WO2020152937A1 - Construction machine - Google Patents
Construction machine Download PDFInfo
- Publication number
- WO2020152937A1 WO2020152937A1 PCT/JP2019/043331 JP2019043331W WO2020152937A1 WO 2020152937 A1 WO2020152937 A1 WO 2020152937A1 JP 2019043331 W JP2019043331 W JP 2019043331W WO 2020152937 A1 WO2020152937 A1 WO 2020152937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- closed circuit
- flushing valve
- tank
- spool
- pump
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B7/00—Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
- F15B7/005—With rotary or crank input
- F15B7/006—Rotary pump input
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/08—Superstructures; Supports for superstructures
- E02F9/10—Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
- E02F9/12—Slewing or traversing gears
- E02F9/121—Turntables, i.e. structure rotatable about 360°
- E02F9/123—Drives or control devices specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/30—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
- E02F3/32—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2225—Control of flow rate; Load sensing arrangements using pressure-compensating valves
- E02F9/2228—Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2232—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
- E02F9/2235—Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2289—Closed circuit
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/0406—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed during starting or stopping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/17—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/042—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B7/00—Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
- F15B7/008—Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors with rotary output
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20523—Internal combustion engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20561—Type of pump reversible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/27—Directional control by means of the pressure source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41572—Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41581—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/426—Flow control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/428—Flow control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50518—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6652—Control of the pressure source, e.g. control of the swash plate angle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7058—Rotary output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7135—Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7142—Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/755—Control of acceleration or deceleration of the output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/785—Compensation of the difference in flow rate in closed fluid circuits using differential actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/85—Control during special operating conditions
- F15B2211/853—Control during special operating conditions during stopping
Definitions
- the present invention relates to a construction machine such as a hydraulic excavator, and more particularly to a construction machine that drives a one-rod hydraulic cylinder and a turning hydraulic motor in a hydraulic closed circuit.
- a hydraulic closed circuit that connects the hydraulic pump and hydraulic actuator in a closed circuit and directly controls the speed of the hydraulic actuator by controlling the flow rate of the hydraulic pump ( Hereinafter, a closed circuit) is being considered.
- a closed circuit In this system, there is no pressure loss due to the conventional flow rate control valve, and the pump discharges only the required flow rate, so there is little energy loss. Also, the potential energy of the hydraulic actuator and the kinetic energy during deceleration can be regenerated. Therefore, further energy saving is possible.
- Patent Document 1 discloses the prior art of a construction machine equipped with a closed circuit.
- Patent Document 1 describes a configuration in which a hydraulic pump is connected to an actuator (boom cylinder, swing motor, etc.) in a closed circuit, and the operating speed of the actuator is controlled by swash plate control of the hydraulic pump.
- actuator boom cylinder, swing motor, etc.
- a flushing valve is provided in the closed circuit described in Patent Document 1.
- the flushing valve is a valve that connects the low-pressure side flow path of the closed circuit to the tank in order to maintain the balance of the pressure oil in the closed circuit, and has a function of discharging excess oil on the low-pressure side to the tank.
- Patent Document 1 when the boom cylinder is contracted, the pump sucks hydraulic oil from the head side of the boom cylinder and discharges it to the rod side. At this time, the flushing valve is switched to connect the rod side of the boom cylinder on the low pressure side to the tank. As a result, the hydraulic fluid discharged by the pump flows into the rod side of the boom cylinder, while the hydraulic fluid having the pressure receiving area difference of the boom cylinder, which is a one-rod cylinder, is discharged from the flushing valve to the tank.
- the pump when accelerating the revolving structure, the pump sucks hydraulic oil from one input/output side of the swing motor and discharges it to the other input/output side. At this time, the flushing valve is switched to connect the low pressure side pump suction side to the tank.
- the swing motor continues to discharge the hydraulic oil due to the inertia energy of the revolving structure, so the pump suction side becomes high pressure and the flushing valve becomes low pressure in the closed circuit. Switch to connect one pump discharge side to the tank. As a result, brake pressure acts on the swing motor, and the swing structure decelerates.
- the pressure-receiving area ratio between the head side and the rod side is about 2:1. Therefore, in the closed circuit that drives the one-rod cylinder (hereinafter, cylinder closed circuit), the hydraulic oil discharged by the pump is used. About half of this will be drained from the flushing valve to the tank. Therefore, in the cylinder closed circuit, it is necessary to increase the size of the flushing valve in order to reduce the pressure loss of the flushing valve.
- the swing motor since the swing motor does not have the difference in pressure receiving area unlike the one-rod cylinder, the flow rate discharged from the flushing valve to the tank in the closed circuit that drives the swing motor (hereinafter, swing closed circuit) is higher than that in the cylinder closed circuit. Less than 1/10.
- swing closed circuit the flow rate discharged from the flushing valve to the tank in the closed circuit that drives the swing motor
- the pressure loss of the flushing valve in the swing closed circuit becomes small, so the pump suction side (low pressure The rise of the pressure on the side will be delayed.
- the switching timing of the flushing valve is delayed, and it takes time for the pressure on the pump suction side to reach the relief pressure (brake pressure).
- the turning deceleration response is deteriorated and the operability is deteriorated.
- the present invention has been made in view of the above problems, and an object thereof is to provide a construction machine equipped with a hydraulic closed circuit for driving a one-rod hydraulic cylinder and a swing hydraulic motor, and having good swing deceleration response. To provide.
- the present invention stores a lower traveling body, an upper revolving body rotatably attached to the lower traveling body, a work device provided on the upper revolving body, and hydraulic oil.
- a tank a one-rod hydraulic cylinder that drives the working device, a turning hydraulic motor that drives the upper revolving structure, an operating device that directs the operation of the working device and the upper revolving structure, and a bilateral tilt pump.
- a first closed circuit pump including: a second closed circuit pump including both tilting pumps; a cylinder closed circuit that connects the first closed circuit pump and the one-rod hydraulic cylinder in a closed circuit shape; 2 Closed-circuit pump, which connects the closed-loop hydraulic motor to the closed-loop hydraulic motor in a closed-circuit form, a first flushing valve that connects the low-pressure side flow path of the cylinder closed circuit to the tank, and the closed-closed circuit A second flushing valve for communicating a low-pressure side passage with the tank; a first switching valve for switching between communication and interruption of the first closed circuit pump and the one-rod hydraulic cylinder; and the second closed circuit pump A second switching valve that switches between communication and cutoff between the turning hydraulic motor and the turning hydraulic motor; opening and closing of the first switching valve and the second switching valve in response to an operation signal input from the operating device; In the construction machine that controls the discharge flow rates of the first closed circuit pump and the second closed circuit pump, the minimum flow passage area from the second flushing valve to the tank when the second flush
- the second flushing valve for the swing closed circuit (second flushing valve) at the start of the swing deceleration
- the second flushing valve since a large pressure loss occurs in the flushing valve, the pressure in the flow path on the pump suction side rises quickly, and the second flushing valve switches quickly.
- the time taken for the pressure in the flow path on the pump suction side to reach the relief pressure is shortened, so that the turning deceleration response is improved and good turning operability is obtained.
- a hydraulic excavator will be described as an example of a construction machine according to an embodiment of the present invention, and will be described with reference to the drawings.
- the present invention is applicable to general construction machines including a plurality of hydraulic closed circuits in which a closed circuit pump and a hydraulic cylinder are connected in a closed circuit via a switching valve, and a swing closed circuit.
- the object of application of the invention is not limited to the hydraulic excavator.
- FIG. 1 is a side view showing a hydraulic excavator according to this embodiment.
- a hydraulic excavator 100 includes a lower traveling body 103 provided with crawler type traveling devices 8a and 8b on both sides in the left-right direction, and an upper revolving body 102 rotatably mounted on the lower traveling body 103. ing.
- the lower traveling body 103 and the upper revolving body 102 form a vehicle body of the hydraulic excavator 100.
- a cab 101 is provided on the upper swing body 102 as an operation room for an operator to board.
- the undercarriage 103 and the upper revolving superstructure 102 are revolvable via a revolving motor 7 as a revolving hydraulic motor.
- a revolving motor 7 as a revolving hydraulic motor.
- On the front side of the upper swing body 102 for example, a base end portion of a front working machine 104 as a working device for performing excavation work is rotatably attached.
- the front side refers to the direction in which the operator riding on the cab 101 faces (leftward in FIG. 1).
- the front working machine 104 includes a boom 2 having a base end connected to the front side of the upper swing body 102 so as to be vertically rotatable.
- the boom 2 operates via the boom cylinder 1, which is a one-rod hydraulic cylinder.
- the tip end portion of the boom rod 1b is connected to the upper swing body 102, and the base end portion of the boom head 1a is connected to the boom 2.
- a base end portion of an arm 4 is connected to a tip end portion of the boom 2 so as to be rotatable in a vertical direction or a front-back direction.
- the arm 4 operates via an arm cylinder 3 which is a one-rod hydraulic cylinder.
- the arm rod 3b has a tip end connected to the arm 4, and the arm head 3a has a base end connected to the boom 2.
- a base end portion of the bucket 6 is connected to a tip end portion of the arm 4 so as to be rotatable in a vertical direction or a front-back direction.
- the bucket 6 operates via the bucket cylinder 5, which is a single rod hydraulic cylinder.
- the bucket rod 5b has a tip end connected to the bucket 6, and the bucket head 5a has a base end connected to the arm 4.
- the cab 101 is provided with an operation lever 30 (shown in FIG. 2) which is an operation member for operating the boom 2, the arm 4, the bucket 6, and the upper swing body 102 which form the front working machine 104.
- FIG. 2 is a schematic diagram showing a hydraulic drive device that drives the hydraulic excavator 100. Note that, in FIG. 2, only the portions related to the driving of the boom cylinder 1 and the swing motor 7 are illustrated, and the portions related to the driving of the other actuators are omitted.
- the hydraulic drive device 105 includes a boom cylinder 1, a swing motor 7, a closed circuit pump 11 that drives the boom cylinder 1, and a closed circuit pump 12 that drives the swing motor 7.
- the turning motor 7 includes a pair of input/output ports 7a and 7b.
- the closed circuit pumps 11 and 12 are driven by receiving power from the engine 9 via the transmission device 10, respectively.
- the closed circuit pumps 11 and 12 each include a tilting swash plate mechanism having a pair of input/output ports as flow rate adjusting means, and regulators 11a and 12a that adjust the tilting angle of the swash plate to adjust the pump displacement.
- the regulators 11a and 12a control the discharge flow rate and the discharge direction of the closed circuit pumps 11 and 12 according to the pump discharge flow rate command value received from the pump valve control device 40 via the control signal line. (Closed circuit, switching valve)
- Both discharge ports of the closed circuit pump 11 are connected to the boom cylinder 1 via the flow paths 21 and 22 and the switching valve 23 to form a cylinder closed circuit C1.
- Both discharge ports of the closed circuit pump 12 are connected to the swing motor 7 via the flow paths 24 and 25 and the switching valve 26, and form a swing closed circuit C2.
- the switching valve 23 switches between the flow and cutoff of the flow paths 21 and 22 according to the opening/closing control command received from the pump valve control device 40 via the control signal line.
- the switching valve 26 switches between the flow and cutoff of the flow paths 24 and 25 according to the opening/closing control command received from the pump valve control device 40 via the control signal line.
- the flushing valve 31 is connected to the flow paths 21 and 22 and the tank 33. The flushing valve 31 is switched so that the flow passage 21 or the flow passage 22 having the lower pressure is connected to the tank 33.
- the flushing valve 32 is connected to the flow paths 24 and 25 and the tank 33. Similarly, the flushing valve 32 is also switched so that the flow passage 24 and the flow passage 25, whichever has the lower pressure, communicates with the tank 33.
- the check valve 34a is provided so as to connect the tank 33 and the flow paths 21 and 22. When the pressure in the flow paths 21 and 22 is lower than the pressure in the tank 33, hydraulic oil is supplied from the tank 33 to the flow paths 21 and 22.
- the check valve 34b is provided so as to connect the tank 33 to the flow paths 24 and 25. When the pressure in the flow passages 24, 25 is lower than the pressure in the tank 33, hydraulic oil is supplied from the tank 33 to the flow passages 24, 25.
- the relief valves 37a and 37b are provided so as to connect the tank 33 and the flow paths 21 and 22.
- the relief valves 37a, 37b, 38a, 38b serve as a safety valve that opens when the pressure in the flow paths 21, 22, 24, 25 exceeds a preset pressure and discharges the hydraulic oil to the tank 33.
- the pump valve control device 40 is connected to the boom lever 30a as the operation lever 30 and the swing lever 30b by a signal line, and is connected to the switching valves 23 and 26 and the regulators 11a and 12a of the closed circuit pumps 11 and 12 by a control signal line. ing.
