WO2020153486A1 - Information processing device, information processing program, and information processing method - Google Patents

Information processing device, information processing program, and information processing method Download PDF

Info

Publication number
WO2020153486A1
WO2020153486A1 PCT/JP2020/002559 JP2020002559W WO2020153486A1 WO 2020153486 A1 WO2020153486 A1 WO 2020153486A1 JP 2020002559 W JP2020002559 W JP 2020002559W WO 2020153486 A1 WO2020153486 A1 WO 2020153486A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
classification model
classification
rotating machine
failure
Prior art date
Application number
PCT/JP2020/002559
Other languages
French (fr)
Japanese (ja)
Inventor
道洋 横山
隆仁 神子島
和彦 杉山
堅治 市原
一宏 金田
美佐子 高橋
河内 隆宏
松岡 慶
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2020153486A1 publication Critical patent/WO2020153486A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present disclosure relates to an information processing device, an information processing program, and an information processing method.
  • Japanese Patent No. 5887217 proposes an information processing unit that mechanically determines that there is a sign of an abnormality when an average change rate (increase rate) of a suction temperature and a discharge temperature of a compressor is a predetermined value or more. Has been done.
  • An information processing device It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification.
  • An estimation unit for estimating whether or not the rotary machine has a sign of failure based on the trend of the output of the model.
  • a storage medium stores the following information processing program non-transitory: Computer, It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. Based on the trend of the output of the model, it functions as an estimation unit that estimates whether or not there is a sign of failure in the rotating machine.
  • the time-series data of the sensor is input to the classification model in a classification model generated by machine learning of past data of one or a plurality of sensors related to the operating state of the rotating machine, and the output of the classification model is output. Based on the trend, it is estimated whether the rotary machine has a sign of failure.
  • FIG. 1 is a block diagram showing a configuration of a system including an information processing device according to an embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the rotary machine system according to the embodiment.
  • FIG. 3 is a flowchart showing an example of an information processing method by the information processing device according to the embodiment.
  • FIG. 4 is a conceptual diagram for explaining an example of processing of the classification model generation unit.
  • FIG. 5 is a diagram showing an example of the defect association table.
  • FIG. 6 is a conceptual diagram for explaining an example of processing of the estimation unit.
  • the information processing apparatus is It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification.
  • An estimation unit for estimating whether or not the rotary machine has a sign of failure based on the trend of the output of the model.
  • the classification model generated by machine learning the past data of the sensor is used to determine whether or not there is a sign of failure in the rotating machine from the new time series data of the sensor.
  • the judgment criteria and judgment method are unrelated to the knowledge and experience of specialists, and it is possible to find a sign of a potential failure that cannot be seen by human eyes.
  • An information processing apparatus is the information processing apparatus according to the first aspect,
  • the estimation unit estimates that the rotating machine has a sign of failure when the tendency of the output of the classification model is a tendency that the probability of being normally classified decreases with the passage of time.
  • An information processing apparatus is the information processing apparatus according to the first or second aspect, Further comprising a storage unit that stores the type of failure in the maintenance record of the rotating machine in association with the type of classification by the classification model, When the estimation unit determines that there is a sign of failure in the rotating machine, it identifies a classification in which the probability of being classified in the output trend of the classification model increases with the passage of time, The type of failure of the rotating machine is estimated based on the type of failure associated with the classification.
  • An information processing apparatus is the information processing apparatus according to any one of the first to third aspects,
  • the sensor measures one or more of sound, vibration, temperature, current, voltage, frequency, pressure, flow rate, rotation speed, and AE (acoustic emission).
  • An information processing apparatus is the information processing apparatus according to any one of the first to fourth aspects,
  • the data is frequency, phase, and intensity data that is converted and extracted from the output of the sensor.
  • the amount of data can be significantly reduced, which makes it possible to speed up the processing.
  • An information processing apparatus is the information processing apparatus according to any one of the first to fifth aspects,
  • the rotary machine is any one of a pump, a blower, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP device, a plating device, an electric motor, and a steam turbine.
  • An information processing apparatus is the information processing apparatus according to any one of the first to sixth aspects,
  • the system further includes a classification model generation unit that machine-learns past data of one or more sensors related to the operating state of the rotating machine to generate the classification model.
  • the storage medium stores the following information processing program non-transitory: Computer, It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. Based on the trend of the output of the model, it functions as an estimation unit that estimates whether or not there is a sign of failure in the rotating machine.
  • the information processing method is The time-series data of the sensor is input to the classification model in a classification model generated by machine learning of past data of one or a plurality of sensors related to the operating state of the rotating machine, and the output of the classification model is output. Based on the trend, it is estimated whether the rotary machine has a sign of failure.
  • FIG. 1 is a block diagram showing a configuration of a system 100 including an information processing device 10 according to an embodiment.
  • the system 100 includes a plurality of rotating machine systems 1a to 1c and an information processing device 10.
  • the information processing device 10 has rotating machine system control units 102a to 102c for controlling the rotating machine systems 1a to 1c, respectively, and an information processing unit 101 capable of communicating with the rotating machine system control units 102a to 102c.
  • the rotary machine system and the rotary machine system control unit forming a pair may be described by representing them with reference numerals 1 and 102, respectively.
  • FIG. 2 is a schematic diagram showing the configuration of the rotary machine system 1 according to the embodiment.
  • a power generation system will be described below as an example of the rotary machine system 1, the power generation system is merely an example, and the rotary machine system according to the present embodiment is not limited to the power generation system.
  • the rotary machine system 1 is a power generation system, and includes a forced draft fan 2, a furnace 3, a boiler 4, a fan 5, a steam turbine 6, a boiler feed pump 7, and equipment. It has a cooling water pump 8.
  • the forced draft blower 2 is a rotary machine, and sends air in the atmosphere to the furnace 3 by rotating the impeller.
  • the furnace 3 burns combustible materials (coal, petroleum, LNG (liquefied natural gas), wood, refuse, etc.) using the air supplied from the forced draft fan 2 to generate ash and exhaust gas.
  • the ventilator 5 is a rotating machine, and by rotating the impeller, it attracts the exhaust gas generated in the furnace 3 and discharges it from the chimney into the atmosphere.
  • the boiler 4 uses the heat of the exhaust gas attracted from the furnace 3 to the ventilator 5 to heat the water supplied from the boiler feed water pump 7 to generate steam.
  • the steam turbine 6 generates electricity and water by rotating the impeller by using the energy of the steam generated in the boiler 4.
  • the boiler feed water pump 7 is a rotary machine, and sends the water generated in the steam turbine 6 to the boiler 4 by rotating the impeller.
  • the equipment cooling water pump 8 is a rotary machine, and rotates the impeller to circulate the cooling water to the respective equipments 2 to 7.
  • each rotating machine is equipped with one or more sensors.
  • One or more sensors can be selected from among sound, vibration, temperature, current, voltage, power frequency, pressure, flow rate, rotation speed, AE (acoustic emission), shaft displacement, shaft torque, equipment casing distortion, and frame distortion.
  • AE acoustic emission
  • the forced draft fan 2 is provided with a temperature sensor 2a, a current sensor 2b, a vibration sensor 2c, and an inlet air flow rate sensor 2d.
  • the furnace 3 is provided with a furnace pressure sensor 3a.
  • the fan 5 is provided with a temperature sensor 5a, a current sensor 5b, a vibration sensor 5c, and a stack exhaust gas flow rate sensor 5d.
  • the boiler water supply pump 7 is provided with a temperature sensor 7a, a current sensor 7b, a vibration sensor 7c, and a water supply flow rate discharge pressure sensor 7d.
  • the equipment cooling water pump 8 is provided with a temperature sensor 8a, a current sensor 8b, a vibration sensor 8c, and a cooling water temperature sensor 8d. The output of each sensor is transmitted to the information processing device 10.
  • the configuration of the information processing device 10 will be described.
  • the information processing device 10 will be described as an example of the configuration in which the forced draft fan 2 is estimated based on the data of the sensor related to the operating state of the rotating machine to estimate whether or not there is a sign of failure in the rotating machine.
  • a configuration for estimating whether or not the forced air blower 2 has a failure sign based on the data of the provided sensors 2a to 2d will be described, but the configuration is not limited to this. It may be configured to estimate whether or not there is a sign of failure in the induction draft fan 5 based on the data of the sensors 5a to 5d provided in the machine 5, or the sensor provided in the boiler feed water pump 7.
  • the information processing apparatus 10 includes rotating machine system control units 102a to 102c that control the rotating machine systems 1a to 1c, and an information processing unit that can communicate with the rotating machine system control units 102a to 102c. And 101. At least a part of the information processing unit 101 and the rotary machine system control units 102a to 102c is realized by a computer.
  • the information processing unit 101 receives the process data of the rotary machine systems 1a to 1c from the rotary machine system control units 102a to 102c, and the information processing unit 101 sends an alarm signal or a failure signal of the device to the rotary machine system control units 102a to 102c. It is output to 102c.
  • the information processing unit 101 includes a control unit 12 and a storage unit 13, and the rotary machine system control units 102a to 102c respectively include a communication unit 11 and a device control unit 14.
  • the respective units are connected to each other via a bus so that they can communicate with each other.
  • the communication unit 11 is a communication interface between the sensors 2a to 2d provided in the forced draft fan 2 (rotary machine) of the rotary machine systems 1a to 1c and the information processing device 10.
  • the communication unit 11 transmits and receives information between the sensors 2a to 2d and the information processing device 10.
  • the storage unit 13 is a fixed data storage such as a hard disk.
  • the storage unit 13 stores various data handled by the control unit 12. Further, the storage unit 13 stores the learned parameter 13a and the maintenance record association table 13b.
  • the learned parameter 13a is data for realizing the classification model generated by the classification model generation unit 12a described later.
  • the maintenance record association table 13b the type of classification by the classification model realized by the learned parameter 13a and the type of malfunction in the maintenance record of the forced draft fan 2 (rotating machine) are stored in association with each other.
  • FIG. 5 is a diagram showing an example of the maintenance record association table 13b.
  • the classification C1 is associated with the state of “normal (no defect)”, and the classification C2 is associated with it.
  • "Impeller deformation” is associated
  • category C3 is associated with the problem "adhesion of foreign matter on the impeller”
