WO2020157350A1 - System and method for measuring visual depth perception - Google Patents

System and method for measuring visual depth perception Download PDF

Info

Publication number
WO2020157350A1
WO2020157350A1 PCT/ES2020/070042 ES2020070042W WO2020157350A1 WO 2020157350 A1 WO2020157350 A1 WO 2020157350A1 ES 2020070042 W ES2020070042 W ES 2020070042W WO 2020157350 A1 WO2020157350 A1 WO 2020157350A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
dimensional
vision
depth
point
Prior art date
Application number
PCT/ES2020/070042
Other languages
Spanish (es)
French (fr)
Inventor
Ezequiel Campos Mollo
Fernando Boronat Seguí
Original Assignee
Universitat Politècnica De València
Fundacion Para El Fomento De La Investigacion Sanitaria Y Biomedica De La Comunitat Valenciana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València, Fundacion Para El Fomento De La Investigacion Sanitaria Y Biomedica De La Comunitat Valenciana filed Critical Universitat Politècnica De València
Publication of WO2020157350A1 publication Critical patent/WO2020157350A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/08Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus

Definitions

  • the object of the present invention is a system and a method of measuring depth perception using artificial vision techniques for the early diagnosis of alterations in stereopsis or stereoscopic vision.
  • Stereoscopic vision or stereopsis consists of the phenomenon of perceiving an object in relief or three dimensions.
  • Each of the eyes of the human ocular system has a different perspective to the object that is being looked at, so the images that are perceived are projected unevenly on the retina of each eye and rearranged in the brain, achieving feeling of depth.
  • stereo vision or stereoscopic vision three-dimensional vision (3D) or sense of depth -in terminology that will be used throughout the present specification will speak of these terms interchangeably and should be taken as synonyms- objects can be seen as solids in three dimensions - width, height and depth.
  • 3D three-dimensional vision
  • sense of depth -in terminology that will be used throughout the present specification will speak of these terms interchangeably and should be taken as synonyms- objects can be seen as solids in three dimensions - width, height and depth.
  • the stereopsis allows us to appreciate the different distances and volumes of our environment and to make precise judgments about the magnitude of this perception. However, in various pathologies, the perceived distance may vary
  • depth perception allows us to appreciate the different distances and volumes of our environment.
  • Most of the actions carried out in everyday life are related to stereoscopic vision, particularly driving, where it is very important to calculate distances.
  • a bad stereopsis will also affect other vital aspects, such as work, sports or leisure.
  • Amblyopia also known as lazy eye, is the reduced visual acuity that results in poor or indistinct vision in an eye that does not present any anatomical alteration and, therefore, produces the alteration of the three-dimensional vision. It can be caused by media opacities, strabismus, anisometropia, and refractive errors.
  • Stereoscopy creates an illusion of depth using two images that correspond to different views of a scene.
  • these images are sent to each of the eyes using specific hardware and software solutions. This allows one of the main mechanisms of human vision to be simulated: most observers are able to process the differences between the two views - binocular disparity - by elaborating depth perception. Observers with abnormalities in this perceptual ability may have difficulty correctly combining horizontal binocular disparities.
  • the Titmus test is based on observation with polarized glasses with which objects with a sensation of depth are perceived: made up of three stereogram tests: the fly, circle and animal test. In this way, different ages can be studied.
  • the disadvantages are that the jumps between one level and the next are very large, which is not very detailed when it comes to detecting alterations, as well as that certain details that lead us to find the objects in 3D can be seen with the naked eye .
  • the TNO test is aimed at children, it consists of three sheets, each with a visible object in a monocular and another visible through red-green glasses. For adults, It has three plates in which "co-echoes" are presented in different positions and the patient must indicate where the mouth is in each case.
  • Test E where by means of polarized glasses the character ⁇ 'is presented at different angles and it is indicated, for each case, towards where "the legs" are oriented.
  • the Randot test involves the use of polarized glasses for its realization, and several levels can be distinguished.
  • a first stage four frames with geometric shapes only visible with polarized glasses are presented. The patient must identify the geometric shape.
  • ten series of three circuits each are presented, of which one of them is in relief and the patient must identify which one it is. The difficulty will increase as you progress through the levels.
  • the Lang test consists of a sheet in which three objects with high disparities are presented. They are used for screening in clinical practice, going to more complex tests in cases in which anomalies are detected.
  • document US2017340200 describes a system and a set of methods for the diagnosis and correction of visual disturbances in children (amblyopia, lazy eye, etc.) that includes a virtual reality helmet, which allows viewing 3D images or scenes, coupled with an external computing device (computer, mobile phone) and which in turn can communicate with a remote server managed by medical specialists.
  • the system also includes different devices (sensors, cameras) for patient monitoring (gestures, head movements, eyes).
  • sensors, cameras for patient monitoring
  • a procedure for measuring depth perception is described.
  • this document has certain deficiencies with respect to the present invention.
  • US2017340200 does not measure the exact depth perceived by the user.
  • said document implies the use of virtual reality headsets (HMD or Mead Mounted Dispiay) to visualize in each eye separately images of the 3D models, and sensors for active input by the patient.
  • HMD virtual reality headsets
  • Patent document WO03098529A2 describes a system and method for treating amblyopia using a computer-generated virtual reality platform or immersive two-dimensional or three-dimensional simulation that allows the measurement and recording of the visual acuity of a patient using LCD shutter glasses, a visor or a virtual reality HMD helmet.
  • the patient is visually presented with an object selected from a set of options at a programmed distance, an object that the patient must identify by using a pointer or other similar mechanism. Once the object is identified, the system records the distance at which it is located.
  • the system determines the distance between the patient and the display screen by means of a magnetic position sensor integrated in his glasses or alternatively by using a support to fix his head and therefore the distance to the screen.
  • the patient interacts in three dimensions with the virtual reality system through a pointer that incorporates a magnetic position sensor that makes it easier to track (position and orientation) by the system, and allows him to select objects.
  • the proposed invention system is not intended to carry out any type of treatment nor is the visual acuity of! patient in a virtual world from the identification of 3D objects detected by him in said world, when his proximity to the viewing point is varied or its size is changed.
  • the proposed invention system is limited to measuring the depth perception of the patient by visualizing fixed or static 3D models (of which the viewing perspective and size cannot be changed), from which to In turn, you have to point your finger in space at the point where you perceive that a certain guide point is located, measuring the distance of said finger from the display display (actual depth perceived by the user for the 3D model displayed).
  • the patient cannot change position, his head being placed on a chin rest. Neither are images shown or hidden, selectively, from only one eye at a specific moment in the test.
  • document W02018087408A1 discloses a system for comprehensive measurement of clinical parameters of visual function that includes a display unit to represent a scene with a 3D object of variable characteristics such as the virtual position and virtual volume of the 3D object within the scene. ; motion sensors to detect the user's head position and distance to the display unit; tracking sensors to detect the position of the user's pupils and pupil diameter; an interface for user interaction on the scene; processing means to analyze the user response based on the data from the sensors and the interface with the variation of the characteristics of the 3D object; and based on the estimation of a plurality of clinical parameters of visual function related to binocuiarity, accommodation, ocular motility or visual perception.
  • this system also does not describe each and every one of the features of the invention, as described herein below.
  • the object of the invention is a system and a method that includes a plurality of three-dimensional models for early detection of alterations in stereoscopic vision, estimating, through image processing and artificial vision techniques, the magnitude of the depth perception of the patient when you these models are shown on a screen configured to emit three-dimensional images. It is intended for early diagnosis, as well as for the automated recording and monitoring of alterations in stereoscopic vision, particularly in young patients.
  • the system for measuring the perception of depth in the vision of a patient comprising at least: (a) a three-dimensional display screen configured to display three-dimensional models previously stored in a database; (b) a camera or cameras configured to capture at least one image of the space in front of the patient; and (c) a processing unit connected to the camera or cameras and comprising at least one processor or processors and a memory or memories, where a program or programs are stored which, in turn, are configured to be executed by the processor. or processors, and wherein the program or programs include instructions for measuring the distance between a point in the space indicated by the patient and a guide point defined in the three-dimensional model shown to the patient on the three-dimensional display screen with respect to the screen itself. three-dimensional visualization or with respect to the patient's eyes.
  • the point of the space indicated by the patient is the one that the patient considers to coincide with the guide point defined in the three-dimensional model.
  • the method of measuring depth perception in the vision of a patient that is implemented in the described system and that comprises the steps of: (a) selecting, at least, a three-dimensional model of, at least one sequence of three-dimensional models, each with at least one guide point viewable by the patient; (b) point out on the part of the patient the point of the space in front of it where he perceives that the guide point of the visualized three-dimensional model is located; (c) measuring and storing a distance from the position indicated by the patient with respect to the three-dimensional display screen itself or with respect to the patient's eyes.
  • the use of the invention implies an improvement of the traditional diagnostic tests based on paper and plastic chips, or on images similar to those used in them, but shown on 3D-capable screens. This allows estimating the depth perception measured in millimeters, in relation to the geometric prediction - theoretical depth perception - generated by the stereoscopic means.
  • the present invention allows the carrying out of innovative tests taking advantage of new technologies for the collection and storage of measurements automatically and completely transparent to the patient.
  • the proposed tests are based on new original and attractive three-dimensional models for young patients, created by computer and using distance measurement techniques based on the processing of images captured by artificial vision systems.
  • the three-dimensional models created have guide points that the patient must touch with the tip of the index finger, which is a totally natural means of interaction.
  • the proposed system of the invention allows physicians or specialists to collect data to measure the magnitude of depth perception by patients, which will facilitate the issuance of a diagnosis. It allows the measurement and monitoring of alterations in the stereoscopic vision of patients over time, for example, while the treatment prescribed by the specialist lasts. It will be possible to analyze and evaluate the impact in time of perceptual learning of themselves on the estimation of the magnitude of depth perception.
  • the proposed invention system also provides multiple additional advantages, such as, for example, that the child does not have to operate any unknown interaction device, such as a mouse, keyboard or game controller.
  • Another additional advantage is the use of multiple models / animations in three dimensions made by computer with varied and attractive designs for children, the possibility of lighting control, selecting various reference points to be pointed out by the patient with the finger. Furthermore, it allows the evaluation of different degrees of stereopsis (and its evolution over time) for the same model / animation.
  • Figure 1 shows the scientific basis on which the proposed invention system is based.
  • Figure 2 shows an overview of a typical configuration of the depth measurement system of the vision object of the present invention in a first practical embodiment.