- the pump valve control device 40 determines the discharge flow rate of the closed circuit pumps 11 and 12 based on the operation amounts of the boom lever 30a and the swing lever 30b, and outputs a control signal according to the discharge flow rate to the regulators 11a and 12a. Further, when the pump valve control device 40 detects that the boom lever 30a and the swing lever 30b are operated, the switching valves 23 and 26 are opened, and the hydraulic oil discharged by the closed circuit pumps 11 and 12 is transferred to the boom cylinder 1. Drive control of the boom cylinder 1 and the swing motor 7 is performed by causing the boom cylinder 1 to flow into the swing motor 7. The discharge directions of the hydraulic oil of the closed circuit pumps 11 and 12 are determined by the operation directions of the boom lever 30a and the swing lever 30b, respectively.
- FIG. 3 shows an example of the internal structure of the flushing valve 31 for the cylinder closed circuit C1.
- Flow paths 31b, 31c, and 31d are formed in the manifold 31a.
- the flow paths 21 and 22 and the tank 33 in FIG. 2 are connected to the flow paths 31b, 31c, and 31d, respectively.
- a spool 31e having a passage 31h formed therein, shims 31g1 and 31g2, a spring 31f1 and a spring 31f2 are arranged inside the manifold 31a.
- the spool 31e moves to the left or right depending on the magnitude relationship of the pressure in the oil chambers. For example, when the pressure in the flow passage 31b is higher than that in the flow passage 31c, the oil chamber having the spring 31f1 has a high pressure, and the spool 31e moves to the right.
- the low-pressure side passage 32c is connected to the passage 32d via the passage 32h.
- FIG. 4 shows an example of the internal structure of the flushing valve 32 for the swing closed circuit C2.
- Flow paths 32b, 32c, and 32d are formed in the manifold 32a.
- the channels 32b, 32c, and 32d are connected to the channels 24 and 25 and the tank 33 in FIG. 2, respectively.
- a spool 32e having a flow path 32h formed therein, shims 32g1 and 32g2, a spring 32f1 and a spring 32f2 are arranged inside the manifold 32a.
- the flushing valve 32 operates similarly to the flushing valve 31 of FIG. In FIG. 4, the movement amount from the neutral position of the spool 32e is referred to as a stroke amount 32i.
- the thickness T2 of the shims 32g1 and 32g2 is set to be smaller than that of the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). It is made larger than the thickness T1 of the shims 31g1 and 31g2.
- the stroke amount 32i of the spool 32e when a pressure difference occurs between the flow passage 32b and the flow passage 32c in FIG. 4 becomes smaller than the stroke amount 31i in FIG.
- the maximum opening area with the flow path 32h becomes smaller.
- the structure of the flushing valve 32 for the swing closed circuit C2 is the same as the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). It is the one. (Stop-lever input-turn acceleration)
- the pump valve control device 40 causes the pump valve control device 40 to output the operation amount of the turning lever 30b via a signal line. receive.
- the pump valve control device 40 sets the control command value to open the switching valve 26 in order to connect the closed circuit pump 12 to the swing motor 7 based on the received operation amount of the swing lever 30b.
- the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b.
- the pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
- the switching valve 26 opens, and the hydraulic oil discharged by the closed circuit pump 12 flows into the input/output port 7a of the swing motor 7 via the switch valve 26 and the flow path 24, and drives the swing motor 7.
- the hydraulic oil flowing out from the input/output port 7b is sucked into the closed circuit pump 12 via the flow path 25 and the switching valve 26.
- the pressure oil discharged from the closed circuit pump 12 accelerates the inertial body of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, so that the hydraulic oil is discharged from the closed circuit pump 12 on the hydraulic oil discharge side.
- the pressure in a certain channel 24 becomes higher than the pressure in the channel 25.
- the flushing valve 32 is switched to connect the low pressure side flow path 25 and the tank 33. (During turning-lever neutral-turn deceleration)
- the pump valve control device 40 causes the operation amount of the turning lever-30b to be transmitted via a signal line. To receive.
- the pump valve control device 40 sets the control command value to the closed state of the switching valve 26 in order to connect the closed circuit pump 12 to the swing motor 7 based on the received operation amount of the swing lever 30b. Further, the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b. When the turning lever 30b is neutral, the pump discharge flow rate command value becomes zero.
- the pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
- the switching valve 26 is closed and the closed circuit pump 12 stops the discharge of the hydraulic oil.
- the swing motor 7 due to the inertial force of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, the swing motor 7 is Since the rotation motor 7 continues to rotate, the turning motor 7 discharges the hydraulic oil from the input/output port 7b to the flow path 25.
- the flushing valve 32 holds the switching position at the start of turning, and thus connects the flow path 25 and the tank 33. Therefore, the hydraulic oil flowing out from the input/output port 7b is discharged to the tank 33 via the flow path 25 and the flushing valve 32.
- the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b. When the turning lever 30b is neutral, the pump discharge flow rate command value becomes zero.
- the pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
- the switching valve 26 is closed and the closed circuit pump 12 stops the discharge of the hydraulic oil.
- the swing motor 7 due to the inertial force of the inertial body of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, Since the swing motor 7 continues to rotate, the swing motor 7 discharges the hydraulic oil from the input/output port 7b to the flow path 25.
- the flushing valve 32 holds the switching position at the start of turning, the flow path 25 and the tank 33 are connected. Therefore, the hydraulic oil flowing out from the input/output port 7b is discharged to the tank 33 via the flow path 25 and the flushing valve 32.
- the structure of the flushing valve 32 shown in FIG. 4 has a smaller stroke amount 32i and a narrower throttle than the structure of FIG. 3 described above. Therefore, as the flow rate of the flushing valve 32 increases, the pressure in the flow path 25 due to pressure loss increases. The rise is fast. As a result, the flushing valve 32 switches faster with respect to the operation of the turning lever 30b than when the structure of FIG. 3 is applied.
- the deceleration stop performance is important for the swing operation of the upper swing body 102.
- the hydraulic excavator 100 needs to turn after excavation and carry the soil to the top of the dump truck without spilling. If the brake responsiveness is poor, the turning cannot be stopped on the dump truck, and the turning goes too far, resulting in a decrease in work efficiency.
- the brake response of the swing in the swing closed circuit is improved, it becomes easy to stop the swing on the dump truck, and the work efficiency is improved.
- a lower traveling body 103, an upper revolving body 102 rotatably attached to the lower traveling body 103, a work device 104 provided on the upper revolving body 102, and hydraulic oil are stored.
- a first closed circuit pump 11 composed of both tilt pumps
- a second closed circuit pump 12 composed of both tilt pumps
- a first closed circuit pump 11 and a single rod hydraulic cylinder 1 are connected in a closed circuit form.
- the second flushing valve 32 when the second flushing valve 32 is fully opened.
- the minimum flow passage area from the tank 33 to the tank 33 is smaller than the minimum flow passage area from the first flushing valve 31 to the tank 33 when the first flushing valve 31 is fully opened.
- the flushing valve (second flushing valve) 32 for the swing closed circuit C2 at the start of the swing deceleration.
- the second flushing valve 32 since a large pressure loss occurs in the second flushing valve 32, the pressure in the flow path on the pump suction side rapidly rises, and the second flushing valve 32 switches quickly. As a result, the time taken for the pressure in the flow path on the pump suction side to reach the relief pressure is shortened, so that the turning deceleration response is improved and good turning operability is obtained.
- the first flushing valve 31 includes a first manifold 31a, a first spool 31e arranged in the first manifold 31a, and a first spring arranged in the first manifold 31a and biasing the first spool 31e.
- 31f1 and 31f2 and first shims 31g1 and 31g2 arranged between the first spool 31e and the first springs 31f1 and 31f2, and the second flushing valve 32 includes a second manifold 32a and a second manifold 32a.
- the second shims 32g1 and 32g2 are arranged between the second shims 32g1 and 32g2, and the thickness T2 of the second shims 32g1 and 32g2 in the spool axial direction is greater than the thickness T1 of the first shims 31g1 and 31g2 in the spool axial direction.
- FIG. 7 shows the internal structure of the flushing valve 32 for the swing closed circuit C2 according to the second embodiment of the present invention.
- the difference from the flushing valve 32 (shown in FIG. 4) for the swing closed circuit C2 according to the first embodiment is that the thickness T2 of the shims 32g1 and 32g2 is the flushing valve 31 for the cylinder closed circuit C1. It is equal to the thickness T1 of the shims 31g1 and 31g2 (shown in FIG. 2), and the width W2 of the flow passage 32h formed in the spool 32e in the spool axial direction is smaller than the width W1 of the flow passage 31h of the flushing valve 31. is there.
- the first flushing valve 31 has the first manifold 31a and the first spool 31e arranged in the first manifold 31a
- the second flushing valve 32 is the second manifold.
- a first spool 31e has a middle part for communicating the low pressure side flow path of the cylinder closed circuit C1 with the tank 33.
- a 1-tank connection flow path 31h is formed, and a second tank connection flow path 32h for connecting the low-pressure side flow path of the swirl closed circuit C2 to the tank 33 is formed in the middle of the second spool 32e. Therefore, the width W2 of the second tank connection channel 32h in the spool axis direction is smaller than the width W1 of the first tank connection channel 31h in the spool axis direction.
- the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. Since the area is smaller than the minimum flow path area, the turning deceleration response is improved and good turning operability is obtained, as in the first embodiment.
- FIG. 8 shows a hydraulic drive system 105 according to the third embodiment of the present invention.
- the difference from the first embodiment (shown in FIG. 2) is that the structure of the flushing valve 32 for the swing closed circuit C2 is the same as that of the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). That is, the throttle 41 is provided in the flow path connecting the flushing valve 31 and the tank 33.
- the opening area of the throttle 41 is the maximum opening between the flow passage 32b or the flow passage 32c and the flow passage 32h in the flushing valve 32 (shown in FIG. 4) for the swing closed circuit C2 according to the first embodiment. It is about the same as the area.
- the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is the same as that of the first embodiment from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. It becomes smaller than the minimum flow path area.
- the hydraulic excavator 100 further includes the throttle 41 provided on the flow path that connects the second flushing valve 32 and the tank 33, and the second flushing valve 32 includes the first flushing valve 31. It has the same structure as.
- the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. Since the area is smaller than the minimum flow path area, the turning deceleration response is improved and good turning operability is obtained, as in the first embodiment.
- flushing valve for the swirl closed circuit C2 (second flushing valve 32) and the flushing valve for the cylinder closed circuit C1 (first flushing valve 31) have the same specifications, the cost can be reduced. ..
- the present invention is not limited to the above-mentioned embodiments, but includes various modifications.
- the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- switching valve (second switching valve), 30... operating lever (operating device), 30a... boom lever, 30b... swing lever, 31... flushing valve (first flushing valve), 32... flushing valve (first) 2 flushing valves), 31b, 31c, 31d... Flow path, 31e... Spool (first spool), 31g1, 31g2... Shim (first shim), 31f1, 31f2... Spring (first spring), 31h... Flow path ( First tank connection flow path), 31i... Stroke amount, 32b, 32c, 32d... Flow path, 32e... Spool (second spool), 32g1, 32g2... Shim (second shim), 32f1, 32f2... Spring (second) 32h... Flow path (second tank connection flow path), 32i...
- Stroke amount 33... Tank, 34a, 34b... Check valve, 37a, 37b, 38a, 38b... Relief valve, 40... Pump valve control device, 100... Hydraulic excavator (construction machine), 101... Cab, 102... Upper swing body, 104... Front working machine (working device), 105... Hydraulic drive device.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
Abstract
The present invention provides a construction machine on which is mounted a hydraulic closed circuit for driving a single rod-type hydraulic cylinder and a slewing hydraulic motor, and that exhibits good slewing deceleration responsiveness. In this construction machine that drives a single rod-type hydraulic cylinder and a slewing hydraulic motor with respective closed circuits, the minimum flow passage area from a second flushing valve to a tank when the second flushing valve is fully open, is smaller than the minimum flow passage area from a first flushing valve to the tank when the first flushing valve is fully open.
Description
本発明は、油圧ショベルなどの建設機械に関し、特に、片ロッド式油圧シリンダと旋回用油圧モータを油圧閉回路で駆動する建設機械に関する。
The present invention relates to a construction machine such as a hydraulic excavator, and more particularly to a construction machine that drives a one-rod hydraulic cylinder and a turning hydraulic motor in a hydraulic closed circuit.
近年、油圧ショベルやホイールローダなどの建設機械において、省エネ化が重要な開発項目になっている。建設機械の省エネ化には油圧システム自体の省エネ化が重要であり、油圧ポンプと油圧アクチュエータを閉回路接続して、油圧ポンプの流量制御で直接的に油圧アクチュエータの速度を制御する油圧閉回路(以下、閉回路)が検討されている。このシステムは、従来の流量制御弁による圧損がなく、必要な流量のみをポンプが吐出するためエネルギ損失が少ない。また、油圧アクチュエータの位置エネルギや減速時の運動エネルギを回生することもできる。このため、さらなる省エネ化が可能となる。
In recent years, energy saving has become an important development item for construction machines such as hydraulic excavators and wheel loaders. It is important to save energy in the hydraulic system itself in order to save energy in construction machinery. A hydraulic closed circuit that connects the hydraulic pump and hydraulic actuator in a closed circuit and directly controls the speed of the hydraulic actuator by controlling the flow rate of the hydraulic pump ( Hereinafter, a closed circuit) is being considered. In this system, there is no pressure loss due to the conventional flow rate control valve, and the pump discharges only the required flow rate, so there is little energy loss. Also, the potential energy of the hydraulic actuator and the kinetic energy during deceleration can be regenerated. Therefore, further energy saving is possible.
