WO2020149376A1 - Image processing device, image processing method, and program - Google Patents

Image processing device, image processing method, and program Download PDF

Info

Publication number
WO2020149376A1
WO2020149376A1 PCT/JP2020/001354 JP2020001354W WO2020149376A1 WO 2020149376 A1 WO2020149376 A1 WO 2020149376A1 JP 2020001354 W JP2020001354 W JP 2020001354W WO 2020149376 A1 WO2020149376 A1 WO 2020149376A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixels
area
candidate
image
Prior art date
Application number
PCT/JP2020/001354
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 隆彦
萌伽 信田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2020149376A1 publication Critical patent/WO2020149376A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an image processing device, an image processing method, and a program.
  • a method has been proposed in which image processing is performed on an image obtained by picking up an image of an object including a linear portion that appropriately includes branches and the like (see Patent Document 1). In such image processing, it is desirable to perform the processing promptly while suppressing deterioration in accuracy.
  • an image processing apparatus is an image processing apparatus that connects fragmented cell regions in an image to extract cells, and obtains the fragmented cell region from the image.
  • An acquisition unit a first pixel setting unit that sets a first pixel in the fragmented cell region, and a plurality of pixel groups that are set based on the position of the first pixel and are included in the plurality of pixel groups.
  • a second pixel is selected based on a brightness value of the pixel to be extracted, and then an extraction unit that connects the first pixel and the second pixel to extract a cell.
  • an image processing method is an image processing method for extracting cells by connecting fragmented cell regions in an image, and obtaining fragmented cell regions from the image.
  • Area acquisition a first pixel setting that sets a first pixel in the fragmented cell area, and a plurality of pixel groups are set based on the position of the first pixel, and the plurality of pixel groups are included in the plurality of pixel groups.
  • a program is a program for connecting cells fragmented in an image to extract cells, and an acquisition process for acquiring a fragmented cell region from the image.
  • a first pixel setting process for setting a first pixel in the fragmented cell region, and a plurality of pixel groups set based on the position of the first pixel, and brightness of pixels included in the plurality of pixel groups
  • the processing device is caused to select the second pixel based on the value, and then perform the extraction process of connecting the first pixel and the second pixel to extract the cell.
  • FIG. 1 is a conceptual diagram showing a configuration of an image generating apparatus according to an embodiment.
  • FIG. 2 is a conceptual diagram showing the configuration of the data processing unit.
  • FIG. 3 is a conceptual diagram showing a probability distribution image.
  • FIG. 4 is a conceptual diagram showing a connected area image.
  • FIG. 5 is a conceptual diagram for explaining the search area.
  • FIG. 6 is a conceptual diagram for explaining the setting of the starting point pixel.
  • FIG. 7 is a conceptual diagram for explaining the selected pixel setting process.
  • FIG. 8 is a conceptual diagram for explaining candidate pixels.
  • FIG. 9 is a graph showing the relationship between luminance and candidate pixel parameters.
  • FIG. 10 is a conceptual diagram showing a connected pixel area.
  • FIG. 11 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 11 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 11 is a flowchart showing the flow of the image generation method according
  • FIG. 12 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 13 is a conceptual diagram for explaining re-extraction of selected pixels.
  • FIG. 14 is a flowchart showing the flow of the image generation method according to the modification.
  • FIG. 15 is a conceptual diagram for explaining the relationship between the size of the calculated pixel area and the width of the neurite.
  • FIG. 16 is a conceptual diagram showing the configuration of the image generating apparatus according to the embodiment. 17(A), 17(B), 17(C) and 17(D) are conceptual diagrams for explaining the candidate area and the finalized area.
  • FIG. 18 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 19 is a conceptual diagram for explaining the setting of the starting point pixel.
  • FIG. 19 is a conceptual diagram for explaining the setting of the starting point pixel.
  • FIG. 20 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example.
  • FIG. 21 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example.
  • 22(A), 22(B) and 22(C) are conceptual diagrams for explaining the detection of a crossover.
  • 23(A), 23(B), 23(C) and 23(D) are conceptual diagrams for explaining the detection of a crossover.
  • FIG. 24 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example.
  • FIG. 25 is a conceptual diagram for explaining the calculation of the width of the neurite.
  • FIG. 26 is a conceptual diagram for explaining the calculation of the width of the neurite.
  • FIG. 27 is a conceptual diagram for explaining the calculation of the output brightness value.
  • FIG. 28 is a conceptual diagram showing the configuration of the image generating apparatus according to the embodiment.
  • FIG. 29 is a conceptual diagram for explaining the first selected pixel setting process.
  • FIG. 30 is a conceptual diagram for explaining the second selected pixel setting process.
  • FIG. 31 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 32 is a flowchart showing the flow of the image generation method according to the embodiment.
  • FIG. 33 is a conceptual diagram showing the starting point arrangement area.
  • FIG. 34 is a flowchart showing the flow of the image generation method according to the modification.
  • FIG. 35 is a conceptual diagram for explaining the provision of the program.
  • the image generation apparatus of the first embodiment extracts a plurality of pixels based on the acquired image data (hereinafter, referred to as input image data), and the image data (hereinafter referred to as an output image) based on the extracted plurality of pixels. Data).
  • FIG. 1 is a conceptual diagram showing the configuration of the image generating apparatus of this embodiment.
  • the image generation device 1 includes a culture unit 100 and an information processing unit 40.
  • the culture unit 100 includes an incubator 10, an observation sample stage 11, a drive unit 12, and an imaging unit 20.
  • the information processing unit 40 includes an input unit 41, a communication unit 42, a storage unit 43, an output unit 44, and a control unit 50.
  • the control unit 50 includes a data processing unit 51, an output control unit 52, and a device control unit 53.
  • the image generation device 1 is configured as a culture device, and has a configuration in which input image data obtained by imaging in the culture unit 100 is input to the data processing unit 51 and processed. Note that the image generating device 1 does not have to have a configuration in which the image generating device 1 performs imaging and culturing as long as it can acquire input image data.
  • a linear portion including a straight line, a curved line, an intersection, or the like is extracted as an extraction target from the input image corresponding to the input image data.
  • the extraction target is not limited to this example as long as the linear portion as described above is included.
  • the culturing unit 100 cultivates the cell Ce and images the cultivated cell Ce.
  • the incubator 10 stores therein a culture container C in which cells Ce are cultured.
  • the inside of the incubator 10 is controlled by a temperature controller (not shown) so that the culture is performed in a preset environment, such as being maintained at a preset temperature.
  • the drive unit 12 includes an actuator, moves the culture container C at a predetermined time, and mounts it on the observation sample table 11 inside the incubator 10. Further, the driving unit 12 moves the imaging unit 20 or the observation sample stage 11 or the like to an appropriate position so that the cells Ce are arranged on the focal plane of the imaging unit 20 for imaging the cells Ce.
  • the image pickup unit 20 includes an image pickup device including an image pickup device such as a CMOS or CCD, and picks up an image of the cell Ce, particularly the neurite Nr of the cell Ce.
  • the method of imaging by the imaging unit 20 is not particularly limited as long as the pixel corresponding to the neurite Nr in the captured image can be distinguished from other portions with desired accuracy by the brightness value of the pixel.
  • a fluorescence observation method, a phase difference observation method, or the like can be used as a method of imaging by the imaging unit 20.
  • gene transfer causes a cell Ce to express a fluorescent protein such as GFP or a protein in which a protein localized in neurite Nr and a fluorescent protein are fused. By doing so, fluorescent staining can be performed. If there is no problem in using the cells Ce after imaging, another labeling method such as immunostaining may be performed.
  • Data corresponding to the captured image obtained by the image capturing unit 20 capturing the cell Ce is converted into a digital signal and input to the information processing unit 40 as input image data in which pixels are associated with brightness values (arrows).
  • A1) is stored in the storage unit 43.
  • the information processing unit 40 serves as an interface with a user of the image generating apparatus 1 (hereinafter, simply referred to as “user”), and also performs processing such as communication, storage, and calculation regarding various data.
  • the information processing unit 40 may be configured as an information processing device that is physically separated from the culture unit 100. Further, a part of the data used by the image generating apparatus 1 may be stored in a remote server or the like, and a part of the arithmetic processing performed by the image generating apparatus 1 may be performed by a remote server or the like.
  • the input unit 41 includes an input device such as a mouse, a keyboard, various buttons or a touch panel.
  • the input unit 41 receives, from a user, data necessary for imaging by the culture unit 100 and data processing by the data processing unit 51.
  • the communication unit 42 includes a communication device capable of communicating by wireless or wired connection such as the Internet, and appropriately transmits/receives data regarding control and processing in the image generation device 1.
  • the storage unit 43 includes a non-volatile storage medium, and stores a program that causes the control unit 50 to perform processing, image data regarding the processing of the data processing unit 51, and the like.
  • the output unit 44 includes a display device such as a liquid crystal monitor, and outputs an image or the like based on the output image data obtained by the processing of the data processing unit 51.
  • the control unit 50 is configured by a processing device such as a CPU, functions as a main body of the operation that controls the image generation device 1, and executes various processes by executing a program installed in the storage unit 43.
  • a processing device such as a CPU
  • the data processing unit 51 of the control unit 50 processes the input image data input from the imaging unit 20, extracts a plurality of pixels corresponding to an extraction target, and outputs output image data (described later) based on the extracted pixels. Connected region image data) is generated.
  • FIG. 2 is a conceptual diagram showing the configuration of the data processing unit 51.
  • the data processing unit 51 includes a probability distribution image generation unit 511, a region setting unit 512, an end point pixel setting unit 513, a start point pixel setting unit 514, a pixel extraction unit 600, and an image generation unit 700.
  • the pixel extraction unit 600 includes a candidate pixel designation unit 601 and a selected pixel setting unit 602.
  • the probability distribution image generation unit 511 of the data processing unit 51 generates and acquires probability distribution image data corresponding to the probability distribution image based on the input image data stored in the storage unit 43.
  • FIG. 3 is a conceptual diagram showing the probability distribution image Gp.
  • the probability distribution image Gp is an image in which the brightness of each pixel of the probability distribution image Gp is associated with the probability that the pixel corresponds to the neurite Nr to be extracted.
  • FIG. 3 shows the probability distribution image Gp corresponding to a nerve cell, but for the sake of clarity, only one neurite Nr is shown.
  • the darker the hatched portion the higher the possibility that the pixel corresponding to that portion is the image portion corresponding to the neurite Nr.
  • the above probability corresponds to each pixel as a one-dimensional brightness value and is expressed as a gray scale image, but if the above probability and brightness value are associated with each other, the probability distribution image Gp
  • the aspect of is not particularly limited.
  • the probability distribution image generation unit 511 calculates the probability corresponding to the neurite Nr, which is the extraction target, for each pixel by processing the input image data with a predetermined image processing algorithm.
  • the predetermined image processing algorithm is learned machine learning. This machine learning is deep learning in which a plurality of images obtained by imaging nerve cells and an image showing a portion corresponding to a neurite in the image are input to and learned by an arithmetic device.
  • the predetermined image processing algorithm is not particularly limited as long as the probability and the brightness value are associated with each other, and machine learning other than deep learning or an algorithm other than machine learning may be used.
  • the part corresponding to the neurite Nr and the part corresponding to the cell body So are not necessarily connected.
  • the linear portion such as the neurite Nr cannot be imaged with sufficient accuracy because it is thin. This tendency is also seen in images obtained by a fluorescence microscope that is often used for imaging cells and the like.