  • Figure 3 shows the block diagram of a more complete system, with two devices, one for the patient and one for the doctor, with their corresponding processors and monitors / dispiays, and the camera system, all connected by a communications network. .
  • Figure 4 presents the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient on a 3D monitor.
  • Figure 5 presents the same configuration as the previous figure, but with an opaque board to prevent the user from seeing his arm and hand and thus prevent him from taking visual distance references.
  • Figure 6 shows the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient in Augmented Reality (AR) glasses.
  • AR Augmented Reality
  • Figures 7 and 8 show examples of three sophisticated three-dimensional models to be used in the vision depth measurement system object of the present invention.
  • Figure 9 shows two mirror images of one of the designed models (specifically, the fairy model).
  • Figure 10 shows the flow diagram of a possible method to follow to measure the depth perceived by a user using the proposed invention system.
  • Figure 1 describes the scientific principle that illustrates the present invention.
  • the parallel plane (1.1) represented is the plane in which both eyes see the same image.
  • the visualization of an object located at a distance Ad from the parallel plane (1.1) is represented.
  • This difference in depth between an object and the parental plane (1.1) is represented by the difference in angles a and b, called stereoscopic sharpness and represented by the parameter d.
  • Systems traditionally used in ophthalmology have paper or plastic tokens, virtual reality displays or displays generated for a specific value of d that corresponds to a given depth difference. Furthermore, we must bear in mind that: d ⁇ e Ad / d A 2
  • the value of d is approximately equal to the product of the distance between eyes (e) and the distance Ad divided by the square of the distance d, which is the distance between the eyes and the angle a.
  • the system of the invention aims to measure said distance.
  • the patient must signal in a natural way, i.e., without any artificial element or device, with the tip of his own index finger, the point where he visualizes a certain element of the 3D model he is seeing.
  • the system of the invention measures, automatically and transparently for the user, the distance from the tip of the finger to the display screen, comparing it with that which should correspond according to the design of the 3D model displayed.
  • Figure 2 shows the system as a whole.
  • the user or patient (1) is sitting in front of a table, either in front of a monitor (4) or wearing augmented reality glasses (RA glasses, 2), without the monitor (4).
  • Both the monitor (4) and the AR glasses (2) have a screen configured to show 3D models (10) viewable by the patient (1) that are stored in a database (9).
  • the patient (1) supports his chin on a chin rest (3).
  • the monitor (4) will wear 3D glasses that could be red-green 3D glasses, polarized glasses or active 3D glasses by shutter.
  • the monitor (4) will be located at a distance from the chin guard (3) tai that allows the patient (1) to touch the monitor (4) with the index finger and the arm practically fully extended.
  • a camera system (5) On one side of the table and at a distance from the chin guard between 40 and 100 cm (distance d2 in Figures 4 and 6) a camera system (5) will be placed, consisting of one or more cameras, which will allow measuring using techniques machine vision the distance between the tip of the index finger and the monitor (4), which corresponds to the distance D in Figure 2, or between the tip of the index finger and the patient's eyes (1), which corresponds to the distance D 'of figure 2, if RA glasses (2) are used.
  • the system has a data processing unit (8), connected to the camera system (5), which would be in charge of executing a program with algorithms and artificial vision processing techniques, to process the data from each measure and manage a database (9) of patients.
  • the data processing unit (8) is configured to control the KA glasses (2), if used, and one or two monitors (4.7). If the system does not use AR glasses (2) and only includes a single monitor (4), when the patient finishes, the doctor (6) will be able to view the test results and patient data (1) on said monitor ( 4). In the event that there is a second monitor (7), the physician (6) will be able to view said data on said second monitor (7).
  • the visualization of the 3D models (10) at any time can be controlled either by the patient himself or by the doctor (8).
  • the processing unit (8) comprises at least one processor or processors and a memory or memories, where a program or programs that are configured to be executed by the processor or processors are stored, in such a way that the programs include instructions to measure the distance (D, D ') between the patient's finger (1) and, at least, a guide point shown in a 3D model (10) shown to the patient (1) on the display screen included in the AR glasses (2 ) or on the monitor (4).
  • the data is registered in the database (9) so that the physician can analyze them and make their diagnosis, as well as to monitor the evolution of the problem over time. For this, the time of completion, as well as the duration of each test, are also recorded in a patient database.
  • the database (9) is configured to store the data of each of the tests performed on each patient (1) in the different sessions with the doctor (6). In this way, the evolution of the patient can be analyzed over time.
  • the processing unit (8) comprises a database management program or programs (for example, MySQL®) and a program or program for managing the data of the patients (1) therein.
  • FIG 3 a block diagram of a complete system is shown, in a practical embodiment with two devices, with a first patient device (201) and a second device for the physician (202) connected by a communication network ( 203).
  • the 3D models would be stored in the patient's device (201) and from the doctor's device (202) they would be controlled, by means of the exchange of messages through the network, the model display sequence and the tasks to be performed by the patient (1).
  • the cameras (5) and the processing unit (8) would be included in the doctor's device (202).
  • the proposed innovation system in addition, also allows evaluating the impact of perceptual learning on the estimation of depth from the disparity while the treatment prescribed by the specialist lasts. The analysis would also allow comparison with the results of multiple users to carry out population studies or within the different diagnostic categories.
  • the system object of the invention therefore, comprises a logical part and a physical part.
  • the logical part includes, at least, a plurality of 3D models (10) stored in a database (9) together with the measurements of all the tests performed by each of the patients (1), as well as a patient application (1) and a doctor's application (6), generally an ophthalmologist.
  • the two applications will exchange messages with each other and can be run on the same device - the processing unit (S) ⁇ or on two separate networked devices (201, 202) (203).
  • the logic included for the patient (1) includes (a.1) a plurality of 3D object models / animations; (a.2) a graphical interface that includes a viewer of objects and 3D animations, as well as their remote manipulation by the application for the practitioner; and (a.3) a communications module with the application of the physician.
  • the application for the doctor (6) includes (b.1) a graphical interface that includes a part of patient data management and another graphical part that provides the doctor with a graphical representation of the evolution of the perception of the depth of the patient measured by the proposed invention system.
  • the latter makes it possible to analyze the evolution over time of said perception and the efficacy of the treatment applied to the patient, if applicable.
  • It also includes (b.2) a module evaluation of the patient's depth perception including the artificial vision processing algorithms for distance measurement; and (b.3) a patient database manager (9), as well as a patient database access module (9) and a communication module with the patient application.
  • the physical part of the system of the invention includes, at least (a.1) a physician's computer (6) that includes a processing unit (8, 202) that is configured to manage the database with the patient data (9) (1); (a.2) a screen configured to show 3D models (10) that can have multiple configurations (a first monitor (4), a second monitor (7), AR glasses (2)); (a.3) 3D glasses (for example, red-green glasses, polarized glasses or shutter glasses, depending on the type of display monitor used), only necessary if the 3D models are displayed on a 3D monitor (4) and not in RA glasses (2); (a.4) a camera system (5) for capturing images; and (a.5) a device to place the chin (3) of the patient (1), placed at a determined distance from the viewing screen (d1 in figure 2).
  • a physician's computer (6) that includes a processing unit (8, 202) that is configured to manage the database with the patient data (9) (1); (a.2) a screen configured to show 3D models (10) that can have multiple configuration
  • Figure 4 presents the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient on a 3D monitor.
  • the patient will place the head supported on a chin rest (3), placed at a distance d1 from the monitor (4) to visualize the 3D models.
  • You will be shown a 3D model (10) on the monitor (4) and you will be asked to try touching the tip of your index finger to a guide point of the 3D model (in Figure 4, the tip of the magic wand of the 3D model of the fairy).
  • the system described above is configured to obtain the measurement of the distance between the fingertip and the monitor (4), which is the distance D in Figure 4.
  • the configuration of the distance detection system by artificial vision applied to the measurement of depth perception is presented in 3D images visualized by a patient in AR glasses (2), that is, in one embodiment without the need for a monitor (4).
  • the patient (1) should touch the point of the space in front of him where he detects the guide point of the model with the tip of his index finger.
  • the system of the invention will measure the distance between the fingertip and the patient's eyes (D ’in Figure 6).
  • an opaque tai board can be used and as previously discussed.
  • Figures 7 and 8 show such 3D models to be used in the proposed invention.
  • Figure 7a shows the model of a pirate with a parrot flying ahead at a certain distance.
  • Figure 7b shows the model of a fairy with a magic wand with a star pointed and pointed forward.
  • Figure 7c shows the model of a robot with the left fist forward. In Figure 8, you can see how each character has an object with a reference point that protrudes from the distant plane where it is located (pirate parrot, end of the fairy wand and one of the ends of the robot).
  • each of these guide points is at a different distance, being further away in the pirate and closer in the robot ( Figure 8). Therefore, it will be easier to detect stereopsis in the first one and more difficult in the last one, presenting the fairy with an intermediate difficulty.
  • this guide point is not just in front of the main object, but is deliberately offset to one side (parrot beak in the pirate model, magic wand point in the fairy model and the end of the fist in the model of the robot In the viewfinder, the protruding object of each model (guide point) should be located in the center, equidistant from each of the lateral cameras that generate the stereopsis, leaving the character displaced to one side, thus avoiding monocular overlay tracks.
  • the room where the tests are performed be in the dark so as not to provide clues or reference distances to the patient. It is recommended that models be viewed on a monitor larger than 10 ”. The models they should be automatically scaled in the 3D viewer so that the perception of the depth of these by the patient (1) is independent of the size and resolution of the monitor used for viewing.
  • each specular image of each model is displayed a number of times equal to MaxVeces (parameter to be configured by the physician (6)), with which a total of (2 x MaxVeces) is achieved. measurements of the depth perceived by the patient for each 3D model (10).
  • the physician himself with an input device, for example, by keyboard and / or mouse, and by one or more computer applications including selection menus and different configuration options, will be able to select the sequence of models 3D to be visualized by the patient, giving instructions on the task to be performed during viewing. It will instruct the patient (1) to try to touch the guide point of the stereoscopic model with the fingertips and keep the fingertip at that point.
  • a monitor (4) is used to view 3D models (10)
  • a patient (1) with no stereopsis will touch the monitor screen (4) indicating that they do not perceive depth and that they see the model in 2D. , instead of 3D.
  • a patient (1) in the presence of stereopsis will perceive the depth and will touch at a point in the sword away from the screen, in front of it.
  • the proposed innovation system allows estimating the depth perception of said patient, measured in millimeters, and comparing it with the geometric prediction (theoretical depth perception) generated by the model being viewed, facilitating the analysis of the correlation that exists at different depths. geometric. Unlike the other stereopsis tests that use an angular system, the measurement of depth perception in millimeters will allow defining scales of depth perception depending on the magnitude of the perception error in absolute value (in mm) or percentage with respect to the real depth.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Analysis (AREA)

