WO2020152792A1 - Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method - Google Patents

Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method Download PDF

Info

Publication number
WO2020152792A1
WO2020152792A1 PCT/JP2019/001935 JP2019001935W WO2020152792A1 WO 2020152792 A1 WO2020152792 A1 WO 2020152792A1 JP 2019001935 W JP2019001935 W JP 2019001935W WO 2020152792 A1 WO2020152792 A1 WO 2020152792A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
inverter
carrier frequency
frequency
voltage
Prior art date
Application number
PCT/JP2019/001935
Other languages
French (fr)
Japanese (ja)
Inventor
勇二 廣澤
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/001935 priority Critical patent/WO2020152792A1/en
Priority to JP2020567286A priority patent/JPWO2020152792A1/en
Publication of WO2020152792A1 publication Critical patent/WO2020152792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a drive device that drives an electric motor.
  • a pulse width modulation control method is used to control an inverter that applies a voltage to an electric motor.
  • the carrier frequency of the inverter affects the switching loss in the inverter and the harmonic iron loss in the electric motor. Therefore, a driving method of an electric motor that switches the carrier frequency according to the state of the current waveform output from the inverter has been proposed (for example, refer to Patent Document 1).
  • the conventional technology has a problem that the total efficiency of the inverter and the electric motor is poor because the total loss of the inverter and the electric motor, such as switching loss and harmonic iron loss, is large.
  • the purpose of the present invention is to improve the overall efficiency of the inverter and the electric motor.
  • a drive device is A drive device for driving an electric motor having a coil, An inverter for applying a voltage to the coil, A controller for controlling the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil, and switching the carrier frequency according to the rotation speed of the electric motor.
  • a compressor includes the drive device.
  • a refrigerating and air-conditioning apparatus includes the compressor.
  • a method of driving an electric motor according to another aspect of the present invention is A method for driving an electric motor having a coil, comprising: Setting the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil, The carrier frequency is switched according to the rotation speed of the electric motor.
  • the overall efficiency of the inverter and the electric motor can be improved.
  • FIG. 1 It is sectional drawing which shows the structure of an electric motor schematically. It is a block diagram which shows the structure of a drive device. It is a figure which shows an example of the carrier wave and inverter output voltage command value for generating a PWM control signal. It is a figure which shows an example of the PWM control signal produced
  • FIG. 1 is a sectional view schematically showing the structure of the electric motor 1.
  • FIG. 1 shows the structure of the electric motor 1 in a plane orthogonal to the rotation axis of the rotor 20 of the electric motor 1.
  • the electric motor 1 is, for example, a permanent magnet embedded electric motor.
  • the electric motor 1 is used, for example, in a rotary compressor.
  • the electric motor 1 has a stator 10 and a rotor 20 rotatably provided inside the stator 10.
  • An air gap exists between the inner peripheral surface of the stator 10 and the outer peripheral surface of the rotor 20.
  • the width of the air gap is, for example, 0.3 mm to 1 mm.
  • the axial direction of the rotor 20 (that is, the direction of the rotation axis C1) is simply referred to as the “axial direction”.
  • the direction along the outer circumference of the stator 10 or the rotor 20 is simply referred to as “circumferential direction”.
  • the radial direction of the stator 10 or the rotor 20 is simply referred to as “radial direction”.
  • the stator 10 includes a stator core 11, at least one coil (three coils 3U, three coils 3V, and three coils 3W in FIG. 1) and at least one insulator 14.
  • the stator core 11 is made of, for example, a plurality of electromagnetic steel plates.
  • the plurality of magnetic steel sheets are laminated in the axial direction.
  • the plurality of magnetic steel sheets are fixed by caulking.
  • the thickness of each electromagnetic steel sheet is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate is 0.35 mm.
  • Each electromagnetic steel sheet is formed into a predetermined shape by press working such as punching.
  • the stator core 11 has an annular yoke portion 13 and a plurality of teeth portions 12.
  • the yoke portion 13 extends in the circumferential direction.
  • Each tooth part 12 extends in the radial direction.
  • each tooth portion 12 projects from the yoke portion 13 toward the rotation axis C1 of the rotor 20.
  • the plurality of tooth portions 12 are arranged at equal intervals in the circumferential direction and extend radially.
  • the stator core 11 has nine teeth portions 12.
  • a slot exists between two adjacent tooth portions 12.
  • Each tooth portion 12 has a main body portion that extends in the radial direction and a tooth tip portion that extends in the circumferential direction.
  • Each tooth tip is located at the tip of each tooth 12.
  • Each of the coils 3U, 3V, and 3W is wound around the insulator 14 fixed to the stator core 11.
  • Coils 3U, 3V and 3W are made of at least one stator winding. That is, at least one stator winding is wound around the stator core 11.
  • the at least one stator winding is, for example, a magnet wire.
  • each of coils 3U, 3V, and 3W is wound 110 turns around insulator 14 by concentrated winding.
  • the number of turns and the wire diameter of each of the coils 3U, 3V, and 3W are determined according to the characteristics (for example, rotation speed, torque) required for the electric motor 1, the supply voltage, or the cross-sectional area of the slot.
  • the stator core 11 may be formed of, for example, a plurality of blocks (also referred to as split cores).
  • the magnet wire can be wound around each tooth portion 12 in a state where these plural blocks are linearly arranged. After winding the magnet wire around the tooth portion 12, the plurality of blocks are folded in an annular shape, and both ends of the plurality of blocks are welded.
  • the coil is composed of U-phase, V-phase, and W-phase three-phase coils (that is, coils 3U, 3V, and 3W).
  • the coil 3U has U-phase coil portions Ua, Ub, and Uc.
  • the coil 3V has V-phase coil portions Va, Vb, and Vc.
  • Coil 3W has W-phase coil portions Wa, Wb, and Wc. Both terminals of the coil of each phase are open. That is, the coil has a total of six terminals.
  • the insulator 14 is made of, for example, a film made of polyethylene terephthalate (PET).
  • the insulator 14 made of a thin film is effective in increasing the number of turns of the coil in the slot. Furthermore, the stator core 11 made of a plurality of blocks is effective in increasing the number of turns of the coil in the slot.
  • the stator core 11 is not limited to the structure made of a plurality of blocks.
  • the rotor 20 has a rotor core 21 and a plurality of permanent magnets 25 attached to the rotor core 21.
  • the rotor core 21 is made of, for example, a plurality of electromagnetic steel plates.
  • the plurality of magnetic steel sheets are laminated in the axial direction.
  • the plurality of magnetic steel sheets are fixed by caulking.
  • the thickness of each electromagnetic steel sheet is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate is 0.35 mm.
  • Each electromagnetic steel sheet is formed into a predetermined shape by press working such as punching.
  • the rotor core 21 has a plurality of magnet insertion holes 22 and a shaft hole 27. A shaft is inserted into the shaft hole 27. The shaft is fixed to the rotor core 21 by a method such as shrink fitting and press fitting.
  • the rotor core 21 has six magnet insertion holes 22. On the surface orthogonal to the axial direction, the plurality of magnet insertion holes 22 are arranged in the circumferential direction. Each magnet insertion hole 22 corresponds to each magnetic pole of the rotor 20. The number of magnetic poles of the rotor 20 is 2 or more. In the present embodiment, the rotor 20 has six magnetic poles. One or more permanent magnets 25 are arranged in each magnet insertion hole.
  • each magnet insertion hole 22 On the plane orthogonal to the axial direction, the central portion of the magnet insertion hole 22 projects toward the rotation axis C1. That is, each magnet insertion hole 22 has a V shape in the plane orthogonal to the axial direction.
  • the shape of each magnet insertion hole 22 is not limited to the V shape, and may be, for example, a straight shape.
  • two permanent magnets 25 are arranged in one magnet insertion hole 22. That is, two permanent magnets 25 are arranged for one magnetic pole. Therefore, in this embodiment, the rotor 20 has twelve permanent magnets 25.
  • Each permanent magnet 25 is a flat magnet that is long in the axial direction.
  • Each permanent magnet 25 is, for example, a rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B).
  • Two permanent magnets 25 arranged in one magnet insertion hole 22 serve as one magnetic pole of the rotor 20.
  • the rotor core 21 further has a plurality of flux barriers 26.
  • Flux barriers 26 are located on both sides of each magnet insertion hole 22 in the circumferential direction.
  • Each flux barrier 26 is a void communicating with the magnet insertion hole 22.
  • Each flux barrier 26 reduces the leakage magnetic flux between adjacent magnetic poles (that is, the magnetic flux passing between the magnetic poles).
  • the width of the thin portion between each flux barrier 26 and the outer peripheral surface of the rotor core 21 on the surface orthogonal to the axial direction is, for example, the same as the thickness of the electromagnetic steel sheet of the rotor core 21.
  • each magnet insertion hole 22 has a first magnet holding portion 23, which is a protrusion, formed in the central portion in the circumferential direction. Further, in the rotor core 21, second magnet holding portions 24, which are protrusions, are formed at both ends in the circumferential direction of each magnet insertion hole 22. The first magnet holding portion 23 and the second magnet holding portion 24 hold the permanent magnet 25 in each magnet insertion hole 22.
  • FIG. 2 is a block diagram showing the configuration of the driving device 101.
  • the drive device 101 includes a converter 102 that rectifies an output of a power supply, an inverter 103 that applies a voltage (specifically, an AC voltage) to the coil 3 of the electric motor 1, and a control device 50.
  • the coils 3U, 3V, and 3W are collectively referred to as a coil 3.
  • Electric power is supplied to the converter 102 from a power supply which is an alternating current (AC) power supply.
  • the converter 102 applies a voltage to the inverter 103.
  • the voltage applied from the converter 102 to the inverter 103 is also referred to as “converter voltage”.
  • the bus voltage of converter 102 is supplied to control device 50.
  • the inverter voltage that drives the electric motor 1, that is, the voltage applied to the coil 3 of the electric motor 1 is generated by the PWM control method.
  • the coil 3 of the electric motor 1 is, for example, a three-phase coil.
  • the inverter 103 has at least one inverter switch corresponding to each phase, and each inverter switch has one set of switching elements (two switching elements in the present embodiment).
  • the waveform of the inverter voltage is generated by controlling the on/off time ratio of the inverter switch corresponding to each phase.
  • a desired output waveform from the inverter 103 can be obtained.
  • the inverter switch in the inverter 103 is turned on, a voltage is supplied from the inverter 103 to the coil 3 and the inverter voltage increases.
  • the inverter switch is off, the voltage supply from the inverter 103 to the coil 3 is cut off and the inverter voltage drops.
  • the difference between the inverter voltage and the induced voltage is supplied to the coil 3, the electric motor current is generated, and the rotational force of the electric motor 1 is generated.
  • a desired output waveform from the inverter 103 can be obtained by controlling the on/off time ratio of the inverter switch so as to match the target electric motor current value.
  • FIG. 3 is a diagram showing an example of a carrier wave and an inverter output voltage command value for generating a PWM control signal.
  • FIG. 4 is a diagram showing an example of the PWM control signal generated in the control device 50.
  • FIG. 5 is a diagram showing an example of the electric motor current generated based on the PWM control signal.
  • the on/off timing of each inverter switch is determined based on the carrier wave.
  • the carrier wave is composed of a triangular wave having a constant amplitude.
  • the pulse width modulation period in the PWM control method is determined by the carrier frequency which is the frequency of the carrier wave.
  • a predetermined carrier wave pattern or a predetermined carrier frequency is stored in control device 50.
  • the control device 50 controls the carrier frequency and controls on/off of each inverter switch. As a result, the control device 50 controls the output from the inverter 103 supplied to the coil 3.
  • the carrier frequency which is the frequency of the carrier wave, is also referred to as the “carrier frequency of the inverter 103”. That is, the carrier frequency of the inverter 103 is the control frequency of the voltage applied to the coil 3, and the control device 50 controls the carrier frequency of the inverter 103.
  • the inverter 103 has three inverter switches (that is, six switching elements), but one of the three inverter switches, that is, the U phase, the V phase, Alternatively, control for one inverter switch corresponding to the W phase will be described. However, the control for the one inverter switch can be applied to the control for the other two inverter switches.
  • the control device 50 compares the voltage value of the carrier wave with the inverter output voltage command value.
  • the inverter output voltage command value is calculated, for example, in the control device 50 based on the target electric motor current value.
  • the inverter output voltage command value is set, for example, based on a signal input to the control device 50 from a remote controller of a refrigerating and air conditioning device such as an air conditioner.
  • the inverter output voltage command value corresponds to, for example, the air volume from the refrigeration air conditioning device set by the user of the refrigeration air conditioning device.
  • control device 50 When the voltage value of the carrier wave is smaller than the inverter output voltage command value, the control device 50 turns on the PWM control signal so that the inverter switch turns on. When the voltage value of the carrier wave is equal to or higher than the inverter output voltage command value, control device 50 turns off the PWM control signal so that the inverter switch turns off. As a result, the inverter voltage approaches the target value.
  • control device 50 generates the PWM control signal based on the difference between the inverter output voltage command value and the carrier wave voltage value.
  • the control device 50 outputs a control signal such as an inverter drive signal based on the PWM control signal to the inverter 103 to control ON/OFF of the inverter switch.
  • the inverter drive signal may be the same signal as the PWM control signal or a signal different from the PWM control signal.
  • the inverter voltage is output from the inverter 103 when the inverter switch is on.
  • the inverter voltage is supplied to the coil 3, and a motor current (specifically, U-phase current, V-phase current, and W-phase current) is generated in the motor 1.
  • a motor current specifically, U-phase current, V-phase current, and W-phase current
  • the inverter voltage is converted into the rotational force of the electric motor 1 (specifically, the rotor 20).
  • the electric motor current is measured by a measuring device such as a current sensor, and the measurement result (for example, a signal indicating a current value) is transmitted to the control device 50.
  • the control device 50 is composed of, for example, a processor and a memory.
  • the control device 50 is a microcomputer.
  • the control device 50 may be configured with a processing circuit as dedicated hardware such as a single circuit or a composite circuit.
  • FIG. 6 is a diagram showing the relationship between the actual inverter voltage and the line voltage.
  • FIG. 7 is a diagram showing an example of the waveform of the electric motor current during low speed rotation.
  • FIG. 8 is a diagram showing an example of the waveform of the electric motor current during rotation at a medium speed.
  • FIG. 9 is a diagram showing an example of the waveform of the electric motor current during high speed rotation.
  • an induced voltage is generated in the coil by electromagnetic induction between the permanent magnet and the coil (for example, three-phase coil).
  • the higher the rotational speed of the electric motor that is, the rotational speed of the electric motor, the larger the induced voltage and the line voltage.
  • the difference between the inverter voltage and the line voltage is converted into the rotational force of the electric motor.
  • the instantaneous inverter output voltage ie, the actual inverter voltage
  • the switching loss of the inverter increases.
  • the carrier frequency that optimizes the efficiency is determined from the balance between the harmonic iron loss and the switching loss, and the smaller the proportion of the harmonic iron loss, the smaller the carrier frequency that optimizes the efficiency.
  • the control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1.
  • the rotation speed of the electric motor 1 means the rotation speed of the electric motor 1. That is, the control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1.
  • FIG. 10 is a flowchart showing an example of the driving method of the electric motor 1.
  • FIG. 11 is a diagram showing an example of the relationship between the rotation speed of the electric motor 1 and the carrier frequency.
  • control device 50 sets the carrier frequency to the frequency f1 as the first frequency (step ST1).
  • the control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1. Specifically, control device 50 determines whether the rotation speed of electric motor 1 has reached threshold value Nd (step ST2). When the rotation speed of the electric motor 1 is equal to or higher than the threshold value Nd (Yes in step ST2), the control device 50 sets the carrier frequency to the frequency f2 as the second frequency smaller than the frequency f1 (step ST3). When the rotation speed of the electric motor 1 has not reached the threshold value Nd (No in step ST2), the control device 50 does not switch the carrier frequency.
  • the frequency f2 is equal to or higher than the minimum carrier frequency fm.
  • the minimum carrier frequency fm is the minimum value that can generate the waveform of the electric motor current required to control the electric motor 1.
  • FIG. 12 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the line voltage.
  • the line voltage increases as the rotation speed of the electric motor 1 increases and saturates at the maximum output of the inverter 103. Therefore, field weakening control is started in order to further increase the rotation speed of the electric motor 1.
  • field weakening control tends to reduce the efficiency of the electric motor.
  • the line voltage is saturated with respect to the converter voltage while the electric motor 1 is driven by the field weakening control.
  • the field weakening control since the difference between the inverter voltage and the line voltage is small, the high frequency component of the motor current is unlikely to occur. Therefore, in the field weakening control, the ratio of the harmonic iron loss to the iron loss generated in the electric motor 1 is particularly small.
  • the control device 50 starts the field weakening control for the electric motor 1, the control device 50 lowers the carrier frequency more than before the field weakening control is started.
  • the control device 50 starts field weakening control and lowers the carrier frequency.
  • FIG. 13 is a diagram showing the relationship between the ratio of the on time of the inverter switch during the pulse width modulation control of the inverter switch of the inverter 103 and the carrier frequency.
  • the pulse width modulation control for the inverter switch of the inverter 103 is also referred to as “PWM control”.
  • the control device 50 may set the carrier frequency according to the proportion of the ON time of the inverter switch during PWM control. For example, when the ratio of the on time of the inverter switch during PWM control is smaller than the threshold value Nt, the control device 50 sets the carrier frequency to the first frequency and the ratio of the on time of the inverter switch is equal to or greater than the threshold value Nt. At this time, the control device 50 sets the carrier frequency to the second frequency which is lower than the first frequency.
  • the ratio of the on time of the inverter switch reaches the threshold value Nt.
  • the carrier frequency is the frequency f1 as the first frequency.
  • the ON time ratio of the inverter switch of the inverter 103 is equal to or higher than the threshold value Nt, the carrier frequency is the frequency f2 as the second frequency smaller than the frequency f1.
  • the frequency f1 is, for example, 9000 Hz
  • the frequency f2 is, for example, 4500 Hz.
  • the threshold value Nt is 1/ ⁇ 2.
  • the threshold value Nt may be 1/ ⁇ 2 or more.
  • the electric motor 1 when the ratio of the on time of the inverter switch of the inverter 103 is 1/ ⁇ 2 or more, the electric motor 1 is driven by the field weakening control.
  • the line voltage is saturated with respect to the converter voltage while the electric motor 1 is driven by the field weakening control.
  • the field weakening control since the difference between the inverter voltage and the line voltage is small, the high frequency component of the motor current is unlikely to occur. Therefore, in the field weakening control, the ratio of the harmonic iron loss to the iron loss generated in the electric motor 1 is particularly small.
  • the control device 50 lowers the carrier frequency as compared with before the field weakening control. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
  • the converter 102 may have a booster circuit that boosts the voltage applied to the inverter 103, that is, the converter voltage. As the converter voltage becomes insufficient with respect to the line voltage, the field weakening current during field weakening control increases and copper loss increases. Therefore, in the field weakening control, it is desirable to boost the converter voltage until it balances with the line voltage.
  • FIG. 14 is a diagram showing the relationship between the converter voltage and the line voltage. That is, in the field weakening control, as shown in FIG. 14, it is desirable to boost the converter voltage to a voltage at which the field weakening control is started. As a result, the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
  • converter 102 (specifically, the booster circuit) starts boosting the converter voltage
  • control device 50 starts the field weakening control.
  • FIG. 15 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the ratio of the ON time of the inverter switch during PWM control.
  • the booster circuit of the converter 102 may boost the voltage applied to the inverter 103 so that the ON time ratio of the inverter switch is 1/ ⁇ 2.
  • the rotation speed of the electric motor 1 reaches Nd [rpm]
  • the on-time ratio of the inverter switch reaches 1/ ⁇ 2.
  • the converter 102 may boost the converter voltage.
  • the booster circuit of the converter 102 boosts the voltage applied to the inverter 103 so that the ON time ratio of the inverter switch of the inverter 103 becomes 1/ ⁇ 2.
  • the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
  • FIG. 16 is a diagram showing carrier frequencies before and after boosting the converter voltage.
  • the carrier frequency after the voltage applied to the inverter 103 is boosted is lower than the carrier frequency before the voltage applied to the inverter 103 is boosted. That is, after boosting the converter voltage, control device 50 lowers the carrier frequency as compared with before boosting the converter voltage.
  • controller 50 sets the carrier frequency to f1 before the converter voltage is boosted, and controller 50 sets the carrier frequency to f2 after the converter voltage is boosted.
  • switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
  • a silicon carbide (SiC) element for example, is used for at least one switching element of the inverter 103. Thereby, switching loss can be reduced.
  • SiC silicon carbide
  • a gallium nitride (GaN) element may be used for at least one switching element of the inverter 103, for example. Thereby, switching loss can be reduced. In particular, when the electric motor 1 rotates at high speed, the ratio of switching loss to harmonic iron loss tends to increase, so that the efficiency of the electric motor 1 during high speed rotation of the electric motor 1 can be improved.
  • GaN gallium nitride
  • the threshold value of the rotation speed of the electric motor 1 is not limited to one. Therefore, two or more threshold values may be set. In this case, the control device 50 lowers the carrier frequency stepwise. That is, the carrier frequency may be set in two or more patterns.
  • FIG. 17 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the carrier frequency.
  • the frequencies f1 [Hz] to f3 [Hz] satisfy f1>f2>f3 ⁇ fm.
  • the rotation speeds N1 [rpm] and N2 [rpm] satisfy N1 ⁇ N2.
  • the control device 50 switches the carrier frequency stepwise according to the rotation speed of the electric motor 1. Specifically, the control device 50 gradually lowers the carrier frequency according to the rotation speed of the electric motor 1. That is, in the example shown in FIG. 17, when the rotation speed of electric motor 1 reaches N1, control device 50 lowers the carrier frequency from f1 to f2. When the rotation speed of the electric motor 1 reaches from N1 to N2, the control device 50 lowers the carrier frequency from f2 to f3.
  • FIG. 18 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the carrier frequency.
  • controller 50 may decrease the carrier frequency as the rotation speed of electric motor 1 increases.
  • the control device 50 continuously lowers the carrier frequency as the rotation speed of the electric motor 1 increases. Further, when the rotation speed of the electric motor 1 reaches Nd [rpm], the control device 50 starts the field weakening control.
  • the carrier frequency is constant during the field weakening control. That is, during the field weakening control, the control device 50 keeps the carrier frequency constant. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
  • FIG. 19 is a diagram showing the relationship between the on-time ratio of the inverter switch and the carrier frequency during pulse width modulation control of the inverter switch of the inverter 103. As shown in FIG. 19, the controller 50 may decrease the carrier frequency as the ratio of the on time of the inverter switch increases.
  • the control device 50 continuously lowers the carrier frequency as the ratio of the on time of the inverter switch increases. Further, when the ratio of the on time of the inverter switch reaches the threshold value Nt, the control device 50 starts the field weakening control.
  • the carrier frequency is constant during the field weakening control. That is, during the field weakening control, the control device 50 keeps the carrier frequency constant. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
  • control device 50 switches the carrier frequency according to the rotation speed of electric motor 1. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
  • the control device 50 preferably lowers the carrier frequency according to the rotation speed of the electric motor 1. As a result, switching loss is effectively reduced during high-speed rotation of the electric motor 1, and the overall efficiency of the inverter 103 and the electric motor 1 can be effectively improved. As a result, the efficiency of the driving device 101 can be effectively improved.
  • the control device 50 when the control device 50 starts the field weakening control for the electric motor 1, the control device 50 lowers the carrier frequency compared to before the field weakening control is started. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
  • the electric motor 1 is driven by the field weakening control.
  • the control device 50 lowers the carrier frequency compared to before the field weakening control. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
  • ⁇ Field weakening control increases field weakening current and copper loss. Therefore, in the field weakening control, it is desirable to boost the converter voltage until it balances with the line voltage. This alleviates the field weakening current and reduces copper loss.
  • boosting the converter voltage it is desirable to weaken the converter voltage to a voltage at which field control is started. As a result, the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
  • the control device 50 when boosting the converter voltage, the control device 50 lowers the carrier frequency more than before it boosts it.
  • the lowering of the carrier frequency contributes to the reduction of switching loss.
  • the total efficiency of the inverter 103 and the electric motor 1 can be improved.
  • the efficiency of the driving device 101 can be improved.
  • a silicon carbide (SiC) element or a gallium nitride (GaN) element is used for at least one switching element of the inverter 103.
  • switching loss can be reduced.
  • the ratio of harmonic iron loss is small and the ratio of switching loss easily increases, so that the efficiency of the electric motor 1 at high speed rotation of the electric motor 1 can be improved.
  • the efficiency of the driving device 101 can be improved.
  • FIG. 20 is a sectional view schematically showing the structure of the compressor 6 according to the second embodiment.
  • the compressor 6 includes the drive device 101 according to the first embodiment, an electric motor 60 as an electric element driven by the drive device 101, a closed container 61 as a housing, and a compression mechanism 62 as a compression element.
  • the compressor 6 is a rotary compressor.
  • the compressor 6 is not limited to the rotary compressor.
  • the electric motor 1 described in the first embodiment is applied to the electric motor 60.
  • the electric motor 60 drives the compression mechanism 62.
  • the closed container 61 covers the electric motor 60 and the compression mechanism 62.
  • the closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored at the bottom of the closed container 61.
  • the compressor 6 further includes a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
  • the compression mechanism 62 is attached to a cylinder 62a, a piston 62b, an upper frame 62c (also referred to as a first frame), a lower frame 62d (also referred to as a second frame), an upper frame 62c and a lower frame 62d. And a plurality of mufflers 62e.
  • the compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side.
  • the compression mechanism 62 is driven by the electric motor 60.
  • the electric motor 60 is fixed in the closed container 61 by press fitting or shrink fitting. Instead of press fitting and shrink fitting, the electric motor 60 may be directly attached to the closed container 61 by welding.
  • Electric power is supplied to the coil of the electric motor 60 (for example, the coil 3 described in the first embodiment) from the drive device 101 through the glass terminal 63.
  • the rotor 20 of the electric motor 60 (specifically, one side of the shaft 67) is rotatably supported by bearings provided in each of the upper frame 62c and the lower frame 62d.
  • a shaft 67 is inserted through the piston 62b.
  • a shaft 67 is rotatably inserted through the upper frame 62c and the lower frame 62d.
  • the upper frame 62c and the lower frame 62d close the end surface of the cylinder 62a.
  • the accumulator 64 supplies a refrigerant (for example, refrigerant gas) to the cylinder 62a through the suction pipe 65.
  • the refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61.
  • the piston 62b fitted on the shaft 67 rotates in the cylinder 62a.
  • the refrigerant is compressed in the cylinder 62a.
  • the refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
  • refrigerant of the compressor 6 R410A, R407C, R22 or the like can be used.
  • the refrigerant of the compressor 6 is not limited to these types.
  • a refrigerant having a small GWP (global warming potential) for example, the following refrigerant can be used.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene) may be used.
  • R1270 has a GWP of 3, which is lower than that of HFO-1234yf, but higher than that of HFO-1234yf.
  • HFO-1234yf a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32.
  • HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure loss, which may lead to a reduction in the performance of the refrigeration cycle (especially the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a higher pressure refrigerant than HFO-1234yf.
  • the compressor 6 according to the second embodiment has the advantages described in the first embodiment.
  • the compressor 6 according to the second embodiment has the drive device 101, the efficiency of the compressor 6 can be improved.
  • FIG. 21 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the third embodiment.
  • the refrigeration/air-conditioning apparatus 7 includes a compressor 6, a four-way valve 71, a condenser 72, a decompression device 73 (also called an expander), an evaporator 74, a refrigerant pipe 75, and a control unit according to the second embodiment. 76 and.
  • the compressor 6, the condenser 72, the decompression device 73, and the evaporator 74 are connected by a refrigerant pipe 75 to form a refrigeration cycle.
  • the compressor 6 compresses the sucked refrigerant and sends out a high-temperature and high-pressure gas refrigerant.
  • the four-way valve 71 switches the flow direction of the refrigerant. In the example shown in FIG. 21, the four-way valve 71 sends the refrigerant sent from the compressor 6 to the condenser 72.
  • the condenser 72 condenses the refrigerant by exchanging heat between the refrigerant sent from the compressor 6 and air (for example, outdoor air), and sends out the liquefied refrigerant.
  • the decompression device 73 expands the refrigerant (that is, the liquefied refrigerant) sent from the condenser 72, and sends the low-temperature and low-pressure liquefied refrigerant.
  • the evaporator 74 evaporates the refrigerant by exchanging heat between the low-temperature low-pressure liquefied refrigerant sent from the decompression device 73 and air (for example, indoor air), and the evaporated refrigerant (that is, gas). (Refrigerant) is sent out.
  • the air from which heat has been removed by the evaporator 74 is supplied to the target space (for example, the room) by, for example, a blower.
  • the operations of the four-way valve 71 and the compressor 6 are controlled by the controller 76.
  • the constituent elements other than the compressor 6 are not limited to the constituent elements described in the third embodiment.
  • the refrigerating and air-conditioning system 7 according to the third embodiment has the advantages described in the second embodiment.
  • the refrigeration air conditioning system 7 has the compressor 6, the efficiency of the refrigeration air conditioning system 7 can be improved.
  • the drive device 101 described in the first embodiment can be applied to a drive device in a device such as a blower, a ventilation fan, a home electric appliance, or a machine tool, in addition to the compressor 6 and the refrigerating and air conditioning device 7.
  • a device such as a blower, a ventilation fan, a home electric appliance, or a machine tool, in addition to the compressor 6 and the refrigerating and air conditioning device 7.
  • 1,60 electric motors 3,3U, 3V, 3W coils, 6 compressors, 7 refrigeration and air conditioning units, 50 control units, 101 drive units, 102 converters, 103 inverters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A drive apparatus (101) drives an electric motor (1) having a coil (3). The drive apparatus (101) has: an inverter (103) that applies voltage to the coil (3); and a control device (50). The control device (50) controls a carrier frequency, and switches the carrier frequency in accordance with the rotation speed of the electric motor (1).

Description

駆動装置、圧縮機、冷凍空調装置、および電動機の駆動方法Drive device, compressor, refrigerating and air-conditioning device, and method of driving electric motor
 本発明は、電動機を駆動する駆動装置に関する。 The present invention relates to a drive device that drives an electric motor.
 一般的に、電動機に電圧を印加するインバータを制御するため、パルス幅変調制御方式が用いられている。パルス幅変調制御方式では、インバータのキャリア周波数が、インバータにおけるスイッチング損失および電動機における高調波鉄損に影響を与えることが知られている。そのため、インバータから出力される電流波形の状態に応じてキャリア周波数を切り替える電動機の駆動方法が提案されている(例えば、特許文献1参照)。 Generally, a pulse width modulation control method is used to control an inverter that applies a voltage to an electric motor. In the pulse width modulation control method, it is known that the carrier frequency of the inverter affects the switching loss in the inverter and the harmonic iron loss in the electric motor. Therefore, a driving method of an electric motor that switches the carrier frequency according to the state of the current waveform output from the inverter has been proposed (for example, refer to Patent Document 1).
特開2005-176437号公報JP, 2005-176437, A
 しかしながら、従来の技術では、スイッチング損失および高調波鉄損などの、インバータおよび電動機における総合損失が大きいため、インバータおよび電動機の総合効率が悪いという課題がある。 However, the conventional technology has a problem that the total efficiency of the inverter and the electric motor is poor because the total loss of the inverter and the electric motor, such as switching loss and harmonic iron loss, is large.
 本発明の目的は、インバータおよび電動機の総合効率を改善することである。 The purpose of the present invention is to improve the overall efficiency of the inverter and the electric motor.
 本発明の一態様に係る駆動装置は、
 コイルを有する電動機を駆動する駆動装置であって、
 前記コイルに電圧を印加するインバータと、
 前記コイルに印加される前記電圧の制御周波数を調整するための前記インバータのキャリア周波数を制御し、前記電動機の回転数に応じて前記キャリア周波数を切り替える制御装置と
 を備える。
 本発明の他の態様に係る圧縮機は、前記駆動装置を備える。
 本発明の他の態様に係る冷凍空調装置は、前記圧縮機を備える。
 本発明の他の態様に係る電動機の駆動方法は、
 コイルを有する電動機の駆動方法であって、
 前記コイルに印加される電圧の制御周波数を調整するためのインバータのキャリア周波数を設定し、
 前記電動機の回転数に応じて前記キャリア周波数を切り替える。
A drive device according to one aspect of the present invention is
A drive device for driving an electric motor having a coil,
An inverter for applying a voltage to the coil,
A controller for controlling the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil, and switching the carrier frequency according to the rotation speed of the electric motor.
A compressor according to another aspect of the present invention includes the drive device.
A refrigerating and air-conditioning apparatus according to another aspect of the present invention includes the compressor.
A method of driving an electric motor according to another aspect of the present invention is
A method for driving an electric motor having a coil, comprising:
Setting the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil,
The carrier frequency is switched according to the rotation speed of the electric motor.
 本発明によれば、インバータおよび電動機の総合効率を改善することができる。 According to the present invention, the overall efficiency of the inverter and the electric motor can be improved.
電動機の構造を概略的に示す断面図である。It is sectional drawing which shows the structure of an electric motor schematically. 駆動装置の構成を示すブロック図である。It is a block diagram which shows the structure of a drive device. PWM制御信号を生成するためのキャリア波およびインバータ出力電圧指令値の一例を示す図である。It is a figure which shows an example of the carrier wave and inverter output voltage command value for generating a PWM control signal. 制御装置において生成されたPWM制御信号の一例を示す図である。It is a figure which shows an example of the PWM control signal produced|generated in the control apparatus. PWM制御信号に基づいて生成される電動機電流の一例を示す図である。It is a figure which shows an example of the electric motor electric current produced|generated based on a PWM control signal. 実際のインバータ電圧と線間電圧との関係を示す図である。It is a figure which shows the relationship between an actual inverter voltage and line voltage. 低速回転時における電動機電流の波形の例を示す図である。It is a figure which shows the example of the waveform of the electric motor current at the time of low speed rotation. 中速回転時における電動機電流の波形の例を示す図である。It is a figure which shows the example of the waveform of the electric motor electric current at the time of medium speed rotation. 高速回転時における電動機電流の波形の例を示す図である。It is a figure which shows the example of the waveform of the electric motor current at the time of high speed rotation. 電動機の駆動方法の一例を示すフローチャートである。It is a flow chart which shows an example of a drive method of a motor. 電動機の回転数とキャリア周波数との関係の一例を示す図である。It is a figure which shows an example of the relationship between the rotation speed of an electric motor, and carrier frequency. 電動機の回転数と線間電圧との関係を示す図である。It is a figure which shows the relationship between the rotation speed of an electric motor, and the line voltage. インバータのインバータスイッチに対するパルス幅変調制御中におけるインバータスイッチのオン時間の割合とキャリア周波数との関係を示す図である。It is a figure which shows the relationship between the ratio of the ON time of an inverter switch and carrier frequency during pulse width modulation control with respect to the inverter switch of an inverter. コンバータ電圧と線間電圧との関係を示す図である。It is a figure which shows the relationship between a converter voltage and a line voltage. 電動機の回転数とPWM制御中におけるインバータスイッチのオン時間の割合との関係を示す図である。It is a figure which shows the relationship between the rotation speed of an electric motor, and the ratio of the ON time of the inverter switch during PWM control. コンバータ電圧の昇圧前後におけるキャリア周波数を示す図である。It is a figure which shows the carrier frequency before and behind the boost of a converter voltage. 電動機の回転数とキャリア周波数との関係を示す図である。It is a figure which shows the relationship between the rotation speed of an electric motor, and a carrier frequency. 電動機の回転数とキャリア周波数との関係を示す図である。It is a figure which shows the relationship between the rotation speed of an electric motor, and a carrier frequency. インバータのインバータスイッチに対するパルス幅変調制御中におけるインバータスイッチのオン時間の割合とキャリア周波数との関係を示す図である。It is a figure which shows the relationship between the ratio of the ON time of an inverter switch and carrier frequency during pulse width modulation control with respect to the inverter switch of an inverter. 本発明の実施の形態2に係る圧縮機の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the refrigerating air-conditioning apparatus which concerns on Embodiment 3 of this invention.
 本発明の実施の形態について説明する。
実施の形態1.
<電動機1の構造>
 図1は、電動機1の構造を概略的に示す断面図である。図1では、電動機1のロータ20の回転軸に直交する面における電動機1の構造が示されている。
 電動機1は、例えば、永久磁石埋込型電動機である。電動機1は、例えばロータリー圧縮機に用いられる。
An embodiment of the present invention will be described.
Embodiment 1.
<Structure of electric motor 1>
FIG. 1 is a sectional view schematically showing the structure of the electric motor 1. FIG. 1 shows the structure of the electric motor 1 in a plane orthogonal to the rotation axis of the rotor 20 of the electric motor 1.
The electric motor 1 is, for example, a permanent magnet embedded electric motor. The electric motor 1 is used, for example, in a rotary compressor.
 電動機1は、ステータ10と、ステータ10の内側に回転可能に設けられたロータ20とを有する。ステータ10の内周面とロータ20の外周面との間には、エアギャップが存在する。そのエアギャップの幅は、例えば、0.3mmから1mmである。 The electric motor 1 has a stator 10 and a rotor 20 rotatably provided inside the stator 10. An air gap exists between the inner peripheral surface of the stator 10 and the outer peripheral surface of the rotor 20. The width of the air gap is, for example, 0.3 mm to 1 mm.
 ロータ20の軸方向(すなわち、回転軸C1の方向)を、単に「軸方向」と称する。ステータ10またはロータ20の外周に沿った方向を、単に「周方向」と称する。ステータ10またはロータ20の半径方向を、単に「径方向」と称する。 The axial direction of the rotor 20 (that is, the direction of the rotation axis C1) is simply referred to as the “axial direction”. The direction along the outer circumference of the stator 10 or the rotor 20 is simply referred to as “circumferential direction”. The radial direction of the stator 10 or the rotor 20 is simply referred to as “radial direction”.
 ステータ10は、ステータコア11と、少なくとも1つのコイル(図1では、3つのコイル3U,3つのコイル3V,および3つのコイル3W)と、少なくとも1つの絶縁体14とを有する。 The stator 10 includes a stator core 11, at least one coil (three coils 3U, three coils 3V, and three coils 3W in FIG. 1) and at least one insulator 14.
 ステータコア11は、例えば、複数の電磁鋼板で作られている。この場合、複数の電磁鋼板は、軸方向に積層されている。複数の電磁鋼板は、カシメで固定されている。各電磁鋼板の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、各電磁鋼板の厚さは、0.35mmである。各電磁鋼板は、打ち抜き処理などのプレス加工で予め定められた形状に形成されている。 The stator core 11 is made of, for example, a plurality of electromagnetic steel plates. In this case, the plurality of magnetic steel sheets are laminated in the axial direction. The plurality of magnetic steel sheets are fixed by caulking. The thickness of each electromagnetic steel sheet is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate is 0.35 mm. Each electromagnetic steel sheet is formed into a predetermined shape by press working such as punching.
 ステータコア11は、環状のヨーク部13と、複数のティース部12とを有している。ヨーク部13は、周方向に延在する。各ティース部12は、径方向に延在する。言い換えると、各ティース部12は、ヨーク部13からロータ20の回転軸C1に向けて突出している。複数のティース部12は、周方向に等間隔で配置されており、放射状に延在する。 The stator core 11 has an annular yoke portion 13 and a plurality of teeth portions 12. The yoke portion 13 extends in the circumferential direction. Each tooth part 12 extends in the radial direction. In other words, each tooth portion 12 projects from the yoke portion 13 toward the rotation axis C1 of the rotor 20. The plurality of tooth portions 12 are arranged at equal intervals in the circumferential direction and extend radially.
 図1に示される例では、ステータコア11は、9個のティース部12を有する。隣り合う2つのティース部12の間には、スロットが存在する。各ティース部12は、径方向に延在する本体部と、周方向に延在する歯先部とを有する。各歯先部は、各ティース部12の先端部に位置する。 In the example shown in FIG. 1, the stator core 11 has nine teeth portions 12. A slot exists between two adjacent tooth portions 12. Each tooth portion 12 has a main body portion that extends in the radial direction and a tooth tip portion that extends in the circumferential direction. Each tooth tip is located at the tip of each tooth 12.
 コイル3U,3V,および3Wの各々は、ステータコア11に固定された絶縁体14の周りに巻き付けられている。コイル3U,3V,および3Wは、少なくとも1つのステータ巻線で作られている。すなわち、ステータコア11に、少なくとも1つのステータ巻線が巻き付けられている。少なくとも1つのステータ巻線は、例えば、マグネットワイヤである。本実施の形態では、コイル3U,3V,および3Wの各々が、集中巻で絶縁体14の周りに110ターン巻き付けられている。 Each of the coils 3U, 3V, and 3W is wound around the insulator 14 fixed to the stator core 11. Coils 3U, 3V and 3W are made of at least one stator winding. That is, at least one stator winding is wound around the stator core 11. The at least one stator winding is, for example, a magnet wire. In the present embodiment, each of coils 3U, 3V, and 3W is wound 110 turns around insulator 14 by concentrated winding.
 コイル3U,3V,および3Wの各々の巻き数および線径は、電動機1に要求される特性(例えば、回転数、トルク)、供給電圧、またはスロットの断面積に応じて決定される。 The number of turns and the wire diameter of each of the coils 3U, 3V, and 3W are determined according to the characteristics (for example, rotation speed, torque) required for the electric motor 1, the supply voltage, or the cross-sectional area of the slot.
 ステータコア11は、例えば、複数のブロック(分割コアとも称する)で形成されていてもよい。この場合、これらの複数のブロックを直線的に配列した状態で、各ティース部12にマグネットワイヤを巻き付けることができる。ティース部12にマグネットワイヤを巻き付けた後、複数のブロックを環状に折り畳み、複数のブロックの両端を溶接する。 The stator core 11 may be formed of, for example, a plurality of blocks (also referred to as split cores). In this case, the magnet wire can be wound around each tooth portion 12 in a state where these plural blocks are linearly arranged. After winding the magnet wire around the tooth portion 12, the plurality of blocks are folded in an annular shape, and both ends of the plurality of blocks are welded.
 コイルは、U相、V相およびW相の3相コイル(すなわち、コイル3U,3V,および3W)で構成されている。コイル3Uは、U相のコイル部分Ua,Ub,およびUcを有する。コイル3Vは、V相のコイル部分Va,Vb,およびVcを有する。コイル3Wは、W相のコイル部分Wa,Wb,およびWcを有する。各相のコイルの両端子は開放されている。すなわち、コイルは、合計6つの端子を有している。絶縁体14は、例えば、ポリエチレンテレフタレート(PET)で作られたフィルムで構成されている。 The coil is composed of U-phase, V-phase, and W-phase three-phase coils (that is, coils 3U, 3V, and 3W). The coil 3U has U-phase coil portions Ua, Ub, and Uc. The coil 3V has V-phase coil portions Va, Vb, and Vc. Coil 3W has W-phase coil portions Wa, Wb, and Wc. Both terminals of the coil of each phase are open. That is, the coil has a total of six terminals. The insulator 14 is made of, for example, a film made of polyethylene terephthalate (PET).
 薄いフィルムで作られた絶縁体14は、スロット内のコイルの巻き数の増加に有効である。さらに、複数のブロックで作られたステータコア11は、スロット内のコイルの巻き数の増加に有効である。ただし、ステータコア11は、複数のブロックで作られた構造には限定されない。 The insulator 14 made of a thin film is effective in increasing the number of turns of the coil in the slot. Furthermore, the stator core 11 made of a plurality of blocks is effective in increasing the number of turns of the coil in the slot. However, the stator core 11 is not limited to the structure made of a plurality of blocks.
 ロータ20は、ロータコア21と、ロータコア21に取り付けられた複数の永久磁石25とを有する。 The rotor 20 has a rotor core 21 and a plurality of permanent magnets 25 attached to the rotor core 21.
 ロータコア21は、例えば、複数の電磁鋼板で作られている。この場合、複数の電磁鋼板は、軸方向に積層されている。複数の電磁鋼板は、カシメで固定されている。各電磁鋼板の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、各電磁鋼板の厚さは、0.35mmである。各電磁鋼板は、打ち抜き処理などのプレス加工で予め定められた形状に形成されている。 The rotor core 21 is made of, for example, a plurality of electromagnetic steel plates. In this case, the plurality of magnetic steel sheets are laminated in the axial direction. The plurality of magnetic steel sheets are fixed by caulking. The thickness of each electromagnetic steel sheet is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each electromagnetic steel plate is 0.35 mm. Each electromagnetic steel sheet is formed into a predetermined shape by press working such as punching.
 ロータコア21は、複数の磁石挿入孔22と、シャフト孔27とを有する。シャフト孔27には、シャフトが挿入される。シャフトは、焼き嵌め、圧入などの方法で、ロータコア21に固定される。 The rotor core 21 has a plurality of magnet insertion holes 22 and a shaft hole 27. A shaft is inserted into the shaft hole 27. The shaft is fixed to the rotor core 21 by a method such as shrink fitting and press fitting.
 本実施の形態では、ロータコア21は、6個の磁石挿入孔22を有する。軸方向に直交する面において、複数の磁石挿入孔22は、周方向に配列されている。各磁石挿入孔22は、ロータ20の各磁極に対応する。ロータ20の磁極数は、2以上である。本実施の形態では、ロータ20の磁極数は、6極である。各磁石挿入孔には、1以上の永久磁石25が配置されている。 In this embodiment, the rotor core 21 has six magnet insertion holes 22. On the surface orthogonal to the axial direction, the plurality of magnet insertion holes 22 are arranged in the circumferential direction. Each magnet insertion hole 22 corresponds to each magnetic pole of the rotor 20. The number of magnetic poles of the rotor 20 is 2 or more. In the present embodiment, the rotor 20 has six magnetic poles. One or more permanent magnets 25 are arranged in each magnet insertion hole.
 軸方向に直交する面において、磁石挿入孔22の中央部は、回転軸C1に向けて突出している。すなわち、軸方向に直交する面において、各磁石挿入孔22はV字形状を有している。各磁石挿入孔22の形状は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。 On the plane orthogonal to the axial direction, the central portion of the magnet insertion hole 22 projects toward the rotation axis C1. That is, each magnet insertion hole 22 has a V shape in the plane orthogonal to the axial direction. The shape of each magnet insertion hole 22 is not limited to the V shape, and may be, for example, a straight shape.
 本実施の形態では、1つの磁石挿入孔22内には、2つの永久磁石25が配置される。すなわち、1磁極について2つの永久磁石25が配置される。したがって、本実施の形態では、ロータ20は、12個の永久磁石25を有する。 In the present embodiment, two permanent magnets 25 are arranged in one magnet insertion hole 22. That is, two permanent magnets 25 are arranged for one magnetic pole. Therefore, in this embodiment, the rotor 20 has twelve permanent magnets 25.
 各永久磁石25は、軸方向に長い平板状の磁石である。各永久磁石25は、例えば、ネオジウム(Nd)、鉄(Fe)、およびボロン(B)を含む希土類磁石である。1つの磁石挿入孔22内に配置された、2つの永久磁石25は、ロータ20の1つの磁極の役目をする。 Each permanent magnet 25 is a flat magnet that is long in the axial direction. Each permanent magnet 25 is, for example, a rare earth magnet containing neodymium (Nd), iron (Fe), and boron (B). Two permanent magnets 25 arranged in one magnet insertion hole 22 serve as one magnetic pole of the rotor 20.
 ロータコア21は、複数のフラックスバリア26をさらに有する。各磁石挿入孔22の周方向両側に、フラックスバリア26が位置する。各フラックスバリア26は、磁石挿入孔22に連通している空隙である。各フラックスバリア26は、隣り合う磁極間の漏れ磁束(すなわち、極間を通る磁束)を低減する。軸方向に直交する面において、各フラックスバリア26とロータコア21の外周面との間の薄肉部の幅は、例えば、ロータコア21の電磁鋼板の厚さと同じである。 The rotor core 21 further has a plurality of flux barriers 26. Flux barriers 26 are located on both sides of each magnet insertion hole 22 in the circumferential direction. Each flux barrier 26 is a void communicating with the magnet insertion hole 22. Each flux barrier 26 reduces the leakage magnetic flux between adjacent magnetic poles (that is, the magnetic flux passing between the magnetic poles). The width of the thin portion between each flux barrier 26 and the outer peripheral surface of the rotor core 21 on the surface orthogonal to the axial direction is, for example, the same as the thickness of the electromagnetic steel sheet of the rotor core 21.
 ロータコア21において、各磁石挿入孔22の周方向の中央部には、突起である第1の磁石保持部23が形成されている。さらに、ロータコア21において、各磁石挿入孔22の周方向の両端部には、突起である第2の磁石保持部24が形成されている。第1の磁石保持部23および第2の磁石保持部24は、各磁石挿入孔22内において永久磁石25を保持する。 In the rotor core 21, each magnet insertion hole 22 has a first magnet holding portion 23, which is a protrusion, formed in the central portion in the circumferential direction. Further, in the rotor core 21, second magnet holding portions 24, which are protrusions, are formed at both ends in the circumferential direction of each magnet insertion hole 22. The first magnet holding portion 23 and the second magnet holding portion 24 hold the permanent magnet 25 in each magnet insertion hole 22.
<駆動装置101の構成>
 次に、コイル3を有する電動機1を駆動する駆動装置101について説明する。
 図2は、駆動装置101の構成を示すブロック図である。
 駆動装置101は、電源の出力を整流するコンバータ102と、電動機1のコイル3に電圧(具体的には、交流電圧)を印加するインバータ103と、制御装置50とを有する。コイル3U,3V,および3Wの全体を、コイル3と称する。
<Structure of drive device 101>
Next, the drive device 101 for driving the electric motor 1 having the coil 3 will be described.
FIG. 2 is a block diagram showing the configuration of the driving device 101.
The drive device 101 includes a converter 102 that rectifies an output of a power supply, an inverter 103 that applies a voltage (specifically, an AC voltage) to the coil 3 of the electric motor 1, and a control device 50. The coils 3U, 3V, and 3W are collectively referred to as a coil 3.
 コンバータ102には、交流(AC)電源である電源から電力が供給される。コンバータ102は、インバータ103に電圧を印加する。コンバータ102からインバータ103に印加される電圧を「コンバータ電圧」とも称する。コンバータ102の母線電圧は制御装置50に供給される。 Electric power is supplied to the converter 102 from a power supply which is an alternating current (AC) power supply. The converter 102 applies a voltage to the inverter 103. The voltage applied from the converter 102 to the inverter 103 is also referred to as “converter voltage”. The bus voltage of converter 102 is supplied to control device 50.
 電動機1を駆動するインバータ電圧、すなわち、電動機1のコイル3に印加される電圧は、PWM制御方式で生成される。上述のように、電動機1のコイル3は、例えば、3相コイルである。この場合、インバータ103は、各相に対応する少なくとも1つのインバータスイッチを有し、各インバータスイッチは、1組のスイッチング素子(本実施の形態では、2個のスイッチング素子)を有する。 The inverter voltage that drives the electric motor 1, that is, the voltage applied to the coil 3 of the electric motor 1 is generated by the PWM control method. As described above, the coil 3 of the electric motor 1 is, for example, a three-phase coil. In this case, the inverter 103 has at least one inverter switch corresponding to each phase, and each inverter switch has one set of switching elements (two switching elements in the present embodiment).
 PWM制御方式では、各相に対応するインバータスイッチのオンオフの時間割合を制御することでインバータ電圧の波形を生成する。これにより、インバータ103からの所望の出力波形を得ることができる。具体的には、インバータ103においてインバータスイッチがオンのとき、インバータ103からコイル3へ電圧が供給され、インバータ電圧が増大する。インバータスイッチがオフのとき、インバータ103からコイル3への電圧供給は遮断され、インバータ電圧が降下する。インバータ電圧と誘起電圧との差分がコイル3に供給され、電動機電流が発生し、電動機1の回転力が生じる。目標とする電動機電流値に一致するようインバータスイッチのオンオフの時間割合を制御することで、インバータ103からの所望の出力波形を得ることができる。 In the PWM control method, the waveform of the inverter voltage is generated by controlling the on/off time ratio of the inverter switch corresponding to each phase. Thereby, a desired output waveform from the inverter 103 can be obtained. Specifically, when the inverter switch in the inverter 103 is turned on, a voltage is supplied from the inverter 103 to the coil 3 and the inverter voltage increases. When the inverter switch is off, the voltage supply from the inverter 103 to the coil 3 is cut off and the inverter voltage drops. The difference between the inverter voltage and the induced voltage is supplied to the coil 3, the electric motor current is generated, and the rotational force of the electric motor 1 is generated. A desired output waveform from the inverter 103 can be obtained by controlling the on/off time ratio of the inverter switch so as to match the target electric motor current value.
 図3は、PWM制御信号を生成するためのキャリア波およびインバータ出力電圧指令値の一例を示す図である。
 図4は、制御装置50において生成されたPWM制御信号の一例を示す図である。
 図5は、PWM制御信号に基づいて生成される電動機電流の一例を示す図である。
FIG. 3 is a diagram showing an example of a carrier wave and an inverter output voltage command value for generating a PWM control signal.
FIG. 4 is a diagram showing an example of the PWM control signal generated in the control device 50.
FIG. 5 is a diagram showing an example of the electric motor current generated based on the PWM control signal.
 各インバータスイッチのオンオフのタイミングは、キャリア波に基づいて決定される。キャリア波は、一定の振幅を持つ三角波で構成される。PWM制御方式におけるパルス幅変調周期は、キャリア波の周波数であるキャリア周波数によって決まる。本実施の形態では、予め定められたキャリア波のパターンまたは予め定められたキャリア周波数が制御装置50に格納されている。制御装置50は、キャリア周波数を制御し、各インバータスイッチのオンオフを制御する。これにより、制御装置50は、コイル3に供給されるインバータ103からの出力を制御する。 -The on/off timing of each inverter switch is determined based on the carrier wave. The carrier wave is composed of a triangular wave having a constant amplitude. The pulse width modulation period in the PWM control method is determined by the carrier frequency which is the frequency of the carrier wave. In the present embodiment, a predetermined carrier wave pattern or a predetermined carrier frequency is stored in control device 50. The control device 50 controls the carrier frequency and controls on/off of each inverter switch. As a result, the control device 50 controls the output from the inverter 103 supplied to the coil 3.
 キャリア波の周波数であるキャリア周波数を「インバータ103のキャリア周波数」とも称する。すなわち、インバータ103のキャリア周波数は、コイル3に印加される電圧の制御周波数であり、制御装置50は、インバータ103のキャリア周波数を制御する。 The carrier frequency, which is the frequency of the carrier wave, is also referred to as the “carrier frequency of the inverter 103”. That is, the carrier frequency of the inverter 103 is the control frequency of the voltage applied to the coil 3, and the control device 50 controls the carrier frequency of the inverter 103.
 本実施の形態では、インバータ103は、3個のインバータスイッチ(すなわち、6個のスイッチング素子)を有するが、3個のインバータスイッチの内の1個のインバータスイッチ、すなわち、U相、V相、またはW相に対応する1個のインバータスイッチに対する制御について説明する。ただし、その1個のインバータスイッチに対する制御は、他の2個のインバータスイッチに対する制御にも適用可能である。 In the present embodiment, the inverter 103 has three inverter switches (that is, six switching elements), but one of the three inverter switches, that is, the U phase, the V phase, Alternatively, control for one inverter switch corresponding to the W phase will be described. However, the control for the one inverter switch can be applied to the control for the other two inverter switches.
 制御装置50は、キャリア波の電圧値と、インバータ出力電圧指令値とを比較する。インバータ出力電圧指令値は、例えば、制御装置50において、目標電動機電流値に基づいて計算される。インバータ出力電圧指令値は、例えば、空気調和機などの冷凍空調装置のリモコンから制御装置50に入力された信号に基づいて設定される。この場合、インバータ出力電圧指令値は、例えば、冷凍空調装置のユーザによって設定された冷凍空調装置からの風量に対応する。 The control device 50 compares the voltage value of the carrier wave with the inverter output voltage command value. The inverter output voltage command value is calculated, for example, in the control device 50 based on the target electric motor current value. The inverter output voltage command value is set, for example, based on a signal input to the control device 50 from a remote controller of a refrigerating and air conditioning device such as an air conditioner. In this case, the inverter output voltage command value corresponds to, for example, the air volume from the refrigeration air conditioning device set by the user of the refrigeration air conditioning device.
 キャリア波の電圧値がインバータ出力電圧指令値よりも小さいとき、制御装置50は、インバータスイッチがオンになるようにPWM制御信号をオンにする。キャリア波の電圧値がインバータ出力電圧指令値以上であるとき、制御装置50は、インバータスイッチがオフになるようにPWM制御信号をオフにする。これにより、インバータ電圧が目標値に近づく。 When the voltage value of the carrier wave is smaller than the inverter output voltage command value, the control device 50 turns on the PWM control signal so that the inverter switch turns on. When the voltage value of the carrier wave is equal to or higher than the inverter output voltage command value, control device 50 turns off the PWM control signal so that the inverter switch turns off. As a result, the inverter voltage approaches the target value.
 上述のように、制御装置50は、インバータ出力電圧指令値とキャリア波の電圧値との差に基づいてPWM制御信号を生成する。 As described above, the control device 50 generates the PWM control signal based on the difference between the inverter output voltage command value and the carrier wave voltage value.
 制御装置50は、PWM制御信号に基づくインバータ駆動信号などの制御信号をインバータ103に出力し、インバータスイッチのオンオフ制御を行う。インバータ駆動信号は、PWM制御信号と同じ信号でもよく、PWM制御信号と異なる信号でもよい。 The control device 50 outputs a control signal such as an inverter drive signal based on the PWM control signal to the inverter 103 to control ON/OFF of the inverter switch. The inverter drive signal may be the same signal as the PWM control signal or a signal different from the PWM control signal.
 インバータスイッチがオンのときにインバータ電圧がインバータ103から出力される。インバータ電圧はコイル3に供給され、電動機1において電動機電流(具体的には、U相電流、V相電流、およびW相電流)が発生する。これにより、インバータ電圧は電動機1(具体的には、ロータ20)の回転力に変換される。電動機電流は、電流センサなどの計測器で計測され、制御装置50に計測結果(例えば、電流値を示す信号)が送信される。 The inverter voltage is output from the inverter 103 when the inverter switch is on. The inverter voltage is supplied to the coil 3, and a motor current (specifically, U-phase current, V-phase current, and W-phase current) is generated in the motor 1. As a result, the inverter voltage is converted into the rotational force of the electric motor 1 (specifically, the rotor 20). The electric motor current is measured by a measuring device such as a current sensor, and the measurement result (for example, a signal indicating a current value) is transmitted to the control device 50.
 制御装置50は、例えば、プロセッサおよびメモリで構成される。例えば、制御装置50は、マイクロコンピュータである。制御装置50は、単一回路または複合回路などの専用のハードウェアとしての処理回路で構成されてもよい。 The control device 50 is composed of, for example, a processor and a memory. For example, the control device 50 is a microcomputer. The control device 50 may be configured with a processing circuit as dedicated hardware such as a single circuit or a composite circuit.
 図6は、実際のインバータ電圧と線間電圧との関係を示す図である。
 図7は、低速回転時における電動機電流の波形の例を示す図である。
 図8は、中速回転時における電動機電流の波形の例を示す図である。
 図9は、高速回転時における電動機電流の波形の例を示す図である。
FIG. 6 is a diagram showing the relationship between the actual inverter voltage and the line voltage.
FIG. 7 is a diagram showing an example of the waveform of the electric motor current during low speed rotation.
FIG. 8 is a diagram showing an example of the waveform of the electric motor current during rotation at a medium speed.
FIG. 9 is a diagram showing an example of the waveform of the electric motor current during high speed rotation.
 一般に、永久磁石埋込型電動機などの電動機では、永久磁石とコイル(例えば、3相コイル)との間の電磁誘導によって、コイルに誘起電圧が発生する。電動機の回転数(すなわち、電動機の回転速度)が高いほど誘起電圧が増大し、線間電圧も増大する。インバータ電圧と線間電圧との差分が電動機の回転力に変換される。瞬間的なインバータ出力電圧(すなわち、実際のインバータ電圧)は、インバータスイッチのオンオフで制御されているため、ゼロまたは母線電圧に等しい。電動機の回転数が低いほど、すなわち線間電圧が小さいほど、インバータスイッチがオンである時の実際のインバータ電圧と線間電圧との乖離が大きくなり、図7に示されるように、電動機電流の高調波成分が発生する。これにより、高調波鉄損が発生する。したがって、電動機が低速回転であるとき、電動機における全損失に占める高調波鉄損の割合が大きく、電動機が高速回転であるとき、高調波鉄損の割合が小さい。 Generally, in an electric motor such as a permanent magnet embedded type electric motor, an induced voltage is generated in the coil by electromagnetic induction between the permanent magnet and the coil (for example, three-phase coil). The higher the rotational speed of the electric motor (that is, the rotational speed of the electric motor), the larger the induced voltage and the line voltage. The difference between the inverter voltage and the line voltage is converted into the rotational force of the electric motor. The instantaneous inverter output voltage (ie, the actual inverter voltage) is equal to zero or the bus voltage because it is controlled by turning on and off the inverter switch. The lower the rotational speed of the electric motor, that is, the smaller the line voltage, the larger the deviation between the actual inverter voltage and the line voltage when the inverter switch is on, and as shown in FIG. Harmonic components are generated. This causes harmonic iron loss. Therefore, when the electric motor is rotating at low speed, the proportion of the harmonic iron loss in the total loss in the electric motor is large, and when the electric motor is rotating at high speed, the proportion of the harmonic iron loss is small.
 キャリア周波数が高いほどPWM制御信号の周期は短いため、電動機電流は所望の値から乖離せず、波形の形状が望ましい形状に近づく。この場合、すなわち、電動機電流の高周波成分が抑制される。その結果、電動機電流の高周波成分に起因する高調波鉄損が低減する。一方、インバータのスイッチング回数が多くなるにつれて、インバータのスイッチング損失が増大する。高調波鉄損とスイッチング損失とのバランスから効率最適となるキャリア周波数が決まり、高調波鉄損の割合が小さいほど効率最適となるキャリア周波数は小さくなる。 The higher the carrier frequency, the shorter the cycle of the PWM control signal, so the motor current does not deviate from the desired value, and the waveform shape approaches the desired shape. In this case, that is, the high frequency component of the electric motor current is suppressed. As a result, the harmonic iron loss due to the high frequency component of the electric motor current is reduced. On the other hand, as the number of switching times of the inverter increases, the switching loss of the inverter increases. The carrier frequency that optimizes the efficiency is determined from the balance between the harmonic iron loss and the switching loss, and the smaller the proportion of the harmonic iron loss, the smaller the carrier frequency that optimizes the efficiency.
 本実施の形態では、制御装置50は、電動機1の回転数に応じてキャリア周波数を切り替える。電動機1の回転数とは、電動機1の回転速度を意味する。すなわち、制御装置50は、電動機1の回転速度に応じてキャリア周波数を切り替える。 In the present embodiment, the control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1. The rotation speed of the electric motor 1 means the rotation speed of the electric motor 1. That is, the control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1.
 図10は、電動機1の駆動方法の一例を示すフローチャートである。
 図11は、電動機1の回転数とキャリア周波数との関係の一例を示す図である。
FIG. 10 is a flowchart showing an example of the driving method of the electric motor 1.
FIG. 11 is a diagram showing an example of the relationship between the rotation speed of the electric motor 1 and the carrier frequency.
 最初に、制御装置50は、キャリア周波数を第1の周波数としての周波数f1に設定する(ステップST1)。 First, the control device 50 sets the carrier frequency to the frequency f1 as the first frequency (step ST1).
 制御装置50は、電動機1の回転数に応じてキャリア周波数を切り替える。具体的には、制御装置50は、電動機1の回転数が閾値Ndに到達したか判定する(ステップST2)。電動機1の回転数が閾値Nd以上であるとき(ステップST2においてYes)、制御装置50は、キャリア周波数を周波数f1よりも小さい第2の周波数としての周波数f2に設定する(ステップST3)。電動機1の回転数が閾値Ndに到達していないとき(ステップST2においてNo)、制御装置50は、キャリア周波数を切り替えない。 The control device 50 switches the carrier frequency according to the rotation speed of the electric motor 1. Specifically, control device 50 determines whether the rotation speed of electric motor 1 has reached threshold value Nd (step ST2). When the rotation speed of the electric motor 1 is equal to or higher than the threshold value Nd (Yes in step ST2), the control device 50 sets the carrier frequency to the frequency f2 as the second frequency smaller than the frequency f1 (step ST3). When the rotation speed of the electric motor 1 has not reached the threshold value Nd (No in step ST2), the control device 50 does not switch the carrier frequency.
 すなわち、電動機1の回転数が閾値Ndよりも小さいとき、キャリア周波数は第1の周波数としての周波数f1であり、電動機1の回転数が閾値Nd以上であるとき、キャリア周波数は第1の周波数よりも小さい第2の周波数としての周波数f2である。この場合、例えばf1=9000Hzであり、例えばf2=4500Hzである。すなわち、電動機1の回転数が閾値Ndよりも小さいとき、制御装置50は、キャリア周波数をf1に設定し、電動機1の回転数が閾値Nd以上であるとき、制御装置50は、キャリア周波数をf2に設定する。 That is, when the rotation speed of the electric motor 1 is lower than the threshold value Nd, the carrier frequency is the frequency f1 as the first frequency, and when the rotation speed of the electric motor 1 is equal to or higher than the threshold value Nd, the carrier frequency is higher than the first frequency. Is the frequency f2 as the second frequency which is also smaller. In this case, for example, f1=9000 Hz and, for example, f2=4500 Hz. That is, when the rotation speed of the electric motor 1 is lower than the threshold value Nd, the control device 50 sets the carrier frequency to f1, and when the rotation speed of the electric motor 1 is equal to or higher than the threshold value Nd, the control device 50 sets the carrier frequency to f2. Set to.
 ただし、周波数f2は、最小キャリア周波数fm以上である。最小キャリア周波数fmは、電動機1を制御するために必要な電動機電流の波形を生成可能な最小値である。 However, the frequency f2 is equal to or higher than the minimum carrier frequency fm. The minimum carrier frequency fm is the minimum value that can generate the waveform of the electric motor current required to control the electric motor 1.
 図12は、電動機1の回転数と線間電圧との関係を示す図である。
 図12に示されるように、線間電圧は、電動機1の回転数の上昇に従って高くなり、インバータ103の最大出力で飽和する。そのため、電動機1の回転数をさらに高めるために、弱め界磁制御が開始される。通常、弱め界磁制御では、コイルの抵抗に起因する銅損が増加する。その結果、弱め界磁制御では、電動機の効率が低下する傾向がある。
FIG. 12 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the line voltage.
As shown in FIG. 12, the line voltage increases as the rotation speed of the electric motor 1 increases and saturates at the maximum output of the inverter 103. Therefore, field weakening control is started in order to further increase the rotation speed of the electric motor 1. Usually, in field weakening control, copper loss due to coil resistance increases. As a result, the field weakening control tends to reduce the efficiency of the electric motor.
 図12に示されるように、電動機1が弱め界磁制御で駆動されている間、線間電圧は、コンバータ電圧に対して飽和している。弱め界磁制御では、インバータ電圧と線間電圧との差分が小さいため、電動機電流の高周波成分が発生しにくい。そのため、弱め界磁制御では、電動機1に生じる鉄損に対する高調波鉄損の割合が特に小さい。 As shown in FIG. 12, the line voltage is saturated with respect to the converter voltage while the electric motor 1 is driven by the field weakening control. In the field weakening control, since the difference between the inverter voltage and the line voltage is small, the high frequency component of the motor current is unlikely to occur. Therefore, in the field weakening control, the ratio of the harmonic iron loss to the iron loss generated in the electric motor 1 is particularly small.
 したがって、制御装置50が電動機1に対する弱め界磁制御を開始したとき、制御装置50は、弱め界磁制御を開始する前よりもキャリア周波数を下げる。図12に示される例では、電動機1の回転数が閾値Ndに到達したとき、制御装置50は、弱め界磁制御を開始し、キャリア周波数を下げる。これにより、弱め界磁制御において、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。 Therefore, when the control device 50 starts the field weakening control for the electric motor 1, the control device 50 lowers the carrier frequency more than before the field weakening control is started. In the example shown in FIG. 12, when the rotation speed of the electric motor 1 reaches the threshold value Nd, the control device 50 starts field weakening control and lowers the carrier frequency. Thereby, in the field weakening control, the switching loss is reduced, and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
 図13は、インバータ103のインバータスイッチに対するパルス幅変調制御中におけるインバータスイッチのオン時間の割合とキャリア周波数との関係を示す図である。インバータ103のインバータスイッチに対するパルス幅変調制御を「PWM制御」とも称する。 FIG. 13 is a diagram showing the relationship between the ratio of the on time of the inverter switch during the pulse width modulation control of the inverter switch of the inverter 103 and the carrier frequency. The pulse width modulation control for the inverter switch of the inverter 103 is also referred to as “PWM control”.
 電動機1の回転が高速になるほどPWM制御中におけるインバータスイッチのオン時間の割合が増えるので、制御装置50は、PWM制御中におけるインバータスイッチのオン時間の割合に従ってキャリア周波数を設定してもよい。例えば、PWM制御中におけるインバータスイッチのオン時間の割合が閾値Ntよりも小さいとき、制御装置50は、キャリア周波数を第1の周波数に設定し、インバータスイッチのオン時間の割合が閾値Nt以上であるとき、制御装置50は、キャリア周波数を第1の周波数よりも小さい第2の周波数に設定する。 The higher the rotation speed of the electric motor 1, the greater the proportion of the ON time of the inverter switch during PWM control. Therefore, the control device 50 may set the carrier frequency according to the proportion of the ON time of the inverter switch during PWM control. For example, when the ratio of the on time of the inverter switch during PWM control is smaller than the threshold value Nt, the control device 50 sets the carrier frequency to the first frequency and the ratio of the on time of the inverter switch is equal to or greater than the threshold value Nt. At this time, the control device 50 sets the carrier frequency to the second frequency which is lower than the first frequency.
 図13に示される例では、電動機1の回転数が閾値Ndに到達したとき、インバータスイッチのオン時間の割合が閾値Ntに到達する。この場合、PWM制御中におけるインバータスイッチのオン時間の割合が閾値Ntよりも小さいとき、キャリア周波数は第1の周波数としての周波数f1である。一方、インバータ103のインバータスイッチのオン時間の割合が閾値Nt以上であるとき、キャリア周波数は周波数f1よりも小さい第2の周波数としての周波数f2である。この場合、周波数f1は、例えば、9000Hzであり、周波数f2は、例えば、4500Hzである。 In the example shown in FIG. 13, when the rotation speed of the electric motor 1 reaches the threshold value Nd, the ratio of the on time of the inverter switch reaches the threshold value Nt. In this case, when the ratio of the on time of the inverter switch during PWM control is smaller than the threshold value Nt, the carrier frequency is the frequency f1 as the first frequency. On the other hand, when the ON time ratio of the inverter switch of the inverter 103 is equal to or higher than the threshold value Nt, the carrier frequency is the frequency f2 as the second frequency smaller than the frequency f1. In this case, the frequency f1 is, for example, 9000 Hz, and the frequency f2 is, for example, 4500 Hz.
 図13に示される例では、閾値Ntは、1/√2である。ただし、閾値Ntは、1/√2以上でもよい。 In the example shown in FIG. 13, the threshold value Nt is 1/√2. However, the threshold value Nt may be 1/√2 or more.
 本実施の形態では、インバータ103のインバータスイッチのオン時間の割合が1/√2以上のとき、電動機1は、弱め界磁制御で駆動される。上述のように、電動機1が弱め界磁制御で駆動されている間、線間電圧は、コンバータ電圧に対して飽和している。弱め界磁制御では、インバータ電圧と線間電圧との差分が小さいため、電動機電流の高周波成分が発生しにくい。そのため、弱め界磁制御では、電動機1に生じる鉄損に対する高調波鉄損の割合が特に小さい。したがって、インバータ103のインバータスイッチのオン時間の割合が1/√2に到達したとき、制御装置50は、弱め界磁制御前に比べてキャリア周波数を下げる。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。 In the present embodiment, when the ratio of the on time of the inverter switch of the inverter 103 is 1/√2 or more, the electric motor 1 is driven by the field weakening control. As described above, the line voltage is saturated with respect to the converter voltage while the electric motor 1 is driven by the field weakening control. In the field weakening control, since the difference between the inverter voltage and the line voltage is small, the high frequency component of the motor current is unlikely to occur. Therefore, in the field weakening control, the ratio of the harmonic iron loss to the iron loss generated in the electric motor 1 is particularly small. Therefore, when the ratio of the on time of the inverter switch of the inverter 103 reaches 1/√2, the control device 50 lowers the carrier frequency as compared with before the field weakening control. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
 コンバータ102は、インバータ103に印加される電圧、すなわち、コンバータ電圧を昇圧する昇圧回路を有してもよい。線間電圧に対してコンバータ電圧が不足しているほど、弱め界磁制御中の弱め界磁電流が増大し、銅損が増大する。そのため、弱め界磁制御では、コンバータ電圧を線間電圧と釣り合うまで昇圧することが望ましい。 The converter 102 may have a booster circuit that boosts the voltage applied to the inverter 103, that is, the converter voltage. As the converter voltage becomes insufficient with respect to the line voltage, the field weakening current during field weakening control increases and copper loss increases. Therefore, in the field weakening control, it is desirable to boost the converter voltage until it balances with the line voltage.
 図14は、コンバータ電圧と線間電圧との関係を示す図である。
 すなわち、弱め界磁制御では、図14に示されるように、コンバータ電圧を弱め界磁制御が開始される電圧まで昇圧することが望ましい。これにより、コンバータ電圧に対して線間電圧が飽和し、インバータ電圧と線間電圧との差分が減少する。その結果、高調波鉄損の増加を抑えることができる。
FIG. 14 is a diagram showing the relationship between the converter voltage and the line voltage.
That is, in the field weakening control, as shown in FIG. 14, it is desirable to boost the converter voltage to a voltage at which the field weakening control is started. As a result, the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
 図14に示される例では、電動機1の回転数がNdに到達したとき、インバータ103のインバータスイッチのオン時間の割合が1/√2に到達する。この場合、コンバータ102(具体的には、昇圧回路)は、コンバータ電圧の昇圧を開始し、制御装置50は、弱め界磁制御を開始する。 In the example shown in FIG. 14, when the rotation speed of the electric motor 1 reaches Nd, the on-time ratio of the inverter switch of the inverter 103 reaches 1/√2. In this case, converter 102 (specifically, the booster circuit) starts boosting the converter voltage, and control device 50 starts the field weakening control.
 図15は、電動機1の回転数とPWM制御中におけるインバータスイッチのオン時間の割合との関係を示す図である。
 本実施の形態では、コンバータ電圧が線間電圧と釣り合うとき、インバータスイッチのオン時間の割合が1/√2である。したがって、インバータスイッチのオン時間の割合が1/√2になるように、コンバータ102の昇圧回路は、インバータ103に印加される電圧を昇圧してもよい。図15に示される例では、電動機1の回転数がNd[rpm]に到達したとき、インバータスイッチのオン時間の割合が1/√2に到達する。
FIG. 15 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the ratio of the ON time of the inverter switch during PWM control.
In the present embodiment, when the converter voltage balances with the line voltage, the ratio of the on time of the inverter switch is 1/√2. Therefore, the booster circuit of the converter 102 may boost the voltage applied to the inverter 103 so that the ON time ratio of the inverter switch is 1/√2. In the example shown in FIG. 15, when the rotation speed of the electric motor 1 reaches Nd [rpm], the on-time ratio of the inverter switch reaches 1/√2.
 制御装置50が弱め界磁制御を開始した後、コンバータ102(具体的には、昇圧回路)は、コンバータ電圧を昇圧してもよい。この場合、電動機1に対する弱め界磁制御中に、コンバータ102の昇圧回路は、インバータ103のインバータスイッチのオン時間の割合が1/√2になるようにインバータ103に印加される電圧を昇圧する。これにより、コンバータ電圧に対して線間電圧が飽和し、インバータ電圧と線間電圧との差分が減少する。その結果、高調波鉄損の増加を抑えることができる。 After the control device 50 starts the field weakening control, the converter 102 (specifically, the booster circuit) may boost the converter voltage. In this case, during the field weakening control for the electric motor 1, the booster circuit of the converter 102 boosts the voltage applied to the inverter 103 so that the ON time ratio of the inverter switch of the inverter 103 becomes 1/√2. As a result, the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
 図16は、コンバータ電圧の昇圧前後におけるキャリア周波数を示す図である。
 インバータ103に印加される電圧が昇圧された後におけるキャリア周波数は、インバータ103に印加される電圧が昇圧される前におけるキャリア周波数よりも小さい。すなわち、コンバータ電圧の昇圧後、制御装置50は、コンバータ電圧の昇圧前に比べてキャリア周波数を下げる。図16に示される例では、コンバータ電圧の昇圧前において、制御装置50は、キャリア周波数をf1に設定し、コンバータ電圧の昇圧後において、制御装置50は、キャリア周波数をf2に設定する。この場合、例えばf1=9000Hzであり、例えばf2=4500Hzである。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。
FIG. 16 is a diagram showing carrier frequencies before and after boosting the converter voltage.
The carrier frequency after the voltage applied to the inverter 103 is boosted is lower than the carrier frequency before the voltage applied to the inverter 103 is boosted. That is, after boosting the converter voltage, control device 50 lowers the carrier frequency as compared with before boosting the converter voltage. In the example shown in FIG. 16, controller 50 sets the carrier frequency to f1 before the converter voltage is boosted, and controller 50 sets the carrier frequency to f2 after the converter voltage is boosted. In this case, for example, f1=9000 Hz and, for example, f2=4500 Hz. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
 インバータ103の少なくとも1つのスイッチング素子には、例えば、シリコンカーバイド(SiC)素子が用いられる。これにより、スイッチング損失を低減することができる。特に、電動機1の高速回転時では、高調波鉄損に対するスイッチング損失の比率が増加しやすいため、電動機1の高速回転時における電動機1の効率を改善することができる。 A silicon carbide (SiC) element, for example, is used for at least one switching element of the inverter 103. Thereby, switching loss can be reduced. In particular, when the electric motor 1 rotates at high speed, the ratio of switching loss to harmonic iron loss tends to increase, so that the efficiency of the electric motor 1 during high speed rotation of the electric motor 1 can be improved.
 インバータ103の少なくとも1つのスイッチング素子には、例えば、窒化ガリウム(GaN)素子が用いられてもよい。これにより、スイッチング損失を低減することができる。特に、電動機1の高速回転時では、高調波鉄損に対するスイッチング損失の比率が増加しやすいため、電動機1の高速回転時における電動機1の効率を改善することができる。 A gallium nitride (GaN) element may be used for at least one switching element of the inverter 103, for example. Thereby, switching loss can be reduced. In particular, when the electric motor 1 rotates at high speed, the ratio of switching loss to harmonic iron loss tends to increase, so that the efficiency of the electric motor 1 during high speed rotation of the electric motor 1 can be improved.
 電動機1の回転数の閾値は1つに限られない。したがって、2つ以上の閾値が設定されていてもよい。この場合、制御装置50は、キャリア周波数を段階的に下げる。すなわち、キャリア周波数は、2パターン以上の段階に設定されてもよい。 -The threshold value of the rotation speed of the electric motor 1 is not limited to one. Therefore, two or more threshold values may be set. In this case, the control device 50 lowers the carrier frequency stepwise. That is, the carrier frequency may be set in two or more patterns.
 図17は、電動機1の回転数とキャリア周波数との関係を示す図である。周波数f1[Hz]からf3[Hz]は、f1>f2>f3≧fmを満たす。回転数N1[rpm]およびN2[rpm]は、N1<N2を満たす。
 図17に示される例では、制御装置50は、電動機1の回転数に応じてキャリア周波数を段階的に切り替える。具体的には、制御装置50は、電動機1の回転数に応じてキャリア周波数を段階的に下げる。すなわち、図17に示される例では、電動機1の回転数がN1に到達したとき、制御装置50は、キャリア周波数をf1からf2に下げる。電動機1の回転数がN1からN2に到達したとき、制御装置50は、キャリア周波数をf2からf3に下げる。
FIG. 17 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the carrier frequency. The frequencies f1 [Hz] to f3 [Hz] satisfy f1>f2>f3≧fm. The rotation speeds N1 [rpm] and N2 [rpm] satisfy N1<N2.
In the example shown in FIG. 17, the control device 50 switches the carrier frequency stepwise according to the rotation speed of the electric motor 1. Specifically, the control device 50 gradually lowers the carrier frequency according to the rotation speed of the electric motor 1. That is, in the example shown in FIG. 17, when the rotation speed of electric motor 1 reaches N1, control device 50 lowers the carrier frequency from f1 to f2. When the rotation speed of the electric motor 1 reaches from N1 to N2, the control device 50 lowers the carrier frequency from f2 to f3.
 上述の例では、キャリア周波数は、段階的に変更される。しかしながら、制御装置50は、キャリア周波数を連続的に下げてもよい。
 図18は、電動機1の回転数とキャリア周波数との関係を示す図である。
 例えば、図18に示されるように、電動機1の回転数が増加するにつれて、制御装置50は、キャリア周波数を下げてもよい。
In the above example, the carrier frequency is changed stepwise. However, the control device 50 may continuously reduce the carrier frequency.
FIG. 18 is a diagram showing the relationship between the rotation speed of the electric motor 1 and the carrier frequency.
For example, as shown in FIG. 18, controller 50 may decrease the carrier frequency as the rotation speed of electric motor 1 increases.
 図18に示される例では、電動機1の回転数が増加するにつれて、制御装置50は、キャリア周波数を連続的に下げる。さらに、電動機1の回転数がNd[rpm]に到達したとき、制御装置50は、弱め界磁制御を開始する。弱め界磁制御中におけるキャリア周波数は一定である。すなわち、弱め界磁制御中では、制御装置50は、キャリア周波数を一定にする。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。 In the example shown in FIG. 18, the control device 50 continuously lowers the carrier frequency as the rotation speed of the electric motor 1 increases. Further, when the rotation speed of the electric motor 1 reaches Nd [rpm], the control device 50 starts the field weakening control. The carrier frequency is constant during the field weakening control. That is, during the field weakening control, the control device 50 keeps the carrier frequency constant. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
 図19は、インバータ103のインバータスイッチに対するパルス幅変調制御中におけるインバータスイッチのオン時間の割合とキャリア周波数との関係を示す図である。
 図19に示されるように、インバータスイッチのオン時間の割合が増加するにつれて、制御装置50は、キャリア周波数を下げてもよい。
FIG. 19 is a diagram showing the relationship between the on-time ratio of the inverter switch and the carrier frequency during pulse width modulation control of the inverter switch of the inverter 103.
As shown in FIG. 19, the controller 50 may decrease the carrier frequency as the ratio of the on time of the inverter switch increases.
 図19に示される例では、インバータスイッチのオン時間の割合が増加するにつれて、制御装置50は、キャリア周波数を連続的に下げる。さらに、インバータスイッチのオン時間の割合が閾値Ntに到達したとき、制御装置50は、弱め界磁制御を開始する。弱め界磁制御中におけるキャリア周波数は一定である。すなわち、弱め界磁制御中では、制御装置50は、キャリア周波数を一定にする。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。 In the example shown in FIG. 19, the control device 50 continuously lowers the carrier frequency as the ratio of the on time of the inverter switch increases. Further, when the ratio of the on time of the inverter switch reaches the threshold value Nt, the control device 50 starts the field weakening control. The carrier frequency is constant during the field weakening control. That is, during the field weakening control, the control device 50 keeps the carrier frequency constant. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved.
 以上に説明したように、実施の形態1に係る駆動装置101では、制御装置50は、電動機1の回転数に応じてキャリア周波数を切り替える。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。その結果、駆動装置101の効率を改善することができる。 As described above, in drive device 101 according to the first embodiment, control device 50 switches the carrier frequency according to the rotation speed of electric motor 1. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
 電動機1の回転数が増加するほど、電動機1における全損失に占める高調波鉄損の割合が小さい。したがって、電動機1の回転数が増加したとき、制御装置50は、電動機1の回転数に応じてキャリア周波数を下げることが望ましい。これにより、電動機1の高速回転時においてスイッチング損失が効果的に低減され、インバータ103および電動機1の総合効率を効果的に改善することができる。その結果、駆動装置101の効率を効果的に改善することができる。 The higher the number of revolutions of the electric motor 1, the smaller the proportion of the harmonic iron loss in the total loss in the electric motor 1. Therefore, when the rotation speed of the electric motor 1 increases, the control device 50 preferably lowers the carrier frequency according to the rotation speed of the electric motor 1. As a result, switching loss is effectively reduced during high-speed rotation of the electric motor 1, and the overall efficiency of the inverter 103 and the electric motor 1 can be effectively improved. As a result, the efficiency of the driving device 101 can be effectively improved.
 本実施の形態では、制御装置50が電動機1に対する弱め界磁制御を開始したとき、制御装置50は、弱め界磁制御を開始する前よりもキャリア周波数を下げる。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。その結果、駆動装置101の効率を改善することができる。 In the present embodiment, when the control device 50 starts the field weakening control for the electric motor 1, the control device 50 lowers the carrier frequency compared to before the field weakening control is started. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
 本実施の形態では、インバータ103のインバータスイッチのオン時間の割合が1/√2以上のとき、電動機1は、弱め界磁制御で駆動される。この場合、制御装置50は、弱め界磁制御前に比べてキャリア周波数を下げる。これにより、スイッチング損失が低減され、インバータ103および電動機1の総合効率を改善することができる。その結果、駆動装置101の効率を改善することができる。 In the present embodiment, when the ratio of the on time of the inverter switch of the inverter 103 is 1/√2 or more, the electric motor 1 is driven by the field weakening control. In this case, the control device 50 lowers the carrier frequency compared to before the field weakening control. As a result, switching loss is reduced and the overall efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
 弱め界磁制御では、弱め界磁電流が増大し、銅損が増大する。そのため、弱め界磁制御では、コンバータ電圧を線間電圧と釣り合うまで昇圧することが望ましい。これにより、弱め界磁電流が緩和され、銅損が低減される。コンバータ電圧を昇圧する場合、コンバータ電圧を弱め界磁制御が開始される電圧まで昇圧することが望ましい。これにより、コンバータ電圧に対して線間電圧が飽和し、インバータ電圧と線間電圧との差分が減少する。その結果、高調波鉄損の増加を抑えることができる。 ㆍField weakening control increases field weakening current and copper loss. Therefore, in the field weakening control, it is desirable to boost the converter voltage until it balances with the line voltage. This alleviates the field weakening current and reduces copper loss. When boosting the converter voltage, it is desirable to weaken the converter voltage to a voltage at which field control is started. As a result, the line voltage is saturated with respect to the converter voltage, and the difference between the inverter voltage and the line voltage is reduced. As a result, it is possible to suppress an increase in harmonic iron loss.
 例えば、図16に示されるように、コンバータ電圧を昇圧するとき、制御装置50は、昇圧する前よりもキャリア周波数を下げる。キャリア周波数の低下は、スイッチング損失の低減に寄与する。これにより、インバータ103および電動機1の総合効率を改善することができる。その結果、駆動装置101の効率を改善することができる。 For example, as shown in FIG. 16, when boosting the converter voltage, the control device 50 lowers the carrier frequency more than before it boosts it. The lowering of the carrier frequency contributes to the reduction of switching loss. Thereby, the total efficiency of the inverter 103 and the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
 インバータ103の少なくとも1つのスイッチング素子には、例えば、シリコンカーバイド(SiC)素子または窒化ガリウム(GaN)素子が用いられる。これにより、スイッチング損失を低減することができる。特に、電動機1の高速回転時では、高調波鉄損の割合が小さく、スイッチング損失の割合が増加しやすいため、電動機1の高速回転時における電動機1の効率を改善することができる。その結果、駆動装置101の効率を改善することができる。 A silicon carbide (SiC) element or a gallium nitride (GaN) element is used for at least one switching element of the inverter 103. Thereby, switching loss can be reduced. In particular, when the electric motor 1 rotates at high speed, the ratio of harmonic iron loss is small and the ratio of switching loss easily increases, so that the efficiency of the electric motor 1 at high speed rotation of the electric motor 1 can be improved. As a result, the efficiency of the driving device 101 can be improved.
実施の形態2.
 本発明の実施の形態2に係る圧縮機6について説明する。
 図20は、実施の形態2に係る圧縮機6の構造を概略的に示す断面図である。
Embodiment 2.
A compressor 6 according to the second embodiment of the present invention will be described.
FIG. 20 is a sectional view schematically showing the structure of the compressor 6 according to the second embodiment.
 圧縮機6は、実施の形態1に係る駆動装置101と、駆動装置101によって駆動される電動要素としての電動機60と、ハウジングとしての密閉容器61と、圧縮要素としての圧縮機構62とを有する。本実施の形態では、圧縮機6は、ロータリー圧縮機である。ただし、圧縮機6は、ロータリー圧縮機に限定されない。 The compressor 6 includes the drive device 101 according to the first embodiment, an electric motor 60 as an electric element driven by the drive device 101, a closed container 61 as a housing, and a compression mechanism 62 as a compression element. In the present embodiment, the compressor 6 is a rotary compressor. However, the compressor 6 is not limited to the rotary compressor.
 電動機60には、実施の形態1で説明した電動機1が適用される。電動機60は、圧縮機構62を駆動する。 The electric motor 1 described in the first embodiment is applied to the electric motor 60. The electric motor 60 drives the compression mechanism 62.
 密閉容器61は、電動機60および圧縮機構62を覆う。密閉容器61は、円筒状の容器である。密閉容器61の底部には、圧縮機構62の摺動部分を潤滑する冷凍機油が貯留されている。 The closed container 61 covers the electric motor 60 and the compression mechanism 62. The closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored at the bottom of the closed container 61.
 圧縮機6は、さらに、密閉容器61に固定されたガラス端子63と、アキュムレータ64と、吸入パイプ65と、吐出パイプ66とを有する。 The compressor 6 further includes a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
 圧縮機構62は、シリンダ62aと、ピストン62bと、上部フレーム62c(第1のフレームとも称する)と、下部フレーム62d(第2のフレームとも称する)と、上部フレーム62cおよび下部フレーム62dに取り付けられた複数のマフラ62eとを有する。圧縮機構62は、さらに、シリンダ62a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構62は、電動機60によって駆動される。 The compression mechanism 62 is attached to a cylinder 62a, a piston 62b, an upper frame 62c (also referred to as a first frame), a lower frame 62d (also referred to as a second frame), an upper frame 62c and a lower frame 62d. And a plurality of mufflers 62e. The compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side. The compression mechanism 62 is driven by the electric motor 60.
 電動機60は、圧入または焼き嵌めで密閉容器61内に固定されている。圧入および焼き嵌めの代わりに溶接で電動機60を密閉容器61に直接取り付けてもよい。 The electric motor 60 is fixed in the closed container 61 by press fitting or shrink fitting. Instead of press fitting and shrink fitting, the electric motor 60 may be directly attached to the closed container 61 by welding.
 電動機60のコイル(例えば、実施の形態1で説明したコイル3)には、ガラス端子63を通して駆動装置101から電力が供給される。 Electric power is supplied to the coil of the electric motor 60 (for example, the coil 3 described in the first embodiment) from the drive device 101 through the glass terminal 63.
 電動機60のロータ20(具体的には、シャフト67の片側)は、上部フレーム62cおよび下部フレーム62dの各々に備えられた軸受けによって回転自在に支持されている。 The rotor 20 of the electric motor 60 (specifically, one side of the shaft 67) is rotatably supported by bearings provided in each of the upper frame 62c and the lower frame 62d.
 ピストン62bには、シャフト67が挿通されている。上部フレーム62cおよび下部フレーム62dには、シャフト67が回転自在に挿通されている。上部フレーム62cおよび下部フレーム62dは、シリンダ62aの端面を閉塞する。アキュムレータ64は、吸入パイプ65を通して冷媒(例えば、冷媒ガス)をシリンダ62aに供給する。 A shaft 67 is inserted through the piston 62b. A shaft 67 is rotatably inserted through the upper frame 62c and the lower frame 62d. The upper frame 62c and the lower frame 62d close the end surface of the cylinder 62a. The accumulator 64 supplies a refrigerant (for example, refrigerant gas) to the cylinder 62a through the suction pipe 65.
 次に、圧縮機6の動作について説明する。アキュムレータ64から供給された冷媒は、密閉容器61に固定された吸入パイプ65からシリンダ62a内へ吸入される。電動機60が回転することにより、シャフト67に嵌合されたピストン62bがシリンダ62a内で回転する。これにより、シリンダ62a内で冷媒が圧縮される。 Next, the operation of the compressor 6 will be described. The refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61. When the electric motor 60 rotates, the piston 62b fitted on the shaft 67 rotates in the cylinder 62a. As a result, the refrigerant is compressed in the cylinder 62a.
 冷媒は、マフラ62eを通り、密閉容器61内を上昇する。このようにして、圧縮された冷媒が、吐出パイプ66を通って冷凍サイクルの高圧側へ供給される。 The refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
 圧縮機6の冷媒として、R410A、R407C、またはR22等を用いることができる。ただし、圧縮機6の冷媒は、これらの種類に限られない。圧縮機6の冷媒として、GWP(地球温暖化係数)が小さい冷媒、例えば、下記の冷媒を用いることができる。 As the refrigerant of the compressor 6, R410A, R407C, R22 or the like can be used. However, the refrigerant of the compressor 6 is not limited to these types. As the refrigerant of the compressor 6, a refrigerant having a small GWP (global warming potential), for example, the following refrigerant can be used.
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CF3CF=CH2)を用いることができる。HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
(1) A halogenated hydrocarbon having a carbon double bond in the composition, for example, HFO (Hydro-Fluoro-Orefin)-1234yf (CF3CF=CH2) can be used. The GWP of HFO-1234yf is 4.
(2) A hydrocarbon having a carbon double bond in the composition, for example, R1270 (propylene) may be used. R1270 has a GWP of 3, which is lower than that of HFO-1234yf, but higher than that of HFO-1234yf.
(3) Using a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32. Good. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure loss, which may lead to a reduction in the performance of the refrigeration cycle (especially the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a higher pressure refrigerant than HFO-1234yf.
 実施の形態2に係る圧縮機6は、実施の形態1で説明した利点を有する。 The compressor 6 according to the second embodiment has the advantages described in the first embodiment.
 さらに、実施の形態2に係る圧縮機6が駆動装置101を有するので、圧縮機6の効率を改善することができる。 Further, since the compressor 6 according to the second embodiment has the drive device 101, the efficiency of the compressor 6 can be improved.
実施の形態3.
 本発明の実施の形態3に係る冷凍空調装置7について説明する。
 図21は、実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
Embodiment 3.
The refrigerating and air-conditioning apparatus 7 according to Embodiment 3 of the present invention will be described.
FIG. 21 is a diagram schematically showing the configuration of the refrigerating and air-conditioning apparatus 7 according to the third embodiment.
 冷凍空調装置7は、実施の形態2に係る圧縮機6と、四方弁71と、凝縮器72と、減圧装置73(膨張器ともいう)と、蒸発器74と、冷媒配管75と、制御部76とを有する。図21に示される例では、圧縮機6、凝縮器72、減圧装置73、および蒸発器74は、冷媒配管75によって連結され、冷凍サイクルを構成している。 The refrigeration/air-conditioning apparatus 7 includes a compressor 6, a four-way valve 71, a condenser 72, a decompression device 73 (also called an expander), an evaporator 74, a refrigerant pipe 75, and a control unit according to the second embodiment. 76 and. In the example shown in FIG. 21, the compressor 6, the condenser 72, the decompression device 73, and the evaporator 74 are connected by a refrigerant pipe 75 to form a refrigeration cycle.
 冷凍空調装置7の動作の一例について説明する。圧縮機6は、吸入した冷媒を圧縮し、高温高圧のガス冷媒を送り出す。四方弁71は、冷媒の流れ方向を切り換える。図21に示される例では、四方弁71は、圧縮機6から送り出された冷媒を凝縮器72に送る。凝縮器72は、圧縮機6から送り出された冷媒と空気(例えば、室外の空気)との熱交換を行うことにより、冷媒を凝縮し、液化された冷媒を送り出す。減圧装置73は、凝縮器72から送り出された冷媒(すなわち、液化された冷媒)を膨張させて、低温低圧の液化された冷媒を送り出す。 An example of the operation of the refrigerating and air-conditioning apparatus 7 will be described. The compressor 6 compresses the sucked refrigerant and sends out a high-temperature and high-pressure gas refrigerant. The four-way valve 71 switches the flow direction of the refrigerant. In the example shown in FIG. 21, the four-way valve 71 sends the refrigerant sent from the compressor 6 to the condenser 72. The condenser 72 condenses the refrigerant by exchanging heat between the refrigerant sent from the compressor 6 and air (for example, outdoor air), and sends out the liquefied refrigerant. The decompression device 73 expands the refrigerant (that is, the liquefied refrigerant) sent from the condenser 72, and sends the low-temperature and low-pressure liquefied refrigerant.
 蒸発器74は、減圧装置73から送り出された低温低圧の液化された冷媒と空気(例えば、室内の空気)との熱交換を行うことにより、冷媒を気化させ、気化された冷媒(すなわち、ガス冷媒)を送り出す。蒸発器74で熱が奪われた空気は、例えば、送風機により、対象空間(例えば室内)に供給される。四方弁71および圧縮機6の動作は、制御部76によって制御される。 The evaporator 74 evaporates the refrigerant by exchanging heat between the low-temperature low-pressure liquefied refrigerant sent from the decompression device 73 and air (for example, indoor air), and the evaporated refrigerant (that is, gas). (Refrigerant) is sent out. The air from which heat has been removed by the evaporator 74 is supplied to the target space (for example, the room) by, for example, a blower. The operations of the four-way valve 71 and the compressor 6 are controlled by the controller 76.
 冷凍空調装置7において、圧縮機6以外の構成要素は、実施の形態3で説明された構成要素に限定されない。 In the refrigerating and air-conditioning apparatus 7, the constituent elements other than the compressor 6 are not limited to the constituent elements described in the third embodiment.
 実施の形態3に係る冷凍空調装置7は、実施の形態2で説明した利点を有する。 The refrigerating and air-conditioning system 7 according to the third embodiment has the advantages described in the second embodiment.
 さらに、冷凍空調装置7が圧縮機6を有するので、冷凍空調装置7の効率を改善することができる。 Further, since the refrigeration air conditioning system 7 has the compressor 6, the efficiency of the refrigeration air conditioning system 7 can be improved.
 実施の形態1で説明した駆動装置101は、圧縮機6および冷凍空調装置7以外に、送風機、換気扇、家電機器、または工作機などの機器における駆動装置に適用できる。 The drive device 101 described in the first embodiment can be applied to a drive device in a device such as a blower, a ventilation fan, a home electric appliance, or a machine tool, in addition to the compressor 6 and the refrigerating and air conditioning device 7.
 本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良または変形を行なうことができる。 Although the preferred embodiments of the present invention have been specifically described, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the scope of the present invention. it can.
 1,60 電動機、 3,3U,3V,3W コイル、 6 圧縮機、 7 冷凍空調装置 、 50 制御装置、 101 駆動装置、 102 コンバータ、 103 インバータ。 1,60 electric motors, 3,3U, 3V, 3W coils, 6 compressors, 7 refrigeration and air conditioning units, 50 control units, 101 drive units, 102 converters, 103 inverters.

Claims (16)

  1.  コイルを有する電動機を駆動する駆動装置であって、
     前記コイルに電圧を印加するインバータと、
     前記コイルに印加される前記電圧の制御周波数を調整するための前記インバータのキャリア周波数を制御し、前記電動機の回転数に応じて前記キャリア周波数を切り替える制御装置と
     を備えた駆動装置。
    A drive device for driving an electric motor having a coil,
    An inverter for applying a voltage to the coil,
    A drive device, comprising: a control device that controls the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil, and switches the carrier frequency according to the rotation speed of the electric motor.
  2.  前記制御装置が前記電動機に対する弱め界磁制御を開始したとき、前記制御装置は、前記弱め界磁制御を開始する前よりも前記キャリア周波数を下げる請求項1に記載の駆動装置。 The drive device according to claim 1, wherein when the control device starts field-weakening control for the electric motor, the control device lowers the carrier frequency more than before the field-weakening control is started.
  3.  前記電動機の回転数が閾値よりも小さいとき、前記キャリア周波数は第1の周波数であり、
     前記電動機の回転数が前記閾値以上であるとき、前記キャリア周波数は前記第1の周波数よりも小さい第2の周波数である
     請求項1または2に記載の駆動装置。
    When the rotation speed of the electric motor is smaller than a threshold value, the carrier frequency is a first frequency,
    The drive device according to claim 1, wherein when the rotation speed of the electric motor is equal to or higher than the threshold value, the carrier frequency is a second frequency smaller than the first frequency.
  4.  前記インバータは、少なくとも1つのインバータスイッチを有し、
     前記少なくとも1つのインバータスイッチに対するパルス幅変調制御中における前記少なくとも1つのインバータスイッチのオン時間の割合が閾値よりも小さいとき、前記キャリア周波数は第1の周波数であり、
     前記少なくとも1つのインバータスイッチの前記オン時間の割合が前記閾値以上であるとき、前記キャリア周波数は前記第1の周波数よりも小さい第2の周波数である
     請求項1または2に記載の駆動装置。
    The inverter has at least one inverter switch,
    When the ratio of the on-time of the at least one inverter switch during pulse width modulation control for the at least one inverter switch is less than a threshold value, the carrier frequency is a first frequency,
    The drive device according to claim 1, wherein the carrier frequency is a second frequency smaller than the first frequency when the ratio of the on-time of the at least one inverter switch is equal to or higher than the threshold value.
  5.  前記閾値は、1/√2以上である請求項4に記載の駆動装置。 The drive device according to claim 4, wherein the threshold value is 1/√2 or more.
  6.  前記インバータにコンバータ電圧を印加するコンバータをさらに備え、
     前記コンバータは、前記コンバータ電圧を昇圧する昇圧回路を有し、
     前記電動機に対する弱め界磁制御中に、前記昇圧回路は、前記オン時間の割合が1/√2になるように前記コンバータ電圧を昇圧する
     請求項4または5に記載の駆動装置。
    Further comprising a converter for applying a converter voltage to the inverter,
    The converter has a booster circuit that boosts the converter voltage,
    The drive device according to claim 4, wherein during the field-weakening control for the electric motor, the booster circuit boosts the converter voltage so that the ratio of the on-time becomes 1/√2.
  7.  前記インバータにコンバータ電圧を印加するコンバータをさらに備え、
     前記コンバータは、前記コンバータ電圧を昇圧する昇圧回路を有する請求項1から5のいずれか1項に記載の駆動装置。
    Further comprising a converter for applying a converter voltage to the inverter,
    The drive device according to claim 1, wherein the converter includes a booster circuit that boosts the converter voltage.
  8.  前記コンバータ電圧が昇圧された後における前記キャリア周波数は、前記コンバータ電圧が昇圧される前における前記キャリア周波数よりも小さい請求項6または7に記載の駆動装置。 The drive device according to claim 6 or 7, wherein the carrier frequency after the converter voltage is boosted is smaller than the carrier frequency before the converter voltage is boosted.
  9.  前記少なくとも1つのインバータスイッチにはシリコンカーバイド素子が用いられている請求項4に記載の駆動装置。 The drive device according to claim 4, wherein a silicon carbide element is used for the at least one inverter switch.
  10.  前記少なくとも1つのインバータスイッチには窒化ガリウム素子が用いられている請求項4に記載の駆動装置。 The drive device according to claim 4, wherein a gallium nitride element is used for the at least one inverter switch.
  11.  前記電動機の回転数が増加するにつれて、前記制御装置は、前記キャリア周波数を下げる請求項1に記載の駆動装置。 The drive unit according to claim 1, wherein the control unit lowers the carrier frequency as the rotation speed of the electric motor increases.
  12.  電動機と、請求項1から11のいずれか1項に記載の駆動装置を備えた圧縮機。 A compressor equipped with an electric motor and the drive device according to any one of claims 1 to 11.
  13.  請求項12に記載の圧縮機を備えた冷凍空調装置。 A refrigerating and air-conditioning apparatus equipped with the compressor according to claim 12.
  14.  コイルを有する電動機の駆動方法であって、
     前記コイルに印加される電圧の制御周波数を調整するためのインバータのキャリア周波数を設定し、
     前記電動機の回転数に応じて前記キャリア周波数を切り替える
     電動機の駆動方法。
    A method for driving an electric motor having a coil, comprising:
    Setting the carrier frequency of the inverter for adjusting the control frequency of the voltage applied to the coil,
    A method for driving an electric motor, wherein the carrier frequency is switched according to the rotation speed of the electric motor.
  15.  前記電動機に対する弱め界磁制御を開始したとき、前記弱め界磁制御を開始する前よりも前記キャリア周波数を下げる請求項14に記載の電動機の駆動方法。 The method of driving an electric motor according to claim 14, wherein when the field weakening control for the electric motor is started, the carrier frequency is lowered more than before the field weakening control is started.
  16.  前記電動機の回転数が閾値よりも小さいとき、前記キャリア周波数は第1の周波数であり、
     前記電動機の回転数が前記閾値以上であるとき、前記キャリア周波数は前記第1の周波数よりも小さい第2の周波数である
     請求項14または15に記載の電動機の駆動方法。
    When the rotation speed of the electric motor is smaller than a threshold value, the carrier frequency is a first frequency,
    The method for driving an electric motor according to claim 14 or 15, wherein when the rotation speed of the electric motor is equal to or higher than the threshold value, the carrier frequency is a second frequency smaller than the first frequency.
PCT/JP2019/001935 2019-01-23 2019-01-23 Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method WO2020152792A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/001935 WO2020152792A1 (en) 2019-01-23 2019-01-23 Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method
JP2020567286A JPWO2020152792A1 (en) 2019-01-23 2019-01-23 How to drive drives, compressors, refrigeration and air conditioners, and motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001935 WO2020152792A1 (en) 2019-01-23 2019-01-23 Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method

Publications (1)

Publication Number Publication Date
WO2020152792A1 true WO2020152792A1 (en) 2020-07-30

Family

ID=71736649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001935 WO2020152792A1 (en) 2019-01-23 2019-01-23 Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method

Country Status (2)

Country Link
JP (1) JPWO2020152792A1 (en)
WO (1) WO2020152792A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186787A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Permanent-magnet motor, method and apparatus for controlling permanent-magnet motor, compressor, and refrigerator-air conditioner
JP2005176437A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Method and device for driving brushless dc motor
JP2010221856A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Steering control device
WO2015045714A1 (en) * 2013-09-24 2015-04-02 ダイキン工業株式会社 Control method for direct power conversion device
WO2018078840A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and drive method of electric motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186787A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Permanent-magnet motor, method and apparatus for controlling permanent-magnet motor, compressor, and refrigerator-air conditioner
JP2005176437A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Method and device for driving brushless dc motor
JP2010221856A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Steering control device
WO2015045714A1 (en) * 2013-09-24 2015-04-02 ダイキン工業株式会社 Control method for direct power conversion device
WO2018078840A1 (en) * 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and drive method of electric motor

Also Published As

Publication number Publication date
JPWO2020152792A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2018078835A1 (en) Air conditioner and air-conditioner control method
WO2018078840A1 (en) Drive device, air conditioner and drive method of electric motor
WO2018078845A1 (en) Drive device, air conditioner and electric motor drive method
JP6710336B2 (en) Driving device, air conditioner, and driving method
JP6727314B2 (en) Stator core, stator, electric motor, drive device, compressor, air conditioner, and stator core manufacturing method
JP2007181305A (en) Permanent magnet type synchronous motor and compressor using the same
JP6689464B2 (en) Drive device, compressor, air conditioner, and method for driving permanent magnet embedded motor
JP7023408B2 (en) Motors, compressors and air conditioners
WO2018078838A1 (en) Drive device and air-conditioner, and compressor control method
JP7195408B2 (en) Rotors, motors, compressors, and air conditioners
JP6903168B2 (en) Motors, compressors and air conditioners
JP2024009926A (en) Compressor and air conditioner
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
WO2020152792A1 (en) Drive apparatus, compressor, refrigeration air conditioning apparatus, and electric motor driving method
WO2020021693A1 (en) Electric motor, compressor, and air conditioner
WO2021199419A1 (en) Electric motor, compressor, and air conditioner
JP7194165B2 (en) Electric motors, compressors, blowers, and refrigeration and air conditioning equipment
WO2022024204A1 (en) Rotor, electric motor, compressor, and refrigeration circuit device
WO2021117175A1 (en) Stator, motor, compressor, and air conditioner
KR101412585B1 (en) Rotary compressor
JPWO2020170418A1 (en) Motors, compressors and air conditioners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911771

Country of ref document: EP

Kind code of ref document: A1