  • category C4 is associated with the problem "corrosion of the impeller”. Is remembered.
  • the maintenance record association table 13b specifies, for example, in which classification in the classification model the data of the sensors 2a to 2d on the same date as (or before and after) the date on which the maintenance record was created is classified. It is created by associating the identified classification with the type of failure recorded in the maintenance record. Specifically, for example, the maintenance record at time T0 records a defect called “deformation of impeller”. On the other hand, as shown in FIG. 4, in the classification model, the data (white circles) from the sensors 2a to 2d at time T0 are recorded. ) Is classified into the classification C2, the malfunction of "deformation of the impeller" is associated and stored in the classification C2.
  • the control unit 12 is a control unit that performs various processes of the information processing device 10. As shown in FIG. 2, the control unit 12 has a classification model generation unit 12a and an estimation unit 12b. Each of these units may be realized by a processor in the information processing device 10 executing a predetermined program, or may be implemented by hardware.
  • the classification model generation unit 12a performs machine learning (unsupervised learning) on past data of each of the sensors 2a to 2d to generate a classification model (or a learned parameter 13a for realizing the classification model).
  • a generation algorithm of the classification model (or the learned parameter 13a for realizing the classification model) for example, a hierarchical method such as a two-step method or a Ward method may be used, or a k-means method or a cohort Non-hierarchical methods such as methods may also be used.
  • FIG. 4 is a conceptual diagram for explaining an example of processing of the classification model generation unit 12a.
  • each white circle represents data of the sensors 2a to 2d acquired at different dates and times (in the example shown in FIG. 4, only two axes are shown for the sake of easy understanding of the drawing).
  • the classification model generation unit 12a mechanically classifies the past data (white circles) of the sensors 2a to 2d by machine learning (unsupervised learning) the past data (white circles) of the sensors 2a to 2d. Generate a model.
  • the past data (white circles) of the sensors 2a to 2d are classified into four classifications C1 to C4 surrounded by broken lines.
  • crosses indicated by reference numerals A1 to A4 indicate central positions of the classifications C1 to C4.
  • the classification model generation unit 12a may generate a classification model by machine learning the outputs of the sensors 2a to 2d as past data of the sensors 2a to 2d, or may perform frequency analysis from the outputs of the sensors 2a to 2d.
  • the classification model may be generated by machine learning of the frequency, phase, and intensity data extracted by the machine learning.
  • the output itself of the sensors 2a to 2d has a data amount of about 30 megabytes per day, while the frequency, phase and The intensity data has a data amount of about 20 to 30 bytes per day. Therefore, the amount of data can be significantly reduced by using the data of the frequency, phase and intensity obtained by frequency analysis from the outputs of the sensors 2a to 2d as the past data of the sensors 2a to 2d. As a result, the processing speed in the classification model generation unit 12a can be increased.
  • the estimation unit 12b has a classification model (classification model realized by the learned parameter 13a) generated by the classification model generation unit 12a, and sets new time series data of each sensor 2a to 2d as a classification model. input. From the classification model (classification model realized by the learned parameter 13a) generated by machine learning the past data of each of the sensors 2a to 2d, for each of the new time series data of the sensors 2a to 2c, The classification type is output in time series together with the information on the certainty. Specifically, for example, referring to FIG. 6, when the data of the sensors 2a to 2d at time T1 is input to the classification model, the probability that the data is classified into the classification C1 is 97% from the classification model. , The probability of being classified into the classification C2 is 0%, the probability of being classified into the classification C3 is 1%, and the probability of being classified into the classification C4 is 2%.
  • the estimation unit 12b estimates whether or not there is a sign of failure in the forced draft fan 2 (rotating machine) based on the trend of the output of the classification model (the tendency of time series fluctuations).
  • the estimation unit 12b estimates that there is a sign of failure in the forced draft fan 2 (rotating machine) when the trend of the output of the classification model is a trend in which the probability of being normally classified decreases with the passage of time. You may.
  • FIG. 6 is a conceptual diagram for explaining an example of the process of the estimation unit 12b.
  • the estimation unit 12b estimates that the forced air blower 2 (rotary machine) has a sign of a failure
  • the estimation unit 12b classifies the classification model output probabilities such that the probability of classification increases with the passage of time. Then, the maintenance record linking table 13b stored in the storage unit 13 is referred to, and the type of malfunction of the forced draft fan 2 (rotating machine) is determined based on the type of malfunction linked to the classification. May be.
  • each white circle corresponding to the data at each time T1 to T3 is gradually approaching the central position A4 of the classification C4 as time passes, that is, depending on the classification model.
  • the probability of being classified into the classification C4 gradually increases with the passage of time.
  • the estimation unit 12b refers to the maintenance record association table 13b stored in the storage unit 13, and determines the type of failure based on the trend of the output of the classification model for the time series data from time T1 to T3. It may be presumed to be "impeller corrosion".
  • the information processing device 10 may be located in the same place or in the same premises as the rotary machine systems 1a to 1c, may be located in another monitoring place, or may exist on a cloud server. Good.
  • the information processing apparatus 10 may share the configuration and functions in the same location and the same premises as the rotary machine systems 1a to 1c, the cloud server, and the monitoring location in a location different from the rotary machine systems 1a to 1c. Good.
  • the device control unit 14, the communication unit 11, and the estimation unit 12b in the same premises as the rotary machine systems 1a to 1c, and at the same place and near the same, it is possible to estimate and utilize the control more quickly and with higher accuracy. Is possible.
  • classification model generation unit 12a by installing the classification model generation unit 12a in a cloud server or a monitoring place and concentratingly generating a classification model (learned parameters for realizing the classification model), specific rotary machine systems 1a to 1c have been developed so far.
  • the classification model for the event occurring in 1) can be utilized in the other rotary machine systems 1a to 1c, and many events and equipment samples can be obtained, so that the learning effect and estimation accuracy are improved.
  • FIG. 3 is a flowchart showing an example of the information processing method.
  • the classification model generation unit 12a machine-learns past data of the sensors 2a to 2d to generate a classification model (learned parameter 13a for realizing the classification model) (step S11). ).
  • the classification model generation unit 12a performs machine learning on the data of the frequencies, phases, and intensities extracted from the outputs of the sensors 2a to 2d as the past data of the sensors 2a to 2d and classifies the data.
  • a model (learned parameter 13a for realizing the classification model) is generated.
  • the data amount of the learning data can be compressed as compared with the case where the outputs themselves of the sensors 2a to 2d are machine-learned, and thus the processing speed can be increased.
  • the outputs themselves of the sensors 2a to 2d may be used as learning data without performing frequency analysis.
  • statistics such as an average value, a median value, a maximum value, a minimum value, and a standard deviation of outputs of the sensors 2a to 2d for a certain period (for example, 1 hour, 1 day, 1 week, 1 month) are used as learning data. You may use.
  • the types C1 to C4 of classification by the classification model are linked to the types of defects in the maintenance record of the forced draft fan 2 (rotary machine). Are stored (step S12). These trouble phenomena occur due to the operating state changing over time.
  • the estimation unit 12b inputs the new time series data of the sensors 2a to 2d into the classification model (the classification model realized by the learned parameter 13a) (step S13). From the classification model, for each of the new time-series data of the sensors 2a to 2c, the type of the classification is output in time series together with information on the certainty.
  • the estimating unit 12b estimates whether or not there is a sign of failure in the forced draft fan 2 (rotating machine) based on the output trend of the classification model (step S14).
  • the estimation unit 12b refers to the maintenance record association table 13b, and based on the trend of the output of the classification model, the push blower 2 ( The type of malfunction of the rotating machine is estimated (step S16). More specifically, the estimation unit 12b identifies a classification in which the likelihood of being classified into the trend of the output of the classification model increases with the passage of time, and then the maintenance record association stored in the storage unit 13 is specified. With reference to the table 13b, the type of failure of the forced draft blower 2 (rotary machine) is determined based on the type of failure associated with the classification. After that, the control unit 12 determines whether or not the forced air blower 2 (rotary machine) should be stopped (step S17). When it is determined that the push blower 2 (rotary machine) should not be stopped (step S17: NO), the process returns to step S13 and the process is repeated for new data.
  • the estimation unit 12b uses the classification model generated by machine learning the past data of the sensors 2a to 2d to generate new time series of the sensors 2a to 2d.
  • the judgment criteria and judgment method have nothing to do with the knowledge and experience of specialists, and there is a potential unknown to the human eye. It is possible to find signs of specific defects.
  • the estimation unit 12b determines that the forced draft fan 2 (rotating machine) has a sign of a failure
  • the probability of being classified into the output trend of the classification model is time.
  • the types of defects that increase with the passage of time are identified, and the types of defects of rotating machinery are estimated based on the types of defects associated with those categories, so potential warning signs that cannot be seen by the human eye are identified. Not only will you be able to find it, you will be able to estimate the type of failure. As a result, it becomes possible to promptly respond to the type of defect.
  • the data of the sensors 2a to 2d are the data of the frequency, the phase and the intensity which are frequency-analyzed from the outputs of the sensors 2a to 2d, the data amount can be significantly reduced. As a result, the processing speed can be increased.
  • the forced blower 2 is described as an example of the rotary machine in which the sign of failure is estimated by the information processing device 10, but the rotary machine is limited to the blower. Instead, it may be a driven machine such as a pump, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP (chemical mechanical polishing) apparatus, a plating apparatus, or a prime mover such as an electric motor or a steam turbine. May be a driven machine such as a pump, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP (chemical mechanical polishing) apparatus, a plating apparatus, or a prime mover such as an electric motor or a steam turbine. May be a driven machine such as a pump, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP (chemical mechanical polishing) apparatus, a plating apparatus, or a prime mover such as an electric motor or a steam turbine.
  • the sensor data and the process data of the entire rotary machine system used by the classification model generation unit 12a to generate the classification model may initially use all or many types of data, but model generation and learning are In some cases, the same phenomenon can be modeled with fewer types of sensor data and process data, and in such a case, faster processing becomes possible.
  • the information processing device 10 may be configured by one or more computers, but a program for causing the one or more computers to realize the information processing device 10 and a recording medium recording the program. Is also covered by this matter.

