WO2020155481A1 - 一种中压直流配电网故障隔离与故障恢复方法和系统 - Google Patents

一种中压直流配电网故障隔离与故障恢复方法和系统 Download PDF

Info

Publication number
WO2020155481A1
WO2020155481A1 PCT/CN2019/088725 CN2019088725W WO2020155481A1 WO 2020155481 A1 WO2020155481 A1 WO 2020155481A1 CN 2019088725 W CN2019088725 W CN 2019088725W WO 2020155481 A1 WO2020155481 A1 WO 2020155481A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
protection device
distribution network
current
medium voltage
Prior art date
Application number
PCT/CN2019/088725
Other languages
English (en)
French (fr)
Inventor
王文龙
金震
刘永生
侯炜
陈俊
徐舒
杨建明
丁力
邱德峰
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2020155481A1 publication Critical patent/WO2020155481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Definitions

  • the invention belongs to the field of power system direct current distribution network, and in particular relates to a method and system for fault isolation and fault recovery of a medium voltage direct current distribution network adopting a full-bridge converter.
  • the medium voltage DC distribution network is in the exploratory stage.
  • the medium voltage DC distribution network using full-bridge converters has the following characteristics:
  • the inverter When a fault occurs, the inverter will be locked quickly, the fastest time is only a few hundred microseconds, after the inverter is locked, the entire line will lose power, and the DC protection device needs to capture the fault characteristics within a few hundred microseconds And determine the point of failure.
  • the distribution network line is short, and the resistance of the DC distribution line is small.
  • the fault currents are similar everywhere. It is difficult to achieve fault selectivity through the level difference of the fault current at different locations; and because the converter is the fastest It can be locked in a few hundred microseconds, and it is difficult to achieve fault selectivity through time difference coordination.
  • the full-bridge converter can automatically limit and recover automatically, or limit and recover after accepting the command
  • the full-bridge converter When a power distribution line fails, the full-bridge converter has two troubleshooting methods:
  • the converter After the fault current reaches the withstand current of the converter device, the converter will change the output voltage to zero, but the converter is not blocked. After the fault disappears, the converter will automatically detect whether the fault disappears, and restore power supply once the fault disappears ;
  • the DC protection After the line fails, after the DC protection detects the fault, it sends an order to the full bridge converter, the converter turns the output voltage to zero, the entire line loses power, and then the DC protection action removes the fault, and the DC protection sends an order to the full bridge
  • the inverter resumes power supply.
  • the present invention provides a new method Used to solve this problem.
  • the present invention proposes a method and system for fault isolation and fault recovery of medium voltage DC distribution network using full-bridge converters, which are applied to the protection and control system of medium voltage DC distribution network to realize medium voltage When the DC distribution network fails, isolate the faulty area and restore the power supply to the non-faulty area.
  • a method for fault isolation and fault recovery in a medium-voltage DC distribution network adopts a full-bridge converter.
  • the method includes the following steps:
  • Step 1 Configure current-limiting reactors, load switches, DC protection devices, and communication networks on the medium-voltage DC distribution network lines; among them, the medium-voltage DC distribution lines are equipped with current-limiting reactors at the beginning, and loads are placed at each section of the line A switch and a DC protection device, and one of the load switches is used as a tie switch, the tie switch is in an off state when the medium voltage DC distribution network is operating normally; the communication network is used for communication between the DC protection devices;
  • Step 2 When the medium voltage DC distribution network fails, the DC protection device will determine the fault point; the converter will limit the fault current to zero after detecting the fault, and then the DC protection device configured at the line section will trip around the fault point The nearest load switch isolation failure;
  • Step 3 After the fault is isolated, the DC protection device that tripped the load switch in Step 2 issues an order to restore power to the converter, and at the same time issues an order to the DC protection device at the tie switch to close the tie switch and restore the power supply to the non-faulty area.
  • the step 2 specifically includes the following content:
  • Step 21 When the medium voltage DC distribution network fails, the converter limits the fault current to zero; before the converter limits the fault current to zero, the DC protection device configured at the line section exceeds the fixed value In the future, the fault current and the direction of the fault current are transmitted to the adjacent DC protection device through the communication network, and the DC protection device that has not detected the fault will not transmit the fault current and the direction of the fault current;