  • the probability distribution image Gp in FIG. 3 shows a plurality of pixel region fragments F corresponding to the neurite Nr.
  • the pixel region fragment F1 and the pixel region fragment F2 are separated from each other by 2 pixels or more, and the pixel region fragment F2 and the pixel region fragment F3 are separated from each other by 2 pixels or more.
  • the pixel area fragment F3 and the pixel area fragment F4 are adjacent to each other in the diagonal direction, but are not connected in the vertical direction or the horizontal direction. In such a case, it is not particularly limited whether the pixel region fragments F3 and F4 are connected or not connected, and in the analysis algorithm for analyzing the neurite Nr as described above. It can be appropriately set based on the definition of connectivity.
  • the data processing unit 51 calculates, from the probability distribution image Gp, a connected pixel area corresponding to the neurite Nr to be extracted and composed of a plurality of pixels that are integrally connected.
  • An image showing a connected pixel area is called a connected area image.
  • FIG. 4 is a conceptual diagram showing a connected region image Gs obtained from the probability distribution image Gp of FIG.
  • the connected pixel area Dc corresponds to the neurite Nr, and the pixels forming the connected pixel area Dc are connected to each other.
  • the portion corresponding to the cell body So connected to the connected pixel area Dc is also shown in FIG. 4, this portion may or may not be shown in the connected area image Gs.
  • the point that the data processing unit 51 sets the start point pixel and the end point pixel derives the connected pixel area Dc that connects the start point pixel and the end point pixel, and generates the connected area image data corresponding to the connected area image Gs. Will be explained.
  • the data processing unit 51 sets a start point pixel and an end point pixel, and sequentially sets a plurality of pixels starting from the start point pixel.
  • the set pixel is hereinafter referred to as a selected pixel.
  • the data processing unit 51 extracts at least one of the selected pixels set when a condition based on the position of the end point pixel (hereinafter, referred to as an end condition) is satisfied.
  • the pixel extracted here is called an extracted pixel.
  • the area setting unit 512 sets a search area that is a range for searching for extracted pixels.
  • the search region is a range in which a candidate pixel designating unit 601 described later designates a candidate pixel.
  • the area setting unit 512 sets the pixel area corresponding to the range set by the user in the probability distribution image Gp (FIG. 3) as the search area.
  • the area setting unit 512 sets the entire probability distribution image Gp as the search area when there is no user setting.
  • FIG. 5 is a conceptual diagram showing a search area.
  • the area setting unit 512 sets a rectangular range set by the user using a mouse cursor or the like as the search area D1.
  • the end point pixel setting unit 513 sets the end point pixel Pxt from the pixels forming the search area D1.
  • the end point pixel Pxt may be one or plural.
  • the end point pixel Pxt is a pixel corresponding to the cell body So of the cell Ce (FIG. 1).
  • the method of determining the pixel corresponding to the cell body So from the input image or the probability distribution image Gp is not particularly limited.
  • the end point pixel setting unit 513 binarizes the probability distribution image Gp, deletes the neurite Nr by the opening process in the binarized image, and associates the pixel corresponding to the largest connected pixel region with the cell body So. It is possible to use a known method such as setting a pixel to be used.
  • the starting point pixel setting unit 514 sets the starting point pixel from the pixels forming the search area D1.
  • the start point pixel setting unit 514 is a first binarized image data corresponding to a binarized image (hereinafter, referred to as a first binarized image) obtained by binarizing the brightness of each pixel in the probability distribution image Gp. Is generated, and the starting point pixel is set based on the first binarized image.
  • FIG. 6 is a diagram showing an example of the first binarized image Gb1 obtained by binarizing the probability distribution image Gp of FIG.
  • the luminance values corresponding to the pixels constituting the pixel area fragments F (F1, F2, F3, and F4) of the probability distribution image Gp being black and the other portions being white.
  • the threshold for binarization can be set appropriately based on the amount of noise in the probability distribution image Gp and the like.
  • the cell body So corresponds to the end point pixel Pxt.
  • the start point pixel setting unit 514 is based on the distance from the end point pixel Pxt in the first binarized image Gb1 and the width of the pixel region corresponding to the extraction target in the first binarized image Gb1 and having the same value. Then, the starting point pixel Pxi is set.
  • the starting point pixel setting unit 513 selects the pixel area fragment F1 having the largest number of pixels in the search area D1 among the pixel area fragments F, and sets the pixel farthest from the ending point pixel Pxt in the selected pixel area fragment F1 as the starting point pixel Pxi. It is preferable to set.
  • the distance between each pixel and the end point pixel Pxt in the pixel region fragment F1 the distance between each pixel and the center of gravity of the end point pixel Pxt, or the most relevant pixel among each pixel and the end point pixel Pxt.
  • the distance between adjacent pixels can be used.
  • the pixel extraction unit 600 sets the selected pixel in the search region D1 starting from the starting point pixel Pxi, and sets a pixel row formed by a plurality of selected pixels based on a predetermined condition as a plurality of extracted pixels. Extract.
  • the starting point pixel Pxi may be included in the extracted pixels. This pixel extraction is performed by a method based on the Dijkstra method.
  • the candidate pixel designating unit 601 designates a plurality of candidate pixels in the search region D1
  • the selection pixel setting unit 602 sets a selection pixel from the plurality of candidate pixels.
  • FIG. 7 is a conceptual diagram for explaining setting of selected pixels by the pixel extracting unit 600.
  • Pixels corresponding to a plurality of positions based on the position of the starting point pixel Pxi are designated as a plurality of candidate pixels Pxc.
  • the candidate pixel parameter is calculated for each of the candidate pixels Pxc corresponding to the starting point pixel Pxi.
  • the candidate pixel parameter takes a non-negative value and corresponds to the distance in the Dijkstra method. If the starting point pixel Pxi and each candidate pixel Pxc are nodes, the candidate pixel parameter corresponds to each of the edges Ed connecting the nodes.
  • one pixel of the candidate pixels Pxc corresponding to the starting point pixel Pxi is selected and set as the selected pixel Pxd.
  • the pixel set here becomes the selected pixel Pxd1 (arrow A3).
  • the designation of the candidate pixel Pxc selected as the selected pixel Pxd is canceled as the candidate pixel. It should be noted that every time the selected pixel Pxd is set, all the candidate pixels Pxc may be canceled once and the necessary entire candidate pixels may be reset again.
  • pixels corresponding to a plurality of positions based on the position of the selected pixel Pxd1 are designated as a plurality of candidate pixels Pxc, respectively.
  • the candidate pixel Pxc corresponding to the starting point pixel Pxi and the selected pixel Pxd1 the candidate pixel Pxc having the smallest sum of candidate pixel parameters corresponding to one or more edges Ed from the starting point pixel Pxi to each candidate pixel Pxc is new. It is set as the selected pixel Pxd2 (arrow A4). In this way, the plurality of selected pixels Pxd are sequentially set until the end condition is satisfied.
  • the candidate pixel designating unit 601 has a plurality of candidates at positions at least N pixels apart from each of the start point pixel Pxi and the already set selection pixel Pxd.
  • the pixel Pxc is designated.
  • N is referred to as a candidate pixel position parameter.
  • the pixel extracting unit 600 sets N to 2 or more.
  • the distance between pixels when "X pixels are separated” is defined as follows.
  • the distance between two pixels vertically separated and the distance between two pixels horizontally separated are the unit grid in each direction.
  • the width of is the distance one pixel away. That is, a pixel adjacent in the vertical direction or the horizontal direction to a certain pixel is a pixel separated by one pixel, and the distance between two pixels adjacent in the vertical direction or the horizontal direction is set as a distance separated by one pixel. ..
  • the distance between two pixels that are diagonally separated is the longer of the vertical and horizontal distances.
  • the pixel at the coordinate (0,0) and the pixel at the coordinate (1,1) are diagonally adjacent to each other, and the distance is 1 in the vertical direction and 1 in the horizontal direction. become.
  • the pixel at the coordinate (0, 0) and the pixel at the coordinate (2, 2) are separated by 2 pixels because the distance 2 in the vertical direction and the distance 2 in the horizontal direction.
  • the pixel at the coordinate (0,0) and the pixel at the coordinate (1,2) are separated by 2 pixels because the distance is 2 in the vertical direction and 1 is in the horizontal direction.
  • the candidate pixel position parameter N is 2 or more, and the candidate pixel Pxc is set at a distance of 2 pixels or more from the starting point pixel Pxi or the selected pixel Pxd, the number of times the selected pixel Pxd is set can be reduced, and the extraction target can be quickly extracted. Corresponding pixels can be extracted. Further, in the first binarized image Gb1 (FIG. 6), the pixel regions that are originally connected and correspond to the extraction target are interrupted at intervals of one pixel due to noise or the like (the probability that the extraction target corresponds to the low However, since it is possible to jump over the interval and set the pixel column including the selected pixel Pxd, it is possible to output the connected pixel region Dc that accurately reflects the extraction target.
  • FIG. 8 is a conceptual diagram showing designation of a candidate pixel Pxc corresponding to one selected pixel Pxd0 when the candidate pixel position parameter N is set to 6.
  • the candidate pixel Pxc is arranged at a position separated by 6 pixels in the vertical direction or the horizontal direction from the selected pixel Pxd0. Further, the candidate pixel Pxc is also arranged at a position moved by 6 pixels in both the vertical direction and the horizontal direction from the selected pixel Pxd0.
  • the selected pixel Pxdp in the upper part of FIG. 8 is set as the selected pixel Pxd before the selected pixel Pxd0.
  • a pixel that has already been set as the selected pixel Pxd is not designated as the candidate pixel Pxc.
  • the candidate pixel Pxc is designated for the starting point pixel Pxi.
  • the selected pixel setting unit 602 sets a calculated pixel area Ds, which is a range of pixels using luminance values when calculating the candidate pixel parameters, based on the positions of the starting pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc. ..
  • Each pixel included in the calculated pixel area Ds is called a calculated pixel Pxs.
  • the calculation pixel Pxs is preferably a pixel included in a predetermined range centered on a pixel (hereinafter, referred to as a central pixel Pxo) located on a line connecting the starting point pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc. ..
  • the central pixel Pxo is located on the line Lcd connecting the selected pixel Pxd0 and the candidate pixel Pxc1, and is the middle pixel of the seven pixels located on the line Lcd, in other words, the middle point of the line Lcd. It corresponds to the pixel including.
  • the calculated pixel area Ds is a 7 ⁇ 7 square area centered on the central pixel Pxo, and includes 49 calculated pixels Pxs.
  • the center pixel Pxo and the calculated pixel area Ds are similarly set for the other candidate pixels Pxc.
  • the candidate pixel position parameter N and the calculated pixel area Ds may be set based on the width of the neurite Nr.
  • the candidate pixel position parameter N and the calculated pixel region Ds can be set such that at least one of the widths of the candidate pixel position parameter N and the calculated pixel region Ds is larger than the width of the neurite Nr.
  • the candidate pixel position parameter N can be set to a length of 5 pixels or 7 pixels.
  • the candidate pixel position parameter N and the calculated pixel area Ds can be set such that the start point pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc are included in the calculated pixel area Ds of the candidate pixel Pxc. ..
  • the selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness values of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc.
  • the candidate pixel parameter d is calculated using the sum of the brightness values of the calculation pixels Pxs included in the calculation pixel area Ds or the average value such as the arithmetic mean.