閉回路を搭載した建設機械の先行技術を開示するものとして、特許文献1がある。特許文献1には、油圧ポンプをアクチュエータ(ブームシリンダ、旋回モータ等)に閉回路で接続し、油圧ポンプの斜板制御でアクチュエータの動作速度を制御する構成が記載されている。
Patent Document 1 discloses the prior art of a construction machine equipped with a closed circuit. Patent Document 1 describes a configuration in which a hydraulic pump is connected to an actuator (boom cylinder, swing motor, etc.) in a closed circuit, and the operating speed of the actuator is controlled by swash plate control of the hydraulic pump.
特許文献1に記載の閉回路には、フラッシング弁が設けられている。フラッシング弁は、閉回路内の圧油の収支を保つため、閉回路のうち低圧側の流路をタンクに連通させる弁であり、低圧側の余剰油をタンクへ排出する機能を有する。
A flushing valve is provided in the closed circuit described in Patent Document 1. The flushing valve is a valve that connects the low-pressure side flow path of the closed circuit to the tank in order to maintain the balance of the pressure oil in the closed circuit, and has a function of discharging excess oil on the low-pressure side to the tank.
特許文献1において、ブームシリンダを収縮する場合、ポンプはブームシリンダのヘッド側から作動油を吸入し、ロッド側へ吐出する。この時、フラッシング弁は低圧側となるブームシリンダのロッド側とタンクを接続するように切り換わる。その結果、ポンプが吐出した作動油がブームシリンダのロッド側に流入する一方で、片ロッドシリンダであるブームシリンダの受圧面積差分の作動油がフラッシング弁からタンクに排出される。
In Patent Document 1, when the boom cylinder is contracted, the pump sucks hydraulic oil from the head side of the boom cylinder and discharges it to the rod side. At this time, the flushing valve is switched to connect the rod side of the boom cylinder on the low pressure side to the tank. As a result, the hydraulic fluid discharged by the pump flows into the rod side of the boom cylinder, while the hydraulic fluid having the pressure receiving area difference of the boom cylinder, which is a one-rod cylinder, is discharged from the flushing valve to the tank.
一方、旋回体を加速する場合、ポンプは旋回モータの一方の入出力側から作動油を吸入し、他方の入出力側へ吐出する。この時、フラッシング弁は低圧側となるポンプ吸入側をタンクに接続するように切り換わる。ここで、ポンプの吐出流量を小さくし、旋回体を減速させる場合、旋回体の慣性エネルギにより旋回モータは作動油を吐出し続けるため、ポンプ吸入側が高圧となり、フラッシング弁が閉回路の低圧側であるポンプ吐出側をタンクへ接続するよう切り換わる。これにより、旋回モータにブレーキ圧が作用し、旋回体は減速する。
On the other hand, when accelerating the revolving structure, the pump sucks hydraulic oil from one input/output side of the swing motor and discharges it to the other input/output side. At this time, the flushing valve is switched to connect the low pressure side pump suction side to the tank. Here, when the discharge flow rate of the pump is reduced and the revolving structure is decelerated, the swing motor continues to discharge the hydraulic oil due to the inertia energy of the revolving structure, so the pump suction side becomes high pressure and the flushing valve becomes low pressure in the closed circuit. Switch to connect one pump discharge side to the tank. As a result, brake pressure acts on the swing motor, and the swing structure decelerates.
一般的な片ロッドシリンダの場合、ヘッド側とロッド側の受圧面積比はおよそ2:1であるため、片ロッドシリンダを駆動する閉回路(以下、シリンダ閉回路)では、ポンプが吐出した作動油のおよそ半分がフラッシング弁からタンクへ排出されることになる。従って、シリンダ閉回路においては、フラッシング弁の圧力損失を低減するために、フラッシング弁のサイズを大きくする必要がある。
In the case of a general one-rod cylinder, the pressure-receiving area ratio between the head side and the rod side is about 2:1. Therefore, in the closed circuit that drives the one-rod cylinder (hereinafter, cylinder closed circuit), the hydraulic oil discharged by the pump is used. About half of this will be drained from the flushing valve to the tank. Therefore, in the cylinder closed circuit, it is necessary to increase the size of the flushing valve in order to reduce the pressure loss of the flushing valve.
一方、旋回モータには片ロッドシリンダのような受圧面積差がないため、旋回モータを駆動する閉回路(以下、旋回閉回路)において、フラッシング弁からタンクに排出される流量はシリンダ閉回路に比べ1/10以下と少ない。ここで、コスト等の観点からシリンダ閉回路と旋回閉回路とで同じ形状のフラッシング弁を使用した場合、旋回閉回路におけるフラッシング弁の圧力損失が小さくなるため、旋回減速開始時にポンプ吸入側(低圧側)の圧力の立ち上がりが遅れることとなる。それにより、フラッシング弁が切り換わるタイミングが遅れ、ポンプ吸入側の圧力がリリーフ圧(ブレーキ圧)に達するまでに時間を要する。その結果、旋回減速応答性が低下し、操作性が悪化するという課題が生じる。
On the other hand, since the swing motor does not have the difference in pressure receiving area unlike the one-rod cylinder, the flow rate discharged from the flushing valve to the tank in the closed circuit that drives the swing motor (hereinafter, swing closed circuit) is higher than that in the cylinder closed circuit. Less than 1/10. Here, when the flushing valve of the same shape is used in the cylinder closed circuit and the swing closed circuit from the viewpoint of cost, etc., the pressure loss of the flushing valve in the swing closed circuit becomes small, so the pump suction side (low pressure The rise of the pressure on the side will be delayed. As a result, the switching timing of the flushing valve is delayed, and it takes time for the pressure on the pump suction side to reach the relief pressure (brake pressure). As a result, there is a problem that the turning deceleration response is deteriorated and the operability is deteriorated.
本発明は、上記の課題に鑑みてなされたものであり、その目的は、片ロッド式油圧シリンダおよび旋回油圧モータを駆動する油圧閉回路を搭載し、かつ旋回減速応答性が良好な建設機械を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a construction machine equipped with a hydraulic closed circuit for driving a one-rod hydraulic cylinder and a swing hydraulic motor, and having good swing deceleration response. To provide.
上記目的を達成するために、本発明は、下部走行体と、前記下部走行体に旋回可能に取り付けられた上部旋回体と、前記上部旋回体に設けられた作業装置と、作動油を貯留するタンクと、前記作業装置を駆動する片ロッド式油圧シリンダと、前記上部旋回体を駆動する旋回用油圧モータと、前記作業装置および前記上部旋回体の動作を指示する操作装置と、両傾転ポンプからなる第1閉回路ポンプと、両傾転ポンプからなる第2閉回路ポンプと、前記第1閉回路ポンプと前記片ロッド式油圧シリンダとを閉回路状に接続するシリンダ閉回路と、前記第2閉回路ポンプと前記旋回用油圧モータとを閉回路状に接続する旋回閉回路と、前記シリンダ閉回路の低圧側の流路を前記タンクに連通させる第1フラッシング弁と、前記旋回閉回路の低圧側の流路を前記タンクに連通させる第2フラッシング弁と、前記第1閉回路ポンプと前記片ロッド式油圧シリンダとの連通と遮断とを切り換える第1切換弁と、前記第2閉回路ポンプと前記旋回用油圧モータとの連通と遮断とを切り換える第2切換弁と、前記操作装置から入力される操作信号に応じて、前記第1切換弁および前記第2切換弁の開閉、ならびに前記第1閉回路ポンプおよび前記第2閉回路ポンプの吐出流量を制御する建設機械において、前記第2フラッシング弁が全開したときの前記第2フラッシング弁から前記タンクまでの最小流路面積は、前記第1フラッシング弁が全開したときの前記第1フラッシング弁から前記タンクまでの最小流路面積よりも小さいものとする。
In order to achieve the above-mentioned object, the present invention stores a lower traveling body, an upper revolving body rotatably attached to the lower traveling body, a work device provided on the upper revolving body, and hydraulic oil. A tank, a one-rod hydraulic cylinder that drives the working device, a turning hydraulic motor that drives the upper revolving structure, an operating device that directs the operation of the working device and the upper revolving structure, and a bilateral tilt pump. A first closed circuit pump including: a second closed circuit pump including both tilting pumps; a cylinder closed circuit that connects the first closed circuit pump and the one-rod hydraulic cylinder in a closed circuit shape; 2 Closed-circuit pump, which connects the closed-loop hydraulic motor to the closed-loop hydraulic motor in a closed-circuit form, a first flushing valve that connects the low-pressure side flow path of the cylinder closed circuit to the tank, and the closed-closed circuit A second flushing valve for communicating a low-pressure side passage with the tank; a first switching valve for switching between communication and interruption of the first closed circuit pump and the one-rod hydraulic cylinder; and the second closed circuit pump A second switching valve that switches between communication and cutoff between the turning hydraulic motor and the turning hydraulic motor; opening and closing of the first switching valve and the second switching valve in response to an operation signal input from the operating device; In the construction machine that controls the discharge flow rates of the first closed circuit pump and the second closed circuit pump, the minimum flow passage area from the second flushing valve to the tank when the second flushing valve is fully opened is It is smaller than the minimum flow passage area from the first flushing valve to the tank when the flushing valve is fully opened.
以上のように構成した本発明によれば、旋回減速開始時に、旋回閉回路用のフラッシング弁(第2フラッシング弁)を介してポンプ吸入側からタンクへ作動油が排出される際に、第2フラッシング弁で大きな圧力損失が発生することで、ポンプ吸入側の流路の圧力が速やかに上昇し、第2フラッシング弁が速やかに切り換わる。これにより、ポンプ吸入側の流路の圧力がリリーフ圧に達するまでの時間が短縮されるため、旋回減速応答性が向上し、良好な旋回操作性が得られる。
According to the present invention configured as described above, when the hydraulic oil is discharged from the pump suction side to the tank via the flushing valve for the swing closed circuit (second flushing valve) at the start of the swing deceleration, the second Since a large pressure loss occurs in the flushing valve, the pressure in the flow path on the pump suction side rises quickly, and the second flushing valve switches quickly. As a result, the time taken for the pressure in the flow path on the pump suction side to reach the relief pressure is shortened, so that the turning deceleration response is improved and good turning operability is obtained.
本発明によれば、片ロッド式油圧シリンダおよび旋回油圧モータを油圧閉回路で駆動する建設機械において、旋回減速応答性が向上し、良好な旋回操作性が得られる。
According to the present invention, in a construction machine in which a single rod hydraulic cylinder and a swing hydraulic motor are driven by a hydraulic closed circuit, swing deceleration response is improved, and good swing operability is obtained.
以下、本発明の実施の形態に係る建設機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、本発明は、閉回路ポンプと油圧シリンダを切換弁を介して閉回路状に接続された油圧閉回路を複数備え、かつ旋回閉回路を備えた建設機械全般に適用が可能であり、本発明の適用対象は油圧ショベルに限定されるものではない。
Hereinafter, a hydraulic excavator will be described as an example of a construction machine according to an embodiment of the present invention, and will be described with reference to the drawings. The present invention is applicable to general construction machines including a plurality of hydraulic closed circuits in which a closed circuit pump and a hydraulic cylinder are connected in a closed circuit via a switching valve, and a swing closed circuit. The object of application of the invention is not limited to the hydraulic excavator.
本発明の第1の実施例に係る油圧ショベルについて説明する。
(車体本体)
図1は、本実施例に係る油圧ショベルを示す側面図である。 A hydraulic excavator according to the first embodiment of the present invention will be described.
(Car body)
FIG. 1 is a side view showing a hydraulic excavator according to this embodiment.
(車体本体)
図1は、本実施例に係る油圧ショベルを示す側面図である。 A hydraulic excavator according to the first embodiment of the present invention will be described.
(Car body)
FIG. 1 is a side view showing a hydraulic excavator according to this embodiment.
図1において、油圧ショベル100は、左右方向の両側にクローラ式の走行装置8a,8bを備えた下部走行体103と、下部走行体103上に旋回可能に取り付けられた上部旋回体102とを備えている。下部走行体103と上部旋回体102は、油圧ショベル100の車体本体を構成する。
In FIG. 1, a hydraulic excavator 100 includes a lower traveling body 103 provided with crawler type traveling devices 8a and 8b on both sides in the left-right direction, and an upper revolving body 102 rotatably mounted on the lower traveling body 103. ing. The lower traveling body 103 and the upper revolving body 102 form a vehicle body of the hydraulic excavator 100.
上部旋回体102上には、オペレータが搭乗する操作室としてキャブ101が設けられている。下部走行体103と上部旋回体102とは、旋回用油圧モータとしての旋回モータ7を介して旋回可能とされている。上部旋回体102の前側には、例えば掘削作業等を行うための作業装置としてのフロント作業機104の基端部が回動可能に取り付けられている。ここで、前側とは、キャブ101に搭乗する操作者が向く方向(図1中の左方向)をいう。
A cab 101 is provided on the upper swing body 102 as an operation room for an operator to board. The undercarriage 103 and the upper revolving superstructure 102 are revolvable via a revolving motor 7 as a revolving hydraulic motor. On the front side of the upper swing body 102, for example, a base end portion of a front working machine 104 as a working device for performing excavation work is rotatably attached. Here, the front side refers to the direction in which the operator riding on the cab 101 faces (leftward in FIG. 1).