Abstract

The invention relates to a system comprising at least: (a) a 3D display screen (2, 4) configured to show 3D models (10); (b) a camera or cameras (5) configured to capture at least one image of the space in front of a patient (1); and (c) a processing unit (8, 201, 202) connected to the camera or cameras (5) and which executes a program or programs that include instructions for measuring the distance (D, D´) between a point in space indicated by the patient (1) with respect to the 3D display screen (4) or with respect to the eyes of the patient (1), wherein the point indicated by the patient (1) is virtually located on a guide point defined on the 3D model (10) shown to the patient (1) on the 3D display screen (2, 4).

Description

SISTEMA Y MÉTODO DE MEDIDA DE LA PERCEPCIÓN DE LA PROFUNDIDAD DEPTH PERCEPTION SYSTEM AND METHOD OF MEASUREMENT
EN LA VISIÓN IN THE VISION
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de ¡a presente invención es un sistema y un método de medida de la percepción de la profundidad mediante técnicas de visión artificial destinada al diagnóstico precoz de alteraciones de la estereopsis o visión estereoscópica. The object of the present invention is a system and a method of measuring depth perception using artificial vision techniques for the early diagnosis of alterations in stereopsis or stereoscopic vision.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La visión estereoscópica o estereopsis consiste en el fenómeno de percibir un objeto en relieve o tres dimensiones. Cada uno de los ojos del sistema ocular humano dispone de una perspectiva diferente ai objeto al que se está mirando, por lo que las imágenes que se perciben se proyectan de forma dispar en la retina de cada ojo y se recomponen en el cerebro, consiguiendo la sensación de profundidad. Gracias a la visión en estéreo o visión estereoscópica, visión en tres dimensiones (3D) o sensación de profundidad -ia terminología que se utilizará a io largo de la presente memoria descriptiva hablará indistintamente de estos términos debiéndose tomar como sinónimos- se pueden ver los objetos como sólidos en tres dimensiones -anchura, altura y profundidad-. La estereopsis permite apreciar las diferentes distancias y volúmenes de nuestro entorno y realizar juicios precisos sobre ia magnitud de esta percepción. Sin embargo, en diversas patologías, la distancia percibida puede variar. Stereoscopic vision or stereopsis consists of the phenomenon of perceiving an object in relief or three dimensions. Each of the eyes of the human ocular system has a different perspective to the object that is being looked at, so the images that are perceived are projected unevenly on the retina of each eye and rearranged in the brain, achieving feeling of depth. Thanks to stereo vision or stereoscopic vision, three-dimensional vision (3D) or sense of depth -in terminology that will be used throughout the present specification will speak of these terms interchangeably and should be taken as synonyms- objects can be seen as solids in three dimensions - width, height and depth. The stereopsis allows us to appreciate the different distances and volumes of our environment and to make precise judgments about the magnitude of this perception. However, in various pathologies, the perceived distance may vary.
Como es evidente para aquellos que sean expertos en ¡a materia, ¡a percepción de la profundidad permite apreciar ias diferentes distancias y volúmenes de nuestro entorno. La mayoría de las acciones que se realizan en la vida cotidiana tienen relación con la visión estereoscópica, particularmente la conducción, donde resulta muy importante calcular las distancias. Una mala estereopsis afectará también a otros aspectos vitales, como trabajo, deporte u ocio. As is evident to those who are experts in the subject, depth perception allows us to appreciate the different distances and volumes of our environment. Most of the actions carried out in everyday life are related to stereoscopic vision, particularly driving, where it is very important to calculate distances. A bad stereopsis will also affect other vital aspects, such as work, sports or leisure.
Alrededor del 5% de la población mundial presenta problemas en 1a fusión de ias imágenes captadas por cada ojo. La ambigüedad en la estimación de la distancia de visión puede conducir a una gran variabilidad de las estimaciones de profundidad. Estas alteraciones suelen venir dadas por problemas de visión en uno de ios ojos o por disfunciones binoculares, por lo que no todas las personas poseen la misma capacidad de convertir la información que reciben en cada ojo en una imagen tridimensional. La ambliopía, también conocida como ojo vago es la agudeza visual reducida que resulta en la visión pobre o indistinta en un ojo que no presenta ninguna alteración anatómica y, por tanto, produce la alteración de la visión tridimensional. Puede ser causada por opacidades de ios medios, estrabismo, anisometropía y errores refractivos. About 5% of the world population has problems in the fusion of the images captured by each eye. Ambiguity in estimating the distance of Vision can lead to great variability in depth estimates. These alterations are usually caused by vision problems in one of the eyes or by binocular dysfunctions, so not all people have the same ability to convert the information they receive in each eye into a three-dimensional image. Amblyopia, also known as lazy eye, is the reduced visual acuity that results in poor or indistinct vision in an eye that does not present any anatomical alteration and, therefore, produces the alteration of the three-dimensional vision. It can be caused by media opacities, strabismus, anisometropia, and refractive errors.
Sin embargo, en entornos de visualización natural, cuando el conflicto entre la información de profundidad de la estereopsis y otras señales de profundidad se eliminan con ia experiencia, existe la posibilidad de conseguir un aprendizaje perceptual. La estereoscopia crea una ilusión de profundidad por medio de dos imágenes que corresponden a diferentes vistas de una escena. En los sistemas informáticos, estas imágenes se envían a cada uno de ios ojos utilizando soluciones de software y hardware específicas. Esto permite simular uno de los principales mecanismos de la visión humana: la mayoría de ios observadores son capaces de procesar las diferencias entre las dos vistas -disparidad binocular- elaborando la percepción de ia profundidad. Los observadores con anomalías en esta habilidad perceptual pueden tener dificultades para combinar correctamente las disparidades binoculares horizontales. However, in natural display environments, when the conflict between depth information from the stereopsis and other depth signals is eliminated with experience, there is a possibility of perceptual learning. Stereoscopy creates an illusion of depth using two images that correspond to different views of a scene. In computer systems, these images are sent to each of the eyes using specific hardware and software solutions. This allows one of the main mechanisms of human vision to be simulated: most observers are able to process the differences between the two views - binocular disparity - by elaborating depth perception. Observers with abnormalities in this perceptual ability may have difficulty correctly combining horizontal binocular disparities.
En ia actualidad, los oftalmólogos, en sus consultas, habitualmente utilizan tests en formato físico -fichas de plástico o papel- para detectar problemas de estereopsis. Así, por ejemplo, el test de Titmus se basa en ia observación con unas gafas polarizadas con las que se perciben los objetos con sensación de profundidad: formado por tres test de estereogramas: el test de la mosca, de círculos y de anímales. De esa manera, se pueden estudiar diferentes edades. Las desventajas consisten en que los saltos entre un nivel y el siguiente son muy grandes, lo cual no es muy detallista a ia hora de detectar alteraciones, así como que se pueden observar a simple vista ciertos detalles que nos conducen a encontrar ios objetos en 3D. At present, ophthalmologists, in their consultations, usually use tests in physical format - plastic or paper sheets - to detect stereopsis problems. Thus, for example, the Titmus test is based on observation with polarized glasses with which objects with a sensation of depth are perceived: made up of three stereogram tests: the fly, circle and animal test. In this way, different ages can be studied. The disadvantages are that the jumps between one level and the next are very large, which is not very detailed when it comes to detecting alterations, as well as that certain details that lead us to find the objects in 3D can be seen with the naked eye .
El test TNO está dirigido a niños, consta de tres láminas, cada una con un objeto visible en monocular y otro visible mediante unas gafas rojo-verde. Para adultos, cuenta con tres láminas en las que se presenta unos «co ecocos» en distintas posiciones y el paciente debe indicar hacia dónde tiene la boca en cada caso. The TNO test is aimed at children, it consists of three sheets, each with a visible object in a monocular and another visible through red-green glasses. For adults, It has three plates in which "co-echoes" are presented in different positions and the patient must indicate where the mouth is in each case.
El test E donde mediante gafas polarizadas se presenta el carácter Έ' en diferentes ángulos y se indica, para cada caso, hacia donde están orientadas «las patas». Test E where by means of polarized glasses the character Έ 'is presented at different angles and it is indicated, for each case, towards where "the legs" are oriented.
El test Randot implica para su realización el uso de gafas polarizadas, pudiendo distinguirse varios niveles. En una primera etapa se presentan cuatro cuadros con formas geométricas únicamente visibles con las gafas polarizadas. El paciente debe identificar la forma geométrica. A continuación, se presentan diez series de tres circuios cada uno, de los cuales uno de ellos está en relieve y el paciente debe identificar cuál es. La dificuitad aumentará según se avance en ios niveles. Por último, se tiene tres series de cinco animales, de los cuáles uno de ellos está en relieve y se debe identificar por el paciente. Este tipo de test está indicado principalmente para niños. The Randot test involves the use of polarized glasses for its realization, and several levels can be distinguished. In a first stage, four frames with geometric shapes only visible with polarized glasses are presented. The patient must identify the geometric shape. Next, ten series of three circuits each are presented, of which one of them is in relief and the patient must identify which one it is. The difficulty will increase as you progress through the levels. Finally, there are three series of five animals, of which one of them is in relief and must be identified by the patient. This type of test is mainly indicated for children.
Finalmente, el test de Lang consiste en una lámina en la que se presentan tres objetos de altas disparidades. Se utilizan de screening en la práctica clínica, recorriéndose a test más complejos en casos en ios que se detecte anomalías. Finally, the Lang test consists of a sheet in which three objects with high disparities are presented. They are used for screening in clinical practice, going to more complex tests in cases in which anomalies are detected.
Estas pruebas tienen los siguientes inconvenientes: (1) no se pueden medir agudezas peores que 400-800 segundos de arco (arcsec); (2) disponen de un pequeño número de intervalos de test predefinidos no estandarizados, lo cual puede limitar la precisión de la medición, que utiliza diferentes niveles de disparidad cercana y distante que no se pueden comparar directamente; (3) el efecto de aprendizaje de respuestas fijas puede disminuir la fiabilidad de los test repetitivos; (4) sólo presentan objetos en blanco y negro con alto contraste; y (5) los test basados en el contorno tienen un alto riesgo de proporcionar pistas monoculares. These tests have the following drawbacks: (1) acuities worse than 400-800 seconds of arc (arcsec) cannot be measured; (2) have a small number of non-standardized predefined test intervals, which may limit the precision of the measurement, which uses different levels of near and distant disparity that cannot be directly compared; (3) the learning effect of fixed responses can decrease the reliability of repetitive tests; (4) only feature black and white objects with high contrast; and (5) contour-based tests are at high risk of providing monocular tracks.
La experiencia con los test anteriores indica que pueden presentar un número elevado de falsos positivos y negativos. Algunos modelos tienen pistas que pueden favorecer estos errores y también puede influir el grado de Iluminación ambienta!. Además, en ocasiones, es difícil detectar el grado de estereopsis. Por otro lado, el número de modelos está limitado y algunos están desactualizados, pudiendo resultar poco atractivos para los niños, por lo que puede disminuir su atención al realizar ía prueba. En aras de solucionar los problemas indicados, en el estado de la técnica se conocen distintos métodos y sistemas. Así pues, el documento US2017340200 describe un sistema y un conjunto de métodos para el diagnóstico y corrección de alteraciones visuales en niños (amblíopía, ojo vago, etcétera) que comprende un casco de realidad virtual, que permite visualizar imágenes o escenas 3D, acoplado con un dispositivo de computación externo (ordenador, teléfono móvil) y que puede comunicarse a su vez con un servidor remoto gestionado por especialistas médicos. El sistema comprende también distintos dispositivos (sensores, cámaras) de seguimiento del paciente (gestos, movimientos de la cabeza, ojos). Entre los diferentes test de diagnóstico de las alteraciones de visión binocular se describe un procedimiento de medida de la percepción de la profundidad. No obstante, este documento presenta ciertas carencias respecto a la presente invención. Así, por ejemplo, el documento US2017340200 no mide la profundidad exacta percibida por el usuario. Además, dicho documento implica el uso de cascos de realidad virtual (HMD o Mead Mounted Dispiay) para visualizar en cada ojo por separado imágenes de los modelos 3D, y de sensores de entrada activa por parte del paciente. The experience with the previous tests indicates that they can present a high number of false positives and negatives. Some models have clues that can favor these errors and can also influence the degree of ambient lighting !. Furthermore, it is sometimes difficult to detect the degree of stereopsis. On the other hand, the number of models is limited and some are outdated, and may be unattractive to children, which may reduce their attention when performing the test. In order to solve the indicated problems, different methods and systems are known in the state of the art. Thus, document US2017340200 describes a system and a set of methods for the diagnosis and correction of visual disturbances in children (amblyopia, lazy eye, etc.) that includes a virtual reality helmet, which allows viewing 3D images or scenes, coupled with an external computing device (computer, mobile phone) and which in turn can communicate with a remote server managed by medical specialists. The system also includes different devices (sensors, cameras) for patient monitoring (gestures, head movements, eyes). Among the different diagnostic tests for binocular vision disorders, a procedure for measuring depth perception is described. However, this document has certain deficiencies with respect to the present invention. Thus, for example, US2017340200 does not measure the exact depth perceived by the user. In addition, said document implies the use of virtual reality headsets (HMD or Mead Mounted Dispiay) to visualize in each eye separately images of the 3D models, and sensors for active input by the patient.
