WO2020149643A1 - Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same - Google Patents

Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same Download PDF

Info

Publication number
WO2020149643A1
WO2020149643A1 PCT/KR2020/000748 KR2020000748W WO2020149643A1 WO 2020149643 A1 WO2020149643 A1 WO 2020149643A1 KR 2020000748 W KR2020000748 W KR 2020000748W WO 2020149643 A1 WO2020149643 A1 WO 2020149643A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
metallocene catalyst
olefin polymer
catalyst
Prior art date
Application number
PCT/KR2020/000748
Other languages
French (fr)
Korean (ko)
Inventor
이예진
송은경
홍대식
이혜경
김중수
신은영
곽진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190172478A external-priority patent/KR102432898B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/043,194 priority Critical patent/US11384183B2/en
Priority to EP20742086.0A priority patent/EP3760654A4/en
Priority to CN202080002414.1A priority patent/CN112020522B/en
Publication of WO2020149643A1 publication Critical patent/WO2020149643A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a hybrid supported metallocene catalyst having high activity and high polymerizability and a method for producing an olefin polymer using the same.
  • Ziegler-Natta catalysts of titanium or vanadium compounds have been widely used in the commercial manufacturing process of the existing olefin polymers. Although the Ziegler-Natta catalysts have high activity, the molecular weight distribution of the resulting polymer is wide due to the high activity catalyst. Since the composition distribution of the monomers is not uniform, there is a limit to securing desired physical properties.
  • metallocene catalyst in which a transition metal such as titanium, zirconium or hafnium and a ligand including a cyclopentadiene functional group are combined has been developed and widely used.
  • Metallocene compounds are generally activated by using aluminoxane, borane, borate or other activators.
  • a metallocene compound having a ligand including a cyclopentadienyl group and two sigma chloride ligands uses aluminoxane as an activator.
  • the metallocene catalyst is a single active point catalyst having one kind of active point, and the molecular weight distribution of the resulting polymer is narrow, and the molecular weight, stereoregularity, crystallinity, and especially the reactivity of the comonomer can be adjusted depending on the structure of the catalyst and ligand.
  • an olefin polymer polymerized with a metallocene catalyst has a low melting point and a narrow molecular weight distribution, and thus, when applied to some products, there is a problem in that it is difficult to apply in the field, such as a significant drop in productivity due to the effect of extrusion load.
  • PE-RT Polyethylene-Raised Temperature
  • FNCT stress cracking resistance
  • the present invention compensates for shortcomings in product processing by improving the Broad Orthogonal Comonomer Distribution (BOCD) and melt flow rate ratio (MFRR), and can manufacture olefin polymers for pipes with excellent physical properties. It is to provide a method for producing a hybrid supported metallocene catalyst and an olefin polymer using the same.
  • BOCD Broad Orthogonal Comonomer Distribution
  • MFRR melt flow rate ratio
  • the first metallocene compound represented by Formula 1 below provides a hybrid supported metallocene catalyst comprising a.
  • X 1 and X 2 are each independently halogen
  • R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl
  • R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 Alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • A is carbon, silicon or germanium
  • R 9 and R 10 are each independently C 1-2 straight chain alkyl; Or C 3-10 straight chain alkyl substituted with C 1-10 alkoxy, at least one of R 9 and R 10 is C 3-10 straight chain alkyl substituted with C 1-10 alkoxy,
  • X 3 and X 4 are each independently halogen
  • R 11 to R 20 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1- 20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • At least one of R 11 and R 12 is C 2-20 alkoxyalkyl
  • At least one of R 17 to R 20 is C 1-20 alkyl.
  • a method for producing an olefin polymer comprising the step of polymerizing an olefin monomer is provided.
  • the melt flow rate ratio (MFRR; Melt flow rate ratio) is 22 to 50
  • stress cracking resistance (FNCT; Full Notch Creep Test)
  • FNCT Full Notch Creep Test
  • the present invention as well as exhibiting high activity and polymerizability in the production of olefin polymers, it is possible to secure excellent processability and long-term properties by broadening the molecular weight distribution of synthesized olefin polymers, and contributing to reducing catalyst costs.
  • a supported metallocene catalyst and a method for producing an olefin polymer using the hybrid supported metallocene catalyst may be provided. Therefore, the olefin polymer prepared according to the method of the present invention is suitable for use in pipes because of its excellent processability and long-term physical properties.
  • a first metallocene compound represented by the following Chemical Formula 1 a second metallocene compound represented by the following Chemical Formula 2, and a carrier supporting the first and second metallocene compounds
  • a hybrid supported metallocene catalyst is provided.
  • X 1 and X 2 are each independently halogen
  • R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl
  • R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 Alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • A is carbon, silicon or germanium
  • R 9 and R 10 are each independently C 1-2 straight chain alkyl; Or C 3-10 straight chain alkyl substituted with C 1-10 alkoxy, at least one of R 9 and R 10 is C 3-10 straight chain alkyl substituted with C 1-10 alkoxy,
  • X 3 and X 4 are each independently halogen
  • R 11 to R 20 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1- 20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
  • At least one of R 11 and R 12 is C 2-20 alkoxyalkyl
  • At least one of R 17 to R 20 is C 1-20 alkyl.
  • Halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • C 1-20 alkyl may be straight chain, branched chain or cyclic alkyl. Specifically, C 1-20 alkyl is C 1-20 straight chain alkyl; C 1-10 straight chain alkyl; C 1-5 straight chain alkyl; C 3-20 branched chain or cyclic alkyl; C 3-15 branched or cyclic alkyl; Or C 3-10 branched chain or cyclic alkyl.
  • C 1-20 alkyl is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group or cyclo Hexyl group and the like.
  • C 2-20 The alkenyl can be straight chain, branched chain or cyclic alkenyl.
  • C 2-20 alkenyl is C 2-20 straight chain alkenyl, C 2-10 straight chain alkenyl, C 2-5 straight chain alkenyl, C 3-20 branched chain alkenyl, C 3-15 branched chain alkenyl Kenyl, C 3-10 branched chain alkenyl, C 5-20 cyclic alkenyl or C 5-10 cyclic alkenyl. More specifically, C 2-20 alkenyl may be ethenyl, propenyl, butenyl, pentenyl or cyclohexenyl, and the like.
  • C 6-20 aryl may mean a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, C 6-20 aryl may be a phenyl group, a naphthyl group or anthracenyl group.
  • C 7-20 Alkylaryl may mean a substituent in which one or more hydrogens of aryl are substituted by alkyl.
  • C 7-20 alkylaryl may be methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl, or cyclohexylphenyl.
  • Arylalkyl may mean a substituent in which one or more hydrogens of alkyl are substituted by aryl.
  • the arylalkyl may be a benzyl group, phenylpropyl or phenylhexyl.
  • alkoxy examples include methoxy group, ethoxy group, phenyloxy group, cyclohexyloxy group, and tert-butoxyhexyl group.
  • substituents are optionally composed of hydroxy, halogen, alkyl, heterocycloalkyl, alkoxy, alkenyl, silyl, sulfonate, sulfone, aryl and heteroaryl within the range of exerting the same or similar effect as the desired effect. It may be substituted with one or more substituents selected from.
  • the hybrid supported metallocene catalyst according to the embodiment may exhibit high activity and polymerizability by using together the first metallocene compound represented by Chemical Formula 1 and the second metallocene compound represented by Chemical Formula 2
  • the molecular weight distribution of the synthesized olefin polymer is somewhat widened to improve bio-CD (BOCD) and melt flow rate ratio (MFRR) to ensure excellent processability.
  • long-term physical properties such as stress cracking resistance (FNCT) of the olefin polymer to be synthesized can be secured.
  • the olefin polymer may be suitable for use in pipes.
  • the two positions of the two indenyl groups which are ligands are substituted with methyl, and the positions of four (R 1 and R 5 ) are each substituted with alkyl phenyl.
  • R 1 and R 5 By being substituted with, it can exhibit better catalytic activity by an inductive effect capable of supplying sufficient electrons.
  • the first metallocene compound contains zirconium (Zr) as a central metal, and thus has more orbitals capable of accepting electrons compared to other group 14 elements such as hafnium (Hf). It can exhibit a characteristic that can be easily combined with a monomer with a higher affinity, thereby exhibiting a better catalytic activity improvement effect.
  • Zr zirconium
  • Hf hafnium
  • R 1 and R 5 may each independently be C 6-12 aryl substituted with C 1-10 alkyl or phenyl substituted with C 3-6 branched chain alkyl, and more specifically May be tert-butyl phenyl.
  • the substitution position of the alkyl group with respect to the phenyl group may be the 4th position corresponding to the R 1 or R 5 position and the para position bonded to the indenyl group.
  • R 2 to R 4 and R 6 to R 8 may be hydrogen, and X 1 and X 2 may be chloro.
  • A may be silicon
  • substituents R 9 and R 10 of A are each independently methyl; Or C 5-9 straight chain alkyl substituted with tert-butoxy, but may be C 5-9 straight chain alkyl substituted with at least tert-butoxy among R 9 and R 10 . More specifically, R 9 is methyl, and R 10 may be normal-hexyl substituted with tert-butoxy.
  • a representative example of the first metallocene compound represented by Chemical Formula 1 may be Chemical Formula 1-1.
  • the first metallocene compound represented by Chemical Formula 1 may be synthesized by applying known reactions, and detailed examples of synthesis may be referred to Examples.
  • the second metallocene compound represented by Chemical Formula 2 has a structure in which an indenyl group and a cyclopentadienyl group are non-crosslinked, and can easily control the electronic/stereoscopic environment around the transition metal zirconium (Zr).
  • Zr transition metal zirconium
  • the second metallocene compound contains zirconium (Zr) as the central metal, and thus has more orbitals capable of accepting electrons compared to other group 14 elements such as hafnium (Hf). It can exhibit a characteristic that can be easily combined with a monomer with a higher affinity, thereby exhibiting a better catalytic activity improvement effect.
  • Zr zirconium
  • Hf hafnium
  • C 2-20 alkoxyalkyl may be substituted at least one position (one of R 11 to R 16 ) of the indenyl group, and specifically, to R 11 or R 12 C 2-20 alkoxyalkyl may be substituted, and more specifically, R 11 or R 12 may be substituted with C 5-9 straight chain alkyl substituted with tert-butoxy or hexyl substituted with tert-butoxy.
  • C 2-20 alkoxyalkyl is substituted on at least one of the indenyl groups, thereby affecting the copolymerization of an alpha olefin comonomer such as 1-butene or 1-hexene.
  • the C 2-20 alkoxyalkyl substituted with the indenyl group can form a covalent bond through close interaction with the silanol group on the silica surface used as a support, thereby enabling stable supported polymerization.
  • C 1-20 alkyl may be substituted at at least one position (one of R 17 to R 20 ) of the cyclopentadienyl group, specifically, one of R 18 and R 19 may be C 1-20 alkyl It may be substituted, and more specifically, one of R 18 and R 19 may be substituted with normal-butyl.
  • R 11 , R 13 to R 17 , R 19 and R 20 may be hydrogen, and X 3 and X 4 may be chloro.
  • a representative example of the second metallocene compound represented by Chemical Formula 2 may be Chemical Formula 2-1.
  • the second metallocene compound represented by Chemical Formula 2 may be synthesized by applying known reactions, and detailed examples of synthesis may be referred to Examples.
  • the first and second metallocene compounds have the above structural characteristics and can be stably supported on a carrier.
  • a carrier containing a hydroxy group or a siloxane group on the surface may be used.
  • a carrier containing a hydroxy group or a siloxane group having high reactivity may be used by drying at a high temperature to remove moisture on the surface.
  • silica, alumina, magnesia or a mixture thereof can be used.
  • the carrier may be dried at a high temperature, and these may typically include oxides, carbonates, sulfates, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 and Mg(NO 3 ) 2 .
  • the drying temperature of the carrier is preferably 200 to 800°C, more preferably 300 to 600°C, and most preferably 300 to 400°C.
  • the drying temperature of the carrier is less than 200°C, there is too much moisture so that the surface moisture and the co-catalyst react, and when it exceeds 800°C, the surface area decreases as the pores of the carrier surface are combined, and there are many hydroxyl groups on the surface. It is not preferable because the reaction site with the co-catalyst decreases because it disappears and only the siloxane group remains.
  • the amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol/g, and more preferably 0.5 to 5 mmol/g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or drying conditions, such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is less than 0.1 mmol/g, there are few reaction sites with the cocatalyst, and if it exceeds 10 mmol/g, it is not preferable because it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. not.
  • the hybrid supported metallocene catalyst according to the above embodiment may further include a cocatalyst to activate the metallocene compound as a catalyst precursor.
  • the cocatalyst is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it can be used when polymerizing an olefin under a general metallocene catalyst.
  • the cocatalyst may be one or more compounds selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5.
  • R 21 , R 22 and R 23 are each independently hydrogen, halogen, C 1-20 hydrocarbyl group, or C 1-20 hydrocarbyl group substituted with halogen,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • R 24 are each independently halogen, C 1-20 hydro-car invoking, C 1-20 hydro-car bilok group, or substituted C 1-20 hydro-car invoking by halogen,
  • L is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • W is a group 13 element
  • A is each independently a C 1-20 hydrocarbyl group; C 1-20 hydrocarbyloxy group; And one or more substituents in which one or more hydrogen atoms of these substituents are substituted with one or more substituents among halogen, C 1-20 hydrocarbyloxy group and C 1-20 hydrocarbyl(oxy)silyl group.
  • the hydrocarbyl group is a monovalent functional group in which hydrogen atoms are removed from the hydrocarbon, and an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkylaryl group, an alkenylaryl group, and an alkyl group And a nilaryl group.
  • the hydrocarbyl group having 1 to 20 carbon atoms may be a hydrocarbyl group having 1 to 15 carbon atoms or 1 to 10 carbon atoms.
  • the hydrocarbyl group having 1 to 20 carbon atoms is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, n-hexyl group , n-heptyl group, cyclohexyl group, such as a straight chain, branched chain or cyclic alkyl group; Or it may be an aryl group such as a phenyl group, naphthyl group, or anthracenyl group.
  • the hydrocarbyloxy group is a functional group in which the hydrocarbyl group is bonded to oxygen.
  • the hydrocarbyloxy group having 1 to 20 carbon atoms may be a hydrocarbyloxy group having 1 to 15 carbon atoms or 1 to 10 carbon atoms.
  • the hydrocarbyloxy group having 1 to 20 carbon atoms is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, an n-pentoxy group , straight-chain, branched-chain or cyclic alkoxy groups such as n-hexoxy group, n-heptoxy group and cyclohexoxy group; Or it may be an aryloxy group such as a phenoxy group or a naphthalenoxy group.
  • the hydrocarbyl (oxy) silyl group is a functional group in which 1-3 hydrogens of -SiH 3 are substituted with 1 to 3 hydrocarbyl groups or hydrocarbyloxy groups.
  • the hydrocarbyl (oxy) silyl group having 1 to 20 carbon atoms may be a hydrocarbyl (oxy) silyl group having 1 to 15 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
  • hydrocarbyl (oxy) silyl groups having 1 to 20 carbon atoms include alkyls such as methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group and dimethylpropylsilyl group.
  • alkyls such as methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group and dimethylpropylsilyl group.
  • Silyl group Alkoxysilyl groups such as methoxysilyl group, dimethoxysilyl group, trimethoxysilyl group and dimethoxyethoxysilyl group
  • alkoxyalkylsilyl groups such as methoxydimethylsilyl group, diethoxymethylsilyl group, and dimethoxypropylsilyl group.
  • Non-limiting examples of the compound represented by Chemical Formula 3 may include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, or tert-butyl aluminoxane.
  • non-limiting examples of the compound represented by Chemical Formula 4 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-sec-butyl aluminum, To tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide or dimethyl aluminum And thoxide.
  • non-limiting examples of the compound represented by Formula 5 include trimethylammonium tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis( Pentafluorophenyl)borate, N,N-dimethylanilinium n-butyltris(pentafluorophenyl)borate, N,N-dimethylanilinium benzyltris(pentafluorophenyl)borate, N,N-dimethylanilinium Tetrakis(4-(t-butyldimethylsilyl)-2,3,5,6-tetrafluorophenyl)borate, N,N-dimethylanilinium tetrakis(4-(triisopropylsilyl)-2,3 ,5,6-tetrafluorophenyl)
  • the use content of the co-catalyst can be appropriately adjusted according to the properties or effects of the desired hybrid supported metallocene catalyst.
  • the hybrid supported metallocene catalyst according to the above embodiment is prepared, for example, by supporting a cocatalyst on a carrier and supporting a first and second metallocene compound as a catalyst precursor on a cocatalyst carrier.
  • a cocatalyst on a carrier
  • a first and second metallocene compound as a catalyst precursor on a cocatalyst carrier.
  • the co-catalyst supported carrier can be prepared by adding the co-catalyst to the carrier dried at high temperature and stirring it at a temperature of about 20 to 120°C.
  • the first and second metallocene compounds are added to the co-catalyst carrier obtained in the step of supporting the co-catalyst on the carrier, which is again about 20 to 120°C. It can be prepared by stirring at a temperature of the supported catalyst.
  • the first and second metallocene compounds are added to the cocatalyst carrier and stirred, and then a cocatalyst is further added to prepare a supported catalyst.
  • the content of the carrier, cocatalyst, cocatalyst carrier, and transition metal compound used in the hybrid supported metallocene catalyst according to the above embodiment may be appropriately adjusted according to the properties or effects of the desired supported catalyst.
  • the molar ratio of the first metallocene compound and the second metallocene compound may be 1:1 to 15:1.
  • the first and second metallocene compounds in the mixing molar ratio described above, it is possible to provide a hybrid supported metallocene catalyst having high activity and high polymerizability compared to the prior art.
  • the molecular weight distribution can be widened to improve long-term physical properties such as stress cracking resistance (FNCT), and bioCD (BOCD) and melt flow rate ratio. The workability can be improved by improving (MFRR).
  • the molar ratio of the first metallocene compound and the second metallocene compound is less than 1:1, copolymerizability and processability may be deteriorated, and when the molar ratio exceeds 15:1, activity and physical properties may be deteriorated. .
  • the weight ratio of the total metallocene compound and the carrier including the first and second metallocene compounds is 1:10 to 1:1,000 or 1: 10 to 1:500.
  • the carrier and the metallocene compound are included in the above-described range of rangrang ratio, an optimum shape may be exhibited.
  • the weight ratio of the cocatalyst and the carrier may be 1:1 to 1:100 or 1:1 to 1:50.
  • the cocatalyst and carrier are included in the above weight ratio, it is possible to optimize the active and polymer microstructure.
  • hydrocarbon solvents such as pentane, hexane, and heptane
  • an aromatic solvent such as benzene or toluene may be used.
  • the manufacturing method of the supported catalyst is not limited to the contents described in the present specification, and the manufacturing method may further employ a step conventionally employed in the technical field to which the present invention pertains, and the step of the manufacturing method ( The field(s) can be modified by the step(s), which are usually changeable.
  • a method for producing an olefin polymer comprising the step of polymerizing an olefin monomer is provided.
  • the hybrid supported metallocene catalyst has a broad molecular weight distribution compared to an olefin polymer polymerized using a conventional metallocene compound catalyst due to a specific structure, thereby providing excellent processability and long-term physical properties. Can provide.
  • olefin monomer polymerizable with the hybrid supported catalyst examples include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin monomer or triene olefin monomer having two or more double bonds may also be polymerized.
  • the monomers are ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-hexadecene, 1-atocene, norbornene, norbornadiene, ethylidene norbornene, phenyl norbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and may be copolymerized by mixing two or more of these monomers.
  • the comonomer is one or more comonomers selected from the group consisting of propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene. It is preferred.
  • polymerization reactions of olefin monomers such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process, or an emulsion polymerization process, may be employed, and more specifically ,
  • the polymerization reaction can be carried out in a semi-batch reactor.
  • the polymerization reaction may be performed under a temperature of about 50 to 110°C or about 60 to 100°C and a pressure of about 1 to 100kgf/cm 2 or about 1 to 50 kgf/cm 2 .
  • the hybrid supported catalyst in the polymerization reaction, may be used in a dissolved or diluted state in a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene, and the like.
  • a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene, and the like.
  • the olefin polymer prepared by the above method has a somewhat wider molecular weight distribution as it is prepared using the above-mentioned hybrid supported metallocene catalyst, and improves bio-CD (BOCD) and melt flow rate ratio (MFRR) to ensure excellent processability It is also possible to secure long-term physical properties such as stress cracking resistance (FNCT) of the olefin polymer to be synthesized.
  • BOCD bio-CD
  • MFRR melt flow rate ratio
  • FNCT stress cracking resistance
  • the olefin polymer has a melt flow rate ratio (MFRR) of 22 to 50 or 25 to 32, and a stress cracking resistance (FNCT; Full Notch Creep Test) of 1000 to 3000 hr or 1000 to 2000 hr,
  • MFRR melt flow rate ratio
  • FNCT stress cracking resistance
  • FNCT Full Notch Creep Test
  • the Bio Orthogonal Comonomer Distribution (BOCD) index may be 0.8 to 3.0 or 0.9 to 1.4.
  • the polymer to be polymerized using the above-mentioned hybrid supported catalyst is, for example, an ethylene-alpha olefin copolymer, preferably an ethylene-1-butene polymer, the above physical properties can be more appropriately met.
  • Step 1 Preparation of ((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)silane
  • 2-Methyl-4-t-butyl-phenylindene (10.0 g, compound 1) was dissolved in 76.2 mL of diethyl ether (Et 2 O) and cooled to -25 °C. Then, 16.0 mL of n-butyllithium solution (2.5 M, hexane solvent) was slowly added dropwise, and then stirred at room temperature for 4 hours. Thereafter, the mixture was cooled to -25°C, 1 mol% of copper cyanide (CuCN) was added, and 2.92 mL of (6-(t-butoxy)hexyl)methyldichlorosilane was dissolved in 38 mL of diethyl ether and slowly added dropwise.
  • Et 2 O diethyl ether
  • CuCN copper cyanide
  • Step 2 Preparation of [((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)]zirconium dichloride
  • Step 2 Preparation of 3-(6-(t-butoxy)hexyl)-1H-inden-1-yl)(3-butylcyclopenta-2,4-dien-1-yl) zirconium dichloride
  • Example 1 Preparation of hybrid supported catalyst and olefin polymer using the same
  • Silica (SYLOPOL 948 manufactured by Grace Davison) was dehydrated at a temperature of 200° C. for 15 hours under vacuum. 10 g of dried silica was placed in a glass reactor, and 100 mL of toluene was further added and stirred. 50 mL of a 10% by weight methylaluminoxane (MAO)/toluene solution was added, and the temperature was raised to 60° C., followed by reaction for 12 hours with stirring. After the temperature of the reactor was lowered to 40° C., stirring was stopped, and after being set for 10 minutes, the reaction solution was decanted.
  • MAO methylaluminoxane
  • Toluene was filled up to 100 mL of the reactor, and 0.01 mmol of the first metallocene compound (A) of Preparation Example 1 was dissolved in 10 ml of toluene and added together, followed by reaction for 1 hour. After the reaction was over, 0.01 mmol of the second metallocene compound (B) of Preparation Example 2 was dissolved in 10 ml of toluene and added together, followed by further reacting for 1 hour.
  • TEAL 2ml (1.0M hexane), 1-butene 10g was added to a 2L autoclave high-pressure reactor, and 0.8kg of hexane was added, followed by stirring at 500rpm and raising the temperature to 80°C.
  • Example 1 a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that the first metallocene compound (A) of Preparation Example 1 was used as 0.05 mmol.
  • Example 1 a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that the first metallocene compound (A) of Preparation Example 1 was used in 0.1 mmol.
  • Example 1 a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.15 mmol of the first metallocene compound (A) of Preparation Example 1 was used.
  • Example 1 instead of the first and second metallocene compound composition (A/B), the second metallocene compound (B) of Preparation Example 2 was set to be the molar ratio (1/1) of Table 1 below.
  • a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.01 mmol and 0.01 mmol of the metallocene compound (C) represented by Formula C below were used.
  • An olefin polymer was prepared in the same manner as in Example 1, except that the Ziegler-Natta catalyst of Preparation Example 3 (Z/N catalyst) was used as 0.1 mmol.
  • Example 1 a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that only the first metallocene compound (A) of Preparation Example 1 was used in 0.1 mmol.
  • Example 1 a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that only the second metallocene compound (B) of Preparation Example 2 was used in 0.1 mmol.
  • Example 1 instead of the first and second metallocene compound composition (A/B), the second metallocene compound (B) of Preparation Example 2 was set to be the molar ratio (1/1) of Table 1 below.
  • a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.01 mmol and 0.01 mmol of the metallocene compound (D) represented by the following Chemical Formula D were used.
  • the metallocene compound (E) 0.01 represented by the following Chemical Formula E is set to be the molar ratio (1/1) of Table 1 below.
  • a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that mmol and 0.01 mmol of the metallocene compound (F) represented by Formula F below were used.
  • Test Example Evaluation of activity of hybrid supported catalyst and physical properties of olefin polymer
  • melt index MI2.16
  • g weight of the polymer melted for 10 minutes.
  • the polymers of Examples 1 to 4 of the present application show high activity using a supported catalyst using a combination of specific precursors.
  • the polymers of Examples 1 to 4 are all excellent in MFRR, BOCD, and FNCT compared to the comparative example, and thus can provide a polymer for pipes with improved processability and long-term physical properties.