Abstract

Provided is an information processing device comprising an estimation device that has a classification model generated by machine learning of past data of one or more sensors provided in a rotating machine, inputs new time-series data of the one or more sensors into the classification model, and estimates whether there is a sign of failure in the rotating machine on the basis of an output trend of the classification model.

Description

情報処理装置、情報処理プログラム、および情報処理方法Information processing apparatus, information processing program, and information processing method
 本開示は、情報処理装置、情報処理プログラム、および情報処理方法に関する。 The present disclosure relates to an information processing device, an information processing program, and an information processing method.
 従来、機械設備に取り付けられたセンサのデータを、専門家が人の目で見て異常の予兆の有無を判定することが行われている。しかしながら、影響因子はわかっていても、組み合わせによって異常になる寄与度合いは通常不明であり、熟練した専門家であっても、人の目による判断では潜在的な不具合の予兆は見つけることができないことがある。 Conventionally, it has been performed by an expert to judge the presence or absence of a sign of abnormality by visually seeing the data of the sensor attached to the mechanical equipment. However, even if the influencing factors are known, the degree of contribution that becomes abnormal depending on the combination is usually unknown, and even a skilled expert cannot find a sign of a potential failure by visual judgment. There is.
 特許第5887217公報には、圧縮機の吸入温度や吐出温度の所定期間における平均変化率(上昇率)が所定値以上である場合、異常の予兆があると機械的に判定する情報処理手段が提案されている。 Japanese Patent No. 5887217 proposes an information processing unit that mechanically determines that there is a sign of an abnormality when an average change rate (increase rate) of a suction temperature and a discharge temperature of a compressor is a predetermined value or more. Has been done.
 特許第5887217公報に提案される技術によれば、熟練した専門家でなくても異常の予兆の有無を判定できるようになり、人手不足に対応できるようになるが、その判定基準・判定手法は、専門家が用いる判定基準・判定手法を単に数値で置き換えただけであるから、人の目では分からない潜在的な不具合の予兆を見つけることはできない。 According to the technique proposed in Japanese Patent No. 5887217, it becomes possible to determine the presence or absence of a sign of abnormality even if not a skilled expert, and it is possible to cope with the shortage of manpower. Since the judgment criteria and judgment methods used by experts are simply replaced by numerical values, it is not possible to find a sign of a potential failure that cannot be seen by human eyes.
 人の目では分からない潜在的な不具合の予兆を見つけることができる情報処理装置、情報処理プログラムおよび情報処理方法を提供することが望まれる。 It is desirable to provide an information processing device, an information processing program, and an information processing method that can detect a sign of a potential failure that cannot be seen by human eyes.
 本開示の一態様に係る情報処理装置は、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
を備える。
An information processing device according to an aspect of the present disclosure,
It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. An estimation unit for estimating whether or not the rotary machine has a sign of failure based on the trend of the output of the model.
 本開示の一態様に係る記憶媒体は、以下の情報処理プログラムを非一時的(non-transitory)に記憶している:情報処理プログラムは、
 コンピュータを、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
として機能させる。
A storage medium according to an aspect of the present disclosure stores the following information processing program non-transitory:
Computer,
It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. Based on the trend of the output of the model, it functions as an estimation unit that estimates whether or not there is a sign of failure in the rotating machine.
 本開示の一態様に係る情報処理方法は、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルに、前記センサの時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する。
An information processing method according to an aspect of the present disclosure,
The time-series data of the sensor is input to the classification model in a classification model generated by machine learning of past data of one or a plurality of sensors related to the operating state of the rotating machine, and the output of the classification model is output. Based on the trend, it is estimated whether the rotary machine has a sign of failure.
図1は、一実施の形態に係る情報処理装置を備えたシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a system including an information processing device according to an embodiment. 図2は、一実施の形態に係る回転機械システムの構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the rotary machine system according to the embodiment. 図3は、一実施の形態に係る情報処理装置による情報処理方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of an information processing method by the information processing device according to the embodiment. 図4は、分類モデル生成部の処理の一例を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining an example of processing of the classification model generation unit. 図5は、不具合紐づけテーブルの一例を示す図である。FIG. 5 is a diagram showing an example of the defect association table. 図6は、推定部の処理の一例を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining an example of processing of the estimation unit.
 実施形態の第1の態様に係る情報処理装置は、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
を備える。
The information processing apparatus according to the first aspect of the embodiment is
It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. An estimation unit for estimating whether or not the rotary machine has a sign of failure based on the trend of the output of the model.
 このような態様によれば、センサの過去のデータを機械学習することにより生成される分類モデルを利用して、センサの新たな時系列のデータから、回転機械に不具合の予兆があるか否かを推定するため、判定基準・判定手法が専門家の知識や経験とは無関係であり、人の目では分からない潜在的な不具合の予兆を見つけることが可能である。 According to this aspect, the classification model generated by machine learning the past data of the sensor is used to determine whether or not there is a sign of failure in the rotating machine from the new time series data of the sensor. In order to estimate, the judgment criteria and judgment method are unrelated to the knowledge and experience of specialists, and it is possible to find a sign of a potential failure that cannot be seen by human eyes.
 実施形態の第2の態様に係る情報処理装置は、第1の態様に係る情報処理装置であって、
 前記推定部は、前記分類モデルの出力のトレンドが、正常に分類される確からしさが時の経過につれて減少していくトレンドである場合に、前記回転機械に不具合の予兆があると推定する。
An information processing apparatus according to a second aspect of the embodiment is the information processing apparatus according to the first aspect,
The estimation unit estimates that the rotating machine has a sign of failure when the tendency of the output of the classification model is a tendency that the probability of being normally classified decreases with the passage of time.
 実施形態の第3の態様に係る情報処理装置は、第1または2の態様に係る情報処理装置であって、
 前記分類モデルによる分類の種類に前記回転機械の保全記録における不具合の種類を紐づけて記憶する記憶部をさらに備え、
 前記推定部は、前記回転機械に不具合の予兆があると判定した場合には、前記分類モデルの出力のトレンドにおいてそれに分類される確からしさが時間の経過につれて増加していく分類を特定し、当該分類に紐づけられた不具合の種類に基づいて、前記回転機械の不具合の種類を推定する。
An information processing apparatus according to a third aspect of the embodiment is the information processing apparatus according to the first or second aspect,
Further comprising a storage unit that stores the type of failure in the maintenance record of the rotating machine in association with the type of classification by the classification model,
When the estimation unit determines that there is a sign of failure in the rotating machine, it identifies a classification in which the probability of being classified in the output trend of the classification model increases with the passage of time, The type of failure of the rotating machine is estimated based on the type of failure associated with the classification.
 このような態様によれば、人の目では分からない潜在的な不具合の予兆を見つけることができるだけでなく、その不具合の種類を推定することができるようになる。これにより、不具合の種類に応じて迅速に対応することが可能となる。 According to such a mode, not only can a sign of a potential defect that cannot be seen by human eyes be found, but also the type of the defect can be estimated. As a result, it becomes possible to promptly respond to the type of defect.
 実施形態の第4の態様に係る情報処理装置は、第1~3のいずれかの態様に係る情報処理装置であって、
 前記センサは、音、振動、温度、電流、電圧、周波数、圧力、流量、回転速度、AE(アコースティックエミッション)のうちの1つまたは2つ以上を計測する。
An information processing apparatus according to a fourth aspect of the embodiment is the information processing apparatus according to any one of the first to third aspects,
The sensor measures one or more of sound, vibration, temperature, current, voltage, frequency, pressure, flow rate, rotation speed, and AE (acoustic emission).
 実施形態の第5の態様に係る情報処理装置は、第1~4のいずれかの態様に係る情報処理装置であって、
 前記データは、前記センサの出力から変換されて取り出される周波数、位相および強度のデータである。
An information processing apparatus according to a fifth aspect of the embodiment is the information processing apparatus according to any one of the first to fourth aspects,
The data is frequency, phase, and intensity data that is converted and extracted from the output of the sensor.
 このような態様によれば、データ量を大幅に減らすことができ、これにより、処理の高速化が可能となる。 According to such a mode, the amount of data can be significantly reduced, which makes it possible to speed up the processing.
 実施形態の第6の態様に係る情報処理装置は、第1~5のいずれかの態様に係る情報処理装置であって、
 前記回転機械は、ポンプ、送風機、冷凍機、圧縮機、除塵機、撹拌機、バルブ、CMP装置、めっき装置、電動機、蒸気タービンのうちのいずれかである。
An information processing apparatus according to a sixth aspect of the embodiment is the information processing apparatus according to any one of the first to fifth aspects,
The rotary machine is any one of a pump, a blower, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP device, a plating device, an electric motor, and a steam turbine.
 実施形態の第7の態様に係る情報処理装置は、第1~6のいずれかの態様に係る情報処理装置であって、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して前記分類モデルを生成する分類モデル生成部
をさらに備える。
An information processing apparatus according to a seventh aspect of the embodiment is the information processing apparatus according to any one of the first to sixth aspects,
The system further includes a classification model generation unit that machine-learns past data of one or more sensors related to the operating state of the rotating machine to generate the classification model.
 実施形態の第8の態様に係る記憶媒体は、以下の情報処理プログラムを非一時的(non-transitory)に記憶している:情報処置プログラムは、
 コンピュータを、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
として機能させる。
The storage medium according to the eighth aspect of the embodiment stores the following information processing program non-transitory:
Computer,
It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. Based on the trend of the output of the model, it functions as an estimation unit that estimates whether or not there is a sign of failure in the rotating machine.
 実施形態の第9の態様に係る情報処理方法は、
 回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルに、前記センサの時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する。
The information processing method according to the ninth aspect of the embodiment is
The time-series data of the sensor is input to the classification model in a classification model generated by machine learning of past data of one or a plurality of sensors related to the operating state of the rotating machine, and the output of the classification model is output. Based on the trend, it is estimated whether the rotary machine has a sign of failure.
 以下に、添付の図面を参照して、実施の形態の具体例を詳細に説明する。なお、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。 A specific example of the embodiment will be described in detail below with reference to the accompanying drawings. Note that, in the following description and the drawings used in the following description, the same reference numerals are used for parts that may be configured the same, and duplicate description is omitted.
 図1は、一実施の形態に係る情報処理装置10を備えたシステム100の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a system 100 including an information processing device 10 according to an embodiment.
