WO2020153165A1 - ユーザ状態可視化システム、及び、ユーザ状態可視化方法 - Google Patents

ユーザ状態可視化システム、及び、ユーザ状態可視化方法 Download PDF

Info

Publication number
WO2020153165A1
WO2020153165A1 PCT/JP2020/000812 JP2020000812W WO2020153165A1 WO 2020153165 A1 WO2020153165 A1 WO 2020153165A1 JP 2020000812 W JP2020000812 W JP 2020000812W WO 2020153165 A1 WO2020153165 A1 WO 2020153165A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
state
wearable device
unit
estimated
Prior art date
Application number
PCT/JP2020/000812
Other languages
English (en)
French (fr)
Inventor
西山 高史
秋憲 松本
洋介 井澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020568068A priority Critical patent/JPWO2020153165A1/ja
Publication of WO2020153165A1 publication Critical patent/WO2020153165A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Definitions

  • the present invention relates to a user status visualization system and a user status visualization method.
  • Patent Document 1 discloses, as a device for measuring such a biological signal, an auricle-wearing device capable of improving safety while maintaining a constant measurement sensitivity.
  • the present invention provides a user state visualization system and a user state visualization method capable of visualizing the state of the central nervous system and the state of the autonomic nervous system of a user based on a biological signal.
  • a user state visualization system a determination unit that determines whether or not a user wearing the wearable device is stationary based on acceleration data output by an acceleration sensor included in the wearable device, Based on the user's electroencephalogram measured by the electroencephalogram measuring unit included in the wearable device during the period in which the user is determined to be stationary, a first estimation unit for estimating the state of the central nervous system of the user, A second estimation unit that estimates the state of the autonomic nerve of the user based on the pulse wave of the user measured by the pulse wave measurement unit included in the wearable device, and the state of the estimated central nerve of the user, and And a display control unit that displays the estimated state of the autonomic nerve of the user.
  • a user state visualization method is a user state visualization method executed by a computer, wherein a user wearing the wearable device is based on acceleration data output by an acceleration sensor included in the wearable device.
  • a central nervous system of the user is determined based on an electroencephalogram of the user measured by an electroencephalogram measurement unit of the wearable device during a period in which it is determined whether the user is stationary and the user is determined to be stationary.
  • the state of the user's autonomic nerve is estimated based on the pulse wave of the user measured by the pulse wave measuring unit included in the wearable device, and the state of the estimated central nerve of the user is estimated, And displaying the estimated autonomic state of the user.
  • a program according to one aspect of the present invention is a program for causing a computer to execute the user state visualization method.
  • a user state visualization system and a user state visualization method capable of visualizing the state of the central nervous system and the state of the autonomic nervous system based on a biological signal are realized.
  • FIG. 1 is a diagram showing an outline of a user state visualization system according to an embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the user status visualization system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of an image displayed on the display unit of the mobile terminal.
  • FIG. 4 is a flowchart of Operation Example 1 of the user status visualization system according to the embodiment.
  • FIG. 5 is a diagram showing an example of acceleration data.
  • FIG. 6 is a diagram for explaining a method of estimating the state of the central nervous system.
  • FIG. 7 is a diagram for explaining a method of estimating the state of the autonomic nerve.
  • FIG. 8 is a flowchart of Operation Example 2 of the user status visualization system according to the embodiment.
  • FIG. 9 is a diagram showing a preferable change example of the user's state.
  • FIG. 10 is a diagram showing a first modification of the wearable device.
  • FIG. 11 is a diagram showing a second modification of the wearable device.
  • FIG. 12 is a diagram showing a third modification of the wearable device.
  • FIG. 13 is a diagram showing a fourth modification of the wearable device.
  • each diagram is a schematic diagram and is not necessarily an exact illustration. Further, in each drawing, the same reference numerals are given to substantially the same configurations, and overlapping description may be omitted or simplified.
  • FIG. 1 is a diagram showing an outline of a user state visualization system according to an embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the user status visualization system according to the embodiment.
  • the user status visualization system 10 includes a wearable device 20 and a mobile terminal 30. As shown in FIG. 2, the user status visualization system 10 may include a server device 40.
  • the user state visualization system 10 can estimate and visualize the state of the central nerve of the user 50 and the state of the autonomic nerve of the user 50 based on the biological signal of the user 50 measured by the wearable device 20. Specifically, the state of the central nerve of the user 50 and the estimated state of the autonomic nerve of the user 50 are displayed on the display unit included in the mobile terminal 30.
  • FIG. 3 is a diagram showing an example of an image displayed on the display unit of the mobile terminal 30.
  • the first axis (vertical axis) showing the state of the central nerve of the user 50 and the second axis (the vertical axis showing the state of the autonomic nerve of the user 50
  • Two-dimensional coordinates constituted by the horizontal axis) and a point (one of P1 to P3) indicating the current state of the user are displayed.
  • the user status visualization system 10 estimates the user status in real time, for example. Therefore, the point indicating the user's state displayed on the display unit 34 moves with the passage of time, for example, P1 ⁇ P2 ⁇ P3.
  • the display unit 34 may display a movement locus of points indicating the user's state (for example, a broken line connecting P1, P2, and P3 in FIG. 3).
  • Zones 1 to 4 in Figure 3 are defined as follows.
  • the state of the central nervous system of the user 50 is distinguished into a relaxed state and a tense state, and the state of the autonomic nervous system of the user 50 is awake state and drowsiness state in which the user 50 feels drowsiness (in other words, the awakening degree is
  • Zone 1 is a zone that indicates that the user 50 is in an awake state and a tense state.
  • Zone 2 is a zone indicating that the user 50 is drowsy and nervous
  • zone 3 is a zone indicating that the user 50 is drowsy and relaxing
  • zone 4 is awakening of the user 50. It is a zone that indicates the state of being relaxed.
  • the wearable device 20 is an earhook type device, and measures electroencephalogram (EEG: ElectroEncephaloGram) and pulse wave (PPG: PhotoPlethysmoGram) as biological signals of the user 50.
  • the wearable device 20 includes an acceleration sensor 21, an electroencephalogram measurement unit 22, a pulse wave measurement unit 23, a control unit 24, a storage unit 25, a communication unit 26, and a speaker 27.
  • the acceleration sensor 21 is, for example, a triaxial acceleration sensor, measures acceleration in each of the X, Y, and Z directions, and outputs the measurement result as acceleration data.
  • the acceleration data is used to determine whether the user 50 is in a stationary state.
  • the acceleration sensor 21 may be a piezo resistance type acceleration sensor, a capacitance type acceleration sensor, or a heat detection type acceleration sensor.
  • the electroencephalogram measurement unit 22 measures the electroencephalogram of the user 50. Specifically, the electroencephalogram measurement unit 22 measures the voltage value between the first electrode that contacts the upper part of the ear of the user 50 (in other words, the temporal region) and the second electrode that contacts the earlobe of the user 50. It is a circuit that outputs as brain wave data.
  • the positions of the first electrode and the second electrode are examples and are not particularly limited.
  • the pulse wave measuring unit 23 measures the pulse wave of the user 50.
  • the pulse wave measuring unit 23 is specifically a pulse wave sensor that measures a pulse wave using the photoelectric pulse wave method.
  • the photoelectric pulse wave method irradiates the body surface with infrared light or red light (green light can also be used in the case of reflection type), and changes the amount of light transmitted through the body or the amount of light reflected within the body, This is a pulse wave measurement method that can be considered as a change in blood flow.
  • the pulse wave measuring unit 23 measures the pulse wave, for example, in the vicinity of the earlobe of the user 50 and outputs the pulse wave data.
  • the control unit 24 transmits the acceleration data output by the acceleration sensor 21, the brain wave data output by the brain wave measuring unit 22, and the pulse wave data output by the pulse wave measuring unit 23 to the communication unit 26 to the mobile terminal 30.
  • the control unit 24 is specifically realized by a microcomputer, but may be realized by a processor.
  • the storage unit 25 is a storage device that stores a program executed by the control unit 24 to cause the communication unit 26 to transmit acceleration data, brain wave data, and pulse wave data.
  • the storage unit 25 may temporarily store acceleration data, brain wave data, and pulse wave data.
  • the storage unit 25 is realized by, for example, a semiconductor memory.
  • the communication unit 26 transmits the acceleration data, the electroencephalogram data, and the pulse wave data to the mobile terminal 30 under the control of the control unit 24.
  • the communication unit 26 is specifically a wireless communication circuit that performs wireless communication, but may be a wired communication circuit that performs wired communication.
  • the communication standard of communication performed by the communication unit 26 is not particularly limited.
  • the speaker 27 outputs sound under the control of the control unit 24. That is, the wearable device 20 has an earphone function.
  • the speaker 27 may be a speaker used for a general earphone or a bone conduction speaker.
  • the mobile terminal 30 acquires acceleration data, brain wave data, and pulse wave data from the wearable device 20, and visualizes the state of the user 50 based on these data. That is, the mobile terminal 30 displays an image as shown in FIG. 3 based on the data acquired from the wearable device 20.
  • the mobile terminal 30 is specifically a smartphone, a tablet terminal, or the like.
  • the mobile terminal 30 includes a communication unit 31, an information processing unit 32, a storage unit 33, a display unit 34, and an operation reception unit 35.
  • the communication unit 31 receives the acceleration data, the brain wave data, and the pulse wave data from the communication unit 26 of the wearable device 20.
  • the communication unit 31 is specifically a wireless communication circuit that performs wireless communication, but may be a wired communication circuit that performs wired communication.
  • the communication standard of communication performed by the communication unit 31 is not particularly limited.
  • the communication unit 31 is also used for communication between the mobile terminal 30 and the server device 40.
  • the information processing unit 32 receives the data received by the communication unit 31 as input and performs information processing for visualizing the state of the user 50.
  • the information processing unit 32 is specifically realized by a microcomputer, but may be realized by a processor.
  • the information processing section 32 includes a determination section 32a, a first estimation section 32b, a second estimation section 32c, a display control section 32d, a sound output control section 32e, an acquisition section 32f, and an authentication section. 32g.
  • the storage unit 33 is a storage device that stores a program executed by the information processing unit 32 to perform information processing for visualizing the state of the user 50, various information necessary for the information processing, and the like.