Abstract

According to the present invention, provided are a catalyst composition and a method for preparing an olefin polymer by using the catalyst composition, the catalyst composition being capable of contributing to catalyst cost saving by exhibiting high activity in an olefin polymerization reaction, and being capable of exhibiting excellent processability and long-term properties by exhibiting high copolymerizing ability, thereby being suitable for providing a polymer for pipes.

Description

혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법Hybrid supported metallocene catalyst and method for producing olefin polymer using same
관련 출원(들)과의 상호 인용Cross-citation with relevant application(s)
본 출원은 2019년 1월 17일자 한국 특허 출원 제10-2019-0006226호 및 2019년 12월 20일자 한국 특허 출원 제10-2019-0172478호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0006226 filed on January 17, 2019 and Korean Patent Application No. 10-2019-0172478 filed on December 20, 2019. All content disclosed in the literature is incorporated as part of this specification.
본 발명은 고활성 및 고중합성을 갖는 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법에 관한 것이다.The present invention relates to a hybrid supported metallocene catalyst having high activity and high polymerizability and a method for producing an olefin polymer using the same.
기존의 올레핀 중합체의 상업적 제조 과정에는 티타늄 또는 바나듐 화합물의 지글러-나타 촉매가 널리 사용되어 왔는데, 상기 지글러-나타 촉매는 높은 활성을 갖지만, 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓으며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있었다.Ziegler-Natta catalysts of titanium or vanadium compounds have been widely used in the commercial manufacturing process of the existing olefin polymers. Although the Ziegler-Natta catalysts have high activity, the molecular weight distribution of the resulting polymer is wide due to the high activity catalyst. Since the composition distribution of the monomers is not uniform, there is a limit to securing desired physical properties.
이에 따라, 최근에는 티타늄, 지르코늄, 하프늄 등의 전이 금속과 사이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 개발되어 널리 사용되고 있다. 메탈로센 화합물은 일반적으로 알루미녹산, 보레인, 보레이트 또는 다른 활성화제를 이용하여 활성화시켜 사용한다. 예를 들어, 사이클로펜타다이에닐기를 포함한 리간드와 두 개의 시그마 클로라이드 리간드를 갖는 메탈로센 화합물은 알루미녹산을 활성화제로 사용한다. 이러한 메탈로센 촉매는 하나의 종류의 활성점을 가진 단일 활성점 촉매로 생성 중합체의 분자량 분포가 좁고 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도, 특히 공단량체의 반응성을 조절할 수 있는 장점이 있다. 다만, 메탈로센 촉매로 중합한 올레핀 중합체는 녹는점이 낮고, 분자량 분포가 좁아 일부 제품에 응용할 경우, 압출 부하 등의 영향으로 생산성이 현저히 떨어지는 등 현장적용이 어려운 문제가 있다.Accordingly, recently, a metallocene catalyst in which a transition metal such as titanium, zirconium or hafnium and a ligand including a cyclopentadiene functional group are combined has been developed and widely used. Metallocene compounds are generally activated by using aluminoxane, borane, borate or other activators. For example, a metallocene compound having a ligand including a cyclopentadienyl group and two sigma chloride ligands uses aluminoxane as an activator. The metallocene catalyst is a single active point catalyst having one kind of active point, and the molecular weight distribution of the resulting polymer is narrow, and the molecular weight, stereoregularity, crystallinity, and especially the reactivity of the comonomer can be adjusted depending on the structure of the catalyst and ligand. There are advantages. However, an olefin polymer polymerized with a metallocene catalyst has a low melting point and a narrow molecular weight distribution, and thus, when applied to some products, there is a problem in that it is difficult to apply in the field, such as a significant drop in productivity due to the effect of extrusion load.
특히, 기존 PE-RT(Polyethylene-Raised Temperature) 파이프 제품의 경우, 메탈로센 촉매를 이용한 에틸렌 공중합체로써, 분자량 분포가 좁아 원하는 물성을 얻을 수 있는 장점이 있다. 반면, 좁은 분자량 분포로 인해 내응력 균열성(FNCT) 등과 같은 장기물성 및 가공성이 기존 PE-RT 파이프 대비 떨어지는 문제점이 있다.Particularly, in the case of the existing PE-RT (Polyethylene-Raised Temperature) pipe product, it is an ethylene copolymer using a metallocene catalyst, and has a narrow molecular weight distribution, thereby obtaining desired properties. On the other hand, due to the narrow molecular weight distribution, there is a problem that long-term physical properties and processability such as stress cracking resistance (FNCT) are inferior to existing PE-RT pipes.
본 발명은 비오씨디(BOCD; Broad Orthogonal Comonomer Distribution) 및 용융 유동율비(MFRR; Melt flow rate ratio)의 개선으로 제품 가공에서의 단점을 보완하고, 우수한 물성을 갖는 파이프용 올레핀 중합체를 제조할 수 있는 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법을 제공하기 위한 것이다.The present invention compensates for shortcomings in product processing by improving the Broad Orthogonal Comonomer Distribution (BOCD) and melt flow rate ratio (MFRR), and can manufacture olefin polymers for pipes with excellent physical properties. It is to provide a method for producing a hybrid supported metallocene catalyst and an olefin polymer using the same.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 제1 메탈로센 화합물, 하기 화학식 2로 표시되는 제2 메탈로센 화합물, 및 상기 제1 및 제2 메탈로센 화합물을 담지하는 담체를 포함하는 혼성 담지 메탈로센 촉매가 제공된다.According to an embodiment of the present invention, the first metallocene compound represented by Formula 1 below, the second metallocene compound represented by Formula 2 below, and the carrier supporting the first and second metallocene compounds It provides a hybrid supported metallocene catalyst comprising a.
[화학식 1][Formula 1]
Figure PCTKR2020000748-appb-I000001
Figure PCTKR2020000748-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
X1 및 X2는 각각 독립적으로 할로겐이고,X 1 and X 2 are each independently halogen,
R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환된 C6-20 아릴이고,R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl,
R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 Alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
A는 탄소, 실리콘 또는 게르마늄이고,A is carbon, silicon or germanium,
R9 및 R10는 각각 독립적으로 C1-2 직쇄 알킬; 또는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이되, R9 및 R10 중 적어도 하나는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이고,R 9 and R 10 are each independently C 1-2 straight chain alkyl; Or C 3-10 straight chain alkyl substituted with C 1-10 alkoxy, at least one of R 9 and R 10 is C 3-10 straight chain alkyl substituted with C 1-10 alkoxy,
[화학식 2][Formula 2]
Figure PCTKR2020000748-appb-I000002
Figure PCTKR2020000748-appb-I000002
상기 화학식 2에서,In Chemical Formula 2,
X3 및 X4는 각각 독립적으로 할로겐이고,X 3 and X 4 are each independently halogen,
R11 내지 R20은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C2-20 알콕시알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이되,R 11 to R 20 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1- 20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
R11 및 R12 중 적어도 하나는 C2-20 알콕시알킬이고,At least one of R 11 and R 12 is C 2-20 alkoxyalkyl,
R17 내지 R20 중 적어도 하나는 C1-20 알킬이다.At least one of R 17 to R 20 is C 1-20 alkyl.
본 발명의 다른 구현예에 따르면, 상기 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 올레핀 중합체의 제조 방법이 제공된다.According to another embodiment of the present invention, in the presence of the hybrid supported metallocene catalyst, a method for producing an olefin polymer comprising the step of polymerizing an olefin monomer is provided.
본 발명의 또 다른 구현예에 따르면, 상기 올레핀 중합체의 제조 방법에 의해 제조되며, 용융 유동율비(MFRR; Melt flow rate ratio)가 22 내지 50이고, 내응력 균열성(FNCT; Full Notch Creep Test)가 1000 내지 3000hr이고, 비오씨디(BOCD; Broad Orthogonal Comonomer Distribution) 인덱스가 0.8 내지 3.0인 올레핀 중합체가 제공된다.According to another embodiment of the present invention, it is produced by the method for producing the olefin polymer, the melt flow rate ratio (MFRR; Melt flow rate ratio) is 22 to 50, stress cracking resistance (FNCT; Full Notch Creep Test) Provided is an olefin polymer having a 1000 to 3000 hr and a Bio Orthogonal Comonomer Distribution (BOCD) index of 0.8 to 3.0.
본 발명에 따르면, 올레핀 중합체 제조시 높은 활성 및 중합성을 나타낼 수 있을 뿐만 아니라, 합성되는 올레핀 중합체의 분자량 분포를 다소 넓혀 우수한 가공성과 장기 물성을 확보할 수 있으며, 촉매 원가 절감에 기여할 수 있는 혼성 담지 메탈로센 촉매 및 상기 혼성 담지 메탈로센 촉매를 이용한 올레핀 중합체의 제조 방법이 제공될 수 있다. 따라서, 본 발명의 방법에 따라 제조된 올레핀 중합체는 가공성과 장기 물성이 우수하므로 파이프용으로 사용하기에 적합하다.According to the present invention, as well as exhibiting high activity and polymerizability in the production of olefin polymers, it is possible to secure excellent processability and long-term properties by broadening the molecular weight distribution of synthesized olefin polymers, and contributing to reducing catalyst costs. A supported metallocene catalyst and a method for producing an olefin polymer using the hybrid supported metallocene catalyst may be provided. Therefore, the olefin polymer prepared according to the method of the present invention is suitable for use in pipes because of its excellent processability and long-term physical properties.
이하 발명의 구체적인 구현예에 따른 혼성 담지 메탈로센 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 올레핀 중합체에 대해 설명하기로 한다.Hereinafter, a hybrid supported metallocene catalyst according to a specific embodiment of the present invention, a method for producing an olefin polymer using the same, and an olefin polymer will be described.
상기 일 구현예에 따르면, 하기 화학식 1로 표시되는 제1 메탈로센 화합물, 하기 화학식 2로 표시되는 제2 메탈로센 화합물, 및 상기 제1 및 제2 메탈로센 화합물을 담지하는 담체를 포함하는 혼성 담지 메탈로센 촉매가 제공된다.According to the above embodiment, a first metallocene compound represented by the following Chemical Formula 1, a second metallocene compound represented by the following Chemical Formula 2, and a carrier supporting the first and second metallocene compounds A hybrid supported metallocene catalyst is provided.
[화학식 1][Formula 1]
Figure PCTKR2020000748-appb-I000003
Figure PCTKR2020000748-appb-I000003
상기 화학식 1에서,In Chemical Formula 1,
X1 및 X2는 각각 독립적으로 할로겐이고,X 1 and X 2 are each independently halogen,
R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환된 C6-20 아릴이고,R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl,
R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 Alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
A는 탄소, 실리콘 또는 게르마늄이고,A is carbon, silicon or germanium,
R9 및 R10는 각각 독립적으로 C1-2 직쇄 알킬; 또는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이되, R9 및 R10 중 적어도 하나는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이고,R 9 and R 10 are each independently C 1-2 straight chain alkyl; Or C 3-10 straight chain alkyl substituted with C 1-10 alkoxy, at least one of R 9 and R 10 is C 3-10 straight chain alkyl substituted with C 1-10 alkoxy,
[화학식 2][Formula 2]
Figure PCTKR2020000748-appb-I000004
Figure PCTKR2020000748-appb-I000004
상기 화학식 2에서,In Chemical Formula 2,
X3 및 X4는 각각 독립적으로 할로겐이고,X 3 and X 4 are each independently halogen,
R11 내지 R20은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C2-20 알콕시알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이되,R 11 to R 20 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1- 20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
R11 및 R12 중 적어도 하나는 C2-20 알콕시알킬이고,At least one of R 11 and R 12 is C 2-20 alkoxyalkyl,
R17 내지 R20 중 적어도 하나는 C1-20 알킬이다.At least one of R 17 to R 20 is C 1-20 alkyl.
한편, 본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.Meanwhile, the following terms may be defined as follows, unless otherwise specified.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.Halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
C1-20 알킬은 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 구체적으로, C1-20 알킬은 C1-20 직쇄 알킬; C1-10 직쇄 알킬; C1-5 직쇄 알킬; C3-20 분지쇄 또는 고리형 알킬; C3-15 분지쇄 또는 고리형 알킬; 또는 C3-10 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, C1-20 알킬은 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기 또는 사이클로헥실기 등일 수 있다.C 1-20 alkyl may be straight chain, branched chain or cyclic alkyl. Specifically, C 1-20 alkyl is C 1-20 straight chain alkyl; C 1-10 straight chain alkyl; C 1-5 straight chain alkyl; C 3-20 branched chain or cyclic alkyl; C 3-15 branched or cyclic alkyl; Or C 3-10 branched chain or cyclic alkyl. More specifically, C 1-20 alkyl is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group or cyclo Hexyl group and the like.
C2-20 알케닐은 직쇄, 분지쇄 또는 고리형 알케닐일 수 있다. 구체적으로, C2-20 알케닐은 C2-20 직쇄 알케닐, C2-10 직쇄 알케닐, C2-5 직쇄 알케닐, C3-20 분지쇄 알케닐, C3-15 분지쇄 알케닐, C3-10 분지쇄 알케닐, C5-20 고리형 알케닐 또는 C5-10 고리형 알케닐일 수 있다. 보다 구체적으로, C2-20 알케닐는 에테닐, 프로페닐, 부테닐, 펜테닐 또는 사이클로헥세닐 등일 수 있다.C 2-20 The alkenyl can be straight chain, branched chain or cyclic alkenyl. Specifically, C 2-20 alkenyl is C 2-20 straight chain alkenyl, C 2-10 straight chain alkenyl, C 2-5 straight chain alkenyl, C 3-20 branched chain alkenyl, C 3-15 branched chain alkenyl Kenyl, C 3-10 branched chain alkenyl, C 5-20 cyclic alkenyl or C 5-10 cyclic alkenyl. More specifically, C 2-20 alkenyl may be ethenyl, propenyl, butenyl, pentenyl or cyclohexenyl, and the like.