  • FIG. 9 shows the value of the candidate pixel parameter d with respect to the sum I patch of the brightness values of the calculated pixel Pxs calculated by the equation (1).
  • the candidate pixel parameter d is set to monotonically decrease as the sum I patch increases. Since the luminance value of the probability distribution image Gp (FIG. 8) indicates the probability that the pixel corresponds to the extraction target, the higher the luminance value of the calculated pixel Pxs, the smaller the candidate pixel parameter d. This corresponds to a small distance value in the Dijkstra method.
  • the selected pixel setting unit 602 calculates the sum of the candidate pixel parameters d corresponding to each edge Ed (FIG. 7) from the start point pixel Pxi to the candidate pixel Pxc among the plurality of candidate pixels Pxc corresponding to the start point pixel Pxi and the selected pixel Pxd.
  • the candidate pixel Pxc having the smallest value of is set as a new selected pixel Pxd.
  • the candidate pixel designating unit 601 adds the candidate pixel Pxc that has already been designated as described above to the candidate pixel at each of a plurality of positions based on the position of the new selected pixel Pxd.
  • the selected pixel setting unit 602 further sets a new selected pixel Pxd from the plurality of candidate pixels Pxc.
  • the pixel extraction unit 600 sets a plurality of selected pixels Pxd by the process of repeating the designation of the candidate pixel Pxc and the setting of the selected pixel Pxd (hereinafter referred to as the selected pixel setting process).
  • the pixel extraction unit 600 sets a termination condition based on the end point pixel Pxt (FIG. 5) before performing the selection pixel setting process, and terminates the selection pixel setting process when the termination condition is satisfied.
  • At least one of the end conditions (hereinafter, referred to as a first end condition) is a case where the candidate pixel Pxc (FIG. 8) set by the candidate pixel designation unit 601 overlaps with the end point pixel Pxt.
  • the pixel extraction unit 600 terminates the selection pixel setting process, and selects from among the plurality of selection pixels Pxd set at that point, the number of pixels that is the smallest number of pixels away from the end point pixel Pxt.
  • the plurality of selected pixels Pxd included in the pixel column corresponding to the pixel Pxd are stored in the storage unit 43 as extraction pixels.
  • the pixel row is composed of the start point pixel Pxi and at least a part of the plurality of selected pixels Pxd selected in the selection pixel setting process, and is separated from the start point pixel Pxi and the end point pixel Pxt by the smallest number of pixels. It is a pixel column that connects the selected pixels Pxd.
  • At least a part of the plurality of selected pixels Pxd is a plurality of selected pixels Pxd forming a column having the smallest sum of candidate pixel parameters d among a plurality of columns of the plurality of selected pixels Pxd starting from the start point pixel Pxi,
  • These selected pixels Pxd are extraction pixels.
  • “connecting” means that adjacent pixels in a pixel row are associated with each other.
  • the “correspondence” between the pixel A and the pixel B means that the pixel B is arranged at any position where the candidate pixel Pxc can be arranged with respect to the pixel A.
  • the pixel extraction unit 600 discards the set plurality of selected pixels Pxd and returns to the state in which the selected pixels Pxd are not set.
  • the area setting unit 512 sets the connected pixel area Dc based on the plurality of extracted pixels. It should be noted that the selection pixel Pxd that has been set may be discarded at any time as long as it is performed before a new selection pixel setting process is started.
  • the second end condition Another one of the end conditions (hereinafter referred to as the second end condition) is that the selected pixel Pxd is set a predetermined number of times. The number of times can be appropriately set based on the magnification and resolution of the probability distribution image Gp (FIG. 8), the characteristics of the extraction target, and the like.
  • the pixel extraction unit 600 discards the set plurality of selected pixels Pxd and returns to the state where the selected pixel Pxd is not set. After that, it is preferable to change the condition such as changing the position of the starting point pixel Pxi or changing the candidate pixel position parameter N, and to redo the selected pixel setting process.
  • the second end condition unnecessary search is avoided when the pixel region fragment F including the starting point pixel Pxi and the below-described candidate region Fc are not the neurite Nr to be extracted, and the calculation cost is reduced. Can be reduced.
  • the area setting unit 512 sets the connected pixel area Dc (FIG. 4) based on the extracted plurality of extracted pixels.
  • the area setting unit 512 associates each of the starting point pixel Pxi and the extracted plurality of extracted pixels with a pixel area in a predetermined range (hereinafter, referred to as a connected element pixel area).
  • a connected element pixel area a predetermined range
  • Each of the connected element pixel regions corresponding to each of the start point pixel Pxi and the plurality of extracted pixels has the predetermined range set in advance so that a part of the pixels overlaps the other connected element pixel regions.
  • the area setting unit 512 sets a pixel area including a pixel corresponding to at least one of the set plurality of connected element pixel areas as a connected pixel area Dc.
  • FIG. 10 is a conceptual diagram for explaining the setting of the connected pixel area Dc.
  • the connected element pixel region De is set as a 7 ⁇ 7 square pixel region centered on the start point pixel Pxi or the extracted pixel Pxe.
  • the candidate pixel position parameter N is set to 3 and the selected pixel setting process is performed. Since the width of the connected element pixel area De is sufficiently larger than the candidate pixel position parameter N, each connected element pixel area De has an overlapping portion with another connected element pixel area De, and a connected connected pixel area Dc is obtained. ing.
  • the connected element pixel area De1 corresponding to the starting point pixel Pxi and the connected element pixel area De2 corresponding to the extracted pixel Pxe1 overlap for some pixels.
  • the shape and size of the connected element pixel area De are not particularly limited.
  • the shape or size of the connected element pixel area De may be determined based on the shape or size of the calculated pixel area Ds (FIG. 8).
  • the shape and size of the connected element pixel area De can be made equal to the shape and size of the calculated pixel area Ds.
  • the size of the pixel region that contributes when calculating the candidate pixel parameter d and the size of the connected element pixel region De become substantially equal, so that the connected pixel region Dc corresponding to the extraction target can be set more accurately. it can.
  • the size of the connected element pixel region De may be set to a size that includes the starting point pixel Pxi and the extraction pixel Pxe adjacent to each other or the two extraction pixels Pxe adjacent to each other.
  • the image generation unit 700 generates image data (hereinafter, referred to as connected area image data) corresponding to the connected area image Gs (see FIG. 4) indicating the connected pixel area Dc.
  • the image generation unit 700 sets a portion corresponding to the connected pixel area Dc in the connected area image Gs or a portion obtained by adding the end point pixel Pxt (FIG. 6) to the portion to at least one of the hue, the brightness, and the saturation.
  • Connected area image data is generated in a different manner.
  • the generated connected area image data becomes output image data from the data processing unit 51.
  • the connected region image data is then appropriately subjected to morphological analysis and the like, and the neurite length is calculated and the like.
  • the output control unit 52 of the control unit 50 controls the output unit 44 to output the connected region image Gs as an output image.
  • the device control unit 53 of the control unit 50 controls each unit of the culture unit 100 based on the input from the input unit 41 (arrow A2).
  • the device control unit 53 controls culture and controls the imaging unit 20 to perform imaging.
  • FIG. 11 is a flowchart showing the flow of the image generation method according to this embodiment.
  • the culture unit 100 cultures the cells Ce.
  • step S1003 starts.
  • the imaging unit 20 images the cultured cells Ce, and the information processing unit 40 acquires input image data corresponding to the captured image.
  • step S1005 starts.
  • step S1005 the probability distribution image generation unit 511 converts the input image data into probability distribution image data corresponding to the probability distribution image Gp.
  • step S1007 starts.
  • step S1007 the end point pixel setting unit 513 sets the end point pixel Pxt.
  • step S1009 starts.
  • step S1009 the starting point pixel setting unit 514 sets the starting point pixel Pxi.
  • step S1011 starts.
  • step S1011 the pixel extraction unit 600 sets a plurality of selected pixels Pxd and extracts a plurality of extracted pixels.
  • step S1013 starts.
  • step S1013 the region setting unit 512 sets the connected pixel region Dc based on the extracted plurality of extracted pixels Pxe.
  • step S1015 starts.
  • step S1015 the image generation unit 700 generates connected region image data corresponding to the connected region image Gs indicating the connected pixel region Dc.
  • step S1017 starts.
  • step S1017 the output unit 44 outputs the connected area image Gs.
  • step S1017 ends the process ends.
  • FIG. 12 is a flowchart showing the flow of step S1011 in the flowchart of FIG.
  • step S111 starts.
  • the candidate pixel designating unit 601 designates a plurality of pixels located at least N pixels from the starting point pixel Pxi as candidate pixels Pxc.
  • step S113 starts.
  • the selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc.
  • step S115 starts.
  • step S115 the selected pixel setting unit 602 sets the selected pixel Pxd from the plurality of candidate pixels Pxc based on the candidate pixel parameter d of each candidate pixel Pxc.
  • step S117 starts.
  • the candidate pixel designating unit 601 designates, as candidate pixels Pxc, a plurality of pixels existing at positions at least N pixels apart from the already set selected pixel Pxd.
  • step S119 starts.
  • step S119 the candidate pixel designation unit 601 determines whether at least one of the plurality of candidate pixels Pxc is the end point pixel Pxt. When the plurality of candidate pixels Pxc include the end point pixel Pxt, the candidate pixel designation unit 601 makes an affirmative decision in step S119, and step S127 is started. If the plurality of candidate pixels Pxc does not include the end point pixel Pxt, the candidate pixel designation unit 601 makes a negative determination in step S119 and starts step S121.
  • step S121 the selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc.
  • step S123 starts.
  • step S123 the selected pixel setting unit 602 sets a new selected pixel Pxd from the plurality of candidate pixels Pxc based on the candidate pixel parameter d of each candidate pixel Pxc.
  • step S125 starts.
  • step S125 the pixel extraction unit 600 determines whether or not the selected pixel Pxd has been set a predetermined number of times. When the selected pixel Pxd has been set the number of times described above, the pixel extraction unit 600 makes an affirmative decision in step S125, and the process ends. If the number of times the selected pixel Pxd is set is less than the above number, the pixel extraction unit 600 makes a negative decision in step S125 and returns to step S117.
  • step S127 the pixel extraction unit 600 stores the extracted pixel including at least one of the set selected pixels Pxd in the storage unit 43, and then sets the selected pixel Pxd to the unset state.
  • step S1013 (FIG. 11) starts. It should be noted that at the stage where the candidate pixel Pxc is designated, the determination in step S119 is not performed, but it is determined whether or not the end pixel Pxt matches after the selected pixel Pxd is set. If they match, step S127 is started. It may be one.
  • the starting point pixel setting unit 514 that sets the starting point pixel Pxi from the plurality of pixels that form the probability distribution image Gp, and the plurality of pixels that form the probability distribution image Gp.
  • a pixel extraction unit 600 that specifies a plurality of candidate pixels Pxc from a plurality of pixels other than the start point pixel Pxi and sets a selected pixel Pxd from the plurality of candidate pixels Pxc.
  • the selection pixel setting process of designating a plurality of candidate pixels Pxc from a plurality of pixels excluding the set selection pixel Pxd among the plurality of pixels forming the image Gp and newly setting a selection pixel Pxd from the plurality of candidate pixels Pxc is repeated. Then, the plurality of candidate pixels Pxc are separated from the exclusion pixel which is the start point pixel Pxi and the selection pixel Pxd that are excluded at the time of designation by at least two pixels. With this, it is possible to realize the process of quickly extracting the pixel corresponding to the extraction target while suppressing the deterioration of accuracy.