  • Step 22 The DC protection device determines the fault point based on the fault current of itself and the adjacent DC protection device and the fault current direction, and then the nearest DC protection device around the fault point operates to trip the load switch to isolate the fault.
  • the communication protocol between the DC protection devices adopts GOOSE.
  • the step 3 specifically includes the following content:
  • Step 31 After the action of the nearest DC protection device around the fault point completes the fault isolation, send a command to the converter and the DC protection device configured at the contact switch;
  • Step 32 The converter restores power supply after receiving the command, and the DC protection device configured at the contact switch performs the closing operation after fault isolation after receiving the command to restore the power supply to the non-faulty area.
  • the present invention also proposes a fault isolation and fault recovery system for a medium voltage DC distribution network.
  • the medium voltage DC distribution network adopts a full-bridge converter.
  • the system includes a current-limiting reactor, a load switch, a DC protection device and Communication network; current-limiting reactors are installed at the beginning of the medium voltage DC distribution line, load switches and DC protection devices are installed at each section of the line, and one of the load switches is used as a tie switch, which is normal in the medium voltage DC distribution network It is disconnected during operation; the communication network is used for communication between DC protection devices;
  • the inverter When the medium voltage DC distribution network line fails, the inverter will limit the fault current to zero;
  • the DC protection device configured at the line section determines the fault point, trips the nearest load switch around the fault point to isolate the fault, and then sends an order to the DC protection device configured at the converter and the tie switch;
  • the inverter restores power supply after receiving the command
  • the DC protection device configured at the contact switch receives the command and performs the closing operation to restore the power supply to the non-faulty area.
  • the DC protection device configured at the line segment transmits the fault current and the direction of the fault current to the adjacent DC protection device through the communication network after the fault current exceeds the fixed value, and the DC protection device that has not detected the fault will not be transmitted Fault current and fault current direction;
  • the DC protection device determines the fault point by the fault current of itself and the adjacent DC protection device and the direction of the fault current.
  • the nearest DC protection device around the fault point operates, trips the load switch, isolates the fault, and then sends commands to the converter and tie switch DC protection device on the configuration.
  • the converter restores power supply after receiving the command
  • the DC protection device configured at the contact switch performs the closing operation after receiving the command to restore the power supply in the non-faulty area.
  • the communication protocol between the DC protection devices adopts GOOSE.
  • the beneficial effects of the present invention are: in the scheme of the present invention, the time for the full-bridge converter to limit the fault current to zero is prolonged by adding a current-limiting reactor ingeniously, so as to give the protection of fault isolation enough time for fault judgment to realize In the event of a failure in the medium voltage DC distribution network using full-bridge converters, the fault area can be quickly isolated and the power supply in the non-faulty area can be restored.
  • Figure 1 is a schematic diagram of "a method and system for fault isolation and fault recovery of a medium voltage DC distribution network" in the present invention.
  • a method for fault isolation and fault recovery of a medium voltage DC distribution network wherein the medium voltage DC distribution network adopts a full-bridge converter, and includes the following steps:
  • Step 1 Configure current-limiting reactor, load switch, DC protection device, and communication network on the medium voltage DC distribution network line;
  • Step 2 When the medium voltage DC distribution network fails, the DC protection device will determine the fault point; the converter will limit the fault current to zero after detecting the fault, and then the DC protection device configured at the line section will trip around the fault point
  • the most recent load switch isolation fault specifically including:
  • Step 21 When the medium-voltage DC distribution network fails, the converter will limit the fault current to zero after detecting the fault; before the converter limits the fault current to zero, the DC protection device configured at the line section fails After the current exceeds the fixed value, the fault current and the direction of the fault current are transmitted to the adjacent DC protection device through the communication network, and the DC protection device that has not detected the fault will not transmit the fault current and the direction of the fault current; the DC protection device in this embodiment