C6-20 아릴은 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 구체적으로, C6-20 아릴은 페닐기, 나프틸기 또는 안트라세닐기 등일 수 있다.C 6-20 aryl may mean a monocyclic, bicyclic or tricyclic aromatic hydrocarbon. Specifically, C 6-20 aryl may be a phenyl group, a naphthyl group or anthracenyl group.
C7-20 알킬아릴은 아릴의 1 이상의 수소가 알킬에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C7-20 알킬아릴은 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.C 7-20 Alkylaryl may mean a substituent in which one or more hydrogens of aryl are substituted by alkyl. Specifically, C 7-20 alkylaryl may be methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert-butylphenyl, or cyclohexylphenyl.
C7-20 아릴알킬은 알킬의 1 이상의 수소가 아릴에 의하여 치환된 치환기를 의미할 수 있다. 구체적으로, C7-20 아릴알킬은 벤질기, 페닐프로필 또는 페닐헥실 등일 수 있다.C 7-20 Arylalkyl may mean a substituent in which one or more hydrogens of alkyl are substituted by aryl. Specifically, C 7-20 The arylalkyl may be a benzyl group, phenylpropyl or phenylhexyl.
C1-20 알콕시로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기, tert-부톡시헥실기 등을 들 수 있다.C 1-20 Examples of the alkoxy include methoxy group, ethoxy group, phenyloxy group, cyclohexyloxy group, and tert-butoxyhexyl group.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시, 할로겐, 알킬, 헤테로사이클로알킬, 알콕시, 알케닐, 실릴, 술포네이트, 술폰, 아릴 및 헤테로아릴로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.The above-mentioned substituents are optionally composed of hydroxy, halogen, alkyl, heterocycloalkyl, alkoxy, alkenyl, silyl, sulfonate, sulfone, aryl and heteroaryl within the range of exerting the same or similar effect as the desired effect. It may be substituted with one or more substituents selected from.
상기 일 구현예에 따른 혼성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제1 메탈로센 화합물 및 상기 화학식 2로 표시되는 제2 메탈로센 화합물 함께 사용함으로써, 높은 활성 및 중합성을 나타낼 수 있을 뿐만 아니라, 합성되는 올레핀 중합체의 분자량 분포를 다소 넓혀 비오씨디(BOCD) 및 용융 유동율비(MFRR)의 개선하여 우수한 가공성을 확보할 수 있다. 또한, 합성되는 올레핀 중합체의 내응력 균열성(FNCT) 등과 같은 장기물성을 확보할 수 있으며, 이로 인해 상기 올레핀 중합체는 파이프용으로 사용하기 적합할 수 있다.The hybrid supported metallocene catalyst according to the embodiment may exhibit high activity and polymerizability by using together the first metallocene compound represented by Chemical Formula 1 and the second metallocene compound represented by Chemical Formula 2 In addition, the molecular weight distribution of the synthesized olefin polymer is somewhat widened to improve bio-CD (BOCD) and melt flow rate ratio (MFRR) to ensure excellent processability. In addition, long-term physical properties such as stress cracking resistance (FNCT) of the olefin polymer to be synthesized can be secured. The olefin polymer may be suitable for use in pipes.
구체적으로, 상기 화학식 1로 표시되는 제1 메탈로센 화합물은, 리간드인 두 개의 인데닐기 모두 2번 위치는 메틸로 치환되고, 4번 위치(R1 및 R5)는 각각 알킬로 치환된 페닐로 치환됨으로써 충분한 전자를 공급할 수 있는 Inductive effect에 의해 보다 우수한 촉매 활성을 나타낼 수 있다.Specifically, in the first metallocene compound represented by Chemical Formula 1, the two positions of the two indenyl groups which are ligands are substituted with methyl, and the positions of four (R 1 and R 5 ) are each substituted with alkyl phenyl. By being substituted with, it can exhibit better catalytic activity by an inductive effect capable of supplying sufficient electrons.
또한, 상기 제1 메탈로센 화합물은 중심 금속으로서 지르코늄(Zr)을 포함함으로써, 하프늄(Hf) 등과 같은 다른 14족 원소를 포함할 때와 비교하여 전자를 수용할 수 있는 오비탈을 더 많이 가지고 있어 보다 높은 친화력으로 모노머와 쉽게 결합할 수 있는 특징을 나타낼 수 있고, 이로 인해 보다 우수한 촉매 활성 개선 효과를 나타낼 수 있다.In addition, the first metallocene compound contains zirconium (Zr) as a central metal, and thus has more orbitals capable of accepting electrons compared to other group 14 elements such as hafnium (Hf). It can exhibit a characteristic that can be easily combined with a monomer with a higher affinity, thereby exhibiting a better catalytic activity improvement effect.
보다 구체적으로, 상기 화학식 1에서 R1 및 R5는 각각 독립적으로 C1-10 알킬로 치환된 C6-12 아릴 또는 C3-6 분지쇄 알킬로 치환된 페닐일 수 있으며, 보다 더 구체적으로는 tert-부틸 페닐일 수 있다. 또한, 상기 페닐기에 대한 알킬기의 치환 위치는 인데닐기에 결합한 R1 또는 R5 위치와 para 위치에 해당하는 4번 위치일 수 있다.More specifically, in Formula 1, R 1 and R 5 may each independently be C 6-12 aryl substituted with C 1-10 alkyl or phenyl substituted with C 3-6 branched chain alkyl, and more specifically May be tert-butyl phenyl. In addition, the substitution position of the alkyl group with respect to the phenyl group may be the 4th position corresponding to the R 1 or R 5 position and the para position bonded to the indenyl group.
또한, 상기 화학식 1에서, R2 내지 R4 및 R6 내지 R8은 수소일 수 있으며, X1 및 X2는 클로로일 수 있다.In addition, in Chemical Formula 1, R 2 to R 4 and R 6 to R 8 may be hydrogen, and X 1 and X 2 may be chloro.
또한, 상기 화학식 1에서 A는 실리콘일 수 있다.In addition, in Chemical Formula 1, A may be silicon.
또한, 상기 A의 치환기인 R9 및 R10은 각각 독립적으로 메틸; 또는 tert-부톡시로 치환된 C5-9 직쇄 알킬이되, R9 및 R10 중 적어도 tert-부톡시로 치환된 C5-9 직쇄 알킬일 수 있다. 보다 구체적으로, R9는 메틸이고, R10은 tert-부톡시로 치환된 노말-헥실일 수 있다. 이러한 브릿지의 치환기로 서로 상이한 치환기를 도입함에 따라, 담지 반응성이 우수한 촉매 활성을 나타낼 수 있다. 구체적으로, 상기 R9 또는 R10에서, 상기 R9과 R10이 서로 동일한 경우, 담지 촉매 조제시 용해도가 좋지 않아 담지 반응성이 떨어지는 문제가 나타날 수 있다.In addition, the substituents R 9 and R 10 of A are each independently methyl; Or C 5-9 straight chain alkyl substituted with tert-butoxy, but may be C 5-9 straight chain alkyl substituted with at least tert-butoxy among R 9 and R 10 . More specifically, R 9 is methyl, and R 10 may be normal-hexyl substituted with tert-butoxy. By introducing different substituents to each other as the substituents of the bridge, it is possible to exhibit catalytic activity with excellent loading reactivity. Specifically, in the R 9 or R 10 , when the R 9 and R 10 are the same as each other, a poor solubility in preparing the supported catalyst may cause a problem of poor supported reactivity.
상기 화학식 1로 표시되는 제1 메탈로센 화합물의 대표적인 예는 하기 화학식 1-1일 수 있다.A representative example of the first metallocene compound represented by Chemical Formula 1 may be Chemical Formula 1-1.
[화학식 1-1][Formula 1-1]
Figure PCTKR2020000748-appb-I000005
Figure PCTKR2020000748-appb-I000005
상기 화학식 1로 표시되는 제1 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.The first metallocene compound represented by Chemical Formula 1 may be synthesized by applying known reactions, and detailed examples of synthesis may be referred to Examples.
한편, 상기 화학식 2로 표시되는 제2 메탈로센 화합물은 인덴닐기와 사이클로펜타디에닐기가 비가교된 구조로서, 전이금속인 지르코늄(Zr) 주위의 전자적/입체적 환경을 용이하게 제어할 수 있다. 그 결과, 제조되는 올레핀 중합체의 화학적 구조, 분자량 분포, 및 기계적 물성 등의 특성을 용이하게 조절할 수 있다.On the other hand, the second metallocene compound represented by Chemical Formula 2 has a structure in which an indenyl group and a cyclopentadienyl group are non-crosslinked, and can easily control the electronic/stereoscopic environment around the transition metal zirconium (Zr). As a result, properties such as the chemical structure, molecular weight distribution, and mechanical properties of the olefin polymer to be produced can be easily adjusted.
또한, 상기 제2 메탈로센 화합물은 중심 금속으로서 지르코늄(Zr)을 포함함으로써, 하프늄(Hf) 등과 같은 다른 14족 원소를 포함할 때와 비교하여 전자를 수용할 수 있는 오비탈을 더 많이 가지고 있어 보다 높은 친화력으로 모노머와 쉽게 결합할 수 있는 특징을 나타낼 수 있고, 이로 인해 보다 우수한 촉매 활성 개선 효과를 나타낼 수 있다.In addition, the second metallocene compound contains zirconium (Zr) as the central metal, and thus has more orbitals capable of accepting electrons compared to other group 14 elements such as hafnium (Hf). It can exhibit a characteristic that can be easily combined with a monomer with a higher affinity, thereby exhibiting a better catalytic activity improvement effect.
보다 구체적으로, 상기 화학식 2에서, 상기 인데닐기 중 적어도 하나의 위치(R11 내지 R16 중 하나)에 C2-20 알콕시알킬이 치환될 수 있으며, 구체적으로, R11 또는 R12 C2-20 알콕시알킬이 치환될 수 있고, 보다 구체적으로, R11 또는 R12에 tert-부톡시로 치환된 C5-9 직쇄 알킬 또는 tert-부톡시로 치환된 헥실이 치환될 수 있다. 상기 인데닐기 중 적어도 하나에 C2-20 알콕시알킬이 치환됨으로써, 1-부텐(1-butene), 또는 1-헥센(1-hexene)과 같은 알파 올레핀 공단량체의 공중합성에 영향을 미칠 수 있으며, 구체적으로, 합성되는 올레핀 중합체의 분자량 분포를 다소 넓혀 우수한 가공성과 장기 물성을 확보할 수 있다. 나아가, 상기 인데닐기에 치환된 C2-20 알콕시알킬은 담지체로 사용되는 실리카 표면의 실라놀기와 밀접한 상호작용을 통해 공유결합을 형성할 수 있어 안정적인 담지 중합이 가능하다.More specifically, in Chemical Formula 2, C 2-20 alkoxyalkyl may be substituted at least one position (one of R 11 to R 16 ) of the indenyl group, and specifically, to R 11 or R 12 C 2-20 alkoxyalkyl may be substituted, and more specifically, R 11 or R 12 may be substituted with C 5-9 straight chain alkyl substituted with tert-butoxy or hexyl substituted with tert-butoxy. C 2-20 alkoxyalkyl is substituted on at least one of the indenyl groups, thereby affecting the copolymerization of an alpha olefin comonomer such as 1-butene or 1-hexene. , Specifically, it is possible to secure excellent processability and long-term physical properties by slightly widening the molecular weight distribution of the synthesized olefin polymer. Furthermore, the C 2-20 alkoxyalkyl substituted with the indenyl group can form a covalent bond through close interaction with the silanol group on the silica surface used as a support, thereby enabling stable supported polymerization.
또한, 상기 사이클로펜타디에닐기 중 적어도 하나의 위치(R17 내지 R20 중 하나)에 C1-20 알킬이 치환될 수 있으며, 구체적으로, R18 및 R19 중 하나는 C1-20 알킬이 치환될 수 있고, 보다 구체적으로, R18 및 R19 중 하나에 노말-부틸이 치환될 수 있다.In addition, C 1-20 alkyl may be substituted at at least one position (one of R 17 to R 20 ) of the cyclopentadienyl group, specifically, one of R 18 and R 19 may be C 1-20 alkyl It may be substituted, and more specifically, one of R 18 and R 19 may be substituted with normal-butyl.
또한, 상기 화학식 2에서, R11, R13 내지 R17, R19 및 R20은 수소일 수 있으며, X3 및 X4는 클로로일 수 있다.In addition, in Chemical Formula 2, R 11 , R 13 to R 17 , R 19 and R 20 may be hydrogen, and X 3 and X 4 may be chloro.
상기 화학식 2로 표시되는 제2 메탈로센 화합물의 대표적인 예는 하기 화학식 2-1일 수 있다.A representative example of the second metallocene compound represented by Chemical Formula 2 may be Chemical Formula 2-1.
[화학식 2-1][Formula 2-1]
Figure PCTKR2020000748-appb-I000006
Figure PCTKR2020000748-appb-I000006
상기 화학식 2로 표시되는 제2 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.The second metallocene compound represented by Chemical Formula 2 may be synthesized by applying known reactions, and detailed examples of synthesis may be referred to Examples.
한편, 상기 제1 및 제2 메탈로센 화합물은 상술한 구조적 특징을 가져 담체에 안정적으로 담지될 수 있다.On the other hand, the first and second metallocene compounds have the above structural characteristics and can be stably supported on a carrier.
상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.As the carrier, a carrier containing a hydroxy group or a siloxane group on the surface may be used. Specifically, as the carrier, a carrier containing a hydroxy group or a siloxane group having high reactivity may be used by drying at a high temperature to remove moisture on the surface. More specifically, as the carrier, silica, alumina, magnesia or a mixture thereof can be used. The carrier may be dried at a high temperature, and these may typically include oxides, carbonates, sulfates, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 and Mg(NO 3 ) 2 .
상기 담체의 건조 온도는 200 내지 800℃가 바람직하고, 300 내지 600℃가 더욱 바람직하며, 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.The drying temperature of the carrier is preferably 200 to 800°C, more preferably 300 to 600°C, and most preferably 300 to 400°C. When the drying temperature of the carrier is less than 200°C, there is too much moisture so that the surface moisture and the co-catalyst react, and when it exceeds 800°C, the surface area decreases as the pores of the carrier surface are combined, and there are many hydroxyl groups on the surface. It is not preferable because the reaction site with the co-catalyst decreases because it disappears and only the siloxane group remains.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.The amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol/g, and more preferably 0.5 to 5 mmol/g. The amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or drying conditions, such as temperature, time, vacuum or spray drying.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.When the amount of the hydroxy group is less than 0.1 mmol/g, there are few reaction sites with the cocatalyst, and if it exceeds 10 mmol/g, it is not preferable because it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. not.
상기 일 구현예에 따른 혼성 담지 메탈로센 촉매는 촉매 전구체인 메탈로센 화합물을 활성화시키기 위하여 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 구체적으로, 상기 조촉매은 하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.The hybrid supported metallocene catalyst according to the above embodiment may further include a cocatalyst to activate the metallocene compound as a catalyst precursor. The cocatalyst is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it can be used when polymerizing an olefin under a general metallocene catalyst. Specifically, the cocatalyst may be one or more compounds selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5.