  • the image generation device 1 of the present embodiment includes the probability distribution image generation unit 511 that acquires the probability distribution image data corresponding to the probability distribution image Gp, and the pixel extraction unit 600 includes the excluded pixel and the candidate pixel Pxc. At least a part of the plurality of selection pixels Pxd obtained by the selection pixel setting process by setting a new selection pixel Pxd from the plurality of candidate pixels Pxc based on the brightness of the plurality of calculation pixels Pxs set based on the position. Is extracted as an extraction pixel Pxe, and an image generation unit 700 that generates connection region image data corresponding to the connection region image Gs based on the extracted plurality of extraction pixels Pxe. With this, it is possible to quickly extract the pixel corresponding to the extraction target and suppress the deterioration of accuracy, and provide the image based on the extraction.
  • the probability distribution image Gp includes the region setting unit 512 that sets the connected pixel region Dc including at least a plurality of extracted pixels Pxe, and the image generation unit 700 includes the connected pixel region. Connected area image data corresponding to the connected area image Gs indicating Dc is generated. Thereby, the connected pixel area (connected pixel area Dc) can be obtained, and morphological analysis and the like can be performed accurately.
  • the image generation apparatus 1 of the present embodiment includes the end point pixel setting unit 513 that sets one or more end point pixels Pxt connected to the connected pixel region Dc, and the pixel extraction unit 600 sets the end point pixel Pxt at the position. Based on this, a condition for ending the selected pixel setting process is set. Accordingly, when there is a portion to which the extraction target is connected in the input image, the connected pixel area Dc that reflects the connection can be set.
  • the pixel extraction unit 600 determines whether the candidate pixel Pxc designated by the candidate pixel setting unit 601 corresponds to at least one of the end point pixels Pxt, or a plurality of candidate pixels Pxc.
  • the setting of the selected pixel Pxd from is performed a predetermined number of times, it is determined that the end condition is satisfied, and the selected pixel setting process is ended.
  • the connected pixel region Dc is properly connected to the portion of the input image to which the extraction target is connected, and unnecessary search is avoided when the selected pixel Pxd that does not correspond to the extraction target is erroneously set. The calculation cost can be reduced.
  • the selected pixel setting unit 602 calculates the candidate pixel parameter d for each candidate pixel Pxc based on the brightness of the plurality of calculated pixels Pxs, and the candidate pixel parameter d.
  • the selected pixel Pxd is set from the plurality of candidate pixels Pxc based on the above. Thereby, the pixel corresponding to the extraction target can be accurately extracted.
  • the selected pixel setting unit 602 calculates the candidate pixel parameter d based on the sum of the brightness of the plurality of calculated pixels Pxs or the arithmetic mean. As a result, noise can be reduced, and the pixel corresponding to the extraction target can be accurately extracted.
  • the plurality of calculation pixels Pxs are a plurality of pixels included in the calculation pixel region Ds based on the selected pixel Pxd and the candidate pixel Pxc. Therefore, the pixel corresponding to the extraction target can be accurately extracted based on the brightness of the pixel at the appropriate position.
  • the range of the calculated pixel region Ds is a range centered on the central pixel Pxo located on the line Lcd connecting the selected pixel Pxd and the candidate pixel Pxc.
  • the area setting unit 512 sets the connected pixel area Dc from the plurality of extracted pixels Pxe based on the preset range or the calculated pixel area Ds. Thereby, the connected pixel area Dc corresponding to the extraction target can be accurately set.
  • the probability distribution image Gp calculates the probability corresponding to the extraction target for each pixel of the input image obtained by imaging using learned machine learning, It is an image in which luminance is associated based on probability. As a result, the probability distribution can be accurately obtained by using the image processing algorithm that has been learned according to the characteristics of the extraction target.
  • the machine learning inputs a plurality of captured images obtained by imaging and an image showing a portion corresponding to an extraction target in each captured image to the arithmetic device. It is deep learning that was learned by. As a result, the distribution of the above probabilities can be obtained accurately based on deep learning.
  • the user of the image generating apparatus 1 can specify the search area D1 that is the range in which the starting point pixel Pxi or the candidate pixel Pxc is arranged in the probability distribution image Gp. This makes it possible to appropriately specify the range for extracting the fixed pixel Pxd based on the user's instruction.
  • the starting point pixel setting unit 514 uses the starting point pixel using the data corresponding to the first binarized image Gb1 obtained by binarizing the luminance in the probability distribution image data. Set Pxi. As a result, the starting point pixel Pxi can be appropriately set in the portion corresponding to the extraction target.
  • the start point pixel setting unit 514 sets the distance from the end point pixel Pxt in the first binarized image Gb1 and the same value in the first binarized image Gb1.
  • the start point pixel Pxi is set based on the size of the connected pixel area fragment F. This makes it possible to appropriately set the starting point pixel Pxi based on the distance from the portion (cell body So or the like) connected to the extraction target in the input image while reducing the influence of noise.
  • the extraction target is the portion corresponding to the neurite Nr in the probability distribution image Gp.
  • the pixel corresponding to the neurite Nr can be quickly extracted while suppressing deterioration in accuracy, and image data for accurately analyzing the length of the neurite Nr and the like can be provided. If the shape including the length of the neurite Nr can be analyzed, it becomes possible to quantify the effect of a drug and the degree of disease progression by examining the change in a sample from a living body or an experiment in which a drug is administered to nerve cells. ..
  • the end point pixel Pxt corresponds to the cell body So connected to the neurite Nr.
  • the connected pixel area Dc that reflects the connection to the cell body So.
  • the image generation device 1 of the present embodiment includes the output unit 44 that outputs the connected region image Gs. This allows the user to visually recognize the connected region image Gs.
  • the imaging device includes an information processing unit 40 as an image generation device and an imaging unit 20. This makes it possible to quickly extract the pixel corresponding to the extraction target from the captured image while suppressing deterioration in accuracy.
  • the culture device includes an information processing unit 40 as an image generation device and a culture unit 100 that cultures the cells Ce.
  • the cultured cells Ce can be analyzed using the connected region image Gs, and the culture conditions and the culture time can be adjusted based on this analysis.
  • the determined connected pixel area Dc may be set as the search area D1 and the definite pixel may be extracted again.
  • FIG. 13 is a conceptual diagram for explaining the pixel extraction method of this modification.
  • the area setting unit 512 sets the connected pixel area Dc (FIG. 10) set in the above embodiment as the search area D1.
  • the candidate pixel designating unit 601 designates the candidate pixel Pxc (FIG. 8) in the search region D1 thus set, and the pixel extracting unit 600 re-extracts the extracted pixel Pxe.
  • the candidate pixel position parameter N is set to a value smaller than the candidate pixel position parameter N (N is 2 or more) in the first extraction of the above-described embodiment.
  • the candidate pixel designation unit 601 sets the candidate pixel position parameter N to 1 or more in this second extraction.
  • the starting point pixel setting unit 514 sets the starting point pixel Pxi in the search area D1
  • the starting point pixel Pxi in the above-described embodiment may be used as it is.
  • FIG. 13 shows the extracted pixel Pxe extracted when the candidate pixel position parameter N is set to 1 in the second extraction.
  • the area setting unit 512 sets a connected element pixel area De (FIG. 10) to each of the starting point pixel Pxi and the extracted pixel Pxe extracted in the extraction again, and a new connected element pixel area De is connected.
  • a connected pixel area can be set.
  • the width of the connected element pixel region De is set to be smaller than the width of the connected element pixel region De in the first extraction of the above-described embodiment, and for example, 7 pixels are set when the first connected pixel area Dc is set. At the time of setting again, it can be set to 2 pixels or 3 pixels.
  • the setting of the first connected pixel region Dc is extracted by setting the width of the candidate pixel position parameter N and the width of the connected element pixel region De to be smaller than that in the extraction of the first extracted pixel Pxe in the second extraction.
  • the pixels corresponding to the target can be roughly extracted, and the second extraction can be performed with higher accuracy.
  • the search area D1 is narrowed, so that the increase in the amount of calculation can be suppressed.
  • FIG. 14 is a flowchart showing the flow of the image generation method according to this modification. Since steps S2001 to S2013 correspond to steps S1001 to S1013 of the flowchart of FIG. 11, respectively, description thereof will be omitted. When step S2013 ends, step S2015 starts.
  • step S2015 the area setting unit 512 sets the connected pixel area Dc set in step S2013 as the search area D1, and the pixel extraction unit 600 sets the plurality of selected pixels Pxd again and the plurality of extracted pixels Pxe.
  • step S2017 starts.
  • step S2017 the area setting unit 512 sets the connected pixel area Dc based on the plurality of extracted pixels Pxe extracted again.
  • step S2019 starts. Steps S2019 and S2021 correspond to steps S1015 and S1017 of the flowchart of FIG. 11, respectively, and thus description thereof will be omitted.
  • the starting point pixel setting unit 514 sets the starting point pixel Pxi in the connected pixel area Dc (search area D1) set by the area setting unit 512, and the pixel extraction unit 600 sets the connected pixel area.
  • a plurality of extracted pixels Pxe are extracted again from Dc, and the candidate pixel designating section 514 sets candidate pixels Pxc at a plurality of positions apart from the starting point pixel Pxi and the selected pixel Pxd by one or more pixels in this second extraction.
  • the area setting unit 512 sets the connected pixel area Dc including the pixels extracted by the second extraction.
  • the shape or size of the connected element pixel area De may be determined based on the value of the candidate pixel parameter d when the calculated pixel area Ds (FIG. 8) is changed.
  • the candidate pixel parameter d is based on the average value of the brightness values of the calculated pixels Pxs in the calculated pixel area Ds.
  • the width of the neurite Nr to be extracted is smaller than the calculated pixel area Ds, the ratio of the calculated pixel Pxs that does not correspond to the neurite Nr in the calculated pixel area Ds increases and the candidate pixel parameter d changes.
  • FIG. 15 is a conceptual diagram showing the correspondence between the calculated pixel area Ds and the neurite Nr. Since the calculated pixel area Ds is larger than the width W of the neurite Nr, the number of calculated pixels Pxs2 that do not overlap the neurite Nr is larger than that of the calculated pixels Pxs1 that overlap the neurite Nr. When the calculated pixel area Ds is reduced from the size shown in FIG. 15 and the width of the calculated pixel area Ds becomes approximately the same as the width W of the neurite Nr, even if the calculated pixel area Ds is made smaller thereafter, The change in the candidate pixel parameter d is smaller than before.
  • the calculated pixel area Ds when the calculated pixel area Ds is changed to calculate the candidate pixel parameter d, the calculated pixel area Ds when the change of the candidate pixel parameter d becomes small is set as the selected pixel Pxd (FIG. 8).
  • the connected pixel area Dc (FIG. 4) based on the width of the neurite Nr can be generated.
  • the selected pixel setting unit 602 calculates a plurality of candidate pixel parameters d by changing the size of the calculated pixel area Ds for each candidate pixel Pxc (FIG. 8).
  • the area setting unit 512 can set the size of the connected element pixel area De when the candidate pixel becomes the extracted pixel Pxe based on the calculated candidate pixel parameter d.
  • the area setting unit 512 can change the size of the connected pixel area Dc based on the candidate pixel parameter d when the calculated pixel area Ds is changed. Accordingly, it is possible to provide the connected pixel region Dc based on the width of the extraction target linear portion and the like.