  • Step 22 The DC protection device determines the fault point based on the fault current of itself and the adjacent protection device and the fault current direction. The nearest DC protection device around the fault point operates, trips the load switch, and isolates the fault.
  • Step 3 After the fault is isolated, the DC protection device that acts in step 2 issues an order to the converter to restore power, and at the same time issues an order to the DC protection device to close the tie switch and restore the power supply to the non-faulty area. Specifically:
  • Step 31 After the operation of the nearest DC protection device around the fault point completes the fault isolation, an order is issued to the converter and the DC protection device configured at the contact switch;
  • Step 32 The converter restores power supply after receiving the command, and the DC protection device configured at the contact switch performs the closing operation after fault isolation after receiving the command to restore the power supply to the non-faulty area.
  • Fig. 1 is a schematic diagram of "a method and system for fault isolation and fault recovery of medium voltage DC distribution network" in the present invention.
  • the processing methods for fault isolation and fault recovery of medium voltage DC distribution network are as follows:
  • Current-limiting reactors X1 and X2 are installed at the beginning of the medium voltage DC distribution line, and load switches F1, F2, F3, L, F4, F5, F6 and DC protection devices G1, G2, G3, G4 are installed at the sections of the line , G5, G6, G7.
  • load switch L is in a separate state.
  • the converter When a fault occurs at point f of the DC distribution line, the converter will limit the fault current to zero; after the fault occurs, before the converter limits the fault current to zero, G1 and G2 can detect the fault and reduce the fault current And the direction of the fault current is transmitted to the adjacent DC protection device through GOOSE; G3 and G4 cannot detect the fault current, and do not transmit the fault current and the direction of the fault current to the adjacent DC protection device.
  • Both G1 and G2 have fault current and the fault current direction is the same, the fault point is not between G1 and G2; G2 has fault current and the fault current direction flows to f, G3 has no fault current and no fault current direction, so the fault point Between G2 and G3; there is no fault current at G3 and G4, and the fault point is not between G3 and G4.
  • G2 and G3 issue orders to inverters H1 and G4.
  • Inverter H1 resumes power supply after receiving the command, and G4 closes L after receiving the command to restore power to the non-faulty area.
  • the present invention also proposes a fault isolation and fault recovery system for medium voltage DC distribution network.
  • the medium voltage DC distribution network adopts a full-bridge converter.
  • the system includes a current-limiting reactor, a load switch, and a DC protection device.
  • a communication network the beginning of the medium voltage DC distribution line is equipped with a current-limiting reactor, and the sections of the line are equipped with load switches and DC protection devices.
  • the communication network is used for communication between the DC protection devices.
  • the converter detects the fault current
  • the fault current is limited to zero
  • the DC protection device configured at the line section judges the fault point, and trips the nearest load switch around the fault point to isolate the fault.
  • the DC protection device configured at the line segment transmits the fault current and the direction of the fault current to the adjacent DC protection device through the communication network.
  • the DC protection device that has not detected the fault will not transmit the fault current and Fault current direction; the communication protocol between the DC protection devices in this embodiment adopts GOOSE.
  • the DC protection device determines the fault point by the fault current of itself and the adjacent DC protection device and the direction of the fault current.
  • the nearest DC protection device around the fault point operates, trips the load switch, isolates the fault, and then issues an order to the converter and the contact switch. Configured DC protection device.
  • the converter restores power after receiving the command, and the DC protection device at the contact switch receives the command and performs the closing operation to restore the power supply to the non-faulty area.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明公开一种中压直流配电网故障隔离与故障恢复方法和系统,所述中压直流配电网采用全桥换流器,在中压直流配电线路上,线路始端配置限流电抗器,线路分段处配置负荷开关以及直流保护装置,配置通信网络用于直流保护之间的通信。当中压直流配电网发生故障时,全桥换流器将故障电流限制为零,线路分段处配置的直流保护在故障电流超过定值以后,将故障电流以及故障电流方向传递给相邻直流保护,直流保护通过自身以及相邻直流保护的故障电流和故障电流方向确定故障点,然后故障点周围最近的直流保护动作,跳开负荷开关,隔离故障。故障隔离以后,执行故障隔离的直流保护发令给换流器恢复供电,同时发令给联络开关上配置的直流保护合上开关,恢复非故障区域供电。