フロント作業機104は、上部旋回体102の前側に基端部が上下方向に回動可能に連結されたブーム2を備えている。ブーム2は、片ロッド式油圧シリンダであるブームシリンダ1を介して動作する。ブームシリンダ1は、ブームロッド1bの先端部が上部旋回体102に連結され、ブームヘッド1aの基端部がブーム2に連結されている。ブーム2の先端部には、アーム4の基端部が上下または前後方向に回動可能に連結されている。アーム4は、片ロッド式油圧シリンダであるアームシリンダ3を介して動作する。アームシリンダ3は、アームロッド3bの先端部がアーム4に連結され、アームヘッド3aの基端部がブーム2に連結されている。アーム4の先端部には、バケット6の基端部が上下または前後方向に回動可能に連結されている。バケット6は、片ロッド式油圧シリンダであるバケットシリンダ5を介して動作する。バケットシリンダ5は、バケットロッド5bの先端部がバケット6に連結され、バケットヘッド5aの基端部がアーム4に連結されている。キャブ101には、フロント作業機104を構成するブーム2、アーム4、バケット6および上部旋回体102を操作するための操作部材である操作レバー30(図2に示す)が配置されている。
(油圧駆動装置)
図2は、油圧ショベル100を駆動する油圧駆動装置を示す概略図である。なお、図2では、ブームシリンダ1と旋回モータ7の駆動に関わる部分のみを図示し、その他のアクチュエータの駆動に関わる部分は省略している。
(シリンダ、モータ)
油圧駆動装置105は、ブームシリンダ1と、旋回モータ7と、ブームシリンダ1を駆動する閉回路ポンプ11と、旋回モータ7を駆動する閉回路ポンプ12とを備えている。旋回モータ7は、一対の入出力ポート7a,7bを備えている。
(ポンプ)
閉回路ポンプ11,12は、エンジン9からそれぞれ伝達装置10を介して動力を受けて駆動される。閉回路ポンプ11,12はそれぞれ流量調整手段として一対の入出力ポートを持つ傾転斜板機構、および斜板の傾斜角を調整してポンプ押しのけ容積を調整するレギュレータ11a,12aを備えている。レギュレータ11a,12aは、ポンプバルブ制御装置40から制御信号線を介して受信したポンプ吐出流量指令値に従い、閉回路ポンプ11,12の吐出流量と吐出方向を制御する。
(閉回路、切換弁)
閉回路ポンプ11の両方の吐出ポートは、流路21,22および切換弁23を介してブームシリンダ1に接続され、シリンダ閉回路C1を構成する。閉回路ポンプ12の両方の吐出ポートは、流路24,25および切換弁26を介して旋回モータ7に接続され、旋回閉回路C2を構成する。切換弁23は、ポンプバルブ制御装置40から制御信号線を介して受信した開閉制御指令により、流路21,22の流通と遮断とを切り換える。切換弁26は、ポンプバルブ制御装置40から制御信号線を介して受信した開閉制御指令により、流路24,25の流通と遮断とを切り換える。
(フラッシング弁)
フラッシング弁31は、流路21,22およびタンク33と接続されている。フラッシング弁31は、流路21と流路22のうち圧力が低い方の流路とタンク33とを連通するように切り換わる。フラッシング弁32は、流路24,25およびタンク33と接続されている。フラッシング弁32も同様に、流路24と流路25のうち圧力が低い方の流路とタンク33とを連通するように切り換わる。
(チェック弁、リリーフ弁)
チェック弁34aは、タンク33と流路21,22とを接続するように設けられている。流路21,22の圧力がタンク33の圧力より低下した場合、タンク33から作動油を流路21,22に供給する。チェック弁34bは、タンク33と流路24,25とを接続するように設けられている。流路24,25の圧力がタンク33の圧力より低下した場合、タンク33から作動油を流路24,25に供給する。 Thefront working machine 104 includes a boom 2 having a base end connected to the front side of the upper swing body 102 so as to be vertically rotatable. The boom 2 operates via the boom cylinder 1, which is a one-rod hydraulic cylinder. In the boom cylinder 1, the tip end portion of the boom rod 1b is connected to the upper swing body 102, and the base end portion of the boom head 1a is connected to the boom 2. A base end portion of an arm 4 is connected to a tip end portion of the boom 2 so as to be rotatable in a vertical direction or a front-back direction. The arm 4 operates via an arm cylinder 3 which is a one-rod hydraulic cylinder. In the arm cylinder 3, the arm rod 3b has a tip end connected to the arm 4, and the arm head 3a has a base end connected to the boom 2. A base end portion of the bucket 6 is connected to a tip end portion of the arm 4 so as to be rotatable in a vertical direction or a front-back direction. The bucket 6 operates via the bucket cylinder 5, which is a single rod hydraulic cylinder. In the bucket cylinder 5, the bucket rod 5b has a tip end connected to the bucket 6, and the bucket head 5a has a base end connected to the arm 4. The cab 101 is provided with an operation lever 30 (shown in FIG. 2) which is an operation member for operating the boom 2, the arm 4, the bucket 6, and the upper swing body 102 which form the front working machine 104.
(Hydraulic drive)
FIG. 2 is a schematic diagram showing a hydraulic drive device that drives thehydraulic excavator 100. Note that, in FIG. 2, only the portions related to the driving of the boom cylinder 1 and the swing motor 7 are illustrated, and the portions related to the driving of the other actuators are omitted.
(Cylinder, motor)
Thehydraulic drive device 105 includes a boom cylinder 1, a swing motor 7, a closed circuit pump 11 that drives the boom cylinder 1, and a closed circuit pump 12 that drives the swing motor 7. The turning motor 7 includes a pair of input/ output ports 7a and 7b.
(pump)
The closed circuit pumps 11 and 12 are driven by receiving power from the engine 9 via thetransmission device 10, respectively. The closed circuit pumps 11 and 12 each include a tilting swash plate mechanism having a pair of input/output ports as flow rate adjusting means, and regulators 11a and 12a that adjust the tilting angle of the swash plate to adjust the pump displacement. The regulators 11a and 12a control the discharge flow rate and the discharge direction of the closed circuit pumps 11 and 12 according to the pump discharge flow rate command value received from the pump valve control device 40 via the control signal line.
(Closed circuit, switching valve)
Both discharge ports of theclosed circuit pump 11 are connected to the boom cylinder 1 via the flow paths 21 and 22 and the switching valve 23 to form a cylinder closed circuit C1. Both discharge ports of the closed circuit pump 12 are connected to the swing motor 7 via the flow paths 24 and 25 and the switching valve 26, and form a swing closed circuit C2. The switching valve 23 switches between the flow and cutoff of the flow paths 21 and 22 according to the opening/closing control command received from the pump valve control device 40 via the control signal line. The switching valve 26 switches between the flow and cutoff of the flow paths 24 and 25 according to the opening/closing control command received from the pump valve control device 40 via the control signal line.
(Flushing valve)
The flushingvalve 31 is connected to the flow paths 21 and 22 and the tank 33. The flushing valve 31 is switched so that the flow passage 21 or the flow passage 22 having the lower pressure is connected to the tank 33. The flushing valve 32 is connected to the flow paths 24 and 25 and the tank 33. Similarly, the flushing valve 32 is also switched so that the flow passage 24 and the flow passage 25, whichever has the lower pressure, communicates with the tank 33.
(Check valve, relief valve)
Thecheck valve 34a is provided so as to connect the tank 33 and the flow paths 21 and 22. When the pressure in the flow paths 21 and 22 is lower than the pressure in the tank 33, hydraulic oil is supplied from the tank 33 to the flow paths 21 and 22. The check valve 34b is provided so as to connect the tank 33 to the flow paths 24 and 25. When the pressure in the flow passages 24, 25 is lower than the pressure in the tank 33, hydraulic oil is supplied from the tank 33 to the flow passages 24, 25.
(油圧駆動装置)
図2は、油圧ショベル100を駆動する油圧駆動装置を示す概略図である。なお、図2では、ブームシリンダ1と旋回モータ7の駆動に関わる部分のみを図示し、その他のアクチュエータの駆動に関わる部分は省略している。
(シリンダ、モータ)
油圧駆動装置105は、ブームシリンダ1と、旋回モータ7と、ブームシリンダ1を駆動する閉回路ポンプ11と、旋回モータ7を駆動する閉回路ポンプ12とを備えている。旋回モータ7は、一対の入出力ポート7a,7bを備えている。
(ポンプ)
閉回路ポンプ11,12は、エンジン9からそれぞれ伝達装置10を介して動力を受けて駆動される。閉回路ポンプ11,12はそれぞれ流量調整手段として一対の入出力ポートを持つ傾転斜板機構、および斜板の傾斜角を調整してポンプ押しのけ容積を調整するレギュレータ11a,12aを備えている。レギュレータ11a,12aは、ポンプバルブ制御装置40から制御信号線を介して受信したポンプ吐出流量指令値に従い、閉回路ポンプ11,12の吐出流量と吐出方向を制御する。
(閉回路、切換弁)
閉回路ポンプ11の両方の吐出ポートは、流路21,22および切換弁23を介してブームシリンダ1に接続され、シリンダ閉回路C1を構成する。閉回路ポンプ12の両方の吐出ポートは、流路24,25および切換弁26を介して旋回モータ7に接続され、旋回閉回路C2を構成する。切換弁23は、ポンプバルブ制御装置40から制御信号線を介して受信した開閉制御指令により、流路21,22の流通と遮断とを切り換える。切換弁26は、ポンプバルブ制御装置40から制御信号線を介して受信した開閉制御指令により、流路24,25の流通と遮断とを切り換える。
(フラッシング弁)
フラッシング弁31は、流路21,22およびタンク33と接続されている。フラッシング弁31は、流路21と流路22のうち圧力が低い方の流路とタンク33とを連通するように切り換わる。フラッシング弁32は、流路24,25およびタンク33と接続されている。フラッシング弁32も同様に、流路24と流路25のうち圧力が低い方の流路とタンク33とを連通するように切り換わる。
(チェック弁、リリーフ弁)
チェック弁34aは、タンク33と流路21,22とを接続するように設けられている。流路21,22の圧力がタンク33の圧力より低下した場合、タンク33から作動油を流路21,22に供給する。チェック弁34bは、タンク33と流路24,25とを接続するように設けられている。流路24,25の圧力がタンク33の圧力より低下した場合、タンク33から作動油を流路24,25に供給する。 The
(Hydraulic drive)
FIG. 2 is a schematic diagram showing a hydraulic drive device that drives the
(Cylinder, motor)
The
(pump)
The closed circuit pumps 11 and 12 are driven by receiving power from the engine 9 via the
(Closed circuit, switching valve)
Both discharge ports of the
(Flushing valve)
The flushing
(Check valve, relief valve)
The
リリーフ弁37a,37bは、タンク33と流路21,22とを接続するように設けられている。リリーフ弁37a,37b,38a,38bは、流路21,22,24,25の圧力があらかじめ設定した圧力を超えた際に開き、作動油をタンク33に排出する安全弁の役割をはたす。
(ポンプバルブ制御装置)
ポンプバルブ制御装置40は、操作レバー30としてのブームレバー30a、旋回レバー30bと信号線で接続され、切換弁23,26および閉回路ポンプ11,12のレギュレータ11a,12aと制御信号線で接続されている。ポンプバルブ制御装置40は、ブームレバー30a、旋回レバー30bの操作量を元に、閉回路ポンプ11,12の吐出流量を決定し、吐出流量に応じた制御信号をレギュレータ11a,12aに出力する。また、ポンプバルブ制御装置40は、ブームレバー30a、旋回レバー30bが操作されたことを検出すると、切換弁23,26を開き、閉回路ポンプ11,12がそれぞれ吐出した作動油をブームシリンダ1と旋回モータ7へ流入させることにより、ブームシリンダ1と旋回モータ7の駆動制御を行う。閉回路ポンプ11,12の作動油の吐出方向は、それぞれブームレバー30aと旋回レバー30bの操作方向によって決定される。なお本実施例では、ポンプバルブ制御装置40を電気電子回路で構成されたコントローラを一例として説明するが、油圧回路によってポンプバルブ制御装置40を構成してもよい。
(本発明にかかわる構成)
次に、本実施例におけるフラッシング弁の構造について説明する。
(フラッシング弁構造)
図3にシリンダ閉回路C1用のフラッシング弁31の内部構造の一例を示す。マニホールド31aには、流路31b,31c,31dが形成されている。流路31b,31c,31dには、図2における流路21,22、タンク33がそれぞれ接続される。マニホールド31a内には、流路31hが形成されたスプール31eと、シム31g1,31g2と、バネ31f1、バネ31f2とが配置されている。流路31b,31cからバネ31f1,31f2がある油室へそれぞれ圧油が導かれると、油室の圧力の大小関係で、スプール31eが左右のどちらかに移動する。例えば流路31bの圧力が流路31cより高い場合、バネ31f1のある油室が高圧になるため、スプール31eは右へ移動する。スプール31eが右へストローク量31i分移動することで、低圧側の流路32cは流路32hを介して流路32dへと接続される。 The relief valves 37a and 37b are provided so as to connect the tank 33 and the flow paths 21 and 22. The relief valves 37a, 37b, 38a, 38b serve as a safety valve that opens when the pressure in the flow paths 21, 22, 24, 25 exceeds a preset pressure and discharges the hydraulic oil to the tank 33.