[화학식 3][Formula 3]
Figure PCTKR2020000748-appb-I000007
Figure PCTKR2020000748-appb-I000007
상기 화학식 3에서,In Chemical Formula 3,
R21, R22 및 R23은 각각 독립적으로 수소, 할로겐, C1-20 하이드로카빌기, 또는 할로겐으로 치환된 C1-20 하이드로카빌기이고,R 21 , R 22 and R 23 are each independently hydrogen, halogen, C 1-20 hydrocarbyl group, or C 1-20 hydrocarbyl group substituted with halogen,
n은 2 이상의 정수이며,n is an integer of 2 or more,
[화학식 4][Formula 4]
Figure PCTKR2020000748-appb-I000008
Figure PCTKR2020000748-appb-I000008
상기 화학식 4에서,In Chemical Formula 4,
D는 알루미늄 또는 보론이고,D is aluminum or boron,
R24는 각각 독립적으로 할로겐, C1-20 하이드로카빌기, C1-20 하이드로카빌옥시기, 또는 할로겐으로 치환된 C1-20 하이드로카빌기이고,R 24 are each independently halogen, C 1-20 hydro-car invoking, C 1-20 hydro-car bilok group, or substituted C 1-20 hydro-car invoking by halogen,
[화학식 5][Formula 5]
Figure PCTKR2020000748-appb-I000009
Figure PCTKR2020000748-appb-I000009
상기 화학식 5에서,In Chemical Formula 5,
L은 중성 또는 양이온성 루이스 염기이고,L is a neutral or cationic Lewis base,
H는 수소 원자이며,H is a hydrogen atom,
W는 13족 원소이며,W is a group 13 element,
A는 각각 독립적으로 C1-20 하이드로카빌기; C1-20 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, C1-20 하이드로카빌옥시기 및 C1-20 하이드로카빌(옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.A is each independently a C 1-20 hydrocarbyl group; C 1-20 hydrocarbyloxy group; And one or more substituents in which one or more hydrogen atoms of these substituents are substituted with one or more substituents among halogen, C 1-20 hydrocarbyloxy group and C 1-20 hydrocarbyl(oxy)silyl group.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.In the present specification, unless otherwise specified, the following terms may be defined as follows.
하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 20의 하이드로카빌기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐기, 나프틸기, 또는 안트라세닐기 등의 아릴기일 수 있다.The hydrocarbyl group is a monovalent functional group in which hydrogen atoms are removed from the hydrocarbon, and an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkylaryl group, an alkenylaryl group, and an alkyl group And a nilaryl group. Further, the hydrocarbyl group having 1 to 20 carbon atoms may be a hydrocarbyl group having 1 to 15 carbon atoms or 1 to 10 carbon atoms. Specifically, the hydrocarbyl group having 1 to 20 carbon atoms is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, n-hexyl group , n-heptyl group, cyclohexyl group, such as a straight chain, branched chain or cyclic alkyl group; Or it may be an aryl group such as a phenyl group, naphthyl group, or anthracenyl group.
하이드로카빌옥시기는 하이드로카빌기가 산소에 결합한 작용기이다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌옥시기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 하이드로카빌옥시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 하이드로카빌옥시기는 메톡시기, 에톡시기, n-프로폭시기, iso-프로폭시기, n-부톡시기, iso-부톡시기, tert-부톡시기, n-펜톡시기, n-헥톡시기, n-헵톡시기, 사이클로헥톡시기 등의 직쇄, 분지쇄 또는 고리형 알콕시기; 또는 페녹시기 또는 나프탈렌옥시(naphthalenoxy)기 등의 아릴옥시기일 수 있다.The hydrocarbyloxy group is a functional group in which the hydrocarbyl group is bonded to oxygen. Specifically, the hydrocarbyloxy group having 1 to 20 carbon atoms may be a hydrocarbyloxy group having 1 to 15 carbon atoms or 1 to 10 carbon atoms. More specifically, the hydrocarbyloxy group having 1 to 20 carbon atoms is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, an n-pentoxy group , straight-chain, branched-chain or cyclic alkoxy groups such as n-hexoxy group, n-heptoxy group and cyclohexoxy group; Or it may be an aryloxy group such as a phenoxy group or a naphthalenoxy group.
하이드로카빌(옥시)실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 하이드로카빌기 또는 하이드로카빌옥시기로 치환된 작용기이다. 구체적으로, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기는, 탄소수 1 내지 15, 탄소수 1 내지 10 또는 탄소수 1 내지 5의 하이드로카빌(옥시)실릴기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 및 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 및 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 및 다이메톡시프로필실릴기 등의 알콕시알킬실릴기 등일 수 있다.The hydrocarbyl (oxy) silyl group is a functional group in which 1-3 hydrogens of -SiH 3 are substituted with 1 to 3 hydrocarbyl groups or hydrocarbyloxy groups. Specifically, the hydrocarbyl (oxy) silyl group having 1 to 20 carbon atoms may be a hydrocarbyl (oxy) silyl group having 1 to 15 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms. More specifically, hydrocarbyl (oxy) silyl groups having 1 to 20 carbon atoms include alkyls such as methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group and dimethylpropylsilyl group. Silyl group; Alkoxysilyl groups such as methoxysilyl group, dimethoxysilyl group, trimethoxysilyl group and dimethoxyethoxysilyl group; And alkoxyalkylsilyl groups such as methoxydimethylsilyl group, diethoxymethylsilyl group, and dimethoxypropylsilyl group.
상기에서 화학식 3으로 표시되는 화합물의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert-부틸알루미녹산 등을 들 수 있다. 그리고, 화학식 4로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-sec-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드 또는 디메틸알루미늄에톡시드 등을 들 수 있다. 마지막으로, 화학식 5로 표시되는 화합물의 비제한적인 예로는 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 벤질트리스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(t-부틸디메틸실릴)-2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(4-(트리이소프로필실릴)-2,3,5,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 펜타플루오로페녹시트리스(펜타플루오로페닐)보레이트, N,N-디메틸-2,4,6-트리메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 헥사데실디메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, N-메틸-N-도데실아닐리늄 테트라키스(펜타플루오로페닐)보레이트 또는 메틸디(도데실)암모늄 테트라키스(펜타플루오로페닐)보레이트 등을 들 수 있다.Non-limiting examples of the compound represented by Chemical Formula 3 may include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, or tert-butyl aluminoxane. In addition, non-limiting examples of the compound represented by Chemical Formula 4 include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethylchloro aluminum, triisopropyl aluminum, tri-sec-butyl aluminum, To tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide or dimethyl aluminum And thoxide. Finally, non-limiting examples of the compound represented by Formula 5 include trimethylammonium tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis( Pentafluorophenyl)borate, N,N-dimethylanilinium n-butyltris(pentafluorophenyl)borate, N,N-dimethylanilinium benzyltris(pentafluorophenyl)borate, N,N-dimethylanilinium Tetrakis(4-(t-butyldimethylsilyl)-2,3,5,6-tetrafluorophenyl)borate, N,N-dimethylanilinium tetrakis(4-(triisopropylsilyl)-2,3 ,5,6-tetrafluorophenyl)borate, N,N-dimethylanilinium pentafluorophenoxytris(pentafluorophenyl)borate, N,N-dimethyl-2,4,6-trimethylanilinium tetrakis (Pentafluorophenyl) borate, trimethylammonium tetrakis(2,3,4,6-tetrafluorophenyl) borate, N,N-dimethylanilinium tetrakis(2,3,4,6-tetrafluorophenyl )Borate, hexadecyldimethylammonium tetrakis(pentafluorophenyl)borate, N-methyl-N-dodecylanilinium tetrakis(pentafluorophenyl)borate or methyldi(dodecyl)ammonium tetrakis(pentafluoro) And phenyl) borate.
상기 조촉매의 사용 함량은 목적하는 혼성 담지 메탈로센 촉매의 물성 또는 효과에 따라 적절하게 조절될 수 있다.The use content of the co-catalyst can be appropriately adjusted according to the properties or effects of the desired hybrid supported metallocene catalyst.
상기 일 구현예에 따른 혼성 담지 메탈로센 촉매는, 예를들어, 담체에 조촉매를 담지시키는 단계 및 조촉매 담지 담체에 촉매 전구체인 제1 및 제2 메탈로센 화합물을 담지시키는 단계로 제조될 수 있다.The hybrid supported metallocene catalyst according to the above embodiment is prepared, for example, by supporting a cocatalyst on a carrier and supporting a first and second metallocene compound as a catalyst precursor on a cocatalyst carrier. Can be.
구체적으로, 담체에 조촉매를 담지시키는 단계에서는, 고온에서 건조된 담체에 조촉매를 첨가하고, 이를 약 20 내지 120℃의 온도에서 교반하여 조촉매 담지 담체를 제조할 수 있다.Specifically, in the step of supporting the co-catalyst on the carrier, the co-catalyst supported carrier can be prepared by adding the co-catalyst to the carrier dried at high temperature and stirring it at a temperature of about 20 to 120°C.
그리고, 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 상기 담체에 조촉매를 담지시키는 단계에서 얻어진 조촉매 담지 담체에 제1 및 제2 메탈로센 화합물을 첨가하고, 다시 이를 약 20 내지 120℃의 온도에서 교반하여 담지 촉매를 제조할 수 있다.In addition, in the step of supporting the catalyst precursor on the co-catalyst carrier, the first and second metallocene compounds are added to the co-catalyst carrier obtained in the step of supporting the co-catalyst on the carrier, which is again about 20 to 120°C. It can be prepared by stirring at a temperature of the supported catalyst.
상기 조촉매 담지 담체에 촉매 전구체를 담지시키는 단계에서는 조촉매 담지 담체에 제1 및 제2 메탈로센 화합물을 첨가하여 교반한 후, 조촉매를 추가로 첨가하여 담지 촉매를 제조할 수 있다.In the step of supporting the catalyst precursor on the cocatalyst carrier, the first and second metallocene compounds are added to the cocatalyst carrier and stirred, and then a cocatalyst is further added to prepare a supported catalyst.
상기 일 구현에에 따른 혼성 담지 메탈로센 촉매에 있어서 사용되는 담체, 조촉매, 조촉매 담지 담체 및 전이 금속 화합물의 함량은 목적하는 담지 촉매의 물성 또는 효과에 따라 적절하게 조절될 수 있다.The content of the carrier, cocatalyst, cocatalyst carrier, and transition metal compound used in the hybrid supported metallocene catalyst according to the above embodiment may be appropriately adjusted according to the properties or effects of the desired supported catalyst.
구체적으로, 상기 혼성 담지 메탈로센 촉매에 있어서, 상기 제1 메탈로센 화합물과 제2 메탈로센 화합물의 몰비는 1:1 내지 15:1일 수 있다. 상기한 혼합 몰비로 상기 제1 및 제2 메탈로센 화합물을 포함함으로써, 종래에 비해 고활성 및 고공중합성을 갖는 혼성 담지 메탈로센 촉매를 제공할 수 있다. 또한, 상기 혼성 담자 메탈로센 촉매를 이용하여 올레핀 중합체를 제조하면, 분자량 분포를 넓힐 수 있어서 내응력 균열성(FNCT)등과 같은 장기 물성을 향상시킬 수 있고, 비오씨디(BOCD) 및 용융 유동율비(MFRR)를 개선하여 가공성을 향상시킬 수 있다.Specifically, in the hybrid supported metallocene catalyst, the molar ratio of the first metallocene compound and the second metallocene compound may be 1:1 to 15:1. By including the first and second metallocene compounds in the mixing molar ratio described above, it is possible to provide a hybrid supported metallocene catalyst having high activity and high polymerizability compared to the prior art. In addition, when the olefin polymer is prepared using the hybrid basal metallocene catalyst, the molecular weight distribution can be widened to improve long-term physical properties such as stress cracking resistance (FNCT), and bioCD (BOCD) and melt flow rate ratio. The workability can be improved by improving (MFRR).
다만, 상기 제1 메탈로센 화합물과 제2 메탈로센 화합물의 몰비가 1:1 미만이면 공중합성 및 가공성이 저하될 수 있고, 상기 몰비가 15:1 초과하면 활성 및 물성이 저하될 수 있다.However, if the molar ratio of the first metallocene compound and the second metallocene compound is less than 1:1, copolymerizability and processability may be deteriorated, and when the molar ratio exceeds 15:1, activity and physical properties may be deteriorated. .
또한, 상기 일 구현예에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 제1 및 제2 메탈로센 화합물을 포함하는 전체 메탈로센 화합물과 담체의 중량비는 1:10 내지 1:1,000 또는 1:10 내지 1:500일 수 있다. 상기한 범위의 중랑비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.In addition, in the hybrid supported metallocene catalyst according to the embodiment, the weight ratio of the total metallocene compound and the carrier including the first and second metallocene compounds is 1:10 to 1:1,000 or 1: 10 to 1:500. When the carrier and the metallocene compound are included in the above-described range of rangrang ratio, an optimum shape may be exhibited.
또한, 상기 혼성 담지 메탈로센 촉매가 조촉매를 더 포함할 경우, 조촉매와 담체의 중량비는 1:1 내지 1:100 또는 1:1 내지 1:50일 수 있다. 상기 중량비로 조촉매 및 담체를 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.In addition, when the hybrid supported metallocene catalyst further includes a cocatalyst, the weight ratio of the cocatalyst and the carrier may be 1:1 to 1:100 or 1:1 to 1:50. When the cocatalyst and carrier are included in the above weight ratio, it is possible to optimize the active and polymer microstructure.
상기 혼성 담지 촉매 제조시에 반응 용매로는 펜탄, 헥산, 헵탄 등과 같은 탄화수소 용매; 또는 벤젠, 톨루엔 등과 같은 방향족 용매가 사용될 수 있다.As a reaction solvent in preparing the hybrid supported catalyst, hydrocarbon solvents such as pentane, hexane, and heptane; Alternatively, an aromatic solvent such as benzene or toluene may be used.
상기 담지 촉매의 구체적인 제조 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 담지 촉매의 제조 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법의 단계(들)는 통상적으로 변경 가능한 단계(들)에 의하여 변경될 수 있다.For a specific method of manufacturing the supported catalyst, reference may be made to Examples described later. However, the manufacturing method of the supported catalyst is not limited to the contents described in the present specification, and the manufacturing method may further employ a step conventionally employed in the technical field to which the present invention pertains, and the step of the manufacturing method ( The field(s) can be modified by the step(s), which are usually changeable.