 図1に示すように、本実施の形態に係るシステム100は、複数の回転機械システム1a~1cと、情報処理装置10とを備えている。このうち情報処理装置10は、各回転機械システム1a~1cをそれぞれ制御する回転機械システム制御部102a~102cと、各回転機械システム制御部102a~102cと通信可能な情報処理部101とを有している。以下、一対のペアを組んでいる回転機械システムおよび回転機械システム制御部にそれぞれ符号1、102を付して代表して説明することがある。 As shown in FIG. 1, the system 100 according to the present embodiment includes a plurality of rotating machine systems 1a to 1c and an information processing device 10. Of these, the information processing device 10 has rotating machine system control units 102a to 102c for controlling the rotating machine systems 1a to 1c, respectively, and an information processing unit 101 capable of communicating with the rotating machine system control units 102a to 102c. ing. Hereinafter, the rotary machine system and the rotary machine system control unit forming a pair may be described by representing them with reference numerals 1 and 102, respectively.
 図2は、一実施の形態に係る回転機械システム1の構成を示す概略図である。なお、以下では回転機械システム1の一例として発電用システムについて説明するが、発電用システムはあくまで一例であり、本実施の形態に係る回転機械システムは発電用システムに限定されるものではなく、たとえば、浄水場、下水処理場、揚水機場、排水機場、発電所(水力・火力・原子力・バイオマス・地熱)、石油・化学プラント、工場(造船・重機・鉄鋼・紙パルプ等)であってもよい。 FIG. 2 is a schematic diagram showing the configuration of the rotary machine system 1 according to the embodiment. Although a power generation system will be described below as an example of the rotary machine system 1, the power generation system is merely an example, and the rotary machine system according to the present embodiment is not limited to the power generation system. , Water treatment plant, sewage treatment plant, pumping plant, drainage plant, power plant (hydropower/thermal power/nuclear power/biomass/geothermal), petroleum/chemical plant, factory (shipbuilding/heavy machinery/steel/pulp pulp, etc.) ..
 図2に示す例では、回転機械システム1は、発電用システムであって、押込送風機2と、炉3と、ボイラ4と、通風機5と、蒸気タービン6と、ボイラ給水ポンプ7と、機器冷却水ポンプ8とを有している。 In the example shown in FIG. 2, the rotary machine system 1 is a power generation system, and includes a forced draft fan 2, a furnace 3, a boiler 4, a fan 5, a steam turbine 6, a boiler feed pump 7, and equipment. It has a cooling water pump 8.
 このうち押込送風機2は、回転機械であり、羽根車を回転させることにより、大気中の空気を炉3へと送り出す。炉3は、押込送風機2から供給される空気を利用して、可燃物(石炭、石油、LNG(液化天然ガス)、木材、ごみ等)を燃焼させることにより、灰と排ガスとを生成する。 Of these, the forced draft blower 2 is a rotary machine, and sends air in the atmosphere to the furnace 3 by rotating the impeller. The furnace 3 burns combustible materials (coal, petroleum, LNG (liquefied natural gas), wood, refuse, etc.) using the air supplied from the forced draft fan 2 to generate ash and exhaust gas.
 通風機5は、回転機械であり、羽根車を回転させることにより、炉3にて生成された排ガスを誘引し、煙突から大気中へと排出する。ボイラ4は、炉3から通風機5へと誘引される排ガスの熱を利用して、ボイラ給水ポンプ7から供給される水を加熱することにより、蒸気を生成する。 The ventilator 5 is a rotating machine, and by rotating the impeller, it attracts the exhaust gas generated in the furnace 3 and discharges it from the chimney into the atmosphere. The boiler 4 uses the heat of the exhaust gas attracted from the furnace 3 to the ventilator 5 to heat the water supplied from the boiler feed water pump 7 to generate steam.
 蒸気タービン6は、ボイラ4で生成された蒸気のエネルギーを利用して羽根車を回転させることにより、電気と水が生成する。ボイラ給水ポンプ7は、回転機械であり、羽根車を回転させることにより、蒸気タービン6にて生成された水をボイラ4へと送り出す。 The steam turbine 6 generates electricity and water by rotating the impeller by using the energy of the steam generated in the boiler 4. The boiler feed water pump 7 is a rotary machine, and sends the water generated in the steam turbine 6 to the boiler 4 by rotating the impeller.
 機器冷却水ポンプ8は、回転機械であり、羽根車を回転させることにより、各機器2~7に冷却水を循環させる。 The equipment cooling water pump 8 is a rotary machine, and rotates the impeller to circulate the cooling water to the respective equipments 2 to 7.
 各回転機械には、1ないし複数のセンサが設けられている。1ないし複数のセンサは、音、振動、温度、電流、電圧、電源周波数、圧力、流量、回転速度、AE(アコースティックエミッション)、軸変位、軸トルク、機器ケーシングの歪、架台の歪のうちの1つまたは2つ以上を計測してもよい。図示された例では、押込送風機2には、温度センサ2aと、電流センサ2bと、振動センサ2cと、入口空気流量センサ2dとが設けられている。また、炉3には、炉内圧力センサ3aが設けられている。また、通風機5には、温度センサ5aと、電流センサ5bと、振動センサ5cと、煙突排ガス流量センサ5dとが設けられている。また、ボイラ給水ポンプ7には、温度センサ7aと、電流センサ7bと、振動センサ7cと、給水流量吐出圧力センサ7dとが設けられている。さらに、機器冷却水ポンプ8には、温度センサ8aと、電流センサ8bと、振動センサ8cと、冷却水温度センサ8dとが設けられている。各センサの出力は、情報処理装置10へと送信される。 -Each rotating machine is equipped with one or more sensors. One or more sensors can be selected from among sound, vibration, temperature, current, voltage, power frequency, pressure, flow rate, rotation speed, AE (acoustic emission), shaft displacement, shaft torque, equipment casing distortion, and frame distortion. One or two or more may be measured. In the illustrated example, the forced draft fan 2 is provided with a temperature sensor 2a, a current sensor 2b, a vibration sensor 2c, and an inlet air flow rate sensor 2d. Further, the furnace 3 is provided with a furnace pressure sensor 3a. Further, the fan 5 is provided with a temperature sensor 5a, a current sensor 5b, a vibration sensor 5c, and a stack exhaust gas flow rate sensor 5d. Further, the boiler water supply pump 7 is provided with a temperature sensor 7a, a current sensor 7b, a vibration sensor 7c, and a water supply flow rate discharge pressure sensor 7d. Further, the equipment cooling water pump 8 is provided with a temperature sensor 8a, a current sensor 8b, a vibration sensor 8c, and a cooling water temperature sensor 8d. The output of each sensor is transmitted to the information processing device 10.
 次に、情報処理装置10の構成について説明する。なお、以下の説明では、情報処理装置10が、回転機械の運転状態に関連するセンサのデータに基づいて回転機械に不具合の予兆があるか否かを推定する構成の一例として、押込送風機2に設けられたセンサ2a~2dのデータに基づいて押込送風機2に不具合の予兆があるか否かを推定する構成について説明するが、これに限られるものではなく、たとえば、情報処理装置10は、通風機5に設けられたセンサ5a~5dのデータに基づいて誘引通風機5に不具合の予兆があるか否かを推定するように構成されていてもよいし、ボイラ給水ポンプ7に設けられたセンサ7a~7dのデータに基づいてボイラ給水ポンプ7に不具合の予兆があるか否かを推定するように構成されていてもよいし、機器冷却水ポンプ8に設けられたセンサ8a~8dのデータに基づいて機器冷却水ポンプ8に不具合の予兆があるか否かを推定するように構成されていてもよい。 Next, the configuration of the information processing device 10 will be described. In the following description, the information processing device 10 will be described as an example of the configuration in which the forced draft fan 2 is estimated based on the data of the sensor related to the operating state of the rotating machine to estimate whether or not there is a sign of failure in the rotating machine. A configuration for estimating whether or not the forced air blower 2 has a failure sign based on the data of the provided sensors 2a to 2d will be described, but the configuration is not limited to this. It may be configured to estimate whether or not there is a sign of failure in the induction draft fan 5 based on the data of the sensors 5a to 5d provided in the machine 5, or the sensor provided in the boiler feed water pump 7. It may be configured to estimate whether or not the boiler water supply pump 7 has a sign of failure based on the data of 7a to 7d, or to the data of the sensors 8a to 8d provided in the equipment cooling water pump 8. It may be configured to estimate whether or not the equipment cooling water pump 8 has a sign of failure based on the above.
 図1に示すように、情報処理装置10は、各回転機械システム1a~1cをそれぞれ制御する回転機械システム制御部102a~102cと、各回転機械システム制御部102a~102cと通信可能な情報処理部101とを有している。情報処理部101と回転機械システム制御部102a~102cの少なくとも一部はコンピュータにより実現される。
 情報処理部101は各回転機械システム制御部102a~102cから各回転機械システム1a~1cのプロセスデータを受け取り、情報処理部101からは機器のアラーム信号や故障信号が各回転機械システム制御部102a~102cに出力される。
As shown in FIG. 1, the information processing apparatus 10 includes rotating machine system control units 102a to 102c that control the rotating machine systems 1a to 1c, and an information processing unit that can communicate with the rotating machine system control units 102a to 102c. And 101. At least a part of the information processing unit 101 and the rotary machine system control units 102a to 102c is realized by a computer.
The information processing unit 101 receives the process data of the rotary machine systems 1a to 1c from the rotary machine system control units 102a to 102c, and the information processing unit 101 sends an alarm signal or a failure signal of the device to the rotary machine system control units 102a to 102c. It is output to 102c.
 図1に示す例では、情報処理部101は、制御部12と、記憶部13とを有しており、回転機械システム制御部102a~102cはそれぞれ、通信部11と、機器制御部14とを有している。各部は、バスを介して互いに通信可能に接続されている。 In the example shown in FIG. 1, the information processing unit 101 includes a control unit 12 and a storage unit 13, and the rotary machine system control units 102a to 102c respectively include a communication unit 11 and a device control unit 14. Have The respective units are connected to each other via a bus so that they can communicate with each other.
 このうち通信部11は、回転機械システム1a~1cの押込送風機2(回転機械)に設けられた各センサ2a~2dと情報処理装置10との間の通信インターフェースである。通信部11は、各センサ2a~2dと情報処理装置10との間で情報を送受信する。 Among them, the communication unit 11 is a communication interface between the sensors 2a to 2d provided in the forced draft fan 2 (rotary machine) of the rotary machine systems 1a to 1c and the information processing device 10. The communication unit 11 transmits and receives information between the sensors 2a to 2d and the information processing device 10.
 記憶部13は、たとえばハードディスク等の固定型データストレージである。記憶部13には、制御部12が取り扱う各種データが記憶される。また、記憶部13には、学習済みパラメータ13aと、保全記録紐づけテーブル13bとが記憶される。学習済みパラメータ13aは、後述する分類モデル生成部12aにより生成される分類モデルを実現するためのデータである。保全記録紐づけテーブル13bには、学習済みパラメータ13aにより実現される分類モデルによる分類の種類と押込送風機2(回転機械)の保全記録における不具合の種類とが紐づけて記憶されている。 The storage unit 13 is a fixed data storage such as a hard disk. The storage unit 13 stores various data handled by the control unit 12. Further, the storage unit 13 stores the learned parameter 13a and the maintenance record association table 13b. The learned parameter 13a is data for realizing the classification model generated by the classification model generation unit 12a described later. In the maintenance record association table 13b, the type of classification by the classification model realized by the learned parameter 13a and the type of malfunction in the maintenance record of the forced draft fan 2 (rotating machine) are stored in association with each other.
 図5は、保全記録紐づけテーブル13bの一例を示す図である。図5に示す例では、保全記録と照合した結果に基づいて、4種類の分類C1~C4のうち、分類C1には、「正常(不具合なし)」という状態が紐づけされ、分類C2には、「羽根車の変形」という不具合が紐づけされ、分類C3には、「羽根車に異物付着」という不具合が紐づけされ、分類C4には、「羽根車の腐食」という不具合が紐づけされて記憶されている。 FIG. 5 is a diagram showing an example of the maintenance record association table 13b. In the example shown in FIG. 5, based on the result of collation with the maintenance record, of the four types of classifications C1 to C4, the classification C1 is associated with the state of “normal (no defect)”, and the classification C2 is associated with it. , "Impeller deformation" is associated, category C3 is associated with the problem "adhesion of foreign matter on the impeller", and category C4 is associated with the problem "corrosion of the impeller". Is remembered.
 保全記録紐づけテーブル13bは、たとえば、保全記録が作成された日付と同じ日付(またはその前後の日付)のセンサ2a~2dのデータが、分類モデルではどの分類に分類分けされるのかを特定し、特定された分類に当該保全記録に記録された不具合の種類を紐づけることにより、作成される。具体的には、たとえば、時刻T0の保全記録に「羽根車の変形」という不具合が記録されており、一方、図4に示すように、分類モデルでは時刻T0のセンサ2a~2dのデータ(白丸)が分類C2に分類される場合には、分類C2には、「羽根車の変形」という不具合が紐づけされて記憶される。 The maintenance record association table 13b specifies, for example, in which classification in the classification model the data of the sensors 2a to 2d on the same date as (or before and after) the date on which the maintenance record was created is classified. It is created by associating the identified classification with the type of failure recorded in the maintenance record. Specifically, for example, the maintenance record at time T0 records a defect called “deformation of impeller”. On the other hand, as shown in FIG. 4, in the classification model, the data (white circles) from the sensors 2a to 2d at time T0 are recorded. ) Is classified into the classification C2, the malfunction of "deformation of the impeller" is associated and stored in the classification C2.
