WO2020154822A1 - Aerogel based on graphene oxide and chitosan with haemostatic application - Google Patents

Aerogel based on graphene oxide and chitosan with haemostatic application Download PDF

Info

Publication number
WO2020154822A1
WO2020154822A1 PCT/CL2020/050007 CL2020050007W WO2020154822A1 WO 2020154822 A1 WO2020154822 A1 WO 2020154822A1 CL 2020050007 W CL2020050007 W CL 2020050007W WO 2020154822 A1 WO2020154822 A1 WO 2020154822A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
aerogels
extract
absorption
blood
Prior art date
Application number
PCT/CL2020/050007
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Francisco MELÉNDREZ CASTRO
Claudio AGUAYO TAPIA
Katherina Fabiola FERNÁNDEZ ELGUETA
Toribio Andrés FIGUEROA AGUILAR
Satchary Alexander CARMONA GIACAMAN
Original Assignee
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Concepcion filed Critical Universidad De Concepcion
Publication of WO2020154822A1 publication Critical patent/WO2020154822A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/18Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/02Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the technology is aimed at the health area, more particularly, it corresponds to an airgel that allows the absorption of blood and the formation of a clot for wound healing.
  • Wounds are common conditions that occur in humans and depending on their magnitude and the place where it occurs -either vein or artery- can lead to profuse bleeding or bleeding, which can lead to the death of a person.
  • WHO World Health Organization
  • the main causes of death were due to cardiovascular conditions and diabetes, both diseases with a direct tendency to the appearance of bleeding.
  • hemostatic agents are used to treat these conditions, which should achieve rapid wound healing at a reasonable cost and with minimal inconvenience to the patient.
  • the dressing used must be compatible with the exposed skin cells, they must also allow good exudation in the wound, correct occlusion of the wound and guarantee the presence of a humid environment for allowing an adequate supply of blood and oxygen to be maintained, an adequate temperature, and thereby avoiding infection (Boateng & Catanzano, 2015).
  • hemostatic materials can be classified depending on their mode of action in the body into hydrogels, standard hydrocolloids, impregnated compresses, bioactive and carbon dressings, or reabsorbiol materials such as Gelfoam®, Surgicel® and aerogels.
  • An important factor for the use of these materials as hemostatic agents is their surface properties and, in particular, their surface load. Faced with this situation, the need arises to develop formulations with improved properties for the effective and precise delivery of the required therapeutic agents.
  • Aerogels are colloidal materials similar to gels, with three-dimensional structures in which the liquid component is exchanged for gas, and as a result highly porous, low-density structures with a large surface area and good mechanical properties are achieved (Araby et al ., 2016).
  • a sol-gel technique is used, which basically consists of obtaining a highly crosslinked hydrogel, which is subsequently subjected to freeze drying or supercritical drying with CO2 to give rise to obtaining the aerogels (Ma et al., 2015).
  • the synthesis process of the aerogels is influenced by variables such as GO oxidation degree and sonication time, reaction temperature of the polymer and GO, pH of the GO / polymer solution, GO / polymer ratio, surface charge, among other. These variables generate significant changes in the structure of the aerogels, hence the importance of considering their study in new formulations.
  • Figure 1 X-ray diffraction for GO and airgel samples GO-MMW-CS at pH 10.
  • Figure 2 FTIR spectroscopy for GO and GO-MMW-CS at pH 10.
  • Figure 3 Raman spectrum for GO-MMW-CS sample at pH 10.
  • Figure 4 Raman spectra for GO-MMW-CS and GO-MMW-CS-Ext samples at pH 10.
  • Figure 5 Deconvolution of Raman spectra for samples of (A) GO-MMW-CS and (B) GO-MMW-CS-Ext at pH 10.
  • Figure 6 Elastic module of the synthesized aerogels.
  • Figure 7 SEM images of the aerogels without load and with load of grape extract (6% and 12%) at pH 4.
  • Figure 8 SEM images of the aerogels without load and with load of grape extract (6% and 12%) at pH 10.
  • Figure 9 SEM images and pore and sheet size analysis for GO-MMW-CS at pH 10.
  • Figure 10 SEM images and pore and sheet size analysis for GO-MMW-CS-Ext at pH 10.
  • FIG. 1 Absorption of PBS.
  • Figure 13 Percentage of blood absorption in the developed aerogels, gaza and fresh blood were used as controls.
  • Figure 14 SEM images of aerogels with a load of grape extract of 6% (A) and 12% (B) at pH 10 once the blood was absorbed.
  • the present technology corresponds to an airgel based on graphene oxide (GO) functionalized with a deacetylated derivative of chitin (CS) not covalently, with the inclusion of proanthocyanidins (PAs) in its matrix, whose physicochemical properties allow blood absorption and clot formation; and in turn, it allows the release of the extracts, which promote the negative charge on the surface of the airgel, promoting the healing of a wound.
  • GO graphene oxide
  • CS deacetylated derivative of chitin
  • PAs proanthocyanidins
  • This airgel has a high specific surface area (390 - 600 m 2 / g), a negative surface charge, which gives it a great capacity to absorb fluids, mainly blood, which makes it suitable as a hemostatic agent.
  • GO graphene oxide
  • CS chitosan
  • the airgel comprises at least the following components: a. graphene oxide (GO) between 60 - 93% w / w;
  • CS chitin
  • PAs proanthocyanidins
  • proanthocyanidins are obtained from grape seed extracts, so that through a sustained release process they are released from the airgel.
  • This airgel has a pore size between 10.2 - 13.0 pm and manages to absorb between 50 - 70 g / g of water and PBS, respectively, making it a good absorbent.
  • This technology has the advantage of absorbing profuse bleeding during the injury, and at the same time releasing the bioactive components (natural extract) at the site of the injury, in response to a change in pH that generates the release of blood and exudates from the wound.
  • Example 1 Synthesis of GO-CS aerogels with grape extract.
  • GO was synthesized from powdered graphite flakes, for which the Hummers method modified according to the protocol of Marcano et al. (ACS nano (2010) 4 (8), 4806), as it is a recommended method for exfoliation of the superimposed layers of graphene.
  • a solid mixture of KMn04 was prepared (3.6 g) and graphite (0.6 g), then slowly added to a liquid mixture of H2SO4 (72 mL) and H3PO4 (8 mL) with stirring in an ice bath under a hood. After it cooled, it was kept at a temperature of 50 ° C with stirring for 12 hours. The reaction was cooled and quenched with 30% v / v H2O2 and the product was filtered with a large filter.
  • the GO and CS compounds were lyophilized to prepare the non-covalent functionalization of GO-CS according to the protocol of Yu et al. ⁇ Journal of Environmental Chemical Engineering (2013) 1 (4), 1044), modified to assess the influence of pH and molecular weight of chitosan.
  • a mixture of 0.5 mg / mL GO and 600 mL MQ water was prepared at pH 6 and kept under stirring.
  • a low molecular weight CS solution (LMW-CS) (1.0 mg / mL, pH 2.30 mL) was then prepared, which was added slowly by dripping with a plunger pipette into the GO mixture, observing a brown precipitate. It was maintained by stirring for one hour and then 3 washes with MQ water were carried out at 4500 rpm for 5 minutes, obtaining a bottom product. It was placed in a glass Petri dish sealed with plastic wrap and covered. It was then frozen using CFC FREE equipment and lyophilized for three days.
  • LMW-CS low molecular weight CS solution
  • MMW-CS medium molecular weight CS
  • Example 2 Evaluation of the properties of the GO-CS airgel.
  • the samples were measured from 2 to 50 ° (2Q) with steps of 0.02 Q and a measurement time of 141 s per step.
  • the crystallinity of GO and the formed aerogels was analyzed by XRD.
  • Figure 1 shows the diffractograms for GO (a) and for GO-MMW-CS (b) aerogels at pH 10.
  • a 10 ° diffraction peak (angle 2Q), typical of this, is observed. type of graphite material.
  • For the airgel sample a single 10 ° diffraction peak, similar to GO, is shown due to GO sheets stacked on the compound.
  • a small decrease in the diffraction peak is observed, added to a decrease in its intensity, since the interlaminar space increases. This effect is attributed to the fact that the CS chains are interspersed between the GO sheets, which is also associated with a correct distribution of the CS chains in the GO sheets.
  • FTIR Fourier transform infrared spectroscopy
  • the vibrational analysis was carried out by Raman spectroscopy on a Horiba model, Labram HR Evolution model with an excitation line of 633 nm, a power of 13.3 mW and 1.96 eV.
  • the laser location was centered on the sample using an Olympus 100x VIS lens and a NUV camera (B / S UV 50/50 + F125 D25 Lens). The laser intensity was kept constant to minimize any damage to the sample. All samples were measured using an object holder at room temperature and none of them was evaluated in solution.
  • Figure 3 shows the Raman spectrum of the airgel (GO-MMW-CS) without extract at pH 10, where three main peaks can be seen.
  • the first peak located at 1339 cnr 1 called band D, which is associated with the respiration mode of the sp 2 carbon rings with free bonds at the plane terminations.
  • the second major peak represents the G-band, located at 1583 cnr 1 , originates from vibration in the plane of carbon atoms with sp 2 hybridization.
  • the third peak, called the 2D band occurs at 2700 cnrr 1 .
  • CS is known to have a peak at 2837 cnr 1 , corresponding to the CH stretching vibration, which is not present in the spectrum for the GO-MMW-CS airgel, indicating that CS was incorporated into the material.
  • Figure 4 compares the Raman spectra of the airgel samples (GO-CS) without extract (a) and with extract (b), synthesized with CS from MMW and pH 10.
  • extract (b) When loading the samples with extract (b), observed a slight displacement in bands D and G, positioning them at 1337 and 1574 cnr 1 , respectively.
  • Figure 5 presents the deconvolution of the Raman signal for samples of aerogels without (A) and with (B) extract, respectively.
  • the D * band is observed, which represents the presence of amorphous carbons and their sp 3 hybridization, which did not show variations in their intensity when loading the airgel ( ⁇ 10%).
  • the intensity of the D ** band, when the airgel was loaded, did not show an appreciable variation ( ⁇ 10%). This result is reasonable, since there was no chemical modification of the GO structure and the vibrations of the C C, CH and residual graphite bonds are represented there.
  • the airgel was loaded with grape seed extract, it increased the intensity of the defects in the sample, a phenomenon represented by band D ', which increased by 330%.
  • the surface area of the aerogels GO-CS, GO-CS-extrac (12%) at pH 4 and 10 was estimated using the BET equation with the data obtained from the Micromeritics Gemini Vil team, adsorbing N2 at a temperature of -198.85 ° C from cryogenic bath with manual degassing, obtaining the PPo data up to a saturation pressure of 760 mm Hg.
  • BET design equation 1 was used, where (v) is the volume of gas adsorbed at pressure (P); (Po) is the saturation pressure; (v m ) is the volume of the gas absorbed when the adsorbent surface is completely covered by a unimolecular layer; and (c) corresponds to a constant related to the adsorbate-adsorbent system.
  • the aerogels had a surface area in a range between 390 - 600 m 2 / g and an average pore radius of 53 - 40 ⁇ , which generates a large amount of volume to absorb the blood.
  • the elastic modulus of the aerogels was influenced by the pH of the composition synthesis ( Figure 6).
  • the aerogels hardened and the elastic modulus increased even more, this increase being directly proportional to the concentration of the added extract, which would help to maintain the integrity of the composition during its application.
  • the morphological and surface properties of the particles were studied using scanning electron microscopy (SEM) (JSM-6380LV, JEOL).
  • Figures 7 and 8 show the SEM images of the aerogels synthesized without extract (A), and loaded with 6% (B) and 12% (C) of extract at pH 4 and pH 10, respectively.
  • the pH of the synthesis had an effect on the structure of the aerogels, at a basic pH a more intricate and rough structure is observed than at acid pH.
  • phosphate buffer PBS, pH 7.4
  • the same procedure was performed replacing the MQ water with the phosphate buffer and taking samples after 5, 15, 30, 60, 300, 1200 and 2700 seconds, to LMW-CS at pH 4 and 10, and MMW-CS at pH 4 and 1.
  • the results are presented in Figure 1 1 for the absorption of PBS and in Figure 12 for the absorption of water.
  • One of The main properties of the aerogels is their high absorption capacity, where it was verified that the aerogels reached their maximum absorption capacity independent of the fluid, a few seconds after starting their contact.
  • the aerogels managed to store 70 g / g of PBS and 50 g / g of water, respectively; this is caused by the presence of a more negative charge on the airgel, which allowed for greater attraction of solute molecules.
  • Fresh blood adsorption kinetics of the aerogels GO-CS, GO-CS-extrac (6%) and GO-CS-extrac (12%) were evaluated at pH 4 and 10, in 12-well well plates, at which were added 50 pl of fresh blood leaving it at different times (30, 60, 120, 180 and 240 s); After this period, 3 mL of MQ water were added homogeneously, forming a supernatant.
  • the supernatant was poured into a glass cell to be analyzed by UV absorption at 540 nm.
  • the absorption capacity was evaluated from a blank corresponding to absorption with gauze and pure blood.
  • Figure 14 shows SEM images of the blood absorption process using aerogels with 6% (A) and 12% (B) of extract. In them it is possible to distinguish the presence of white, red and platelet cells trapped in the pores of the airgel, which accounts for the success of the absorption of blood.
  • a thermostatic bath at 37.5 ° C (Fried Electric TEPS-1 Serial No. 1881) was mounted, and at the working temperature, a piece of airgel of known mass was added in a volume of 250 mL of PBS. The release time began when the piece of airgel of known mass was added to the PBS solution. Aliquots of 1.5 mL were taken at fixed time intervals and the channels were transferred to Eppendorf tubes. Between 0-10 minutes portions were taken at 2.5 min intervals. Then, between 30-60 minutes, extractions were made with intervals of 15 min; Aliquots were also taken at 60 and 120 minutes. After 12 hours, the last aliquot was removed from equilibrium.
  • the spectrophotometric analysis was carried out according to the method of determination of total phenols using the Folin-Ciocalteu reagent. Measurements were taken on a Spectroquant Prove 600 spectrophotometer at 765 nm.
  • the extract release percentage is finally given by the following expression:
  • Atest is the absorbance of the sample extracted from the PBS solution and Acontroi is the absorbance of the control sample with% of known extract.
  • the release data of the aerogels in PBS is shown in Figure 15.
  • a sustained release of the extract is observed during the first minutes, without observing differences between the samples.
  • the release of the extract was directly proportional to its mass, the higher the concentration loaded, the more it was released, releasing about 30% of what was loaded (at 12 h or 720 min).
  • the airgel synthesized at pH 4 with 12% extract was the one that presented the most release, as a result of which proanthocyanidins are more stable at acidic pH than at basic pH.