Description

一种中压直流配电网故障隔离与故障恢复方法和系统 技术领域
本发明属于电力系统直流配电网领域,特别涉及一种采用全桥换流器的中压直流配电网故障隔离与故障恢复的方法和系统。
背景技术
目前中压直流配电网处于探索阶段,采用全桥换流器的中压直流配电网具有以下特点:
1.直流电源比较脆弱
当发生故障时,换流器会很快闭锁,时间最快只要几百个微秒,换流器闭锁以后整条线路会失电,直流保护装置需要在几百个微秒内捕捉到故障特征并确定故障点。
2.难以保证选择性
配电网线路较短,直流配电线路的电阻较小,发生故障时,各处的故障电流相近,通过不同地点故障电流的级差配合难以实现故障的选择性;并且由于换流器最快只要几百个微秒就能闭锁,通过时间的级差配合也难以实现故障的选择性。
3.全桥换流器可以自动限流自动恢复,也可以接受命令后进行限流和恢复
配电线路发生故障时,全桥换流器有两种故障处理的方式:
1)第一种方式:全桥换流器自动限流、自动恢复
故障电流达到换流器器件的耐受电流以后换流器将输出电压变为零,但是换流器不闭锁,故障消失以后,换流器会自动检测故障是否消失,一旦发现故障消失后恢复供电;
2)第二种方式:直流保护发令给全桥换流器进行限流和恢复
线路发生故障以后,直流保护检测到故障后,发令给全桥换流器,换流器将输出电压变成零,整条线路失电,然后直流保护动作切除故障,直流保护再发令给全桥换流器恢复供电。
鉴于中压直流配电网的特点,用过流级差以及时间级差难以实现中压直流配电网的故 障隔离与故障恢复,结合全桥换流器的特点,本发明提供了一套新的方法用于解决此问题。
发明内容
为了解决上述问题,本发明提出一种采用全桥换流器的中压直流配电网故障隔离与故障恢复的方法和系统,应用于中压直流配电网的保护与控制系统,实现中压直流配电网发生故障时隔离故障区域、恢复非故障区域的供电。
为了实现上述目的,本发明所采用的技术方案是:
一种中压直流配电网故障隔离与故障恢复方法,所述中压直流配电网采用全桥换流器,所述方法包括以下步骤:
步骤1:在中压直流配网线路上配置限流电抗器、负荷开关、直流保护装置、通信网络;其中,中压直流配电线始端配置限流电抗器,线路的各分段处配置负荷开关以及直流保护装置,且其中一个负荷开关作为联络开关,该联络开关在中压直流配电网正常运行时呈断开状态;所述通信网络用于直流保护装置之间的通信;
步骤2:中压直流配电网发生故障时,由直流保护装置判断故障点;换流器检测到故障后将故障电流限制为零,然后线路分段处配置的直流保护装置跳开故障点周围最近的负荷开关隔离故障;
步骤3:故障隔离以后,步骤2中跳开负荷开关的直流保护装置发令给换流器恢复供电,同时发令给联络开关处配置的直流保护装置合上联络开关,恢复非故障区的供电。
优选地,所述步骤2中,具体包括以下内容:
步骤21:中压直流配电网发生故障时,换流器将故障电流限制为零;在换流器将故障电流限制为零前,线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;
步骤22:直流保护装置通过自身以及相邻直流保护装置的故障电流以及故障电流方向确定故障点,然后故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障。
优选地,直流保护装置之间的通信协议采用GOOSE。
优选地,所述步骤3中具体包括以下内容:
步骤31:故障点周围最近的直流保装置动作完成故障隔离后,发命令给换流器以及联络开关处配置的直流保护装置;
步骤32:换流器在接收到命令后恢复供电,联络开关处配置的直流保护装置在接收到命令后进行故障隔离后的合闸操作,恢复非故障区的供电。
本发明同时提出一种中压直流配电网故障隔离与故障恢复系统,所述中压直流配电网采用全桥换流器,所述系统包括限流电抗器、负荷开关、直流保护装置和通信网络;中压直流配电线始端配置限流电抗器,线路的各分段处配置负荷开关以及直流保护装置,且其中一个负荷开关作为联络开关,该联络开关在中压直流配电网正常运行时呈断开状态;所述通信网络用于直流保护装置之间的通信;
中压直流配电网线路发生故障时换流器将故障电流限制为零;
线路分段处配置的直流保护装置判断故障点,跳开故障点周围最近的负荷开关隔离故障,然后发命令给换流器以及联络开关处配置的直流保护装置;
换流器在接收到命令以后恢复供电,联络开关处配置的直流保护装置接收到命令以后进行合闸操作,恢复非故障区的供电。
优选地,线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;
直流保护装置通过自身以及相邻直流保护装置的故障电流以及故障电流方向确定故障点,故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障,然后发命令给换流器以及联络开关上配置的直流保护装置。