(Pump valve controller)
The pumpvalve control device 40 is connected to the boom lever 30a as the operation lever 30 and the swing lever 30b by a signal line, and is connected to the switching valves 23 and 26 and the regulators 11a and 12a of the closed circuit pumps 11 and 12 by a control signal line. ing. The pump valve control device 40 determines the discharge flow rate of the closed circuit pumps 11 and 12 based on the operation amounts of the boom lever 30a and the swing lever 30b, and outputs a control signal according to the discharge flow rate to the regulators 11a and 12a. Further, when the pump valve control device 40 detects that the boom lever 30a and the swing lever 30b are operated, the switching valves 23 and 26 are opened, and the hydraulic oil discharged by the closed circuit pumps 11 and 12 is transferred to the boom cylinder 1. Drive control of the boom cylinder 1 and the swing motor 7 is performed by causing the boom cylinder 1 to flow into the swing motor 7. The discharge directions of the hydraulic oil of the closed circuit pumps 11 and 12 are determined by the operation directions of the boom lever 30a and the swing lever 30b, respectively. In this embodiment, the pump valve control device 40 will be described as an example of a controller configured by an electric/electronic circuit, but the pump valve control device 40 may be configured by a hydraulic circuit.
(Structure related to the present invention)
Next, the structure of the flushing valve in this embodiment will be described.
(Flushing valve structure)
FIG. 3 shows an example of the internal structure of the flushingvalve 31 for the cylinder closed circuit C1. Flow paths 31b, 31c, and 31d are formed in the manifold 31a. The flow paths 21 and 22 and the tank 33 in FIG. 2 are connected to the flow paths 31b, 31c, and 31d, respectively. Inside the manifold 31a, a spool 31e having a passage 31h formed therein, shims 31g1 and 31g2, a spring 31f1 and a spring 31f2 are arranged. When the pressure oil is introduced from the flow passages 31b and 31c to the oil chambers having the springs 31f1 and 31f2, the spool 31e moves to the left or right depending on the magnitude relationship of the pressure in the oil chambers. For example, when the pressure in the flow passage 31b is higher than that in the flow passage 31c, the oil chamber having the spring 31f1 has a high pressure, and the spool 31e moves to the right. When the spool 31e moves to the right by the stroke amount 31i, the low-pressure side passage 32c is connected to the passage 32d via the passage 32h.
(ポンプバルブ制御装置)
ポンプバルブ制御装置40は、操作レバー30としてのブームレバー30a、旋回レバー30bと信号線で接続され、切換弁23,26および閉回路ポンプ11,12のレギュレータ11a,12aと制御信号線で接続されている。ポンプバルブ制御装置40は、ブームレバー30a、旋回レバー30bの操作量を元に、閉回路ポンプ11,12の吐出流量を決定し、吐出流量に応じた制御信号をレギュレータ11a,12aに出力する。また、ポンプバルブ制御装置40は、ブームレバー30a、旋回レバー30bが操作されたことを検出すると、切換弁23,26を開き、閉回路ポンプ11,12がそれぞれ吐出した作動油をブームシリンダ1と旋回モータ7へ流入させることにより、ブームシリンダ1と旋回モータ7の駆動制御を行う。閉回路ポンプ11,12の作動油の吐出方向は、それぞれブームレバー30aと旋回レバー30bの操作方向によって決定される。なお本実施例では、ポンプバルブ制御装置40を電気電子回路で構成されたコントローラを一例として説明するが、油圧回路によってポンプバルブ制御装置40を構成してもよい。
(本発明にかかわる構成)
次に、本実施例におけるフラッシング弁の構造について説明する。
(フラッシング弁構造)
図3にシリンダ閉回路C1用のフラッシング弁31の内部構造の一例を示す。マニホールド31aには、流路31b,31c,31dが形成されている。流路31b,31c,31dには、図2における流路21,22、タンク33がそれぞれ接続される。マニホールド31a内には、流路31hが形成されたスプール31eと、シム31g1,31g2と、バネ31f1、バネ31f2とが配置されている。流路31b,31cからバネ31f1,31f2がある油室へそれぞれ圧油が導かれると、油室の圧力の大小関係で、スプール31eが左右のどちらかに移動する。例えば流路31bの圧力が流路31cより高い場合、バネ31f1のある油室が高圧になるため、スプール31eは右へ移動する。スプール31eが右へストローク量31i分移動することで、低圧側の流路32cは流路32hを介して流路32dへと接続される。 The
(Pump valve controller)
The pump
(Structure related to the present invention)
Next, the structure of the flushing valve in this embodiment will be described.
(Flushing valve structure)
FIG. 3 shows an example of the internal structure of the flushing
図4に旋回閉回路C2用のフラッシング弁32の内部構造の一例を示す。マニホールド32aには、流路32b,32c,32dが形成されている。流路32b,32c,32dには、図2における流路24,25、タンク33がそれぞれ接続される。マニホールド32a内には、流路32hが形成されたスプール32eと、シム32g1,32g2と、バネ32f1、バネ32f2とが配置されている。フラッシング弁32は、図3のフラッシング弁31と同様に動作する。図4において、スプール32eの中立位置からの移動量をストローク量32iとする。
FIG. 4 shows an example of the internal structure of the flushing valve 32 for the swing closed circuit C2. Flow paths 32b, 32c, and 32d are formed in the manifold 32a. The channels 32b, 32c, and 32d are connected to the channels 24 and 25 and the tank 33 in FIG. 2, respectively. Inside the manifold 32a, a spool 32e having a flow path 32h formed therein, shims 32g1 and 32g2, a spring 32f1 and a spring 32f2 are arranged. The flushing valve 32 operates similarly to the flushing valve 31 of FIG. In FIG. 4, the movement amount from the neutral position of the spool 32e is referred to as a stroke amount 32i.
ここで、図4の旋回閉回路C2用のフラッシング弁32では、シリンダ閉回路C1用のフラッシング弁31(図3に示す)より絞りを狭くするため、シム32g1,32g2の厚さT2を図3のシム31g1,31g2の厚さT1より大きくする。これにより、図4の流路32bと流路32cとの間に圧力差が生じた場合のスプール32eのストローク量32iが図3のストローク量31iより小さくなるため、流路32bまたは流路32cと流路32hとの間の最大開口面積が小さくなる。
(従来の旋回動作)
次に、従来の油圧駆動装置で旋回モータ7駆動した場合の動作を図2を用いて説明する。ここで、従来の油圧駆動装置とは、図2に示す油圧駆動装置105において、旋回閉回路C2用のフラッシング弁32の構造をシリンダ閉回路C1用のフラッシング弁31(図3に示す)と同一にしたものである。
(停止~レバー入力~旋回加速)
操作者が旋回レバー30bを中立から一定の操作量まで操作し、旋回モータ7の回転駆動を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は、受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を開状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 In the flushingvalve 32 for the swing closed circuit C2 of FIG. 4, the thickness T2 of the shims 32g1 and 32g2 is set to be smaller than that of the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). It is made larger than the thickness T1 of the shims 31g1 and 31g2. As a result, the stroke amount 32i of the spool 32e when a pressure difference occurs between the flow passage 32b and the flow passage 32c in FIG. 4 becomes smaller than the stroke amount 31i in FIG. The maximum opening area with the flow path 32h becomes smaller.
(Conventional turning motion)
Next, the operation when the turningmotor 7 is driven by the conventional hydraulic drive device will be described with reference to FIG. Here, in the conventional hydraulic drive system, in the hydraulic drive system 105 shown in FIG. 2, the structure of the flushing valve 32 for the swing closed circuit C2 is the same as the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). It is the one.
(Stop-lever input-turn acceleration)
When the operator operates the turninglever 30b from neutral to a certain operation amount and gives an input for commanding the rotation drive of the turning motor 7, the pump valve control device 40 causes the pump valve control device 40 to output the operation amount of the turning lever 30b via a signal line. receive. The pump valve control device 40 sets the control command value to open the switching valve 26 in order to connect the closed circuit pump 12 to the swing motor 7 based on the received operation amount of the swing lever 30b. Further, the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b. The pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
(従来の旋回動作)
次に、従来の油圧駆動装置で旋回モータ7駆動した場合の動作を図2を用いて説明する。ここで、従来の油圧駆動装置とは、図2に示す油圧駆動装置105において、旋回閉回路C2用のフラッシング弁32の構造をシリンダ閉回路C1用のフラッシング弁31(図3に示す)と同一にしたものである。
(停止~レバー入力~旋回加速)
操作者が旋回レバー30bを中立から一定の操作量まで操作し、旋回モータ7の回転駆動を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は、受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を開状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 In the flushing
(Conventional turning motion)
Next, the operation when the turning
(Stop-lever input-turn acceleration)
When the operator operates the turning
これにより、切換弁26が開き、閉回路ポンプ12が吐出した作動油は切換弁26と流路24を介して旋回モータ7の入出力ポート7aへ流入し、旋回モータ7を駆動する。入出力ポート7bから流出した作動油は、流路25と切換弁26を介して閉回路ポンプ12へ吸入される。
As a result, the switching valve 26 opens, and the hydraulic oil discharged by the closed circuit pump 12 flows into the input/output port 7a of the swing motor 7 via the switch valve 26 and the flow path 24, and drives the swing motor 7. The hydraulic oil flowing out from the input/output port 7b is sucked into the closed circuit pump 12 via the flow path 25 and the switching valve 26.
この時、閉回路ポンプ12が吐出した圧油は、旋回モータ7に接続されている上部旋回体102(図1に示す)の慣性体を加速させるため、閉回路ポンプ12の作動油吐出側である流路24の圧力が流路25の圧力より高圧になる。フラッシング弁32は、低圧側の流路25とタンク33を接続するように切り換わる。
(旋回中~レバー中立~旋回減速)
操作者が旋回レバー30bを一定の操作量から中立位置まで操作し、旋回モータ7の停止を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー-30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は、受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を閉状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。旋回レバー30bが中立の場合、ポンプ吐出流量指令値は0となる。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 At this time, the pressure oil discharged from the closedcircuit pump 12 accelerates the inertial body of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, so that the hydraulic oil is discharged from the closed circuit pump 12 on the hydraulic oil discharge side. The pressure in a certain channel 24 becomes higher than the pressure in the channel 25. The flushing valve 32 is switched to connect the low pressure side flow path 25 and the tank 33.
(During turning-lever neutral-turn deceleration)
When the operator operates the turninglever 30b from a constant operation amount to a neutral position and gives an input for instructing the stop of the turning motor 7, the pump valve control device 40 causes the operation amount of the turning lever-30b to be transmitted via a signal line. To receive. The pump valve control device 40 sets the control command value to the closed state of the switching valve 26 in order to connect the closed circuit pump 12 to the swing motor 7 based on the received operation amount of the swing lever 30b. Further, the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b. When the turning lever 30b is neutral, the pump discharge flow rate command value becomes zero. The pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
(旋回中~レバー中立~旋回減速)
操作者が旋回レバー30bを一定の操作量から中立位置まで操作し、旋回モータ7の停止を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー-30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は、受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を閉状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。旋回レバー30bが中立の場合、ポンプ吐出流量指令値は0となる。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 At this time, the pressure oil discharged from the closed
(During turning-lever neutral-turn deceleration)
When the operator operates the turning
これにより、切換弁26は閉じ、閉回路ポンプ12は作動油の吐出を停止するが、旋回モータ7に接続されている上部旋回体102(図1に示す)の慣性力により、旋回モータ7は回転し続けるため、旋回モータ7は入出力ポート7bから作動油を流路25へ吐出する。この時、フラッシング弁32は、旋回開始時の切換え位置を保持しているため、流路25とタンク33を接続している。したがって、入出力ポート7bから流出した作動油は、流路25とフラッシング弁32を介してタンク33へ排出される。
As a result, the switching valve 26 is closed and the closed circuit pump 12 stops the discharge of the hydraulic oil. However, due to the inertial force of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, the swing motor 7 is Since the rotation motor 7 continues to rotate, the turning motor 7 discharges the hydraulic oil from the input/output port 7b to the flow path 25. At this time, the flushing valve 32 holds the switching position at the start of turning, and thus connects the flow path 25 and the tank 33. Therefore, the hydraulic oil flowing out from the input/output port 7b is discharged to the tank 33 via the flow path 25 and the flushing valve 32.