Abstract

The invention relates to an aerogel that allows blood absorption and clot formation for wound healing, which comprises 60-93% w/w graphene oxide noncovalently functionalised with a deacetylated chitin derivative in a proportion of 50-5% w/w and 15-2% w/w proanthocyanidins in the matrix thereof.

Description

AEROGEL EN BASE A ÓXIDO DE GRAFENO Y QUITOSANO CON APLICACIÓN HEMOSTÁTICA. AEROGEL BASED ON GRAPHENE OXIDE AND CHITOSAN WITH HEMOSTATIC APPLICATION.
Sector Técnico Technical Sector
La tecnología está orientada al área de la salud, más particularmente, corresponde a un aerogel que permite la absorción de sangre y formación de coágulo para la cicatrización de una herida. The technology is aimed at the health area, more particularly, it corresponds to an airgel that allows the absorption of blood and the formation of a clot for wound healing.
Técnica Anterior Previous Technique
Las heridas son afecciones comunes que se presentan en los seres humanos y que en dependencia de su magnitud y el lugar donde se produce -sea vena o arteria- pueden conducir a hemorragias o sangramientos profusos, que pueden provocar hasta el deceso de una persona. Según reporta la Organización Mundial de la Salud (OMS), para el año 2017 las principales causas de defunción fueron dadas por afecciones cardiovasculares y diabetes, ambas enfermedades con tendencia directa a la aparición de sangramientos. Wounds are common conditions that occur in humans and depending on their magnitude and the place where it occurs -either vein or artery- can lead to profuse bleeding or bleeding, which can lead to the death of a person. As reported by the World Health Organization (WHO), for 2017 the main causes of death were due to cardiovascular conditions and diabetes, both diseases with a direct tendency to the appearance of bleeding.
En general, para tratar estas afecciones se utilizan agentes hemostáticos (apósitos ideales), que deben lograr una curación rápida de la herida a un costo razonable y con el mínimo de inconvenientes para el paciente. Desde el punto de vista fisiológico, el apósito que se utilice debe ser compatible con las células de la piel que estén expuestas, además deben permitir una buena exudación en la herida, una correcta oclusión de la misma y garantizar la presencia de un ambiente húmedo para permitir que se mantenga un adecuado suministro de sangre y oxígeno, una temperatura adecuada, y con ello, se evite la infección (Boateng & Catanzano, 2015). In general, hemostatic agents (ideal dressings) are used to treat these conditions, which should achieve rapid wound healing at a reasonable cost and with minimal inconvenience to the patient. From the physiological point of view, the dressing used must be compatible with the exposed skin cells, they must also allow good exudation in the wound, correct occlusion of the wound and guarantee the presence of a humid environment for allowing an adequate supply of blood and oxygen to be maintained, an adequate temperature, and thereby avoiding infection (Boateng & Catanzano, 2015).
En dependencia del tipo y magnitud de la herida, nivel de exudado, presencia o no de infección y etapa de la curación en la cual se encuentre la herida, varios productos médicos han sido ocupados para estos fines. Estos materiales hemostáticos se pueden clasificar en dependencia de su modo de acción en el organismo en hidrogeles, hidrocoloides estándares, compresas impregnadas, apósitos bioactivos y de carbón, o materiales reabsorbióles como Gelfoam®, Surgicel® y aerogeles. Un factor importante para el uso de estos materiales como agentes hemostáticos son sus propiedades de superficie y en particular, su carga superficial. Ante esta situación, surge la necesidad de desarrollar formulaciones con propiedades mejoradas para la entrega eficaz y precisa de los agentes terapéuticos requeridos. Depending on the type and magnitude of the wound, level of exudate, presence or absence of infection and stage of healing in which the wound is, several medical products have been used for these purposes. These hemostatic materials can be classified depending on their mode of action in the body into hydrogels, standard hydrocolloids, impregnated compresses, bioactive and carbon dressings, or reabsorbiol materials such as Gelfoam®, Surgicel® and aerogels. An important factor for the use of these materials as hemostatic agents is their surface properties and, in particular, their surface load. Faced with this situation, the need arises to develop formulations with improved properties for the effective and precise delivery of the required therapeutic agents.
En el caso de materiales hemostáticos inorgánicos micro- o meso-porosos, estos promueven la hemostasia en base a la absorción rápida del fluido y la proliferación de células sanguíneas y plaquetas (Liang, et al., 2018). Un ejemplo de esto, son las gazas de quitosano modificada con polímeros sintéticos (Chan et al., 2016), cuya superficie cargada positivamente detiene el sangrado de heridas mediante la interacción electrostática con las membranas celulares cargadas negativamente de eritrocitos, para causar su aglutinación y el sellado de la herida mediante la adhesión tisular. Yan y colaboradores (2017) proponen un material tipo esponja basado en colágeno reforzado con quitosano y nanoflores de pirofosfato de calcio, el cual es capaz de activar el procedimiento intrínseco de la cascada de coagulación, induciendo la adherencia de hemocitos y plaquetas, y promoviendo la coagulación de la sangre hasta controlar la hemorragia in vitro e in vivo. Del mismo modo, se han desarrollado hidrogeles para actividad hemostática (Behrens et al., 2014), a partir de partículas de hidrogel sintético con N-(3-aminopropil) metacrilamida, mostrando un rápido hinchamiento debido a la absorción de sangre causando agregación local mientras retarda la coagulación en el seno del fluido, con lo cual se evitado el riesgo de la formación de trombos distales. Esto debido a la superficie altamente positiva y una baja densidad de reticulado. Estas tecnologías coinciden en la importancia de la modificación superficial para la mejora de sus propiedades y su posterior agregación plaquetaria iniciando el proceso de coagulación. No obstante, ellos no incorporan agentes activos que respondan al estímulo del sangrado, propiciando el proceso de coagulación. In the case of micro- or meso-porous inorganic hemostatic materials, these promote hemostasis based on the rapid absorption of the fluid and the proliferation of blood cells and platelets (Liang, et al., 2018). An example of this is the chitosan bands modified with synthetic polymers (Chan et al., 2016), whose positively charged surface stops wound bleeding through electrostatic interaction with cell membranes. negatively charged with erythrocytes, to cause agglutination and wound sealing through tissue adhesion. Yan et al. (2017) propose a sponge-like material based on collagen reinforced with chitosan and calcium pyrophosphate nanoflowers, which is capable of activating the intrinsic procedure of the coagulation cascade, inducing adhesion of hemocytes and platelets, and promoting the blood coagulation to control bleeding in vitro and in vivo. Similarly, hydrogels have been developed for hemostatic activity (Behrens et al., 2014), from synthetic hydrogel particles with N- (3-aminopropyl) methacrylamide, showing rapid swelling due to the absorption of blood causing local aggregation while delaying coagulation in the fluid, thereby avoiding the risk of distal thrombus formation. This due to the highly positive surface and low crosslink density. These technologies agree on the importance of surface modification for the improvement of its properties and its subsequent platelet aggregation, initiating the coagulation process. However, they do not incorporate active agents that respond to the stimulation of bleeding, promoting the coagulation process.
Por otra parte, el progreso en la nanotecnología ha permitido la síntesis de nuevos precursores de nanomateriales y/o materiales inteligentes con la finalidad de ser aplicados en procesos hemostáticos, considerando que estos materiales presentan propiedades fisicoquímicas y biológicas que avalan su uso en el área biomédica (Howe & Cherpelis, 2013). Entre los mismos, se destacan los derivados del grafeno y en particular el óxido de grafeno (GO), ya que es calificado como un potencial material de construcción para producir sistemas de administración de fármacos debido a su gran superficie específica, abundantes grupos funcionales y a su biocompatibilidad (Mao et al., 2013). La presencia de grupos funcionales oxigenados en la estructura del GO, le han permitido desarrollar diversas propiedades favorables, las cuales han sido empleadas exitosamente en el área biomédica (Nezakati et al., 1987). Sin embargo, en este campo de estudio, este material ha presentado problemas de biocompatibilidad y toxicidad a determinadas concentraciones, por lo que ha sido unido a polímeros, cuyo proceso de funcionalización mejora las propiedades de ambos materiales (Pinto et al., 2013). On the other hand, the progress in nanotechnology has allowed the synthesis of new precursors of nanomaterials and / or intelligent materials in order to be applied in hemostatic processes, considering that these materials have physicochemical and biological properties that support their use in the biomedical area. (Howe & Cherpelis, 2013). Among them, the derivatives of graphene and in particular graphene oxide (GO) stand out, since it is qualified as a potential construction material to produce drug delivery systems due to its large specific surface area, abundant functional groups and its biocompatibility (Mao et al., 2013). The presence of oxygenated functional groups in the GO structure has allowed it to develop various favorable properties, which have been successfully used in the biomedical area (Nezakati et al., 1987). However, in this field of study, this material has presented biocompatibility and toxicity problems at certain concentrations, so it has been linked to polymers, whose functionalization process improves the properties of both materials (Pinto et al., 2013).