El documento de patente WO03098529A2 describe un sistema y método para el tratamiento de ia ambliopía mediante una plataforma de realidad virtual o simulación bidimensional o tridimensional inmersiva generada por ordenador que permite medir y registrar la agudeza visual de un paciente que utiliza unas gafas de obturación LCD, un visor o un casco HMD de realidad virtual. Durante el tratamiento, al paciente se le presenta visualmente un objeto seleccionado entre un conjunto de opciones a una distancia programada, objeto que el paciente debe identificar mediante el uso de un puntero u otro mecanismo análogo. Una vez identificado el objeto, el sistema registra la distancia a la que se encuentra. Por otro lado, el sistema, para establecer el escalado de imágenes, determina ia distancia entre el paciente y la pantalla de visualización mediante un sensor magnético de posición integrado en sus gafas o de forma alternativa mediante el uso de un soporte para fijar su cabeza y, por tanto, ia distancia a la pantalla. El paciente interactúa en tres dimensiones con el sistema de realidad virtual mediante un puntero que incorpora un sensor magnético de posición que facilita su seguimiento (posición y orientación) por el sistema, y le permite seleccionar objetos. A diferencia de! sistema propuesto en dicha patente, el sistema de invención propuesto no está destinado a realizar ningún tipo de tratamiento ni se evalúa la agudeza visual de! paciente en un mundo virtual a partir de identificación de objetos 3D detectados por el mismo en dicho mundo, cuando se varía su proximidad al punto de visionado o se cambia su tamaño. Por el contrario, el sistema de invención propuesto se limita a medir la percepción de profundidad del paciente mediante la visualización de modelos 3D fijos o estáticos (de los que no se puede cambiar la perspectiva de visionado ni el tamaño), de ios cuáles, a su vez, tiene que señalar con el dedo en el espacio el punto donde percibe que se encuentra un determinado punto guía de estos, midiéndose la distancia de dicho dedo al display de visualización (profundidad real percibida por el usuario para el modelo 3D visualizado). El paciente no puede cambiar de posición, estando su cabeza colocada en una mentonera. Tampoco se muestran ni se ocultan, de forma selectiva, imágenes sólo a uno de los ojos en un instante determinado de la prueba. Patent document WO03098529A2 describes a system and method for treating amblyopia using a computer-generated virtual reality platform or immersive two-dimensional or three-dimensional simulation that allows the measurement and recording of the visual acuity of a patient using LCD shutter glasses, a visor or a virtual reality HMD helmet. During treatment, the patient is visually presented with an object selected from a set of options at a programmed distance, an object that the patient must identify by using a pointer or other similar mechanism. Once the object is identified, the system records the distance at which it is located. On the other hand, the system, to establish the scaling of images, determines the distance between the patient and the display screen by means of a magnetic position sensor integrated in his glasses or alternatively by using a support to fix his head and therefore the distance to the screen. The patient interacts in three dimensions with the virtual reality system through a pointer that incorporates a magnetic position sensor that makes it easier to track (position and orientation) by the system, and allows him to select objects. Unlike! system proposed in said patent, the proposed invention system is not intended to carry out any type of treatment nor is the visual acuity of! patient in a virtual world from the identification of 3D objects detected by him in said world, when his proximity to the viewing point is varied or its size is changed. On the contrary, the proposed invention system is limited to measuring the depth perception of the patient by visualizing fixed or static 3D models (of which the viewing perspective and size cannot be changed), from which to In turn, you have to point your finger in space at the point where you perceive that a certain guide point is located, measuring the distance of said finger from the display display (actual depth perceived by the user for the 3D model displayed). The patient cannot change position, his head being placed on a chin rest. Neither are images shown or hidden, selectively, from only one eye at a specific moment in the test.
Finalmente, el documento W02018087408A1 divulga un sistema para medición integral de parámetros clínicos de la función visual que incluye una unidad de visualización para representar una escena con un objeto 3D de características variables como la posición virtual y el volumen virtual del objeto 3D dentro de la escena; sensores de movimiento para detectar la posición de la cabeza del usuario y distancia a la unidad de visualización; sensores de seguimiento para detectar la posición de las pupilas del usuario y diámetro pupila; una interfaz para la interacción del usuario sobre la escena; medios de procesamiento para analizar la respuesta del usuario en función de ios datos de ios sensores y de la interfaz con la variación de las características del objeto 3D; y en función de la estimación de una pluralidad de parámetros clínicos de la función visual relativos a la binocuiaridad, acomodación, motilidad ocular o visuopercepción. No obstante, este sistema tampoco describe todas y cada una de las características de la invención, tai y como se describe a continuación en la presente memoria descriptiva. Finally, document W02018087408A1 discloses a system for comprehensive measurement of clinical parameters of visual function that includes a display unit to represent a scene with a 3D object of variable characteristics such as the virtual position and virtual volume of the 3D object within the scene. ; motion sensors to detect the user's head position and distance to the display unit; tracking sensors to detect the position of the user's pupils and pupil diameter; an interface for user interaction on the scene; processing means to analyze the user response based on the data from the sensors and the interface with the variation of the characteristics of the 3D object; and based on the estimation of a plurality of clinical parameters of visual function related to binocuiarity, accommodation, ocular motility or visual perception. However, this system also does not describe each and every one of the features of the invention, as described herein below.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Son objeto de la invención un sistema y un método que comprende una pluralidad de modelos tridimensionales para detectar precozmente las alteraciones de la visión estereoscópica estimando, a través de técnicas de procesado de imágenes y de visión artificial, la magnitud de la percepción de profundidad del paciente cuando se le muestran dichos modelos en una pantalla configurada para emitir imágenes tridimensionales. Está destinada al diagnóstico precoz, así como al registro y seguimiento automatizado de las alteraciones de la visión estereoscópica, particularmente, en pacientes de corta edad. The object of the invention is a system and a method that includes a plurality of three-dimensional models for early detection of alterations in stereoscopic vision, estimating, through image processing and artificial vision techniques, the magnitude of the depth perception of the patient when you these models are shown on a screen configured to emit three-dimensional images. It is intended for early diagnosis, as well as for the automated recording and monitoring of alterations in stereoscopic vision, particularly in young patients.
Este objeto se alcanza con el sistema y método descritos a continuación. En realizaciones dependientes se describen realizaciones particulares o realizaciones preferidas del sistema o del método de la invención. This object is achieved with the system and method described below. Particular embodiments or preferred embodiments of the system or method of the invention are described in dependent embodiments.
Más concretamente, el sistema de medida de la percepción de la profundidad en la visión de un paciente que comprende, al menos: (a) una pantalla de visualización tridimensional configurada para mostrar modelos tridimensionales previamente almacenados en una base de datos; (b) una cámara o cámaras configuradas para la captura de al menos una imagen del espacio comprendido delante del paciente; y (c) una unidad de procesamiento conectada con la cámara o cámaras y que comprende ai menos, un procesador o procesadores y una memoria o memorias, donde se almacenan un programa o programas que, a su vez, están configurados para ejecutarse por el procesador o procesadores, y en donde el programa o programas incluyen instrucciones para medir la distancia entre un punto del espacio señalado por el paciente y un punto guía definido en el modelo tridimensional mostrado al paciente en la pantalla de visualización tridimensional con respecto de la propia pantalla de visualización tridimensional o con respecto a ios ojos del paciente. Ei punto del espacio señalado por el paciente es ei que el paciente considera que coincide con el punto guía definido en ei modelo tridimensional. More specifically, the system for measuring the perception of depth in the vision of a patient, comprising at least: (a) a three-dimensional display screen configured to display three-dimensional models previously stored in a database; (b) a camera or cameras configured to capture at least one image of the space in front of the patient; and (c) a processing unit connected to the camera or cameras and comprising at least one processor or processors and a memory or memories, where a program or programs are stored which, in turn, are configured to be executed by the processor. or processors, and wherein the program or programs include instructions for measuring the distance between a point in the space indicated by the patient and a guide point defined in the three-dimensional model shown to the patient on the three-dimensional display screen with respect to the screen itself. three-dimensional visualization or with respect to the patient's eyes. The point of the space indicated by the patient is the one that the patient considers to coincide with the guide point defined in the three-dimensional model.
En otro aspecto de la invención, el método de medida de la percepción de la profundidad en ia visión de un paciente que se implementa en ei sistema descrito y que comprende las etapas de: (a) seleccionar, al menos, un modelo tridimensional de, al menos, una secuencia de modelos tridimensionales, cada uno de ellos con al menos un punto guía visualizable por el paciente; (b) señalar por parte del paciente el punto del espacio en frente de éste donde perciba que está situado el punto guía del modelo tridimensional visualizado; (c) medir y almacenar una distancia de la posición señalada por el paciente con respecto de la propia pantalla de visualización tridimensional o con respecto a los ojos del paciente. El uso de la invención implica una mejora de ios test de diagnóstico tradicionales basados en fichas de papel y plástico, o en imágenes similares a las usadas en ellos, pero mostradas en pantallas con capacidad 3D. Esto permite estimar la percepción de profundidad medida en milímetros, en relación con la predicción geométrica - percepción de profundidad teórica- generada por los medios estereoscópicos. In another aspect of the invention, the method of measuring depth perception in the vision of a patient that is implemented in the described system and that comprises the steps of: (a) selecting, at least, a three-dimensional model of, at least one sequence of three-dimensional models, each with at least one guide point viewable by the patient; (b) point out on the part of the patient the point of the space in front of it where he perceives that the guide point of the visualized three-dimensional model is located; (c) measuring and storing a distance from the position indicated by the patient with respect to the three-dimensional display screen itself or with respect to the patient's eyes. The use of the invention implies an improvement of the traditional diagnostic tests based on paper and plastic chips, or on images similar to those used in them, but shown on 3D-capable screens. This allows estimating the depth perception measured in millimeters, in relation to the geometric prediction - theoretical depth perception - generated by the stereoscopic means.