  • the storage unit 33 is realized by, for example, a semiconductor memory.
  • the display unit 34 displays an image under the control of the information processing unit 32 (more specifically, the display control unit 32d).
  • the display unit 34 displays, for example, an image as shown in FIG.
  • the display unit 34 is realized by, for example, a display panel such as a liquid crystal panel or an organic EL panel.
  • the operation receiving unit 35 receives the operation of the user 50.
  • the operation reception unit 35 is realized by, for example, a touch panel, but may be realized by a hardware button.
  • FIG. 4 is a flowchart of an operation example 1 of the user status visualization system 10.
  • the determination unit 32a determines whether or not the user 50 is stationary based on the acceleration data output by the acceleration sensor 21 and the acceleration data received by the communication unit 31 (S11).
  • FIG. 5 is a diagram showing an example of acceleration data. Note that FIG. 5 shows acceleration data when the standing user 50 sits down and stands still.
  • the Z-axis direction is the vertical direction
  • the X-axis direction is the front-back direction
  • the Y-axis direction is the horizontal direction.
  • the determination unit 32a determines that the user It is determined that 50 is stationary. On the other hand, the determination unit 32a determines that the user 50 is stationary when at least one of the magnitude of acceleration in the X axis direction, the magnitude of acceleration in the Y axis direction, and the magnitude of acceleration in the Z axis direction is greater than or equal to a predetermined value. It is determined that it has not. It should be noted that according to the waveform of the acceleration data as shown in FIG. 5, it is possible to distinguish whether the standing user 50 is sitting and standing still or the sitting user 50 is standing and standing still. Is.
  • the first estimation unit 32b estimates the state of the central nerve of the user 50 based on the electroencephalogram data received by the communication unit 31 (that is, the electroencephalogram of the user 50 measured by the electroencephalogram measurement unit 22) ( S12).
  • the first estimation unit 32b selectively uses the brain waves of the user 50 measured by the brain wave measurement unit 22 during the period when the determination unit 32a determines that the user 50 is stationary to determine the state of the central nervous system. presume. That is, the first estimation unit 32b does not use the brain waves of the user 50 measured by the brain wave measurement unit 22 during the period when the determination unit 32a determines that the user 50 is not stationary, for estimating the state of the central nervous system. .. As a result, the state of the central nerve is estimated using the electroencephalogram with less noise due to the muscle activity of the user 50, so that the estimation accuracy is improved.
  • FIG. 6 is a diagram for explaining a method of estimating the state of the central nervous system.
  • the first estimation unit 32b calculates the power of each frequency component such as ⁇ wave, ⁇ wave, ⁇ wave, ⁇ wave, and ⁇ wave by frequency-analyzing the electroencephalogram data shown in FIG. 6A. As a result, the first estimation unit 32b can obtain the time change of the power ratio of each frequency component as shown in FIG. 6B.
  • the first estimation unit 32b determines the first evaluation value indicating the state of the central nerve of the user 50, for example, based on the ratio of the ⁇ wave component (that is, the component of 8 Hz to 13 Hz) in all the components. .. In the coordinates as shown in FIG. 3, the larger the first evaluation value, the higher the arousal level. In this case, the first estimation unit 32b increases the first evaluation value as the proportion of the ⁇ wave component in all the components is smaller. That is, the first estimation unit 32b estimates that the awakening degree of the user 50 is high. Note that such a method of determining the first evaluation value is an example, and other existing methods may be used.
  • the second estimation unit 32c determines the state of the autonomic nerve of the user 50 based on the pulse wave data received by the communication unit 31 (that is, the pulse wave of the user 50 measured by the pulse wave measurement unit 23). Estimate (S13).
  • the second estimation unit 32c selectively uses the pulse wave of the user 50 measured by the pulse wave measurement unit 23 during the period when the determination unit 32a determines that the user 50 is stationary, and the second nerve estimating unit 32c detects the The state may be estimated. That is, the second estimating unit 32c uses the pulse wave of the user 50 measured by the pulse wave measuring unit 23 during the period when the determining unit 32a determines that the user 50 is not stationary, to estimate the state of the autonomic nerve. You don't have to use it. This improves the estimation accuracy.
  • FIG. 7 is a diagram for explaining a method of estimating the state of the autonomic nerve.
  • the second estimating unit 32c frequency-analyzes the second-order differential waveform (waveform of the acceleration pulse wave) with respect to time of the pulse wave data shown in (a) of FIG. 7 to obtain LF (frequency of 0.05 Hz to 0.15 Hz). Component) and the power of each frequency component of HF (frequency component of 0.15 Hz to 0.40 Hz).
  • the second estimating unit 32c can obtain the time change of the LF/HF power ratio (hereinafter, also simply referred to as the LF/HF ratio) as shown in FIG. 7B.
  • the second estimation unit 32c determines the second evaluation value indicating the state of the autonomic nerve of the user 50, for example, based on the LF/HF ratio. As shown in FIG. 3, in the coordinates, the larger the second evaluation value, the higher the degree of relaxation (the action of the parasympathetic nerve is superior to that of the sympathetic nerve). In this case, the second estimation unit 32c increases the second evaluation value as the LF/HF ratio occupied by all the components is smaller. That is, the second estimation unit 32c estimates that the degree of relaxation of the user 50 is high. Note that such a method of determining the second evaluation value is an example, and other existing methods may be used.
  • the display control unit 32d displays the estimated central nervous state of the user 50 (that is, the first evaluation value) and the estimated autonomic nervous state of the user 50 (that is, the second evaluation value). (S14). Specifically, the display control unit 32d uses the display unit 34 to display the two-dimensional coordinates (coordinates as shown in FIG. 3) in which the points indicating the first evaluation value and the second evaluation value are mapped. .. That is, the display control unit 32d displays the estimated state of the central nerve of the user 50 and the estimated state of the autonomic nerve of the user 50 by the points plotted on the two-dimensional coordinates.
  • the points plotted on the two-dimensional coordinates are appropriately displayed (updated) based on, for example, the operation of the operation receiving unit 35 by the user 50.
  • the points plotted on the two-dimensional coordinates may be updated in real time regardless of the operation of the user 50. That is, the display control unit 32d may display the estimated state of the central nerve of the user 50 and the estimated state of the autonomic nerve of the user 50 in real time.
  • the real-time display here means a real-time display in a broad sense, not a real-time display in a strict sense.
  • the real-time display here means that the display content is appropriately updated over time, and there may be a time lag of several seconds to several tens of minutes.
  • the user state visualization system 10 estimates the state of the central nerve of the user 50 and the state of the autonomic nerve of the user 50 based on the biological signal of the user 50 measured by the wearable device 20, Can be visualized. Further, the user state visualization system 10 estimates the state of the central nerve of the user 50 based on the electroencephalogram measured when the user 50 is determined to be stationary (that is, the electroencephalogram that is considered to have less noise). Thus, the accuracy of estimating the state of the central nervous system can be improved.
  • the user state visualization system 10 can also bring the user 50 closer to an arbitrary state by outputting a sound from the speaker 27 of the wearable device 20 according to the state of the user 50.
  • an operation example 2 of the user status visualization system 10 will be described.
  • FIG. 8 is a flowchart of Operation Example 2 of the user status visualization system 10.
  • the determination unit 32a determines whether or not the user 50 is stationary based on the acceleration data received by the communication unit 31 (S11).
  • the first estimation unit 32b determines the central nervous system of the user 50 based on the electroencephalogram of the user 50 measured by the electroencephalogram measurement unit 22 during the period when the determination unit 32a determines that the user 50 is stationary.
  • the state is estimated (S12).
  • the second estimating unit 32c estimates the state of the autonomic nerve of the user 50 based on the pulse wave of the user 50 measured by the pulse wave measuring unit 23 (S13).
  • the display control unit 32d displays the estimated state of the central nerves of the user 50 and the estimated state of the autonomic nerves of the user 50 (S14). In addition, in the operation example 2, step S14 may be omitted.
  • the sound output control unit 32e causes the speaker 27 to output a sound based on the state of the central nerve of the user 50 estimated in step S12 and the state of the autonomic nerve of the user 50 estimated in step S13 ( S15).
  • the sound here is, for example, music (music).
  • the storage unit 33 stores zones 1 to 4 in FIG. 3 and song data of songs that are considered to be comfortable to the user 50 belonging to the zone.
  • Such a music data database is empirically or experimentally created in advance.
  • the sound output control unit 32e considers that the user 50 who belongs to zone 1 feels comfortably among the songs stored in the storage unit 33. Select the music data of the music to be played. Subsequently, the sound output control unit 32e causes the communication unit 31 to transmit the sound output instruction signal including the selected music data to the wearable device 20.
  • the control unit 24 causes the speaker 27 to output the music corresponding to the music data included in the sound output instruction signal.
  • the acquisition unit 32f acquires the subjective evaluation result of the user 50 for the sound output from the speaker 27 by the sound output control unit 32e based on the operation of the user 50 accepted by the operation accepting unit 35 (S16).
  • the subjective evaluation result is expressed by, for example, a score of two or more stages, but the specific aspect of the subjective evaluation result is not particularly limited.
  • the storage unit 33 based on the control of the sound output control unit 32e, the state of the central nerve of the user 50 estimated in step S12, the state of the autonomic nerve of the user 50 estimated in step S13, and step S15.
  • the identification information indicating the sound output from the speaker by the sound output control unit 32e (that is, the identification information of the music data) is stored as evaluation information in association with the acquired subjective evaluation result (S17).
  • evaluation information is useful as information for grasping what kind of music the user 50 prefers in what kind of state.
  • the user state visualization system 10 causes the speaker 27 of the wearable device 20 to output a sound based on the estimated state of the user 50. If an appropriate sound is output according to the state of the user 50, the comfort of the user 50 can be improved.
  • the sound output control unit 32e may estimate the state of the central nerve of the user 50 (for example, the first evaluation value) and the estimated state of the autonomic nerve of the user 50 (for example, the second evaluation value).
  • the sound output control unit 32e may estimate the state of the central nerve of the user 50 (for example, the first evaluation value) and the estimated state of the autonomic nerve of the user 50 (for example, the second evaluation value).
  • a learning model that outputs identification information of music data based on a value function that determines the value of music data.
  • This learning model updates the value function by machine learning (more specifically, reinforcement learning) using the subjective evaluation result as a reward.