Por otra parte, los materiales compuestos basados en polímeros funcionalizados con GO, pueden transformarse en estructuras porosas 3D llamados aerogeles. Los aerogeles son materiales coloidales similares a los geles, con estructuras tridimensionales en las cuales el componente líquido es cambiado por gas, y como resultado se logran estructuras de baja densidad, altamente porosas, con una gran área superficial y buenas propiedades mecánicas (Araby et al., 2016). Para su obtención se utiliza una técnica sol-gel, que consiste básicamente en obtener un hidrogel altamente reticulado, el cual posteriormente se somete a procesos de liofilización o secado supercrítico con CO2 para dar lugar a la obtención de los aerogeles (Ma et al., 2015). Numerosos polímeros, naturales o sintéticos se han ocupado para generar aerogeles para estos fines, tales como el polietilenglicol (PEG), polivinilalcohol (PVA), ácido poliláctico, quitosano (CS), gelatina, poliacrilamida, entre otros (Pan et al., 2017; Bai et al., 2010; Bao et al., 201 1 ; Piao et al., 2015; Scaffaro et al., 2016). On the other hand, composite materials based on GO-functionalized polymers can be transformed into 3D porous structures called aerogels. Aerogels are colloidal materials similar to gels, with three-dimensional structures in which the liquid component is exchanged for gas, and as a result highly porous, low-density structures with a large surface area and good mechanical properties are achieved (Araby et al ., 2016). To obtain it, a sol-gel technique is used, which basically consists of obtaining a highly crosslinked hydrogel, which is subsequently subjected to freeze drying or supercritical drying with CO2 to give rise to obtaining the aerogels (Ma et al., 2015). Many polymers, natural or synthetic, have been used to generate aerogels for these purposes, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polylactic acid, chitosan (CS), gelatin, polyacrylamide, among others (Pan et al., 2017; Bai et al., 2010; Bao et al., 201 1; Piao et al., 2015; Scaffaro et al., 2016).
El proceso de síntesis de los aerogeles está influenciado por variables tales como grado de oxidación del GO y tiempo de sonicación del mismo, temperatura de reacción del polímero y del GO, pH de la solución GO/polímero, proporción GO/polímero, carga superficial, entre otras. Estas variables generan cambios significativos en la estructura de los aerogeles, de ahí la importancia de considerar su estudio en nuevas formulaciones. The synthesis process of the aerogels is influenced by variables such as GO oxidation degree and sonication time, reaction temperature of the polymer and GO, pH of the GO / polymer solution, GO / polymer ratio, surface charge, among other. These variables generate significant changes in the structure of the aerogels, hence the importance of considering their study in new formulations.
Adicionalmente, evidencias experimentales han demostrado que la inclusión de materiales con propiedades activas, en las matrices poliméricas de aerogeles modifican sus propiedades superficiales, en favor de mejorar la interacción con medios externos. Estos materiales que se cargan a los aerogeles pueden a su vez ser liberados al medio y actuar como fármacos en dependencia de la finalidad que se les otorgue. Additionally, experimental evidence has shown that the inclusion of materials with active properties in the aerogel polymer matrices modify their surface properties, in favor of improving interaction with external media. These materials that are charged to the aerogels can in turn be released into the environment and act as drugs depending on the purpose given to them.
Teniendo en cuenta estos antecedentes, un desafío actual es el desarrollo de materiales inteligentes cuyas modificaciones estructurales favorezcan las interacciones de estos biomateriales con medios externos como la sangre; permitiendo que los mismos actúen como agentes promotores de la hemostasia, acelerando los procesos de coagulación sanguínea. Taking this background into account, a current challenge is the development of intelligent materials whose structural modifications favor the interactions of these biomaterials with external media such as blood; allowing them to act as agents promoting hemostasis, accelerating blood coagulation processes.
Referencias: References:
• Araby, S., et al., Journal of Materials Science (2016) 51 (20), 9157. • Araby, S., et al., Journal of Materials Science (2016) 51 (20), 9157.
• Aron, P. M., and Kennedy, J. A., Molecular Nutrition & Food Research (2008) 52 (1 ), 79. • Aron, P. M., and Kennedy, J. A., Molecular Nutrition & Food Research (2008) 52 (1), 79.
• Bai, H., et al., Chemical Communications (2010) 46 (14), 2376. • Bai, H., et al., Chemical Communications (2010) 46 (14), 2376.
• Bao, H., et al., Small (Weinheim an der Bergstrasse, Germany) (201 1 ) 7 (1 1 ), 1569. • Bao, H., et al., Small (Weinheim an der Bergstrasse, Germany) (201 1) 7 (1 1), 1569.
• Behrens, A. M., et al., Acta biomaterialia (2014) 10 (2), 701 . • Behrens, A. M., et al., Acta biomaterialia (2014) 10 (2), 701.
• Boateng, J., & Catanzano, O., Journal of pharmaceutical Sciences (2015) 104 (1 1 ), 3653. • Boateng, J., & Catanzano, O., Journal of pharmaceutical Sciences (2015) 104 (1 1), 3653.
• Chan, L. W., et al., Acta biomaterialia (2016) 31 , 178. • Chan, L. W., et al., Acta biomaterialia (2016) 31, 178.
• Howe, N., and Cherpelis, B., Journal of the American Academy of Dermatology (2013) 69 (5), 659. e1 . • Howe, N., and Cherpelis, B., Journal of the American Academy of Dermatology (2013) 69 (5), 659. e1.
• Nezakati, T., et al., Archives of Toxicology (2014) 88 (1 1 ), 1987. • Nezakati, T., et al., Archives of Toxicology (2014) 88 (1 1), 1987.
• Ma, Y., and Chen, Y., National Science Review (2015) 2 (1 ), 40. • Ma, Y., and Chen, Y., National Science Review (2015) 2 (1), 40.
• Li, G. F., et al., Colloids and Surfaces B-Biointerfaces (2018) 161 , 27. • Li, G. F., et al., Colloids and Surfaces B-Biointerfaces (2018) 161, 27.
• Liang, Y. P., et al., Colloids and Surfaces B-Biointerfaces (2018) 169, 168.• Liang, Y. P., et al., Colloids and Surfaces B-Biointerfaces (2018) 169, 168.
• Pan, C., et al., Macromolecular Materials and Engineering (2017) 302 (10).• Pan, C., et al., Macromolecular Materials and Engineering (2017) 302 (10).
• Piao, Y., and Chen, B., Journal of Polymer Science Part B: Polymer Physics (2015) 53 (5), 356. • Piao, Y., and Chen, B., Journal of Polymer Science Part B: Polymer Physics (2015) 53 (5), 356.
• Pinto, A. M., et al., Colloids and surfaces. B, Biointerfaces (2013) 1 1 1 , 188. • Pinto, A. M., et al., Colloids and surfaces. B, Biointerfaces (2013) 1 1 1, 188.
• Scaffaro, R., et al., Composites Science and Technology (2016) 128 (Supplement C), 193. Yan, T. S., et al., Carbohydrate Polymers (2017) 170, 271 . DOI: 10.1016/j.carbpol.2017.04.080. • Scaffaro, R., et al., Composites Science and Technology (2016) 128 (Supplement C), 193. Yan, TS, et al., Carbohydrate Polymers (2017) 170, 271. DOI: 10.1016 / j.carbpol.2017.04.080.
Breve descripción de las figuras Brief description of the figures
Figura 1 : Difracción de Rayos-X para muestras de GO y aerogel GO-MMW-CS a pH 10. Figure 1: X-ray diffraction for GO and airgel samples GO-MMW-CS at pH 10.
Figura 2: Espectroscopia FTIR para GO y GO-MMW-CS a pH 10. Figure 2: FTIR spectroscopy for GO and GO-MMW-CS at pH 10.
Figura 3: Espectro Raman para muestra de GO-MMW-CS a pH 10. Figure 3: Raman spectrum for GO-MMW-CS sample at pH 10.
Figura 4: Espectros Raman para muestras de GO-MMW-CS y GO-MMW-CS-Ext a pH 10. Figure 4: Raman spectra for GO-MMW-CS and GO-MMW-CS-Ext samples at pH 10.
Figura 5: Deconvolución espectros Raman para muestras de (A) GO-MMW-CS y (B) GO-MMW-CS-Ext a pH 10. Figure 5: Deconvolution of Raman spectra for samples of (A) GO-MMW-CS and (B) GO-MMW-CS-Ext at pH 10.
Figura 6: Modulo elástico de los aerogeles sintetizados. Figure 6: Elastic module of the synthesized aerogels.
Figura 7: Imágenes SEM de los aerogeles sin carga y con carga de extracto de uva (6% y 12%) a pH 4. Figure 7: SEM images of the aerogels without load and with load of grape extract (6% and 12%) at pH 4.
Figura 8: Imágenes SEM de los aerogeles sin carga y con carga de extracto de uva (6% y 12%) a pH 10. Figure 8: SEM images of the aerogels without load and with load of grape extract (6% and 12%) at pH 10.
Figura 9: Imágenes SEM y análisis de tamaños de poros y láminas para GO- MMW-CS a pH 10. Figure 9: SEM images and pore and sheet size analysis for GO-MMW-CS at pH 10.
Figura 10: Imágenes SEM y análisis de tamaños de poros y láminas para GO- MMW-CS-Ext a pH 10. Figure 10: SEM images and pore and sheet size analysis for GO-MMW-CS-Ext at pH 10.
Figura 1 1 : Absorción de PBS. Figure 1 1: Absorption of PBS.
Figura 12: Absorción de agua. Figure 12: Water absorption.
Figura 13: Porcentaje de absorción de sangre en los aerogeles desarrollados, gaza y sangre fresca fueron usados como controles. Figure 13: Percentage of blood absorption in the developed aerogels, gaza and fresh blood were used as controls.
Figura 14: Imágenes SEM de los aerogeles con carga de extracto de uva de 6% (A) y 12% (B) a pH 10 una vez que absorbido la sangre. Figure 14: SEM images of aerogels with a load of grape extract of 6% (A) and 12% (B) at pH 10 once the blood was absorbed.
Figura 15. Liberación del extracto de semilla de uva desde los aerogeles sintetizados. Figure 15. Release of the grape seed extract from the synthesized aerogels.
Divulgación de la Invención Disclosure of the Invention