한편, 상기 다른 구현예에 따르면, 상기 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 올레핀 중합체의 제조 방법이 제공된다.On the other hand, according to the other embodiment, in the presence of the hybrid supported metallocene catalyst, a method for producing an olefin polymer comprising the step of polymerizing an olefin monomer is provided.
상술한 바와 같이, 상기 혼성 담지 메탈로센 촉매는 특정 구조로 인하여 기존의 메탈로센 화합물 촉매를 이용하여 중합되는 올레핀 중합체에 비하여 넓은 분자량 분포를 가져 우수한 가공성과 장기 물성을 확보할 수 있는 올레핀 중합체를 제공할 수 있다.As described above, the hybrid supported metallocene catalyst has a broad molecular weight distribution compared to an olefin polymer polymerized using a conventional metallocene compound catalyst due to a specific structure, thereby providing excellent processability and long-term physical properties. Can provide.
상기 혼성 담지 촉매로 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 다이엔 올레핀계 단량체 또는 트라이엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다. 상기 올레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공단량체는 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.Examples of the olefin monomer polymerizable with the hybrid supported catalyst include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin monomer or triene olefin monomer having two or more double bonds may also be polymerized. Specific examples of the monomers are ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1-tetradecene, 1-hexadecene, 1-atocene, norbornene, norbornadiene, ethylidene norbornene, phenyl norbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene, 1, 5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and may be copolymerized by mixing two or more of these monomers. When the olefin polymer is a copolymer of ethylene and another comonomer, the comonomer is one or more comonomers selected from the group consisting of propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene. It is preferred.
상기 올레핀 단량체의 중합 반응을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정을 채용할 수 있으며, 보다 구체적으로, 상기 중합 반응이 반회분(semi-batch) 반응기에서 이루어질 수 있다.For the polymerization reaction of the olefin monomer, various polymerization processes known as polymerization reactions of olefin monomers, such as a continuous solution polymerization process, a bulk polymerization process, a suspension polymerization process, a slurry polymerization process, or an emulsion polymerization process, may be employed, and more specifically , The polymerization reaction can be carried out in a semi-batch reactor.
구체적으로, 상기 중합 반응은 약 50 내지 110℃ 또는 약 60 내지 100℃의 온도와 약 1 내지 100kgf/cm2 또는 약 1 내지 50 kgf/cm2 압력 하에서 수행될 수 있다.Specifically, the polymerization reaction may be performed under a temperature of about 50 to 110°C or about 60 to 100°C and a pressure of about 1 to 100kgf/cm 2 or about 1 to 50 kgf/cm 2 .
또한, 상기 중합 반응에서, 상기 혼성 담지 촉매는 펜탄, 헥산, 헵탄, 노난, 데칸, 톨루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.In addition, in the polymerization reaction, the hybrid supported catalyst may be used in a dissolved or diluted state in a solvent such as pentane, hexane, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene, and the like. At this time, by treating the solvent with a small amount of alkyl aluminum or the like, a small amount of water or air, which may adversely affect the catalyst, can be removed in advance.
상기와 같은 방법으로 제조되는 올레핀 중합체는 전술한 혼성 담지 메탈로센 촉매를 이용하여 제조됨에 따라 다소 넓은 분자량 분포를 갖고, 비오씨디(BOCD) 및 용융 유동율비(MFRR)의 개선하여 우수한 가공성을 확보할 수 있고, 또한, 합성되는 올레핀 중합체의 내응력 균열성(FNCT) 등과 같은 장기물성을 확보할 수 있다.The olefin polymer prepared by the above method has a somewhat wider molecular weight distribution as it is prepared using the above-mentioned hybrid supported metallocene catalyst, and improves bio-CD (BOCD) and melt flow rate ratio (MFRR) to ensure excellent processability It is also possible to secure long-term physical properties such as stress cracking resistance (FNCT) of the olefin polymer to be synthesized.
구체적으로, 상기 올레핀 중합체는 용융 유동율비(MFRR; Melt flow rate ratio)가 22 내지 50 또는 25 내지 32이고, 내응력 균열성(FNCT; Full Notch Creep Test)가 1000 내지 3000hr 또는 1000 내지 2000hr이고, 비오씨디(BOCD; Broad Orthogonal Comonomer Distribution) 인덱스가 0.8 내지 3.0 또는 0.9 내지 1.4일 수 있다.Specifically, the olefin polymer has a melt flow rate ratio (MFRR) of 22 to 50 or 25 to 32, and a stress cracking resistance (FNCT; Full Notch Creep Test) of 1000 to 3000 hr or 1000 to 2000 hr, The Bio Orthogonal Comonomer Distribution (BOCD) index may be 0.8 to 3.0 or 0.9 to 1.4.
또한, 상기한 혼성 담지 촉매를 이용하여 중합되는 중합체가, 예를 들어 에틸렌-알파올레핀 공중합체, 바람직하게는 에틸렌-1-부텐 중합체인 경우, 상기한 물성적 특징을 보다 적절히 충족할 수 있다.Further, when the polymer to be polymerized using the above-mentioned hybrid supported catalyst is, for example, an ethylene-alpha olefin copolymer, preferably an ethylene-1-butene polymer, the above physical properties can be more appropriately met.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail through specific examples of the invention. However, this is provided as an example of the invention, and the scope of the invention is not limited in any way.
제조예 1: 제1 메탈로센 화합물(A)의 제조Preparation Example 1: Preparation of the first metallocene compound (A)
Figure PCTKR2020000748-appb-I000010
Figure PCTKR2020000748-appb-I000010
1 단계: ((6-(t-부톡시)헥실)메틸실란-디일)-비스((2-메틸-4-t-부틸-페닐인데닐)실란의 제조Step 1: Preparation of ((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)silane
2-메틸-4-t-부틸-페닐인덴(10.0 g, 화합물1)을 디에틸에테르(Et2O) 76.2 mL에 용해시킨 후 -25 ℃로 냉각하였다. 이후, n-부틸리튬 용액(2.5 M, 헥산 용매) 16.0 mL를 천천히 적가한 다음, 상온에서 4시간 동안 교반하였다. 그 후, -25℃로 냉각하고, 시안화구리(CuCN) 1 mol%를 투입한 다음, (6-(t-부톡시)헥실)메틸디클로로실란 2.92 mL을 디에틸에테르 38 mL에 녹여 천천히 적가하였고, 상온에서 16시간 동안 교반하였다. 그 후, 디클로로메탄(DCM)과 물을 가하여 유기층을 분리한 다음, 상기 유기층을 황산마그네슘(MgSO4)로 수분을 제거하고 여과한 후, 용매를 감압 증류하여 ((6-(t-부톡시)헥실)메틸실란-디일)-비스((2-메틸-4-t-부틸-페닐인데닐)실란을 얻었다.2-Methyl-4-t-butyl-phenylindene (10.0 g, compound 1) was dissolved in 76.2 mL of diethyl ether (Et 2 O) and cooled to -25 °C. Then, 16.0 mL of n-butyllithium solution (2.5 M, hexane solvent) was slowly added dropwise, and then stirred at room temperature for 4 hours. Thereafter, the mixture was cooled to -25°C, 1 mol% of copper cyanide (CuCN) was added, and 2.92 mL of (6-(t-butoxy)hexyl)methyldichlorosilane was dissolved in 38 mL of diethyl ether and slowly added dropwise. , Stirred at room temperature for 16 hours. Then, dichloromethane (DCM) and water were added to separate the organic layer, and then the organic layer was removed with magnesium sulfate (MgSO 4 ), filtered, and the solvent was distilled under reduced pressure to give ((6-(t-butoxy )Hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)silane.
2 단계: [((6-(t-부톡시)헥실)메틸실란 -디일)-비스((2-메틸-4-t-부틸-페닐인데닐)]지르코늄 디클로라이드의 제조Step 2: Preparation of [((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)]zirconium dichloride
상기 단계 1에서 제조한 ((6-(t-부톡시)헥실)메틸실란-디일)-비스((2-메틸-4-t-부틸-페닐인데닐)실란을 디에틸에테르(Et2O) 95.3 mL에 용해시킨 후 -25 ℃로 냉각하였다. n-부틸리튬 용액(2.5 M) 8 mL을 천천히 적가한 후, 상온에서 4시간 동안 교반하였다. 그 후, -25℃로 냉각하고, 지르코늄 테트라클로라이드 테트라하이드로푸란 착물[ZrCl4·2THF] 3.59 g를 적가하고 상온에서 16시간 동안 교반하였다. 반응액의 용매를 감압 제거한 다음, 디클로로메탄을 넣고 여과한 다음, 여액을 감압 증류하여 제거하였다. 디클로로메탄을 사용하여 재결정을 하여 [((6-(t-부톡시)헥실)메틸실란 -디일)-비스((2-메틸-4-t-부틸-페닐인데닐)]지르코늄 디클로라이드(1.0 g, 수율 14%)를 얻었다.The ((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)silane prepared in step 1 above is diethyl ether (Et 2 O ) Dissolved in 95.3 mL and cooled to -25° C. 8 mL of n-butyllithium solution (2.5 M) was slowly added dropwise, followed by stirring at room temperature for 4 hours, then cooled to -25° C. and zirconium. 3.59 g of tetrachloride tetrahydrofuran complex [ZrCl 4 ·2THF] was added dropwise and stirred for 16 hours at room temperature After removing the solvent of the reaction solution under reduced pressure, dichloromethane was added and filtered, and the filtrate was distilled off under reduced pressure. Recrystallization using dichloromethane [((6-(t-butoxy)hexyl)methylsilane-diyl)-bis((2-methyl-4-t-butyl-phenylindenyl)]zirconium dichloride (1.0 g, yield 14%).
제조예 2: 제2 메탈로센 화합물(B)의 제조Preparation Example 2: Preparation of second metallocene compound (B)
Figure PCTKR2020000748-appb-I000011
Figure PCTKR2020000748-appb-I000011
1 단계: 3-(6-(t-부톡시)헥실)- 1H-인덴의 제조Step 1: Preparation of 3-(6-(t-butoxy)hexyl)-1H-indene
건조된 250 mL 쉬링크 플라스크에 10.8 g (100 mmol)의 클로로헥산올을 넣은 후 10 g의 몰레큘러 시브(molecular sieve)와 100 mL의 MTBE(메틸 t-부틸 에테르)를 첨가하고, 20 g의 황산을 30분에 걸쳐 천천히 가하였다. 반응 혼합물은 시간이 지나며 천천히 분홍색으로 변하며, 16시간 이후 얼음으로 차갑게 식힌 포화 중탄산나트륨(sodium bicarbonate) 용액에 부었다. 이 혼합물에 에테르 100mL씩 사용하여 4회 추출해내고, 모인 유기층은 MgSO4로 건조하고 여과를 거친 다음 진공 감압 하에서 용매를 제거하여 노란색의 액체 형태의 1-(t-부톡시)-6-클로로헥센 10 g (60% 수율)을 얻었다.10.8 g (100 mmol) of chlorohexanol was added to a dried 250 mL shrink flask, followed by addition of 10 g of molecular sieve and 100 mL of MTBE (methyl t-butyl ether), and 20 g of Sulfuric acid was slowly added over 30 minutes. The reaction mixture slowly turned pink over time and poured into saturated sodium bicarbonate solution chilled with ice after 16 hours. The mixture was extracted four times using 100 mL of ether, and the combined organic layer was dried with MgSO 4 , filtered, and then the solvent was removed under vacuum reduced pressure to obtain a yellow liquid in the form of 1-(t-butoxy)-6-chlorohexene. 10 g (60% yield) was obtained.
건조된 250 mL 쉬링크 플라스크에 4.5 g (25 mmol)의 상기에서 합성합 1-(t-부톡시)-6-클로로헥센을 넣고 40 mL의 THF에 녹였다. 여기에 20 mL의 sodium indenide THF 용액을 천천히 가한 후 하룻동안 교반시켰다. 이 반응 혼합물에 50 mL의 물을 가해 퀀칭(quenching)시키고, 에스터로 추출(50 mL x 3)한 다음 모인 유기층을 brine으로 충분히 씻어주었다. MgSO4로 남은 수분을 건조하고 여과한 다음, 진공 감압 하에 용매를 제거함으로써 어두운 갈색의 점성이 있는 형태의 생성물인 3-(6-(t-부톡시)헥실)- 1H-인덴을 정량 수율로 수득하였다.To a dried 250 mL shrink flask, 4.5 g (25 mmol) of the above synthesis 1-(t-butoxy)-6-chlorohexene was added and dissolved in 40 mL of THF. After slowly adding 20 mL of sodium indenide THF solution, the mixture was stirred overnight. The reaction mixture was quenched by adding 50 mL of water, extracted with ester (50 mL x 3), and then the collected organic layer was sufficiently washed with brine. The remaining moisture was dried with MgSO 4 , filtered, and then the solvent was removed under reduced pressure in vacuo to give 3-(6-(t-butoxy)hexyl)-1H-indene, a dark brown viscous product, in quantitative yield. Obtained.
2 단계: 3-(6-(t-부톡시)헥실)-1H-인덴-1-일)(3-부틸사이클로펜타-2,4-디엔-1-일) 지르코늄 디클로라이드의 제조Step 2: Preparation of 3-(6-(t-butoxy)hexyl)-1H-inden-1-yl)(3-butylcyclopenta-2,4-dien-1-yl) zirconium dichloride
건조된 250 mL 쉬링크 플라스크에 상기에서 제조한 3-(6-(t-부톡시)헥실)- 1H-인덴 4.57 g(20 mmol)을 넣고 60 mL의 에테르와 40 mL의 THF에 녹였다. 여기에 13 mL의 n-BuLi 2.0M hexane solution을 가하고 하룻동안 교반시킨 다음, n-부틸 사이클로펜타디엔 ZrCl3의 톨루엔(toluene) 용액(농도 0.378 mmol/g)을 -78℃에서 천천히 가하였다. 이 반응 혼합물은 상온까지 올리면 맑은 갈색 용액에서 노란색 고체가 떠다니는 흰색의 서스펜션 형태로 변하였다. 12시간이 지난 후 반응 혼합물에 100 mL의 헥산을 넣어 추가로 침전을 생성시켰다. 이후 아르곤 하에서 여과하여 노란색의 여과액을 얻고, 이를 건조하여 원하는 화합물인 3-(6-(t-부톡시)헥실)-1H-인덴-1-일)(3-부틸사이클로펜타-2,4-디엔-1-일) 지르코늄 디클로라이드가 생성되었음을 확인하였다.To the dried 250 mL shrink flask, 4.57 g (20 mmol) of 3-(6-(t-butoxy)hexyl)-1H-indene prepared above was added and dissolved in 60 mL of ether and 40 mL of THF. To this, 13 mL of n-BuLi 2.0M hexane solution was added, stirred for one day, and then a toluene solution (concentration 0.378 mmol/g) of n-butyl cyclopentadiene ZrCl 3 was slowly added at -78°C. When the reaction mixture was raised to room temperature, it turned from a clear brown solution to a white suspension floating with a yellow solid. After 12 hours, 100 mL of hexane was added to the reaction mixture to generate additional precipitation. Then filtered under argon to obtain a yellow filtrate, which was dried to give the desired compound 3-(6-(t-butoxy)hexyl)-1H-inden-1-yl)(3-butylcyclopenta-2,4 -Dien-1-yl) It was confirmed that zirconium dichloride was produced.
제조예 3: 지글러-나타 촉매(Z/N 촉매)의 제조Preparation Example 3: Preparation of Ziegler-Natta catalyst (Z/N catalyst)
지글러-나타 촉매를 제조하기 위하여, 마그네슘 에틸레이트 500 kg을 충분한 헥산으로 분산 상태로 한 후, 테트라클로라이드티타늄 1700 kg을 85℃에서 5.5 시간에 걸쳐 천천히 적가한 후, 120℃에서 템퍼링하였다. 이후, 티탄 화합물을 포함한 미반응 부산물을 전체 용액의 티탄 농도가 500 mmol이 될 때까지 제거한 후, 트리에틸알루미늄으로 120℃에서 2시간 동안 접촉시켜 전활성화 시키고, 미반응 부산물을 제거하여 최종 촉매를 얻었다.To prepare a Ziegler-Natta catalyst, 500 kg of magnesium ethylate was dispersed in sufficient hexane, and then 1700 kg of tetrachloride titanium was slowly added dropwise over a period of 5.5 hours at 85°C, followed by tempering at 120°C. Thereafter, the unreacted by-products including the titanium compound were removed until the titanium concentration of the total solution became 500 mmol, and then pre-activated by contacting with triethyl aluminum at 120° C. for 2 hours, and the unreacted by-products were removed to remove the final catalyst. Got.
실시예 1: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Example 1: Preparation of hybrid supported catalyst and olefin polymer using the same
(1) 혼성 담지 촉매의 제조(1) Preparation of hybrid supported catalyst
실리카(Grace Davison사 제조 SYLOPOL 948)를 200℃의 온도에서 15 시간 동안 진공을 가한 상태에서 탈수하였다. 건조된 실리카 10 g를 유리 반응기에 넣고, 톨루엔 100 mL을 추가로 넣고 교반하였다. 10 중량% 메틸알루미녹산(MAO)/톨루엔 용액을 50 mL를 투입하고, 온도를 60℃로 올린 후 교반하면서 12시간 동안 반응시켰다. 반응기의 온도를 40℃로 낮춘 후 교반을 중지하고, 10분 동안 정치(setting)시킨 후, 반응 용액을 Decantation 하였다. 톨루엔을 반응기의 100 mL까지 채우고, 상기 제조예 1의 제1 메탈로센 화합물(A) 0.01mmol을 톨루엔 10ml에 녹여 같이 투입한 다음, 1시간 동안 반응 시켰다. 반응이 끝난 후, 상기 제조예 2의 제2 메탈로센 화합물(B) 0.01mmol을 톨루엔 10ml에 녹여 같이 투입한 후, 1시간 동안 반응을 추가로 시켰다.Silica (SYLOPOL 948 manufactured by Grace Davison) was dehydrated at a temperature of 200° C. for 15 hours under vacuum. 10 g of dried silica was placed in a glass reactor, and 100 mL of toluene was further added and stirred. 50 mL of a 10% by weight methylaluminoxane (MAO)/toluene solution was added, and the temperature was raised to 60° C., followed by reaction for 12 hours with stirring. After the temperature of the reactor was lowered to 40° C., stirring was stopped, and after being set for 10 minutes, the reaction solution was decanted. Toluene was filled up to 100 mL of the reactor, and 0.01 mmol of the first metallocene compound (A) of Preparation Example 1 was dissolved in 10 ml of toluene and added together, followed by reaction for 1 hour. After the reaction was over, 0.01 mmol of the second metallocene compound (B) of Preparation Example 2 was dissolved in 10 ml of toluene and added together, followed by further reacting for 1 hour.
(2) 올레핀 중합체의 제조(2) Preparation of olefin polymer
2L autoclave 고압 반응기에 TEAL 2ml (1.0M hexane), 1-부텐 10g을 투입하고, 헥산 0.8kg을 투입한 후 500rpm으로 교반하면서 온도를 80℃로 승온 하였다.TEAL 2ml (1.0M hexane), 1-butene 10g was added to a 2L autoclave high-pressure reactor, and 0.8kg of hexane was added, followed by stirring at 500rpm and raising the temperature to 80°C.
상기에서 제조한 담지 촉매 50 mg과 헥산을 50 mL의 바이알에 담아 반응기에 투입한 후, 반응기 내부 온도가 78℃가 되면 에틸렌 압력 9bar 하에서 500rpm으로 교반하면서 1시간 동안 반응시켰다. 반응 종료 후 필터를 통해 헥산을 1차 제거하고, 80℃ 진공 오븐에서 4시간 건조하여 올레핀 중합체를 수득하였다.50 mg of the supported catalyst prepared above and hexane were put in a 50 mL vial and then put into the reactor, and when the internal temperature of the reactor reached 78°C, the mixture was reacted for 1 hour while stirring at 500 rpm under 9 bar of ethylene pressure. After the reaction was completed, hexane was first removed through a filter, and dried in a vacuum oven at 80° C. for 4 hours to obtain an olefin polymer.
실시예 2: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Example 2: Preparation of hybrid supported catalyst and olefin polymer using the same
실시예 1에서, 제조예 1의 제1 메탈로센 화합물(A)을 0.05mmol로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that the first metallocene compound (A) of Preparation Example 1 was used as 0.05 mmol.
실시예 3: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Example 3: Preparation of hybrid supported catalyst and olefin polymer using same
실시예 1에서, 제조예 1의 제1 메탈로센 화합물(A)을 0.1mmol로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that the first metallocene compound (A) of Preparation Example 1 was used in 0.1 mmol.
실시예 4: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Example 4: Preparation of hybrid supported catalyst and olefin polymer using the same
실시예 1에서, 제조예 1의 제1 메탈로센 화합물(A)을 0.15mmol로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.15 mmol of the first metallocene compound (A) of Preparation Example 1 was used.
비교예 1: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Comparative Example 1: Preparation of hybrid supported catalyst and olefin polymer using the same
상기 실시예 1에서 제1 및 제2 메탈로센 화합물 조성 (A/B) 대신, 하기 표 1의 몰비율(1/1)이 되도록, 상기 제조예 2의 제2 메탈로센 화합물(B) 0.01mmol 및 하기 화학식 C로 표시되는 메탈로센 화합물(C) 0.01mmol을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, instead of the first and second metallocene compound composition (A/B), the second metallocene compound (B) of Preparation Example 2 was set to be the molar ratio (1/1) of Table 1 below. A hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.01 mmol and 0.01 mmol of the metallocene compound (C) represented by Formula C below were used.
[화학식 C][Chemical Formula C]
Figure PCTKR2020000748-appb-I000012
Figure PCTKR2020000748-appb-I000012
비교예 2: 지글러-나타 촉매를 이용한 올레핀 중합체의 제조Comparative Example 2: Preparation of olefin polymer using Ziegler-Natta catalyst
상기 제조예 3의 지글러-나타 촉매(Z/N촉매)을 0.1mmol로 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 올레핀 중합체를 제조하였다.An olefin polymer was prepared in the same manner as in Example 1, except that the Ziegler-Natta catalyst of Preparation Example 3 (Z/N catalyst) was used as 0.1 mmol.
비교예 3: 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Comparative Example 3: Preparation of supported catalyst and olefin polymer using the same
실시예 1에서, 제조예 1의 제1 메탈로센 화합물(A)만을 0.1mmol로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that only the first metallocene compound (A) of Preparation Example 1 was used in 0.1 mmol.
비교예 4: 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Comparative Example 4: Preparation of supported catalyst and olefin polymer using the same
실시예 1에서, 제조예 2의 제2 메탈로센 화합물(B)만을 0.1mmol로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, a hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that only the second metallocene compound (B) of Preparation Example 2 was used in 0.1 mmol.
비교예 5: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Comparative Example 5: Preparation of hybrid supported catalyst and olefin polymer using same
상기 실시예 1에서 제1 및 제2 메탈로센 화합물 조성 (A/B) 대신, 하기 표 1의 몰비율(1/1)이 되도록, 상기 제조예 2의 제2 메탈로센 화합물(B) 0.01mmol 및 하기 화학식 D로 표시되는 메탈로센 화합물(D) 0.01mmol을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.In Example 1, instead of the first and second metallocene compound composition (A/B), the second metallocene compound (B) of Preparation Example 2 was set to be the molar ratio (1/1) of Table 1 below. A hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that 0.01 mmol and 0.01 mmol of the metallocene compound (D) represented by the following Chemical Formula D were used.
[화학식 D][Formula D]
Figure PCTKR2020000748-appb-I000013
Figure PCTKR2020000748-appb-I000013
비교예 6: 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조Comparative Example 6: Preparation of hybrid supported catalyst and olefin polymer using same
상기 실시예 1에서 제1 및 제2 메탈로센 화합물 조성 (A/B) 대신, 하기 표 1의 몰비율(1/1)이 되도록, 하기 화학식 E로 표시되는 메탈로센 화합물(E) 0.01mmol 및 하기 화학식 F로 표시되는 메탈로센 화합물(F) 0.01mmol을 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 혼성 담지 촉매 및 올레핀 중합체를 제조하였다.Instead of the first and second metallocene compound composition (A/B) in Example 1, the metallocene compound (E) 0.01 represented by the following Chemical Formula E is set to be the molar ratio (1/1) of Table 1 below. A hybrid supported catalyst and an olefin polymer were prepared in the same manner as in Example 1, except that mmol and 0.01 mmol of the metallocene compound (F) represented by Formula F below were used.
[화학식 E][Formula E]
Figure PCTKR2020000748-appb-I000014
Figure PCTKR2020000748-appb-I000014
[화학식 F][Formula F]
Figure PCTKR2020000748-appb-I000015
Figure PCTKR2020000748-appb-I000015
시험예: 혼성 담지 촉매의 활성 및 올레핀 중합체의 물성 평가Test Example: Evaluation of activity of hybrid supported catalyst and physical properties of olefin polymer
상기 실시예 1 내지 4 및 비교예 1 내지 5의 촉매 및 올레핀 중합체의 촉매 활성, 용융 지수, 용융 유동율비(MFRR), 내응력 균열성(FNCT) 및 비오씨디 인덱스를 하기의 방법으로 측정하고, 그 결과를 하기 표 1에 나타내었다.The catalyst activity, melt index, melt flow rate ratio (MFRR), stress cracking resistance (FNCT), and bioCD index of the catalysts and olefin polymers of Examples 1 to 4 and Comparative Examples 1 to 5 were measured by the following methods, The results are shown in Table 1 below.
(1) 촉매 활성(kg PE / g SiO2)(1) Catalytic activity (kg PE / g SiO 2 )
: 단위 시간(h)당 사용된 촉매 함량(g SiO2)당 생성된 올레핀 중합체의 무게(kg PE)의 비로 계산하였다.: It was calculated as the ratio of the weight (kg PE) of the resulting olefin polymer per catalyst content (g SiO 2 ) used per unit time (h).
(2) 중합체의 용융 지수(MI 2.16)(2) Polymer melt index (MI 2.16)
: ASTM D 1238에 의거하여 190 ℃ 하에서 2.16 kg의 하중으로 용융 지수(MI2.16)를 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.: According to ASTM D 1238, the melt index (MI2.16) was measured at 190°C under a load of 2.16 kg, and it was expressed as the weight (g) of the polymer melted for 10 minutes.
(3) 용융 유동율비 (MFRR: MFR20/MFR2): MFR20 용융지수(MI, 21.6kg 하중)를 MFR2(MI, 2.16kg 하중)으로 나눈 비율이다.(3) Melt flow rate ratio (MFRR: MFR 20 /MFR 2 ): The ratio of MFR 20 melt index (MI, 21.6kg load) divided by MFR 2 (MI, 2.16kg load).
(4) BOCD Index (Broad Orthogonal Co-monomer Distribution index): 상기 GPC-FTIR 측정 결과의 해석에 있어 중량 평균 분자량(Mw)을 기준으로 분자량 분포(MWD) 좌우 30%(총 60%) 범위에서 SCB 함량(단위: 개/1,000C)을 측정해 아래의 수학식 1로 비오씨디 인덱스를 구하였다.(4) BOCD Index ( Broad Orthogonal Co-monomer Distribution index) : SCB in the range of 30% (60% total) on the left and right of the molecular weight distribution (MWD) based on the weight average molecular weight (Mw) in the interpretation of the GPC-FTIR measurement results. By measuring the content (unit: dogs/1,000C), the bioCD index was obtained using Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2020000748-appb-I000016
Figure PCTKR2020000748-appb-I000016
(5) 내응력 균열성 (FNCT, hr): 올레핀 중합체의 성형품에 대한 평가로서, 내응력 균열성 실험 방법은 문헌[M.Fleissner in Kunststoffe 77 (1987), pp. 45 et seq.]에 기술되어 있고, 현재까지 시행되고 있는 ISO/FDIS 16770에 해당한다. 80℃에서 3.5Mpa의 장력을 사용한 응력 균열 촉진 매개물인 에틸렌 글리콜에서, 노치(1.6mm/안전 면도날)에 의한 응력 개시 시간의 단축으로 인해 파손 시간이 단축되었다.(5) Stress cracking resistance (FNCT, hr): As an evaluation for molded products of olefin polymers, a method for testing stress cracking resistance is described in M. Flissner in Kunststoffe 77 (1987), pp. 45 et seq.], and corresponds to ISO/FDIS 16770 which has been in effect so far. In ethylene glycol, a stress crack promoting medium using a tension of 3.5 Mpa at 80° C., the break time was shortened due to the shortening of the stress initiation time by the notch (1.6 mm/safety razor blade).
시편 준비를 위해, 각 실시예 및 비교예의 올레핀 중합체에 1차 산화방지제(Irganox 1010, CIBA사) 750ppm, 2차 산화방지제(Irgafos 168, CIBA사) 1500ppm과 가공조제(SC110, Ca-St, 두분유화(주)) 1000ppm을 첨가하고 이축 압출기(W&P Twin Screw Extruder, 75 파이, L/D = 36)를 사용하여 170 ~ 220℃의 압출 온도에서 제립하였다. 수지의 가공성 압출 테스트는 Haake Single Screw Extruder(19파이, L/D = 25)를 사용하여, 190 ~ 220 ℃(Temp. profile(℃): 190/200/210/220)의 조건에서 압출 테스트 하였다. 또한, 파이프 성형은 단축압출기(Battenfeld Pipe M/C, 50파이, L/D=22, 압축비=3.5)를 이용하여 220 ℃의 압출온도에서 외경 32 mm, 두께 2.9 mm의 규격이 되도록 압출 성형하였다.For the preparation of the specimens, 750 ppm of primary antioxidants (Irganox 1010, CIBA), 1500 ppm of secondary antioxidants (Irgafos 168, CIBA) and processing aids (SC110, Ca-St, two minutes) were added to the olefin polymers of each Example and Comparative Example. Emulsification Co., Ltd.) was added at 1000 ppm and granulated at an extrusion temperature of 170 to 220°C using a twin screw extruder (W&P Twin Screw Extruder, 75 pi, L/D = 36). Extrusion test of the processability of the resin was tested by using a Haake Single Screw Extruder (19 pi, L/D = 25) under conditions of 190 to 220°C (Temp. profile (°C): 190/200/210/220). . In addition, the pipe molding was extruded to a standard of 32 mm outer diameter and 2.9 mm thick at an extrusion temperature of 220° C. using a single-screw extruder (Battenfeld Pipe M/C, 50 pi, L/D=22, compression ratio=3.5). .
이후, 상기 성형품에 대해 두께 10 mm의 압축된 명판으로부터 가로 10 mm, 세로 10 mm, 길이 90 mm 치수의 3개의 시편을 톱질하여 제작하였다. 이러한 목적을 위해 구체적으로 제조된 노치 소자에서 안전 면도날을 사용하여 중앙 노치를 검체에 제공한다. 노치 깊이는 1.6 mm이다.Thereafter, three specimens of 10 mm in width, 10 mm in length, and 90 mm in length were sawed from the compressed name plate having a thickness of 10 mm for the molded article. For this purpose, a central notch is provided to the specimen using a safety razor blade in a specifically manufactured notch element. The notch depth is 1.6 mm.
Figure PCTKR2020000748-appb-T000001
Figure PCTKR2020000748-appb-T000001
상기 표 1에 나타난 바와 같이, 본원 실시예 1 내지 4의 중합체는 특정 전구체의 조합을 사용한 담지 촉매를 이용하여 높은 활성을 나타냄을 확인할 수 있다. 또한, 실시예 1 내지 4의 중합체는 MFRR, BOCD 및 FNCT가 모두 비교예 대비 현저히 우수하여, 가공성과 장기 물성이 모두 향상된 파이프용 고분자를 제공할 수 있다.As shown in Table 1 above, it can be confirmed that the polymers of Examples 1 to 4 of the present application show high activity using a supported catalyst using a combination of specific precursors. In addition, the polymers of Examples 1 to 4 are all excellent in MFRR, BOCD, and FNCT compared to the comparative example, and thus can provide a polymer for pipes with improved processability and long-term physical properties.