  • the sound output control unit 32e may cause the speaker 27 to output a sound in order to change the state of the user 50.
  • the states of the user 50 are zone 1, zone 2, and zone 3 as shown by the arrows in FIG. , Zone 4 in that order.
  • FIG. 9 is a diagram showing a preferable change example of the state of the user 50.
  • the sound output control unit 32e can bring the change in the state of the user 50 closer to the change shown by the arrow in FIG. 9 by selecting the music as appropriate. it can.
  • the sound output control unit 32e causes the user 50, who is estimated to be in the awake state and the tense state (that is, the state belongs to zone 1), to shift to the drowsiness state and then to the relaxed state, and It is possible to cause the speaker 27 to output a sound so as to shift to the awake state while maintaining the relaxed state.
  • the user status visualization system 10 may be realized as a client server system. That is, the user status visualization system 10 may include the server device 40 in addition to the mobile terminal 30. For example, in the above embodiment, part or all of the processing performed on the mobile terminal 30 may be performed by the server device 40.
  • the server device 40 includes components corresponding to the determining unit 32a, the first estimating unit 32b, and the second estimating unit 32c in the above-described embodiment, and the mobile terminal 30 includes the determining unit 32a.
  • the first estimation unit 32b and the second estimation unit 32c may not be provided. Note that such allocation of the constituent elements is an example, and each constituent element (including an authentication unit 32g described later) described in the above-described embodiment may be distributed to the mobile terminal 30 and the server device 40 in the same manner. Good.
  • the waveform of the pulse wave measured by the pulse wave measuring unit 23 varies from person to person. Therefore, the waveform of the pulse wave may be used for personal authentication.
  • the authentication unit 32g of the mobile terminal 30 may, for example, measure the pulse wave waveform measured by the pulse wave measurement unit 23 and a reference waveform stored (registered) in advance in the storage unit 33 (that is, the pulse wave of the owner of the mobile terminal 30). By comparing with the waveform) of the wearable device 20, it is possible to perform an authentication process as to whether the user 50 of the wearable device 20 matches the owner of the mobile terminal 30. Such an authentication process is used, for example, to release the lock screen of the mobile terminal 30.
  • the authentication process may be used for login authentication.
  • the wearable device 20 is not limited to the earhook type.
  • 10 to 13 are diagrams showing modified examples of the wearable device 20.
  • the wearable device 20a shown in FIG. 10 is a glasses type (in other words, eyewear type), and the wearable device 20b shown in FIG. 11 is a headset type (in other words, headphone type).
  • the wearable device 20c shown in FIG. 12 is a hat type (a cap type in FIG. 12, but also includes a knit hat type), and the wearable device 20d shown in FIG. 13 is a neckband type.
  • the wearable device used in the user status visualization system 10 is attached to, for example, the head or neck of the user 50.
  • the user state visualization system 10 determines whether or not the user 50 wearing the wearable device 20 is stationary based on the acceleration data output by the acceleration sensor 21 of the wearable device 20. A portion that estimates the state of the central nervous system of the user 50 based on the electroencephalogram of the user 50 measured by the electroencephalogram measurement unit 22 included in the wearable device 20 during the period in which the unit 32a and the user 50 are determined to be stationary.
  • One estimation unit 32b, a second estimation unit 32c that estimates the state of the autonomic nerve of the user 50 based on the pulse wave of the user 50 measured by the pulse wave measurement unit 23 included in the wearable device 20, and the estimated user 50.
  • a display control unit 32d that displays the state of the central nervous system and the estimated state of the autonomic nerve of the user 50.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave.
  • the state of the central nerve is estimated using the brain waves that are considered to have less noise measured during the period when the user 50 is determined to be stationary, the estimation accuracy is improved.
  • the display control unit 32d displays the estimated state of the central nerve of the user 50 and the estimated state of the autonomic nerve of the user 50 in real time.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user in real time based on the electroencephalogram and the pulse wave.
  • the display control unit 32d displays the estimated user 50 by the points plotted on the two-dimensional coordinates having two axes orthogonal to the axis indicating the state of the central nerve and the axis indicating the state of the autonomic nerve.
  • the state of the central nervous system and the estimated state of the autonomic nervous system of the user 50 are displayed.
  • the user state visualization system 10 as described above can represent the state of the central nervous system and the state of the autonomic nervous system of the user in two-dimensional coordinates.
  • the user state visualization system 10 further outputs a sound to the speaker 27 included in the wearable device 20 based on the estimated state of the central nerve of the user 50 and the estimated state of the autonomic nerve of the user 50.
  • the sound output control part 32e which outputs is provided.
  • Such a user status visualization system 10 can output a sound suitable for the user's status from the speaker 27.
  • the user state visualization system 10 further includes an acquisition unit 32f that acquires a subjective evaluation result of the user 50 with respect to the sound output from the speaker 27 by the sound emission control unit 32e, and an estimated central nerve of the user 50.
  • a storage unit 33 that stores the state, the estimated state of the autonomic nerve of the user 50, and the identification information indicating the sound output from the speaker 27 by the sound output control unit 32e in association with the acquired subjective evaluation result. Equipped with.
  • the user state visualization system 10 as described above can provide information for grasping what kind of music the user 50 likes in what kind of state.
  • the first estimating unit 32b estimates whether the central nervous state of the user 50 is the awake state or the drowsiness state in which the user 50 feels drowsiness, and the second estimating unit 32c sets the user to a drowsiness state.
  • the state of the 50 autonomic nerves it is estimated whether the user 50 is in a relaxed state or a nervous state.
  • the sound output control unit 32e uses the speaker so that the user 50 estimated to be in the awake state and the tense state transitions to the relaxed state after transitioning to the drowsiness state and transitions to the awake state while maintaining the relaxed state. Let 27 output the sound.
  • Such a user state visualization system 10 can guide the state of the user 50 to a state suitable for a nap.
  • the user state visualization system 10 further includes an authentication unit 32g that performs authentication processing based on the pulse wave of the user 50 measured by the pulse wave measurement unit 23.
  • the user state visualization system 10 as described above can also use the pulse wave for estimating the state of the autonomic nerve of the user 50 for the authentication process.
  • the user status visualization system 10 includes a mobile terminal 30 and a server device 40.
  • the mobile terminal 30 includes at least a part of the determination unit 32a, the first estimation unit 32b, the second estimation unit 32c, and the display control unit 32d.
  • the server device 40 includes the determination unit 32a, the first estimation unit 32b, the second estimation unit 32c, and the display control unit 32d that are not included in the mobile terminal 30.
  • Such a user status visualization system 10 can be realized by the mobile terminal 30 and the server device 40.
  • the wearable device 20 is an earhook type wearable device.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave measured by the earhook wearable device 20.
  • the wearable device 20a is a glasses-type wearable device.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave measured by the glasses-type wearable device 20a.
  • the wearable device 20b is a headset-type wearable device.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave measured by the headset-type wearable device 20b.
  • the wearable device 20c is a hat-type wearable device.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave measured by the hat-type wearable device 20c.
  • the wearable device 20d is a neckband type wearable device.
  • the user state visualization system 10 as described above can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave measured by the neckband wearable device 20d.
  • the user state visualization method executed by a computer such as the user state visualization system 10 is based on the acceleration data output by the acceleration sensor 21 of the wearable device 20 so that the user 50 wearing the wearable device 20 stands still. It is determined whether or not the state of the central nerve of the user 50 is determined based on the electroencephalogram of the user 50 measured by the electroencephalogram measurement unit 22 included in the wearable device 20 during the period when the user 50 is determined to be stationary. Estimate and estimate the state of the autonomic nerve of the user 50 based on the pulse wave of the user 50 measured by the pulse wave measuring unit 23 of the wearable device 20, and estimate the state of the central nerve of the user 50, and the estimation. The state of the autonomic nerve of the user 50 is displayed.
  • Such a user state visualization method can visualize the state of the central nervous system and the state of the autonomic nervous system of the user based on the electroencephalogram and the pulse wave.
  • the state of the central nerve is estimated using the brain waves that are considered to have less noise measured during the period when the user 50 is determined to be stationary, the estimation accuracy is improved.
  • the user's state is displayed by two-dimensional coordinates, but the display mode of the user's state is not particularly limited.
  • the user's state may be displayed, for example, as a numerical value (that is, a character) corresponding to the first evaluation value (or the second evaluation value) of the above-described embodiment.
  • processing executed by a specific processing unit may be executed by another processing unit.
  • the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • each component may be realized by hardware.
  • Each component may be a circuit (or integrated circuit). These circuits may constitute one circuit as a whole or may be separate circuits. Further, each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspects of the present invention may be realized by a recording medium such as a system, a device, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • a recording medium such as a system, a device, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • the system, the device, the method, the integrated circuit, the computer program, and the recording medium may be implemented in any combination.
  • the present invention may be realized as the mobile terminal of the above-mentioned embodiment or may be realized as a system corresponding to the mobile terminal.
  • the present invention may be realized as a user state visualization method, may be realized as a program for causing a computer to execute the user state visualization method, and a computer readable recording of such a program is possible. It may be realized as a non-transitory recording medium.
  • the program includes an application program for operating a general-purpose mobile terminal as the mobile terminal of the above embodiment.
  • the user status visualization system is realized by a plurality of devices, but it may be realized as a single device.
  • the components included in the user status visualization system described in the above embodiments may be distributed to the plurality of devices in any way.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Social Psychology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