La presente tecnología corresponde a un aerogel en base a óxido de grafeno (GO) funcionalizado con un derivado desacetilado de la quitina (CS) no covalentemente, con la inclusión de proantocianidinas (PAs) en su matriz, cuyas propiedades fisicoquímicas permiten la absorción de sangre y formación de coágulo; y a su vez, permite la liberación de los extractos, que promueven la carga negativa de la superficie del aerogel propiciando la cicatrización de una herida. The present technology corresponds to an airgel based on graphene oxide (GO) functionalized with a deacetylated derivative of chitin (CS) not covalently, with the inclusion of proanthocyanidins (PAs) in its matrix, whose physicochemical properties allow blood absorption and clot formation; and in turn, it allows the release of the extracts, which promote the negative charge on the surface of the airgel, promoting the healing of a wound.
Este aerogel posee una alta área superficial específica (390 - 600 m2/g), una carga superficial negativa, lo que le confiere una gran capacidad de absorber fluidos, principalmente sangre, que lo hacen adecuado como agente hemostático. Esto se debe a que el óxido de grafeno (GO), dado sus propiedades químicas y físicas, se funcionaliza con quitosano (CS) permitiendo la generación de una estructura porosa, ligera y de gran versatilidad. This airgel has a high specific surface area (390 - 600 m 2 / g), a negative surface charge, which gives it a great capacity to absorb fluids, mainly blood, which makes it suitable as a hemostatic agent. This is due to the fact that the graphene oxide (GO), given its chemical and physical properties, is functionalized with chitosan (CS) allowing the generation of a porous, light and highly versatile structure.
Específicamente, el aerogel comprende al menos los siguientes componentes: a. óxido de grafeno (GO) entre 60 - 93% p/p; Specifically, the airgel comprises at least the following components: a. graphene oxide (GO) between 60 - 93% w / w;
b. un derivado desacetilado de la quitina (CS) entre 50 - 5% p/p; y c. proantocianidinas (PAs) entre 15 - 2 % p/p. b. a deacetylated derivative of chitin (CS) between 50-5% w / w; and c. proanthocyanidins (PAs) between 15 - 2% w / w.
Donde las proantocianidinas se obtienen a partir de extractos de semilla de uva, para qué mediante un proceso de liberación sostenida se liberen desde el aerogel. Where proanthocyanidins are obtained from grape seed extracts, so that through a sustained release process they are released from the airgel.
Este aerogel presentan un tamaño de poro entre 10,2 - 13,0 pm y logra absorber entre 50 - 70 g/g de agua y PBS, respectivamente, conviertiéndolo en un buen absorbente. This airgel has a pore size between 10.2 - 13.0 pm and manages to absorb between 50 - 70 g / g of water and PBS, respectively, making it a good absorbent.
Esta tecnología tiene como ventaja, absorber el sangrado profuso durante la lesión, y a la vez, liberar los componentes bioactivos (extracto natural) en el lugar de la lesión, en respuesta a un cambio de pH que genera la liberación de sangre y los exudados de la herida. Esto en comparación a los absorbentes comunes como las gazas, significa una mejora en un 100% del desempeño del absorbente. Este efecto combinado, por una parte, de absorber la sangre en caso de sangrado profuso, y a la vez, liberar un componente activo desde la matriz (extracto de semilla de uva), lo convierten en un producto único que no se comercializa actualmente. This technology has the advantage of absorbing profuse bleeding during the injury, and at the same time releasing the bioactive components (natural extract) at the site of the injury, in response to a change in pH that generates the release of blood and exudates from the wound. This compared to common absorbents such as gauze, means a 100% improvement in absorbent performance. This combined effect, on the one hand, of absorbing the blood in case of profuse bleeding, and at the same time releasing an active component from the matrix (grape seed extract), makes it a unique product that is not currently marketed.
Ejemplo de aplicación Application example
Ejemplo 1 . Síntesis de aerogeles GO-CS con extracto de uva. Example 1 . Synthesis of GO-CS aerogels with grape extract.
Primeramente, se procedió a la obtención de óxido de grafeno, luego a la síntesis de aerogeles GO-CS, y finalmente se obtuvieron aerogeles GO-CS con extracto de uva, el detalle de cada uno se presenta a continuación: Firstly, graphene oxide was obtained, then GO-CS aerogels were synthesized, and finally GO-CS aerogels were obtained with grape extract, the details of each are presented below:
1 .1 . Síntesis de óxido de grafeno. eleven . Synthesis of graphene oxide.
El GO fue sintetizado a partir de escamas de grafito en polvo, para lo cual se utilizó el método de Hummers modificado según el protocolo de Marcano et al. (ACS nano (2010) 4 (8), 4806), por ser un método recomendado para exfoliación de las capas superpuestas de grafeno. Se preparó una mezcla sólida de KMn04 (3,6 g) y grafito (0,6 g), luego se agregó lentamente a una mezcla líquida de H2SO4 (72 mL) y H3PO4 (8 mL) agitando en baño de hielo bajo campana. Luego de que se enfrió, se mantuvo a una temperatura de 50°C con agitación por 12 horas. Se enfrió y detuvo la reacción con H2O2 al 30% v/v y se filtró el producto con un filtro grande. Se lavó y centrifugó por 10 minutos a 20.000 rpm, donde el sobrenadante se desechó y se recolectó el sólido. Se lavó lo recolectado con HCI al 30% v/v, se filtró y centrifugó a 20.000 rpm por 10 minutos. A continuación, se realizó un lavado con etanol, se filtró y centrifugó. Estos lavados y centrifugados se repitieron con agua Mili-Q (MQ) dos veces. El material resultante fue coagulado con éter y recuperando el sólido final para luego ser liofilizado durante 3 días. GO was synthesized from powdered graphite flakes, for which the Hummers method modified according to the protocol of Marcano et al. (ACS nano (2010) 4 (8), 4806), as it is a recommended method for exfoliation of the superimposed layers of graphene. A solid mixture of KMn04 was prepared (3.6 g) and graphite (0.6 g), then slowly added to a liquid mixture of H2SO4 (72 mL) and H3PO4 (8 mL) with stirring in an ice bath under a hood. After it cooled, it was kept at a temperature of 50 ° C with stirring for 12 hours. The reaction was cooled and quenched with 30% v / v H2O2 and the product was filtered with a large filter. It was washed and centrifuged for 10 minutes at 20,000 rpm, where the supernatant was discarded and the solid was collected. The collected was washed with 30% v / v HCI, filtered and centrifuged at 20,000 rpm for 10 minutes. Then, an ethanol wash was carried out, filtered and centrifuged. These washes and spins were repeated with Mili-Q (MQ) water twice. The resulting material was coagulated with ether and recovering the final solid and then being lyophilized for 3 days.
1 .2.- Síntesis de los aerogeles GO-CS. 1 .2.- Synthesis of the aerogels GO-CS.
Los compuestos de GO y CS fueron liofilizados para preparar la funcionalización no-covalente de GO-CS según el protocolo de Yu et al. {Journal of Environmental Chemical Engineering (2013) 1 (4), 1044), modificado para evaluar la influencia del pH y el peso molecular del quitosano. The GO and CS compounds were lyophilized to prepare the non-covalent functionalization of GO-CS according to the protocol of Yu et al. {Journal of Environmental Chemical Engineering (2013) 1 (4), 1044), modified to assess the influence of pH and molecular weight of chitosan.
Se preparó una mezcla de 0,5 mg/mL de GO y 600 mL de agua MQ a pH 6 y se mantuvo bajo agitación. Luego se preparó una solución de CS de bajo peso molecular (LMW-CS) (1 ,0 mg/mL, pH 2, 30 mL), la cual fue agregada lentamente mediante goteo con una pipeta de embolo en la mezcla de GO, observándose un precipitado color café. Se mantuvo mediante agitación por una hora y luego se realizaron 3 lavados con agua MQ a 4500 rpm por 5 minutos obteniéndose un producto en el fondo. Se depositó en una placa Petri de vidrio sellada con papel film y tapada. Luego se congeló utilizando el quipo CFC FREE y liofilizó durante tres días. A mixture of 0.5 mg / mL GO and 600 mL MQ water was prepared at pH 6 and kept under stirring. A low molecular weight CS solution (LMW-CS) (1.0 mg / mL, pH 2.30 mL) was then prepared, which was added slowly by dripping with a plunger pipette into the GO mixture, observing a brown precipitate. It was maintained by stirring for one hour and then 3 washes with MQ water were carried out at 4500 rpm for 5 minutes, obtaining a bottom product. It was placed in a glass Petri dish sealed with plastic wrap and covered. It was then frozen using CFC FREE equipment and lyophilized for three days.
Se recreó el mismo protocolo agregando NaOFI 1 M mediante goteo a la mezcla resultante GO-LMW-CS hasta alcanzar un pH=10, observándose un precipitado más oscuro. Luego se siguieron los mismos pasos de agitación, centrifugado y lavado. The same protocol was recreated by adding 1 M NaOFI dropwise to the resulting GO-LMW-CS mixture until reaching pH = 10, observing a darker precipitate. Then the same stirring, spinning and washing steps were followed.
Finalmente, se llevó a cabo el mismo protocolo anterior utilizando CS de medio peso molecular (MMW-CS). Con esto se obtuvo un total de 4 GO-CS, dos utilizando LMW-CS a pH 4 y 10, y dos utilizando MMW-CS a pH 4 y 10. En la Tabla 1 se presentan las condiciones a las cuales se produjeron los aerogeles. Finally, the same protocol as above was carried out using medium molecular weight CS (MMW-CS). With this, a total of 4 GO-CS was obtained, two using LMW-CS at pH 4 and 10, and two using MMW-CS at pH 4 and 10. Table 1 shows the conditions under which the aerogels were produced. .
Tabla 1 . Condiciones de síntesis para aerogeles Table 1 . Synthesis conditions for aerogels
Figure imgf000007_0001
1 .3.- Síntesis de los aerogeles GO-CS con extracto de uva (GO-CS-ext.).
Figure imgf000007_0001
1 .3.- Synthesis of GO-CS aerogels with grape extract (GO-CS-ext.).