优选地,换流器在接收到命令以后恢复供电,联络开关处配置的直流保护装置在接收到命令以后进行合闸操作,恢复非故障区的供电。
优选地,直流保护装置之间的通信协议采用GOOSE。
本发明的有益效果是:本发明的方案中巧妙地通过加装限流电抗器延长全桥换流器将故障电流限到零的时间,给故障隔离的保护足够的进行故障判断的时间,实现了当采用全桥换流器的中压直流配电网发生故障时,快速隔离故障区域,恢复非故障区域的供电。
附图说明
图1是本发明中“一种中压直流配电网故障隔离与故障恢复方法和系统”的示意图。
具体实施方式
以下将结合附图对本发明的技术方案进行详细说明。
实施例1:
一种中压直流配电网故障隔离与故障恢复方法,所述中压直流配电网采用全桥换流器,包括以下步骤:
步骤1:在中压直流配网线路上配置限流电抗器、负荷开关、直流保护装置、通信网络;
在中压直流配电线始端配置限流电抗器,线路的分段处配置负荷开关以及直流保护装置,配置通信网络用于直流保护装置之间的通信。
步骤2:中压直流配电网发生故障时,由直流保护装置判断故障点;换流器检测到故障后将故障电流限制为零,然后线路分段处配置的直流保护装置跳开故障点周围最近的负荷开关隔离故障;具体包括:
步骤21:中压直流配电网发生故障时,换流器检测到故障后将故障电流限制为零;在换流器将故障电流限制为零前,线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;本实施例中直流保护装置之间的通信协议采用GOOSE。
步骤22:直流保护装置通过自身以及相邻保护装置的故障电流以及故障电流方向确定故障点,故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障。
步骤3:故障隔离以后,步骤2中动作的直流保护装置发令给换流器恢复供电,同时发令给直流保护装置合上联络开关,恢复非故障区的供电。具体包括:
步骤31:故障点周围最近的直流保装置动作完成故障隔离后,发令给换流器以及联络开关处配置的直流保护装置;
步骤32:换流器在接收到命令后恢复供电,联络开关处配置的直流保护装置在接收到命令后进行故障隔离后的合闸操作,恢复非故障区的供电。
实施例2:
图1所示为本发明中“一种中压直流配电网故障隔离与故障恢复方法和系统”的示意图,中压直流配电网的故障隔离与故障恢复的处理方法如下:
1、以单环网的架构为例说明直流配电网故障隔离与故障恢复的处理方法。
2、中压直流配电线路始端配置限流电抗器X1、X2,线路的分段处配置负荷开关F1、F2、F3、L、F4、F5、F6和直流保护装置G1、G2、G3、G4、G5、G6、G7。
3、正常运行时开环运行,负荷开关L处于分开的状态。
4、当直流配电线路f点发生故障时,换流器将故障电流限制为零;故障发生以后,在换流器将故障电流限制为零前,G1和G2能检测到故障,将故障电流以及故障电流的方向通过GOOSE向相邻的直流保护装置传递;G3和G4不能检测到故障电流,不向相邻的直流保护装置传递故障电流以及故障电流方向。
5、G1和G2两处都有故障电流并且故障电流方向相同,故障点不在G1和G2之间;G2有故障电流并且故障电流方向流向f,G3没有故障电流也没有故障电流方向,所以故障点在G2和G3之间;G3和G4处没有故障电流,故障点不在G3和G4之间。
6、G2、G3动作,跳开F2和F3,隔离故障。
7、G2、G3发令给换流器H1以及G4。
8、换流器H1接收到命令后恢复供电,G4在接收到命令后合上L,恢复非故障区域供电。
实施例3:
本发明同时提出了一种中压直流配电网故障隔离与故障恢复系统,所述中压直流配电网采用全桥换流器,所述系统包括限流电抗器、负荷开关、直流保护装置和通信网络;中压直流配电线始端配置限流电抗器,线路的分段处配置负荷开关以及直流保护装置,所述通信网络用于直流保护装置之间的通信。
换流器检测到故障电流时将故障电流限制为零,线路分段处配置的直流保护装置判断故障点,跳开故障点周围最近的负荷开关隔离故障。
线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;本实施例中直流保护装置之间的通信协议采用GOOSE。
直流保护装置通过自身以及相邻直流保护装置的故障电流以及故障电流方向确定故障点,故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障,然后发令给换流器以及联络开关处配置的直流保护装置。
换流器在接收到命令以后恢复供电,联络开关处配置的直流保护装置接收到命令后进行合闸操作,恢复非故障区的供电。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (8)