Claims (15)

  1. 하기 화학식 1로 표시되는 제1 메탈로센 화합물;A first metallocene compound represented by Formula 1 below;
    하기 화학식 2로 표시되는 제2 메탈로센 화합물; 및A second metallocene compound represented by Formula 2 below; And
    상기 제1 및 제2 메탈로센 화합물을 담지하는 담체를 포함하는 혼성 담지 메탈로센 촉매:Hybrid supported metallocene catalyst comprising a carrier supporting the first and second metallocene compounds:
    [화학식 1][Formula 1]
    Figure PCTKR2020000748-appb-I000017
    Figure PCTKR2020000748-appb-I000017
    상기 화학식 1에서,In Chemical Formula 1,
    X1 및 X2는 각각 독립적으로 할로겐이고,X 1 and X 2 are each independently halogen,
    R1 및 R5는 각각 독립적으로 C1-20 알킬로 치환된 C6-20 아릴이고,R 1 and R 5 are each independently C 6-20 aryl substituted with C 1-20 alkyl,
    R2 내지 R4 및 R6 내지 R8은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이고,R 2 to R 4 and R 6 to R 8 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 Alkoxysilyl, C 1-20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
    A는 탄소, 실리콘 또는 게르마늄이고,A is carbon, silicon or germanium,
    R9 및 R10는 각각 독립적으로 C1-2 직쇄 알킬; 또는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이되, R9 및 R10 중 적어도 하나는 C1-10 알콕시로 치환된 C3-10 직쇄 알킬이고,R 9 and R 10 are each independently C 1-2 straight chain alkyl; Or C 3-10 straight chain alkyl substituted with C 1-10 alkoxy, at least one of R 9 and R 10 is C 3-10 straight chain alkyl substituted with C 1-10 alkoxy,
    [화학식 2][Formula 2]
    Figure PCTKR2020000748-appb-I000018
    Figure PCTKR2020000748-appb-I000018
    상기 화학식 2에서,In Chemical Formula 2,
    X3 및 X4는 각각 독립적으로 할로겐이고,X 3 and X 4 are each independently halogen,
    R11 내지 R20은 각각 독립적으로 수소, 할로겐, C1-20 알킬, C2-20 알케닐, C1-20 알킬실릴, C1-20 실릴알킬, C1-20 알콕시실릴, C1-20 에테르, C1-20 실릴에테르, C1-20 알콕시, C2-20 알콕시알킬, C6-20 아릴, C7-20 알킬아릴, 또는 C7-20 아릴알킬이되,R 11 to R 20 are each independently hydrogen, halogen, C 1-20 alkyl, C 2-20 alkenyl, C 1-20 alkylsilyl, C 1-20 silylalkyl, C 1-20 alkoxysilyl, C 1- 20 ether, C 1-20 silyl ether, C 1-20 alkoxy, C 2-20 alkoxyalkyl, C 6-20 aryl, C 7-20 alkylaryl, or C 7-20 arylalkyl,
    R11 및 R12 중 적어도 하나는 C2-20 알콕시알킬이고,At least one of R 11 and R 12 is C 2-20 alkoxyalkyl,
    R17 내지 R20 중 적어도 하나는 C1-20 알킬이다.At least one of R 17 to R 20 is C 1-20 alkyl.
  2. 제1항에 있어서,According to claim 1,
    상기 R1 및 R5는 각각 독립적으로 C3-6 분지쇄 알킬로 치환된 페닐인, 혼성 담지 메탈로센 촉매.The R 1 and R 5 are each independently phenyl substituted with C 3-6 branched chain alkyl, a hybrid supported metallocene catalyst.
  3. 제1항에 있어서,According to claim 1,
    R9 및 R10는 각각 독립적으로 메틸; 또는 tert-부톡시로 치환된 C5-9 직쇄 알킬이되, R9 및 R10 중 적어도 tert-부톡시로 치환된 C5-9 직쇄 알킬이고, 혼성 담지 메탈로센 촉매.R 9 and R 10 are each independently methyl; Or are a C 5-9 straight chain alkyl substituted with a tert- butoxy, R 9 and R 10 and of a C 5-9 straight-chain alkyl substituted with at least tert- butoxy, the hybrid supported metallocene catalyst metal.
  4. 제1항에 있어서,According to claim 1,
    상기 화학식 1로 표시되는 제1 메탈로센 화합물은 하기 화학식 1-1로 표시되는 화합물인, 혼성 담지 메탈로센 촉매:The first metallocene compound represented by Chemical Formula 1 is a compound represented by the following Chemical Formula 1-1, and a mixed supported metallocene catalyst:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2020000748-appb-I000019
    Figure PCTKR2020000748-appb-I000019
  5. 제1항에 있어서,According to claim 1,
    R12는 tert-부톡시로 치환된 C5-9 직쇄 알킬인, 혼성 담지 메탈로센 촉매.R 12 is C 5-9 straight chain alkyl substituted with tert-butoxy, a hybrid supported metallocene catalyst.
  6. 제1항에 있어서,According to claim 1,
    R18 및 R19 중 하나는 노말-부틸인, 혼성 담지 메탈로센 촉매.A hybrid supported metallocene catalyst, wherein one of R 18 and R 19 is normal-butyl.
  7. 제1항에 있어서,According to claim 1,
    상기 화학식 2로 표시되는 제2 메탈로센 화합물은 하기 화학식 2-1로 표시되는 화합물인, 혼성 담지 메탈로센 촉매:The second metallocene compound represented by Formula 2 is a compound represented by the following Formula 2-1, a hybrid supported metallocene catalyst:
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2020000748-appb-I000020
    Figure PCTKR2020000748-appb-I000020
  8. 제1항에 있어서,According to claim 1,
    상기 제1 메탈로센 화합물 및 제2 메탈로센 화합물의 몰비는 1:1 내지 15:1인, 혼성 담지 메탈로센 촉매.The first metallocene compound and the second metallocene compound have a molar ratio of 1:1 to 15:1, and the mixed supported metallocene catalyst.
  9. 제1 항에 있어서,According to claim 1,
    상기 담체는 실리카, 알루미나 및 마그네시아로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는, 혼성 담지 메탈로센 촉매.The carrier comprises a mixture of any one or two or more selected from the group consisting of silica, alumina and magnesia, a hybrid supported metallocene catalyst.
  10. 제1 항에 있어서,According to claim 1,
    하기 화학식 3 내지 5로 표시되는 화합물로 이루어진 군에서 선택되는 1 종 이상의 조촉매를 더 포함하는, 혼성 담지 메탈로센 촉매:A hybrid supported metallocene catalyst further comprising at least one cocatalyst selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5:
    [화학식 3][Formula 3]
    Figure PCTKR2020000748-appb-I000021
    Figure PCTKR2020000748-appb-I000021
    상기 화학식 3에서,In Chemical Formula 3,
    R21, R22 및 R23은 각각 독립적으로 수소, 할로겐, C1-20 하이드로카빌기, 또는 할로겐으로 치환된 C1-20 하이드로카빌기이고,R 21 , R 22 and R 23 are each independently hydrogen, halogen, C 1-20 hydrocarbyl group, or C 1-20 hydrocarbyl group substituted with halogen,
    n은 2 이상의 정수이며,n is an integer of 2 or more,
    [화학식 4][Formula 4]
    Figure PCTKR2020000748-appb-I000022
    Figure PCTKR2020000748-appb-I000022
    상기 화학식 4에서,In Chemical Formula 4,
    D는 알루미늄 또는 보론이고,D is aluminum or boron,
    R24는 각각 독립적으로 할로겐, C1-20 하이드로카빌기, C1-20 하이드로카빌옥시기, 또는 할로겐으로 치환된 C1-20 하이드로카빌기이고,R 24 are each independently halogen, C 1-20 hydro-car invoking, C 1-20 hydro-car bilok group, or substituted C 1-20 hydro-car invoking by halogen,
    [화학식 5][Formula 5]
    Figure PCTKR2020000748-appb-I000023
    Figure PCTKR2020000748-appb-I000023
    상기 화학식 5에서,In Chemical Formula 5,
    L은 중성 또는 양이온성 루이스 염기이고,L is a neutral or cationic Lewis base,
    H는 수소 원자이며,H is a hydrogen atom,
    W는 13족 원소이며,W is a group 13 element,
    A는 각각 독립적으로 C1-20 하이드로카빌기; C1-20 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, C1-20 하이드로카빌옥시기 및 C1-20 하이드로카빌(옥시)실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.A is each independently a C 1-20 hydrocarbyl group; C 1-20 hydrocarbyloxy group; And one or more substituents in which one or more hydrogen atoms of these substituents are substituted with one or more substituents among halogen, C 1-20 hydrocarbyloxy group and C 1-20 hydrocarbyl(oxy)silyl group.
  11. 제1 항의 혼성 담지 메탈로센 촉매의 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는, 올레핀 중합체의 제조 방법.A method for producing an olefin polymer comprising the step of polymerizing an olefin monomer in the presence of the hybrid supported metallocene catalyst of claim 1.
  12. 제11 항에 있어서,The method of claim 11,
    상기 중합 반응은 반회분(semi-batch) 반응기에서 이루어지는, 올레핀 중합체의 제조 방법.The polymerization reaction is carried out in a semi-batch reactor, a method for producing an olefin polymer.
  13. 제11 항에 있어서,The method of claim 11,
    상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 올레핀 중합체의 제조 방법.The olefin monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-atocene, norbornene, norbornadiene, ethylidene novoden, phenyl novoden, vinyl novoden, dicyclopentadiene, 1,4-butadiene, 1,5- A method for producing an olefin polymer comprising at least one member selected from the group consisting of pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene and 3-chloromethylstyrene.
  14. 제11 항의 제조방법에 의해 제조되며,It is manufactured by the manufacturing method of claim 11,
    용융 유동율비(MFRR; Melt flow rate ratio)가 22 내지 50이고,Melt flow rate ratio (MFRR) is 22 to 50,
    내응력 균열성(FNCT; Full Notch Creep Test)가 1000 내지 3000hr이고,Stress crack resistance (FNCT; Full Notch Creep Test) is 1000 to 3000hr,
    비오씨디(BOCD; Broad Orthogonal Comonomer Distribution) 인덱스가 0.8 내지 3.0인, 올레핀 중합체.An olefin polymer having a Broad Orthogonal Comonomer Distribution (BOCD) index of 0.8 to 3.0.
  15. 제14항에 있어서,The method of claim 14,
    에틸렌-1-부텐 중합체인, 올레핀 중합체.An olefin polymer, which is an ethylene-1-butene polymer.
PCT/KR2020/000748 2019-01-17 2020-01-15 Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same WO2020149643A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/043,194 US11384183B2 (en) 2019-01-17 2020-01-15 Hybrid supported metallocene catalyst and method for preparing olefin polymer using the same
EP20742086.0A EP3760654A4 (en) 2019-01-17 2020-01-15 Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same
CN202080002414.1A CN112020522B (en) 2019-01-17 2020-01-15 Hybrid supported metallocene catalyst and method for preparing olefin polymer using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190006226 2019-01-17
KR10-2019-0006226 2019-01-17
KR10-2019-0172478 2019-12-20
KR1020190172478A KR102432898B1 (en) 2019-01-17 2019-12-20 Supported hybrid metallocene catalyst and method for preparing olefin polymer using the same