La presente invención permite la realización de test novedosos aprovechando las nuevas tecnologías para una recogida y almacenamiento de medidas de forma automática y totalmente transparente ai paciente. Los test propuestos están basados en nuevos modelos tridimensionales originales y atractivos para pacientes de corta edad, creados por ordenador y que emplean técnicas de medidas de distancias basadas en ei procesamiento de imágenes captadas por sistemas de visión artificial. Los modelos tridimensionales creados disponen de puntos guía que el paciente debe tocar con la punta del dedo índice, que es un medio de interacción totalmente natural. The present invention allows the carrying out of innovative tests taking advantage of new technologies for the collection and storage of measurements automatically and completely transparent to the patient. The proposed tests are based on new original and attractive three-dimensional models for young patients, created by computer and using distance measurement techniques based on the processing of images captured by artificial vision systems. The three-dimensional models created have guide points that the patient must touch with the tip of the index finger, which is a totally natural means of interaction.
El sistema de la invención propuesto permite a ios facultativos o especialistas recoger datos de medida de la magnitud de la percepción de profundidad por parte de los pacientes, que les facilitarán la emisión de un diagnóstico. Permite la medición y ei seguimiento de las alteraciones de la visión estereoscópica de los pacientes con el tiempo, por ejemplo, mientras dure el tratamiento prescrito por ei especialista. Se podrá analizar y evaluar el impacto en ei tiempo del aprendizaje perceptual de ios mismos sobre la estimación de la magnitud de la percepción de profundidad. The proposed system of the invention allows physicians or specialists to collect data to measure the magnitude of depth perception by patients, which will facilitate the issuance of a diagnosis. It allows the measurement and monitoring of alterations in the stereoscopic vision of patients over time, for example, while the treatment prescribed by the specialist lasts. It will be possible to analyze and evaluate the impact in time of perceptual learning of themselves on the estimation of the magnitude of depth perception.
El sistema de invención propuesto proporciona, además, múltiples ventajas adicionales, como, por ejemplo, que no se necesite que el menor tenga que manejar ningún dispositivo de interacción que desconozca, como un ratón, teclado o mando de juegos. Otra ventaja adicional es el uso de múltiples modelos/animaciones en tres dimensiones realizadas por ordenador con diseños variados y atractivos para ios niños, la posibilidad del control de la iluminación, seleccionar varios puntos de referencia a ser señalados por el paciente con ei dedo. Además, permite la evaluación de distintos grados de estereopsis (y su evolución en el tiempo) para un mismo modelo/animación. The proposed invention system also provides multiple additional advantages, such as, for example, that the child does not have to operate any unknown interaction device, such as a mouse, keyboard or game controller. Another additional advantage is the use of multiple models / animations in three dimensions made by computer with varied and attractive designs for children, the possibility of lighting control, selecting various reference points to be pointed out by the patient with the finger. Furthermore, it allows the evaluation of different degrees of stereopsis (and its evolution over time) for the same model / animation.
A lo largo de la descripción y de ias reivindicaciones, la palabra «comprende» y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para ios expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la invención y en parte de ia práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración y no se pretende que restrinjan la presente invención. Además, la invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or Steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge in part from the invention and in part from the practice of the invention. The following examples and drawings are provided by way of illustration and are not intended to restrict the present invention. Furthermore, the invention covers all possible combinations of particular and preferred embodiments indicated herein.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, in accordance with a preferred example of practical embodiment thereof, a set of drawings is included as an integral part of said description. where, illustrative and not limiting, the following has been represented:
La Figura 1 muestra ia base científica en ia que está basado el sistema de invención propuesto. Figure 1 shows the scientific basis on which the proposed invention system is based.
La Figura 2 muestra una visión general de una configuración típica del sistema de medida de ia profundidad de ia visión objeto de ia presente invención en una primera realización práctica. Figure 2 shows an overview of a typical configuration of the depth measurement system of the vision object of the present invention in a first practical embodiment.
La Figura 3 muestra el diagrama de bloques de un sistema más completo, con dos dispositivos, uno para el paciente y otro para el facultativo, con sus correspondientes procesadores y monitores/dispiays, y ei sistema de cámaras, todos conectados por una red de comunicaciones. Figure 3 shows the block diagram of a more complete system, with two devices, one for the patient and one for the doctor, with their corresponding processors and monitors / dispiays, and the camera system, all connected by a communications network. .
La Figura 4 presenta ia configuración del sistema de detección de distancias mediante visión artificial aplicado a la medida de ia percepción de ia profundidad en imágenes 3D visualizadas por un paciente en un monitor 3D. Figure 4 presents the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient on a 3D monitor.
La Figura 5 presenta la misma configuración de la figura anterior, pero con un tablero opaco para evitar que el usuario pueda ver su brazo y mano y asi evitar que pueda tomar referencias visuales de distancias. La Figura 6 muestra la configuración del sistema de detección de distancias mediante visión artificial aplicado a la medida de ia percepción de la profundidad en imágenes 3D visualizadas por un paciente en unas gafas de Realidad Aumentada (RA). Figure 5 presents the same configuration as the previous figure, but with an opaque board to prevent the user from seeing his arm and hand and thus prevent him from taking visual distance references. Figure 6 shows the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient in Augmented Reality (AR) glasses.
Las Figuras 7 y 8 muestran ejemplos de tres modelos tridimensionales sofisticados a ser utilizados en el sistema de medida de la profundidad de la visión objeto de la presente invención. Figures 7 and 8 show examples of three sophisticated three-dimensional models to be used in the vision depth measurement system object of the present invention.
La Figura 9 muestra dos imágenes especulares de uno de los modelos diseñados (en concreto, del modelo dei hada). Figure 9 shows two mirror images of one of the designed models (specifically, the fairy model).
La Figura 10 muestra el diagrama de flujo de un posible método a seguir para medir la profundidad percibida por un usuario utilizando el sistema de invención propuesto. Figure 10 shows the flow diagram of a possible method to follow to measure the depth perceived by a user using the proposed invention system.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En ia figura 1 se describe el principio científico que ilustra ia presente invención. El plano paralelo (1.1) representado es el plano en el cual ambos ojos ven la misma imagen. En el esquema, se representa ¡a visualización de un objeto situado a una distancia Ad del plano paralelo (1.1). Esta diferencia de profundidad entre un objeto y el plano párelo (1.1) se representa mediante la diferencia de ángulos a y b, denominada agudeza estereoscópica y representada por el parámetro d. Los sistemas tradicionalmente utilizados en oftalmología presentan fichas de papel o plástico, pantallas o visores de realidad virtual generadas para un valor concreto de d que se corresponde con una diferencia de profundidad determinada. Además, tenemos que tener en cuenta que: d~e Ad/dA2 Figure 1 describes the scientific principle that illustrates the present invention. The parallel plane (1.1) represented is the plane in which both eyes see the same image. In the diagram, the visualization of an object located at a distance Ad from the parallel plane (1.1) is represented. This difference in depth between an object and the parental plane (1.1) is represented by the difference in angles a and b, called stereoscopic sharpness and represented by the parameter d. Systems traditionally used in ophthalmology have paper or plastic tokens, virtual reality displays or displays generated for a specific value of d that corresponds to a given depth difference. Furthermore, we must bear in mind that: d ~ e Ad / d A 2
Es decir que el valor de d es aproximadamente igual al producto de ia distancia entre ojos (e) por ia distancia Ad dividido entre el cuadrado de la distancia d que es la distancia entre los ojos y el ángulo a. In other words, the value of d is approximately equal to the product of the distance between eyes (e) and the distance Ad divided by the square of the distance d, which is the distance between the eyes and the angle a.
Así pues, ios usuarios simplemente indican si detectan profundidad o no, pero sin cuanfificar ni medir el grado de profundidad detectado, es decir, sin medir a qué distancia de ía pantalla están viendo el objeto. En el estado de la técnica, por tanto, no se establece si la distancia detectada por el paciente es igual, inferior o mayor a la que debiera ser (Ad). Thus, users simply indicate whether they detect depth or not, but without quantifying or measuring the degree of depth detected, that is, without measuring to what distance from the screen they are seeing the object. In the state of the art, therefore, it is not established whether the distance detected by the patient is equal, lower or greater than it should be (Ad).
Por tanto, el sistema de la invención tiene por objeto medir dicha distancia. Por un lado, el paciente debe señalizar de forma natural, i.e., sin ningún elemento artificial ni dispositivo alguno, con la punta de su propio dedo índice, el punto donde visualiza un determinado elemento del modelo 3D que está viendo. Por otro lado, el sistema de la invención mide, de forma automática y transparente para el usuario, la distancia desde la punta del dedo a la pantalla de visualización, comparándola con la que debería corresponder según el diseño del modelo 3D visualizado. Therefore, the system of the invention aims to measure said distance. On the one hand, the patient must signal in a natural way, i.e., without any artificial element or device, with the tip of his own index finger, the point where he visualizes a certain element of the 3D model he is seeing. On the other hand, the system of the invention measures, automatically and transparently for the user, the distance from the tip of the finger to the display screen, comparing it with that which should correspond according to the design of the 3D model displayed.
En ía figura 2 se muestra el conjunto del sistema. El usuario o paciente (1) está sentado delante de una mesa, bien enfrente de un monitor (4) o bien vistiendo unas gafas de realidad aumentada (gafas RA, 2), sin el monitor (4). Tanto el monitor (4) como las gafas de RA (2) disponen de una pantalla configurada para mostrar modelos en 3D (10) visuaiizables por el paciente (1) que están almacenados en una base de datos (9). Figure 2 shows the system as a whole. The user or patient (1) is sitting in front of a table, either in front of a monitor (4) or wearing augmented reality glasses (RA glasses, 2), without the monitor (4). Both the monitor (4) and the AR glasses (2) have a screen configured to show 3D models (10) viewable by the patient (1) that are stored in a database (9).
El paciente (1) apoya su mentón en una mentonera (3). En caso de utilizar el monitor (4), el paciente vestirá unas gafas 3D que podrán ser gafas 3D rojo-verde, gafas polarizadas o gafas 3D activas por obturación. En ese caso, el monitor (4) estará situado a una distancia de la mentonera (3) tai que permita al paciente (1) tocar el monitor (4) con el dedo indice y el brazo prácticamente totalmente extendido. The patient (1) supports his chin on a chin rest (3). In case of using the monitor (4), the patient will wear 3D glasses that could be red-green 3D glasses, polarized glasses or active 3D glasses by shutter. In that case, the monitor (4) will be located at a distance from the chin guard (3) tai that allows the patient (1) to touch the monitor (4) with the index finger and the arm practically fully extended.