  • the subject of the input image is the fundus and the linear portion to be extracted is the blood vessel at the fundus.
  • the fundus image shows that blood vessels extend in various directions from the optic disc. Therefore, the linear portion to be extracted is a blood vessel, and the probability distribution image generation unit 511 generates a probability distribution image Gp (FIG. 5) in which the probability that each pixel corresponds to a blood vessel is associated with a brightness value from the input image. ..
  • the end point pixel setting unit 513 extracts the pixel area corresponding to the optic disc and sets it as the end point pixel Pxt.
  • the starting point pixel setting unit 514 sets the starting point pixel Pxi (FIG. 6) to the pixel region fragment F in the first binarized image.
  • the pixel extraction unit 600 extracts a plurality of extracted pixels Pxe corresponding to blood vessels, and the region setting unit 512 sets the connected pixel region Dc.
  • the extraction target is the portion corresponding to the blood vessel in the probability distribution image Gp. This makes it possible to quickly extract a portion corresponding to a blood vessel from an image of a blood vessel as a subject while suppressing deterioration in accuracy.
  • the length and area of the blood vessel can be calculated based on the obtained information on the portion corresponding to the blood vessel, and the blood vessel can be quantified.
  • the extraction target is a portion corresponding to a blood vessel in the probability distribution image Gp
  • the probability distribution image Gp is an image corresponding to the fundus
  • the end point pixel Pxt corresponds to the optic disc. .. This makes it possible to quickly extract blood vessels in the fundus of the eye while suppressing deterioration in accuracy.
  • the image generation device 2 of the second embodiment has the same configuration as the image generation device 1 according to the first embodiment, but the configuration of the data processing unit is different from that of the first embodiment.
  • a method for accurately extracting pixels corresponding to a plurality of neurites Nr in the probability distribution image Gp will be described.
  • the same parts as those of the first embodiment are referred to by the same reference numerals as those of the first embodiment, and the description thereof will be omitted depending on the case.
  • FIG. 16 is a conceptual diagram showing the configuration of the image generating apparatus 2 of this embodiment.
  • the image generation device 2 includes components other than the data processing unit 51a in the same manner as in FIG. 1, but the illustration is omitted.
  • the image generation device 2 differs from the image generation device 1 of the above-described embodiment in that it includes a reliability calculation unit 515, a determination unit 516, and a candidate/determined region setting unit 517.
  • the search region D1 (FIG. 5) includes an image portion corresponding to a plurality of branched neurites Nr, or includes an image portion corresponding to a plurality of neurites Nr extending from one cell body So. Extraction of pixels corresponding to these neurites Nr in the case will be described.
  • the cell-cell interaction can be quantified from the positional information of the plurality of neurites Nr or nerve cells obtained in the present embodiment.
  • the reliability calculation unit 515 calculates the reliability of whether or not the plurality of extracted pixels Pxe extracted by the pixel extraction unit 600 correspond to the portion corresponding to the extraction target.
  • the reliability calculation unit 515 calculates the reliability parameter R indicating this reliability based on the candidate pixel parameter d corresponding to the selected pixel Pxd when the selected pixel Pxd corresponding to the extracted pixel Pxe is set.
  • the reliability calculation unit 515 calculates the arithmetic mean of the candidate pixel parameters d corresponding to the selected pixel Pxd when the selected pixel Pxd corresponding to the extracted pixel Pxd is set for the extracted pixel row of the extracted pixels Pxd. It is preferable to calculate an average value d ave of the above as the reliability parameter R.
  • it is not particularly limited as long as the correspondence can be established, and it is appropriately set based on the definition of the reliability parameter R.
  • the determination unit 516 determines whether or not the plurality of extracted pixels Pxe extracted by the pixel extraction unit 600 correspond to one continuous neurite Nr based on the reliability parameter R (hereinafter, reliability determination Call). The determination unit 516 performs the reliability determination based on whether the reliability parameter R satisfies the condition based on the threshold Th.
  • the threshold value Th is set in advance based on an example in which the extraction pixel Pxe has been extracted in the past, and is stored in the storage unit 43. For example, assume that the reliability calculation unit 515 calculates d ave as the reliability parameter R under the condition that the candidate pixel Pxc with the smallest candidate pixel parameter d is set as the selected pixel Pxd.
  • the determination unit 516 determines that the extracted pixels Pxd extracted by the pixel extraction unit 600 have insufficient reliability, and discards them.
  • the connected pixel area Dc is not set for the extracted pixel Pxe that is the target of the above.
  • the reliability determination is preferably performed when the connected pixel region Dc connected to the end point pixel Pxt is set, for example, when the selected pixel setting process ends due to the first end condition described above.
  • the candidate/determined area setting unit 517 is an area that is a candidate for a portion corresponding to the neurite Nr in the probability distribution image Gp (hereinafter, referred to as a candidate area) before the selection pixel setting processing by the pixel extraction unit 600 is performed. To set.
  • the candidate/determined region setting unit 517 performs the second binarization corresponding to the binarized image (hereinafter, referred to as the second binarized image) obtained by binarizing the brightness of each pixel in the probability distribution image Gp. Generate image data.
  • the search region D1 is divided into a region having a high probability of corresponding to the extraction target and a region having a low probability based on the threshold value at the time of binarization.
  • the first binarized image may be used as the second binarized image.
  • the candidate/determined area setting unit 517 sets a candidate area based on the second binarized image data.
  • the candidate/determined area setting unit 517 sets an area having a high probability of corresponding to the extraction target as a candidate area. Further, the candidate/determined area setting unit 517 sets the confirmed area.
  • the definite area is assumed to have no corresponding area until the extraction pixel Pxe is extracted by the pixel extraction unit 600.
  • the candidate/determined region setting unit 517 selects the determined candidate regions as candidates. Remove it from the area and set it as the fixed area.
  • the candidate/determined area setting unit 517 generates a candidate area image data corresponding to the candidate area image indicating the candidate area and a confirmed area image data corresponding to the confirmed area image indicating the confirmed area, and It functions as a fixed area image generation unit.
  • the modes of the candidate area image and the finalized area image are not particularly limited, but a binarized image is preferable from the viewpoint of saving the amount of information.
  • FIG. 17A is a diagram showing an example of the candidate area image Gc and the finalized area image Gd before the pixel extraction unit 600 performs the selected pixel setting process.
  • the candidate area image Gc four separated candidate areas Fc1, Fc2, Fc3 and Fc4 (hereinafter, the candidate areas are generally indicated by the symbol Fc) corresponding to the same branched neurite Nr (FIG. 4) are shown. Has been done.
  • the fixed area image Gd the fixed area is not set at this stage.
  • FIG. 17A the position of the cell body So to which the neurite Nr to be extracted is connected is schematically shown to the left of the candidate region image Gc and the confirmed region image Gd (FIGS. 17C and 17C). The same applies to D)).
  • FIG. 17B shows a connected pixel connected from the candidate region Fc2 to the cell body So through the candidate region Fc1 by extraction of the extracted pixel Pxe by the pixel extraction unit 600 and setting of the connected pixel region Dc by the region setting unit 512. It is a conceptual diagram which shows the point where the area
  • FIG. 17C is a conceptual diagram showing updating of the candidate area Fc and the finalized area. It is assumed that the determination unit 516 determines the reliability of the extracted pixel Pxe corresponding to the connected pixel region Dc12 and determines the reliability as high. In this case, the candidate/determined area setting unit 517 updates the settings of the candidate areas Fc1 and Fc2 as those that are not the candidate area Fc, and the connected pixel area Dc12 is defined area Fd1 (hereinafter, the defined area is generally indicated by the symbol Fd). ).
  • the starting point pixel setting unit 514 sets the starting point pixels Pxi in any of the remaining candidate regions Fc.
  • the end point pixel setting unit 513 sets the cell body So and the set confirmed region Fd1 as the end point pixel Pxt.
  • FIG. 17D is a conceptual diagram showing the candidate area image Gc and the finalized area image Gd after the candidate area Fc and the finalized area Fd are further updated from the state of FIG. 17C.
  • the starting point pixel Pxi is set in the candidate region Fc4
  • the cell body So and the connected pixel region Dc12 are set as the end pixel Pxt
  • the extraction pixel Pxe is extracted and the connected pixel region Dc3 is set. It was conducted. Further, it is assumed that the connected pixel region Dc3 is determined to have high reliability by reliability determination.
  • the candidate/determined area setting unit 517 updates the setting so that the candidate area Fc4 is not the candidate area Fc, and sets a new confirmed area Fd2 in which the confirmed area Fd1 and the connected pixel area Dc3 are connected to the confirmed area Fd. To do.
  • FIG. 18 is a flowchart showing the flow of the image generation method according to this modification. Steps S3001 to S3005 correspond to steps S1001 to S1005 of the flowchart of FIG. 11, respectively, and thus description thereof will be omitted. When step S3005 ends, step S3007 starts.
  • step S3007 the candidate/determined area setting unit 517 generates data corresponding to the candidate area Fc and the confirmed area Fd.
  • step S3009 starts.
  • the start point pixel setting unit 514 sets the start point pixel Pxi
  • the end point pixel setting unit 513 sets the end point pixel Pxt
  • the pixel extraction unit 600 sets the plurality of selected pixels Pxd and sets the plurality of extracted pixels Pxe.
  • the area setting unit 512 sets the connected pixel area Dc based on the extracted pixel Pxe.
  • step S3011 the determination unit 516 determines the reliability of the plurality of extracted pixels Pxe extracted in step S3009.
  • step S3011 ends, step S3013 starts.
  • the candidate/determined area setting unit 517 updates the data corresponding to the candidate area Fc and the confirmed area Fd based on the result of the reliability determination.
  • the reliability is determined to be high, the candidate area Fc in which the plurality of extracted pixels Pxe subjected to the reliability determination are arranged is deleted from the candidate area, and the connected pixel set in step S3009 is set.
  • the area Dc is set as the finalized area Fd.
  • the extracted pixel Pxe extracted in step S3009 and the set connected pixel area Dc are discarded.
  • step S3015 starts.
  • step S3015 the candidate/determined area setting unit 517 determines whether the candidate area Fc still remains. If the candidate area Fc still remains, the candidate/determined area setting unit 517 makes an affirmative decision in step S3015 and returns to step S3009. If no candidate region Fc remains, the candidate/determined region setting unit 517 makes a negative determination in step S3015 and starts step S3017.
  • Steps S3017 and S3019 are the same as steps S1015 and S1017 in the flowchart of FIG. 11, so description thereof will be omitted.
  • the image generation device 2 of the present embodiment uses the plurality of extracted pixels Pxd based on the candidate pixel parameter d corresponding to the selected pixel Pxd when the plurality of selected pixels Pxd are set from the plurality of candidate pixels Pxc.
  • the image generation apparatus 2 of the present embodiment includes the determination unit 516 that determines whether or not the plurality of extracted pixels Pxe correspond to the continuous extraction target based on the reliability. Thereby, the extraction pixel Pxe having high reliability can be used based on the reliability determination, and the extraction accuracy can be improved.
  • the determination unit 516 sets the first end condition when the candidate pixel Pxc designated by the candidate pixel designation unit 601 corresponds to at least one of the end point pixels Pxt.
  • the pixel setting process is completed, reliability determination is performed.