Para la carga de los aerogeles se ocupó el protocolo de Yu et al. ( Journal of Environmental Chemical Engineering (2013) 1 (4), 1044), con modificaciones. Estando la mezcla de GO-CS en agitación, habiendo ya ajustado su pH, se le agregaron lentamente 20 o 40 mg de extracto de semilla de uva. Luego de una hora en agitación se centrifugo, lavó, congeló y liofilizó la muestra de aerogel GO-CS-Ext. For the loading of the aerogels, the protocol of Yu et al. (Journal of Environmental Chemical Engineering (2013) 1 (4), 1044), with modifications. With the GO-CS mixture being stirred, having already adjusted its pH, 20 or 40 mg of grape seed extract was slowly added. After stirring for one hour, the GO-CS-Ext airgel sample was centrifuged, washed, frozen and lyophilized.
Ejemplo 2. Evaluación de las propiedades del aerogel GO-CS. Example 2. Evaluation of the properties of the GO-CS airgel.
Se realizaron varios ensayos para demostrar las propiedades del aerogel, las que se detallan a continuación: Several tests were carried out to demonstrate the properties of the airgel, which are detailed below:
2.1 .- Espectro Difracción de Rayos X (DRX). 2.1 .- X-Ray Diffraction Spectrum (DRX).
El espectro DRX fue medido utilizando un difractómetro de rayos X marca Bruker AXS modelo D4 Endeavor con radiación Cu K (l=1 .541841 A; 2.2kW) como punto de referencia, un voltaje de 40 kV, y una corriente de 20 mA. Las muestras fueron medidas desde 2 a 50° (2Q) con pasos de 0,02Q y un tiempo de medición de 141 s por paso. La cristalinidad del GO y los aerogeles formados fue analizada mediante DRX. The DRX spectrum was measured using a Bruker AXS model D4 Endeavor X-ray diffractometer with Cu K radiation (l = 1.5541841 A; 2.2kW) as the reference point, a voltage of 40 kV, and a current of 20 mA. The samples were measured from 2 to 50 ° (2Q) with steps of 0.02 Q and a measurement time of 141 s per step. The crystallinity of GO and the formed aerogels was analyzed by XRD.
En la Figura 1 se presentan los difractogramas para el GO (a) y para los aerogeles GO-MMW-CS (b) a pH 10. Para el GO se observa un pico de difracción en 10° (ángulo 2Q), propio de este tipo de material grafitico. Para la muestra de aerogel se muestra un único pico de difracción en 10°, similar al del GO, debido a hojas de GO apiladas en el compuesto. Al incorporar el CS al GO y formar el aerogel se observa una pequeña disminución en el pico de difracción, sumado a una disminución en la intensidad de éste, dado que aumenta el espacio interlaminar. Este efecto se atribuye a que las cadenas de CS se intercalan entre las láminas de GO, lo que también se asocia a una correcta distribución de las cadenas de CS en las hojas del GO. Figure 1 shows the diffractograms for GO (a) and for GO-MMW-CS (b) aerogels at pH 10. For GO, a 10 ° diffraction peak (angle 2Q), typical of this, is observed. type of graphite material. For the airgel sample, a single 10 ° diffraction peak, similar to GO, is shown due to GO sheets stacked on the compound. When incorporating the CS into the GO and forming the airgel, a small decrease in the diffraction peak is observed, added to a decrease in its intensity, since the interlaminar space increases. This effect is attributed to the fact that the CS chains are interspersed between the GO sheets, which is also associated with a correct distribution of the CS chains in the GO sheets.
2.2.- Espectroscopia FTIR. 2.2.- FTIR Spectroscopy.
Las muestras fueron evaluadas por espectroscopia infrarroja con transformada de Fourier (FTIR), utilizando un espectrómetro FTIR marca Perkin Elmer modelo Spectrum two con accesorio UATR, en un rango de número de onda desde 500 a 4000 cnr1. The samples were evaluated by Fourier transform infrared spectroscopy (FTIR), using a Perkin Elmer brand FTIR spectrometer model Spectrum two with UATR accessory, in a wave number range from 500 to 4000 cnr 1 .
La presencia de grupos funcionales del GO (a) y GO-CS (b) fue identificada en los correspondientes espectros que se muestran en el rango entre 500 - 4000 cnr1 en la Figura 2. Los rasgos propios en el espectro FTIR del GO (a) son las bandas de absorción correspondientes a los enlaces C-0 en 972 cnr1 y enlaces C=0 a 1733 cnr1, lo que demuestra los distintos grupos oxigenados presentes en la superficie del GO. Se observa una banda ancha con peak 3300 cnr1 correspondiente a la presencia de enlaces -OFI, grupos hidroxilos, carboxilos y agua (correspondiente a agua interlaminar). En el espectro FTIR de la muestra de GO-CS (b) se observa un gran pico a 3550 cnr1 lo que indica enlaces -OH y -NH presentes en la estructura del CS. La presencia de enlaces C=0 queda demostrada por un peak a 1628 cnr1. The presence of functional groups of GO (a) and GO-CS (b) was identified in the corresponding spectra shown in the range between 500 - 4000 cnr 1 in Figure 2. Eigen traits on the FTIR spectrum of GO ( a) are the absorption bands corresponding to the C-0 bonds in 972 cnr 1 and C = 0 bonds to 1733 cnr 1 , which shows the different oxygenated groups present on the GO surface. A broad band with peak 3300 cnr 1 is observed, corresponding to the presence of -OFI bonds, hydroxyl groups, carboxyls and water (corresponding to interlaminar water). In the FTIR spectrum of the GO-CS (b) sample, a large peak is observed at 3550 cnr 1 , indicating -OH and -NH bonds present in the CS structure. The presence of C = 0 links is demonstrated by a peak at 1628 cnr 1 .
2.3.- Espestroscopía Raman. 2.3.- Raman spectroscopy.
El análisis vibracional se llevó a cabo mediante espectroscopia Raman en un espectrómetro marca Horiba, modelo Labram HR Evolution con una línea de excitación de 633 nm, una potencia de 13,3 mW y 1 ,96 eV. La ubicación del láser fue centrada en la muestra usando un lente Olympus 100x VIS y una cámara NUV (B/S UV 50/50 + Lente F125 D25). La intensidad del láser se mantuvo constante para minimizar cualquier daño en la muestra. Todas las muestras fueron medidas usando un soporte de objetos a temperatura ambiente y ninguna de ellas fue evaluada en solución. The vibrational analysis was carried out by Raman spectroscopy on a Horiba model, Labram HR Evolution model with an excitation line of 633 nm, a power of 13.3 mW and 1.96 eV. The laser location was centered on the sample using an Olympus 100x VIS lens and a NUV camera (B / S UV 50/50 + F125 D25 Lens). The laser intensity was kept constant to minimize any damage to the sample. All samples were measured using an object holder at room temperature and none of them was evaluated in solution.
En la Figura 3 se presenta el espectro Raman del aerogel (GO-MMW-CS) sin extracto a pH 10, donde se pueden apreciar tres picos principales. El primer pico localizado a 1339 cnr1, denominado banda D, el cual es asociado al modo de respiración de los anillos de carbono sp2 con enlaces libres en las terminaciones de los planos. El segundo pico principal representa la banda G, localizado a 1583cnr1, se origina de la vibración en el plano de los átomos de carbono con hibridación sp2. El tercer pico, denominado banda 2D, se presenta a 2700 cnrr1. Se conoce que el CS posee un pico a 2837 cnr1, correspondiente a la vibración de estiramiento C-H, el cual no se encuentra presente en el espectro para el aerogel GO-MMW-CS, lo cual indica que el CS fue incorporado al material.Figure 3 shows the Raman spectrum of the airgel (GO-MMW-CS) without extract at pH 10, where three main peaks can be seen. The first peak located at 1339 cnr 1 , called band D, which is associated with the respiration mode of the sp 2 carbon rings with free bonds at the plane terminations. The second major peak represents the G-band, located at 1583 cnr 1 , originates from vibration in the plane of carbon atoms with sp 2 hybridization. The third peak, called the 2D band, occurs at 2700 cnrr 1 . CS is known to have a peak at 2837 cnr 1 , corresponding to the CH stretching vibration, which is not present in the spectrum for the GO-MMW-CS airgel, indicating that CS was incorporated into the material.
En la Figura 4 se comparan los espectros Raman de las muestras de aerogel (GO-CS) sin extracto (a) y con extracto (b), sintetizadas con CS de MMW y pH 10. Al cargar las muestras con extracto (b) se observó un ligero desplazamiento en las bandas D y G, posicionándolas a 1337 y 1574 cnr1 , respectivamente. Para la muestra de aerogel sin extracto (a) se calculó una proporción de intensidades de ID/IG=3,57, la cual aumentó a ID/IG=4,33 en el aerogel cargado con extracto de semilla de uva, lo que evidencia la presencia éste en el aerogel. Figure 4 compares the Raman spectra of the airgel samples (GO-CS) without extract (a) and with extract (b), synthesized with CS from MMW and pH 10. When loading the samples with extract (b), observed a slight displacement in bands D and G, positioning them at 1337 and 1574 cnr 1 , respectively. For the airgel sample without extract (a) a ratio of intensities of ID / IG = 3.57 was calculated, which increased to ID / IG = 4.33 in the airgel loaded with grape seed extract, which shows its presence in the airgel.
En la Figura 5 se presenta la deconvolución de la señal Raman para muestras de aerogeles sin (A) y con (B) extracto, respectivamente. En ambas muestras se observa la banda D*, que representa la presencia de carbonos amorfos y su hibridación sp3, la cual no presentó variaciones en su intensidad al cargar el aerogel (<10%). La intensidad de la banda D**, al ser cargado el aerogel, no presentó una variación apreciable (<10%). Este resultado es razonable, puesto que no existió una modificación química de la estructura del GO y allí se representan las vibraciones de los enlaces C=C, C-H y de grafito residual. Al ser cargado el aerogel con extracto de semilla de uva, este aumentó la intensidad de los defectos de la muestra, fenómeno representado por la banda D', la cual aumento en un 330%. Figure 5 presents the deconvolution of the Raman signal for samples of aerogels without (A) and with (B) extract, respectively. In both samples, the D * band is observed, which represents the presence of amorphous carbons and their sp 3 hybridization, which did not show variations in their intensity when loading the airgel (<10%). The intensity of the D ** band, when the airgel was loaded, did not show an appreciable variation (<10%). This result is reasonable, since there was no chemical modification of the GO structure and the vibrations of the C = C, CH and residual graphite bonds are represented there. As the airgel was loaded with grape seed extract, it increased the intensity of the defects in the sample, a phenomenon represented by band D ', which increased by 330%.
2.4.- Área superficial y distribución de poros. 2.4.- Surface area and pore distribution.
El área superficial de los aerogeles GO-CS, GO-CS-extrac (12%) a pH 4 y 10 se estimó mediante la ecuación BET con los datos obtenidos del equipo Micromeritics Gemini Vil, adsorbiendo N2 a una temperatura de -198,85°C de baño criogénico con desgasificación manual, obteniéndose los datos de PPo hasta una presión de saturación de 760 mm Hg. The surface area of the aerogels GO-CS, GO-CS-extrac (12%) at pH 4 and 10 was estimated using the BET equation with the data obtained from the Micromeritics Gemini Vil team, adsorbing N2 at a temperature of -198.85 ° C from cryogenic bath with manual degassing, obtaining the PPo data up to a saturation pressure of 760 mm Hg.
Se utilizó la ecuación 1 de diseño de BET, donde (v) es el volumen del gas adsorbido a la presión (P); (Po) es la presión de saturación; (vm) es el volumen del gas absorbido cuando la superficie del adsorbente está completamente cubierta por una capa unimolecular; y (c) corresponde a una constante relacionada con el sistema adsorbato-adsorbente.
Figure imgf000010_0001
BET design equation 1 was used, where (v) is the volume of gas adsorbed at pressure (P); (Po) is the saturation pressure; (v m ) is the volume of the gas absorbed when the adsorbent surface is completely covered by a unimolecular layer; and (c) corresponds to a constant related to the adsorbate-adsorbent system.
Figure imgf000010_0001
Los resultados indicaron para los aerogeles tuvieron un área superficial en un rango entre 390 - 600 m2/g y un radio de poro medio de 53 - 40 Á, lo que genera una gran cantidad de volumen para absorber la sangre. The results indicated that the aerogels had a surface area in a range between 390 - 600 m 2 / g and an average pore radius of 53 - 40 Á, which generates a large amount of volume to absorb the blood.
2.5.- Módulo Elástico. 2.5.- Elastic Module.
Los ensayos de compresión uniaxial para obtener las curvas de esfuerzo contra deformación fueron tomadas con una máquina de ensayos universal marca Instron, modelo 4468, equipada con un software Instron Serie IX con una celda de 500 kN y un desplazamiento de 1 mm/min. The uniaxial compression tests to obtain the stress versus deformation curves were taken with a universal Instron test machine, model 4468, equipped with Instron Series IX software with a 500 kN cell and a displacement of 1 mm / min.
El módulo elástico de los aerogeles fue influenciado por el pH de la síntesis del composit (Figura 6). La resistencia a la compresión aumentó al pasar de pH ácido a básico, lo cual está relacionado con una mayor interacción entre los grupos funcionales del CS y del GO, al alejarse de los respectivos puntos isoeléctricos de los componentes originales (Pl: GO=pH 2,0, CS=pH 5,0), éstos deben tener sus grupos funcionales activados. Al agregar el extracto, los aerogeles se endurecieron y el modulo elástico aumentó aún más, siendo este aumento directamente proporcional a la concentración de extracto adicionado, lo que ayudaría a mantener la integridad del composit durante si aplicación. The elastic modulus of the aerogels was influenced by the pH of the composition synthesis (Figure 6). The compressive strength increased when going from acidic to basic pH, which is related to a greater interaction between the functional groups of CS and GO, when moving away from the respective isoelectric points of the original components (Pl: GO = pH 2 , 0, CS = pH 5.0), they must have their functional groups activated. When adding the extract, the aerogels hardened and the elastic modulus increased even more, this increase being directly proportional to the concentration of the added extract, which would help to maintain the integrity of the composition during its application.
2.6.- Morfología de los aerogeles. 2.6.- Morphology of aerogels.
Las propiedades morfológicas y superficiales de las partículas fueron estudiadas mediante microscopía electrónica de barrido (SEM) (JSM-6380LV, JEOL). The morphological and surface properties of the particles were studied using scanning electron microscopy (SEM) (JSM-6380LV, JEOL).
En las Figuras 7 y 8 se muestran las imágenes SEM de los aerogeles sintetizados sin extracto (A), y cargados con 6% (B) y 12% (C) de extracto a pH 4 y pH 10, respectivamente. El pH de la síntesis tuvo efecto sobre la estructura de los aerogeles, a pH básico se observa una estructura más intrincada y rugosa que a pH ácido. Figures 7 and 8 show the SEM images of the aerogels synthesized without extract (A), and loaded with 6% (B) and 12% (C) of extract at pH 4 and pH 10, respectively. The pH of the synthesis had an effect on the structure of the aerogels, at a basic pH a more intricate and rough structure is observed than at acid pH.
Para estudiar los poros y lámina de los GO-CS aerogeles se utilizó el software “Digital Gafan Microscopy 3.0” y se realizó una magnificación de la imagen SEM, representada en la Figura 9, para GO-MMW-CS a pH 10. Luego con esta imagen se realizó un perfil transversal para poder determinar cuánto medía cada lámina y los poros, determinando que las láminas tenían medidas entre 0,38 - 0,62 prm y los poros medían entre 10,2 - 13,0 pm. To study the pores and foil of the GO-CS aerogels, the “Digital Gafan Microscopy 3.0” software was used and a magnification of the SEM image, represented in Figure 9, was performed for GO-MMW-CS at pH 10. Then with This image was made a cross-sectional profile to determine how much each sheet and pores measured, determining that the sheets had measurements between 0.38 - 0.62 pm and the pores measured between 10.2 - 13.0 pm.
La carga del extracto en el aerogel hizo que el tamaño de las láminas aumentara y el de los poros disminuyera mientras más se incrementaba la carga. Para el caso del aerogel GO-CS-Ext se obtuvieron láminas de GO con medidas entre 0,9 - 1 ,4 pm y poros que medían entre 2,2 - 7,2 pm (Figura 10). Al adicionarse el extracto al aerogel, éste provocó una redistribución en la interacción de CS y GO, lo cual provocó una disminución en el tamaño de poros. Este dato concuerda con lo observado luego de sintetizar el GO-CS-Ext, el cual macroscópicamente presentó un aspecto más denso. A esto se le suma una mayor rigidez observada en los análisis de compresión, lo cual es coincidente con este análisis. The loading of the extract on the airgel caused the size of the sheets to increase and the size of the pores to decrease as the load increased. In the case of the GO-CS-Ext airgel, GO sheets were obtained with measurements between 0.9 - 1.4 pm and pores that measured between 2.2 - 7.2 pm (Figure 10). By adding the extract to the airgel, this caused a redistribution in the interaction of CS and GO, which caused a decrease in pore size. This data agrees with what was observed after synthesizing the GO-CS-Ext, which macroscopically presented a denser appearance. Added to this is the greater rigidity observed in the compression analyzes, which is consistent with this analysis.
2.7.- Carga superficial de los aerogeles. 2.7.- Surface load of the aerogels.
Se disolvieron pequeños trozos de aerogeles de aproximadamente 1 cm3 en 30 mi de agua y luego se sonicaron por 30 min. Posteriormente, se agitaron vigorosamente con ayuda del vortex, hasta obtener una solución homogénea. Se midió el Potencial Z en el equipo HORIBA SCIENTIFIC {nano partióle analyzer), el detalle de estos resultados se presenta en la Tabla 2. Small pieces of aerogels of about 1 cm 3 were dissolved in 30 ml of water and then sonicated for 30 min. Subsequently, they were shaken vigorously with the help of the vortex, until obtaining a homogeneous solution. Potential Z was measured in the HORIBA SCIENTIFIC equipment (nano parti analyzer), the detail of these results is presented in Table 2.
Los resultados indican que los aerogeles sintetizados presentaban carga negativa y al contrastar las muestras, se observó que la adición del extracto hizo que los aerogeles se volvieran aún más negativos frente una condición simulada de sangre (buffer PBS). La concentración de extracto y el pH de la síntesis tuvieron influencia en la carga superficial final. A mayor concentración y a pH de síntesis ácido, los aerogeles estuvieron más cargados negativamente, lo cual favorecería la activación de la cascada de coagulación en la herida. The results indicate that the synthesized aerogels were negatively charged and when contrasting the samples, it was observed that the addition of the extract caused the aerogels to become even more negative against a simulated blood condition (PBS buffer). The extract concentration and the pH of the synthesis influenced the final surface charge. At higher concentration and at acid synthesis pH, the aerogels were more negatively charged, which would favor the activation of the coagulation cascade in the wound.
Tabla 2. Potencial Z de aerogeles determiando en agua Table 2. Z potential of aerogels determining in water.
Figure imgf000011_0002
Figure imgf000011_0002
2.8.- Cinética de absorción de agua y en buffer fosfato (PBS). 2.8.- Kinetics of absorption of water and phosphate buffer (PBS).
Se evaluó la cinética de absorción de los aerogeles LMW-CS y MMW-CS a pH 10, con muestras de medidas 10mm x 10mm x 7mm, en promedio, las cuales fueron inmersas en 5 mi de agua MQ en una placa de vidrio (100x 15mm) retirando el exceso de ésta a distintos tiempos (5, 10, 15, 30, 60, 300, 900, 2700 segundos). Se midió la masa de cada muestra antes (So) y después (Sw) de cada inmersión y se evaluó la razón según la siguiente expresión: The absorption kinetics of the LMW-CS and MMW-CS aerogels were evaluated at pH 10, with samples measuring 10mm x 10mm x 7mm, on average, which were immersed in 5 ml of MQ water in a glass plate (100x 15mm) removing the excess of it at different times (5, 10, 15, 30, 60, 300, 900, 2700 seconds). The mass of each sample was measured before (So) and after (Sw) of each dive and the ratio was evaluated according to the following expression:
Figure imgf000011_0001
Figure imgf000011_0001
Para la absorción de buffer fosfato (PBS, pH 7,4), se realizó el mismo procedimiento reemplazando el agua MQ por el buffer fosfato y tomando muestras al cabo de 5, 15, 30, 60, 300, 1200 y 2700 segundos, para LMW-CS a pH 4 y 10, y a MMW-CS a pH 4 y 1 . Los resultados se presentan en la Figura 1 1 para la absorción de PBS y en la Figura 12 para la absorción de agua. Una de las principales propiedades de los aerogeles es su alta capacidad de absorción, donde se comprobó que los aerogeles alcanzaron su máxima capacidad de absorción independiente del fluido, a pocos segundos de empezar su contacto. Los aerogeles lograron almacenar 70 g/g de PBS y 50 g/g de agua, respectivamente; esto es causado por la presencia de una carga más negativa en el aerogel, lo que permitió una mayor atracción de las moléculas de soluto. Para el agua, no hubo influencia del peso molecular del CS, pero sí para la absorción de PBS. For the absorption of phosphate buffer (PBS, pH 7.4), the same procedure was performed replacing the MQ water with the phosphate buffer and taking samples after 5, 15, 30, 60, 300, 1200 and 2700 seconds, to LMW-CS at pH 4 and 10, and MMW-CS at pH 4 and 1. The results are presented in Figure 1 1 for the absorption of PBS and in Figure 12 for the absorption of water. One of The main properties of the aerogels is their high absorption capacity, where it was verified that the aerogels reached their maximum absorption capacity independent of the fluid, a few seconds after starting their contact. The aerogels managed to store 70 g / g of PBS and 50 g / g of water, respectively; this is caused by the presence of a more negative charge on the airgel, which allowed for greater attraction of solute molecules. For water, there was no influence on the molecular weight of CS, but there was for the absorption of PBS.
2.10.- Cinética de adsorción de sangre fresca. 2.10.- Fresh blood adsorption kinetics.
Se evaluó la cinética de adsorción de sangre fresca de los aerogeles GO-CS, GO-CS-extrac (6%) y GO-CS-extrac (12%) a pH 4 y 10, en placas well de 12 pocilios, a las cuales se les agregó 50 pl de sangre fresca dejándolo a distintos tiempos (30, 60, 120, 180 y 240 s); transcurrido este periodo se agregaron 3 mL de agua MQ de manera homogénea formando un sobrenadante. Fresh blood adsorption kinetics of the aerogels GO-CS, GO-CS-extrac (6%) and GO-CS-extrac (12%) were evaluated at pH 4 and 10, in 12-well well plates, at which were added 50 pl of fresh blood leaving it at different times (30, 60, 120, 180 and 240 s); After this period, 3 mL of MQ water were added homogeneously, forming a supernatant.
El sobrenadante fue vertido sobre una celda de vidrio para ser analizada mediante absorción UV a 540 nm. En donde al igual que en el procedimiento anterior, se evaluó la capacidad de absorción a partir de un blanco correspondiente a absorción con gaza y sangre pura. The supernatant was poured into a glass cell to be analyzed by UV absorption at 540 nm. Where, as in the previous procedure, the absorption capacity was evaluated from a blank corresponding to absorption with gauze and pure blood.
% Absorbancia = Promedio muestra * 100% (3) % Absorbance = Average sample * 100% (3)
En la Figura 13 se observa que la absorción fue casi inmediata, ya en los primeros 30 segundos de contacto entre la sangre y el aerogel prácticamente, el 100% de ésta fue incorporada a la matriz. Haciendo un zoom de los primeros segundos del ensayo, se observa que los aerogeles con carga de extracto 12% a pH 4, fueron los que presentaron una mejor absorción de sangre. Estos resultados validan el uso de los aerogeles como agentes hemostáticos, ya que su desempeño es muy superior de lo que ocurre con la gaza, un apósito usado tradicionalmente frente a sangrados. In Figure 13 it can be seen that the absorption was almost immediate, since in the first 30 seconds of contact between the blood and the airgel, practically 100% of it was incorporated into the matrix. Zooming in the first seconds of the test, it is observed that the aerogels with 12% extract load at pH 4, were the ones that presented a better absorption of blood. These results validate the use of aerogels as hemostatic agents, since their performance is far superior to that of gauze, a dressing traditionally used against bleeding.
En la Figura 14 se presentan imágenes SEM del proceso de absorción de sangre empleando los aerogeles con 6% (A) y 12 % (B) de extracto. En ellas es posible distinguir la presencia de glóbulos blancos, rojos y plaquetas atrapados en los poros del aerogel, lo que da cuenta del éxito de la absorción de la sangre. Figure 14 shows SEM images of the blood absorption process using aerogels with 6% (A) and 12% (B) of extract. In them it is possible to distinguish the presence of white, red and platelet cells trapped in the pores of the airgel, which accounts for the success of the absorption of blood.
2.1 .1 . Cinética de liberación del extracto 2.1 .1. Extract release kinetics
Los aerogeles GO-CS, GO-CS-extrac (6%) y GO-CS-extrac (12%) a pH 4 y 10, fueron sometidos a una liberación en PBS y la concetranción de fenoles totales fue determianda por el ensayo Folin Ciocalteau. The aerogels GO-CS, GO-CS-extrac (6%) and GO-CS-extrac (12%) at pH 4 and 10, were subjected to a release in PBS and the concentration of total phenols was determined by the Folin assay Ciocalteau.
Se montó un baño termostático a 37,5 °C (Fried Electric TEPS-1 N° Serie 1881 ), y alcanzada la temperatura de trabajo, se agregó un trozo de aerogel de masa conocida en un volumen de 250 mL de PBS. El tiempo de liberación comenzó al momento de añadir el trozo de aerogel de masa conocida a la solución de PBS. Se tomaron alícuotas de 1 ,5 mL en intervalos de tiempo fijos y los caules fueron transferidos a tubos Eppendorf. Entre 0 - 10 minutos se tomaron porciones en intervalos de 2,5 min. Luego entre 30 - 60 minutos, se realizaron extracciones con intervalos de 15 min; también se tomaron alícuotas a 60 y 120 minutos. Pasadas 12 horas se extrajo la última alícuota en el equilibrio. Obtenidas las muestras, se realizó el análisis espectrofotométrico según indica el método de determinación de fenoles totales utilizando el reactivo Folin-Ciocalteu. Las mediciones fueron tomadas en un espectrofotómetro Spectroquant Prove 600 a 765 nm. A thermostatic bath at 37.5 ° C (Fried Electric TEPS-1 Serial No. 1881) was mounted, and at the working temperature, a piece of airgel of known mass was added in a volume of 250 mL of PBS. The release time began when the piece of airgel of known mass was added to the PBS solution. Aliquots of 1.5 mL were taken at fixed time intervals and the channels were transferred to Eppendorf tubes. Between 0-10 minutes portions were taken at 2.5 min intervals. Then, between 30-60 minutes, extractions were made with intervals of 15 min; Aliquots were also taken at 60 and 120 minutes. After 12 hours, the last aliquot was removed from equilibrium. Obtained the samples, the spectrophotometric analysis was carried out according to the method of determination of total phenols using the Folin-Ciocalteu reagent. Measurements were taken on a Spectroquant Prove 600 spectrophotometer at 765 nm.
El porcentaje de liberación de extracto finalmente está dado por la siguiente expresión: The extract release percentage is finally given by the following expression:
% Liberación = Atest x 100 (4) Release% = Atest x 100 (4)
Acontrol Acontrol
Donde Atest es la absorbancia de la muestra extraída de la solución de PBS y Acontroi es la absorbancia de la muestra control con % de extracto conocida. Where Atest is the absorbance of the sample extracted from the PBS solution and Acontroi is the absorbance of the control sample with% of known extract.
En la Figura 15 se muestran los datos de liberación de los aerogeles en PBS. En ella, se observa una liberación sostenida del extracto durante los primeros minutos, sin observar diferencias entre las muestras. Al alcanzar el equilibrio, la liberación del extracto fue directamente proporcional a la masa de éste, a mayor concentración cargada, más se liberó llegando a liberarse cerca del 30% de lo cargado (a las 12 h o 720 min). El aerogel sintetizado a pH 4 con 12% de extracto, fue el que más liberación presentó, producto de que las proantocianidinas son más estables a pH ácido que a pH básico. Estos resultados son concordantes con lo observado en la absorción de sangre, donde el aerogel que más absorbió fue el que tenía más concentración de extracto. The release data of the aerogels in PBS is shown in Figure 15. In it, a sustained release of the extract is observed during the first minutes, without observing differences between the samples. Upon reaching equilibrium, the release of the extract was directly proportional to its mass, the higher the concentration loaded, the more it was released, releasing about 30% of what was loaded (at 12 h or 720 min). The airgel synthesized at pH 4 with 12% extract, was the one that presented the most release, as a result of which proanthocyanidins are more stable at acidic pH than at basic pH. These results are consistent with that observed in the absorption of blood, where the airgel that absorbed the most was the one with the highest concentration of extract.
Finalmente, estos resultados permitieron demostrara la capacidad hemostática que presenta el aerogel a base de óxido de grafeno y quitosano, además de extracto de uva. Finally, these results allowed to demonstrate the hemostatic capacity of the airgel based on graphene oxide and chitosan, in addition to grape extract.