 制御部12は、情報処理装置10の各種処理を行う制御手段である。図2に示すように、制御部12は、分類モデル生成部12aと、推定部12bとを有している。これらの各部は、情報処理装置10内のプロセッサが所定のプログラムを実行することにより実現されてもよいし、ハードウェアで実装されてもよい。 The control unit 12 is a control unit that performs various processes of the information processing device 10. As shown in FIG. 2, the control unit 12 has a classification model generation unit 12a and an estimation unit 12b. Each of these units may be realized by a processor in the information processing device 10 executing a predetermined program, or may be implemented by hardware.
 分類モデル生成部12aは、各センサ2a~2dの過去のデータを機械学習(教師無し学習)して分類モデル(または分類モデルを実現するための学習済みパラメータ13a)を生成する。分類モデル(または分類モデルを実現するための学習済みパラメータ13a)の生成アルゴリズムとしては、たとえば、two-step法やウォード法などの階層的手法が用いられてもよいし、k-means法やコホーネント法などの非階層的手法が用いられてもよい。 The classification model generation unit 12a performs machine learning (unsupervised learning) on past data of each of the sensors 2a to 2d to generate a classification model (or a learned parameter 13a for realizing the classification model). As a generation algorithm of the classification model (or the learned parameter 13a for realizing the classification model), for example, a hierarchical method such as a two-step method or a Ward method may be used, or a k-means method or a cohort Non-hierarchical methods such as methods may also be used.
 図4は、分類モデル生成部12aの処理の一例を説明するための概念図である。図4において、各白丸は、それぞれ異なる日時に取得されたセンサ2a~2dのデータを示している(図4に示す例では、図示の理解のしやすさの便宜上、2軸のみ図示されているが、本実施の形態に係る分類モデルの生成において、軸の数が2軸に限定されないことは言うまでもない)。分類モデル生成部12aは、センサ2a~2dの過去のデータ(白丸)を機械学習(教師無し学習)することにより、センサ2a~2dの過去のデータ(白丸)を機械的に分類分けして分類モデルを生成する。図4に示す例では、センサ2a~2dの過去のデータ(白丸)は、破線で囲まれた4つの分類C1~C4に分類分けされている。図4において、符号A1~A4を付して示すバツ印は、各分類C1~C4の中心位置を示している。 FIG. 4 is a conceptual diagram for explaining an example of processing of the classification model generation unit 12a. In FIG. 4, each white circle represents data of the sensors 2a to 2d acquired at different dates and times (in the example shown in FIG. 4, only two axes are shown for the sake of easy understanding of the drawing). However, it goes without saying that the number of axes is not limited to two in the generation of the classification model according to the present embodiment). The classification model generation unit 12a mechanically classifies the past data (white circles) of the sensors 2a to 2d by machine learning (unsupervised learning) the past data (white circles) of the sensors 2a to 2d. Generate a model. In the example shown in FIG. 4, the past data (white circles) of the sensors 2a to 2d are classified into four classifications C1 to C4 surrounded by broken lines. In FIG. 4, crosses indicated by reference numerals A1 to A4 indicate central positions of the classifications C1 to C4.
 分類モデル生成部12aは、各センサ2a~2dの過去のデータとして、センサ2a~2dの出力そのものを機械学習して分類モデルを生成してもよいし、センサ2a~2dの出力から周波数分析されて取り出される周波数、位相および強度のデータを機械学習して分類モデルを生成してもよい。 The classification model generation unit 12a may generate a classification model by machine learning the outputs of the sensors 2a to 2d as past data of the sensors 2a to 2d, or may perform frequency analysis from the outputs of the sensors 2a to 2d. The classification model may be generated by machine learning of the frequency, phase, and intensity data extracted by the machine learning.
 本件発明者らの知見によれば、センサ2a~2dの出力そのものは、データ量が1日あたり30メガバイト程度であるのに対し、センサ2a~2dの出力から変換されて取り出される周波数、位相および強度のデータは、データ量が1日あたり20~30バイト程度である。したがって、各センサ2a~2dの過去のデータとして、センサ2a~2dの出力から周波数分析されて取り出される周波数、位相および強度のデータを利用することにより、データ量を大幅に減らすことができ、これにより、分類モデル生成部12aにおける処理の高速化が可能となる。 According to the knowledge of the inventors of the present invention, the output itself of the sensors 2a to 2d has a data amount of about 30 megabytes per day, while the frequency, phase and The intensity data has a data amount of about 20 to 30 bytes per day. Therefore, the amount of data can be significantly reduced by using the data of the frequency, phase and intensity obtained by frequency analysis from the outputs of the sensors 2a to 2d as the past data of the sensors 2a to 2d. As a result, the processing speed in the classification model generation unit 12a can be increased.
 推定部12bは、分類モデル生成部12aにより生成された分類モデル(学習済みパラメータ13aにより実現される分類モデル)を有しており、各センサ2a~2dの新たな時系列のデータを分類モデルに入力する。各センサ2a~2dの過去のデータを機械学習することにより生成された分類モデル(学習済みパラメータ13aにより実現される分類モデル)からは、センサ2a~2cの新たな時系列のデータの各々について、その分類の種類が確からしさの情報とともに時系列で出力される。具体的には、たとえば、図6を参照し、時刻T1のセンサ2a~2dのデータが分類モデルに入力されると、分類モデルからは、当該データが分類C1に分類される確からしさが97%、分類C2に分類される確からしさが0%、分類C3に分類される確からしさが1%、分類C4に分類される確からしさが2%といった情報が出力される。 The estimation unit 12b has a classification model (classification model realized by the learned parameter 13a) generated by the classification model generation unit 12a, and sets new time series data of each sensor 2a to 2d as a classification model. input. From the classification model (classification model realized by the learned parameter 13a) generated by machine learning the past data of each of the sensors 2a to 2d, for each of the new time series data of the sensors 2a to 2c, The classification type is output in time series together with the information on the certainty. Specifically, for example, referring to FIG. 6, when the data of the sensors 2a to 2d at time T1 is input to the classification model, the probability that the data is classified into the classification C1 is 97% from the classification model. , The probability of being classified into the classification C2 is 0%, the probability of being classified into the classification C3 is 1%, and the probability of being classified into the classification C4 is 2%.
 そして、推定部12bは、分類モデルの出力のトレンド(時系列の変動の傾向)に基づいて、押込送風機2(回転機械)に不具合の予兆があるか否かを推定する。 Then, the estimation unit 12b estimates whether or not there is a sign of failure in the forced draft fan 2 (rotating machine) based on the trend of the output of the classification model (the tendency of time series fluctuations).
 推定部12bは、分類モデルの出力のトレンドが、正常に分類される確からしさが時間の経過につれて減少していくトレンドである場合に、押込送風機2(回転機械)に不具合の予兆があると推定してもよい。 The estimation unit 12b estimates that there is a sign of failure in the forced draft fan 2 (rotating machine) when the trend of the output of the classification model is a trend in which the probability of being normally classified decreases with the passage of time. You may.
 図6は、推定部12bの処理の一例を説明するための概念図である。図6に示す例では、各時刻T1~T3のデータに対応する各白丸が、時間の経過につれて分類C1の中心位置A1から徐々に離れており、すなわち、分類モデルによって分類C1(=「正常(異常なし)」の分類)に分類される確からしさが時間の経過につれて徐々に減少している。したがって、推定部12bは、時刻T1~T3の時系列のデータについての分類モデルの出力のトレンドに基づいて、押込送風機2(回転機械)に不具合の予兆があると推定する。 FIG. 6 is a conceptual diagram for explaining an example of the process of the estimation unit 12b. In the example shown in FIG. 6, each white circle corresponding to the data of each time T1 to T3 is gradually separated from the central position A1 of the classification C1 with the lapse of time, that is, according to the classification model, the classification C1(=“normal ( The probability of being classified as "No abnormality)") gradually decreases over time. Therefore, the estimation unit 12b estimates that there is a sign of failure in the forced draft fan 2 (rotary machine) based on the output trend of the classification model for the time series data from time T1 to T3.
 一方、図6に示す例では、各時刻T4~T6のデータに対応する各白丸が、時間の経過につれて分類C1の中心位置A1に対して離れたり近づいたりしており(一定の傾向を有しておらず)、すなわち、分類モデルによって分類C1(=「正常(異常なし)」の分類)に分類される確からしさが時間の経過につれて減少したり増加したりしている(一定の傾向を有していない)。したがって、推定部12bは、時刻T4~T6の時系列のデータについての分類モデルの出力のトレンドに基づいて、押込送風機2(回転機械)に不具合の予兆は無いと推定する。 On the other hand, in the example shown in FIG. 6, the white circles corresponding to the data of the times T4 to T6 move away from or approach the center position A1 of the classification C1 as time passes (there is a certain tendency. That is, that is, the probability that the classification model classifies into the class C1 (=classification of “normal (no abnormality)”) decreases or increases with time (with a certain tendency). Not). Therefore, the estimation unit 12b estimates that there is no sign of failure in the forced draft fan 2 (rotary machine) based on the trend of the output of the classification model for the time series data from time T4 to T6.
 推定部12bは、押込送風機2(回転機械)に不具合の予兆があると推定した場合には、分類モデルの出力のトレンドにおいて、それに分類される確からしさが時間の経過につれて増加していく分類を特定し、次いで、記憶部13に記憶された保全記録紐づけテーブル13bを参照し、当該分類に紐づけられた不具合の種類に基づいて、押込送風機2(回転機械)の不具合の種類を判別してもよい。 When the estimation unit 12b estimates that the forced air blower 2 (rotary machine) has a sign of a failure, the estimation unit 12b classifies the classification model output probabilities such that the probability of classification increases with the passage of time. Then, the maintenance record linking table 13b stored in the storage unit 13 is referred to, and the type of malfunction of the forced draft fan 2 (rotating machine) is determined based on the type of malfunction linked to the classification. May be.
 具体的には、たとえば、図6に示す例において、各時刻T1~T3のデータに対応する各白丸が、時間の経過につれて分類C4の中心位置A4に徐々に近づいており、すなわち、分類モデルによって分類C4に分類される確からしさが時間の経過につれて徐々に増加している。そして、図5に示すように、保全記録紐づけテーブル13bでは、分類C4には、「羽根車の腐食」という不具合が紐づけられて記憶されている。したがって、推定部12bは、記憶部13に記憶された保全記録紐づけテーブル13bを参照し、時刻T1~T3の時系列のデータについての分類モデルの出力のトレンドに基づいて、不具合の種類が「羽根車の腐食」であると推定してもよい。 Specifically, for example, in the example shown in FIG. 6, each white circle corresponding to the data at each time T1 to T3 is gradually approaching the central position A4 of the classification C4 as time passes, that is, depending on the classification model. The probability of being classified into the classification C4 gradually increases with the passage of time. Then, as shown in FIG. 5, in the maintenance record associating table 13b, a malfunction of "impeller corrosion" is associated and stored in the category C4. Therefore, the estimation unit 12b refers to the maintenance record association table 13b stored in the storage unit 13, and determines the type of failure based on the trend of the output of the classification model for the time series data from time T1 to T3. It may be presumed to be "impeller corrosion".
 図1を参照し、情報処理装置10は、回転機械システム1a~1cと同一場所あるいは同一構内にあってもよいし、別の監視場所にあってもよいし、クラウドサーバ上に存在してもよい。 Referring to FIG. 1, the information processing device 10 may be located in the same place or in the same premises as the rotary machine systems 1a to 1c, may be located in another monitoring place, or may exist on a cloud server. Good.
 また、情報処理装置10は、回転機械システム1a~1cと同一場所・同一構内、クラウドサーバ、そして回転機械システム1a~1cとは別の場所の監視場所のそれぞれで構成や機能を分担してもよい。 In addition, the information processing apparatus 10 may share the configuration and functions in the same location and the same premises as the rotary machine systems 1a to 1c, the cloud server, and the monitoring location in a location different from the rotary machine systems 1a to 1c. Good.
 たとえば、回転機械システム1a~1cと同一構内、さらに同一場所と近くに機器制御部14と通信部11と推定部12bを設置することにより、より早く、より高精度に推定し制御に活用することが可能である。 For example, by installing the device control unit 14, the communication unit 11, and the estimation unit 12b in the same premises as the rotary machine systems 1a to 1c, and at the same place and near the same, it is possible to estimate and utilize the control more quickly and with higher accuracy. Is possible.
 また、分類モデル生成部12aをクラウドサーバあるいは監視場所に設置して集中して分類モデル(分類モデルを実現するための学習済みパラメータ)を生成することにより、今まで特定の回転機械システム1a~1cで発生していた事象に対する分類モデルを別の回転機械システム1a~1cで活用することができたり、多くの事象や機器のサンプルが得られるので学習効果や推定精度が向上する。 Further, by installing the classification model generation unit 12a in a cloud server or a monitoring place and concentratingly generating a classification model (learned parameters for realizing the classification model), specific rotary machine systems 1a to 1c have been developed so far. The classification model for the event occurring in 1) can be utilized in the other rotary machine systems 1a to 1c, and many events and equipment samples can be obtained, so that the learning effect and estimation accuracy are improved.
 次に、このような構成からなる情報処理装置10による情報処理方法の一例について説明する。図3は、情報処理方法の一例を示すフローチャートである。 Next, an example of an information processing method by the information processing device 10 having such a configuration will be described. FIG. 3 is a flowchart showing an example of the information processing method.
 図3に示すように、まず、分類モデル生成部12aが、センサ2a~2dの過去のデータを機械学習して分類モデル(分類モデルを実現するための学習済みパラメータ13a)を生成する(ステップS11)。本実施の形態では、分類モデル生成部12aは、各センサ2a~2dの過去のデータとして、センサ2a~2dの出力から周波数分析されて取り出される周波数、位相および強度のデータを機械学習して分類モデル(分類モデルを実現するための学習済みパラメータ13a)を生成する。これにより、センサ2a~2dの出力そのものを機械学習する場合に比べて、学習データのデータ量を圧縮することができ、これにより、処理の高速化が可能となる。 As shown in FIG. 3, first, the classification model generation unit 12a machine-learns past data of the sensors 2a to 2d to generate a classification model (learned parameter 13a for realizing the classification model) (step S11). ). In the present embodiment, the classification model generation unit 12a performs machine learning on the data of the frequencies, phases, and intensities extracted from the outputs of the sensors 2a to 2d as the past data of the sensors 2a to 2d and classifies the data. A model (learned parameter 13a for realizing the classification model) is generated. As a result, the data amount of the learning data can be compressed as compared with the case where the outputs themselves of the sensors 2a to 2d are machine-learned, and thus the processing speed can be increased.
 もちろん、情報処理装置10が、センサ2a~2dの出力そのものを機械学習するのに十分な処理速度を有する場合は、周波数分析を行わずにセンサ2a~2dの出力そのものを学習データとして用いてもよい。または、センサ2a~2dの出力の一定期間(例えば1時間、1日間、1週間、1ヶ月間など)の平均値、中央値、最大値、最小値、標準偏差などの統計量を学習データとして用いてもよい。 Of course, if the information processing apparatus 10 has a processing speed sufficient for machine learning the outputs themselves of the sensors 2a to 2d, the outputs themselves of the sensors 2a to 2d may be used as learning data without performing frequency analysis. Good. Alternatively, statistics such as an average value, a median value, a maximum value, a minimum value, and a standard deviation of outputs of the sensors 2a to 2d for a certain period (for example, 1 hour, 1 day, 1 week, 1 month) are used as learning data. You may use.
 次いで、図5を参照し、記憶部13の保全記録紐づけテーブル13bには、分類モデルによる分類の種類C1~C4に、押込送風機2(回転機械)の保全記録における不具合の種類が紐づけられて記憶される(ステップS12)。運転状態が時間とともに推移することにより、これらの不具合現象が発生する。 Next, referring to FIG. 5, in the maintenance record linking table 13b of the storage unit 13, the types C1 to C4 of classification by the classification model are linked to the types of defects in the maintenance record of the forced draft fan 2 (rotary machine). Are stored (step S12). These trouble phenomena occur due to the operating state changing over time.
 次に、推定部12bは、センサ2a~2dの新たな時系列のデータを分類モデル(学習済みパラメータ13aにより実現される分類モデル)に入力する(ステップS13)。分類モデルからは、センサ2a~2cの新たな時系列のデータの各々について、その分類の種類が確からしさの情報とともに時系列で出力される。 Next, the estimation unit 12b inputs the new time series data of the sensors 2a to 2d into the classification model (the classification model realized by the learned parameter 13a) (step S13). From the classification model, for each of the new time-series data of the sensors 2a to 2c, the type of the classification is output in time series together with information on the certainty.
 推定部12bは、分類モデルの出力のトレンドに基づいて、押込送風機2(回転機械)に不具合の予兆があるか否を推定する(ステップS14)。本実施の形態では、推定部12bは、分類モデルの出力のトレンドが、分類C1(=「正常(異常なし)」の分類)に分類される確からしさが時間の経過につれて減少していくトレンドであるか否かを判定し、そういったトレンドであった場合に、押込送風機2(回転機械)に不具合の予兆があると推定する。 The estimating unit 12b estimates whether or not there is a sign of failure in the forced draft fan 2 (rotating machine) based on the output trend of the classification model (step S14). In the present embodiment, the estimation unit 12b uses the trend that the output trend of the classification model is such that the probability that the output of the classification model is classified into the classification C1 (=classification of “normal (no abnormality)”) decreases with time. It is determined whether or not there is, and if such a trend is present, it is presumed that the forced draft blower 2 (rotating machine) has a sign of failure.
 そして、不具合の予兆があると推定された場合には(ステップS15:YES)、推定部12bは、保全記録紐づけテーブル13bを参照し、分類モデルの出力のトレンドに基づいて、押込送風機2(回転機械)の不具合の種類を推定する(ステップS16)。より詳しくは、推定部12bは、分類モデルの出力のトレンドにおいて、それに分類される確からしさが時間の経過につれて増加していく分類を特定し、次いで、記憶部13に記憶された保全記録紐づけテーブル13bを参照し、当該分類に紐づけられた不具合の種類に基づいて、押込送風機2(回転機械)の不具合の種類を判別する。その後、制御部12は、押込送風機2(回転機械)を停止すべきか否かの判断を行う(ステップS17)。押込送風機2(回転機械)を停止すべきでないと判断された場合には(ステップS17:NO)、ステップS13に戻って新たなデータについて処理が繰り返される。 When it is estimated that there is a sign of failure (step S15: YES), the estimation unit 12b refers to the maintenance record association table 13b, and based on the trend of the output of the classification model, the push blower 2 ( The type of malfunction of the rotating machine is estimated (step S16). More specifically, the estimation unit 12b identifies a classification in which the likelihood of being classified into the trend of the output of the classification model increases with the passage of time, and then the maintenance record association stored in the storage unit 13 is specified. With reference to the table 13b, the type of failure of the forced draft blower 2 (rotary machine) is determined based on the type of failure associated with the classification. After that, the control unit 12 determines whether or not the forced air blower 2 (rotary machine) should be stopped (step S17). When it is determined that the push blower 2 (rotary machine) should not be stopped (step S17: NO), the process returns to step S13 and the process is repeated for new data.
 ところで、上述したように、特許第5887217公報に提案される技術によれば、熟練した専門家でなくても異常の予兆の有無を判定できるようになり、人手不足に対応できるようになるが、その判定基準・判定手法は、専門家が用いる判定基準・判定手法を単に数値で置き換えただけであるから、人の目では分からない潜在的な不具合の予兆を見つけることはできなかった。 By the way, as described above, according to the technique proposed in Japanese Patent No. 5887217, it becomes possible to determine the presence or absence of a sign of abnormality even if not a skilled expert, and it is possible to cope with a shortage of manpower. Since the judgment criteria and judgment methods were simply replacements of the judgment criteria and judgment methods used by specialists with numerical values, it was not possible to find a sign of a potential failure that the human eye could not understand.
 これに対し、本実施の形態によれば、推定部12bが、センサ2a~2dの過去のデータを機械学習することにより生成される分類モデルを利用して、センサ2a~2dの新たな時系列のデータから、押込送風機2(回転機械)に不具合の予兆があるか否かを推定するため、判定基準・判定手法が専門家の知識や経験とは無関係であり、人の目では分からない潜在的な不具合の予兆を見つけることが可能である。 On the other hand, according to the present embodiment, the estimation unit 12b uses the classification model generated by machine learning the past data of the sensors 2a to 2d to generate new time series of the sensors 2a to 2d. In order to estimate whether there is a sign of failure in the forced draft blower 2 (rotating machine) from the data of the above, the judgment criteria and judgment method have nothing to do with the knowledge and experience of specialists, and there is a potential unknown to the human eye. It is possible to find signs of specific defects.
 また、本実施の形態によれば、推定部12bは、押込送風機2(回転機械)に不具合の予兆があると判定した場合には、分類モデルの出力のトレンドにおいてそれに分類される確からしさが時間の経過につれて増加していく分類を特定し、当該分類に紐づけられた不具合の種類に基づいて、回転機械の不具合の種類を推定するため、人の目では分からない潜在的な不具合の予兆を見つけることができるだけでなく、その不具合の種類を推定することができるようになる。これにより、不具合の種類に応じて迅速に対応することが可能となる。 Further, according to the present embodiment, when the estimation unit 12b determines that the forced draft fan 2 (rotating machine) has a sign of a failure, the probability of being classified into the output trend of the classification model is time. The types of defects that increase with the passage of time are identified, and the types of defects of rotating machinery are estimated based on the types of defects associated with those categories, so potential warning signs that cannot be seen by the human eye are identified. Not only will you be able to find it, you will be able to estimate the type of failure. As a result, it becomes possible to promptly respond to the type of defect.
 また、本実施の形態によれば、センサ2a~2dのデータは、センサ2a~2dの出力から周波数分析される周波数、位相および強度のデータであるため、データ量を大幅に減らすことができ、これにより、処理の高速化が可能となる。 Further, according to the present embodiment, since the data of the sensors 2a to 2d are the data of the frequency, the phase and the intensity which are frequency-analyzed from the outputs of the sensors 2a to 2d, the data amount can be significantly reduced. As a result, the processing speed can be increased.
 なお、上述した実施の形態では、情報処理装置10により不具合の予兆が推定される回転機械として、押込送風機2が一例として挙げられて説明されたが、回転機械であれば送風機に限定されるものではなく、たとえば、ポンプ、冷凍機、圧縮機、除塵機、撹拌機、バルブ、CMP(化学機械研磨)装置、めっき装置等の被動機であってもよいし、あるいは電動機、蒸気タービン等の原動機であってもよい。 In addition, in the above-described embodiment, the forced blower 2 is described as an example of the rotary machine in which the sign of failure is estimated by the information processing device 10, but the rotary machine is limited to the blower. Instead, it may be a driven machine such as a pump, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP (chemical mechanical polishing) apparatus, a plating apparatus, or a prime mover such as an electric motor or a steam turbine. May be
 分類モデル生成部12aが分類モデルを生成するために使用するセンサーデータ及び回転機械システム全体のプロセスデータは、最初は全部あるいは数多くの種類のデータを使用する場合もあるが、モデルの生成と学習が進めば、より少ない種類のセンサーデータやプロセスデータで同じ事象をモデル化できる場合もあり、そのような場合はより高速な処理が可能になる。 The sensor data and the process data of the entire rotary machine system used by the classification model generation unit 12a to generate the classification model may initially use all or many types of data, but model generation and learning are In some cases, the same phenomenon can be modeled with fewer types of sensor data and process data, and in such a case, faster processing becomes possible.
 以上、実施の形態および変形例を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。また、各実施の形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Although the embodiments and modified examples have been described above by way of example, the scope of the present invention is not limited to these, and can be modified or modified according to the purpose within the scope of the claims. is there. In addition, the respective embodiments and modified examples can be appropriately combined within a range in which the processing content is not inconsistent.
 また、本実施の形態に係る情報処理装置10は1つまたは複数のコンピュータによって構成され得るが、1つまたは複数のコンピュータに情報処理装置10を実現させるためのプログラム及び当該プログラムを記録した記録媒体も、本件の保護対象である。 Further, the information processing device 10 according to the present embodiment may be configured by one or more computers, but a program for causing the one or more computers to realize the information processing device 10 and a recording medium recording the program. Is also covered by this matter.
 本システムを使用することにより、機器の状態をタイムリーに把握することができるようになるため、従来の閾値管理や時間予防保全によるメンテナンスから、状態監視保全等の最適なメンテンスに変更することができ、交換部品の適正在庫・タイムリーな手配、保全員の最適配置、メンテナンススケジュールを予め計画可能になる等の効果が期待できる。 By using this system, it becomes possible to grasp the status of the equipment in a timely manner, so it is possible to change from the conventional maintenance by threshold management and time preventive maintenance to the optimal maintenance such as status monitoring maintenance. It is possible to expect such effects as proper stocking and timely arrangement of replacement parts, optimal arrangement of maintenance personnel, and pre-planning of maintenance schedule.

Claims (9)

  1.  回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
    を備えたことを特徴とする情報処理装置。
    It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. An information processing apparatus, comprising: an estimation unit that estimates whether or not there is a sign of a failure in the rotating machine based on a trend of an output of a model.
  2.  前記推定部は、前記分類モデルの出力のトレンドが、正常に分類される確からしさが時間の経過につれて減少していくトレンドである場合に、前記回転機械に不具合の予兆があると推定する、
    ことを特徴とする請求項1に記載の情報処理装置。
    The estimating unit estimates that the rotating machine has a symptom of failure when the output trend of the classification model is a trend in which the probability of being normally classified decreases with time.
    The information processing apparatus according to claim 1, wherein:
  3.  前記分類モデルによる分類の種類に前記回転機械の保全記録における不具合の種類を紐づけて記憶する記憶部をさらに備え、
     前記推定部は、前記回転機械に不具合の予兆があると推定した場合には、前記分類モデルの出力のトレンドにおいてそれに分類される確からしさが時間の経過につれて増加していく分類を特定し、当該分類に紐づけられた不具合の種類に基づいて、前記回転機械の不具合の種類を推定する、
    ことを特徴とする請求項1または2に記載の情報処理装置。
    Further comprising a storage unit that stores the type of failure in the maintenance record of the rotating machine in association with the type of classification by the classification model,
    When the estimation unit estimates that there is a sign of failure in the rotating machine, it identifies a classification in which the likelihood of being classified in the output trend of the classification model increases with the passage of time, Based on the type of failure associated with the classification, to estimate the type of failure of the rotating machine,
    The information processing apparatus according to claim 1 or 2, characterized in that.
  4.  前記センサは、音、振動、温度、電流、電圧、周波数、圧力、流量、回転速度、AE(アコースティックエミッション)のうちの1つまたは2つ以上を計測する、
    ことを特徴とする請求項1~3のいずれかに記載の情報処理装置。
    The sensor measures one or more of sound, vibration, temperature, current, voltage, frequency, pressure, flow rate, rotation speed, AE (acoustic emission),
    The information processing apparatus according to any one of claims 1 to 3, characterized in that:
  5.  前記データは、前記センサの出力から変換されて取り出される周波数、位相および強度のデータである、
    ことを特徴とする請求項1~4のいずれかに記載の情報処理装置。
    The data is frequency, phase and intensity data that is converted and extracted from the output of the sensor,
    The information processing apparatus according to any one of claims 1 to 4, characterized in that:
  6.  前記回転機械は、ポンプ、送風機、冷凍機、圧縮機、除塵機、撹拌機、バルブ、CMP装置、めっき装置、電動機、蒸気タービンのうちのいずれかである、
    ことを特徴とする請求項1~5のいずれかに記載の情報処理装置。
    The rotary machine is any one of a pump, a blower, a refrigerator, a compressor, a dust remover, an agitator, a valve, a CMP apparatus, a plating apparatus, an electric motor, and a steam turbine.
    The information processing apparatus according to any one of claims 1 to 5, characterized in that:
  7.  回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して前記分類モデルを生成する分類モデル生成部
    をさらに備えたことを特徴とする請求項1~6のいずれかに記載の情報処理装置。
    7. The classification model generation unit for further performing machine learning on past data of one or a plurality of sensors related to an operating state of a rotating machine to generate the classification model, according to any one of claims 1 to 6. The information processing device described.
  8.  コンピュータを、
     回転機械の運転状態に関連する1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルを有し、前記センサの新たな時系列のデータを前記分類モデルに入力し、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する推定部
    として機能させることを特徴とする情報処理プログラム。
    Computer,
    It has a classification model generated by machine learning of past data of one or more sensors related to the operating state of a rotating machine, and inputs new time-series data of the sensor into the classification model to perform the classification. An information processing program, which is caused to function as an estimation unit that estimates whether or not there is a sign of a failure in the rotating machine based on a trend of an output of a model.
  9.  回転機械に設けられた1ないし複数のセンサの過去のデータを機械学習して生成された分類モデルに、前記センサの新たな時系列のデータをし、前記分類モデルの出力のトレンドに基づいて、前記回転機械に不具合の予兆があるか否かを推定する
    ことを特徴とする情報処理方法。
    A new time series data of the sensor is added to a classification model generated by machine learning of past data of one or a plurality of sensors provided in the rotating machine, and based on the output trend of the classification model, An information processing method, comprising estimating whether or not there is a sign of failure in the rotating machine.
PCT/JP2020/002559 2019-01-24 2020-01-24 Information processing device, information processing program, and information processing method WO2020153486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019009830A JP2020119267A (en) 2019-01-24 2019-01-24 Information processing device, information processing program, and information processing method
JP2019-009830 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020153486A1 true WO2020153486A1 (en) 2020-07-30