ユーザ状態可視化システム(10)は、ウェアラブルデバイス(20)が有する加速度センサ(21)によって出力される加速度データに基づいて、ウェアラブルデバイス(20)を装着したユーザ(50)が静止しているか否かを判定する判定部(32a)と、脳波計測部(22)によって計測されるユーザ(50)の脳波に基づいて、ユーザ(50)の中枢神経の状態を推定する第一推定部(32b)と、脈波計測部(23)によって計測されるユーザ(50)の脈波に基づいてユーザ(50)の自律神経の状態を推定する第二推定部(32c)と、推定されたユーザ(50)の中枢神経の状態、及び、推定されたユーザ(50)の自律神経の状態を表示する表示制御部(32d)とを備える。

Description

ユーザ状態可視化システム、及び、ユーザ状態可視化方法
 本発明は、ユーザ状態可視化システム、及び、ユーザ状態可視化方法に関する。
 脳波などの生体信号を計測する技術が知られている。特許文献1には、このような生体信号を計測する装置として、一定の計測感度を維持しながら安全性を向上し得る耳介装着具が開示されている。
特開2011-005176号公報
 本発明は、生体信号に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができるユーザ状態可視化システム及びユーザ状態可視化方法を提供する。
 本発明の一態様に係るユーザ状態可視化システムは、ウェアラブルデバイスが有する加速度センサによって出力される加速度データに基づいて、前記ウェアラブルデバイスを装着したユーザが静止しているか否かを判定する判定部と、前記ユーザが静止していると判定されている期間に前記ウェアラブルデバイスが有する脳波計測部によって計測される前記ユーザの脳波に基づいて、前記ユーザの中枢神経の状態を推定する第一推定部と、前記ウェアラブルデバイスが有する脈波計測部によって計測される前記ユーザの脈波に基づいて、前記ユーザの自律神経の状態を推定する第二推定部と、推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態を表示する表示制御部とを備える。
 本発明の一態様に係るユーザ状態可視化方法は、コンピュータによって実行されるユーザ状態可視化方法であって、ウェアラブルデバイスが有する加速度センサによって出力される加速度データに基づいて、前記ウェアラブルデバイスを装着したユーザが静止しているか否かを判定し、前記ユーザが静止していると判定されている期間に、前記ウェアラブルデバイスが有する脳波計測部によって計測される前記ユーザの脳波に基づいて、前記ユーザの中枢神経の状態を推定し、前記ウェアラブルデバイスが有する脈波計測部によって計測される前記ユーザの脈波に基づいて、前記ユーザの自律神経の状態を推定し、推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態を表示する。
 本発明の一態様に係るプログラムは、前記ユーザ状態可視化方法をコンピュータに実行させるためのプログラムである。
 本発明によれば、生体信号に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができるユーザ状態可視化システム及びユーザ状態可視化方法が実現される。
図1は、実施の形態に係るユーザ状態可視化システムの概要を示す図である。 図2は、実施の形態に係るユーザ状態可視化システムの機能構成を示すブロック図である。 図3は、携帯端末の表示部に表示される画像の一例を示す図である。 図4は、実施の形態に係るユーザ状態可視化システムの動作例1のフローチャートである。 図5は、加速度データの一例を示す図である。 図6は、中枢神経の状態の推定方法を説明するための図である。 図7は、自律神経の状態の推定方法を説明するための図である。 図8は、実施の形態に係るユーザ状態可視化システムの動作例2のフローチャートである。 図9は、ユーザの状態の好ましい変化例を示す図である。 図10は、ウェアラブルデバイスの第一の変形例を示す図である。 図11は、ウェアラブルデバイスの第二の変形例を示す図である。 図12は、ウェアラブルデバイスの第三の変形例を示す図である。 図13は、ウェアラブルデバイスの第四の変形例を示す図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。
 (実施の形態)
 [ユーザ状態可視化システムの概要]
 まず、実施の形態に係るユーザ状態可視化システムの概要について説明する。図1は、実施の形態に係るユーザ状態可視化システムの概要を示す図である。図2は、実施の形態に係るユーザ状態可視化システムの機能構成を示すブロック図である。
 実施の形態に係るユーザ状態可視化システム10は、ウェアラブルデバイス20と、携帯端末30とを備える。図2に示されるように、ユーザ状態可視化システム10は、サーバ装置40を備えてもよい。ユーザ状態可視化システム10は、ウェアラブルデバイス20によって計測されるユーザ50の生体信号に基づいて、ユーザ50の中枢神経の状態、及び、ユーザ50の自律神経の状態を推定し、可視化することができる。ユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態は、具体的には、携帯端末30が備える表示部に表示される。図3は、携帯端末30の表示部に表示される画像の一例を示す図である。
 図3に示されるように、携帯端末30の表示部34には、ユーザ50の中枢神経の状態を示す第一軸(縦軸)、及び、ユーザ50の自律神経の状態を示す第二軸(横軸)によって構成される2次元座標と、ユーザの現在の状態を示す点(P1~P3のいずれか1つ)とが表示される。ユーザ状態可視化システム10は、例えば、リアルタイムにユーザの状態を推定する。したがって、表示部34に表示されるユーザの状態を示す点は、例えば、P1→P2→P3のように時間の経過とともに動く。なお、表示部34には、ユーザの状態を示す点の移動軌跡(例えば、図3のP1、P2、P3を結ぶ破線など)が表示されてもよい。
 図3のゾーン1~4は、以下のように定義される。ユーザ50の中枢神経の状態をリラックス状態及び緊張状態のいずれかに区別し、ユーザ50の自律神経の状態をユーザ50が覚醒状態及び眠気を感じている眠気状態(言い換えれば、覚醒度が相対的に低い非覚醒状態)のいずれかに区別した場合、ゾーン1は、ユーザ50が覚醒状態かつ緊張状態であることを示すゾーンである。ゾーン2は、ユーザ50が眠気状態かつ緊張状態であることを示すゾーンであり、ゾーン3は、ユーザ50が眠気状態かつリラックス状態であることを示すゾーンであり、ゾーン4は、ユーザ50が覚醒状態かつリラックス状態であることを示すゾーンである。
 [ウェアラブルデバイス]
 以下、このようなユーザ状態可視化システム10の構成について詳細に説明する。まず、ウェアラブルデバイス20について説明する。
 ウェアラブルデバイス20は、イヤーフック型(耳掛け型)のデバイスであり、ユーザ50の生体信号として脳波(EEG:ElectroEncephaloGram)及び脈波(PPG:PhotoPlethysmoGram)を計測する。ウェアラブルデバイス20は、加速度センサ21と、脳波計測部22と、脈波計測部23と、制御部24と、記憶部25と、通信部26と、スピーカ27とを備える。
 加速度センサ21は、例えば、3軸加速度センサであり、X、Y、Zの各方向の加速度を計測し、計測結果を加速度データとして出力する。加速度データは、ユーザ50が静止状態であるか否かの判定に用いられる。加速度センサ21は、ピエゾ抵抗型の加速度センサであってもよいし、静電容量型の加速度センサであってもよいし、熱検知型の加速度センサであってもよい。
 脳波計測部22は、ユーザ50の脳波を計測する。脳波計測部22は、具体的には、ユーザ50の耳上部(言い換えれば、側頭部)に接する第1の電極と、ユーザ50の耳たぶに接する第2電極との間の電圧値を計測して脳波データとして出力する回路である。なお、第1の電極及び第2の電極の位置は一例であり、特に限定されない。
 脈波計測部23は、ユーザ50の脈波を計測する。脈波計測部23は、具体的には、光電脈波法を用いて脈波を計測する脈波センサである。光電脈波法は、赤外光または赤色光(反射型の場合は緑色光も使用可能)を体表面に照射し、体内を透過する光の変化量または体内で反射する光の変化量を、血流量の変化としてとらえる脈波の計測方法である。脈波計測部23は、例えば、ユーザ50の耳たぶ付近を対象として脈波を計測し、脈波データを出力する。
 制御部24は、加速度センサ21によって出力される加速度データ、脳波計測部22によって出力される脳波データ、及び、脈波計測部23によって出力される脈波データを通信部26に携帯端末30へ送信させる。制御部24は、具体的には、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。