  • the calculation amount can be reduced by not performing the reliability determination when the end pixel Pxt and the connected pixel region Dc are not connected as in the case where the setting of the set pixel Pxd is ended by the second end condition.
  • the pixel extraction unit 600 performs the selected pixel setting process with at least a part of the connected pixel region Dc as the end point pixel Pxt. Accordingly, even when the extraction target such as the neurite Nr has a branch, it is possible to accurately set the connected pixel region Dc corresponding to the extraction target by extracting the extraction pixel Pxe a plurality of times.
  • the image generation device 2 of the present embodiment includes the candidate/determined area setting unit 517 that generates data corresponding to the confirmed area image Gd indicating the confirmed area Fd confirmed as the portion corresponding to the extraction target.
  • the fixed area Fd can be shown to the user in an easy-to-understand manner and can be used for image processing.
  • the confirmed area image Gd is a binarized image
  • the candidate/determined area setting unit 517 is binarized based on the confirmed connected pixel area Dc. Update the image. As a result, the amount of information and the amount of calculation can be reduced and the processing can be performed efficiently.
  • Modification 1 In the above-described embodiment, the case where one cell body So is shown in the probability distribution image Gp has been described. Even when a plurality of cell bodies So are shown in the probability distribution image Gp, it is possible to similarly set the connected pixel region Dc with these cell bodies So as the end point pixels Pxt. However, in this case, the starting point pixel setting unit 514 preferably sets the starting point pixel Pxi at a position based on the center of gravity of the candidate region Fc.
  • FIG. 19 is a conceptual diagram for explaining the setting of the starting point pixel Pxi of this modification.
  • the pixel regions corresponding to the cell bodies So1 and So2 and the candidate regions Fc5, Fc6, Fc7 and Fc8 which are not connected to each other are shown.
  • the plurality of end point pixels Pxt connected to each other are called end point pixel areas
  • each of the cell bodies So1 and So2 corresponds to two end point pixel areas that are not connected to each other.
  • the value of the reliability parameter R may change depending on the position of the start point pixel Pxi. For example, consider a case where a plurality of selected pixels Pxd are set from each of the start point pixel Pxi1 and the start point pixel Pxi2 at both ends of the candidate area Fc7, and an extracted pixel row connected to the cell body So2 is obtained.
  • the extracted pixel row extending from the starting point pixel Pxi2 to the cell body So2 passes through the region having a higher brightness value by the candidate region Fc7, and thus the reliability parameter R is the average value d ave of the candidate pixel parameters d.
  • the value of d ave is small, and the reliability is higher than in the case of the selection pixel setting process in which the starting point pixel Pxi1 is the starting point. Therefore, the reliability of the extracted pixel Pxe to be extracted varies depending on the position of the starting point pixel Pxi set in the candidate region Fc, and the candidate region Fc can be connected to a different cell body So.
  • the start point pixel setting unit 514 sets the start point pixel Pxi to the center of gravity of the candidate area Fc. Set the position based on. For example, the starting point pixel setting unit 514 calculates the center of gravity of the candidate area Fc and sets the pixel including the center of gravity as the starting point pixel Pxi. When there is no pixel including the center of gravity, the starting point pixel setting unit 514 can set the pixel closest to the center of gravity as the starting point pixel Pxi.
  • the end point pixel Pxt includes a plurality of pixels or pixel regions that are not connected to each other, and the start point pixel setting unit 514 has the same value in the binarized image indicating the candidate region Fc.
  • the starting point pixel Pxi is set based on the center of gravity of the candidate region Fc including a plurality of connected pixels. As a result, it is possible to increase the possibility that the connected pixel region Dc is connected to the appropriate end pixel Pxt.
  • the end point pixel setting unit 513 is configured to extract the pixel corresponding to the cell body So from the probability distribution image Gp by image processing and set it as the end point pixel Pxt.
  • the end point pixel Pxt may be set using the data obtained by extracting the corresponding pixels at predetermined time intervals. In culturing the cell Ce, the cell Ce may move. Therefore, to identify the same cell Ce at a certain time (first time) and a second time different from the first time, it is possible to analyze changes in characteristics such as the morphology of the same cell Ce in a time series. It is necessary to do.
  • the above-mentioned predetermined time interval is appropriately set to several minutes to several days or the like according to the characteristics of the cell Ce. The predetermined time interval may be changed as appropriate.
  • FIG. 20 is a conceptual diagram showing the data processing unit 51b according to this modification.
  • the data processing unit 51b includes a tracking unit 518 that tracks the position of the cell Ce.
  • the probability distribution image generation unit 511 acquires the captured images of the cells Ce captured at predetermined time intervals from the imaging unit 20, and generates probability distribution image data from the captured images.
  • the tracking unit 518 extracts a pixel corresponding to the cell body So in the probability distribution image Gp, as in the case of the end point pixel setting unit 513 described above.
  • the tracking unit 518 may extract the pixel using the extraction result performed immediately before.
  • the end point pixel setting unit 513 can set the end point pixel Pxt based on the data obtained by the extraction of the pixels corresponding to the cell body So by the tracking unit 518.
  • the probability distribution image generation unit 511 acquires the probability distribution image data a plurality of times at different times, and the tracking unit 518 detects the portion corresponding to the end point pixel Pxt in the probability distribution image Gp. To track.
  • the end point pixel Pxt can be set more accurately based on the past position of the cell Ce and the like.
  • the present modification is preferably used when there are a plurality of cell bodies So, but the same operational effect can be obtained even when there is one cell body So.
  • the data processing unit may include a crossover determination unit that determines the presence of a crossover of the linear portion to be extracted such as the neurite Nr.
  • FIG. 21 is a conceptual diagram showing a data processing unit 51c according to this modification.
  • the data processing unit 51c includes a crossover determination unit 519 that determines whether or not a crossover exists.
  • the crossover determination unit 519 functions as a crossover detection unit that detects a crossover.
  • FIG. 22A is a conceptual diagram showing an example of the candidate region Fc when the neurites intersect.
  • the neurite Nr1 extending from the cell body So1 corresponds to the candidate regions Fc21 and Fc23 and part of the candidate region Fc22.
  • the neurite Nr2 extending from the cell body So2 corresponds to a part of the candidate region Fc22 and the candidate region Fc24.
  • the intersection J1 exists in the candidate area Fc22.
  • the pixel extraction unit 600 first sets a plurality of selected pixels Pxd starting from the start point pixel Pxi and sets a plurality of selected pixels Pxd as in the above embodiment. Extraction pixels are extracted.
  • FIG. 22B is a conceptual diagram showing the connected pixel area Dc21 set by the area setting unit 512 based on the extracted extraction pixel Pxe.
  • a case is shown in which the connected pixel region Dc21 that connects the starting point pixel Pxi and the cell body So1 is set.
  • the pixel extraction unit 600 stores the extracted extracted pixel Pxe in the storage unit 43 and then sets the selected pixel Pxd and the extracted pixel Pxe to the unset state. After that, the end point pixel setting unit 513 removes the cell body So1 to which the connected pixel region Dc21 is connected from the end point pixel Pxt, and extracts the extracted pixel Pxe with the cell body So2 as the end point pixel Pxt.
  • FIG. 22C is a conceptual diagram showing the connected pixel area Dc22 set by the area setting unit 512 based on the extracted pixel Pxe extracted when the cell body So1 is excluded from the end point pixel Pxt.
  • the connected pixel area Dc22 that connects the starting point pixel Pxi and the cell body So2 is set.
  • the crossover determination unit 519 detects a pixel or a pixel region corresponding to the crossover J1 based on the set connected pixel area Dc21 and connected pixel area Dc22.
  • the intersection determination unit 519 is a pixel corresponding to an intersection of a pixel at the end opposite to the start point pixel Pxi or a pixel region in a predetermined range from the end in the overlapping region of the connected pixel region Dc21 and the connected pixel region Dc22.
  • the crossover determination unit 519 may generate data indicating a point where the candidate region Fc22 has a crossover.
  • the predetermined range may be appropriately determined based on the width of the connected pixel area Dc21 or 22 or the like.
  • the point of detecting a pixel corresponding to the intersection of the linear portions to be extracted when the end point pixel Pxt consists of one pixel or a connected pixel area will be described.
  • the following method is suitable when the end point pixel Pxt is one pixel or a connected pixel area, but is also applicable when the end point pixel Pxt is composed of a plurality of unconnected pixels or pixel areas.
  • FIG. 23(A) is a conceptual diagram showing a candidate region Fc when two neurites Nr3 and Nr4 extending from one cell body So intersect.
  • the neurite Nr3 extending from the cell body So corresponds to the candidate regions Fc31, Fc33, and Fc34 and part of the candidate region Fc32.
  • the neurite Nr4 extending from the cell body So corresponds to a part of the candidate region Fc32 and the candidate regions Fc35 and Fc36.
  • the intersection J2 exists in the candidate area Fc32.
  • the pixel extracting unit 600 first sets and extracts a plurality of selected pixels Pxd starting from the start point pixel Pxi as in the above-described embodiment. Extract Pxe.
  • FIG. 23B is a conceptual diagram showing the connected pixel area Dc31 set by the area setting unit 512 based on the extracted extraction pixel Pxe.
  • a case is shown in which a connected pixel region Dc31 that connects the starting point pixel Pxi and the cell body So that passes through the candidate regions Fc31, Fc32, Fc33, and Fc34 is set.
  • the selected pixel setting unit 602 stores the extracted extracted pixel Pxe in the storage unit 43, and then sets the selected pixel Pxd and the extracted pixel Pxe to the unset state.
  • the region setting unit 512 removes a part of the candidate region Fc corresponding to the connected pixel region Dc31 from the search region D1.
  • a part of the candidate area Fc excluded from the search area D1 will be referred to as an exclusion area hereinafter.
  • the region setting unit 512 in the already set connected pixel region Dc31, the candidate region included in the region included in the connected element pixel region De (FIG. 10) corresponding to the predetermined number of extracted pixels Pxe on the end point pixel Pxt side. Fc is excluded from the search area D1 as an exclusion area.
  • FIG. 23C is a conceptual diagram schematically showing the exclusion area Dex.
  • the pixel extraction unit 600 excludes the candidate area Fc in the portion surrounded by the dotted line from the search area D1 as the exclusion area Dex, and sets the selected pixel Pxd with the start point pixel Pxi as the start point.
  • FIG. 23D is a conceptual diagram showing the connected pixel area Dc32 set by the area setting unit 512 based on the extracted pixel Pxe extracted when the excluded area Dex is excluded from the search area D1.
  • a connected pixel region Dc32 that connects the starting point pixel Pxi and the cell body So through the candidate regions Fc31, Fc32, and Fc35 is set.
  • the intersection determination unit 519 detects a pixel or a pixel area corresponding to the intersection J2 based on the set connected pixel area Dc31 and connected pixel area Dc32.
  • the crossing determination unit 519 is a pixel corresponding to a pixel at the end opposite to the start point pixel Pxi or a pixel region within a predetermined range from the end in the overlapping region of the connected pixel region Dc31 and the connected pixel region Dc32.
  • the crossing detection unit 519 may generate data indicating a crossing point in the candidate region Fc32.
  • the above-mentioned predetermined range may be appropriately determined based on the width of the connected pixel region Dc31 or 32 or the like.
  • the crossing determination unit 519 determines the presence/absence of a crossover, and when a crossover is detected, a pixel corresponding to the crossover is derived, and thus, morphological analysis and the like can be performed using these pieces of information. .. Further, the image generation unit 700 may indicate the position of intersection and the like in the connected region image Gs.