この時の旋回閉回路C2内の状態について、図5を用いて説明する。操作者が旋回レバー30bを一定の操作量から中立位置まで操作すると、それに合わせて、フラッシング弁32に流れる作動油の流量が増加する。フラッシング弁32の通過流量が増加すると、圧力損失によって流路25の圧力が上昇する。一方で流路24の圧力は、旋回モータ7の入出力ポート7aが流路24の作動油を吸入するため、低下していく。流路24の圧力が流路25の圧力を下回ると、フラッシング弁32が切り換わり、流路24とタンク33を接続する。その後、旋回モータ7の入出力ポート7bから流出される作動油は流路25に流れ、流路25の圧力はさらに上昇する。流路25の圧力が、リリーフ弁38bのあらかじめ設定した設定圧力(以下、リリーフ圧)まで上昇すると、リリーフ弁38bが開き、作動油はタンク33へ排出される。流路25の圧力が流路24の圧力を超えてリリーフ圧に達すると、旋回モータ7の回転速度が減速し、一定時間後、旋回モータ7は停止する。
(本発明のフラッシング弁の場合)
次に、本実施例における油圧駆動装置105で旋回モータ7駆動した場合の動作を図2を用いて説明する。
(停止~レバー入力~旋回加速)
操作者が旋回レバー30bを中立から一定の操作量まで操作した場合の旋回モータ7の挙動については、前述と同様なため、説明を省略する。
(旋回中~レバー中立~旋回減速)
操作者が旋回レバー30bを一定の操作量から中立位置まで操作し、旋回モータ7の停止を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を閉状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。旋回レバー30bが中立の場合、ポンプ吐出流量指令値は0となる。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 The state in the turning closed circuit C2 at this time will be described with reference to FIG. When the operator operates the turninglever 30b from a constant operation amount to the neutral position, the flow rate of the hydraulic oil flowing through the flushing valve 32 increases accordingly. When the flow rate passing through the flushing valve 32 increases, the pressure in the flow path 25 increases due to the pressure loss. On the other hand, the pressure in the flow path 24 decreases as the input/output port 7a of the turning motor 7 sucks the hydraulic oil in the flow path 24. When the pressure in the flow path 24 becomes lower than the pressure in the flow path 25, the flushing valve 32 switches to connect the flow path 24 and the tank 33. After that, the hydraulic oil flowing out from the input/output port 7b of the turning motor 7 flows into the flow path 25, and the pressure in the flow path 25 further rises. When the pressure in the flow path 25 rises to a preset pressure (hereinafter, relief pressure) of the relief valve 38b, the relief valve 38b opens and the hydraulic oil is discharged to the tank 33. When the pressure in the flow path 25 exceeds the pressure in the flow path 24 and reaches the relief pressure, the rotation speed of the swing motor 7 is reduced, and the swing motor 7 is stopped after a certain time.
(In the case of the flushing valve of the present invention)
Next, the operation when the turningmotor 7 is driven by the hydraulic drive system 105 in this embodiment will be described with reference to FIG.
(Stop-lever input-turn acceleration)
The behavior of the turningmotor 7 when the operator operates the turning lever 30b from a neutral position to a constant operation amount is the same as that described above, and thus the description thereof is omitted.
(During turning-lever neutral-turn deceleration)
When the operator operates the turninglever 30b from a constant operation amount to a neutral position and gives an input to command the stop of the turning motor 7, the pump valve control device 40 causes the pump lever control device 40 to output the operation amount of the turning lever 30b via a signal line. receive. The pump valve control device 40 sets the control command value to the closed state of the switching valve 26 in order to connect the closed circuit pump 12 to the swing motor 7 based on the received operation amount of the swing lever 30b. Further, the pump valve control device 40 sets the pump discharge flow rate command value of the closed circuit pump 12 to a value corresponding to the operation amount of the turning lever 30b. When the turning lever 30b is neutral, the pump discharge flow rate command value becomes zero. The pump valve control device 40 outputs a control command value and a pump discharge flow rate command value to the switching valve 26 and the regulator 12a of the closed circuit pump 12 via a control signal line.
(本発明のフラッシング弁の場合)
次に、本実施例における油圧駆動装置105で旋回モータ7駆動した場合の動作を図2を用いて説明する。
(停止~レバー入力~旋回加速)
操作者が旋回レバー30bを中立から一定の操作量まで操作した場合の旋回モータ7の挙動については、前述と同様なため、説明を省略する。
(旋回中~レバー中立~旋回減速)
操作者が旋回レバー30bを一定の操作量から中立位置まで操作し、旋回モータ7の停止を指令する入力を与えると、ポンプバルブ制御装置40は、旋回レバー30bの操作量を信号線を介して受け取る。ポンプバルブ制御装置40は受信した旋回レバー30bの操作量を元に、閉回路ポンプ12を旋回モータ7に接続するために切換弁26を閉状態へと制御指令値を設定する。また、ポンプバルブ制御装置40は、閉回路ポンプ12のポンプ吐出流量指令値を旋回レバー30bの操作量を応じた値に設定する。旋回レバー30bが中立の場合、ポンプ吐出流量指令値は0となる。ポンプバルブ制御装置40は、切換弁26と閉回路ポンプ12のレギュレータ12aに制御信号線を介して制御指令値とポンプ吐出流量指令値を出力する。 The state in the turning closed circuit C2 at this time will be described with reference to FIG. When the operator operates the turning
(In the case of the flushing valve of the present invention)
Next, the operation when the turning
(Stop-lever input-turn acceleration)
The behavior of the turning
(During turning-lever neutral-turn deceleration)
When the operator operates the turning
これにより、切換弁26は閉じ、閉回路ポンプ12は作動油の吐出を停止するが、旋回モータ7に接続されている上部旋回体102(図1に示す)の慣性体の持つ慣性力により、旋回モータ7は回転し続けるため、旋回モータ7は入出力ポート7bから作動油を流路25へ吐出する。この時、フラッシング弁32は旋回開始時の切換え位置を保持しているため、流路25とタンク33を接続している。したがって、入出力ポート7bから流出した作動油は、流路25とフラッシング弁32を介してタンク33へ排出される。
As a result, the switching valve 26 is closed and the closed circuit pump 12 stops the discharge of the hydraulic oil. However, due to the inertial force of the inertial body of the upper swing body 102 (shown in FIG. 1) connected to the swing motor 7, Since the swing motor 7 continues to rotate, the swing motor 7 discharges the hydraulic oil from the input/output port 7b to the flow path 25. At this time, since the flushing valve 32 holds the switching position at the start of turning, the flow path 25 and the tank 33 are connected. Therefore, the hydraulic oil flowing out from the input/output port 7b is discharged to the tank 33 via the flow path 25 and the flushing valve 32.
次に旋回閉回路C2内の状態について、図6を用いて説明する。操作者が旋回レバー30bを一定の操作量から中立位置まで操作すると、それに合わせて、フラッシング弁32の通過流量が増加する。
Next, the state inside the swing closed circuit C2 will be described with reference to FIG. When the operator operates the turning lever 30b from a constant operation amount to the neutral position, the flow rate of the flushing valve 32 increases accordingly.
図4に示したフラッシング弁32の構造は、前述した図3の構造と比べ、ストローク量32iが小さく絞りが狭いため、フラッシング弁32の通過流量の増加に対し、圧力損失による流路25の圧力上昇が早い。その結果、フラッシング弁32は、図3の構造を適用した場合と比べ、旋回レバー30bの操作に対して早く切り換わる。
The structure of the flushing valve 32 shown in FIG. 4 has a smaller stroke amount 32i and a narrower throttle than the structure of FIG. 3 described above. Therefore, as the flow rate of the flushing valve 32 increases, the pressure in the flow path 25 due to pressure loss increases. The rise is fast. As a result, the flushing valve 32 switches faster with respect to the operation of the turning lever 30b than when the structure of FIG. 3 is applied.
その後、図6に示す通り、流路25が流路24の圧力を超えてリリーフ圧に達すると、旋回モータ7の回転速度が減速し、一定時間後、停止する。
(発明の効果)
図4に示したフラッシング弁32の構造は、前述したフラッシング弁31に適用した図3の構造に比べ、絞りが狭いため、図6に示すフラッシング弁32の通過流量に対する流路25の圧力上昇が、図5に示す従来例と比べ大きくなる。これにより、旋回レバー30bの中立位置に戻す操作に対し、流路25の圧力上昇のタイミングが従来例(図5に示す)に比べ早くなり、旋回モータ7の減速開始も早くなる。すなわち、本発明により、旋回モータ7の減速応答性が向上する。 After that, as shown in FIG. 6, when theflow path 25 exceeds the pressure in the flow path 24 and reaches the relief pressure, the rotation speed of the swing motor 7 is decelerated, and after a certain period of time, it is stopped.
(Effect of the invention)
The structure of the flushingvalve 32 shown in FIG. 4 has a narrower throttle than the structure of FIG. 3 applied to the flushing valve 31 described above, so that the pressure rise in the flow path 25 with respect to the flow rate of the flushing valve 32 shown in FIG. , Which is larger than that of the conventional example shown in FIG. As a result, with respect to the operation of returning the turning lever 30b to the neutral position, the timing of pressure increase in the flow path 25 becomes earlier than in the conventional example (shown in FIG. 5), and the deceleration start of the turning motor 7 also becomes earlier. That is, the present invention improves the deceleration response of the swing motor 7.
(発明の効果)
図4に示したフラッシング弁32の構造は、前述したフラッシング弁31に適用した図3の構造に比べ、絞りが狭いため、図6に示すフラッシング弁32の通過流量に対する流路25の圧力上昇が、図5に示す従来例と比べ大きくなる。これにより、旋回レバー30bの中立位置に戻す操作に対し、流路25の圧力上昇のタイミングが従来例(図5に示す)に比べ早くなり、旋回モータ7の減速開始も早くなる。すなわち、本発明により、旋回モータ7の減速応答性が向上する。 After that, as shown in FIG. 6, when the
(Effect of the invention)
The structure of the flushing
油圧ショベル100において上部旋回体102の旋回動作は減速停止性能が重要となる。例えば、掘削した土砂をダンプトラックなどの車両に積み込む際、油圧ショベル100は掘削後、旋回して、土をこぼさずにダンプトラックの上まで運ぶ必要があるが、この時、旋回減速応答、すなわちブレーキ応答性が悪いと、ダンプトラックの上で旋回を停止できず、旋回が行き過ぎたりすることになり、作業効率が低下する。
In the hydraulic excavator 100, the deceleration stop performance is important for the swing operation of the upper swing body 102. For example, when loading the excavated earth and sand into a vehicle such as a dump truck, the hydraulic excavator 100 needs to turn after excavation and carry the soil to the top of the dump truck without spilling. If the brake responsiveness is poor, the turning cannot be stopped on the dump truck, and the turning goes too far, resulting in a decrease in work efficiency.
本発明により、旋回閉回路における旋回のブレーキ応答性が向上すると、ダンプトラックの上で旋回を停止することが容易になり、作業効率が改善する。
According to the present invention, if the brake response of the swing in the swing closed circuit is improved, it becomes easy to stop the swing on the dump truck, and the work efficiency is improved.
本発明の第1の実施例では、下部走行体103と、下部走行体103に旋回可能に取り付けられた上部旋回体102と、上部旋回体102に設けられた作業装置104と、作動油を貯留するタンク33と、作業装置104を駆動する片ロッド式油圧シリンダ1と、上部旋回体102を駆動する旋回用油圧モータ7と、作業装置104および上部旋回体102の動作を指示する操作装置30と、両傾転ポンプからなる第1閉回路ポンプ11と、両傾転ポンプからなる第2閉回路ポンプ12と、第1閉回路ポンプ11と片ロッド式油圧シリンダ1とを閉回路状に接続するシリンダ閉回路C1と、第2閉回路ポンプ12と旋回用油圧モータ7とを閉回路状に接続する旋回閉回路C2と、シリンダ閉回路C1の低圧側の流路をタンク33に連通させる第1フラッシング弁31と、旋回閉回路C2の低圧側の流路をタンク33に連通させる第2フラッシング弁32と、第1閉回路ポンプ11と片ロッド式油圧シリンダ1との連通と遮断とを切り換える第1切換弁23と、第2閉回路ポンプ12と旋回用油圧モータ7との連通と遮断とを切り換える第2切換弁26と、操作装置30から入力される操作信号に応じて、第1切換弁23および第2切換弁26の開閉、ならびに第1閉回路ポンプ11および第2閉回路ポンプ12の吐出流量を制御する建設機械100において、第2フラッシング弁32が全開したときの第2フラッシング弁32からタンク33までの最小流路面積は、第1フラッシング弁31が全開したときの第1フラッシング弁31からタンク33までの最小流路面積よりも小さい。
In the first embodiment of the present invention, a lower traveling body 103, an upper revolving body 102 rotatably attached to the lower traveling body 103, a work device 104 provided on the upper revolving body 102, and hydraulic oil are stored. Tank 33, the one-rod hydraulic cylinder 1 that drives the working device 104, the swing hydraulic motor 7 that drives the upper swing body 102, and the operating device 30 that instructs the operation of the work device 104 and the upper swing body 102. , A first closed circuit pump 11 composed of both tilt pumps, a second closed circuit pump 12 composed of both tilt pumps, a first closed circuit pump 11 and a single rod hydraulic cylinder 1 are connected in a closed circuit form. A cylinder closed circuit C1, a swing closed circuit C2 that connects the second closed circuit pump 12 and the swing hydraulic motor 7 in the form of a closed circuit, and a low pressure side flow path of the cylinder closed circuit C1 that communicates with the tank 33. A flushing valve 31, a second flushing valve 32 that connects the low-pressure side flow path of the swing closed circuit C2 to the tank 33, and a connection between the first closed circuit pump 11 and the one-rod hydraulic cylinder 1 that connects and disconnects. The first switching valve 23, the second switching valve 26 for switching between the communication between the second closed circuit pump 12 and the turning hydraulic motor 7 and the shutoff, and the first switching valve according to the operation signal input from the operating device 30. In the construction machine 100 that controls the opening and closing of the second switching valve 26 and the discharge flow rate of the first closed circuit pump 11 and the second closed circuit pump 12, the second flushing valve 32 when the second flushing valve 32 is fully opened. The minimum flow passage area from the tank 33 to the tank 33 is smaller than the minimum flow passage area from the first flushing valve 31 to the tank 33 when the first flushing valve 31 is fully opened.