 記憶部25は、加速度データ、脳波データ、及び、脈波データを通信部26に送信させるために制御部24が実行するプログラムが記憶される記憶装置である。記憶部25には、加速度データ、脳波データ、及び、脈波データが一時的に記憶されてもよい。記憶部25は、例えば、半導体メモリなどによって実現される。
 通信部26は、制御部24の制御に基づいて、加速度データ、脳波データ、及び、脈波データを携帯端末30に送信する。通信部26は、具体的には、無線通信を行う無線通信回路であるが、有線通信を行う有線通信回路であってもよい。通信部26によって行われる通信の通信規格は、特に限定されない。
 スピーカ27は、制御部24の制御に基づいて音を出力する。つまり、ウェアラブルデバイス20は、イヤホン機能を有する。スピーカ27は、一般的なイヤホンに用いられるスピーカであってもよいし、骨伝導スピーカであってもよい。
 [携帯端末]
 携帯端末30は、ウェアラブルデバイス20から加速度データ、脳波データ、及び、脈波データを取得し、これらのデータに基づいてユーザ50の状態を可視化する。つまり、携帯端末30は、ウェアラブルデバイス20から取得したデータに基づいて、図3のような画像を表示する。携帯端末30は、具体的には、スマートフォンまたはタブレット端末などである。携帯端末30は、通信部31と、情報処理部32と、記憶部33と、表示部34と、操作受付部35とを備える。
 通信部31は、加速度データ、脳波データ、及び、脈波データをウェアラブルデバイス20の通信部26から受信する。通信部31は、具体的には、無線通信を行う無線通信回路であるが、有線通信を行う有線通信回路であってもよい。通信部31によって行われる通信の通信規格は、特に限定されない。なお、通信部31は、携帯端末30とサーバ装置40との通信にも用いられる。
 情報処理部32は、通信部31によって受信されたデータを入力として、ユーザ50の状態を可視化するための情報処理を行う。情報処理部32は、具体的には、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。情報処理部32は、具体的には、判定部32aと、第一推定部32bと、第二推定部32cと、表示制御部32dと、出音制御部32eと、取得部32fと、認証部32gとを備える。
 記憶部33は、情報処理部32がユーザ50の状態を可視化するための情報処理を行うために実行するプログラム、当該情報処理に必要な各種情報などが記憶される記憶装置である。記憶部33は、例えば、半導体メモリなどによって実現される。
 表示部34は、情報処理部32(より詳細には、表示制御部32d)の制御に基づいて画像を表示する。表示部34は、例えば、図3のような画像を表示する。表示部34は、例えば、液晶パネルまたは有機ELパネルなどの表示パネルによって実現される。
 操作受付部35は、ユーザ50の操作を受け付ける。操作受付部35は、例えば、タッチパネルによって実現されるが、ハードウェアボタンによって実現されてもよい。
 [動作例1]
 次に、ユーザ状態可視化システム10の動作例1について説明する。図4は、ユーザ状態可視化システム10の動作例1のフローチャートである。
 まず、判定部32aは、加速度センサ21によって出力される加速度データであって、通信部31によって受信された加速度データに基づいて、ユーザ50が静止しているか否かを判定する(S11)。図5は、加速度データの一例を示す図である。なお、図5は、立っている状態のユーザ50が座って静止したときの加速度データを示している。Z軸方向は上下方向であり、X軸方向は前後方向であり、Y軸方向は左右方向である。
 判定部32aは、加速度データに含まれるX軸方向の加速度の大きさ、Y軸方向の加速度の大きさ、及び、Z軸方向の加速度の大きさの全てが所定値未満であるときに、ユーザ50が静止していると判定する。一方、判定部32aは、X軸方向の加速度の大きさ、Y軸方向の加速度の大きさ、及び、Z軸方向の加速度の大きさの少なくとも1つが所定値以上であるときには、ユーザ50が静止していないと判定する。なお、図5に示されるような加速度データの波形によれば、立っている状態のユーザ50が座って静止したか、座っている状態のユーザ50が立って静止したかを区別することも可能である。
 次に、第一推定部32bは、通信部31によって受信された脳波データ(つまり、脳波計測部22によって計測されるユーザ50の脳波)に基づいて、ユーザ50の中枢神経の状態を推定する(S12)。
 脳波の振幅は、数μV~数十μVオーダと非常に小さく、脳波には、ユーザ50の頭部または頸部の筋活動によって生じるノイズが容易に混入してしまう。そこで、第一推定部32bは、判定部32aによってユーザ50が静止していると判定されている期間に脳波計測部22によって計測されるユーザ50の脳波を選択的に用いて中枢神経の状態を推定する。つまり、第一推定部32bは、判定部32aによってユーザ50が静止していないと判定されている期間に脳波計測部22によって計測されるユーザ50の脳波を、中枢神経の状態の推定に使用しない。これにより、ユーザ50の筋活動によるノイズが少ない脳波を使用して中枢神経の状態が推定されるため、推定精度が高められる。
 以下、中枢神経の状態の推定方法について具体的に説明する。図6は、中枢神経の状態の推定方法を説明するための図である。第一推定部32bは、図6の(a)に示される脳波データを周波数分析することにより、δ波、θ波、α波、β波、γ波などの各周波数成分のパワーを算出する。これにより、第一推定部32bは、図6の(b)に示されるように各周波数成分のパワー比率の時間変化を求めることができる。
 そして、第一推定部32bは、例えば、全ての成分に占めるα波成分(つまり、8Hz~13Hzの成分)の割合に基づいて、ユーザ50の中枢神経の状態を示す第一評価値を決定する。図3に示されるように座標においては、第一評価値が大きいほど覚醒度が高いことを示す。この場合、第一推定部32bは、全ての成分に占めるα波成分の割合が小さいほど、第一評価値を大きくする。つまり、第一推定部32bは、ユーザ50の覚醒度が高いと推定する。なお、このような第一評価値の決定方法は一例であり、既存の他の方法が用いられてもよい。
 次に、第二推定部32cは、通信部31によって受信された脈波データ(つまり、脈波計測部23によって計測されるユーザ50の脈波)に基づいて、ユーザ50の自律神経の状態を推定する(S13)。
 なお、第二推定部32cは、判定部32aによってユーザ50が静止していると判定されている期間に脈波計測部23によって計測されるユーザ50の脈波を選択的に用いて自律神経の状態を推定してもよい。つまり、第二推定部32cは、判定部32aによってユーザ50が静止していないと判定されている期間に脈波計測部23によって計測されるユーザ50の脈波を、自律神経の状態の推定に使用しなくてもよい。これにより、推定精度が高められる。
 以下、自律神経の状態の推定方法について具体的に説明する。図7は、自律神経の状態の推定方法を説明するための図である。第二推定部32cは、図7の(a)に示される脈波データの時間に関する二階微分波形(加速度脈波の波形)を周波数分析することにより、LF(0.05Hz~0.15Hzの周波数成分)及びHF(0.15Hz~0.40Hzの周波数成分)の各周波数成分のパワーを算出する。これにより、第二推定部32cは、図7の(b)に示されるようにLF/HFのパワー比率(以下、単にLF/HF比とも記載される)の時間変化を求めることができる。
 そして、第二推定部32cは、例えば、LF/HF比に基づいて、ユーザ50の自律神経の状態を示す第二評価値を決定する。図3に示されるように座標においては、第二評価値が大きいほどリラックス度が高い(副交感神経の働きが交感神経の働きよりも優位である)ことを示す。この場合、第二推定部32cは、全ての成分に占めるLF/HF比が小さいほど、第二評価値を大きくする。つまり、第二推定部32cは、ユーザ50のリラックス度が高いと推定する。なお、このような第二評価値の決定方法は一例であり、既存の他の方法が用いられてもよい。
 その後、表示制御部32dは、推定されたユーザ50の中枢神経の状態(つまり、第一評価値)、及び、推定されたユーザ50の自律神経の状態(つまり、第二評価値)を表示する(S14)。表示制御部32dは、具体的には、第一評価値及び第二評価値を示す点がマッピングされた2次元座標(図3に示されるような座標)を、表示部34を用いて表示する。つまり、表示制御部32dは、2次元座標上にプロットされる点により、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態を表示する。