  • the end point pixel Pxt includes a plurality of pixels or pixel regions that are not connected to each other, and the crossover determination unit 519 determines whether or not the linear portion to be extracted crosses and detects the crossover. .. Accordingly, it is possible to provide information about the position of the intersection in the input image in which the portions (cell bodies So1, So2, etc.) corresponding to the plurality of unconnected end pixel regions and the like are shown. As a result, the pixel corresponding to the neurite Nr can be accurately extracted even in the situation where there is a crossover. The positional information including the information about the crossover enables more accurate quantification of the cell-cell interaction.
  • the pixel extraction unit 600 excludes a region including some of the extracted pixels Pxe set in the selection pixel setting process, performs the selection pixel setting process again, and the crossing detection unit 519. Detects the intersection of the linear parts to be extracted. Thereby, even when only one end point pixel Pxt or a connected end point pixel area is present in the input image, it is possible to provide information about the position of the intersection in the input image.
  • the data processing unit may include a width detection unit that detects the width of the linear portion to be extracted such as the neurite Nr.
  • FIG. 24 is a conceptual diagram showing the data processing unit 51d according to this modification.
  • the data processing unit 51d includes a width detection unit 520 that detects the width of the linear portion to be extracted.
  • FIG. 25 is a conceptual diagram for explaining the point of detecting the width of the extraction target linear portion (neurite Nr) based on the connected pixel region Dc. It is assumed that the user inputs via the input unit 41 to calculate the width of the neurite Nr at the position of the point T (hereinafter referred to as the input point T) in the connected pixel region Dc. In this case, the width detection unit 520 calculates the circle Ci having the largest radius r among the circles inscribed in the connected pixel region Dc including the input point T, and sets twice the radius r as the width Wd of the neurite Nr. calculate. Information about the calculated width Wd is output from the output unit 44.
  • the width calculation unit 520 calculates the width Wd of the extraction target linear portion. As a result, it is possible to provide information regarding the shape such as the thickness of the linear portion to be extracted.
  • the width calculation unit 520 sets the width Wd of the connected pixel region Dc corresponding to the input point T in the connected pixel region Dc to the maximum included in the connected pixel region Dc including the input point T. It is calculated by the diameter of the circle Ci. Accordingly, the width Wd of the extraction target linear portion can be calculated.
  • the width of the neurite Nr is calculated using the inscribed circle of the connected pixel region Dc, but the width Wd of the neurite Nr is calculated based on the length of the line segment passing through the connected pixel region Dc. May be.
  • FIG. 26 is a conceptual diagram for explaining that the width of the linear portion (neurite Nr) to be extracted is detected based on the connected pixel area Dc. It is assumed that the user inputs via the input unit 41 so as to calculate the width of the neurite Nr at the position of the input point T.
  • the width detection unit 520 assumes line segments L1, L2, and L3 that extend through the input point T in a plurality of different directions, and the line segments L1, L2, and L3 have a length included in the connected pixel region Dc. To calculate.
  • the width detection unit 520 sets the shortest value among the calculated lengths as the width Wd of the neurite Nr. Note that the directions of the line segments L1, L2, and L3 are not particularly limited, and can be set as appropriate, such as shifting by a certain angle. Further, the number of line segments used for calculating the width Wd is not particularly limited.
  • the width calculation unit 520 determines the width Wd of the connected pixel area corresponding to the input point T in the connected pixel area Dc at the plurality of line segments L1, L2, and L3 passing through the input point T. It is calculated based on the shortest length included in the connected pixel region Dc. Thereby, the width Wd of the extraction target linear portion can be calculated while suppressing the calculation amount.
  • the brightness value when outputting the brightness value at the point input by the user in the input image or the probability distribution image Gp, the brightness value may be calculated based on the brightness of a plurality of pixels and output. This makes it possible to suppress variations and provide more accurate brightness.
  • FIG. 27 is a conceptual diagram for explaining a method of calculating an output brightness value (hereinafter, referred to as an output brightness value).
  • the data processing unit 51a sets a predetermined range based on the position of the input point T (hereinafter, referred to as a corresponding pixel area Ct).
  • An average such as an arithmetic average of the brightness values of the pixels is calculated as the output brightness value.
  • the calculated output brightness value is output from the output unit 44.
  • the shape and size of the corresponding pixel area Ct are not particularly limited, and may be a pixel area or the like corresponding to the range of a circle having a radius of several pixels centered on the input point T.
  • the image generation device 3 of the third embodiment has the same configuration as the image generation device 2 according to the second embodiment, but the configuration of the data processing unit is different from that of the second embodiment.
  • a method will be described in which the selected pixel setting processing for a plurality of start point pixels Pxi is performed in parallel without sacrificing accuracy.
  • the same parts as those of the second embodiment are referred to by the same reference numerals as those of the second embodiment, and the description thereof will be omitted depending on the case.
  • FIG. 28 is a conceptual diagram showing the configuration of the image generating apparatus 3 of this embodiment.
  • the image generation device 3 includes the components other than the control unit 50a and the data processing unit 51e in the same manner as in FIG. 1, but the illustration is omitted.
  • the image generating apparatus 3 is different from the image generating apparatus 2 of the above-described embodiment in that the area setting unit 512a includes a starting point arrangement area setting unit 531 and a candidate pixel arrangement area setting unit 532.
  • the control unit 50a of the image generating apparatus 3 includes a CPU suitable for parallel processing such as a multi-core CPU, and the selected pixel setting process performed by the data processing unit 51e is performed by the CPU suitable for this parallel processing. It is preferred that
  • the image generation method according to the present embodiment is suitable for a case where a plurality of cell bodies So exist or the neurite Nr extends in a complicated manner, but it is not particularly limited to such a case and can be applied. Is.
  • the starting point pixel Pxi and the candidate pixel Pxc are set in the search area D1 set by the area setting unit 512.
  • the starting point pixel Pxi is set in the starting point arrangement area set by the starting point arrangement area setting unit 531 and the candidate pixel Pxc is set in the candidate pixel arrangement area set by the candidate pixel arrangement area setting unit 532.
  • FIG. 29 is a conceptual diagram showing the starting point arrangement area.
  • the start point arrangement area 80 includes a first start point arrangement area 81 and a second start point arrangement area 82.
  • the first start point arrangement area 81 includes a first connection area 81a, a second connection area 81b, a third connection area 81c, and a fourth connection area 81d that are not connected to each other but are one continuous area.
  • the second starting point arrangement area 82 includes a first connecting area 82a, a second connecting area 82b, a third connecting area 82c, and a fourth connecting area 82d that are not connected to each other but are one continuous area. ..
  • connection field 81a the 1st connection field 81a, the 2nd connection field 81b, the 3rd connection field 81c, and the 4th connection field 81d
  • 2nd connection field 82a the 2nd connection field 82b, the 3rd connection field 82c, and the 4th connection field.
  • Reference numerals 81a, 81b, 81c and 81d are described as 81a to d
  • reference numerals 82a, 82b, 82c and 82d are described as 82a to d.
  • a selection pixel setting process starting from the start point pixels Pxi1a, Pxi1b, Pxi1c and Pxi1d (hereinafter referred to as Pxi1a to d) arranged in the first start point arrangement region 81 and the second start point arrangement region 82.
  • the selection pixel setting process starting from the start point pixels Pxi2a, Pxi2b, Pxi2c, and Pxi2d (FIG. 30) arranged in 1 is not performed in parallel at the same time.
  • the start point arrangement area 80 has a plurality of areas (the first start point arrangement area 81 and the second start point 81) based on when the selection pixel setting processing corresponding to the start point pixels Pxi arranged in the start point arrangement area 80 is performed. It is divided into placement areas 82).
  • a predetermined minimum connection area interval between the connection areas 81a to 81d included in the first start point arrangement area 81 and between the connection areas 82a to 82d included in the second start point arrangement area 82 is set to M. Then, they are separated by at least M pixels or more.
  • the number of pixels in the vertical direction of each of the connection areas 81a to 81d is equal to the number of pixels in the vertical direction of the probability distribution image Gp, and the number of pixels in the horizontal direction is Mi. ing. Mi has a value equal to or larger than M.
  • At least a part of the selected pixel setting process starting from the starting point pixels Pxi1a to Pxi1 respectively arranged in the connection regions 81a to 81d is performed in parallel at the same time. Therefore, by separating at least M pixels between the connection regions 81a to 81d, the pixel row of the selected pixel Pxd starting from different start point pixels Pxi passes through the same candidate region Fc (FIG. 17) of the probability distribution image Gp. It is possible to reduce the possibility that The same applies to the connection regions 82a to 82d. As a result, the candidate area Fc and the finalized area Fd (FIG. 17) are appropriately updated, and even if the portion corresponding to the extraction target has a complicated structure, the connected pixel area Dc can be set quickly without lowering the accuracy. It can be carried out.
  • the neurite Nr extends straight from the cell body So in the connecting region (for example, the connecting region 82b) between the starting point pixels Pxi in the two connecting regions (for example, the connecting regions 81a and 81b). Even in such a case, it is possible to reduce the possibility that the pixel rows of the selected pixels Pxd set in parallel at the same time pass through the same candidate pixel Pxc.
  • the minimum connected region interval M is set based on parameters such as the pixel width of the probability distribution image Gp
  • the minimum connected region interval M is set based on the width of each cell Ce and the length of the neurite Nr. Good. Further, the minimum connection area interval M can be determined based on the connection areas 81a to 81d and 82a to 82d from the viewpoint of efficiency.
  • the starting point arrangement area setting unit 531 sets the starting point arrangement area 80, the first starting point arrangement area 81, the second starting point arrangement area 82, and the connection areas 81a to d, 82a to d based on the input from the input unit 41 and the like. .. Image data indicating image portions corresponding to these regions in the probability distribution image Gp, or information regarding the shape or size of the image portion is input from the input unit 41. Based on this image data and information, the starting point arrangement area setting unit 531 determines that each pixel in the probability distribution image Gp has a starting point arrangement area 80, a first starting point arrangement area 81, a second starting point arrangement area 82, and connecting areas 81a to 81d. 82a to 82d are set to be included or not included.
  • the candidate pixel arrangement area setting unit 532 sets the candidate pixel arrangement area 90, which is an area in which the candidate pixel Pxc is arranged in the selection pixel setting process.
  • the candidate pixel arrangement area 90 is set based on an input from the input unit 41 or the like. In FIG. 29, the candidate pixel arrangement area 90 is set for the entire probability distribution image Gp.
  • the area where the candidate pixel Pxc is set is an area where the selection pixel Pxd is set and the extraction pixel Pxe is extracted.
  • the starting point pixel setting unit 514 sets the starting point pixel Pxi in the starting point arrangement area 80.
  • the starting-point pixel setting unit 514 arranges the starting-point pixels Pxi1a-d in the first starting-point arrangement region 81 when performing the selection pixel setting process with the first starting-point arrangement region 81 as the starting point.
  • the starting-point pixel setting unit 514 arranges the starting-point pixels Pxi2a to Pxi2d in the second starting-point arrangement region 82 when performing the selection pixel setting process with the second starting-point arrangement region 82 as the starting point.
  • the pixel extraction unit 600 performs a plurality of selected pixel setting processes simultaneously in parallel based on the position of the starting point pixel Pxi.
  • the area setting unit 512a sets the connected pixel area Dc based on the extracted pixel Pxe extracted from the selected pixels Pxd set by the plurality of selected pixel setting processes.