以上のように構成された本実施例によれば、旋回減速開始時に、旋回閉回路C2用のフラッシング弁(第2フラッシング弁)32を介してポンプ吸入側からタンクへ作動油が排出される際に、第2フラッシング弁32で大きな圧力損失が発生することで、ポンプ吸入側の流路の圧力が速やかに上昇し、第2フラッシング弁32が速やかに切り換わる。これにより、ポンプ吸入側の流路の圧力がリリーフ圧に達するまでの時間が短縮されるため、旋回減速応答性が向上し、良好な旋回操作性が得られる。
According to the present embodiment configured as described above, when the hydraulic oil is discharged from the pump suction side to the tank via the flushing valve (second flushing valve) 32 for the swing closed circuit C2 at the start of the swing deceleration. In addition, since a large pressure loss occurs in the second flushing valve 32, the pressure in the flow path on the pump suction side rapidly rises, and the second flushing valve 32 switches quickly. As a result, the time taken for the pressure in the flow path on the pump suction side to reach the relief pressure is shortened, so that the turning deceleration response is improved and good turning operability is obtained.
また、第1フラッシング弁31は、第1マニホールド31aと、第1マニホールド31a内に配置された第1スプール31eと、第1マニホールド31a内に配置され、第1スプール31eを付勢する第1バネ31f1,31f2と、第1スプール31eと第1バネ31f1,31f2との間に配置された第1シム31g1,31g2とを有し、第2フラッシング弁32は、第2マニホールド32aと、第2マニホールド32a内に配置された第2スプール32eと、第2マニホールド32a内に配置され、第2スプール32eを付勢する第2バネ32f1,32f2と、第2スプール32eと第2バネ32f1,32f2との間に配置された第2シム32g1,32g2とを有し、第2シム32g1,32g2のスプール軸方向の厚さT2は、第1シム31g1,31g2のスプール軸方向の厚さT1よりも大きい。これにより、鋳型で成型されるマニホールド32aの形状を変更することなく、フラッシング弁32の最大開口面積を小さくすることができるため、フラッシング弁32のコストを抑えることが可能となる。
The first flushing valve 31 includes a first manifold 31a, a first spool 31e arranged in the first manifold 31a, and a first spring arranged in the first manifold 31a and biasing the first spool 31e. 31f1 and 31f2 and first shims 31g1 and 31g2 arranged between the first spool 31e and the first springs 31f1 and 31f2, and the second flushing valve 32 includes a second manifold 32a and a second manifold 32a. A second spool 32e arranged in the second 32a, a second spring 32f1, 32f2 arranged in the second manifold 32a and biasing the second spool 32e, a second spool 32e and the second springs 32f1, 32f2. The second shims 32g1 and 32g2 are arranged between the second shims 32g1 and 32g2, and the thickness T2 of the second shims 32g1 and 32g2 in the spool axial direction is greater than the thickness T1 of the first shims 31g1 and 31g2 in the spool axial direction. As a result, the maximum opening area of the flushing valve 32 can be reduced without changing the shape of the manifold 32a molded by the mold, so that the cost of the flushing valve 32 can be suppressed.
図7に本発明の第2の実施例に係る旋回閉回路C2用のフラッシング弁32の内部構造を示す。
FIG. 7 shows the internal structure of the flushing valve 32 for the swing closed circuit C2 according to the second embodiment of the present invention.
図7において、第1の実施例に係る旋回閉回路C2用のフラッシング弁32(図4に示す)との相違点は、シム32g1,32g2の厚さT2がシリンダ閉回路C1用のフラッシング弁31(図2に示す)のシム31g1,31g2の厚さT1と等しく、スプール32eに形成された流路32hのスプール軸方向の幅W2がフラッシング弁31の流路31hの幅W1よりも小さい点である。
7, the difference from the flushing valve 32 (shown in FIG. 4) for the swing closed circuit C2 according to the first embodiment is that the thickness T2 of the shims 32g1 and 32g2 is the flushing valve 31 for the cylinder closed circuit C1. It is equal to the thickness T1 of the shims 31g1 and 31g2 (shown in FIG. 2), and the width W2 of the flow passage 32h formed in the spool 32e in the spool axial direction is smaller than the width W1 of the flow passage 31h of the flushing valve 31. is there.
このように、本実施例では、第1フラッシング弁31は、第1マニホールド31aと、第1マニホールド31a内に配置された第1スプール31eとを有し、第2フラッシング弁32は、第2マニホールド32aと、第2マニホールド32a内に配置された第2スプール32eとを有し、第1スプール31eの中間部には、シリンダ閉回路C1の低圧側の流路をタンク33に連通させるための第1タンク接続流路31hが形成されており、第2スプール32eの中間部には、旋回閉回路C2の低圧側の流路をタンク33に連通させるための第2タンク接続流路32hが形成されており、第2タンク接続流路32hのスプール軸方向の幅W2は、第1タンク接続流路31hのスプール軸方向の幅W1よりも小さい。
As described above, in the present embodiment, the first flushing valve 31 has the first manifold 31a and the first spool 31e arranged in the first manifold 31a, and the second flushing valve 32 is the second manifold. 32a and a second spool 32e arranged in the second manifold 32a, and a first spool 31e has a middle part for communicating the low pressure side flow path of the cylinder closed circuit C1 with the tank 33. A 1-tank connection flow path 31h is formed, and a second tank connection flow path 32h for connecting the low-pressure side flow path of the swirl closed circuit C2 to the tank 33 is formed in the middle of the second spool 32e. Therefore, the width W2 of the second tank connection channel 32h in the spool axis direction is smaller than the width W1 of the first tank connection channel 31h in the spool axis direction.
以上のように構成された本実施例においても、フラッシング弁32が全開したときのフラッシング弁32からタンク33までの最小流路面積が、フラッシング弁31が全開したときのフラッシング弁31からタンク33までの最小流路面積よりも小さくなるため、第1の実施例と同様に、旋回減速応答性が向上し、良好な旋回操作性が得られる。
Also in the present embodiment configured as described above, the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. Since the area is smaller than the minimum flow path area, the turning deceleration response is improved and good turning operability is obtained, as in the first embodiment.
図8に本発明の第3の実施例に係る油圧駆動装置105を示す。
FIG. 8 shows a hydraulic drive system 105 according to the third embodiment of the present invention.
図8において、第1の実施例(図2に示す)との相違点は、旋回閉回路C2用のフラッシング弁32の構造をシリンダ閉回路C1用のフラッシング弁31(図3に示す)と同一にし、フラッシング弁31とタンク33とを接続する流路に絞り41を設けた点である。ここで、絞り41の開口面積は、第1の実施例に係る旋回閉回路C2用のフラッシング弁32(図4に示す)における流路32bまたは流路32cと流路32hとの間の最大開口面積と同程度である。これにより、フラッシング弁32が全開したときのフラッシング弁32からタンク33までの最小流路面積は、第1の実施例と同様に、フラッシング弁31が全開したときのフラッシング弁31からタンク33までの最小流路面積よりも小さくなる。
In FIG. 8, the difference from the first embodiment (shown in FIG. 2) is that the structure of the flushing valve 32 for the swing closed circuit C2 is the same as that of the flushing valve 31 for the cylinder closed circuit C1 (shown in FIG. 3). That is, the throttle 41 is provided in the flow path connecting the flushing valve 31 and the tank 33. Here, the opening area of the throttle 41 is the maximum opening between the flow passage 32b or the flow passage 32c and the flow passage 32h in the flushing valve 32 (shown in FIG. 4) for the swing closed circuit C2 according to the first embodiment. It is about the same as the area. Accordingly, the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is the same as that of the first embodiment from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. It becomes smaller than the minimum flow path area.
このように、本実施例に係る油圧ショベル100は、第2フラッシング弁32とタンク33とを接続する流路上に設けられた絞り41を更に備え、第2フラッシング弁32は、第1フラッシング弁31と同一の構造を有する。
As described above, the hydraulic excavator 100 according to the present embodiment further includes the throttle 41 provided on the flow path that connects the second flushing valve 32 and the tank 33, and the second flushing valve 32 includes the first flushing valve 31. It has the same structure as.
以上のように構成された本実施例においても、フラッシング弁32が全開したときのフラッシング弁32からタンク33までの最小流路面積がフラッシング弁31が全開したときのフラッシング弁31からタンク33までの最小流路面積よりも小さくなるため、第1の実施例と同様に、旋回減速応答性が向上し、良好な旋回操作性が得られる。
Also in the present embodiment configured as described above, the minimum flow passage area from the flushing valve 32 to the tank 33 when the flushing valve 32 is fully opened is from the flushing valve 31 to the tank 33 when the flushing valve 31 is fully opened. Since the area is smaller than the minimum flow path area, the turning deceleration response is improved and good turning operability is obtained, as in the first embodiment.
さらに、旋回閉回路C2用のフラッシング弁(第2フラッシング弁32)とシリンダ閉回路C1用のフラッシング弁(第1フラッシング弁31)とが同一仕様となるため、コストを低減することが可能となる。
Further, since the flushing valve for the swirl closed circuit C2 (second flushing valve 32) and the flushing valve for the cylinder closed circuit C1 (first flushing valve 31) have the same specifications, the cost can be reduced. ..
以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。さらに、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, delete a part of the configuration of a certain embodiment, or replace it with a part of another embodiment. It is possible.
1…ブームシリンダ(片ロッド式油圧シリンダ)、1a…ブームヘッド、1b…ブームロッド、2…ブーム、3…アームシリンダ、3a…アームヘッド、3b…アームロッド、4…アーム、5…バケットシリンダ、5a…バケットヘッド、5b…バケットロッド、6…バケット、7…旋回モータ(旋回用油圧モータ)、7a,7b…入出力ポート、8a,8b…走行装置、9…エンジン、10…伝達装置、11…閉回路ポンプ(第1閉回路ポンプ)、12…閉回路ポンプ(第2閉回路ポンプ)、11a,12a…レギュレータ、21,22,24,25…流路、23…切換弁(第1切換弁)、26…切換弁(第2切換弁)、30…操作レバー(操作装置)、30a…ブームレバー、30b…旋回レバー、31…フラッシング弁(第1フラッシング弁)、32…フラッシング弁(第2フラッシング弁)、31b,31c,31d…流路、31e…スプール(第1スプール)、31g1,31g2…シム(第1シム)、31f1,31f2…バネ(第1バネ)、31h…流路(第1タンク接続流路)、31i…ストローク量、32b,32c,32d…流路、32e…スプール(第2スプール)、32g1,32g2…シム(第2シム)、32f1,32f2…バネ(第2バネ)、32h…流路(第2タンク接続流路)、32i…ストローク量、33…タンク、34a,34b…チェック弁、37a,37b,38a,38b…リリーフ弁、40…ポンプバルブ制御装置、100…油圧ショベル(建設機械)、101…キャブ、102…上部旋回体、104…フロント作業機(作業装置)、105…油圧駆動装置。
1... Boom cylinder (single rod hydraulic cylinder), 1a... Boom head, 1b... Boom rod, 2... Boom, 3... Arm cylinder, 3a... Arm head, 3b... Arm rod, 4... Arm, 5... Bucket cylinder, 5a... Bucket head, 5b... Bucket rod, 6... Bucket, 7... Swing motor (swivel hydraulic motor), 7a, 7b... Input/output port, 8a, 8b... Traveling device, 9... Engine, 10... Transmission device, 11 ... Closed circuit pump (first closed circuit pump), 12... Closed circuit pump (second closed circuit pump), 11a, 12a... Regulator, 21, 22, 24, 25... Flow path, 23... Switching valve (first switching) Valve), 26... switching valve (second switching valve), 30... operating lever (operating device), 30a... boom lever, 30b... swing lever, 31... flushing valve (first flushing valve), 32... flushing valve (first) 2 flushing valves), 31b, 31c, 31d... Flow path, 31e... Spool (first spool), 31g1, 31g2... Shim (first shim), 31f1, 31f2... Spring (first spring), 31h... Flow path ( First tank connection flow path), 31i... Stroke amount, 32b, 32c, 32d... Flow path, 32e... Spool (second spool), 32g1, 32g2... Shim (second shim), 32f1, 32f2... Spring (second) 32h... Flow path (second tank connection flow path), 32i... Stroke amount, 33... Tank, 34a, 34b... Check valve, 37a, 37b, 38a, 38b... Relief valve, 40... Pump valve control device, 100... Hydraulic excavator (construction machine), 101... Cab, 102... Upper swing body, 104... Front working machine (working device), 105... Hydraulic drive device.