Claims

Reivindicaciones Claims
1 Un aerogel que permite la absorción de sangre y formación de coágulo para la cicatrización de una herida CARACTERIZADO porque comprende óxido de grafeno entre 60 - 93% p/p, funcionalizado no-covalentemente con un derivado desacetilado de la quitina entre 50 - 5% p/p y proantocianidinas entre 15 - 2 p/p% en su matriz. 1 An airgel that allows blood absorption and clot formation for wound healing CHARACTERIZED because it comprises graphene oxide between 60 - 93% w / w, non-covalently functionalized with a deacetylated derivative of chitin between 50 - 5% w / w and proanthocyanidins between 15 - 2 w / w% in their matrix.
2.- Un aerogel que permite la absorción de sangre y formación de coágulo según reivindicación 1 , CARACTERIZADO porque las proantocianidinas se obtienen a partir de extractos de semilla de uva. 2.- An airgel that allows blood absorption and clot formation according to claim 1, CHARACTERIZED because the proanthocyanidins are obtained from grape seed extracts.
3.- Un aerogel que permite la absorción de sangre y formación de coágulo según reivindicación 1 , CARACTERIZADO porque tiene un área superficial específica entre 390 - 600 m2/g. 3.- An airgel that allows blood absorption and clot formation according to claim 1, CHARACTERIZED because it has a specific surface area between 390 - 600 m 2 / g.
4.- Un aerogel que permite la absorción de sangre y formación de coágulo según reivindicación 1 , CARACTERIZADO porque presenta un tamaño de poro entre 10,2 - 13,0 pm. 4.- An airgel that allows blood absorption and clot formation according to claim 1, CHARACTERIZED because it has a pore size between 10.2 - 13.0 pm.
5.- Un aerogel que permite la absorción de sangre y formación de coágulo según reivindicación 1 , CARACTERIZADO porque absorbe entre 50 - 70 g/g de agua y PBS. 5.- An airgel that allows blood absorption and clot formation according to claim 1, CHARACTERIZED because it absorbs between 50 - 70 g / g of water and PBS.
6.- Uso del aerogel CARACTERIZADO porque sirve como agente hemostático. 6.- Use of the CHARACTERIZED airgel because it serves as a hemostatic agent.
PCT/CL2020/050007 2019-01-31 2020-01-13 Aerogel based on graphene oxide and chitosan with haemostatic application WO2020154822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2019000254A CL2019000254A1 (en) 2019-01-31 2019-01-31 Airgel based on graphene oxide and chitosan with hematic application
CL254-2019 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020154822A1 true WO2020154822A1 (en) 2020-08-06

Family

ID=67769696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050007 WO2020154822A1 (en) 2019-01-31 2020-01-13 Aerogel based on graphene oxide and chitosan with haemostatic application

Country Status (2)

Country Link
CL (1) CL2019000254A1 (en)
WO (1) WO2020154822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832143A (en) * 2022-06-10 2022-08-02 武夷学院 Preparation method of chitosan grafted urushiol/graphene oxide composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715719B2 (en) * 2010-06-16 2014-05-06 Abbott Vascular, Inc. Stable chitosan hemostatic implant and methods of manufacture
EP3061772A1 (en) * 2015-02-25 2016-08-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Synthesis of chitosan and chitin aerogels containing functional ureido groups
CN108310450A (en) * 2018-04-26 2018-07-24 成都新柯力化工科技有限公司 A kind of the medical haemostatic material and application process of quick injection film forming
WO2019071242A1 (en) * 2017-10-06 2019-04-11 Eluciderm Inc. Compositions and methods for wound treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715719B2 (en) * 2010-06-16 2014-05-06 Abbott Vascular, Inc. Stable chitosan hemostatic implant and methods of manufacture
EP3061772A1 (en) * 2015-02-25 2016-08-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Synthesis of chitosan and chitin aerogels containing functional ureido groups
WO2019071242A1 (en) * 2017-10-06 2019-04-11 Eluciderm Inc. Compositions and methods for wound treatment
CN108310450A (en) * 2018-04-26 2018-07-24 成都新柯力化工科技有限公司 A kind of the medical haemostatic material and application process of quick injection film forming

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BAO H.: "Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery", SMALL, vol. 7, no. 11, 2011, pages 1569 - 1578, XP055682871, DOI: 10.1002/smll.201100191 *
FAN H.: "Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites", BIOMACROMOLECULES, vol. 11, 2010, pages 2345 - 2351, XP055307271, DOI: 10.1021/bm100470q *
GU B.: "Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials", CARBOHYDRATE POLYMERS, vol. 97, 2013, pages 65 - 73, XP028568596, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/j.carbpol.2013.04.060> DOI: 10.1016/j.carbpol.2013.04.060 *
JIMENEZ-CERVANTES E.: "Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules", RECENT ADVANCES IN GRAPHENE RESEARCH, 2016, pages 257 - 298, XP055727965, ISBN: 978-953-51-6681-8, Retrieved from the Internet <URL:http://dx.doi.org/10.5772/64001> *
MELLADO C.: "Development of Graphene Oxide Composite Aerogel with Proanthocyanidins with Hemostatic Properties As a Delivery System", ACS APPL. MATER. INTERFACES, vol. 10, no. 9, 2018, pages 7717 - 7729, XP055727976, Retrieved from the Internet <URL:https://doi.org/10.1021/acsami.7b16084> *
PINTO A.M.: "Graphene-based materials biocompatibility: A review", COLLOIDS AND SURFACES. B, BIOINTERFACES, vol. 111, 2013, pages 188 - 202, XP029056481, Retrieved from the Internet <URL:http://dx.doi.org/10.1016/j.colsurfb.2013.05.022> DOI: 10.1016/j.colsurfb.2013.05.022 *
QUAN K.: "Black hemostatic sponge based on facile prepared cross-linked graphene", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 132, 2015, pages 27 - 33, XP029189607, Retrieved from the Internet <URL:https://doi.org/10.1016/j.colsurfb.2015.04.067> DOI: 10.1016/j.colsurfb.2015.04.067 *
ZHANG Y.: "N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations", CARBOHYDRATE POLYMERS, vol. 219, May 2019 (2019-05-01), pages 405 - 413, XP085700853, Retrieved from the Internet <URL:https://doi.org/10.1016/j.carbpol.2019.05.028> DOI: 10.1016/j.carbpol.2019.05.028 *
ZUO P.: "Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films", CHEMISTRY CENTRAL JOURNAL, vol. 7, 2013, pages 39 - 49, XP021147263 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832143A (en) * 2022-06-10 2022-08-02 武夷学院 Preparation method of chitosan grafted urushiol/graphene oxide composite material
CN114832143B (en) * 2022-06-10 2023-12-22 武夷学院 Preparation method of chitosan grafted urushiol/graphene oxide composite material

Also Published As

Publication number Publication date
CL2019000254A1 (en) 2019-08-30

Similar Documents

Publication Publication Date Title
Cao et al. Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing
Wang et al. Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings
Quan et al. Black hemostatic sponge based on facile prepared cross-linked graphene
US8703208B2 (en) Nanometer mesoporous silica-based xerogel styptic process and its preparing process and application
Li et al. One-pot, self-catalyzed synthesis of self-adherent hydrogels for photo-thermal, antimicrobial wound treatment
Liu et al. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing
Singh et al. Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties
Mahmoodzadeh et al. Biodegradable cellulose-based superabsorbent as potent hemostatic agent
di Luca et al. Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin immobilization
Zhang et al. Emerging chitin nanogels/rectorite nanocomposites for safe and effective hemorrhage control
Sun et al. Mussel-inspired polysaccharide-based sponges for hemostasis and bacteria infected wound healing
Wang et al. A green method of preparing a natural and degradable wound dressing containing aloe vera as an active ingredient
Song et al. Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis
Sareethammanuwat et al. Effects of beta‐tricalcium phosphate nanoparticles on the properties of a thermosensitive chitosan/collagen hydrogel and controlled release of quercetin
Haghbin et al. Fabrication and characterization of Persian gum-based hydrogel loaded with gentamicin-loaded natural zeolite: An in vitro and in silico study
Khaliq et al. Bioactive and multifunctional keratin-pullulan based hydrogel membranes facilitate re-epithelization in diabetic model
Lin et al. Engineering design of asymmetric halloysite/chitosan/collagen sponge with hydrophobic coating for high-performance hemostasis dressing
Liu et al. Healing of skin wounds using a new cocoon scaffold loaded with platelet-rich or platelet-poor plasma
Zheng et al. Preparation and hemostatic mechanism of bioactive glass-based membrane-like structure camouflage composite particles
Feng et al. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy
Shi et al. Hydrogel loading 2D montmorillonite exfoliated by anti-inflammatory Lycium barbarum L. polysaccharides for advanced wound dressing
Jiang et al. Carboxymethyl chitosan-based multifunctional hydrogels incorporated with photothermal therapy against drug-resistant bacterial wound infection
WO2020154822A1 (en) Aerogel based on graphene oxide and chitosan with haemostatic application
Caili et al. Antibacterial microspheres with a bionic red-blood-cell like hollow structure and superior swelling recovery capacity for efficient traumatic hemostasis
Zhou et al. A cross-linked hydrogel of bismuth sulfide nanoparticles with excellent photothermal antibacterial and mechanical properties to combat bacterial infection and prompt wound healing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20749349

Country of ref document: EP

Kind code of ref document: A1