WO2020152387A1 - Furnace floor protection in recovery boilers - Google Patents

Furnace floor protection in recovery boilers Download PDF

Info

Publication number
WO2020152387A1
WO2020152387A1 PCT/FI2019/050047 FI2019050047W WO2020152387A1 WO 2020152387 A1 WO2020152387 A1 WO 2020152387A1 FI 2019050047 W FI2019050047 W FI 2019050047W WO 2020152387 A1 WO2020152387 A1 WO 2020152387A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
floor
furnace
certain embodiments
sodium
Prior art date
Application number
PCT/FI2019/050047
Other languages
French (fr)
Inventor
Timo Karjunen
Original Assignee
Varo Teollisuuspalvelut Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varo Teollisuuspalvelut Oy filed Critical Varo Teollisuuspalvelut Oy
Priority to PCT/FI2019/050047 priority Critical patent/WO2020152387A1/en
Priority to FI20196058A priority patent/FI129619B/en
Priority to SE2050015A priority patent/SE544622C2/en
Priority to CA3068226A priority patent/CA3068226A1/en
Priority to CL2020000178A priority patent/CL2020000178A1/en
Priority to US16/747,585 priority patent/US11549682B2/en
Priority to BR102020001329-7A priority patent/BR102020001329A2/en
Publication of WO2020152387A1 publication Critical patent/WO2020152387A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/04Regeneration of pulp liquors or effluent waste waters of alkali lye
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/12Combustion of pulp liquors

Definitions

  • the present invention generally relates to recovery boilers.
  • the invention relates particularly, though not exclusively, to protecting recovery boiler floor tubes.
  • Recovery boilers are fueled with waste liquor (black liquor) generated in connection with pulp manufacturing.
  • Black liquor is a highly corrosive substance which is combusted in a furnace area of the boiler.
  • the floor of the recovery boiler furnace is made of tubes that are filled with water. If the floor tubes are directly exposed to black liquor, this may lead in unfavorable conditions that promote local corrosion or cracking of the floor tubes.
  • the floor tubes may additionally be exposed to an excessive heat load due to start-up burner flame impingement if not protected.
  • a protective layer of a protecting chemical such as sodium sulfate or sodium carbonate
  • the protective layer typically remains on the floor until the next outage period.
  • a smelt bed on the floor is melted and removed.
  • the protective layer under the smelt remains at least partially and has to be removed mechanically. This will take unnecessary time.
  • a method for protecting a furnace floor of a black liquor recovery boiler comprising:
  • the said layer forms a protective layer to protect the floor against direct exposure of black liquor. In certain embodiments, the said layer forms a protective layer to protect the floor against start up burner flame impingement.
  • the term emptied (or empty) furnace floor means a furnace floor that is not covered by hot smelt. In certain embodiments, this means a washed or otherwise cleaned furnace floor.
  • the mixture is a salt mixture. In certain embodiments, the mixture comprises at least one sodium salt.
  • the mixture comprises at least one inorganic sodium salt.
  • the mixture is free of organic material.
  • the mixture comprises at least one sulfate. In certain embodiments, the mixture comprises at least one sulfate and at least one carbonate.
  • the mixture comprises sodium sulfate.
  • the mixture comprises sodium carbonate.
  • the mixture comprises sodium sulfate and sodium carbonate.
  • the mixture comprises sodium sulfate, sodium carbonate and sodium sulfide.
  • the mixture comprises sodium sulfate, sodium carbonate and sodium chloride.
  • the mixture consists of two different salts.
  • the mixture consists of three different salts.
  • the mixture of two or three salts consists of sodium salts.
  • the mixture comprises at least one potassium salt.
  • the mixture comprises at least one potassium salt and at least one sodium salt.
  • the mixture comprises sodium sulfate, sodium carbonate, potassium sulfate, and potassium carbonate.
  • the mixture comprises at least two salts selected from the group of sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
  • the mole fraction of said at least two salts selected from the group in the mixture is more than 90 %.
  • the mixture comprises at least two inorganic sodium salts, the mole fraction of said at least two inorganic sodium salts in the mixture being more than 90 %.
  • the mixture comprises two inorganic sodium salts, the mole fraction of the two inorganic sodium salts in the mixture being more than 50 %, preferably more than 90 %.
  • the mixture comprising at least two different salts comprises salts selected from a group comprising (but not limited to): sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
  • the melting point of the mixture is lower than the melting points of the individual salts forming the mixture.
  • the method comprises using a mixture whose melting point is lower than or equal to 850 °C.
  • the melting point of the mixture is within the range extending from 733 to 826 °C.
  • the covering the furnace floor by a layer is performed by covering the furnace floor by said mixture by flowing the mixture onto the furnace floor.
  • the mixture is spread on the floor by manual labor.
  • the method comprises pumping the mixture onto the furnace floor from the outside of the furnace.
  • the method comprises forming the mixture in connection with pumping the mixture onto the furnace floor.
  • the method comprises providing the mixture as an aqueous solution.
  • the mixture is produced by mixing the material forming the protective layer with fluid or water.
  • the mixing is performed without a chemical reaction. Accordingly, the material forming the protective layer merely dissolves in the fluid or water.
  • the forming of the mixture is an in-situ or on-site process in contrast to any off- site process in which the mixture or aqueous solution would be formed elsewhere, e.g., another factory location, and transferred to the recovery boiler facility (or building) therefrom.
  • the method comprises forming a salt lake from the mixture onto the floor extending over the floor from side to side during recovery boiler outage.
  • the mixture is allowed to precipitate thereby forming a hard salt lake on the floor.
  • the precipitation is enhanced by firing oil or gas using start-up burners.
  • the fluid/water in the lake evaporates.
  • the hard salt lake forms a protective layer, to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement.
  • the method comprises allowing the mixture to precipitate thereby forming a protective layer to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement.
  • an apparatus for protecting a furnace floor of a black liquor recovery boiler comprising means for performing the method of the first aspect or any of its embodiments.
  • an apparatus for protecting a furnace floor of a black liquor recovery boiler comprising:
  • the providing means comprise a container to hold the mixture or containers to hold individual components of the mixture.
  • the covering means comprise a pump and a pipe to feed the mixture onto the furnace floor.
  • a method for protecting a furnace floor of a black liquor recovery boiler comprising:
  • Fig. 1 depicts a conventional method for protecting a recovery boiler floor
  • Fig. 2 shows a schematic drawing of floor protection in accordance with an embodiment of the present invention
  • Fig. 3 shows a schematic drawing of an arrangement for providing recovery boiler furnace floor tube protection in accordance with an embodiment
  • Fig. 4 shows a schematic drawing of an arrangement for providing recovery boiler furnace floor tube protection in accordance with another embodiment
  • Fig. 5 shows a flow chart of a method in accordance with an embodiment
  • Fig. 6 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate- sodium sulfide system
  • Fig. 7 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate- potassium sulfate-potassium carbonate system.
  • Fig. 1 depicts a conventional method for protecting a furnace floor of a black liquor recovery boiler.
  • the furnace 100 is bounded by furnace walls 101 and the furnace floor
  • FIG. 1 depicts the situation during a late phase of a recovery boiler maintenance break, i.e., recovery boiler outage, the furnace floor 102 has already been cleaned and inspected for cracks, and there are typically scaffoldings
  • a safety roof has been installed into an upper part of the furnace 100 to ensure that any manual labor on the furnace floor 102 can be performed safely.
  • a pile of sodium sulfate bags 107 has been brought onto the floor 102 for spreading. Once spread onto floor tubes, the sodium sulfate serves to protect the floor 102 from direct exposure of forthcoming black liquor and start-up burner flame impingement.
  • the floor protecting method continues as follows: The spreading of the sodium sulfate is performed by manual labor, and the safety roof is removed thereafter.
  • FIG. 2 shows an obtained result of floor protection in accordance with an embodiment of the present invention.
  • the reference numeral 210 depicts a solidified lake of protective material on the furnace floor 102 forming a protective layer that covers the floor tubes of which the floor 102 is made.
  • the protective layer of protective material is provided by covering the furnace floor by a protective layer, the protective layer being formed of a salt mixture comprising at least two different salts.
  • the salt mixture may be provided as a solution, or an aqueous solution.
  • the salt mixture is mixed with a fluid or water and the resulting mixture is flown onto the floor 102 from the outside of the furnace 100.
  • the method comprises causing the mixture to flow onto the furnace floor 102 from the outside of the furnace 100 via an opening in the wall of the black liquor recovery boiler, or furnace wall 101.
  • Fig. 2 shows several openings in the furnace wall 101, such as, smelt spout opening(s) 250, primary air openings 260, secondary air openings 270, and start-up burner openings 280.
  • Fig. 2 also shows black liquor nozzles 230 used to spray black liquor into the furnace, via respective black liquor nozzle openings, during normal operation of the boiler, as well as the smelt spout(s) 255 pouring an overflow of smelt from the floor 102 into a dissolving tank 290 during normal operation.
  • the mixture is caused to flow via at least one smelt spout opening 250. In certain embodiments, the mixture is caused flow via at least one primary air opening 260. In certain embodiments, the mixture is caused flow via at least one secondary air opening 270. In addition or instead, a man door opening residing in the wall 101 and/or at least one start-up burner opening 280 and/or at least one black liquor nozzle opening may be used.
  • the formed lake is allowed to solidify (the salt mixture is allowed to precipitate or crystallize) forming a protective layer to protect floor tubes of the furnace 100 from direct exposure of black liquor and flame impingement.
  • the method comprises pumping the mixture onto the furnace floor 102 from the outside of the furnace 100.
  • Fig. 3 shows such an arrangement or apparatus in which material 321 and fluid (or water) 322 is mixed in a container 330 or similar on the outside of the furnace 100.
  • the material 321 comprises or consists of the salt mixture.
  • the mixing may involve agitation caused by a mixer 331.
  • the mixer 331 is operated by at least one motor.
  • the formed mixture is pumped along an in-feed line 335 by a pump 332 via an opening 350 (which may be any suitable opening as discussed in the preceding) in the furnace wall 101 onto the floor 102.
  • the mixture flows along the in-feed line 335 merely based on gravity or based on fluid (or water) pressure.
  • the different salts in question may be fed into the fluid separately, and may be mixed thereafter.
  • the mixture flown onto the floor settles on the floor by gravity alone forming a lake 210 extending over the whole area of the floor 102.
  • the lake 210 is allowed to solidify (the salt mixture to precipitate or crystallize) forming a protective layer.
  • said mixing with the fluid is performed prior to said pumping such as presented in connection with Fig. 3.
  • mixing is performed during said pumping (or simultaneously with flowing the mixture onto the furnace floor 102).
  • material the material herein comprises or consists of the salt mixture
  • a dosing device 430 the mixing is performed during said pumping (or simultaneously with flowing the mixture onto the furnace floor 102).
  • the mixing may occur on the furnace side of the opening 350.
  • the dosing device 430 may reside on the furnace side of the opening 350.
  • the mixture flows along the in-feed line 435 driven by a pump, or merely based on gravity, and/or based on fluid (or water) pressure.
  • the different salts in question may be fed into the fluid separately in the dosing device 430.
  • the method comprises performing the act of covering the furnace floor with said mixture simultaneously with a removal of the furnace safety roof during outage. Since the presented method does not require workers inside of the furnace 100, the safety roof can be removed simultaneously with flowing the mixture onto the floor 102 and spreading it by gravitation.
  • the different salts are transferred onto the furnace floor in a solid state in a conventional way and mixed with fluid only there. This may be performed to make sure that the salt mixture remains on the floor and is not blown away by air when a primary air flow is started.
  • Fig. 5 shows a flow chart of a method in accordance with an embodiment.
  • material is mixed with a fluid to form a mixture (the material not yet being on the furnace floor).
  • the furnace floor is covered by the mixture.
  • the melting point of the (salt) mixture is lower than the melting points of the individual salts forming the mixture.
  • Fig. 6 shows a how the melting point can be adjusted by adjusting the proportions of individual salt components in a mixture. Accordingly, Fig. 6 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate-sodium sulfide system, i.e., Na 2 SO 4 -Na 2 CO 3 -Na 2 S system.
  • the melting point can be adjusted in between the melting point of sodium sulfide of 1176 °C and a minimum melting temperature of 733 °C which is an eutectic point of the Na 2 SO 4 -Na 2 CO 3 -Na 2 S system.
  • Such a mixture has a composition of 33.6 % mole fraction of Na 2 SO 4 , 30.8 % mole fraction of Na 2 SO 3 and 35.6 % mole fraction of Na 2 S.
  • Fig. 7 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate-potassium sulfate-potassium carbonate system. It can be observed that the melting point can be adjusted in between the melting point of potassium sulfate of 1069 °C and the eutectic point of the Na 2 SO 4 -Na 2 CO 3 -Na 2 S system at 671 °C. In an embodiment a mixture of Na 2 SO 4 -Na 2 CO 3 is used. The eutectic point of the mixture is 826 °C. Such a mixture has a composition of 56 % mole fraction of Na 2 C0 4 , and 44 % mole fraction of Na 2 C0 3 .
  • the melting point of sodium sulfate is 884 °C and the melting point of sodium carbonate is 851 °C .
  • the melting point of the protective layer can be lowered. In such as case, it is easier to remove a part of the whole the protective layer in a molten form from the furnace floor when the floor needs to be cleaned and inspected for the next time.
  • the used salt components and their proportions are selected such that the melting point of the mixture is within a desired range.
  • the method comprises using a mixture whose melting point is lower than the melting point of conventional process-like chemicals, e.g., lower than or equal to 850 °C.
  • the material forming the protective layer comprises at least two different salts.
  • a various set of salt components and mixtures may be applied and the proportions of different salt components in the mixture depend of the mixture used.
  • Na 2 SO 4 -Na 2 CO 3 and Na 2 SO 4 -Na 2 CO 3 -Na 2 S and Na 2 SO 4 -Na 2 CO 3 -K 2 SC 4 - K2CO3 another mixture may be used.
  • Na 2 S may be replaced by NaCl in the Na 2 SO 4 -Na 2 CO 3 -Na 2 S mixture, etc.
  • the used (salt) mixture may comprise at least one sodium salt, in certain embodiments, at least one inorganic sodium salt.
  • the mixture comprises at least one sulfate.
  • the mixture comprises at least one sulfate and at least one carbonate.
  • the mixture comprises sodium sulfate.
  • the mixture comprises sodium carbonate.
  • the mixture comprises sodium sulfate and sodium carbonate.
  • the mixture comprises sodium sulfate, sodium carbonate and sodium sulfide.
  • the mixture comprises sodium sulfate, sodium carbonate and sodium chloride.
  • the mixture consists of two different salts.
  • the mixture consists of three different salts. In certain embodiments, the mixture consists of four different salts. In certain embodiments, the mixture of two or three salts consists of sodium salts. In certain embodiments, the mixture comprises at least one potassium salt. In certain embodiments, the mixture comprises at least one potassium salt and at least one sodium salt. In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate, potassium sulfate, and potassium carbonate. In certain embodiments, the mixture comprises at least two salts selected from the group of sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
  • the mole fraction of said at least two salts selected from the group in the mixture is more than 90 %.
  • the mixture comprising at least two different salts comprises salts selected from a group comprising (but not limited to): sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
  • the mixture is free of organic components.
  • a technical effect is easier removal of the protective layer when needed due to using material mixtures having lower melting temperature.
  • Another technical effect is that the protective material can be transferred onto the furnace floor and it spreads evenly without the need of any worker being inside of the furnace during the transfer and spreading.
  • Another technical effect is faster transfer and spreading of the protective material.
  • Another technical effect is a shortened recovery boiler outage time due to the fact that the transfer and spreading of the protective material can be performed simultaneously with the removal of the safety roof in an upper portion of the furnace.

Abstract

A method and apparatus for protecting a furnace floor (102) of a black liquor recovery boiler, where the furnace floor (102) is covered by a protective layer (210), the protective layer (210) being formed of a salt mixture comprising at least two different salts.

Description

FURNACE FLOOR PROTECTION IN RECOVERY BOILERS
TECHNICAL FIELD
The present invention generally relates to recovery boilers. The invention relates particularly, though not exclusively, to protecting recovery boiler floor tubes.
BACKGROUND ART
This section illustrates useful background information without admission of any technique described herein representative of the state of the art.
Recovery boilers are fueled with waste liquor (black liquor) generated in connection with pulp manufacturing. Black liquor is a highly corrosive substance which is combusted in a furnace area of the boiler. The floor of the recovery boiler furnace is made of tubes that are filled with water. If the floor tubes are directly exposed to black liquor, this may lead in unfavorable conditions that promote local corrosion or cracking of the floor tubes. During recovery boiler start up, after recovery boiler outage, the floor tubes may additionally be exposed to an excessive heat load due to start-up burner flame impingement if not protected.
In order to protect the floor tubes, a protective layer of a protecting chemical, such as sodium sulfate or sodium carbonate, may be spread onto the furnace floor during recovery boiler outage after the floor tubes have been inspected. The protective layer typically remains on the floor until the next outage period. When the floor tubes need to be inspected during this outage period a smelt bed on the floor is melted and removed. However, the protective layer under the smelt remains at least partially and has to be removed mechanically. This will take unnecessary time.
SUMMARY
It is an object of the present invention to improve furnace floor protection of a recovery boiler or at least to provide an alternative to existing technology.
According to a first aspect of the invention, there is provided a method for protecting a furnace floor of a black liquor recovery boiler, comprising:
providing a mixture comprising at least two different salts; and
covering an emptied furnace floor by a layer formed of the mixture comprising at least two different salts.
In certain embodiments, the said layer forms a protective layer to protect the floor against direct exposure of black liquor. In certain embodiments, the said layer forms a protective layer to protect the floor against start up burner flame impingement. In certain embodiments, the term emptied (or empty) furnace floor means a furnace floor that is not covered by hot smelt. In certain embodiments, this means a washed or otherwise cleaned furnace floor.
In certain embodiments, the mixture is a salt mixture. In certain embodiments, the mixture comprises at least one sodium salt.
In certain embodiments, the mixture comprises at least one inorganic sodium salt.
In certain embodiments, the mixture is free of organic material.
In certain embodiments, the mixture comprises at least one sulfate. In certain embodiments, the mixture comprises at least one sulfate and at least one carbonate.
In certain embodiments, the mixture comprises sodium sulfate.
In certain embodiments, the mixture comprises sodium carbonate.
In certain embodiments, the mixture comprises sodium sulfate and sodium carbonate.
In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate and sodium sulfide.
In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate and sodium chloride.
In certain embodiments, the mixture consists of two different salts.
In certain embodiments, the mixture consists of three different salts.
In certain embodiments, the mixture of two or three salts consists of sodium salts.
In certain embodiments, the mixture comprises at least one potassium salt.
In certain embodiments, the mixture comprises at least one potassium salt and at least one sodium salt.
In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate, potassium sulfate, and potassium carbonate.
In certain embodiments, the mixture comprises at least two salts selected from the group of sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate. In certain embodiments, the mole fraction of said at least two salts selected from the group in the mixture is more than 90 %. In certain embodiments, the mixture comprises at least two inorganic sodium salts, the mole fraction of said at least two inorganic sodium salts in the mixture being more than 90 %. In certain embodiments, the mixture comprises two inorganic sodium salts, the mole fraction of the two inorganic sodium salts in the mixture being more than 50 %, preferably more than 90 %.
In certain embodiments, the mixture comprising at least two different salts comprises salts selected from a group comprising (but not limited to): sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
In certain embodiments, the melting point of the mixture is lower than the melting points of the individual salts forming the mixture.
In certain embodiments, wherein the provided mixture has a melting point lower than or equal to 850 °C. Accordingly, in certain embodiments, the method comprises using a mixture whose melting point is lower than or equal to 850 °C. In certain embodiments, the melting point of the mixture is within the range extending from 733 to 826 °C.
In certain embodiments, the covering the furnace floor by a layer is performed by covering the furnace floor by said mixture by flowing the mixture onto the furnace floor. In certain other embodiments, the mixture is spread on the floor by manual labor.
In certain embodiments, the method comprises pumping the mixture onto the furnace floor from the outside of the furnace.
In certain embodiments, the method comprises forming the mixture in connection with pumping the mixture onto the furnace floor.
In certain embodiments, the method comprises providing the mixture as an aqueous solution. In certain embodiments, the mixture is produced by mixing the material forming the protective layer with fluid or water. In certain embodiments, the mixing is performed without a chemical reaction. Accordingly, the material forming the protective layer merely dissolves in the fluid or water.
Accordingly, in certain embodiments the forming of the mixture (or providing the mixture as an aqueous solution) is an in-situ or on-site process in contrast to any off- site process in which the mixture or aqueous solution would be formed elsewhere, e.g., another factory location, and transferred to the recovery boiler facility (or building) therefrom.
In certain embodiments, the method comprises forming a salt lake from the mixture onto the floor extending over the floor from side to side during recovery boiler outage. In certain embodiments, the mixture is allowed to precipitate thereby forming a hard salt lake on the floor. In certain embodiments, the precipitation is enhanced by firing oil or gas using start-up burners. The fluid/water in the lake evaporates. In certain embodiments, the hard salt lake forms a protective layer, to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement. Accordingly, in certain embodiments the method comprises allowing the mixture to precipitate thereby forming a protective layer to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement.
According to a second aspect of the invention, there is provided an apparatus for protecting a furnace floor of a black liquor recovery boiler, comprising means for performing the method of the first aspect or any of its embodiments.
Accordingly, in accordance with the second aspect, there is provided an apparatus for protecting a furnace floor of a black liquor recovery boiler, comprising:
providing means to provide a mixture comprising at least two different salts; and covering means to cover an emptied furnace floor by a layer formed of the mixture comprising at least two different salts. In certain embodiments, the providing means comprise a container to hold the mixture or containers to hold individual components of the mixture. In certain embodiments, the covering means comprise a pump and a pipe to feed the mixture onto the furnace floor.
According to a yet further example aspect of the invention there is provided a method for protecting a furnace floor of a black liquor recovery boiler, comprising:
covering the furnace floor by a layer formed of a mixture comprising at least two different salts to protect the furnace floor against direct exposure of black liquor.
The embodiments presented in the first aspect apply to the third aspect.
Different non-binding example aspects and embodiments of the present invention have been presented in the foregoing. The embodiments in the foregoing are used merely to explain selected aspects or steps that may be utilized in implementations of the present invention. Some embodiments may be presented only with reference to certain aspects of the invention. It should be appreciated that corresponding embodiments may apply to other aspects as well, and any appropriate combinations may be formed.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments of the invention will be described with reference to the accompanying drawings, in which:
Fig. 1 depicts a conventional method for protecting a recovery boiler floor;
Fig. 2 shows a schematic drawing of floor protection in accordance with an embodiment of the present invention;
Fig. 3 shows a schematic drawing of an arrangement for providing recovery boiler furnace floor tube protection in accordance with an embodiment;
Fig. 4 shows a schematic drawing of an arrangement for providing recovery boiler furnace floor tube protection in accordance with another embodiment; Fig. 5 shows a flow chart of a method in accordance with an embodiment;
Fig. 6 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate- sodium sulfide system; and
Fig. 7 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate- potassium sulfate-potassium carbonate system.
DETAILED DESCRIPTION
In the following description, like reference signs denote like elements or steps.
Fig. 1 depicts a conventional method for protecting a furnace floor of a black liquor recovery boiler. The furnace 100 is bounded by furnace walls 101 and the furnace floor
102 made of water tubes. Since Fig. 1 depicts the situation during a late phase of a recovery boiler maintenance break, i.e., recovery boiler outage, the furnace floor 102 has already been cleaned and inspected for cracks, and there are typically scaffoldings
103 within the furnace 100 at this moment. Also a safety roof has been installed into an upper part of the furnace 100 to ensure that any manual labor on the furnace floor 102 can be performed safely. A pile of sodium sulfate bags 107 has been brought onto the floor 102 for spreading. Once spread onto floor tubes, the sodium sulfate serves to protect the floor 102 from direct exposure of forthcoming black liquor and start-up burner flame impingement. The floor protecting method continues as follows: The spreading of the sodium sulfate is performed by manual labor, and the safety roof is removed thereafter.
It has been observed that especially in large boilers the conventional method of providing the floor with the protecting material is laborious and time-consuming. The outage time could be shortened if the protecting material could be provided onto the furnace floor more quickly. Furthermore it has been observed that if the melting point of the protecting material is low enough it will be possible to remove the protective material from the floor in a melted form during a next outage time (if required). Fig. 2 shows an obtained result of floor protection in accordance with an embodiment of the present invention. The reference numeral 210 depicts a solidified lake of protective material on the furnace floor 102 forming a protective layer that covers the floor tubes of which the floor 102 is made.
The protective layer of protective material is provided by covering the furnace floor by a protective layer, the protective layer being formed of a salt mixture comprising at least two different salts. The salt mixture may be provided as a solution, or an aqueous solution. In certain embodiments, the salt mixture is mixed with a fluid or water and the resulting mixture is flown onto the floor 102 from the outside of the furnace 100.
In certain embodiments, the method comprises causing the mixture to flow onto the furnace floor 102 from the outside of the furnace 100 via an opening in the wall of the black liquor recovery boiler, or furnace wall 101. Fig. 2 shows several openings in the furnace wall 101, such as, smelt spout opening(s) 250, primary air openings 260, secondary air openings 270, and start-up burner openings 280.
Fig. 2 also shows black liquor nozzles 230 used to spray black liquor into the furnace, via respective black liquor nozzle openings, during normal operation of the boiler, as well as the smelt spout(s) 255 pouring an overflow of smelt from the floor 102 into a dissolving tank 290 during normal operation.
In certain embodiments, the mixture is caused to flow via at least one smelt spout opening 250. In certain embodiments, the mixture is caused flow via at least one primary air opening 260. In certain embodiments, the mixture is caused flow via at least one secondary air opening 270. In addition or instead, a man door opening residing in the wall 101 and/or at least one start-up burner opening 280 and/or at least one black liquor nozzle opening may be used.
In certain embodiments, the formed lake is allowed to solidify (the salt mixture is allowed to precipitate or crystallize) forming a protective layer to protect floor tubes of the furnace 100 from direct exposure of black liquor and flame impingement. In certain embodiments, the method comprises pumping the mixture onto the furnace floor 102 from the outside of the furnace 100. Fig. 3 shows such an arrangement or apparatus in which material 321 and fluid (or water) 322 is mixed in a container 330 or similar on the outside of the furnace 100. The material 321 comprises or consists of the salt mixture. The mixing may involve agitation caused by a mixer 331. In an embodiment, the mixer 331 is operated by at least one motor. The formed mixture is pumped along an in-feed line 335 by a pump 332 via an opening 350 (which may be any suitable opening as discussed in the preceding) in the furnace wall 101 onto the floor 102. In an alternative embodiment, the mixture flows along the in-feed line 335 merely based on gravity or based on fluid (or water) pressure. Instead of the salt mixture being fed into the fluid, the different salts in question may be fed into the fluid separately, and may be mixed thereafter.
In certain embodiments, the mixture flown onto the floor settles on the floor by gravity alone forming a lake 210 extending over the whole area of the floor 102. The lake 210 is allowed to solidify (the salt mixture to precipitate or crystallize) forming a protective layer.
In certain embodiments said mixing with the fluid is performed prior to said pumping such as presented in connection with Fig. 3. In certain other embodiments, mixing is performed during said pumping (or simultaneously with flowing the mixture onto the furnace floor 102). This is shown in Fig. 4, in which material (the material herein comprises or consists of the salt mixture) from a container 421 is mixed with incoming fluid (or water) 322 in a dosing device 430, and the resulting mixture is flown along an in-feed line 435 via the opening 350 onto the floor 102. Alternatively, the mixing may occur on the furnace side of the opening 350. For example, the dosing device 430 may reside on the furnace side of the opening 350. The mixture flows along the in-feed line 435 driven by a pump, or merely based on gravity, and/or based on fluid (or water) pressure. Instead of the salt mixture being fed into the fluid, the different salts in question may be fed into the fluid separately in the dosing device 430. In certain embodiments, the method comprises performing the act of covering the furnace floor with said mixture simultaneously with a removal of the furnace safety roof during outage. Since the presented method does not require workers inside of the furnace 100, the safety roof can be removed simultaneously with flowing the mixture onto the floor 102 and spreading it by gravitation.
In yet other embodiments, the different salts are transferred onto the furnace floor in a solid state in a conventional way and mixed with fluid only there. This may be performed to make sure that the salt mixture remains on the floor and is not blown away by air when a primary air flow is started.
Fig. 5 shows a flow chart of a method in accordance with an embodiment. In the first step 801, material is mixed with a fluid to form a mixture (the material not yet being on the furnace floor). And, in the second step 802, the furnace floor is covered by the mixture.
In certain embodiments, the melting point of the (salt) mixture is lower than the melting points of the individual salts forming the mixture. Fig. 6 shows a how the melting point can be adjusted by adjusting the proportions of individual salt components in a mixture. Accordingly, Fig. 6 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate-sodium sulfide system, i.e., Na2SO4-Na2CO3-Na2S system. It can be observed that the melting point can be adjusted in between the melting point of sodium sulfide of 1176 °C and a minimum melting temperature of 733 °C which is an eutectic point of the Na2SO4-Na2CO3-Na2S system. Such a mixture has a composition of 33.6 % mole fraction of Na2SO4, 30.8 % mole fraction of Na2SO3 and 35.6 % mole fraction of Na2S.
Similarly, Fig. 7 shows a calculated liquidus projection of a sodium sulfate-sodium carbonate-potassium sulfate-potassium carbonate system. It can be observed that the melting point can be adjusted in between the melting point of potassium sulfate of 1069 °C and the eutectic point of the Na2SO4-Na2CO3-Na2S system at 671 °C. In an embodiment a mixture of Na2SO4-Na2CO3 is used. The eutectic point of the mixture is 826 °C. Such a mixture has a composition of 56 % mole fraction of Na2C04, and 44 % mole fraction of Na2C03.
The melting point of sodium sulfate is 884 °C and the melting point of sodium carbonate is 851 °C . As mentioned in the preceding, when using a mixture of salts as the protective material (that forms the protective layer on the floor) the melting point of the protective layer can be lowered. In such as case, it is easier to remove a part of the whole the protective layer in a molten form from the furnace floor when the floor needs to be cleaned and inspected for the next time. Accordingly, in certain example embodiments, the used salt components and their proportions are selected such that the melting point of the mixture is within a desired range. In certain embodiments, the method comprises using a mixture whose melting point is lower than the melting point of conventional process-like chemicals, e.g., lower than or equal to 850 °C.
As mentioned, the material forming the protective layer comprises at least two different salts. A various set of salt components and mixtures may be applied and the proportions of different salt components in the mixture depend of the mixture used. Instead of the Na2SO4-Na2CO3 and Na2SO4-Na2CO3-Na2S and Na2SO4-Na2CO3-K2SC4- K2CO3, another mixture may be used. For example, in Na2S may be replaced by NaCl in the Na2SO4-Na2CO3-Na2S mixture, etc.
More generally, the used (salt) mixture may comprise at least one sodium salt, in certain embodiments, at least one inorganic sodium salt. In certain embodiments, the mixture comprises at least one sulfate. In certain embodiments, the mixture comprises at least one sulfate and at least one carbonate. In certain embodiments, the mixture comprises sodium sulfate. In certain embodiments, the mixture comprises sodium carbonate. In certain embodiments, the mixture comprises sodium sulfate and sodium carbonate. In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate and sodium sulfide. In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate and sodium chloride. In certain embodiments, the mixture consists of two different salts. In certain embodiments, the mixture consists of three different salts. In certain embodiments, the mixture consists of four different salts. In certain embodiments, the mixture of two or three salts consists of sodium salts. In certain embodiments, the mixture comprises at least one potassium salt. In certain embodiments, the mixture comprises at least one potassium salt and at least one sodium salt. In certain embodiments, the mixture comprises sodium sulfate, sodium carbonate, potassium sulfate, and potassium carbonate. In certain embodiments, the mixture comprises at least two salts selected from the group of sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate. In certain embodiments, the mole fraction of said at least two salts selected from the group in the mixture is more than 90 %. In certain embodiments, the mixture comprising at least two different salts comprises salts selected from a group comprising (but not limited to): sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate. In certain embodiments, the mixture is free of organic components.
Without limiting the scope and interpretation of the patent claims, certain technical effects of one or more of the example embodiments of this disclosure are listed in the following. A technical effect is easier removal of the protective layer when needed due to using material mixtures having lower melting temperature. Another technical effect is that the protective material can be transferred onto the furnace floor and it spreads evenly without the need of any worker being inside of the furnace during the transfer and spreading. Another technical effect is faster transfer and spreading of the protective material. Another technical effect is a shortened recovery boiler outage time due to the fact that the transfer and spreading of the protective material can be performed simultaneously with the removal of the safety roof in an upper portion of the furnace.
Various embodiments have been presented. It should be appreciated that in this document, words comprise, include and contain are each used as open-ended expressions with no intended exclusivity. The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the invention a full and informative description of the best mode presently contemplated by the inventors for carrying out the invention. It is however clear to a person skilled in the art that the invention is not restricted to details of the embodiments presented in the foregoing, but that it can be implemented in other embodiments using equivalent means or in different combinations of embodiments without deviating from the characteristics of the invention. Furthermore, some of the features of the afore-disclosed embodiments of this invention may be used to advantage without the corresponding use of other features. As such, the foregoing description shall be considered as merely illustrative of the principles of the present invention, and not in limitation thereof. Hence, the scope of the invention is only restricted by the appended patent claims.

Claims

Claims:
1. A method for protecting a furnace floor of a black liquor recovery boiler, comprising:
providing a mixture comprising at least two different salts; and
covering an emptied furnace floor by a layer formed of the mixture comprising at least two different salts.
2. The method of claim 1, wherein the mixture comprises at least one sodium salt.
3. The method of claim 1 or 2, wherein the mixture comprises at least one sulfate.
4. The method of any preceding claim, wherein the mixture comprises at least one carbonate.
5. The method of any preceding claim, wherein the mixture comprises sodium sulfate.
6. The method of any preceding claim, wherein the mixture comprises sodium carbonate.
7. The method of any preceding claim, wherein the mixture comprises sodium sulfide.
8. The method of any preceding claim, wherein the mixture comprises sodium chloride.
9. The method of any preceding claim, wherein the mixture consists of two or three different salts, each salt being a sodium salt.
10. The method of any preceding claim, wherein the mixture comprises at least one potassium salt.
11. The method of any preceding claim, wherein the mixture comprises at least two salts selected from the group of sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
12. The method of claim 11, wherein the mole fraction of said at least two salts selected from the group in the mixture is more than 90 %.
13. The method of any preceding claim, wherein the provided mixture has a melting point lower than or equal to 850 °C.
14. The method of any preceding claim, wherein the covering the furnace floor by a protective layer is performed by covering the furnace floor by said mixture by flowing the mixture onto the furnace floor.
15. The method of any preceding claim, comprising pumping the mixture onto the furnace floor from the outside of the furnace.
16. The method of any preceding claim, comprising forming the mixture in connection with pumping the mixture onto the furnace floor.
17. The method of any preceding claim, comprising providing the mixture as an aqueous solution.
18. The method of any preceding claim, comprising forming a salt lake from the mixture onto the floor extending over the floor from side to side during recovery boiler outage.
19. The method of claim 17, comprising allowing the mixture to precipitate thereby forming a protective layer to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement.
20. An apparatus for protecting a furnace floor of a black liquor recovery boiler, comprising means for performing the method of any preceding claim.
PCT/FI2019/050047 2019-01-22 2019-01-22 Furnace floor protection in recovery boilers WO2020152387A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/FI2019/050047 WO2020152387A1 (en) 2019-01-22 2019-01-22 Furnace floor protection in recovery boilers
FI20196058A FI129619B (en) 2019-01-22 2019-12-05 Furnace floor protection in recovery boilers
SE2050015A SE544622C2 (en) 2019-01-22 2020-01-14 Furnace floor protection in recovery boilers
CA3068226A CA3068226A1 (en) 2019-01-22 2020-01-16 Furnace floor protection in recovery boilers
CL2020000178A CL2020000178A1 (en) 2019-01-22 2020-01-21 Furnace floor protection in recovery boilers
US16/747,585 US11549682B2 (en) 2019-01-22 2020-01-21 Furnace floor protection in recovery boilers
BR102020001329-7A BR102020001329A2 (en) 2019-01-22 2020-01-21 APPLIANCE TO PROTECT AN OVEN FLOOR FROM A BLACK LIQUOR RECOVERY BOILER AND ITS METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2019/050047 WO2020152387A1 (en) 2019-01-22 2019-01-22 Furnace floor protection in recovery boilers

Publications (1)

Publication Number Publication Date
WO2020152387A1 true WO2020152387A1 (en) 2020-07-30

Family

ID=71736124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2019/050047 WO2020152387A1 (en) 2019-01-22 2019-01-22 Furnace floor protection in recovery boilers

Country Status (1)

Country Link
WO (1) WO2020152387A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017179A1 (en) * 1992-02-19 1993-09-02 A. Ahlstrom Corporation Method and apparatus for improving the safety of a spent liquor recovery boiler
WO1994009206A1 (en) * 1992-10-19 1994-04-28 A. Ahlstrom Corporation Method and apparatus for recovering heat in a spent liquor recovery boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017179A1 (en) * 1992-02-19 1993-09-02 A. Ahlstrom Corporation Method and apparatus for improving the safety of a spent liquor recovery boiler
WO1994009206A1 (en) * 1992-10-19 1994-04-28 A. Ahlstrom Corporation Method and apparatus for recovering heat in a spent liquor recovery boiler

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Passage; Material and energy balances", 1985, TAPPI PRESS, Atlanta, Ga., USA, ISBN: 0-89852-046-0, article GERALD HOUGH : "Chemical Recovery in the Alkaline Pulping Processes", pages: 88 - 92, XP009522758 *
"Recovery boiler floor protection", VALMET TECHNICAL PAPER SERIES, February 2019 (2019-02-01), Finland , pages 1 - 7, XP009522759 *
ANONYMOUS: "Working Towards a Safer Recovery Boiler Operation Published Introduction", 10 July 2017 (2017-07-10), pages 1 - 5, XP055727652, Retrieved from the Internet <URL:https://www.valmet.com/globalassets/media/downloads/white-papers/power-and-recovery/safer_recovery_boiler_operation_whitepaper.pdf> *
HOGAN, EDWARD F: "Investigation of Chemical Recovery Unit Floor Tube Overheat Failures", TAPPI JOURNAL, vol. 82, no. 2, February 1999 (1999-02-01), pages 130 - 137, XP009522757, ISSN: 0734-1415 *

Similar Documents

Publication Publication Date Title
CN109000261A (en) Stoker fired grate formula garbage burning boiler construction method of installation
CN109628687A (en) A method of preventing converter bottom blowing gas-feeding element tuyere position bleed-out
WO2020152387A1 (en) Furnace floor protection in recovery boilers
US11549682B2 (en) Furnace floor protection in recovery boilers
FI129620B (en) Furnace floor protection in recovery boilers
US11274824B2 (en) Furnace floor protection in recovery boilers
WO2020152388A1 (en) Furnace floor protection in recovery boilers
US20180180366A1 (en) Chemical cleaning of furnaces, heaters and boilers during their operation
ITBS20090243A1 (en) WASTE TREATMENT METHOD
FR3053445B1 (en) METHOD FOR CLEANING BOILERS, DEVICE AND BOILER THEREFOR
US3404663A (en) Prevention of furnace corrosion
Xu et al. Technological review on enhancing the energy efficiency of MSW incineration plant
JP2008036537A (en) Method of cleaning fuel piping
Rosenberg et al. PERFORMANCE OF DUCT AND STACK MATERIALS IN WET FGD SYSTEMS
Nederlof Innovative New Chimney Design For Wet Flue Gas
Hesseling et al. Efficiency increase of waste-to-energy plants evaluation of experience with boiler corrosion and corrosion reduction
Golwalkar et al. Erection and Commissioning
Sikanen Recovery boiler carryover
Golwalkar et al. Management Approach to Increasing Energy Efficiency
Golwalkar et al. Safety Management
Kletz Some loss prevention case histories
CN117897505A (en) Steel slag heat recovery
Chandwani et al. Environmental issues to be addressed in Indian alumina refineries and their possible solutions
JP5011080B2 (en) Cleaning method inside waste liquid incinerator
Rencken World-class air pollution control technology to be implemented at Kusile Power Station.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911673

Country of ref document: EP

Kind code of ref document: A1