Claims (4)
- 下部走行体と、
前記下部走行体に旋回可能に取り付けられた上部旋回体と、
前記上部旋回体に設けられた作業装置と、
作動油を貯留するタンクと、
前記作業装置を駆動する片ロッド式油圧シリンダと、
前記上部旋回体を駆動する旋回用油圧モータと、
前記作業装置および前記上部旋回体の動作を指示する操作装置と、
両傾転ポンプからなる第1閉回路ポンプと、
両傾転ポンプからなる第2閉回路ポンプと、
前記第1閉回路ポンプと前記片ロッド式油圧シリンダとを閉回路状に接続するシリンダ閉回路と、
前記第2閉回路ポンプと前記旋回用油圧モータとを閉回路状に接続する旋回閉回路と、
前記シリンダ閉回路の低圧側の流路を前記タンクに連通させる第1フラッシング弁と、
前記旋回閉回路の低圧側の流路を前記タンクに連通させる第2フラッシング弁と、
前記第1閉回路ポンプと前記片ロッド式油圧シリンダとの連通と遮断とを切り換える第1切換弁と、
前記第2閉回路ポンプと前記旋回用油圧モータとの連通と遮断とを切り換える第2切換弁と、
前記操作装置から入力される操作信号に応じて、前記第1切換弁および前記第2切換弁の開閉、ならびに前記第1閉回路ポンプおよび前記第2閉回路ポンプの吐出流量を制御する建設機械において、
前記第2フラッシング弁が全開したときの前記第2フラッシング弁から前記タンクまでの最小流路面積は、前記第1フラッシング弁が全開したときの前記第1フラッシング弁から前記タンクまでの最小流路面積よりも小さい
ことを特徴とする建設機械。 An undercarriage,
An upper revolving structure attached to the lower traveling structure so as to be rotatable,
A work device provided on the upper swing body,
A tank for storing hydraulic oil,
A single rod hydraulic cylinder for driving the working device,
A swing hydraulic motor for driving the upper swing body,
An operating device for instructing the operation of the working device and the upper swing body,
A first closed circuit pump consisting of a double tilting pump;
A second closed circuit pump consisting of both tilting pumps,
A cylinder closed circuit that connects the first closed circuit pump and the one-rod hydraulic cylinder in a closed circuit form;
A swing closed circuit that connects the second closed circuit pump and the swing hydraulic motor in a closed circuit;
A first flushing valve that connects the low pressure side flow path of the cylinder closed circuit to the tank;
A second flushing valve that connects the low pressure side flow path of the swirl closed circuit to the tank;
A first switching valve that switches between communication and disconnection between the first closed circuit pump and the one-rod hydraulic cylinder;
A second switching valve for switching between communication and disconnection between the second closed circuit pump and the swing hydraulic motor;
A construction machine for controlling the opening/closing of the first switching valve and the second switching valve and the discharge flow rates of the first closed circuit pump and the second closed circuit pump according to an operation signal input from the operation device. ,
The minimum flow passage area from the second flushing valve to the tank when the second flushing valve is fully opened is the minimum flow passage area from the first flushing valve to the tank when the first flushing valve is fully opened. Construction machinery characterized by being smaller than. - 請求項1に記載の建設機械において、
前記第1フラッシング弁は、第1マニホールドと、前記第1マニホールド内に配置された第1スプールと、前記第1マニホールド内に配置され、前記第1スプールを付勢する第1バネと、前記第1スプールと前記第1バネとの間に配置された第1シムとを有し、
前記第2フラッシング弁は、第2マニホールドと、前記第2マニホールド内に配置された第2スプールと、前記第2マニホールド内に配置され、前記第2スプールを付勢する第2バネと、前記第2スプールと前記第2バネとの間に配置された第2シムとを有し、
前記第2シムのスプール軸方向の厚さは、前記第1シムのスプール軸方向の厚さよりも大きい
ことを特徴とする建設機械。 The construction machine according to claim 1,
The first flushing valve includes a first manifold, a first spool arranged in the first manifold, a first spring arranged in the first manifold and urging the first spool, 1 spool and a first shim arranged between the first spring,
The second flushing valve includes a second manifold, a second spool arranged in the second manifold, a second spring arranged in the second manifold and biasing the second spool, and the second spring. Two spools and a second shim arranged between the second spring,
The construction machine, wherein the thickness of the second shim in the spool axial direction is larger than the thickness of the first shim in the spool axial direction. - 請求項1に記載の建設機械において、
前記第1フラッシング弁は、第1マニホールドと、前記第1マニホールド内に配置された第1スプールとを有し、
前記第2フラッシング弁は、第2マニホールドと、前記第2マニホールド内に配置された第2スプールとを有し、
前記第1スプールの中間部には、前記シリンダ閉回路の低圧側の流路を前記タンクに連通させるための第1タンク接続流路が形成されており、
前記第2スプールの中間部には、前記旋回閉回路の低圧側の流路を前記タンクに連通させるための第2タンク接続流路が形成されており、
前記第2タンク接続流路のスプール軸方向の幅は、前記第1タンク接続流路のスプール軸方向の幅よりも小さい
ことを特徴とする建設機械。 The construction machine according to claim 1,
The first flushing valve has a first manifold and a first spool arranged in the first manifold,
The second flushing valve has a second manifold and a second spool arranged in the second manifold,
A first tank connection flow path for communicating a low pressure side flow path of the cylinder closed circuit with the tank is formed in an intermediate portion of the first spool,
A second tank connection flow path for communicating the low pressure side flow path of the swirl closed circuit with the tank is formed in an intermediate portion of the second spool,
The construction machine is characterized in that the width of the second tank connection channel in the spool axis direction is smaller than the width of the first tank connection channel in the spool axis direction. - 請求項1に記載の建設機械において、
前記第2フラッシング弁と前記タンクとを接続する流路上に設けられた絞りを更に備え、
前記第2フラッシング弁は、前記第1フラッシング弁と同一の構造を有する
ことを特徴とする建設機械。 The construction machine according to claim 1,
Further comprising a throttle provided on a flow path connecting the second flushing valve and the tank,
The construction machine, wherein the second flushing valve has the same structure as the first flushing valve.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980054772.4A CN112585361B (en) | 2019-01-25 | 2019-11-05 | Construction machine |
EP19911321.8A EP3835598A4 (en) | 2019-01-25 | 2019-11-05 | Construction machine |
US17/275,064 US11859367B2 (en) | 2019-01-25 | 2019-11-05 | Construction machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019011592A JP7090567B2 (en) | 2019-01-25 | 2019-01-25 | Construction machinery |
JP2019-011592 | 2019-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020152937A1 true WO2020152937A1 (en) | 2020-07-30 |
Family
ID=71736111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043331 WO2020152937A1 (en) | 2019-01-25 | 2019-11-05 | Construction machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US11859367B2 (en) |
EP (1) | EP3835598A4 (en) |
JP (1) | JP7090567B2 (en) |
CN (1) | CN112585361B (en) |
WO (1) | WO2020152937A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11941646B2 (en) | 2020-09-11 | 2024-03-26 | The Nielsen Company (Us), Llc | Methods and apparatus to estimate population reach from marginals |
WO2022170204A1 (en) | 2021-02-08 | 2022-08-11 | The Nielsen Company (Us), Llc | Methods and apparatus to perform computer-based monitoring of audiences of network-based media by using information theory to estimate intermediate level unions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144104U (en) * | 1982-03-24 | 1983-09-28 | 日立建機株式会社 | Braking device for hydraulically driven machines |
JPS59208205A (en) * | 1983-05-11 | 1984-11-26 | Hitachi Constr Mach Co Ltd | Flushing valve |
JP2016017602A (en) | 2014-07-09 | 2016-02-01 | 日立建機株式会社 | Driving device of work machine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4369625A (en) * | 1979-06-27 | 1983-01-25 | Hitachi Construction Machinery Co., Ltd. | Drive system for construction machinery and method of controlling hydraulic circuit means thereof |
JPS57144344A (en) * | 1981-03-02 | 1982-09-06 | Hitachi Constr Mach Co Ltd | Flushing valve |
JP3751403B2 (en) * | 1997-03-27 | 2006-03-01 | ボッシュ・レックスロス株式会社 | Displacement constant control device for variable displacement hydraulic pump |
CN201428169Y (en) * | 2009-05-15 | 2010-03-24 | 王多云 | High efficient water-saving flushing valve |
US9683588B2 (en) * | 2012-01-31 | 2017-06-20 | Hitachi Construction Machinery Co., Ltd. | Hydraulic closed circuit system |
JP5857004B2 (en) * | 2013-07-24 | 2016-02-10 | 日立建機株式会社 | Energy recovery system for construction machinery |
JP6476074B2 (en) * | 2015-06-03 | 2019-02-27 | 日立建機株式会社 | Work machine |
JP6615138B2 (en) | 2017-03-01 | 2019-12-04 | 日立建機株式会社 | Construction machine drive |
JP6731373B2 (en) | 2017-03-30 | 2020-07-29 | 日立建機株式会社 | Construction machinery |
JP6975036B2 (en) * | 2017-12-28 | 2021-12-01 | 日立建機株式会社 | Work machine |
JP6934454B2 (en) * | 2018-06-25 | 2021-09-15 | 日立建機株式会社 | Construction machinery |
CN108757624B (en) * | 2018-08-01 | 2023-11-28 | 本钢板材股份有限公司 | Differential speed-increasing circuit of oil cylinder overflow valve |
JP7302986B2 (en) * | 2019-02-28 | 2023-07-04 | 日立建機株式会社 | construction machinery |
WO2020179429A1 (en) * | 2019-03-06 | 2020-09-10 | 日立建機株式会社 | Construction machine |
-
2019
- 2019-01-25 JP JP2019011592A patent/JP7090567B2/en active Active
- 2019-11-05 EP EP19911321.8A patent/EP3835598A4/en active Pending
- 2019-11-05 US US17/275,064 patent/US11859367B2/en active Active
- 2019-11-05 WO PCT/JP2019/043331 patent/WO2020152937A1/en unknown
- 2019-11-05 CN CN201980054772.4A patent/CN112585361B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58144104U (en) * | 1982-03-24 | 1983-09-28 | 日立建機株式会社 | Braking device for hydraulically driven machines |
JPS59208205A (en) * | 1983-05-11 | 1984-11-26 | Hitachi Constr Mach Co Ltd | Flushing valve |
JP2016017602A (en) | 2014-07-09 | 2016-02-01 | 日立建機株式会社 | Driving device of work machine |
Also Published As
Publication number | Publication date |
---|---|
JP7090567B2 (en) | 2022-06-24 |
EP3835598A1 (en) | 2021-06-16 |
CN112585361B (en) | 2022-11-18 |
JP2020118260A (en) | 2020-08-06 |
US20220056667A1 (en) | 2022-02-24 |
EP3835598A4 (en) | 2022-04-27 |
US11859367B2 (en) | 2024-01-02 |
CN112585361A (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9080310B2 (en) | Closed-loop hydraulic system having regeneration configuration | |
EP1760326B1 (en) | Hydraulic controller for working machine | |
KR101820324B1 (en) | Hydraulic circuit for pipe layer | |
US9249879B2 (en) | Hydraulic drive system for hydraulic working machine | |
US10604916B2 (en) | Shovel | |
JP2019031989A (en) | Construction machine | |
JP6858723B2 (en) | Wheel loader | |
JP2017226492A (en) | Hydraulic drive system | |
JP4715400B2 (en) | Hydraulic control equipment for construction machinery | |
WO2020152937A1 (en) | Construction machine | |
US20030156949A1 (en) | Hydraulic driving unit for working machine, and method of hydraulic drive | |
JP2011047460A (en) | Fluid pressure circuit and construction machine equipped with the same | |
WO2020122081A1 (en) | Hydraulic drive system | |
WO2021256059A1 (en) | Construction machine | |
KR102667937B1 (en) | work vehicle | |
JP2017026085A (en) | Hydraulic control device of work machine | |
JP3205910B2 (en) | Operation control device of multiple actuators by single variable displacement pump | |
JP2005226678A (en) | Hydraulic drive mechanism | |
JP7096178B2 (en) | Construction machinery | |
JPH02213524A (en) | Oil hydraulic circuit of work equipment | |
CN114270056B (en) | Engineering machinery | |
WO2023074821A1 (en) | Shovel | |
JP7350567B2 (en) | hydraulic system | |
WO2022172636A1 (en) | Hydraulic shovel drive system | |
JPH0352273Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911321 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019911321 Country of ref document: EP Effective date: 20210310 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |