1 are detected as objects around the own vehicle V 0 , and object information including position information of the detected object is generated.
 走行路占有マップ生成部62は、LRF52から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、その判定結果に基づいて、図4(B)に示すLRF占有マップOM3(以下、占有マップOM3ともいう)を生成する。このLRF占有マップOM3では、物体が存在する領域は占有領域OA3に分類される。また、物体が存在しない領域は、非占有領域NA3に分類される。さらに、LRF52のレンジ外や、死角等によって物体が検出できなかった領域は、未知領域UA3に分類される。なお、図4(B)では、占有領域OA3、非占有領域NA3及び未知領域UA3は、第1レーンマーカ占有マップOM1と同様に、それぞれ斜線のハッチング、微小な点のハッチング及び無地によって示している。 Based on the object information acquired from the LRF 52, the travel route occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown, and the determination is made. Based on the result, the LRF occupation map OM3 (hereinafter, also referred to as an occupation map OM3) shown in FIG. 4B is generated. In this LRF occupation map OM3, the area where the object exists is classified into the occupation area OA3. The area where no object exists is classified into the unoccupied area NA3. Further, a region where the object cannot be detected due to a range outside the LRF 52, a blind spot, or the like is classified into the unknown region UA3. Note that, in FIG. 4B, the occupied area OA3, the unoccupied area NA3, and the unknown area UA3 are indicated by hatching, hatching of minute points, and solid color, as in the first lane marker occupancy map OM1.
 走行路占有マップ生成部63は、センサ5のレーダ装置53から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定する。なお、物体の占有状況の定義については、走行路占有マップ生成部62の場合と同様であるため、詳しい説明は省略する。走行路占有マップ生成部63は、占有状況の判定結果に基づいて、自車両Vの周囲を、物体により占有されている占有領域と、物体に占有されていない非占有領域と、物体による占有状況が不明な未知領域と、に分類したレーダ占有マップを生成する。レーダ占有マップは、本発明の第2走行路占有マップに相当する。 The traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 of the sensor 5 by three types of determination classes: occupied, unoccupied, and unknown. judge. The definition of the occupancy status of the object is the same as that in the case of the road occupancy map generation unit 62, and thus detailed description will be omitted. The traveling road occupancy map generation unit 63 occupies the area around the host vehicle V 0 based on the determination result of the occupancy state, the occupied area occupied by the object, the unoccupied area not occupied by the object, and the object occupied by the object. A radar occupancy map classified into an unknown region whose condition is unknown is generated. The radar occupancy map corresponds to the second road occupancy map of the present invention.
 例えば、自車両Vが、図3に示す左側通行の1車線道路を走行している場合、レーダ装置53は、歩道SWの設置物Qと、自車線L1の先行車両V1とを自車両Vの周囲の物体として検出し、検出した物体の位置情報を含む物体情報を生成する。走行路占有マップ生成部63は、レーダ装置53から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、その判定結果に基づいて、図4(C)に示すレーダ占有マップOM4(以下、占有マップOM4ともいう)を生成する。このレーダ占有マップOM4では、物体が存在する領域は占有領域OA4に分類し、それ以外の領域は未知領域UA4に分類される。なお、図4(C)では、占有領域OA4及び未知領域UA4は、第1レーンマーカ占有マップOM1と同様に、それぞれ斜線のハッチング及び無地によって示している。 For example, when the host vehicle V 0 is traveling on the left lane 1 lane road shown in FIG. 3, the radar device 53 sets the installation object Q on the sidewalk SW and the preceding vehicle V 1 on the host lane L 1 to the host vehicle V 0. It is detected as an object around 0 and object information including position information of the detected object is generated. The traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 by three types of determination classes, occupied, unoccupied, and unknown, Based on the determination result, the radar occupancy map OM4 (hereinafter also referred to as occupancy map OM4) shown in FIG. 4C is generated. In this radar occupancy map OM4, the area where the object exists is classified into the occupied area OA4, and the other areas are classified into the unknown area UA4. Note that, in FIG. 4C, the occupied area OA4 and the unknown area UA4 are indicated by hatching and solid areas, respectively, like the first lane marker occupancy map OM1.
 なお、車両の自動走行制御に用いられるレーダ装置53は、一般的に路面から所定高さ以上の物体のみを検出するように構成されているため、センターラインCLや縁石C等は検出されない。そのため、レーダ装置53の検出結果に基づいて生成された、図4(C)のレーダ占有マップOM4には、非占有領域は存在しない。なお、センターラインCLや縁石C等の代わりに、ガードレールや擁壁などが設置されている道路では、レーダ装置53によってガードレールや擁壁を検出することができるので、レーダ占有マップOM4には、ガードレールや擁壁に基づいて認識された非占有領域NA4が生成される。 Note that since the radar device 53 used for automatic vehicle traveling control is generally configured to detect only an object having a predetermined height or higher from the road surface, the center line CL, the curb C, etc. are not detected. Therefore, in the radar occupancy map OM4 of FIG. 4C generated based on the detection result of the radar device 53, there is no unoccupied area. In addition, since the radar device 53 can detect the guardrail or the retaining wall on the road where the guardrail or the retaining wall is installed instead of the center line CL or the curb C, the radar occupation map OM4 includes the guardrail. An unoccupied area NA4 recognized based on the retaining wall is generated.
 走行路占有マップ生成部64は、地図データベース3から取得した高精度地図情報と、自車位置検出部2から取得した自車位置情報とに基づいて、自車両Vの周囲に存在するレーンマーカの種類や位置等を特定し、レーンマーカ情報を生成する。また、走行路占有マップ生成部64は、生成したレーンマーカ情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、レーンマーカにより占有されている占有領域と、レーンマーカに占有されていない非占有領域と、レーンマーカによる占有状況が不明な未知領域と、に分類した第2レーンマーカ占有マップOM2(以下、占有マップOM2ともいう)を生成する。なお、第2レーンマーカ占有マップOM2は、レーンカメラ51のレーンマーカ情報に基づいて生成される第1レーンマーカ占有マップOM1とほぼ同様なものとなるので、図示は省略する。 The travel route occupancy map generation unit 64, based on the high-accuracy map information acquired from the map database 3 and the vehicle position information acquired from the vehicle position detection unit 2, detects the lane markers existing around the vehicle V 0 . The lane marker information is generated by specifying the type and position. In addition, the travel route occupancy map generation unit 64 determines the occupancy status of the object around the host vehicle V 0 based on the generated lane marker information by using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. Based on the determination result of 1. , the surroundings of the vehicle V 0 are classified into an occupied area occupied by the lane marker, an unoccupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown. A second lane marker occupancy map OM2 (hereinafter also referred to as an occupancy map OM2) is generated. The second lane marker occupancy map OM2 is substantially the same as the first lane marker occupancy map OM1 generated based on the lane marker information of the lane camera 51, and therefore is not shown.
 マップ統合部65は、図5に示すように、第1レーンマーカ占有マップOM1と、第2レーンマーカ占有マップOM2と、LRF占有マップOM3と、レーダ占有マップOM4とを統合して、走行路統合占有マップIOMを生成する。具体的には、マップ統合部65は、図5のステップA~ステップDに示すように、自車両Vを含むベースマップM0を生成し、このベースマップM0にレーダ占有マップOM4と、第1レーンマーカ占有マップOM1及び第2レーンマーカ占有マップOM2と、LRF占有マップOM3とを順次に重ね合わせて、走行路統合占有マップIOMを生成する。 As shown in FIG. 5, the map unifying unit 65 unifies the first lane marker occupancy map OM1, the second lane marker occupancy map OM2, the LRF occupancy map OM3, and the radar occupancy map OM4 to integrate the travel route integrated occupancy map. Generate IOM. Specifically, as shown in steps A to D of FIG. 5, the map integration unit 65 generates a base map M0 including the own vehicle V 0 , and the radar occupancy map OM4 and the first map are included in the base map M0. The lane marker occupancy map OM1 and the second lane marker occupancy map OM2 and the LRF occupancy map OM3 are sequentially overlapped to generate a travel route integrated occupancy map IOM.
 また、マップ統合部65は、占有マップOM1~OM4の占有領域、非占有領域及び未知領域の組み合わせに応じて、走行路統合占有マップIMOの占有領域、非占有領域及び未知領域を決定する。このように、占有領域と非占有領域との組み合わせに応じて生成されるマップを、一般的に占有グリッドマップ(Occupancy grid map)という。 Also, the map integration unit 65 determines the occupied area, the unoccupied area and the unknown area of the travel route integrated occupied map IMO according to the combination of the occupied area, the unoccupied area and the unknown area of the occupied maps OM1 to OM4. The map generated according to the combination of the occupied area and the unoccupied area in this way is generally called an occupied grid map (Occupancy grid map).
 具体的には、マップ統合部65は、図6に示すように、占有マップOM1~OM4の少なくとも1つが占有領域である領域については、安全性を考慮して、走行路統合占有マップIOMの占有領域IOAに分類する。また、マップ統合部65は、占有マップOM1~OM4の非占有領域と未知領域とが重なり合う領域については、自走走行制御の継続を優先して、走行路統合占有マップIOMの非占有領域INAに分類する。さらに、マップ統合部65は、占有マップOM1~OM4の未知領域のみが重なり合う領域については、未知領域であることが確実であると判定し、走行路統合占有マップIOMの未知領域IUAに分類する。すなわち、マップ統合部65は、占有領域と、非占有領域と、未知領域とに優先順位を設定し、走行路統合占有マップIOMでは、占有領域が優先的に設定されるようにマップの統合を行っている。なお、図6では、占有領域IOA、非占有領域INA及び未知領域IUAは、第1レーンマーカ占有マップOM1と同様に、それぞれ斜線のハッチング、微小な点のハッチング及び無地によって示している。 Specifically, as shown in FIG. 6, the map integration unit 65 considers safety in the area where at least one of the occupancy maps OM1 to OM4 is an occupancy area, and occupies the travel route integrated occupancy map IOM. Classify into area IOA. In addition, the map unifying unit 65 gives priority to the continuation of the self-propelled driving control to the unoccupied area INA of the traveling route integrated occupancy map IOM for the area where the unoccupied areas of the occupancy maps OM1 to OM4 and the unknown area overlap. Classify. Furthermore, the map integration unit 65 determines that an area where only the unknown areas of the occupancy maps OM1 to OM4 overlap is certain to be an unknown area, and classifies it into the unknown area IUA of the travel route integrated occupancy map IOM. That is, the map unifying unit 65 sets priorities for the occupied area, the unoccupied area, and the unknown area, and the travel path integrated occupancy map IOM unifies the maps so that the occupied area is preferentially set. Is going. In FIG. 6, the occupied area IOA, the unoccupied area INA, and the unknown area IUA are indicated by hatching, hatching of minute dots, and solid color, respectively, as in the first lane marker occupancy map OM1.
 目標経路生成部7は、マップ統合部65により生成された走行路統合占有マップIOMに基づいて、障害物などが存在しないことが確かな非占有領域INAにのみ目標経路TPを生成する。例えば、図6に示す走行路統合占有マップIOMでは、目標経路生成部7は、走行路統合占有マップIOMの非占有領域INAの左右の境界線から等距離となる中央部分に目標経路TPを生成する。経路追従制御部8は、目標経路生成部7により生成された目標経路TPに追従するように、自車両Vの自動走行制御を実行する。 The target route generation unit 7 generates the target route TP only in the unoccupied area INA where it is certain that there are no obstacles based on the travel route integrated occupancy map IOM generated by the map integration unit 65. For example, in the travel route integrated occupancy map IOM shown in FIG. 6, the target route generation unit 7 generates the target route TP in the central portion that is equidistant from the left and right boundary lines of the unoccupied area INA of the travel route integrated occupancy map IOM. To do. The route follow-up control unit 8 executes the automatic traveling control of the own vehicle V 0 so as to follow the target route TP generated by the target route generation unit 7.
 なお、目標経路生成部7は、自動走行制御の安全性を確保するため、走行路統合占有マップIOMの生成に用いられた占有マップOM1~OM4の組み合わせによっては、走行路統合占有マップIOMに目標経路TPを生成しない。すなわち、目標経路生成部7は、レーンマーカ情報と周囲の物体情報とのいずれかに基づいて、走行路統合占有マップIOMに非占有領域INAが生成されている場合には、その非占有領域INA内に目標経路TPを生成するが、走行路統合占有マップIOMに非占有領域INAが生成されていない場合には、目標経路TPを生成しない。 In order to ensure the safety of the automatic travel control, the target route generation unit 7 sets the target of the travel route integrated occupancy map IOM depending on the combination of the occupancy maps OM1 to OM4 used to generate the travel route integrated occupancy map IOM. Do not generate the route TP. That is, if the unoccupied area INA is generated in the travel route integrated occupancy map IOM on the basis of either the lane marker information or the surrounding object information, the target route generation unit 7 is within the unoccupied area INA. Although the target route TP is generated in the above, the target route TP is not generated when the unoccupied area INA is not generated in the travel route integrated occupation map IOM.
 図7は、レーンカメラ51のレーンマーカ情報に基づいて生成された第1レーンマーカ占有マップと、LRF52の物体情報に基づいて生成されたLRF占有マップとを、マップ統合部65により統合して生成される走行路統合占有マップの組み合わせ例を示すチャート図である。例えば、図7のチャート図の左上段に示すように、レーンカメラ51のレーンマーカ情報からレーンマーカが検出された第1レーンマーカ占有マップと、LRF52の物体情報から自車両Vの周囲の物体が検出されたLRF占有マップとが統合された場合、走行路統合占有マップには非占有領域が生成されるので、自動走行制御が可能となる。 FIG. 7 is generated by integrating the first lane marker occupancy map generated based on the lane marker information of the lane camera 51 and the LRF occupancy map generated based on the object information of the LRF 52 by the map integrating unit 65. It is a chart figure which shows the example of a combination of a traveling path integrated occupation map. For example, as shown in the upper left part of the chart of FIG. 7, the first lane marker occupancy map in which the lane marker is detected from the lane marker information of the lane camera 51 and the object around the host vehicle V 0 are detected from the object information of the LRF 52. When the LRF occupancy map is integrated, a non-occupied area is generated in the travel route integrated occupancy map, so that automatic travel control is possible.
 また、図7のチャート図の左下段に示すように、レーンカメラ51のレーンカメラ情報からレーンマーカが検出された第1レーンマーカ占有マップと、LRF52の物体情報から自車両Vの周囲の物体が検出できず、未知領域のみとなったLRF占有マップとが統合された場合、走行路統合占有マップには、第1レーンマーカ占有マップによって非占有領域が生成されるので、自動走行制御が可能となる。 Further, as shown in the lower left part of the chart of FIG. 7, the first lane marker occupancy map in which the lane marker is detected from the lane camera information of the lane camera 51 and the object around the host vehicle V 0 are detected from the object information of the LRF 52. When it is not possible and the LRF occupancy map having only the unknown region is integrated, the unoccupied region is generated by the first lane marker occupancy map in the travel route integrated occupancy map, so that the automatic traveling control is possible.
 さらに、図7のチャート図の右上段に示すように、レーンカメラ51のレーンマーカ情報からレーンマーカが検出できず、未知領域のみとなった第1レーンマーカ占有マップと、LRF52の物体情報から自車両Vの周囲の物体が検出されたLRF占有マップとが統合された場合、走行路統合占有マップには、LRF占有マップによって非占有領域が生成されるので、自動走行制御が可能となる。 Further, as shown in the upper right part of the chart of FIG. 7, the lane marker cannot be detected from the lane marker information of the lane camera 51, and the first lane marker occupancy map in which only the unknown area is present and the object information of the LRF 52 show the own vehicle V 0. When the LRF occupancy map in which the objects around are detected is integrated, the non-occupied region is generated by the LRF occupancy map in the travel route integrated occupancy map, so that the automatic traveling control is possible.
 これら3種類の走行路統合占有マップに対し、図7のチャート図の右下段に示す例では、レーンカメラ51のレーンマーカ情報からレーンマーカが検出できず、未知領域のみとなった第1レーンマーカ占有マップと、LRF52の物体情報から自車両Vの周囲の物体が検出できず、未知領域のみとなったLRF占有マップとが統合され、走行路統合占有マップには非占有領域が生成されない。この場合、自動走行制御が不可となる。 In the example shown in the lower right part of the chart diagram of FIG. 7, with respect to these three types of integrated roadway occupancy maps, the lane marker cannot be detected from the lane marker information of the lane camera 51, and the first lane marker occupancy map is only the unknown area. , The object around the host vehicle V 0 cannot be detected from the object information of the LRF 52, and the LRF occupancy map having only the unknown region is integrated, and the unoccupied region is not generated in the travel route integrated occupancy map. In this case, automatic traveling control is disabled.
 このように、目標経路生成部7は、レーンマーカ情報及び周囲の物体情報が取得可能な領域では、レーンマーカ情報及び物体情報に基づいて生成された走行路統合占有マップを用いて、非占有領域内に目標経路を生成する。一方で、レーンマーカ情報もしくは周囲の物体情報の一方の情報が不明な領域であって、かつ、他方の情報が取得可能な領域では、レーンマーカ情報と周囲の物体情報とのいずれかに基づいて生成された走行路統合占有マップの非占有領域内に目標経路を生成するので、自動走行制御中にレーンマーカが一時的に存在しない領域を走行する場合、あるいは、物体情報を取得できない場合であっても自動走行制御を継続することができる。例えば、図8に示す十字路状の交差点CSは、センターラインCLや境界ラインBL等のレーンマーカが一時的に存在しない領域となるが、従来の自動走行制御では、このようなレーンマーカ情報が得られない領域を走行する際に、走行可能領域が生成できないため、自動走行制御を中止し、手動運転に切り換えていた。しかしながら、本実施形態によれば、レーンマーカ情報が得られなくなった場合でも、LRF52やレーダ装置53の物体情報に基づいて、走行路統合占有マップに非占有領域が生成可能な場合には、目標経路を生成して自動走行制御を継続することができる。 In this way, the target route generation unit 7 uses the travel route integrated occupancy map generated based on the lane marker information and the object information in the unoccupied region in the area where the lane marker information and the surrounding object information can be acquired. Generate a target route. On the other hand, in an area in which one of the lane marker information or the surrounding object information is unknown and the other information can be acquired, it is generated based on either the lane marker information or the surrounding object information. Since the target route is generated in the unoccupied area of the integrated roadway occupancy map, even if the vehicle is traveling in an area where the lane marker does not temporarily exist during automatic travel control, or if object information cannot be acquired, The traveling control can be continued. For example, the crossroads-shaped intersection CS shown in FIG. 8 is an area where lane markers such as the center line CL and the boundary line BL are temporarily absent, but such lane marker information cannot be obtained by the conventional automatic traveling control. When the vehicle travels in the area, since the travelable area cannot be generated, the automatic travel control is stopped and the operation is switched to the manual operation. However, according to the present embodiment, even when the lane marker information cannot be obtained, if the unoccupied area can be generated in the traveling route integrated occupancy map based on the object information of the LRF 52 and the radar device 53, the target route can be generated. Can be generated to continue the automatic travel control.
 また、未知領域のみのレーンマーカ占有マップと、未知領域のみのLRF占有マップとが統合された場合には、走行路統合占有マップに目標経路を生成しないので、確実に自動走行制御を中止することができ、自動走行制御の安全性をさらに一層高めることができる。 Further, when the lane marker occupancy map of only the unknown area and the LRF occupancy map of only the unknown area are integrated, the target route is not generated in the travel route integrated occupancy map, so that the automatic travel control can be reliably stopped. Therefore, the safety of the automatic traveling control can be further enhanced.
 なお、従来の自動走行制御においても、占有グリッドマップを利用して自車両Vの走行可能領域を生成していたが、占有領域と非占有領域の2つのクラス分けのみを用い、未知領域については、占有領域あるいは非占有領域として取り扱っていた。図9は、従来の自動走行制御で走行可能領域の生成に用いられた占有グリッドマップのチャート図であり、未知領域を非占有領域として取り扱う従来例1を示している。なお、占有領域と、非占有領域のハッチングは、図7のチャート図と同様である。 Even in the conventional automatic driving control, the occupancy grid map is used to generate the drivable area of the host vehicle V 0. However, only the two classifications of the occupied area and the unoccupied area are used, and the unknown area is unknown. Was treated as an occupied area or an unoccupied area. FIG. 9 is a chart of an occupied grid map used to generate a travelable area in the conventional automatic travel control, and shows Conventional Example 1 in which an unknown area is treated as a non-occupied area. The hatching of the occupied area and the unoccupied area is the same as in the chart of FIG. 7.
 この従来例1では、チャート図の左上段、左下段及び右上段に示すように、レーンカメラ51のレーンマーカ情報とLRF52の物体情報との少なくともいずれか一方によってレーンマーカ又は周囲の物体が検出できている場合には、本実施形態と同様に走行可能領域を生成し、目標経路を設定可能としている。しかしながら、この従来例1では、図9のチャート図の右下段に示すように、レーンカメラ51のレーンマーカ情報とLRF52の物体情報とによって、レーンマーカや周囲の物体が検出できなかった場合に、本来であれば未知領域となる領域を非占有領域として取り扱っているため、自動走行制御が可能になってしまう。 In Conventional Example 1, as shown in the upper left, lower left, and upper right of the chart, the lane marker or surrounding objects can be detected by at least one of the lane marker information of the lane camera 51 and the object information of the LRF 52. In this case, the travelable area is generated and the target route can be set as in the present embodiment. However, in Conventional Example 1, as shown in the lower right part of the chart of FIG. 9, when the lane marker and the surrounding object could not be detected by the lane marker information of the lane camera 51 and the object information of the LRF 52, it is originally necessary. If so, the unknown area is treated as an unoccupied area, so that automatic traveling control becomes possible.
 そのため、従来の自動走行制御では、自動走行制御の安全性を優先し、未知領域については、占有領域として取り扱うのが一般的であった。図10は、従来の自動走行制御で走行可能領域の生成に用いる占有グリッドマップのチャート図であり、未知領域を占有領域として取り扱う従来例2を示している。なお、占有領域と、非占有領域のハッチングは、図7のチャート図と同様である。 Therefore, in the conventional automatic driving control, it was common to prioritize the safety of automatic driving control and handle unknown areas as occupied areas. FIG. 10 is a chart of an occupancy grid map used to generate a travelable area in conventional automatic traveling control, and shows a second conventional example in which an unknown area is treated as an occupied area. The hatching of the occupied area and the unoccupied area is the same as in the chart of FIG. 7.
 この従来例2では、図10のチャート図の右下段に示すように、レーンカメラ51のレーンマーカ情報と、LRF52の物体情報とによってレーンマーカや周囲の物体が検出できなかった場合に、未知領域となる領域を占有領域として取り扱うので、目標経路は設定できない。しかしながら、チャート図の左下段及び右上段に示すように、レーンカメラ51のレーンマーカ情報と、LRF52の物体情報とのいずれか一方でレーンマーカや周囲の物体が検出できた場合にも、統合された占有グリッドマップでは全体が占有領域となるので、自動走行制御が中止されてしまう。 In this conventional example 2, as shown in the lower right part of the chart of FIG. 10, when the lane marker and the surrounding object cannot be detected by the lane marker information of the lane camera 51 and the object information of the LRF 52, the area becomes an unknown area. The target route cannot be set because the area is treated as an occupied area. However, as shown in the lower left and upper right of the chart, even when the lane marker or the surrounding object can be detected by either the lane marker information of the lane camera 51 or the object information of the LRF 52, the integrated occupation In the grid map, the entire area becomes the occupied area, so the automatic travel control is stopped.
 このように、本実施形態によれば、従来例1、2の占有グリッドマップを用いた自動走行制御よりも安全性をさらに一層高めながら、自動走行制御が可能な走行シーンを増やすことが可能である。 As described above, according to the present embodiment, it is possible to increase the number of driving scenes in which the automatic driving control can be performed while further improving the safety as compared with the automatic driving control using the occupancy grid maps of the conventional examples 1 and 2. is there.
 次に、図11に示すフローチャートにしたがって、本実施形態に係る自動走行制御の作用について説明する。 Next, the operation of the automatic travel control according to the present embodiment will be described according to the flowchart shown in FIG.
 走行制御装置VTCは、自車両Vのドライバーにより自動走行制御の実行を指示された場合、センサ5のレーンカメラ51、LRF52及びレーダ装置53を作動させ、自車両Vの周囲のレーンマーカと、自車両Vの周囲の物体とを検出させる。 When the driver of the host vehicle V 0 instructs the cruise control device VTC to execute automatic cruise control, the cruise control device VTC activates the lane camera 51, the LRF 52, and the radar device 53 of the sensor 5, and a lane marker around the host vehicle V 0 , An object around the host vehicle V 0 is detected.
 走行路占有マップ生成部61は、レーンカメラ51から取得したレーンマーカ情報に基づいて、自車両Vの周囲におけるレーンマーカの占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、レーンマーカにより占有されている占有領域OA1と、レーンマーカに占有されていない非占有領域NA1と、レーンマーカによる占有状況が不明な未知領域UA1と、に分類した第1レーンマーカ占有マップOM1を生成する。 The travel route occupancy map generation unit 61 determines, based on the lane marker information acquired from the lane camera 51, the occupancy status of the lane markers around the host vehicle V 0 by three types of determination classes: occupied, unoccupied, and unknown, based on the determination result of the occupancy status, the area around the vehicle V 0, an occupation area OA1 occupied by the lane marker, the unoccupied area NA1 unoccupied lane marker, the unknown region occupancy is unknown by lane markers UA1 And the first lane marker occupancy map OM1 classified into
 走行路占有マップ生成部62は、LRF52から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、物体により占有されている占有領域OA3と、物体に占有されていない非占有領域NA3と、物体による占有状況が不明な未知領域UA3と、に分類したLRF占有マップOM3を生成する。 The travel route occupancy map generation unit 62 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the LRF 52, using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. based on the determination result, the area around the vehicle V 0, the occupied region OA3 occupied by the object, the unoccupied areas NA3 not occupied on the object, the unknown region UA3 occupation state is unknown by the object, The LRF occupation map OM3 classified into 1.
 走行路占有マップ生成部63は、レーダ装置53から取得した物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、物体により占有されている占有領域OA4と、物体に占有されていない非占有領域NA4と、物体による占有状況が不明な未知領域UA4と、に分類したレーダ占有マップOM4を生成する。 The traveling road occupancy map generation unit 63 determines the occupancy status of the object around the host vehicle V 0 based on the object information acquired from the radar device 53 by three types of determination classes, occupied, unoccupied, and unknown, based on the determination result of the occupancy status, the area around the vehicle V 0, the occupied region OA4 occupied by the object, the unoccupied area NA4 not occupied on the object, the unknown occupancy by the object is unknown regions UA4 And a radar occupancy map OM4 classified into
 走行路占有マップ生成部64は、地図データベース3から取得した高精度地図情報と、自車位置検出部2から取得した自車位置情報とに基づいて、自車両Vの周囲に存在するレーンマーカの種類や位置等を特定し、レーンマーカ情報を生成する。また、走行路占有マップ生成部64は、生成したレーンマーカ情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、レーンマーカにより占有されている占有領域と、レーンマーカに占有されていない非占有領域と、レーンマーカによる占有状況が不明な未知領域と、に分類した第2レーンマーカ占有マップOM2を生成する。 The travel route occupancy map generation unit 64, based on the high-accuracy map information acquired from the map database 3 and the vehicle position information acquired from the vehicle position detection unit 2, detects the lane markers existing around the vehicle V 0 . The lane marker information is generated by specifying the type and position. In addition, the travel route occupancy map generation unit 64 determines the occupancy status of the object around the host vehicle V 0 based on the generated lane marker information by using three types of determination classes: occupied, unoccupied, and unknown, and the occupancy status is determined. Based on the determination result of 1. , the surroundings of the vehicle V 0 are classified into an occupied area occupied by the lane marker, an unoccupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown. The second lane marker occupancy map OM2 is generated.
 マップ統合部65は、第1レーンマーカ占有マップOM1と、第2レーンマーカ占有マップOM2と、LRF占有マップOM3と、レーダ占有マップOM4とを統合して、走行路統合占有マップIOMを生成する。また、マップ統合部65は、占有マップOM1~OM4の占有領域、非占有領域及び未知領域の組み合わせに応じて、走行路統合占有マップIMOの占有領域IOA、非占有領域INA及び未知領域IUAを決定する。 The map integration unit 65 integrates the first lane marker occupancy map OM1, the second lane marker occupancy map OM2, the LRF occupancy map OM3, and the radar occupancy map OM4 to generate a travel route integrated occupancy map IOM. The map integration unit 65 also determines the occupied area IOA, the unoccupied area INA, and the unknown area IUA of the travel route integrated occupied map IMO according to the combination of the occupied area, the unoccupied area, and the unknown area of the occupied maps OM1 to OM4. To do.
 走行制御装置VTCは、図11のステップS1に示すように、生成された走行路統合占有マップIOMからレーンマーカ情報又は物体情報が取得可能であるか否かを判定し、走行路統合占有マップIOMからレーンマーカ情報と物体情報とのいずれか一方又は両方が取得可能な場合には、次のステップS2において、自動走行制御を実行する。この自動走行制御では、目標経路生成部7は、走行路統合占有マップIOMの非占有領域INA内に目標経路TPを生成し、経路追従制御部8は、生成された目標経路TPに自車両Vが追従するように、ステアリングアクチュエータ9と、車速調整部12とを制御し、自車両Vを自動走行させる。 As shown in step S1 of FIG. 11, the travel control device VTC determines whether or not the lane marker information or the object information can be acquired from the generated travel route integrated occupation map IOM, and from the travel route integrated occupation map IOM. When either one or both of the lane marker information and the object information can be acquired, the automatic traveling control is executed in the next step S2. In this automatic travel control, the target route generation unit 7 generates the target route TP in the unoccupied area INA of the travel route integrated occupancy map IOM, and the route tracking control unit 8 sets the generated target route TP to the own vehicle V. The steering actuator 9 and the vehicle speed adjustment unit 12 are controlled so that 0 follows, and the host vehicle V 0 is automatically driven.
 走行制御装置VTCは、図11のステップS3に示すように、自動走行制御の実行中に、交差点等のレーンマーカが存在しない領域や、レーンマーカに関する情報を含む高精度地図情報が存在しない領域等を走行し、レーンマーカ情報が取得できずに走行路統合占有マップIOMからレーンマーカ情報が取得できなくなった場合には、ステップS4に示すように、レーンマーカ情報が取得できなくなった走行路統合占有マップIOMの物体情報から、目標経路TPが生成可能であるか否かを判定する。 As shown in step S3 of FIG. 11, the travel control device VTC travels in an area where a lane marker such as an intersection does not exist or an area where high-precision map information including information about the lane marker does not exist during execution of the automatic travel control. If the lane marker information cannot be acquired and the lane marker information cannot be acquired from the road integrated occupancy map IOM, the object information of the road integrated occupancy map IOM whose lane marker information cannot be acquired as shown in step S4. From this, it is determined whether the target route TP can be generated.
 走行制御装置VTCは、レーンマーカ情報が取得できなくなった走行路統合占有マップIOMの物体情報から目標経路TPが生成可能である場合には、ステップS5に示すように、生成した目標経路TPにしたがって第2所定時間T2だけ自動走行制御を継続する。この第2所定時間T2は、例えば、自車両Vが、交差点等のレーンマーカが存在しない領域を通過可能な時間に設定されている。これにより、自車両Vが、レーンマーカが存在しない交差点等の所定距離以下の領域を走行する場合に、自動走行制御が中止されるのを防ぐことができる。 When it is possible to generate the target route TP from the object information of the travel route integrated occupancy map IOM for which the lane marker information cannot be acquired, the traveling control device VTC determines the target route TP according to the generated target route TP as shown in step S5. 2 The automatic traveling control is continued for the predetermined time T2. The second predetermined time T2 is, for example, the vehicle V 0 is set an area where lane marker is not present, such as crossing time can pass. As a result, it is possible to prevent the automatic travel control from being stopped when the host vehicle V 0 travels in an area such as an intersection where a lane marker does not exist and which is shorter than a predetermined distance.
 なお、走行制御装置VTCは、ステップS4において、レーンマーカ情報と物体情報とが両方とも取得できず、走行路統合占有マップIOMから目標経路TPが生成できない場合には、ステップS6に示すように、ステップS3から第5所定時間T5内に、自動走行制御を中止する旨を提示装置20によって自車両Vのドライバーに提示し、自車両Vのドライバーに自動走行制御の中止、すなわち、手動運転の準備を促す。また、走行制御装置VTCは、ステップS7に示すように、ステップS3から第1所定時間T1内に、自動走行制御を中止し、自車両Vのドライバーに手動運転操作を開始させる。第1所定時間T1と、第5所定時間T5は、自車両Vのドライバーに手動運転操作を迅速に開始させるために、第2所定時間T2よりも短い時間に設定されており、具体的には、T2>T1>T5となっている。 In addition, when neither the lane marker information nor the object information can be acquired in step S4 and the target route TP cannot be generated from the traveling route integrated occupancy map IOM, the traveling control device VTC performs step S6 as shown in step S6. to S3 to the fifth predetermined time in T5, presented to the driver of the host vehicle V 0 to the effect to stop the automatic travel control by the presentation device 20, abort the automatic travel control to the driver of the vehicle V 0, i.e., the manual operation Prompt for preparation. Further, as shown in step S7, the traveling control device VTC stops the automatic traveling control within the first predetermined time T1 from step S3, and causes the driver of the own vehicle V 0 to start the manual driving operation. The first predetermined time T1 and the fifth predetermined time T5 are set to be shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start the manual driving operation quickly. Is T2>T1>T5.
 ステップS8に示すように、走行制御装置VTCは、自車両Vが交差点等のレーンマーカが存在しない領域を自動走行制御によって走行する第2所定時間T2の間に、走行路統合占有マップIOMからレーンマーカ情報及び物体情報が取得できず、目標経路TPが生成できなくなった場合には、ステップS9に示すように、ステップS8から第5所定時間T5内に、自動走行制御を中止する旨を提示装置20によって自車両Vのドライバーに提示して、手動運転の準備を促す。また、走行制御装置VTCは、ステップS10に示すように、ステップS8から第3所定時間T3内に、自動走行制御を中止し、自車両Vのドライバーに手動運転操作を開始させる。第3所定時間T3と、第5所定時間T5は、自車両Vのドライバーに手動運転操作を迅速に開始させるために、第2所定時間T2よりも短い時間に設定されており、具体的には、T2>T3>T5となっている。 As shown in step S8, the traveling control device VTC uses the lane marker from the integrated lane map IOM during the second predetermined time T2 in which the vehicle V 0 travels in an area where the lane marker such as an intersection does not exist by automatic traveling control. When the information and the object information cannot be acquired and the target route TP cannot be generated, as shown in step S9, the presentation device 20 that the automatic traveling control is stopped within the fifth predetermined time T5 from step S8. To present to the driver of the own vehicle V 0 to prompt the preparation for manual driving. Further, as shown in step S10, the traveling control device VTC stops the automatic traveling control within the third predetermined time T3 from step S8, and causes the driver of the own vehicle V 0 to start the manual driving operation. The third predetermined time T3 and the fifth predetermined time T5 are set to times shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start the manual driving operation quickly. Is T2>T3>T5.
 ステップS11に示すように、走行制御装置VTCは、自車両Vが交差点等のレーンマーカが存在しない領域を自動走行制御によって走行する第2所定時間T2の間に、走行路統合占有IOMマップからレーンマーカ情報が検出できるようになった場合には、ステップS2に移動して、通常の自動走行制御を実行する。 As shown in step S11, the travel control device VTC uses the travel path integrated occupation IOM map during the second predetermined time T2 in which the vehicle V 0 travels in an area where no lane marker exists, such as an intersection, by automatic travel control. When the information can be detected, the process proceeds to step S2 and the normal automatic traveling control is executed.
 また、ステップS12に示すように、第2所定時間T2の経過後、すなわち、自車両Vが交差点等のレーンマーカが存在しない領域を通過したにも関わらず、走行路統合占有IOMマップからレーンマーカ情報及び物体情報が認識できず、目標経路TPが生成できない場合には、ステップS13に示すように、ステップS12から第5所定時間T5内に、自動走行制御を中止する旨を提示装置20によって自車両Vのドライバーに提示する。また、走行制御装置VTCは、ステップS14に示すように、ステップS12から第4所定時間T4内に、自動走行制御を中止し、自車両Vのドライバーに手動運転操作を開始させる。第4所定時間T4と、第5所定時間T5は、自車両Vのドライバーに手動運転操作を迅速に開始させるために、第2所定時間T2よりも短い時間に設定されており、具体的には、T2>T4>T5となっている。なお、自車両Vの自動走行制御を中止させる第1所定時間T1と、第3所定時間T3と、第4所定時間T4は、同じ時間を用いてもよいし、異なる時間に設定してもよい。 In addition, as shown in step S12, after the second predetermined time T2 has passed, that is, although the vehicle V 0 has passed through an area such as an intersection where no lane marker exists, the lane marker information is acquired from the integrated lane marker information IOM map. If the object information cannot be recognized and the target route TP cannot be generated, as shown in step S13, the presenting device 20 informs that the automatic traveling control is stopped within the fifth predetermined time T5 from step S12. Present to V 0 drivers. Further, as shown in step S14, the traveling control device VTC stops the automatic traveling control within the fourth predetermined time T4 from step S12, and causes the driver of the own vehicle V 0 to start the manual driving operation. The fourth predetermined time T4 and the fifth predetermined time T5 are set to be shorter than the second predetermined time T2 in order to prompt the driver of the own vehicle V 0 to start a manual driving operation quickly. Is T2>T4>T5. The first predetermined time T1, the third predetermined time T3, and the fourth predetermined time T4 for stopping the automatic traveling control of the host vehicle V 0 may use the same time or may be set to different times. Good.
 以上のように、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、自車両Vが走行可能な道路領域である走行路のレーンマーカに関するレーンマーカ情報と、自車両Vの周囲に存在する物体に関する物体情報とを取得し、レーンマーカ情報と、物体情報とに基づいて、自車両Vの走行可能領域を生成し、生成した走行可能領域内に、自車両Vが走行する目標経路TPを生成し、生成された目標経路TPにしたがって、自車両Vの自動走行制御を実行するものであり、自車両Vがレーンマーカの存在しない区間、すなわち、レーンマーカ情報が取得できない領域を走行する場合には、物体情報に基づいて自車両Vの走行可能領域を生成し、生成された走行可能領域内に目標経路TPを生成して、自車両Vの自動走行制御を継続する。また、これとは逆に、自車両Vが、物体情報が取得できない領域を走行する場合には、レーンマーカ情報に基づいて自車両Vの走行可能領域を生成し、生成された走行可能領域内に目標経路TPを生成して、自車両Vの自動走行制御を継続する。これにより、交差点等のレーンマーカが存在しない領域や、物体情報が取得できない領域でも自動走行制御を継続することができる。また、交差点内等で、自動走行制御からドライバーの手動運転に切り換える必要がなくなるので、自動運転制御の安全性をより一層高めることができる。 As described above, the traveling control device VTC and the traveling control method for a vehicle according to the present embodiment include the lane marker information regarding the lane marker of the traveling road that is the road area in which the own vehicle V 0 can travel and the surroundings of the own vehicle V 0 . Object information regarding an existing object is acquired, a drivable area of the vehicle V 0 is generated based on the lane marker information and the object information, and a target for the vehicle V 0 to travel within the generated drivable area. generates a path TP, according to the generated target path TP, is intended to perform the automatic travel control of the vehicle V 0, the section where the vehicle V 0 is not present in the lane marker, i.e., a region where the lane marker information can not be acquired When traveling, a travelable area of the host vehicle V 0 is generated based on the object information, a target route TP is generated within the generated travelable area, and automatic travel control of the host vehicle V 0 is continued. .. On the contrary, when the host vehicle V 0 travels in a region where the object information cannot be acquired, a travelable region of the host vehicle V 0 is generated based on the lane marker information, and the generated travelable region is generated. The target route TP is generated therein, and the automatic traveling control of the host vehicle V 0 is continued. As a result, the automatic traveling control can be continued even in an area such as an intersection where no lane marker exists or an area where object information cannot be acquired. Further, since it is not necessary to switch from the automatic driving control to the manual driving of the driver inside an intersection or the like, the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、レーンマーカ情報に基づいて、自車両Vの周囲におけるレーンマーカの占有状況を、占有、非占有及び未知の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、レーンマーカにより占有されている占有領域と、レーンマーカに占有されていない非占有領域と、レーンマーカによる占有状況が不明な未知領域と、に分類した第1レーンマーカ占有マップOM1及び第2レーンマーカ占有マップOM2を生成する。さらに、物体情報に基づいて、自車両Vの周囲における物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって判定し、占有状況の判定結果に基づいて、自車両Vの周囲を、物体により占有されている占有領域と、物体に占有されていない非占有領域と、物体による占有状況が不明な未知領域と、に分類したLRF占有マップOM3及びレーダ占有マップOM4を生成する。そして、占有マップOM1~OM4を統合して走行路統合占有マップIOMを生成し、走行路統合占有マップIOMに基づいて、目標経路TPを生成する。これによれば、自車両Vの周囲を占有領域及び非占有領域だけでなく、未知領域にも分類するので、自車両Vの周囲の状況を詳細に分析して目標経路TPを生成することができる。したがって、物体情報のみに基づいて目標経路TPを生成する場合でも、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method according to the present embodiment, the occupancy status of the lane markers around the host vehicle V 0 is determined by the occupied, unoccupied, and unknown determination classes based on the lane marker information. Based on the determination result of the occupancy status, the occupancy area occupied by the lane marker, the unoccupied area not occupied by the lane marker, and the unknown area in which the occupancy status by the lane marker is unknown around the host vehicle V 0. The first lane marker occupancy map OM1 and the second lane marker occupancy map OM2 classified into Furthermore, based on the object information, the occupancy status of the object around the host vehicle V 0 is determined by three types of determination classes, occupied, unoccupied, and unknown, and the host vehicle V 0 is determined based on the determination result of the occupancy status. LRF occupancy map OM3 and radar occupancy map OM4 classified into an area occupied by an object, an unoccupied area not occupied by the object, and an unknown area whose occupancy by the object is unknown. To do. Then, the occupancy maps OM1 to OM4 are integrated to generate the travel route integrated occupancy map IOM, and the target route TP is generated based on the travel route integrated occupancy map IOM. According to this, not the area around the vehicle V 0 by footprint and unoccupied areas, so classified in the unknown region, generating a target route TP analyzes the situation in the vicinity of the vehicle V 0 in detail be able to. Therefore, even when the target route TP is generated based on only the object information, the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、走行路統合占有マップIOMからレーンマーカ情報が取得可能な場合に自動走行制御を実行し、自動走行制御の実行中に、走行路統合占有マップIOMからレーンマーカ情報の取得ができなくなった場合には、第1所定時間T1内に自動走行制御を中止する。また、自動走行制御を中止するまでに、走行路統合占有マップIOMの物体情報から目標経路TPが生成可能な場合には、自動走行制御を第2所定時間T2だけ継続する。これによれば、例えば、第1所定時間T1を適切な時間に設定することにより、自車両Vがレーンマーカ情報が取得できない領域を走行し終わるまでに、自動走行制御を中止することができる。また、第2所定時間T2を適切な時間に設定することにより、例えば、自車両Vがレーンマーカ情報が取得できない領域を通過し終えるまで自動走行制御を継続することができる。したがって、自動走行制御の中止と継続とを適切なタイミングで切り換えることができるので、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method according to the present embodiment, the automatic travel control is executed when the lane marker information can be acquired from the integrated road occupancy map IOM, and during execution of the automatic travel control. If the lane marker information cannot be acquired from the travel route integrated occupancy map IOM, the automatic travel control is stopped within the first predetermined time T1. Further, if the target route TP can be generated from the object information of the integrated travel route integrated map IOM before the automatic travel control is stopped, the automatic travel control is continued for the second predetermined time T2. According to this, for example, by setting the first predetermined time T1 to an appropriate time, it is possible to stop the automatic travel control until the host vehicle V 0 finishes traveling in the area where the lane marker information cannot be acquired. Further, by setting the second predetermined time T2 to an appropriate time, for example, the automatic travel control can be continued until the host vehicle V 0 finishes passing through the area where the lane marker information cannot be acquired. Therefore, the stop and the continuation of the automatic traveling control can be switched at an appropriate timing, so that the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、第2所定時間T2内に、走行路統合占有マップIOMから目標経路TPが生成できなくなった場合には、自動走行制御を第3所定時間T3内に中止する。これによれば、例えば、第2所定時間T2と、第3所定時間T3とを適切な時間に設定することにより、自車両V0がレーンマーカ情報が取得できない領域を走行し終わるまでに、自動走行制御を中止することができる。したがって、自動走行制御を適切なタイミングで中止することができるので、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method of the present embodiment, if the target route TP cannot be generated from the travel route integrated occupancy map IOM within the second predetermined time T2, the automatic travel is performed. The control is stopped within the third predetermined time T3. According to this, for example, by setting the second predetermined time T2 and the third predetermined time T3 to appropriate times, the automatic travel control is performed by the time the vehicle V0 finishes traveling in the area where the lane marker information cannot be acquired. Can be canceled. Therefore, the automatic traveling control can be stopped at an appropriate timing, so that the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、第2所定時間内に、走行路統合占有マップIOMからレーンマーカ情報が取得できるようになった場合には、通常の自動走行制御を継続するので、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method of the present embodiment, when the lane marker information can be acquired from the travel route integrated occupancy map IOM within the second predetermined time, the normal Since the automatic traveling control is continued, the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、第2所定時間内に、走行路統合占有マップIOMからレーンマーカ情報が取得できるようにならなかった場合には、自動走行制御を第4所定時間T4内に中止するので、第4所定時間T4を適切な時間に設定すれば、安全に自動走行制御を中止して自車両Vの乗員に運転操作を委譲することができるので、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method according to the present embodiment, if the lane marker information cannot be acquired from the road integrated occupancy map IOM within the second predetermined time, the automatic Since the driving control is stopped within the fourth predetermined time T4, if the fourth predetermined time T4 is set to an appropriate time, it is possible to safely stop the automatic driving control and transfer the driving operation to the occupant of the vehicle V 0. Therefore, the safety of the automatic driving control can be further enhanced.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、自動走行制御を中止する場合には、自車両Vの乗員に対し、第5所定時間T5内にその旨を報知するので、第5所定時間T5を適切な時間に設定すれば、自車両Vの乗員に自動走行制御の中止について準備を促すことができ、自動走行制御から手動運転への切り換えをスムースに行うことができる。 Further, according to the vehicle travel control device VTC and the travel control method according to the present embodiment, when the automatic travel control is stopped, the fact that the vehicle occupant is in the fifth predetermined time T5 is notified to the occupant of the vehicle V 0. Since the notification is given, if the fifth predetermined time T5 is set to an appropriate time, the occupant of the own vehicle V 0 can be prompted to prepare for the suspension of the automatic travel control, and the switching from the automatic travel control to the manual operation can be smoothly performed. It can be carried out.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、走行路統合占有マップIOMは、占有マップOM1~OM4を重ね合わせることにより生成され、占有マップOM1~OM4の少なくとも一つの占有マップにおいて占有領域である領域は、走行路統合占有マップIOMの占有領域とし、占有マップOM1~OM4の少なくとも1つの占有マップにおいて非占有領域で、他の占有マップにおいて未知領域である領域は、走行路統合占有マップIOMの非占有領域とし、占有マップOM1~OM4の全ての占有マップにおいて未知領域である領域は、走行路統合占有マップIOMにおいて未知領域としている。これによれば、占有マップOM1~OM4の占有領域と、非占有領域と、未知領域とに優先順位をもたせて統合することにより、走行路統合占有マップIOMでは、占有領域が優先的に設定されるようにしているので、安全性を優先して自動走行制御を実行することができる。 Further, according to the vehicle travel control device VTC and the travel control method of the present embodiment, the travel route integrated occupancy map IOM is generated by superimposing the occupancy maps OM1 to OM4, and at least one of the occupancy maps OM1 to OM4 is generated. An area that is an occupied area in one occupancy map is an occupied area of the travel route integrated occupancy map IOM, and an area that is an unoccupied area in at least one of the occupancy maps OM1 to OM4 is an unknown area in another occupancy map. The unoccupied area of the travel route integrated occupancy map IOM, and the area that is an unknown area in all the occupancy maps of the occupancy maps OM1 to OM4 is an unknown area in the travel route integrated occupancy map IOM. According to this, the occupied areas of the occupancy maps OM1 to OM4, the unoccupied areas, and the unknown area are integrated by giving priority to each other, so that the occupied areas are preferentially set in the travel route integrated occupancy map IOM. Therefore, the automatic traveling control can be executed by giving priority to safety.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法によれば、障害物等の他の物体が存在しないことが確かな、走行路統合占有マップIOMの非占有領域INAにのみ目標経路TPを生成するので、自動運転制御の安全性をより一層高めることができる。 Further, according to the vehicle travel control device VTC and the travel control method according to the present embodiment, the target is set only in the unoccupied area INA of the travel route integrated occupancy map IOM in which it is certain that there is no other object such as an obstacle. Since the route TP is generated, the safety of automatic driving control can be further enhanced.
《第2実施形態》
 なお、上記の第1実施形態では、自車両Vの周囲におけるレーンマーカや物体の占有状況を、占有、非占有及び未知の3種類の判定クラスによって、いわゆるデジタル的に判定し、占有状況の判定結果に基づいて、自車両Vの周囲を占有領域と、非占有領域と、未知領域とに分類したが、占有、非占有及び未知の判定クラスは、アナログ的に各判定クラスの中間の状態を含むようにしてもよい。アナログ的な各判定クラスの中間状態とは、例えば、未知の判定値を0、占有の判定値を+1、非占有の判定値を−1としたときに、これらの判定値の中間の状態を含むようにする。このように、判定クラスに、判定値の中間状態を含むようにするのは、センサ5によるレーンマーカや物体の検出結果の信頼度は、検出時の道路状況や、天候、時間、季節等の環境の変化によって変化するためである。
<<Second Embodiment>>
In the first embodiment described above, the occupancy of lane markers and objects around the host vehicle V 0 is so-called digitally determined by three types of determination classes, occupied, unoccupied, and unknown, to determine the occupancy. Based on the result, the surroundings of the own vehicle V 0 are classified into an occupied area, a non-occupied area, and an unknown area. The occupied, unoccupied, and unknown determination classes are analog intermediate states of each determination class. May be included. The analog intermediate state of each determination class is, for example, when the unknown determination value is 0, the occupation determination value is +1 and the non-occupancy determination value is -1, the intermediate state of these determination values is Include it. In this way, the determination class is made to include the intermediate state of the determination value, because the reliability of the detection result of the lane marker or the object by the sensor 5 is the road condition at the time of detection, the environment such as weather, time, season, etc. This is because it changes with changes in.
 図12(A)は、レーンカメラ51のレーンマーカ情報に基づいて生成された第1レーンマーカ占有マップのアナログ的な判定値i1と、LRF52の物体情報に基づいて生成されたLRF占有マップのアナログ的な判定値i2と、i1とi2とを統合した領域iNを示す離散値版の論理表である。このような論理表において、i1とi2の未知の判定値を0、占有の判定値を+1、非占有の判定値を−1とし、これらの判定値の中間の状態を含むように論理表をグラフ化した場合、図12(B)に示すようなグラフとなる。このグラフから分かるように、占有、非占有及び未知の判定クラスをアナログ的に各判定クラスの中間の状態を含むようにすることにより、自車両Vの周囲のレーンマーカや物体について、より詳細な占有状況を把握して目標経路を生成することができる。 FIG. 12A shows an analog determination value i1 of the first lane marker occupancy map generated based on the lane marker information of the lane camera 51 and an analog determination value i1 of the LRF occupancy map generated based on the object information of the LRF 52. It is a logic table of the discrete value version which shows the area|region iN which integrated the judgment value i2 and i1 and i2. In such a logical table, the unknown judgment values of i1 and i2 are 0, the judgment value of occupancy is +1 and the judgment value of non-occupancy is -1, and the logic table is arranged so as to include an intermediate state of these judgment values. When made into a graph, the graph is as shown in FIG. As can be seen from this graph, the occupied, unoccupied, and unknown determination classes are made to include the intermediate state of each determination class in an analog manner, and thus the lane marker and the object around the vehicle V 0 can be more detailed. The target route can be generated by grasping the occupation status.
 なお、図12では、判定値i1と、判定値i2と、i1とi2とを統合した領域iNを示す離散値版の論理表に基づくグラフについて説明したが、図13(A)に示すように、判定値i1と、判定値i2と、i1とi2とを統合した領域iNを示す連続値版の論理表に基づいて作成した、図13(B)に示すようなグラフを用いてもよい。この場合、判定値i1と判定値i2とが同符号の領域では、絶対値が大きい判定値の領域を走行路統合占有マップの領域iNとし、判定値i1と判定値i2とが異符号の領域では、i2−i1×i2+i1を演算して求めたiNの領域を走行路統合占有マップの領域iNとする。これにより、自車両Vの周囲のレーンマーカや物体について、より詳細な占有状況を把握して目標経路を生成することができる。 In addition, in FIG. 12, the graph based on the discrete value version of the logical table showing the judgment value i1, the judgment value i2, and the region iN in which the judgment values i2 and i1 and i2 are integrated has been described, but as shown in FIG. , A determination value i1, a determination value i2, and a graph as shown in FIG. 13B, which is created based on the logical table of the continuous value version showing the region iN in which i1 and i2 are integrated may be used. In this case, in the area where the judgment value i1 and the judgment value i2 have the same sign, the area where the judgment value has a large absolute value is the area iN of the roadway integrated occupation map, and the judgment value i1 and the judgment value i2 are areas with different signs Then, the area of iN obtained by calculating i2-i1×i2+i1 is set as the area iN of the roadway integrated occupation map. As a result, it is possible to generate a target route by grasping a more detailed occupancy status of lane markers and objects around the host vehicle V 0 .
 以上のように、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、占有、非占有及び未知の判定クラスに対し、アナログ的に各判定クラスの中間の状態を含むようにしたので、センサ5による検出結果に基づく占有状況の信頼度、確信度が低い状態でも目標経路の生成に反映することができるようになる。 As described above, the vehicle travel control device VTC and the travel control method according to the present embodiment include the intermediate states of the determination classes in an analog manner with respect to the occupied, unoccupied, and unknown determination classes. , The occupancy status based on the detection result of the sensor 5 can be reflected in the generation of the target route even when the reliability and the confidence are low.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、アナログ的な各判定クラスの中間状態として、未知の判定値を0、占有の判定値を+1、非占有の判定値を−1としたときに、これらの判定値の中間の状態を含むようにしたので、センサ5による検出結果に基づく占有状況の信頼度、確信度が低い状態をスカラー値として保持して、目標経路の生成に反映することができるようになる。 In addition, the vehicle travel control device VTC and the travel control method according to the present embodiment have an unknown determination value of 0, an occupancy determination value of +1, and a non-occupancy determination value as intermediate states of analog determination classes. Since the intermediate state between these determination values is included when -1, the state with low reliability and certainty of the occupancy state based on the detection result by the sensor 5 is held as a scalar value, and the target route Will be able to be reflected in the generation of.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、第1走行路占有マップの各領域の判定値をi1、第2走行路占有マップの各領域の判定値をi2としたときに、判定値i1と判定値i2とが同符号の領域では、絶対値が大きい判定値の領域を走行路統合占有マップの領域とし、判定値i1と判定値i2とが異符号の領域では、i2−i1×i2+i1を演算して求めたiNの領域を走行路統合占有マップの領域とするようにしたので、センサ5による検出結果に基づく占有状況の信頼度、確信度が低い状態からでも統合後の占有状況を得て、目標経路の生成に反映することができる。 Further, in the vehicle travel control device VTC and the travel control method according to the present embodiment, the determination value of each region of the first traveling road occupancy map is i1, and the determination value of each region of the second traveling road occupancy map is i2. When the judgment value i1 and the judgment value i2 have the same sign, the judgment value i1 and the judgment value i2 have different signs when the judgment value i1 and the judgment value i2 have different signs. , I2−i1×i2+i1 is used as the area of the roadway integrated occupancy map, the reliability of the occupancy situation based on the detection result of the sensor 5 and even from a state of low confidence The occupancy status after integration can be obtained and reflected in the generation of the target route.
《第3実施形態》
 また、第1実施形態では、レーンカメラ51に基づく第1レーンマーカ占有マップOM1と、高精度地図情報32に基づく第2レーンマーカ占有マップOM2と、LRF52に基づくLRF占有マップOM3と、レーダ装置53に基づくレーダ占有マップOM4とを統合して、走行路統合占有マップIOMを生成したが、これら以外の占有マップをさらに追加して走行路統合占有マップを生成してもよい。
<<Third Embodiment>>
Further, in the first embodiment, the first lane marker occupancy map OM1 based on the lane camera 51, the second lane marker occupancy map OM2 based on the high-precision map information 32, the LRF occupancy map OM3 based on the LRF52, and the radar device 53. Although the radar occupancy map OM4 is integrated to generate the traveling road integrated occupancy map IOM, an occupancy map other than these may be further added to generate the traveling road integrated occupancy map.
 例えば、自動走行制御の実行中に、走行路統合占有マップIOMからレーンマーカが認識できなくなった場合、その走行区間が複数の数車線を有する道路の広い交差点等である場合、LRF52やレーダ装置53の物体情報から生成された走行可能領域だけでは、交差点から目標経路TPで設定された車線へ戻る方向が分からなくなる可能性があるが、低精度地図情報31を利用して交差点から車線への移動方向を補い、あるいは先行車両Vの移動軌跡を利用することで、交差点から車線内に戻る際の自車両Vの横ずれ量を低減することが可能である。 For example, when the lane marker cannot be recognized from the integrated roadway occupancy map IOM during execution of the automatic traveling control, when the traveling section is a wide intersection of roads having a plurality of lanes, the LRF 52 and the radar device 53 Although there is a possibility that the direction of returning from the intersection to the lane set on the target route TP may not be known only with the travelable area generated from the object information, the moving direction from the intersection to the lane using the low-precision map information 31. It is possible to reduce the lateral shift amount of the host vehicle V 0 when returning from the intersection into the lane by using the movement trajectory of the preceding vehicle V 1 .
 図14は、本実施形態に係る走行可能領域生成部6Aの機能的な構成を示すブロック図である。走行可能領域生成部6Aは、第1実施形態の走行路占有マップ生成部61~64と、マップ統合部65とに加え、走行路占有マップ生成部66と、走行路占有マップ生成部66と、先行車軌跡認識部68とを備える。 FIG. 14 is a block diagram showing a functional configuration of the drivable area generation unit 6A according to this embodiment. The drivable area generation unit 6A includes a traveling road occupancy map generation unit 66, a traveling road occupancy map generation unit 66, in addition to the traveling road occupancy map generation units 61 to 64 and the map integration unit 65 according to the first embodiment. The preceding vehicle trajectory recognition unit 68 is provided.
 走行路占有マップ生成部66は、レーンカメラ51や高精度地図情報32からレーンマーカ情報が得られない交差点等の区間を走行する場合に、地図データベース3から取得した低精度地図情報と、自車位置検出部2から取得した自車位置情報とに基づいて、交差点から目標経路TPが生成された車線への目標角度を算出するために利用可能な低精度地図占有マップOM5(図15参照)を生成する。 When traveling in a section such as an intersection where the lane marker information cannot be obtained from the lane camera 51 or the high-precision map information 32, the travel route occupancy map generation unit 66 acquires the low-precision map information acquired from the map database 3 and the vehicle position. A low-precision map occupancy map OM5 (see FIG. 15) that can be used to calculate the target angle from the intersection to the lane in which the target route TP was generated is generated based on the own vehicle position information acquired from the detection unit 2. To do.
 走行路占有マップ生成部67及び先行車軌跡認識部68は、レーンカメラ51や高精度地図情報32からレーンマーカ情報が得られない交差点等の区間を走行する場合に、先行車両Vの移動軌跡を利用して、交差点から目標経路TPが生成された車線への目標角度を得るために利用可能な先行車占有マップOM6(図15参照)を生成する。先行車軌跡認識部68は、レーダ装置53により検出された先行車両の移動位置を所定時間毎に記録して、先行車両Vの移動軌跡に関する先行車軌跡情報を生成する。走行路占有マップ生成部67は、先行車軌跡認識部68から取得した先行車軌跡情報に基づいて、先行車軌跡が非占有領域とされた先行車占有マップOM6を生成する。 The traveling road occupancy map generation unit 67 and the preceding vehicle trajectory recognition unit 68 determine the movement trajectory of the preceding vehicle V 1 when traveling in a section such as an intersection where the lane marker information cannot be obtained from the lane camera 51 or the high precision map information 32. By using this, the preceding vehicle occupancy map OM6 (see FIG. 15) that can be used to obtain the target angle from the intersection to the lane in which the target route TP was generated is generated. The preceding vehicle locus recognition unit 68 records the moving position of the preceding vehicle detected by the radar device 53 at predetermined time intervals, and generates preceding vehicle locus information regarding the moving locus of the preceding vehicle V 1 . The traveling road occupancy map generation unit 67 generates the preceding vehicle occupancy map OM6 in which the preceding vehicle locus is a non-occupied region based on the preceding vehicle locus information acquired from the preceding vehicle locus recognition unit 68.
 図15に示すように、本実施形態の走行可能領域生成部6Aは、レーンカメラ51のレーンマーカ情報に基づく第1レーンマーカ占有マップOM1や、高精度地図情報32のレーンマーカ情報に基づく第2レーンマーカ占有マップOM2が得られない場合に、LRF占有マップOM3とレーダ占有マップOM4とに、低精度地図占有マップOM5と先行車占有マップOM6とのいずれか一方、もしくは両方を統合して、マップ統合部65により走行路統合占有マップIOM1を生成する。この走行路統合占有マップIOM1に対し、第2実施形態で説明したアナログ的なクラス判定を適用することにより、低精度地図占有マップOM5と先行車占有マップOM6とに基づいて認識された非占有領域INA1に高い信頼度、確信度が得られるため、この非占有領域INA1を利用して目標経路TPを補正することで、交差点から車線内に戻る際の自車両Vの横ずれ量を低減することが可能である。 As shown in FIG. 15, the drivable area generation unit 6A of the present embodiment uses the first lane marker occupancy map OM1 based on the lane marker information of the lane camera 51 and the second lane marker occupancy map based on the lane marker information of the high accuracy map information 32. When OM2 cannot be obtained, the LRF occupancy map OM3 and the radar occupancy map OM4 are integrated with one or both of the low-precision map occupancy map OM5 and the preceding vehicle occupancy map OM6, and the map integration unit 65 A travel route integrated occupation map IOM1 is generated. By applying the analog class determination described in the second embodiment to the travel route integrated occupancy map IOM1, the non-occupancy region recognized based on the low-precision map occupancy map OM5 and the preceding vehicle occupancy map OM6. Since the INA1 has high reliability and certainty, the target route TP is corrected by using the unoccupied area INA1 to reduce the lateral shift amount of the host vehicle V 0 when returning to the lane from the intersection. Is possible.
 以上のように、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、自動走行制御の実行中に、交差点等で走行路統合占有マップからレーンマーカ情報が取得できなくなった場合には、自車両Vの現在位置に関する自車位置情報と、自車両Vの現在位置の周辺の低精度地図情報31とを取得し、自車位置情報と低精度地図情報31とに基づいて交差点等から目標経路TPが生成された車線への目標角度を算出することができるので、交差点から車線内に戻る際の自車両Vの横ずれ量を低減することが可能である。 As described above, when the vehicle travel control device VTC and the travel control method according to the present embodiment cannot acquire the lane marker information from the travel route integrated occupation map at an intersection or the like during execution of the automatic travel control, a vehicle position information about the current position of the vehicle V 0, obtains the low-precision map information 31 in the periphery of the current position of the vehicle V 0, an intersection or the like based on the vehicle position information and the low-precision map information 31 Since the target angle to the lane in which the target route TP is generated can be calculated from, it is possible to reduce the lateral deviation amount of the host vehicle V 0 when returning from the intersection into the lane.
 また、本実施形態に係る車両の走行制御装置VTC及び走行制御方法は、自動走行制御の実行中に、走行路統合占有マップからレーンマーカ情報が取得できなくなった場合には、自車両Vの前方を走行する先行車両Vの走行軌跡を検出し、その走行軌跡に基づいて交差点等から目標経路TPが生成された車線への目標方向を算出することができるので、交差点から車線内に戻る際の自車両Vの横ずれ量を低減することが可能である。 Further, the vehicle travel control device VTC and the travel control method according to the present embodiment are arranged in front of the host vehicle V 0 when the lane marker information cannot be acquired from the roadway integrated occupation map during execution of the automatic travel control. Since it is possible to detect the traveling locus of the preceding vehicle V 1 traveling on the road and calculate the target direction from the intersection or the like to the lane in which the target route TP is generated based on the traveling locus, when returning to the lane from the intersection. It is possible to reduce the lateral shift amount of the subject vehicle V 0 .
 1…目的地設定部
 2…自車位置検出部
 3…地図データベース
  31…低精度地図情報
  32…高精度地図情報
 4…ルート設定部
 5…センサ
  51…レーンカメラ
  52…レーザレンジファインダ(LRF)
  53…レーダ装置
 6…走行可能領域生成部
  61~64、66、67…走行路占有マップ生成部
  65…マップ統合部
  68…先行車軌跡認識部
 7…目標経路生成部
 8…経路追従制御部
 20…提示装置
 VTC…走行制御装置
 V…自車両
 V…先行車両
 L1…自車線
 CL…センターライン
 BL…境界ライン
 C…縁石
 SW…歩道
 Q…設置物
 OM1…第1レーンマーカ占有マップ
 OM2…第2レーンマーカ占有マップ
 OM3…LRF占有マップ
 OM4…レーダ占有マップ
 IOM…走行路統合占有マップ
 OA1、OA2、OA3、OA4、IOA…占有領域
 NA1、NA2、NA3、NA4、NOA…非占有領域
 UA1、UA2、UA3、UA4、UOA…未知領域
 TP…目標経路
1... Destination setting unit 2... Own vehicle position detection unit 3... Map database 31... Low accuracy map information 32... High accuracy map information 4... Route setting unit 5... Sensor 51... Lane camera 52... Laser range finder (LRF)
Reference numeral 53... Radar device 6... Travelable area generation unit 61 to 64, 66, 67... Travel road occupation map generation unit 65... Map integration unit 68... Preceding vehicle locus recognition unit 7... Target route generation unit 8... Route following control unit 20 ... presentation device VTC ... travel control device V 0 ... vehicle V 1 ... preceding vehicle L1 ... own lane CL ... center line BL ... boundary line C ... curbs SW ... sidewalk Q ... installed object OM1 ... first lane marker occupancy map OM2 ... first 2-lane marker occupancy map OM3... LRF occupancy map OM4... Radar occupancy map IOM... Roadway integrated occupancy map OA1, OA2, OA3, OA4, IOA... Occupied areas NA1, NA2, NA3, NA4, NOA... Non-occupied areas UA1, UA2, UA3, UA4, UOA... Unknown area TP... Target route

Claims (16)

  1.  自車両が走行可能な道路領域である走行路のレーンマーカに関するレーンマーカ情報と、前記自車両の周囲に存在する物体に関する物体情報とを取得し、
     前記レーンマーカ情報と、前記物体情報とに基づいて、前記自車両の走行可能領域を生成し、
     前記走行可能領域内に、前記自車両が走行する目標経路を生成し、
     生成された前記目標経路にしたがって、前記自車両の自動走行制御を実行する車両の走行制御方法であって、
     前記道路領域のうち、前記レーンマーカ情報及び前記物体情報が取得可能な領域は、前記レーンマーカ情報及び前記物体情報を用いて前記自車両の走行可能領域を生成するとともに、前記レーンマーカ情報もしくは前記物体情報の一方の情報が不明な領域であって、かつ、他方の情報が取得可能な領域は、前記他方の情報に基づいて前記自車両の走行可能領域を生成し、
     生成された前記走行可能領域内に前記目標経路を生成して、前記自車両の自動走行制御を実行する車両の走行制御方法。
    Acquiring lane marker information about a lane marker of a traveling road that is a road area in which the host vehicle can travel, and object information about objects existing around the host vehicle,
    Based on the lane marker information and the object information, generate a travelable area of the own vehicle,
    In the travelable area, generate a target route for the vehicle to travel,
    A travel control method for a vehicle that executes automatic travel control of the host vehicle according to the generated target route,
    Of the road area, the area where the lane marker information and the object information can be obtained generates a travelable area of the own vehicle using the lane marker information and the object information, and the lane marker information or the object information One information is an unknown area, and the area where the other information can be obtained, generates a travelable area of the own vehicle based on the other information,
    A travel control method for a vehicle, wherein the target route is generated in the generated travelable area and the automatic travel control of the own vehicle is executed.
  2.  前記レーンマーカ情報に基づいて、前記自車両の周囲における前記レーンマーカの占有状況を、占有、非占有及び未知の判定クラスによって判定し、前記占有状況の判定結果に基づいて、前記自車両の周囲を、前記レーンマーカにより占有されている占有領域と、前記レーンマーカに占有されていない非占有領域と、前記レーンマーカによる占有状況が不明な未知領域と、に分類した第1走行路占有マップを生成し、
     前記物体情報に基づいて、前記自車両の周囲における前記物体の占有状況を、占有、非占有及び未知の判定クラスによって判定し、前記占有状況の判定結果に基づいて、前記自車両の周囲を、前記物体により占有されている占有領域と、前記物体に占有されていない非占有領域と、前記物体による占有状況が不明な未知領域と、に分類した第2走行路占有マップを生成し、
     前記第1走行路占有マップと、前記第2走行路占有マップとを統合して、走行路統合占有マップを生成し、
     前記走行路統合占有マップに基づいて、前記目標経路を生成する請求項1に記載の車両の走行制御方法。
    Based on the lane marker information, the occupancy status of the lane marker around the host vehicle is determined by occupancy, non-occupancy and unknown determination class, and based on the determination result of the occupancy status, around the host vehicle, An occupied area occupied by the lane marker, a non-occupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown are generated to generate a first roadway occupation map,
    Based on the object information, the occupancy status of the object in the surroundings of the own vehicle, occupancy, unoccupied and determined by an unknown determination class, based on the determination result of the occupancy situation, the surroundings of the own vehicle, An occupied area occupied by the object, a non-occupied area not occupied by the object, and an unknown area in which the occupancy status by the object is unknown, generate a second travel road occupation map,
    The first travel route occupation map and the second travel route occupation map are integrated to generate a travel route integrated occupation map,
    The vehicle travel control method according to claim 1, wherein the target route is generated based on the travel route integrated occupancy map.
  3.  前記レーンマーカ情報が取得可能な場合に、前記自動走行制御を実行し、
     前記自動走行制御の実行中に、前記レーンマーカ情報が取得できなくなった場合には、第1所定時間内に前記自動走行制御を中止し、
     前記自動走行制御を中止するまでに、前記走行路統合占有マップから、前記目標経路が生成可能な場合には、前記自動走行制御を第2所定時間だけ継続する請求項2に記載の車両の走行制御方法。
    When the lane marker information can be acquired, the automatic traveling control is executed,
    When the lane marker information cannot be acquired during execution of the automatic travel control, the automatic travel control is stopped within a first predetermined time,
    The vehicle traveling according to claim 2, wherein the automatic traveling control is continued for a second predetermined time when the target route can be generated from the traveling route integrated occupancy map before the automatic traveling control is stopped. Control method.
  4.  前記第2所定時間内に、前記走行路統合占有マップから、前記目標経路が生成できなくなった場合には、前記自動走行制御を第3所定時間内に中止する請求項3に記載の車両の走行制御方法。 The vehicle traveling according to claim 3, wherein when the target route cannot be generated from the travel route integrated occupancy map within the second predetermined time, the automatic travel control is stopped within a third predetermined time. Control method.
  5.  前記第2所定時間内に、前記走行路統合占有マップから前記レーンマーカ情報が取得できるようになった場合には、前記自動走行制御を継続する請求項3又は4に記載の車両の走行制御方法。 The vehicle travel control method according to claim 3 or 4, wherein the automatic travel control is continued when the lane marker information can be acquired from the travel route integrated occupancy map within the second predetermined time.
  6.  前記第2所定時間内に、前記走行路統合占有マップから前記レーンマーカ情報が取得できるようにならなかった場合には、前記自動走行制御を第4所定時間内に中止する請求項3~5のいずれか1項に記載の車両の走行制御方法。 6. The automatic traveling control is stopped within a fourth predetermined time if the lane marker information cannot be acquired from the travel route integrated occupancy map within the second predetermined time. 2. A vehicle traveling control method according to item 1.
  7.  前記自動走行制御を中止する場合には、前記自車両の乗員に対し、第5所定時間内にその旨を報知する請求項3~6のいずれか1項に記載の車両の走行制御方法。 The vehicle traveling control method according to any one of claims 3 to 6, wherein when the automatic traveling control is stopped, an occupant of the vehicle is notified of the fact within a fifth predetermined time.
  8.  前記走行路統合占有マップは、前記第1走行路占有マップと、前記第2走行路占有マップとを重ね合わせることにより生成され、
     前記第1走行路占有マップと、前記第2走行路占有マップとの少なくとも一方が占有領域である領域は、前記走行路統合占有マップにおいて占有領域とし、
     前記第1走行路占有マップと、前記第2走行路占有マップとのいずれか一方が非占有領域で、他方が未知領域である領域は、前記走行路統合占有マップにおいて非占有領域とし、
     前記第1走行路占有マップと、前記第2走行路占有マップとが共に未知領域である領域は、前記走行路統合占有マップにおいて未知領域とする請求項2に記載の車両の走行制御方法。
    The travel route integrated occupancy map is generated by superimposing the first travel route occupancy map and the second travel route occupancy map,
    An area in which at least one of the first traveling road occupancy map and the second traveling road occupancy map is an occupied area is an occupied area in the traveling road integrated occupancy map,
    An area in which one of the first travel path occupancy map and the second travel path occupancy map is a non-occupied area and the other is an unknown area is a non-occupied area in the travel path integrated occupancy map,
    The vehicle traveling control method according to claim 2, wherein a region in which both the first traveling road occupancy map and the second traveling road occupancy map are unknown regions is an unknown region in the traveling road integrated occupancy map.
  9.  前記占有、非占有及び未知の判定クラスは、アナログ的に各判定クラスの中間の状態を含む請求項2に記載の車両の走行制御方法。 The vehicle travel control method according to claim 2, wherein the occupied, unoccupied, and unknown determination classes include intermediate states of each determination class in an analog manner.