 2次元座標上にプロットされる点は、例えば、ユーザ50の操作受付部35への操作に基づいて適宜表示(更新)される。2次元座標上にプロットされる点は、ユーザ50の操作によらずリアルタイムに更新されてもよい。つまり、表示制御部32dは、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態をリアルタイム表示してもよい。ここでのリアルタイム表示は、厳密な意味のリアルタイム表示ではなく広義のリアルタイム表示を意味する。ここでのリアルタイム表示は、時間の経過とともに適宜表示内容が更新されることを意味し、数秒~数十分程度のタイムラグがあってもよい。
 以上説明したように、ユーザ状態可視化システム10は、ウェアラブルデバイス20によって計測されるユーザ50の生体信号に基づいて、ユーザ50の中枢神経の状態、及び、ユーザ50の自律神経の状態を推定し、可視化することができる。また、ユーザ状態可視化システム10は、ユーザ50が静止していると判定されたときに計測される脳波(つまり、ノイズが少ないと考えられる脳波)に基づいてユーザ50の中枢神経の状態を推定することで、中枢神経の状態の推定精度を向上することができる。
 [動作例2]
 ユーザ状態可視化システム10は、ユーザ50の状態に応じてウェアラブルデバイス20のスピーカ27から音を出力することにより、ユーザ50を任意の状態に近づけることもできる。以下、このようなユーザ状態可視化システム10の動作例2について説明する。図8は、ユーザ状態可視化システム10の動作例2のフローチャートである。
 まず、判定部32aは、通信部31によって受信された加速度データに基づいて、ユーザ50が静止しているか否かを判定する(S11)。次に、第一推定部32bは、判定部32aによってユーザ50が静止していると判定されている期間に脳波計測部22によって計測されるユーザ50の脳波に基づいて、ユーザ50の中枢神経の状態を推定する(S12)。第二推定部32cは、脈波計測部23によって計測されるユーザ50の脈波に基づいて、ユーザ50の自律神経の状態を推定する(S13)。表示制御部32dは、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態を表示する(S14)。なお、動作例2では、ステップS14は省略されてもよい。
 その後、出音制御部32eは、ステップS12において推定されたユーザ50の中枢神経の状態、及び、ステップS13において推定されたユーザ50の自律神経の状態に基づいて、スピーカ27に音を出力させる(S15)。ここでの音は、例えば、楽曲(音楽)である。
 記憶部33においては、図3のゾーン1~4と、状態が当該ゾーンに属するユーザ50が心地よく感じると考えられる楽曲の楽曲データがデータベース化されている。このような楽曲データのデータベースは経験的または実験的にあらかじめ作成される。
 例えば、ステップS12及びステップS13において推定されたユーザの状態がゾーン1に属する場合、出音制御部32eは、記憶部33に記憶された楽曲の中からゾーン1に属するユーザ50が心地よく感じると考えられる楽曲の楽曲データを選択する。続いて、出音制御部32eは、選択した楽曲データを含む出音指示信号を通信部31にウェアラブルデバイス20へ送信させる。ウェアラブルデバイス20の通信部26によって出音指示信号が受信されると、制御部24は、出音指示信号に含まれる楽曲データに対応する楽曲をスピーカ27に出力させる。
 その後、取得部32fは、操作受付部35が受け付けたユーザ50の操作に基づいて、出音制御部32eによってスピーカ27から出力された音に対するユーザ50の主観評価結果を取得する(S16)。主観評価結果は、例えば、2段階以上のスコアで表現されるが、主観評価結果の具体的態様は特に限定されない。
 そうすると、記憶部33は、出音制御部32eの制御に基づいて、ステップS12において推定されたユーザ50の中枢神経の状態、ステップS13において推定されたユーザ50の自律神経の状態、及び、ステップS15において出音制御部32eによってスピーカから出力された音を示す識別情報(つまり、楽曲データの識別情報)を、取得された主観評価結果と対応付けて評価情報として記憶する(S17)。このような評価情報は、ユーザ50がどのような状態のときにどのような楽曲を好むかを把握するための情報として有用である。
 以上説明したように、ユーザ状態可視化システム10は、推定したユーザ50の状態に基づいて、ウェアラブルデバイス20のスピーカ27から音を出力させる。ユーザ50の状態に応じて適切な音が出力されれば、ユーザ50の快適性を高めることができる。
 なお、出音制御部32eがどのような楽曲データを選択するかは、機械学習によって決定されてもよい。この場合、例えば、出音制御部32eは、推定されたユーザ50の中枢神経の状態(例えば、第一評価値)、及び、推定されたユーザ50の自律神経の状態(例えば、第二評価値)を入力とし、楽曲データの価値を定める価値関数に基づいて楽曲データの識別情報を出力する学習モデルによって実現される。この学習モデルは、主観評価結果を報酬として用いる機械学習(より具体的には、強化学習)によって価値関数を更新する。
 また、出音制御部32eは、ユーザ50の状態を変化させるためにスピーカ27に音を出力させてもよい。例えば、ユーザ50の状態がゾーン1に属する場合であって、ユーザ50が仮眠をとるような場合、ユーザ50の状態は、図9の矢印に示されるように、ゾーン1、ゾーン2、ゾーン3、ゾーン4の順に変化することが望ましい。図9は、ユーザ50の状態の好ましい変化例を示す図である。
 例えば、記憶部33に、ユーザ50の状態をゾーン1からゾーン2に向けて変化させるための楽曲データ、ゾーン2からゾーン3に向けて変化させるための楽曲データ、ゾーン3からゾーン4に向けて変化させるための楽曲データがそれぞれ記憶されていれば、出音制御部32eは、適宜楽曲を選択することにより、ユーザ50の状態の変化を図9の矢印に示されるような変化に近づけることができる。具体的には、出音制御部32eは、覚醒状態かつ緊張状態である(つまり、状態がゾーン1に属する)と推定されるユーザ50が、眠気状態に移行した後リラックス状態に移行し、かつ、リラックス状態を維持したまま覚醒状態に移行するようにスピーカ27に音を出力させることができる。
 [変形例1]
 ユーザ状態可視化システム10は、クライアントサーバシステムとして実現されてもよい。つまり、ユーザ状態可視化システム10は、携帯端末30に加えてサーバ装置40を備えてもよい。例えば、上記実施の形態において、携帯端末30に行われた処理の一部または全部がサーバ装置40によって行われてもよい。
 より具体的には、サーバ装置40は、上記実施の形態における判定部32a、第一推定部32b、及び、第二推定部32cに相当する構成要素を備え、携帯端末30は、判定部32a、第一推定部32b、及び、第二推定部32cを備えなくてもよい。なお、このような構成要素の振り分けは一例であり、上記実施の形態で説明された各構成要素(後述の認証部32gを含む)は、携帯端末30及びサーバ装置40に同様に振り分けられてもよい。
 [変形例2]
 ところで、脈波計測部23によって計測される脈波の波形は、人によって異なる。そこで、脈波の波形は、個人認証に用いられてもよい。携帯端末30の認証部32gは、例えば、脈波計測部23が計測した脈波の波形と、記憶部33にあらかじめ記憶(登録)された基準波形(つまり、携帯端末30の所有者の脈波の波形)とを照合することにより、ウェアラブルデバイス20のユーザ50が携帯端末30の所有者と一致するか否かの認証処理を行うことができる。このような認証処理は、例えば、携帯端末30のロック画面の解除に用いられる。また、変形例1のようにユーザ状態可視化システム10による可視化サービスがサーバ装置40を介して提供される場合、上記認証処理は、ログイン認証に用いられてもよい。
 [変形例3]
 ウェアラブルデバイス20はイヤーフック型に限定されない。図10~図13は、ウェアラブルデバイス20の変形例を示す図である。図10に示されるウェアラブルデバイス20aは、メガネ型(言い換えれば、アイウェア型)であり、図11に示されるウェアラブルデバイス20bは、ヘッドセット型(言い換えれば、ヘッドフォン型)である。図12に示されるウェアラブルデバイス20cは、帽子型(図12ではキャップ型であるが、ニット帽型なども含む)であり、図13に示されるウェアラブルデバイス20dは、ネックバンド型である。
 このように、ユーザ状態可視化システム10に用いられるウェアラブルデバイスは、例えば、ユーザ50の頭部または首に装着される。
 [効果等]
 以上説明したように、ユーザ状態可視化システム10は、ウェアラブルデバイス20が有する加速度センサ21によって出力される加速度データに基づいて、ウェアラブルデバイス20を装着したユーザ50が静止しているか否かを判定する判定部32aと、ユーザ50が静止していると判定されている期間にウェアラブルデバイス20が有する脳波計測部22によって計測されるユーザ50の脳波に基づいて、ユーザ50の中枢神経の状態を推定する第一推定部32bと、ウェアラブルデバイス20が有する脈波計測部23によって計測されるユーザ50の脈波に基づいてユーザ50の自律神経の状態を推定する第二推定部32cと、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態を表示する表示制御部32dとを備える。
 このようなユーザ状態可視化システム10は、脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。また、ユーザ50が静止していると判定される期間に計測されたノイズが少ないと考えられる脳波を使用して中枢神経の状態が推定されるため、推定精度が高められる。
 また、例えば、表示制御部32dは、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態をリアルタイム表示する。
 このようなユーザ状態可視化システム10は、脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態をリアルタイムに可視化することができる。
 また、例えば、表示制御部32dは、中枢神経の状態を示す軸及び自律神経の状態を示す軸を直交する2つの軸とする2次元座標上にプロットされる点により、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態を表示する。
 このようなユーザ状態可視化システム10は、ユーザの中枢神経の状態及び自律神経の状態を2次元座標で表現することができる。
 また、例えば、ユーザ状態可視化システム10は、さらに、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態に基づいて、ウェアラブルデバイス20が有するスピーカ27に音を出力させる出音制御部32eを備える。
 このようなユーザ状態可視化システム10は、ユーザの状態に適した音をスピーカ27から出力することができる。
 また、例えば、ユーザ状態可視化システム10は、さらに、出音制御部32eによってスピーカ27から出力された音に対するユーザ50の主観評価結果を取得する取得部32fと、推定されたユーザ50の中枢神経の状態、推定されたユーザ50の自律神経の状態、及び、出音制御部32eによってスピーカ27から出力された音を示す識別情報を、取得された主観評価結果と対応付けて記憶する記憶部33とを備える。
 このようなユーザ状態可視化システム10は、ユーザ50がどのような状態のときにどのような楽曲を好むかを把握するための情報を提供することが可能である。
 また、例えば、第一推定部32bは、ユーザ50の中枢神経の状態として、ユーザ50が覚醒状態及び眠気を感じている眠気状態のいずれであるかを推定し、第二推定部32cは、ユーザ50の自律神経の状態として、ユーザ50がリラックス状態及び緊張状態のいずれであるかを推定する。出音制御部32eは、覚醒状態かつ緊張状態であると推定されるユーザ50が、眠気状態に移行した後リラックス状態に移行し、かつ、リラックス状態を維持したまま覚醒状態に移行するようにスピーカ27に音を出力させる。
 このようなユーザ状態可視化システム10は、ユーザ50の状態を仮眠に適した状態に導くことができる。
 また、例えば、ユーザ状態可視化システム10は、さらに、脈波計測部23によって計測されるユーザ50の脈波に基づいて認証処理を行う認証部32gを備える。
 このようなユーザ状態可視化システム10は、ユーザ50の自律神経の状態を推定するための脈波を認証処理にも使用することができる。
 また、例えば、ユーザ状態可視化システム10は、携帯端末30と、サーバ装置40とを備える。携帯端末30は、判定部32a、第一推定部32b、第二推定部32c、及び、表示制御部32dの少なくとも一部を備える。サーバ装置40は、判定部32a、第一推定部32b、第二推定部32c、及び、表示制御部32dのうち携帯端末30に備えられていない構成要素を備える。
 このようなユーザ状態可視化システム10は、携帯端末30及びサーバ装置40によって実現可能である。
 また、例えば、ウェアラブルデバイス20は、イヤーフック型のウェアラブルデバイスである。
 このようなユーザ状態可視化システム10は、イヤーフック型のウェアラブルデバイス20によって計測される脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。
 また、例えば、ウェアラブルデバイス20aは、メガネ型のウェアラブルデバイスである。
 このようなユーザ状態可視化システム10は、メガネ型のウェアラブルデバイス20aによって計測される脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。
 また、例えば、ウェアラブルデバイス20bは、ヘッドセット型のウェアラブルデバイスである。
 このようなユーザ状態可視化システム10は、ヘッドセット型のウェアラブルデバイス20bによって計測される脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。
 また、例えば、ウェアラブルデバイス20cは、帽子型のウェアラブルデバイスである。
 このようなユーザ状態可視化システム10は、帽子型のウェアラブルデバイス20cによって計測される脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。
 また、例えば、ウェアラブルデバイス20dは、ネックバンド型のウェアラブルデバイスである。
 このようなユーザ状態可視化システム10は、ネックバンド型のウェアラブルデバイス20dによって計測される脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。
 また、ユーザ状態可視化システム10などのコンピュータによって実行されるユーザ状態可視化方法は、ウェアラブルデバイス20が有する加速度センサ21によって出力される加速度データに基づいて、ウェアラブルデバイス20を装着したユーザ50が静止しているか否かを判定し、ユーザ50が静止していると判定されている期間にウェアラブルデバイス20が有する脳波計測部22によって計測されるユーザ50の脳波に基づいて、ユーザ50の中枢神経の状態を推定し、ウェアラブルデバイス20が有する脈波計測部23によって計測されるユーザ50の脈波に基づいてユーザ50の自律神経の状態を推定し、推定されたユーザ50の中枢神経の状態、及び、推定されたユーザ50の自律神経の状態を表示する。
 このようなユーザ状態可視化方法は、脳波及び脈波に基づいてユーザの中枢神経の状態及び自律神経の状態を可視化することができる。また、ユーザ50が静止していると判定される期間に計測されたノイズが少ないと考えられる脳波を使用して中枢神経の状態が推定されるため、推定精度が高められる。
 (その他の実施の形態)
 以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態では、ユーザの状態が二次元座標によって表示されたが、ユーザの状態の表示態様は特に限定されない。ユーザの状態は、例えば、上記実施の形態の第一評価値(または第二評価値)に相当する数値(つまり、文字)で表示されてもよい。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、各構成要素は、ハードウェアによって実現されてもよい。各構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 例えば、本発明は、上記実施の形態の携帯端末として実現されてもよいし、携帯端末に相当するシステムとして実現されてもよい。また、本発明は、ユーザ状態可視化方法として実現されてもよいし、ユーザ状態可視化方法をコンピュータに実行させるためのプログラムとして実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。なお、プログラムには、汎用の携帯端末を上記実施の形態の携帯端末として動作させるためのアプリケーションプログラムが含まれる。
 また、上記実施の形態では、ユーザ状態可視化システムは、複数の装置によって実現されたが、単一の装置として実現されてもよい。ユーザ状態可視化システムが複数の装置によって実現される場合、上記実施の形態で説明されたユーザ状態可視化システムが備える構成要素は、複数の装置にどのように振り分けられてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 10 ユーザ状態可視化システム
 20、20a、20b、20c、20d ウェアラブルデバイス
 21 加速度センサ
 22 脳波計測部
 23 脈波計測部
 27 スピーカ
 30 携帯端末
 32a 判定部
 32b 第一推定部
 32c 第二推定部
 32d 表示制御部
 32e 出音制御部
 32f 取得部
 32g 認証部
 33 記憶部
 40 サーバ装置
 50 ユーザ