Family

ID=71736959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002559 WO2020153486A1 (en) 2019-01-24 2020-01-24 Information processing device, information processing program, and information processing method

Country Status (2)

Country Link
JP (1) JP2020119267A (en)
WO (1) WO2020153486A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089649A1 (en) * 2010-01-22 2011-07-28 株式会社日立製作所 Diagnostic apparatus and diagnostic method
WO2011145374A1 (en) * 2010-05-17 2011-11-24 株式会社日立製作所 Computer system and rule generation method
WO2012073289A1 (en) * 2010-12-02 2012-06-07 株式会社日立製作所 Plant diagnostic device and plant diagnostic method
JP2018024055A (en) * 2016-08-10 2018-02-15 三菱重工工作機械株式会社 Abnormality detection device and method for tool of machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089649A1 (en) * 2010-01-22 2011-07-28 株式会社日立製作所 Diagnostic apparatus and diagnostic method
WO2011145374A1 (en) * 2010-05-17 2011-11-24 株式会社日立製作所 Computer system and rule generation method
WO2012073289A1 (en) * 2010-12-02 2012-06-07 株式会社日立製作所 Plant diagnostic device and plant diagnostic method
JP2018024055A (en) * 2016-08-10 2018-02-15 三菱重工工作機械株式会社 Abnormality detection device and method for tool of machine tool

Also Published As

Publication number Publication date
JP2020119267A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6159059B2 (en) Plant operation optimization system and method
US10060358B2 (en) Compressor bleed valve health assessment systems and methods
US10519960B2 (en) Fan failure detection and reporting
KR101995042B1 (en) Gas turbine failure prediction utilizing supervised learning methodologies
US10831162B2 (en) Systems and methods for providing an integrated power plant advisor
Santolamazza et al. Anomaly detection in energy consumption for Condition-Based maintenance of Compressed Air Generation systems: an approach based on artificial neural networks
US20140142766A1 (en) Methods and systems to improve power plant performance by corrective set points
JP2012180831A (en) Method and system for analysis of turbomachinery
JP2012075308A (en) Monitoring and diagnosing method for generator operation
Liniger et al. Reliability based design of fluid power pitch systems for wind turbines
Jiang et al. Plant performance monitoring and diagnostics: Remote, real-time and automation
WO2020153486A1 (en) Information processing device, information processing program, and information processing method
JP2009115090A (en) Automatic detection and notification of degradation of turbine internal component
Van Jaarsveld Developing an integrated information system to assess the operational condition of deep level mine equipment
CN103136630A (en) Method and system for managing plant operation
CN110067739A (en) Air compressor machine energy efficiency monitoring method based on big data
JP6894208B2 (en) Systems and methods for determining the risk of operating a turbomachine
CN104047879A (en) Diagnosis control system and method for turbine compressor unit
CN106845769A (en) The identifying system of power station auxiliary equipment dependability
Bachir et al. Maintenance optimizing of production systems by reliability: different methods applied
Hadjiski et al. CBR approach for technical diagnostics of mill fan system
Liang et al. Value-Based Managemant in Centrifugal Compressors Maintenance
Mehdi et al. Model-based Reasoning Approach for Automated Failure Analysis: An Industrial Gas Turbine Application
Reid et al. Enhancement of an equipment reliability program with smart, connected power plant assets
Zagorowska Degradation modelling in process control applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745007

Country of ref document: EP

Kind code of ref document: A1