Sobre un lateral de la mesa y a una distancia de la mentonera de entre 40 y 100 cm (distancia d2 en las figuras 4 y 6) se colocará un sistema de cámaras (5), compuesto por una o varias cámaras, que permitirá medir mediante técnicas de visión artificial la distancia entre la punta del dedo índice y el monitor (4), que se corresponde con la distancia D en ía figura 2, o entre la punta del dedo índice y los ojos del paciente (1), que se corresponde con la distancia D’ de la figura 2, si se utilizan gafas de RA (2). Por otro lado, el sistema dispone de una unidad de procesado de datos (8), conectada con el sistema de cámaras (5), que estaría encargada de ejecutar un programa con algoritmos y técnicas de procesado de visión artificial, de procesar los datos de cada medida y de gestionar una base de datos (9) de los pacientes. La unidad de procesado de datos (8) está configurada para controlar las gafas de KA (2), en caso de utilizarse, y uno o dos monitores (4,7). Si el sistema no utiliza gafas de RA (2) y sólo incluye un único monitor (4), cuando el paciente termine, el facultativo (6) podrá visualizar ios resultados de los test y los datos del paciente (1) en dicho monitor (4). En caso de que exista un segundo monitor (7), el facultativo (6) podrá visualizar dichos datos en dicho segundo monitor (7). La visualización de ios modelos 3D (10) en cada momento puede ser controlada bien por el propio paciente o bien por el facultativo (8). On one side of the table and at a distance from the chin guard between 40 and 100 cm (distance d2 in Figures 4 and 6) a camera system (5) will be placed, consisting of one or more cameras, which will allow measuring using techniques machine vision the distance between the tip of the index finger and the monitor (4), which corresponds to the distance D in Figure 2, or between the tip of the index finger and the patient's eyes (1), which corresponds to the distance D 'of figure 2, if RA glasses (2) are used. On the other hand, the system has a data processing unit (8), connected to the camera system (5), which would be in charge of executing a program with algorithms and artificial vision processing techniques, to process the data from each measure and manage a database (9) of patients. The data processing unit (8) is configured to control the KA glasses (2), if used, and one or two monitors (4.7). If the system does not use AR glasses (2) and only includes a single monitor (4), when the patient finishes, the doctor (6) will be able to view the test results and patient data (1) on said monitor ( 4). In the event that there is a second monitor (7), the physician (6) will be able to view said data on said second monitor (7). The visualization of the 3D models (10) at any time can be controlled either by the patient himself or by the doctor (8).
La unidad de procesamiento (8) comprende al menos, un procesador o procesadores y una memoria o memorias, donde se almacenan un programa o programas que están configurados para ejecutarse por el procesador o procesadores, de tai forma que ios programas incluyen instrucciones para medir la distancia (D, D’) entre el dedo del paciente (1) y, ai menos, un punto guía mostrado en un modelo 3D (10) mostrado ai paciente (1) en la pantalla de visualización incluida en las gafas de RA (2) o en el monitor (4). The processing unit (8) comprises at least one processor or processors and a memory or memories, where a program or programs that are configured to be executed by the processor or processors are stored, in such a way that the programs include instructions to measure the distance (D, D ') between the patient's finger (1) and, at least, a guide point shown in a 3D model (10) shown to the patient (1) on the display screen included in the AR glasses (2 ) or on the monitor (4).
Los datos son registrados en la base de datos (9) para que el facultativo pueda analizarlos y emitir su diagnóstico, así como para realizar un seguimiento de la evolución del problema con el tiempo. Para ello, el tiempo de realización, así como la duración de cada prueba, también son registrados en una base de datos de pacientes. La base de datos (9) está configurada para almacenar los datos de cada uno de los test realizados a cada paciente (1) en las diferentes sesiones con el facultativo (6). De esta manera, se puede analizar la evolución del paciente a lo largo del tiempo. Para ello, la unidad de procesamiento (8) comprende un programa o programas de gestión de base de datos (por ejemplo, MySQL®) y un programa o programa de gestión de ios datos de ios pacientes (1) en la misma. The data is registered in the database (9) so that the physician can analyze them and make their diagnosis, as well as to monitor the evolution of the problem over time. For this, the time of completion, as well as the duration of each test, are also recorded in a patient database. The database (9) is configured to store the data of each of the tests performed on each patient (1) in the different sessions with the doctor (6). In this way, the evolution of the patient can be analyzed over time. For this, the processing unit (8) comprises a database management program or programs (for example, MySQL®) and a program or program for managing the data of the patients (1) therein.
En la figura 3, se muestra un diagrama de bloques de un sistema completo, en una realización práctica con dos dispositivos, con un primer dispositivo de paciente (201) y un segundo dispositivo para el facultativo (202) conectados por una red de comunicaciones (203). Los modelos 3D estarían almacenados en el dispositivo del paciente (201) y desde el dispositivo del facultativo (202) se controlarían, medíante intercambio de mensajes a través de la red, ia secuencia de visualización de modelos y las tareas a realizar por el paciente (1). Las cámaras (5) y la unidad de procesamiento (8) estarían incluidas en el dispositivo del facultativo (202). In figure 3, a block diagram of a complete system is shown, in a practical embodiment with two devices, with a first patient device (201) and a second device for the physician (202) connected by a communication network ( 203). The 3D models would be stored in the patient's device (201) and from the doctor's device (202) they would be controlled, by means of the exchange of messages through the network, the model display sequence and the tasks to be performed by the patient (1). The cameras (5) and the processing unit (8) would be included in the doctor's device (202).
Además, normalmente, en el dispositivo del facultativo (202) (aunque podría estar también en el dispositivo del paciente (201)) existirá un programa o programas para controlar ios parámetros de los test realizados y mostrar y analizar ios datos de medida obtenidos, pudiendo incluir incluso gráficos de evolución, generando resultados consistentes que pueden ser particularmente reproducibies para nuevos ensayos. De este modo, el sistema de innovación propuesto, además, también permite evaluar ei impacto del aprendizaje perceptual sobre la estimación de la profundidad a partir de la disparidad mientras dure ei tratamiento prescrito por el especialista. El análisis también permitiría la comparación con los resultados de múltiples usuarios para realizar estudios poblacionales o dentro de las distintas categorías diagnósticas. In addition, normally, in the doctor's device (202) (although it could also be in the patient's device (201)) there will be a program or programs to control the parameters of the tests carried out and show and analyze the measurement data obtained, being able even include evolution charts, generating consistent results that can be particularly reproducible for new tests. In this way, the proposed innovation system, in addition, also allows evaluating the impact of perceptual learning on the estimation of depth from the disparity while the treatment prescribed by the specialist lasts. The analysis would also allow comparison with the results of multiple users to carry out population studies or within the different diagnostic categories.
Desde otro punto de vista, el sistema objeto de la invención, por tanto, comprende una parte lógica y una parte física. La parte lógica comprende, como mínimo, una pluralidad de modelos 3D (10) almacenados en una base de datos (9) junto con las medidas de todos ios ensayos realizados por cada uno de los pacientes (1), asi como una aplicación de paciente (1) y una aplicación de facultativo (6), generalmente un oftalmólogo. Las dos aplicaciones intercambiarán mensajes entre sí y pueden ejecutarse en un mismo dispositivo -la unidad de procesamiento (S)~ o en dos dispositivos separados (201 , 202) conectados en red (203). From another point of view, the system object of the invention, therefore, comprises a logical part and a physical part. The logical part includes, at least, a plurality of 3D models (10) stored in a database (9) together with the measurements of all the tests performed by each of the patients (1), as well as a patient application (1) and a doctor's application (6), generally an ophthalmologist. The two applications will exchange messages with each other and can be run on the same device - the processing unit (S) ~ or on two separate networked devices (201, 202) (203).
La lógica incluida para ei paciente (1) incluye (a.1) una pluralidad de modelos de objetos/animaciones en 3D; (a.2) una interfaz gráfica que incluye un visor de ¡os objetos y animaciones en 3D, así como su manipulación a distancia por parte de la aplicación para ei facultativo; y (a.3) un módulo de comunicaciones con aplicación del facultativo. The logic included for the patient (1) includes (a.1) a plurality of 3D object models / animations; (a.2) a graphical interface that includes a viewer of objects and 3D animations, as well as their remote manipulation by the application for the practitioner; and (a.3) a communications module with the application of the physician.
Por otro lado, la aplicación para el facultativo (6) incluye (b.1) una interfaz gráfica que inciuye una parte de gestión de datos de los pacientes y otra parte gráfica que proporciona al médico la representación gráfica de la evolución de la percepción de la profundidad del paciente medida por ei sistema de invención propuesto. Esto último permite analizar la evolución en ei tiempo de dicha percepción y la eficacia del tratamiento aplicado al paciente, si es ei caso. También incluye (b.2) un módulo de evaluación de la percepción de la profundidad del paciente incluyendo los algoritmos de procesado de visión artificial para la medida de distancias; y (b.3) un gestor de la base de datos de pacientes (9), así como un módulo de acceso a base de datos de pacientes (9) y un módulo de comunicaciones con la aplicación para el paciente. On the other hand, the application for the doctor (6) includes (b.1) a graphical interface that includes a part of patient data management and another graphical part that provides the doctor with a graphical representation of the evolution of the perception of the depth of the patient measured by the proposed invention system. The latter makes it possible to analyze the evolution over time of said perception and the efficacy of the treatment applied to the patient, if applicable. It also includes (b.2) a module evaluation of the patient's depth perception including the artificial vision processing algorithms for distance measurement; and (b.3) a patient database manager (9), as well as a patient database access module (9) and a communication module with the patient application.
Por otro lado, la parte física del sistema de la invención incluye, como mínimo (a.1) un ordenador dei facultativo (6) que incluye una unidad de procesamiento (8, 202) que está configurada para gestionar la base de datos con los datos (9) de los pacientes (1); (a.2) una pantalla configurada para mostrar modelos en 3D (10) que puede tener múltiples configuraciones (un primer monitor (4), un segundo monitor (7), unas gafas de RA (2)); (a.3) unas gafas 3D (por ejemplo, gafas rojo-verde, gafas polarizadas o gafas de obturación, dependiendo del tipo de monitor de visuaiización empleado), sólo necesarias en caso de visualizarse los modelos 3D en un monitor 3D (4) y no en gafas de RA (2); (a.4) un sistema de cámaras (5) para la captación de imágenes; y (a.5) un dispositivo para colocar el mentón (3) del paciente (1), colocado a una distancia determinada de la pantalla de visíonado (d1 en la figura 2). On the other hand, the physical part of the system of the invention includes, at least (a.1) a physician's computer (6) that includes a processing unit (8, 202) that is configured to manage the database with the patient data (9) (1); (a.2) a screen configured to show 3D models (10) that can have multiple configurations (a first monitor (4), a second monitor (7), AR glasses (2)); (a.3) 3D glasses (for example, red-green glasses, polarized glasses or shutter glasses, depending on the type of display monitor used), only necessary if the 3D models are displayed on a 3D monitor (4) and not in RA glasses (2); (a.4) a camera system (5) for capturing images; and (a.5) a device to place the chin (3) of the patient (1), placed at a determined distance from the viewing screen (d1 in figure 2).
En el caso de dividir el sistema en dos unidades de procesamiento (paciente (201), facultativo (202)) serán necesarios interfaces de comunicaciones en los mismos y equipos de interconexión en red, cableada o inalámbrica, como, por ejemplo, un punto de acceso wifi o interfaces Bluetooth. In the case of dividing the system into two processing units (patient (201), optional (202)), communication interfaces will be necessary in them and network, wired or wireless interconnection equipment, such as, for example, a point of wifi access or Bluetooth interfaces.
En la figura 4, se presenta la configuración del sistema de detección de distancias medíante visión artificial aplicado a la medida de la percepción de la profundidad en imágenes 3D visualizadas por un paciente en un monitor 3D. El paciente colocará la cabeza apoyada en una mentonera (3), colocada a una distancia d1 del monitor (4) de visuaiización de los modelos 3D. Se le mostrará un modelo 3D (10) en el monitor (4) y se le solicitará que intente tocar con la punta del dedo índice un punto guía del modelo 3D (en la figura 4, la punta de la varita mágica dei modelo 3D del hada). El sistema descrito anteriormente está configurado para obtener la medida de la distancia entre la punta del dedo y el monitor (4), que es la distancia D en la Figura 4. Figure 4 presents the configuration of the distance detection system using artificial vision applied to the measurement of depth perception in 3D images viewed by a patient on a 3D monitor. The patient will place the head supported on a chin rest (3), placed at a distance d1 from the monitor (4) to visualize the 3D models. You will be shown a 3D model (10) on the monitor (4) and you will be asked to try touching the tip of your index finger to a guide point of the 3D model (in Figure 4, the tip of the magic wand of the 3D model of the fairy). The system described above is configured to obtain the measurement of the distance between the fingertip and the monitor (4), which is the distance D in Figure 4.