  1. 一种中压直流配电网故障隔离与故障恢复方法,所述中压直流配电网采用全桥换流器,其特征在于:所述方法包括以下步骤:
    步骤1:在中压直流配电网线路上配置限流电抗器、负荷开关、直流保护装置、通信网络;其中,中压直流配电网线路始端配置限流电抗器,线路的各分段处配置负荷开关以及直流保护装置,且其中一个负荷开关作为联络开关,该联络开关在中压直流配电网正常运行时呈断开状态;所述通信网络用于直流保护装置之间的通信;
    步骤2:中压直流配电网发生故障时,由直流保护装置判断故障点;换流器检测到故障后将故障电流限制为零,然后线路分段处配置的直流保护装置跳开故障点周围最近的负荷开关隔离故障;
    步骤3:故障隔离以后,步骤2中跳开负荷开关的直流保护装置发令给换流器恢复供电,同时发令给联络开关处配置的直流保护装置合上联络开关,恢复非故障区的供电。
  2. 如权利要求1所述的一种中压直流配电网故障隔离与故障恢复方法,其特征在于,所述步骤2中,具体包括以下内容:
    步骤21:中压直流配电网发生故障时,换流器将故障电流限制为零;在换流器将故障电流限制为零前,线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;
    步骤22:直流保护装置通过自身以及相邻直流保护装置的故障电流以及故障电流方向确定故障点,然后故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障。
  3. 如权利要求1所述的一种中压直流配电网故障隔离与故障恢复方法,其特征在于,直流保护装置之间的通信协议采用GOOSE。
  4. 如权利要求1所述的一种中压直流配电网故障隔离与故障恢复方法,其特征在于,所述步骤3中具体包括以下内容:
    步骤31:故障点周围最近的直流保装置动作完成故障隔离后,发命令给换流器以及联络开关处配置的直流保护装置;
    步骤32:换流器在接收到命令后恢复供电,联络开关处配置的直流保护装置在接收到命令后进行故障隔离后的合闸操作,恢复非故障区的供电。
  5. 一种中压直流配电网故障隔离与故障恢复系统,所述中压直流配电网采用全桥换流器,其特征在于,所述系统包括限流电抗器、负荷开关、直流保护装置和通信网络;中压直流配 电网线路始端配置限流电抗器,线路的各分段处配置负荷开关以及直流保护装置,且其中一个负荷开关作为联络开关,该联络开关在中压直流配电网正常运行时呈断开状态;所述通信网络用于直流保护装置之间的通信;
    中压直流配电网线路发生故障时换流器将故障电流限制为零;
    线路分段处配置的直流保护装置判断故障点,跳开故障点周围最近的负荷开关隔离故障,然后发命令给换流器以及联络开关处配置的直流保护装置;
    换流器在接收到命令以后恢复供电,联络开关处配置的直流保护装置接收到命令以后进行合闸操作,恢复非故障区的供电。
  6. 如权利要求5所述的一种中压直流配电网故障隔离与故障恢复系统,其特征在于,
    线路分段处配置的直流保护装置在故障电流超过定值以后,通过通信网络将故障电流以及故障电流方向传递给相邻的直流保护装置,没有检测到故障的直流保护装置不会传递故障电流和故障电流方向;
    直流保护装置通过自身以及相邻直流保护装置的故障电流以及故障电流方向确定故障点,故障点周围最近的直流保护装置动作,跳开负荷开关,隔离故障,然后发命令给换流器以及联络开关上配置的直流保护装置。
  7. 如权利要求6所述的一种中压直流配电网故障隔离与故障恢复系统,其特征在于,换流器在接收到命令以后恢复供电,联络开关处配置的直流保护装置在接收到命令以后进行合闸操作,恢复非故障区的供电。
  8. 如权利要求5所述的一种中压直流配电网故障隔离与故障恢复系统,其特征在于,直流保护装置之间的通信协议采用GOOSE。
PCT/CN2019/088725 2019-01-30 2019-05-28 一种中压直流配电网故障隔离与故障恢复方法和系统 WO2020155481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910089126.3 2019-01-30
CN201910089126.3A CN111509676A (zh) 2019-01-30 2019-01-30 一种中压直流配电网故障隔离与故障恢复方法和系统