Claims (15)

  1.  ウェアラブルデバイスが有する加速度センサによって出力される加速度データに基づいて、前記ウェアラブルデバイスを装着したユーザが静止しているか否かを判定する判定部と、
     前記ユーザが静止していると判定されている期間に前記ウェアラブルデバイスが有する脳波計測部によって計測される前記ユーザの脳波に基づいて、前記ユーザの中枢神経の状態を推定する第一推定部と、
     前記ウェアラブルデバイスが有する脈波計測部によって計測される前記ユーザの脈波に基づいて、前記ユーザの自律神経の状態を推定する第二推定部と、
     推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態を表示する表示制御部とを備える
     ユーザ状態可視化システム。
  2.  前記表示制御部は、推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態をリアルタイム表示する
     請求項1に記載のユーザ状態可視化システム。
  3.  前記表示制御部は、中枢神経の状態を示す軸及び自律神経の状態を示す軸を直交する2つの軸とする2次元座標上にプロットされる点により、推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態を表示する
     請求項1または2に記載のユーザ状態可視化システム。
  4.  さらに、推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態に基づいて、前記ウェアラブルデバイスが有するスピーカに音を出力させる出音制御部を備える
     請求項1~3のいずれか1項に記載のユーザ状態可視化システム。
  5.  さらに、前記出音制御部によって前記スピーカから出力された音に対する前記ユーザの主観評価結果を取得する取得部と、
     推定された前記ユーザの中枢神経の状態、推定された前記ユーザの自律神経の状態、及び、前記出音制御部によって前記スピーカから出力された音を示す識別情報を、取得された主観評価結果と対応付けて記憶する記憶部とを備える
     請求項4に記載のユーザ状態可視化システム。
  6.  前記第一推定部は、前記ユーザの中枢神経の状態として、前記ユーザが覚醒状態及び眠気を感じている眠気状態のいずれであるかを推定し、
     前記第二推定部は、前記ユーザの自律神経の状態として、前記ユーザがリラックス状態及び緊張状態のいずれであるかを推定し、
     前記出音制御部は、覚醒状態かつ緊張状態であると推定される前記ユーザが、眠気状態に移行した後リラックス状態に移行し、かつ、リラックス状態を維持したまま覚醒状態に移行するように前記スピーカに音を出力させる
     請求項4または5に記載のユーザ状態可視化システム。
  7.  さらに、前記脈波計測部によって計測される前記ユーザの脈波に基づいて認証処理を行う認証部を備える
     請求項1~6のいずれか1項に記載のユーザ状態可視化システム。
  8.  前記ユーザ状態可視化システムは、携帯端末と、サーバ装置とを備え、
     前記携帯端末は、前記判定部、前記第一推定部、前記第二推定部、及び、前記表示制御部の少なくとも一部を備え、
     前記サーバ装置は、前記判定部、前記第一推定部、前記第二推定部、及び、前記表示制御部のうち前記携帯端末に備えられていない構成要素を備える
     請求項1~7のいずれか1項に記載のユーザ状態可視化システム。
  9.  前記ウェアラブルデバイスは、イヤーフック型のウェアラブルデバイスである
     請求項1~8のいずれか1項に記載のユーザ状態可視化システム。
  10.  前記ウェアラブルデバイスは、メガネ型のウェアラブルデバイスである
     請求項1~8のいずれか1項に記載のユーザ状態可視化システム。
  11.  前記ウェアラブルデバイスは、ヘッドセット型のウェアラブルデバイスである
     請求項1~8のいずれか1項に記載のユーザ状態可視化システム。
  12.  前記ウェアラブルデバイスは、帽子型のウェアラブルデバイスである
     請求項1~8のいずれか1項に記載のユーザ状態可視化システム。
  13.  前記ウェアラブルデバイスは、ネックバンド型のウェアラブルデバイスである
     請求項1~8のいずれか1項に記載のユーザ状態可視化システム。
  14.  コンピュータによって実行されるユーザ状態可視化方法であって、
     ウェアラブルデバイスが有する加速度センサによって出力される加速度データに基づいて、前記ウェアラブルデバイスを装着したユーザが静止しているか否かを判定し、
     前記ユーザが静止していると判定されている期間に、前記ウェアラブルデバイスが有する脳波計測部によって計測される前記ユーザの脳波に基づいて、前記ユーザの中枢神経の状態を推定し、
     前記ウェアラブルデバイスが有する脈波計測部によって計測される前記ユーザの脈波に基づいて、前記ユーザの自律神経の状態を推定し、
     推定された前記ユーザの中枢神経の状態、及び、推定された前記ユーザの自律神経の状態を表示する
     ユーザ状態可視化方法。
  15.  請求項14に記載のユーザ状態可視化方法をコンピュータに実行させるためのプログラム。
PCT/JP2020/000812 2019-01-25 2020-01-14 ユーザ状態可視化システム、及び、ユーザ状態可視化方法 WO2020153165A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020568068A JPWO2020153165A1 (ja) 2019-01-25 2020-01-14 ユーザ状態可視化システム、及び、ユーザ状態可視化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019011353 2019-01-25
JP2019-011353 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020153165A1 true WO2020153165A1 (ja) 2020-07-30

Family

ID=71736038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000812 WO2020153165A1 (ja) 2019-01-25 2020-01-14 ユーザ状態可視化システム、及び、ユーザ状態可視化方法

Country Status (2)

Country Link
JP (1) JPWO2020153165A1 (ja)
WO (1) WO2020153165A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349215B1 (ja) 2023-03-28 2023-09-22 株式会社Taos研究所 生体判定方法、生体判定システム及び生体判定プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208710A (ja) * 1989-02-09 1990-08-20 Hitachi Ltd プラント監視装置
CN102000378A (zh) * 2010-09-10 2011-04-06 李隆 基于三网、物联网的音乐色光物理因子身心保健系统
KR20140128042A (ko) * 2013-04-26 2014-11-05 주식회사 라이프사이언스테크놀로지 뇌파측정신호의 상태 판단장치
JP2016071598A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 認証装置、認証システムおよびプログラム
US20160234572A1 (en) * 2015-02-08 2016-08-11 Zenso, Inc. System and method communicating biofeedback to a user through a wearable device
KR20180074534A (ko) * 2016-12-23 2018-07-03 쁘랑누아 과기 (베이징) 유한공사 이어후크 타입 웨어러블 디바이스를 이용한 건강 상태 모니터링 시스템
JP2018159908A (ja) * 2017-03-23 2018-10-11 富士ゼロックス株式会社 情報処理装置、情報処理システム及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208710A (ja) * 1989-02-09 1990-08-20 Hitachi Ltd プラント監視装置
CN102000378A (zh) * 2010-09-10 2011-04-06 李隆 基于三网、物联网的音乐色光物理因子身心保健系统
KR20140128042A (ko) * 2013-04-26 2014-11-05 주식회사 라이프사이언스테크놀로지 뇌파측정신호의 상태 판단장치
JP2016071598A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 認証装置、認証システムおよびプログラム
US20160234572A1 (en) * 2015-02-08 2016-08-11 Zenso, Inc. System and method communicating biofeedback to a user through a wearable device
KR20180074534A (ko) * 2016-12-23 2018-07-03 쁘랑누아 과기 (베이징) 유한공사 이어후크 타입 웨어러블 디바이스를 이용한 건강 상태 모니터링 시스템
JP2018159908A (ja) * 2017-03-23 2018-10-11 富士ゼロックス株式会社 情報処理装置、情報処理システム及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349215B1 (ja) 2023-03-28 2023-09-22 株式会社Taos研究所 生体判定方法、生体判定システム及び生体判定プログラム

Also Published As

Publication number Publication date
JPWO2020153165A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
KR102333704B1 (ko) 생체 신호에 기초하여 컨텐츠를 처리하는 방법, 및 그에 따른 디바이스
CN107405072B (zh) 用于生成个体的压力水平信息和压力弹性水平信息的系统和方法
US10620593B2 (en) Electronic device and control method thereof
JP5127576B2 (ja) 精神作業負荷検出装置及びそれを備えた自動二輪車
JP2001252265A (ja) バイオフィードバック装置
JP7364099B2 (ja) 出力制御装置、出力制御方法およびプログラム
US20200405215A1 (en) Apparatus and method for evaluating cognitive function
JP3779150B2 (ja) 脳波のバイオフィードバックにより制御されるコンピュータゲーム装置
WO2020153165A1 (ja) ユーザ状態可視化システム、及び、ユーザ状態可視化方法
KR101973081B1 (ko) 최적의 시각 자극 판별 방법 및 시스템
KR101693716B1 (ko) 뇌파를 이용한 졸음정도 및 집중정도의 판단 방법 및 이를 이용한 집중력저감 알림 시스템
US20220409094A1 (en) Visual brain-computer interface
JP7349629B2 (ja) 刺激出力システム、および、プログラム
JP7411944B2 (ja) 刺激提示システム、刺激提示方法、および、プログラム
CN112052349A (zh) 内容选择方法、内容选择装置以及记录介质
Matthies Reflexive interaction-extending peripheral interaction by augmenting humans
WO2019207728A1 (ja) 画像提示装置、画像提示方法、記録媒体及びプログラム
WO2024106301A1 (ja) 信号処理システム
Li et al. Resting-state EEG in the Vestibular Region Can Predict Motion Sickness Induced by a Motion-Simulated in-car VR Platform
WO2023026927A1 (ja) 心理状態推定システム、心理状態推定方法、および、プログラム
US20230359275A1 (en) Brain-computer interface
JP2021159527A (ja) 不安障害緩和システム、及び、不安障害緩和方法
KR20170122305A (ko) 뇌파 및 생체 신호에 따라 동작하는 사용자 단말 장치 및 그 제어 방법
US20210193170A1 (en) Information processing apparatus and non-transitory computer readable medium
Xu Eye Tracking for User and Environment-Aware Headset Augmented Reality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745708

Country of ref document: EP

Kind code of ref document: A1