El procedimiento de cálculo de distancias mediante análisis de imágenes es conocido por cualquier experto en visión artificial por lo que se omite en esta solicitud de invención. Para evitar que e! paciente tome como referencia datos de distancias de su brazo/mano que puedan servir para inferir distancias y que no se produzcan medidas falsas, se puede colocar un tablero opaco horizontal unos 10 cm por debajo de los ojos del paciente (1), que le impida ver su brazo/mano pero que no le impida ver e! modelo 3D completo, y solicitarle que coloque la punta de su dedo por debajo del tablero a la distancia a la que crea visualizar el punto guía. Este test se representa en la Figura 5. The procedure for calculating distances by image analysis is known to any expert in artificial vision and is therefore omitted in this application for the invention. To prevent e! patient take as reference data of distances of his arm / hand that can be used to infer distances and that false measurements do not occur, a horizontal opaque board can be placed about 10 cm below the patient's eyes (1), which prevents him see your arm / hand but don't stop you from seeing e! full 3D model, and request that you place your fingertip below the dash at the distance you think you would see the guide point. This test is represented in Figure 5.
En la figura 6, se presenta la configuración del sistema de detección de distancias mediante visión artificial aplicado a la medida de la percepción de la profundidad en imágenes 3D visualizadas por un paciente en unas gafas de RA (2), es decir, en una realización sin necesidad de un monitor (4). En esta realización, el paciente (1) deberá tocar con la punta de su dedo índice el punto del espacio delante de él dónde detecte el punto guía del modelo. El sistema de la Invención medirá la distancia entre la punta del dedo y los ojos del paciente (D’ en la Figura 6). Para evitar que el usuario vea su mano y brazo y evitar darle pistas de distancias, se puede utilizar un tablero opaco tai y como se ha comentado anteriormente. In figure 6, the configuration of the distance detection system by artificial vision applied to the measurement of depth perception is presented in 3D images visualized by a patient in AR glasses (2), that is, in one embodiment without the need for a monitor (4). In this embodiment, the patient (1) should touch the point of the space in front of him where he detects the guide point of the model with the tip of his index finger. The system of the invention will measure the distance between the fingertip and the patient's eyes (D ’in Figure 6). To prevent the user from seeing his hand and arm and avoid giving him distance tracks, an opaque tai board can be used and as previously discussed.
Mediante software de diseño gráfico y animación en 3D profesional, se han modelado, texturizado y renderizado tres personajes originales, desarrollados por ios inventores, muy atractivos para niños: pirata, hada y robot. Se trata de modelos 3D de figuras complejas que se sitúan en el plano más distal y que tienen un punto de referencia (punto guía) que el niño (paciente) debe señalar con la punta de su dedo índice. A diferencia de otros sistemas (por ejemplo, en las patentes US2Q1734Q20GA1 y WO201704G687A1), requiere que el observador estime la cantidad de profundidad y el plano de referencia. El punto guía en cada modelo evita la necesidad de tener que colocar los objetos a diferentes distancias de ios ojos del usuario y el cambio del tamaño de ios objetos para evitar las pistas monoculares. Tampoco es necesario variar la posición de los objetos o la distancia entre ios objetos o la distancia de los objetos a las cámaras. El personaje y ei punto guía se muestran de forma que no haya señales monoculares que sean útiles para que el usuario determine la distancia entre los objetos. Using graphic design software and professional 3D animation, three original characters have been modeled, textured and rendered, developed by inventors, very attractive to children: pirate, fairy and robot. These are 3D models of complex figures that are located in the most distal plane and that have a reference point (guide point) that the child (patient) must point with the tip of their index finger. Unlike other systems (eg, in US2Q1734Q20GA1 and WO201704G687A1), it requires the observer to estimate the amount of depth and the reference plane. The guide point on each model avoids the need to place objects at different distances from the user's eyes and resize objects to avoid monocular tracks. It is also not necessary to vary the position of the objects or the distance between the objects or the distance of the objects from the cameras. The character and the guide point are displayed so that there are no monocular signals that are useful for the user to determine the distance between objects.
Además, este método requiere ia sincronización de las coordenadas mano-ojo y reconstrucción potencial del intervalo espacial, lo que hace que se haga un estudio de la percepción de profundidad en condiciones más reales. En las Figuras 7 y 8 se muestran dichos modelos en 3D a ser utilizados en la invención propuesta. La Figura 7a, muestra el modelo de un pirata con un loro volando por delante a una cierta distancia. La Figura 7b, muestra el modelo de un hada con una varita mágica con una estrella en la punta e indinada hacia delante. La Figura 7c, muestra el modelo de un robot con el puño izquierdo hacia adelante. En la Figura 8, se aprecia cómo cada personaje tiene un objeto con un punto guia de referencia que sobresale del plano distai donde se encuentra situado (loro del pirata, extremo de la varita del hada y una de las extremidades del robot). Cada uno de estos puntos guía se encuentra a una distancia distinta siendo más alejado en el pirata y más próxima en el robot (Figura 8). Por tanto, será más fácil la detección de estereopsis en el primero y más difícil en el último, presentando el hada una dificultad intermedia. Además, dicho punto guía no está justo delante del objeto principal, sino que está, deliberadamente, desplazado a un lado (pico del loro en el modelo del pirata, punta de la varita mágica en el modelo del hada y el extremo del puño en el modelo del robot. En el visor, el objeto saliente de cada modelo (punto guía) se deberá localizar en el centro, equidistante a cada una de las cámaras laterales que generan la estereopsis, quedando el personaje desplazado a un lado, evitando, así, las pistas monoculares de superposición. In addition, this method requires synchronization of the hand-eye coordinates and potential reconstruction of the spatial interval, which leads to a study of depth perception in more realistic conditions. Figures 7 and 8 show such 3D models to be used in the proposed invention. Figure 7a shows the model of a pirate with a parrot flying ahead at a certain distance. Figure 7b shows the model of a fairy with a magic wand with a star pointed and pointed forward. Figure 7c shows the model of a robot with the left fist forward. In Figure 8, you can see how each character has an object with a reference point that protrudes from the distant plane where it is located (pirate parrot, end of the fairy wand and one of the ends of the robot). Each of these guide points is at a different distance, being further away in the pirate and closer in the robot (Figure 8). Therefore, it will be easier to detect stereopsis in the first one and more difficult in the last one, presenting the fairy with an intermediate difficulty. In addition, this guide point is not just in front of the main object, but is deliberately offset to one side (parrot beak in the pirate model, magic wand point in the fairy model and the end of the fist in the model of the robot In the viewfinder, the protruding object of each model (guide point) should be located in the center, equidistant from each of the lateral cameras that generate the stereopsis, leaving the character displaced to one side, thus avoiding monocular overlay tracks.
Para evitar ¡os sesgos producidos por el desplazamiento del personaje, se deberán realizar varias mediciones alternado imágenes especulares del modelo. En ¡a figura 9, se muestran las dos imágenes especulares del modelo del hada. To avoid the biases produced by the displacement of the character, several measurements must be made alternating specular images of the model. In figure 9, the two mirror images of the fairy model are shown.
Tal y como se parecía en ¡a figura 9, los modelos son mostrados con una imagen de fondo que permite realizar una ciara separación entre el fondo y el modelo 3D. Un fondo de un color uniforme (por ejemplo, blanco o negro) no es conveniente ya que cambia la apariencia de la escena. Por otro lado, un fondo con un patrón fijo puede proporcionar pistas monoculares. Es por ello que, en el sistema de invención propuesto, se recomienda utilizar un fondo con un patrón de puntos aleatorios simulando ruido blanco (white noise random-dots pattern), tai y como se aprecia en la figura 9. As it seemed in figure 9, the models are shown with a background image that allows a clear separation between the background and the 3D model. A uniformly colored background (for example, black or white) is not convenient as it changes the appearance of the scene. On the other hand, a background with a fixed pattern can provide monocular tracks. That is why, in the proposed invention system, it is recommended to use a background with a random dots pattern simulating white noise (white noise random-dots pattern), tai and as shown in figure 9.
Además, se recomienda que la habitación donde se realicen los ensayos esté a oscuras para no proporcionar pistas ni distancias de referencia ai paciente. Se recomienda que ¡os modelos se visualicen en un monitor de más de 10”. Los modelos se deberán escalar automáticamente en el visor 3D para que la percepción de la profundidad de estos por parte del paciente (1) sea independiente del tamaño y resolución del monitor utilizado para su visualización. In addition, it is recommended that the room where the tests are performed be in the dark so as not to provide clues or reference distances to the patient. It is recommended that models be viewed on a monitor larger than 10 ”. The models they should be automatically scaled in the 3D viewer so that the perception of the depth of these by the patient (1) is independent of the size and resolution of the monitor used for viewing.
Los modelos se presentan secuencialmente, de mayor a menor predicción geométrica, alternado su disposición especular tantas ocasiones como se desee, para obtener medidas fiables. En la figura 10, se muestra un diagrama de flujo en el que se muestran las dos imágenes especulares de cada modelo repetidas veces y se calcula y se guarda el valor medio de todas las medidas realizadas y del tiempo de duración de detección de cada vez. Según el diagrama de flujo de la Figura 10, cada imagen especular de cada modelo se visualiza un número de veces igual a MaxVeces (parámetro a configurar por el facultativo (6)), con lo que se consiguen un total de (2 x MaxVeces) medidas de la profundidad percibida por el paciente para cada modelo 3D (10). The models are presented sequentially, from highest to lowest geometric prediction, alternating their specular arrangement as many times as desired, to obtain reliable measurements. In Figure 10, a flowchart is shown showing the two mirror images of each model repeatedly and the average value of all the measurements taken and the detection duration time of each time are calculated and saved. According to the flow chart in Figure 10, each specular image of each model is displayed a number of times equal to MaxVeces (parameter to be configured by the physician (6)), with which a total of (2 x MaxVeces) is achieved. measurements of the depth perceived by the patient for each 3D model (10).
En un escenario típico, el propio facultativo (8) con un dispositivo de entrada, por ejemplo, mediante teclado y/o ratón, y mediante una o varias aplicaciones informáticas incluyendo menús de selección y diferentes opciones de configuración, podrá seleccionar la secuencia de modelos 3D a visualizar por el paciente dándole instrucciones sobre la tarea a realizar durante el visionado de estos. Le indicará ai paciente (1) que intente tocar con la punta de los dedos el punto guía del modelo estereoscópico y mantener la punta del dedo en dicho punto. Por ejemplo, si se utiliza un monitor (4) para visualizar los modelos 3D (10), un paciente (1) con ausencia de estereopsis tocará la pantalla del monitor (4) indicando que no percibe la profundidad y que ve el modelo en 2D, en vez de en 3D. Por otro lado, un paciente (1) en presencia de estereopsis percibirá la profundidad y tocará en un punto del espado alejado de la pantalla, delante de la misma. In a typical scenario, the physician (8) himself with an input device, for example, by keyboard and / or mouse, and by one or more computer applications including selection menus and different configuration options, will be able to select the sequence of models 3D to be visualized by the patient, giving instructions on the task to be performed during viewing. It will instruct the patient (1) to try to touch the guide point of the stereoscopic model with the fingertips and keep the fingertip at that point. For example, if a monitor (4) is used to view 3D models (10), a patient (1) with no stereopsis will touch the monitor screen (4) indicating that they do not perceive depth and that they see the model in 2D. , instead of 3D. On the other hand, a patient (1) in the presence of stereopsis will perceive the depth and will touch at a point in the sword away from the screen, in front of it.
El sistema de innovación propuesto permite estimar la percepción de profundidad de dicho paciente, medida en milímetros, y compararla con la predicción geométrica (percepción de profundidad teórica) generada por el modelo que esté visualizando, facilitando el análisis de la correlación que existe a diferentes profundidades geométricas. A diferencia de los otros test de estereopsis que utilizan un sistema angular, la medida de la percepción de la profundidad en milímetros permitirá definir escalas de la percepción de la profundidad en función de la magnitud del error de percepción en valor absoluto (en mm) o porcentual respecto de la profundidad real. The proposed innovation system allows estimating the depth perception of said patient, measured in millimeters, and comparing it with the geometric prediction (theoretical depth perception) generated by the model being viewed, facilitating the analysis of the correlation that exists at different depths. geometric. Unlike the other stereopsis tests that use an angular system, the measurement of depth perception in millimeters will allow defining scales of depth perception depending on the magnitude of the perception error in absolute value (in mm) or percentage with respect to the real depth.