Publications (1)

Publication Number Publication Date
WO2020155481A1 true WO2020155481A1 (zh) 2020-08-06

Family

ID=71840792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088725 WO2020155481A1 (zh) 2019-01-30 2019-05-28 一种中压直流配电网故障隔离与故障恢复方法和系统

Country Status (2)

Country Link
CN (1) CN111509676A (zh)
WO (1) WO2020155481A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820562B (zh) * 2021-09-08 2024-05-14 国电南瑞科技股份有限公司 一种低压直流配电网故障处理系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163047A (ja) * 1993-12-08 1995-06-23 Nissin Electric Co Ltd 配電設備
CN204089179U (zh) * 2014-01-14 2015-01-07 国家电网公司 辐射型配电网自愈控制系统
CN106684821A (zh) * 2016-12-13 2017-05-17 华电电力科学研究院 带自愈功能的智能配电保护装置及其应用
CN109193582A (zh) * 2018-09-21 2019-01-11 中国南方电网有限责任公司 一种智能配电网区域保护控制系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163047A (ja) * 1993-12-08 1995-06-23 Nissin Electric Co Ltd 配電設備
CN204089179U (zh) * 2014-01-14 2015-01-07 国家电网公司 辐射型配电网自愈控制系统
CN106684821A (zh) * 2016-12-13 2017-05-17 华电电力科学研究院 带自愈功能的智能配电保护装置及其应用
CN109193582A (zh) * 2018-09-21 2019-01-11 中国南方电网有限责任公司 一种智能配电网区域保护控制系统及控制方法

Also Published As

Publication number Publication date
CN111509676A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN104953568B (zh) 一种柔性直流输电系统的故障保护方法
CN104242265B (zh) 一种直流配电网全固态直流断路器
CN108023337A (zh) 一种柔性直流输电系统换流器运行在孤岛状态下故障限流控制与保护配合方法
WO2015158218A1 (zh) 一种电动机再起动控制器
WO2016169238A1 (zh) 一种变电站停电事故快速应急处理方法及系统
CN102324782B (zh) 一种新型的适用于穿越式供电牵引变电所的备自投方法
CN113241844B (zh) 一种10kV母线的分段备自投方法及设备
CN112993950B (zh) 一种柔直换流阀交流连接线单相接地故障保护系统和方法
EP3711128B1 (en) Fault handling in a dc power system
CN103117592B (zh) 220kV备自投系统及备自投装置母联备投方式的判断方法
WO2020155481A1 (zh) 一种中压直流配电网故障隔离与故障恢复方法和系统
CN102623971A (zh) 可进行故障隔离的柱上分段开关控制方法
KR101609896B1 (ko) 배전용 변압기 부하 자동 절체 계전기
CN103595025B (zh) 电源换流器直流输电系统交流侧接线结构及其控制方法
CN113872160B (zh) 配电网分布式电源联切系统
CN110091757B (zh) 一种具备冗余功能的地面自动过分相装置及控制方法
CN106786721A (zh) 一种高压直流输电系统
CN110116658B (zh) 用于分区所电子开关地面过分相车网匹配的方法及装置
CN110601351A (zh) 一种双电源无缝切换装置及方法
WO2021244242A1 (zh) 一种配电终端用瞬压闭锁模块
CN103986137A (zh) 一种多功能限流器的新型自故障恢复系统及其控制方法
CN206023359U (zh) 一种备用电源切换装置
CN105449835B (zh) 一种区域备自投方法
US11309706B2 (en) Nano grid protection device, large power grid and a method for controlling a nano grid protection device
CN109861225B (zh) 基于光纤通道的热备用线路备用电源投入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913192

Country of ref document: EP

Kind code of ref document: A1