  10.  前記アナログ的な各判定クラスの中間状態とは、前記未知の判定値を0、前記占有の判定値を+1、前記非占有の判定値を−1としたときに、これらの判定値の中間の状態を含む請求項9に記載の車両の走行制御方法。 The intermediate state of each analog determination class is an intermediate state between these determination values when the unknown determination value is 0, the occupation determination value is +1 and the non-occupancy determination value is -1. The traveling control method for a vehicle according to claim 9, including a state.
  11.  前記走行路統合占有マップは、前記第1走行路占有マップと、前記第2走行路占有マップとを重ね合わせることにより生成され、
     前記第1走行路占有マップの前記各領域の判定値をi1、前記第2走行路占有マップの前記各領域の判定値をi2としたときに、
     前記第1走行路占有マップの前記判定値i1と、前記第2走行路占有マップの前記判定値i2とが同符号の領域では、絶対値が大きい判定値の領域を前記走行路統合占有マップの領域とし、
     前記第1走行路占有マップの前記判定値i1と、前記第2走行路占有マップの前記判定値i2とが異符号の領域では、i2−i1×i2+i1を演算して求めたiNの領域を前記走行路統合占有マップの領域とする請求項10に記載の車両の走行制御方法。
    The travel route integrated occupancy map is generated by superimposing the first travel route occupancy map and the second travel route occupancy map,
    When the determination value of each area of the first traveling road occupation map is i1 and the determination value of each area of the second traveling road occupation map is i2,
    In a region where the determination value i1 of the first traveling road occupancy map and the determination value i2 of the second traveling road occupancy map have the same sign, the region of the determination value having a large absolute value is set in the traveling road integrated occupation map. Area and
    In a region where the determination value i1 of the first traveling road occupancy map and the determination value i2 of the second traveling road occupancy map have different signs, the region of iN obtained by calculating i2-i1×i2+i1 is described above. The travel control method for a vehicle according to claim 10, wherein the travel road integrated occupancy map area is set.
  12.  前記走行路統合占有マップの非占有領域にのみ、前記目標経路を生成する請求項2に記載の車両の走行制御方法。 The vehicle traveling control method according to claim 2, wherein the target route is generated only in a non-occupied region of the traveling route integrated occupation map.
  13.  前記自動走行制御の実行中に、前記走行路統合占有マップから前記レーンマーカ情報が取得できなくなった場合には、前記自車両の現在位置に関する自車位置情報と、前記自車両の現在位置の周辺の地図情報とを取得し、
     前記自車位置情報と、前記地図情報とに基づいて、目標角度を算出し、
     算出した前記目標角度を前記目標経路に反映する請求項2に記載の車両の走行制御方法。
    When the lane marker information cannot be acquired from the travel route integrated occupancy map during execution of the automatic traveling control, the vehicle position information regarding the current position of the vehicle and the vicinity of the current position of the vehicle are displayed. Get map information and
    A target angle is calculated based on the vehicle position information and the map information,
    The vehicle traveling control method according to claim 2, wherein the calculated target angle is reflected in the target route.
  14.  前記自動走行制御の実行中に、前記走行路統合占有マップから前記レーンマーカ情報が取得できなくなった場合には、
     前記自車両の前方を走行する先行車両の走行軌跡を検出し、
     前記走行軌跡に基づいて目標方向を算出し、
     算出した前記目標方向を前記目標経路に反映する請求項2に記載の車両の走行制御方法。
    When the lane marker information cannot be acquired from the travel route integrated occupancy map during execution of the automatic travel control,
    Detecting the traveling locus of the preceding vehicle traveling in front of the own vehicle,
    Calculate the target direction based on the running trajectory,
    The vehicle traveling control method according to claim 2, wherein the calculated target direction is reflected in the target route.
  15.  自車両が走行可能な道路領域である走行路のレーンマーカに関するレーンマーカ情報と、前記自車両の周囲に存在する物体に関する物体情報とを取得し、
     前記レーンマーカ情報と、前記物体情報とに基づいて、前記自車両の走行可能領域を生成し、
     前記走行可能領域内に、前記自車両が走行する目標経路を生成し、
     生成された前記目標経路にしたがって、前記自車両の自動走行制御を実行する車両の走行制御装置であって、
     前記走行制御装置は、
     前記道路領域のうち、前記レーンマーカ情報及び前記物体情報が取得可能な領域は、前記レーンマーカ情報及び前記物体情報を用いて前記自車両の走行可能領域を生成するとともに、前記レーンマーカ情報もしくは前記物体情報の一方の情報が不明な領域であって、かつ、他方の情報が取得可能な領域は、前記他方の情報に基づいて前記自車両の走行可能領域を生成し、
     生成された前記走行可能領域内に前記目標経路を生成して、前記自車両の自動走行制御を実行する車両の走行制御装置。
    Acquiring lane marker information about a lane marker of a traveling road that is a road area in which the host vehicle can travel, and object information about objects existing around the host vehicle,
    Based on the lane marker information and the object information, generate a travelable area of the own vehicle,
    In the travelable area, generate a target route for the vehicle to travel,
    A travel control device for a vehicle that executes automatic travel control of the host vehicle according to the generated target route,
    The traveling control device,
    Of the road area, the area where the lane marker information and the object information can be obtained generates a travelable area of the own vehicle using the lane marker information and the object information, and the lane marker information or the object information One information is an unknown area, and the area where the other information can be obtained, generates a travelable area of the own vehicle based on the other information,
    A travel control device for a vehicle, which generates the target route in the generated travelable area and executes automatic travel control of the own vehicle.
  16.  前記走行制御装置は、
     前記レーンマーカ情報に基づいて、前記自車両の周囲における前記レーンマーカの占有状況を、占有、非占有及び未知の判定クラスによって判定し、前記占有状況の判定結果に基づいて、前記自車両の周囲を、前記レーンマーカにより占有されている占有領域と、前記レーンマーカに占有されていない非占有領域と、前記レーンマーカによる占有状況が不明な未知領域と、に分類した第1走行路占有マップを生成し、
     前記物体情報に基づいて、前記自車両の周囲における前記物体の占有状況を、占有、非占有及び未知の判定クラスによって判定し、前記占有状況の判定結果に基づいて、前記自車両の周囲を、前記物体により占有されている占有領域と、前記物体に占有されていない非占有領域と、前記物体による占有状況が不明な未知領域と、に分類した第2走行路占有マップを生成し、
     前記第1走行路占有マップと、前記第2走行路占有マップとを統合して、走行路統合占有マップを生成し、
     前記走行路統合占有マップに基づいて、前記目標経路を生成する請求項15に記載の車両の走行制御装置。
    The traveling control device,
    Based on the lane marker information, the occupancy status of the lane marker around the host vehicle is determined by occupancy, non-occupancy and unknown determination class, and based on the determination result of the occupancy status, around the host vehicle, An occupied area occupied by the lane marker, a non-occupied area not occupied by the lane marker, and an unknown area in which the occupancy status by the lane marker is unknown are generated to generate a first roadway occupation map,
    Based on the object information, the occupancy status of the object in the surroundings of the own vehicle, occupancy, unoccupied and determined by an unknown determination class, based on the determination result of the occupancy situation, the surroundings of the own vehicle, An occupied area occupied by the object, a non-occupied area not occupied by the object, and an unknown area in which the occupancy status by the object is unknown, generate a second travel road occupation map,
    The first travel route occupation map and the second travel route occupation map are integrated to generate a travel route integrated occupation map,
    The vehicle travel control device according to claim 15, wherein the target route is generated based on the travel route integrated occupancy map.
PCT/IB2019/000108 2019-01-31 2019-01-31 Vehicle travel control method and travel control device WO2020157532A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020568858A JP7192890B2 (en) 2019-01-31 2019-01-31 VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE
PCT/IB2019/000108 WO2020157532A1 (en) 2019-01-31 2019-01-31 Vehicle travel control method and travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000108 WO2020157532A1 (en) 2019-01-31 2019-01-31 Vehicle travel control method and travel control device

Publications (1)

Publication Number Publication Date
WO2020157532A1 true WO2020157532A1 (en) 2020-08-06

Family

ID=71840173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000108 WO2020157532A1 (en) 2019-01-31 2019-01-31 Vehicle travel control method and travel control device

Country Status (2)

Country Link
JP (1) JP7192890B2 (en)
WO (1) WO2020157532A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007740T5 (en) 2021-05-31 2024-04-11 Mitsubishi Electric Corporation Driving area determination device and driving area determination method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151764A (en) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 Travelling control device
JP2018112989A (en) * 2017-01-13 2018-07-19 本田技研工業株式会社 Driving assist device and driving assist method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188030A (en) 2017-05-09 2018-11-29 アルパイン株式会社 Driving support system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151764A (en) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 Travelling control device
JP2018112989A (en) * 2017-01-13 2018-07-19 本田技研工業株式会社 Driving assist device and driving assist method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007740T5 (en) 2021-05-31 2024-04-11 Mitsubishi Electric Corporation Driving area determination device and driving area determination method

Also Published As

Publication number Publication date
JPWO2020157532A1 (en) 2020-08-06
JP7192890B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
US10845809B2 (en) Automatic driving device
US10436603B2 (en) Vehicle control system, vehicle control method, and vehicle control program
CN110356402B (en) Vehicle control device, vehicle control method, and storage medium
RU2641023C2 (en) Driving assistance system
JP6308233B2 (en) Vehicle control apparatus and vehicle control method
CN110281941B (en) Vehicle control device, vehicle control method, and storage medium
JP7250825B2 (en) VEHICLE TRIP CONTROL METHOD AND TRIP CONTROL DEVICE
RU2767216C1 (en) Vehicle movement control method and vehicle movement control equipment
JP6007739B2 (en) Driving support device and driving support method
JP2017146730A (en) Route determination device
JP2020163900A (en) Vehicle control device, vehicle control method, and program
JP6460420B2 (en) Information display device, information display method, and information display program
JP2001052297A (en) Method and device for supporting safe travel and recording medium
JP2015032028A (en) Driving support device and driving support method
JP2019160031A (en) Vehicle control device, vehicle control method, and program
JP2020157829A (en) Vehicle control device, vehicle control method, and program
US11073833B2 (en) Vehicle control apparatus
EP4074567A1 (en) Driving control method and driving control device
CN112985435B (en) Method and system for operating an autonomously driven vehicle
WO2020157532A1 (en) Vehicle travel control method and travel control device
JP7129495B2 (en) Driving support method and driving support device
CN113075924A (en) Autonomous vehicle parking scenario design
US20220203985A1 (en) Vehicle control device, vehicle control method, and storage medium
JP2020152210A (en) Vehicle control device, vehicle control method and program
JP7038610B2 (en) Driving support method and driving support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912206

Country of ref document: EP

Kind code of ref document: A1