Claims

REIVINDICACIONES - Un sistema de medida de ¡a percepción de ia profundidad en la visión de un paciente (1) que comprende: CLAIMS - A system for measuring the perception of depth in the vision of a patient (1) comprising:
- al menos una pantalla de visualización tridimensional (2,4) configurada para mostrar modelos tridimensionales (10) previamente almacenados en una base de datos (9); - at least one three-dimensional display screen (2,4) configured to show three-dimensional models (10) previously stored in a database (9);
- una cámara o cámaras (5) configuradas para la captura de ai menos una imagen del espacio comprendido delante del paciente (1); - a camera or cameras (5) configured to capture at least one image of the space in front of the patient (1);
- un dispositivo configurado para colocar ia cabeza o mentón (3) del paciente (1) configurado para evitar ios movimientos de la cabeza o mentón sin impedir ia visión del espacio comprendido delante del paciente (1); y - a device configured to place the head or chin (3) of the patient (1) configured to prevent movement of the head or chin without impeding the vision of the space in front of the patient (1); and
- una unidad de procesamiento (8, 201 , 202) conectada con ia cámara o cámaras (5) y que comprende al menos, un procesador o procesadores y una memoria o memorias, donde se almacenan un programa o programas que, a su vez, están configurados para ejecutarse por el procesador o procesadores, y que se caracteriza porque el programa o programas incluyen instrucciones para medir la distancia (D, D’) entre un punto del espacio señalado por el paciente (1) con respecto de la propia pantalla de visualización tridimensional (4) o con respecto a ¡os ojos del paciente (1); y un punto guía definido en el modelo tridimensional (10) mostrado al paciente (1) en la pantalla de visualización tridimensional (2,4) - a processing unit (8, 201, 202) connected to the camera or cameras (5) and comprising at least one processor or processors and a memory or memories, where a program or programs are stored which, in turn, They are configured to be executed by the processor or processors, and characterized in that the program or programs include instructions to measure the distance (D, D ') between a point in the space indicated by the patient (1) with respect to the screen itself. three-dimensional visualization (4) or with respect to the patient's eyes (1); and a guide point defined in the three-dimensional model (10) shown to the patient (1) on the three-dimensional display screen (2,4)
2.- El sistema de medida de acuerdo con la reivindicación 1 donde el programa o programas incluyen instrucciones para estimar la percepción de profundidad del paciente (1) medida en milímetros, y compararla con la predicción geométrica que es ¡a percepción de profundidad teórica generada por el modelo tridimensional (10) que esté visualizando el paciente (1). 2.- The measurement system according to claim 1 where the program or programs include instructions to estimate the depth perception of the patient (1) measured in millimeters, and compare it with the geometric prediction that is the theoretical depth perception generated by the three-dimensional model (10) that the patient is visualizing (1).
3 - El sistema de acuerdo con una cualquiera de las reivindicaciones 1 o 2 donde la pantalla tridimensional está incluida en un monitor (4) donde se muestran ¡os modelos tridimensionales (10) que son visuaiizables por el paciente (1) a través de unas gafas de visión tridimensional seleccionadas entre gafas rojo-verde, gafas polarizadas o gafas por obturación. 3 - The system according to any one of claims 1 or 2, where the three-dimensional screen is included in a monitor (4) where the three-dimensional models (10) are shown, which are viewable by the patient (1) through Three-dimensional vision glasses selected from red-green glasses, polarized glasses or shutter glasses.
4.- El sistema de acuerdo con una cualquiera de las reivindicaciones 1 o 2 donde la pantalla tridimensional está incluida en unas gafas de realidad aumentada (2). 4. The system according to any one of claims 1 or 2, where the three-dimensional screen is included in augmented reality glasses (2).
5.~ El sistema de acuerdo con la reivindicación 4 que incluye un segundo monitor (7) visualizable por un facultativo (6) que gestiona un ensayo con el paciente (1) y configurado para mostrar al facultativo un interfaz gráfico de una aplicación con las medidas realizadas de percepción de profundidad instantáneas. 5. ~ The system according to claim 4 which includes a second monitor (7) viewable by a physician (6) that manages a test with the patient (1) and configured to show the physician a graphical interface of an application with the instantaneous depth perception measurements made.
6.- El sistema de acuerdo con una cualquiera de las reivindicaciones anteriores que comprende, al menos, un dispositivo de control de entrada de datos manejable por el facultativo (6). 6. The system according to any one of the preceding claims, comprising at least one data entry control device manageable by the physician (6).
7.~ El sistema de acuerdo con una cualquiera de ¡as reivindicaciones anteriores donde la unidad de procesamiento comprende una unidad de paciente (201) y una unidad de facultativo (202) separadas entre sí y conectadas mediante una red de datos (203) en una arquitectura distribuida. 7. The system according to any one of the preceding claims, where the processing unit comprises a patient unit (201) and a doctor unit (202) separated from each other and connected by a data network (203) in a distributed architecture.
8.- El sistema de acuerdo con una cualquiera de las reivindicaciones anteriores que comprende un tablero opaco horizontal situado por debajo de los ojos del paciente (1) sin impedir su visión frontal. 8. The system according to any one of the preceding claims, comprising a horizontal opaque board located below the eyes of the patient (1) without impeding his frontal vision.
9.- El sistema de acuerdo una cualquiera de las reivindicaciones anteriores donde el paciente (1) señala el punto en el espacio coincidente virtualmente con ei punto guía del modelo tridimensional (10) mediante un dedo o un puntero detectadle por la cámara o cámaras (5) manejado por el propio paciente (1). 9. The system according to any one of the preceding claims, where the patient (1) indicates the point in space virtually coinciding with the guide point of the three-dimensional model (10) by means of a finger or a pointer that can be detected by the camera or cameras ( 5) managed by the patient himself (1).
10.- El sistema de acuerdo con una cualquiera de las reivindicaciones anteriores, donde el modelo tridimensional (10) comprende un fondo con un patrón de puntos aleatorios simulando ruido blanco. 10. The system according to any one of the preceding claims, wherein the three-dimensional model (10) comprises a background with a random dot pattern simulating white noise.
11.- Un método de medida de la percepción de la profundidad en la visión de un paciente (1) que se ímplemenía en ei sistema de acuerdo con una cualquiera de las reivindicaciones 1 a 10 y que comprende las etapas de: (a) seleccionar, al menos, un modelo tridimensional (10) de, al menos, una secuencia de modelos tridimensionales (10), cada uno de ellos con ai menos un punto guía visualizable por el paciente; (b) señalar por parte del paciente (1) el punto del espacio en frente de éste donde perciba que está situado el punto guía del modelo tridimensional (10) visualizado; (c) medir y almacenar una distancia (D, D’) entre la posición señalada por el paciente (1) con respecto de la propia pantalla de visualización tridimensional (4) o con respecto a ios ojos del paciente (1). 11.- A method of measuring the perception of depth in the vision of a patient (1) that is implemented in the system according to any one of claims 1 to 10 and that comprises the steps of: (a) selecting at least one three-dimensional model (10) of at least one sequence of three-dimensional models (10), each with at least one guide point viewable by the patient; (b) point out on the part of the patient (1) the point of the space in front of it where he perceives that the guide point of the three-dimensional model (10) displayed is located; (c) measure and store a distance (D, D ') between the position indicated by the patient (1) with respect to the three-dimensional display screen itself (4) or with respect to the patient's eyes (1).
12.- El método de acuerdo con la reivindicación 11 que comprende una etapa de estimar la percepción de profundidad del paciente (1) medida en milímetros, y compararla con la predicción geométrica que es la percepción de profundidad teórica generada por el modelo tridimensional (10) que esté visualizando el paciente (1). 12.- The method according to claim 11 comprising a step of estimating the depth perception of the patient (1) measured in millimeters, and comparing it with the geometric prediction that is the theoretical depth perception generated by the three-dimensional model (10 ) that the patient is viewing (1).
13.- El método de acuerdo con una cualquiera de las reivindicaciones 11 o 12 que comprende repetir las etapas (a) - (c) una cantidad de veces predefinida por un facultativo (6). 13. The method according to any one of claims 11 or 12, comprising repeating steps (a) - (c) a number of times predefined by a physician (6).
14.- El método de medida de la reivindicación 13 que comprende calcular para cada modelo tridimensional (10) los valores medios de las medidas tomadas y los tiempos de duración de la toma de cada medida. 14. The measurement method of claim 13, comprising calculating for each three-dimensional model (10) the average values of the measurements taken and the duration times of the measurement of each measurement.
PCT/ES2020/070042 2019-01-28 2020-01-21 System and method for measuring visual depth perception WO2020157350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201930062A ES2722473B2 (en) 2019-01-28 2019-01-28 SYSTEM AND METHOD OF MEASUREMENT OF PERCEPTION OF DEPTH IN VISION
ESP201930062 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020157350A1 true WO2020157350A1 (en) 2020-08-06

Family

ID=67513758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070042 WO2020157350A1 (en) 2019-01-28 2020-01-21 System and method for measuring visual depth perception

Country Status (2)

Country Link
ES (1) ES2722473B2 (en)
WO (1) WO2020157350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115251827A (en) * 2022-09-26 2022-11-01 广东视明科技发展有限公司 Depth perception evaluation method and system based on virtual-real combination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368539A1 (en) * 2013-06-13 2014-12-18 Arsenz Co., Ltd. Head wearable electronic device for augmented reality and method for generating augmented reality using the same
WO2017145156A2 (en) * 2016-02-22 2017-08-31 Real View Imaging Ltd. Holographic display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368539A1 (en) * 2013-06-13 2014-12-18 Arsenz Co., Ltd. Head wearable electronic device for augmented reality and method for generating augmented reality using the same
WO2017145156A2 (en) * 2016-02-22 2017-08-31 Real View Imaging Ltd. Holographic display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRUDER, G. ET AL.: "Effects of visual conflicts on 3D selection task performance in stereoscopic display environments", IEEE SYMPOSIUM ON 3D USER INTERFACES (3DUI, 16 March 2013 (2013-03-16), pages 115 - 118, XP032479315, ISBN: 978-1-4673-6097-5, DOI: 10.1109/3DUI.2013.6550207 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115251827A (en) * 2022-09-26 2022-11-01 广东视明科技发展有限公司 Depth perception evaluation method and system based on virtual-real combination
CN115251827B (en) * 2022-09-26 2022-12-30 广东视明科技发展有限公司 Depth perception assessment method and system based on virtual-real combination

Also Published As

Publication number Publication date
ES2722473A1 (en) 2019-08-12
ES2722473B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US11730543B2 (en) Sensory enhanced environments for injection aid and social training
US9844317B2 (en) Method and system for automatic eyesight diagnosis
Hennessey et al. Noncontact binocular eye-gaze tracking for point-of-gaze estimation in three dimensions
Kinateder et al. Using an augmented reality device as a distance-based vision aid—promise and limitations
ES2881884T3 (en) Method and device to evaluate, train and improve perceptual-cognitive abilities of individuals
CN111248851B (en) Visual function self-testing method
US20200363867A1 (en) Blink-based calibration of an optical see-through head-mounted display
WO2018087408A1 (en) System for integrally measuring clinical parameters of visual function
EP3991642A1 (en) Vestibular testing apparatus
Vancleef et al. ASTEROID: a new clinical stereotest on an autostereo 3D tablet
JP2018530790A (en) Method for determining optical system of progressive lens
US20210307654A1 (en) Vestibular Testing Apparatus
CN112053781A (en) Dynamic and static stereoscopic vision testing method and terminal
WO2020137028A1 (en) Display device, display method, and program
WO2015198023A1 (en) Ocular simulation tool
ES2722473B2 (en) SYSTEM AND METHOD OF MEASUREMENT OF PERCEPTION OF DEPTH IN VISION
Batmaz et al. Effects of image size and structural complexity on time and precision of hand movements in head mounted virtual reality
Wei et al. A cross-platform approach to the treatment of ambylopia
US20230255539A1 (en) Device for testing earth gravity sensing function on basis of virtual/augmented reality interface and biosignal measurement device
Xing Quantifying the Perceived Length of the Stereokinetic Cylinder
Izquierdo Santos Comparing the Perception and Performance of Selected VR Systems
Villarruel Computer graphics and human depth perception with gaze-contingent depth of field
Paulus Evaluation Methods for Stereopsis Performance
Orikasa et al. A Gaze-Reactive Display for Simulating Depth-of-Field of Eyes When Viewing Scenes with Multiple Depths
JP2005000593A (en) Method and apparatus for measuring visual field range by stereoscopic video

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749035

Country of ref document: EP

Kind code of ref document: A1