Publications (1)

Publication Number Publication Date
WO2020149643A1 true WO2020149643A1 (en) 2020-07-23

Family

ID=71614300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000748 WO2020149643A1 (en) 2019-01-17 2020-01-15 Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same

Country Status (1)

Country Link
WO (1) WO2020149643A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057930A (en) * 2014-11-14 2016-05-24 주식회사 엘지화학 Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR20170055149A (en) * 2015-11-11 2017-05-19 한화토탈 주식회사 Ethylene copolymer having excellent processing properties
KR20170075533A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR20180054443A (en) * 2016-11-15 2018-05-24 주식회사 엘지화학 Ethylene/alpha-olefin copolymer having excellent crack resistance
KR20180099269A (en) * 2017-02-28 2018-09-05 주식회사 엘지화학 Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer
KR20190074959A (en) * 2017-12-20 2019-06-28 주식회사 엘지화학 Catalyst composition and method for preparing olefin polymer using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160057930A (en) * 2014-11-14 2016-05-24 주식회사 엘지화학 Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR20170055149A (en) * 2015-11-11 2017-05-19 한화토탈 주식회사 Ethylene copolymer having excellent processing properties
KR20170075533A (en) * 2015-12-23 2017-07-03 주식회사 엘지화학 Supported hybrid catalyst and method for preparing of olefin based polymer using the same
KR20180054443A (en) * 2016-11-15 2018-05-24 주식회사 엘지화학 Ethylene/alpha-olefin copolymer having excellent crack resistance
KR20180099269A (en) * 2017-02-28 2018-09-05 주식회사 엘지화학 Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer
KR20190074959A (en) * 2017-12-20 2019-06-28 주식회사 엘지화학 Catalyst composition and method for preparing olefin polymer using the same

Similar Documents

Publication Publication Date Title
WO2017155149A1 (en) Hybrid catalyst composition, preparation method therefor, and polyolefin prepared using same
WO2010128826A2 (en) Olefin polymer and fiber including same
WO2011111980A2 (en) Supported metallocene catalyst, method for preparing the same and method for preparing polyolefin using the same
WO2017176074A1 (en) Propylene-diene copolymer resin having excellent melt tension
WO2020130452A1 (en) Catalyst for olefin polymerization, and olefin-based polymer produced using same
WO2020105922A1 (en) Transition metal compound for olefin polymerization catalyst, and olefin polymerization catalyst comprising same
WO2015057001A1 (en) Transition metal compound having heteroatom, a catalyst composition comprising same, and method for preparing polymer using same
WO2017003261A1 (en) Transition metal compound and catalyst composition containing same
WO2017026605A1 (en) Transition metal compound, transition metal catalyst composition for olefin polymerization comprising same, and method for producing olefin-based polymer by using same
WO2019093630A1 (en) Method for preparing high-melt-strength polypropylene resin
WO2018097468A1 (en) Polyolefin catalyst and method for preparing polyolefin by using same
WO2021075788A1 (en) Method for preparing olefin polymerization hybrid catalyst, olefin polymerization hybrid catalyst, and olefin-based polymer
KR102248557B1 (en) Catalyst composition and method for preparing olefin polymer using the same
WO2022108252A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
WO2017003262A1 (en) Transition metal compound and catalyst composition containing same
WO2022108233A1 (en) Olefin-based polymer, film prepared therefrom, and preparation methods therefor
WO2020149643A1 (en) Supported hybrid metallocene catalyst and method for preparing olefin polymer by using same
WO2012176946A1 (en) Transition metal catalyst system with excellent copolymerization and preparation method of ethylene homopolymer or copolymer of ethylene and α-olefin using same
WO2023096341A1 (en) Ethylene-alpha-olefin-based copolymer having controlled short chain branch amount, preparation method therefor, and resin composition and molded product which comprise olefin-based copolymer
WO2022131690A1 (en) Olefinic polymer, and method for preparing same
WO2020116842A1 (en) Method for preparing catalyst for olefin polymerization
KR102432898B1 (en) Supported hybrid metallocene catalyst and method for preparing olefin polymer using the same
WO2021085929A1 (en) Olefin-based polymer
WO2023096308A1 (en) Polyolefin copolymer having improved light transmittance and productivity, and film prepared using same
WO2021107508A1 (en) Olefin-based polymer film and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20742086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020742086

Country of ref document: EP

Effective date: 20201002

NENP Non-entry into the national phase

Ref country code: DE