  • the pixel extraction unit 600 simultaneously performs a plurality of selected pixel setting processes (hereinafter, referred to as first selected pixel setting process) starting from the starting point pixels Pxi1a to Pd1 arranged in the first starting point arrangement area 81.
  • the points to be performed are schematically shown.
  • a connected pixel area Dc1a connecting the starting point pixel Pxi1a and the cell body So1a a connected pixel area Dc1b connecting the starting point pixel Pxi1b and the cell body So1b
  • a connected pixel connecting the start point pixel Pxi1c and the cell body So1c A region Dc1c and a connected pixel region Dc1d that connects the starting point pixel Pxi1d and the cell body So1d are shown.
  • the pixel extraction unit 600 performs a plurality of selection pixel setting processes (hereinafter, second selection pixel setting processes) starting from the start point pixels Pxi2a to Pxi2a to d arranged in the second start point arrangement region 82 at different times from the first selection pixel setting process. (Referred to as setting processing) is performed in parallel at the same time.
  • second selection pixel setting processes a plurality of selection pixel setting processes starting from the start point pixels Pxi2a to Pxi2a to d arranged in the second start point arrangement region 82 at different times from the first selection pixel setting process.
  • FIG. 30 is a conceptual diagram schematically showing that the pixel extraction unit 600 simultaneously performs a plurality of second selected pixel setting processes in parallel.
  • a connected pixel area Dc2a connecting the starting point pixel Pxi2a and the cell body So2a
  • a connected pixel area Dc2b connecting the starting point pixel Pxi2b and the cell body So2b
  • a connected pixel connecting the start point pixel Pxi2c and the cell body So2c.
  • a region Dc2c and a connected pixel region Dc2d that connects the starting point pixel Pxi2d and the cell body So2d are shown.
  • the area setting unit 512a integrates a plurality of connected pixel areas Dc (FIG. 4) obtained based on a plurality of selected pixel setting processings performed in parallel at the same time. In this integration, one connected connected pixel area Dc including pixels included in at least one connected pixel area Dc is newly set.
  • the candidate/fixed area setting unit updates the candidate area Fc and the fixed area Fd (FIG. 17) based on the integrated connected pixel area Dc.
  • FIG. 31 is a flowchart showing the flow of the image generation method according to this embodiment. Since steps S4001 to S4007 are the same as steps S1001 to S1007 in the flowchart of FIG. 11, description thereof will be omitted. When step S4007 ends, step S4009 starts.
  • step S4009 the starting point placement area setting unit 531 sets the first starting point placement area 81, the second starting point placement area 82, and the connection areas 81a-d, 82a-d.
  • step S4011 starts.
  • step S4011 the starting point pixel setting unit 514 sets the starting point pixel Pxi in the starting point arrangement region 80, the pixel extraction unit 600 sets a plurality of selected pixels Pxd to extract a plurality of extracted pixels Pxe, and the region setting unit 512a
  • the parallel processing for setting the connected pixel area Dc is performed, and the area setting unit 512a sets the integrated connected pixel area.
  • step S4013 starts.
  • step S4013 the image generation unit 700 generates connected area image data corresponding to the connected area image Gs indicating the integrated connected pixel area.
  • step S4015 starts.
  • step S4015 the output unit 44 outputs the connected region image Gs.
  • FIG. 32 is a flow chart showing the flow of step S4011 in the flow chart of FIG.
  • the selected pixel setting process for the first connection area 81a and the second connection area 81b of the first start point arrangement area 81 and the first connection area 82a and the second connection area 82b of the second start point arrangement area 82 are performed.
  • the point that the selected pixel setting process regarding the above is performed concurrently in parallel with each other, and the description about the selected pixel setting process regarding other connected regions is omitted.
  • steps S501a and S501b are started.
  • step S501a the starting point pixel setting unit 514 sets the starting point pixel Pxi in the first connection area 81a of the first starting point arrangement area 81.
  • step S503a starts.
  • the pixel extraction unit 600 sets a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S501a and extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to Based on this, the connected pixel area Dc is set.
  • the value of the candidate pixel position parameter N is not particularly limited and can be set to any value of 1 or more. The same applies to the following selected pixel setting processing.
  • step S501b the starting point pixel setting unit 514 sets the starting point pixel Pxi in the second connection area 82a of the second starting point arrangement area 82.
  • step S503b the pixel extraction unit 600 sets a plurality of set pixels Pxd starting from the start point pixel Pxi set in step S503a, extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to the extracted pixel Pxe. Based on this, the connected pixel area Dc is set.
  • step S505 is started.
  • step S505 the area setting unit 512a integrates the connected pixel areas Dc, and the candidate/fixed area setting unit 517 updates the candidate area Fc and the fixed area Fd.
  • steps S507a and S507b start.
  • step S507a the starting point pixel setting unit 514 sets the starting point pixel Pxi in the first connection area 82a of the second starting point arrangement area 82.
  • step S509a starts.
  • the pixel extraction unit 600 selects a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S507a, extracts the extracted pixel Pxe, and the area setting unit 512a selects the extracted pixel Pxe. Based on this, the connected pixel area Dc is set.
  • step S507b the starting point pixel setting unit 514 sets the starting point pixel Pxi in the second connection area 82b of the second starting point arrangement area 82.
  • step S509b starts.
  • the pixel extraction unit 600 sets a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S507b and extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to the extracted pixel Pxe. Based on this, the connected pixel area Dc is set.
  • step S511 is started.
  • step S511 the area setting unit 512a integrates the connected pixel areas Dc and sets the integrated connected pixel area.
  • step S4013 starts.
  • the pixel extraction unit 600 performs the selected pixel setting process on the plurality of start point pixels Pxi1a to Pxi1d arranged in the connection regions 81a to 81d which are not connected to each other, by performing the above connection This is performed at a different time from the selected pixel setting process for the start point pixels Pxi2a to Pxi2a to d arranged in the connection regions 82a to 82d that are the start point arrangement region 80 excluding the regions 81a to 81d. Accordingly, even if the extraction target has a complicated structure, it is possible to quickly extract the pixel corresponding to the extraction target without lowering the accuracy.
  • the interval between the connected regions 81a to 81d is set based on the length of the linear portion to be extracted. This makes it possible to set an appropriate interval Mi between the connected regions 81a to 81d in accordance with the characteristics of the linear portion to be extracted, and it is possible to more quickly extract the pixel corresponding to the extraction target.
  • connection regions 81a to 81d and 82a to d are set like the first start point arrangement region 81 and the second start point arrangement region 82 in FIG. 30, but the shape and size of the connection region is different. There is no particular limitation as long as they are separated from each other by at least the minimum connection region interval M.
  • FIG. 33 is a conceptual diagram showing an example of a connected area.
  • the third start point arrangement area 83 and the fourth start point arrangement area 84 corresponding to the selected pixel setting processing at different times are set as the start point arrangement area 80.
  • the third starting point arrangement area 83 includes rectangular connection areas 83a, 83b, 83c, and 83d arranged at the four corners of the probability distribution image Gp, and a cross-shaped connection area 83e that extends point-symmetrically from the center of the probability distribution image Gp.
  • the fourth starting point arrangement area 84 is an L-shaped or rotated L-shaped connection area 84a, 84b, 84c located between each of the connection areas 83a, 83b, 83c and 83d and the connection area 83e. 84d.
  • the spacing Mi2 between each of the coupling regions 83a, 83b, 83c, and 83d and the coupling region 83e, and the spacing Mi1 between the coupling regions 84a, 84b, 84c, and 84d that are vertically and horizontally adjacent to each other are the extraction target linear shape. Based on the length of the portion, it is set to be larger than the minimum connected region interval M. It should be noted that the density of the cells Ce is detected by a known method such as the density of the cell bodies So, and the selected pixel setting processing is performed in parallel at the same time so that the dense areas fit into one connected area. You may set the space
  • the pixel extraction unit 600 extracts the extracted pixel Pxe based on the Dijkstra method, but the extracted pixel Pxe may be extracted by the Astar algorithm.
  • the Astar algorithm differs from the above-described method in that when the selection pixel Pxd is set, the selection pixel Pxd is set using the distance between the candidate pixel Pxc and the end point pixel Pxt.
  • the pixel extraction unit 600 extracts the extracted pixels Pxe based on the Dijkstra method. Pxe may be extracted.
  • the pixel extraction unit 600 extracts the extracted pixel Pxd based on the Dijkstra method.
  • a predetermined parameter hereinafter referred to as energy
  • energy a predetermined parameter
  • a value of 1 is extracted when the pixel is extracted as the extracted pixel Pxe, and a value of 0 is associated when it is not extracted as the extracted pixel Pxe.
  • the extraction of the pixel row of the plurality of extraction pixels Pxe corresponds to searching for an appropriate combination from 2 100 combinations.
  • the correlation between a plurality of pixels is not considered.
  • the energy of the i-th pixel in the probability distribution image Gp is set to ei, and a combination such that the sum of the energy ei of the extracted pixel Pxe becomes an optimized value such as a maximum value or a minimum value may be calculated. ..
  • the energy is the brightness value of the pixel
  • the combination of pixels in which the sum of the energy has the maximum value may be calculated.
  • the combination with the minimum energy sum may be calculated.
  • a condition indicating a constraint based on the connectivity between the start point and the end point may be added as appropriate. The same applies when considering the correlation between a plurality of pixels below.
  • the correlation between multiple pixels shall be taken into consideration regarding whether or not to be extracted as the extracted pixel Pxe.
  • the energy for both the i-th pixel and the j-th pixel in the probability distribution image Gp being the extracted pixel Pxe is eij
  • the energy eij of any pair of pixels included in the combination of the extracted pixels Pxe is It suffices to calculate a combination in which the sum is an optimized value such as a maximum value or a minimum value.
  • the first selection pixel setting process and the second selection pixel setting process are alternately performed.
  • the first selection pixel setting process or the second selection pixel setting process may be continuously performed, or any one of them may be configured to be performed based on a predetermined condition.
  • either the first start point arrangement area 81 or the second start point arrangement area 82 is selected based on the length of the neurite corresponding to each candidate area Fc, and the selected pixel setting process in the selected area is performed. Then, the extraction pixel Pxe is extracted.
  • the flow of the image generation method according to this modification is the same as the flow shown in the flowchart of FIG. 31 of the third embodiment, but the part corresponding to step S4011 is different.
  • FIG. 34 is a flowchart showing the flow of the part corresponding to step S4011 in the flowchart of FIG. 31, in the present modification.
  • step S601 is started.
  • the data processing unit 51e acquires, for each candidate region Fc, information about the length of the corresponding neurite Nr.
  • the data processing unit 51e uses the length of the neurite Nr corresponding to each pixel region fragment F (FIG. 3) obtained by analyzing the probability distribution image Gp as the length of the neurite Nr corresponding to the candidate region Fc. get.
  • the method of calculating the length of the neurite Nr corresponding to the candidate region Fc is not particularly limited.
  • step S602 the pixel extraction unit 600, if the starting point pixel Pxi is set, the area including the starting point pixel Pxi corresponding to the longest neurite in the first starting point arrangement area 81 and the second starting point arrangement area 82. Select.
  • step S603 starts.
  • the starting point pixel setting unit 514 sets at least a part of the starting point pixels Pxi that can be set in the region selected in step S602, and the selected pixel setting unit 602 sets a plurality of selected pixels Pxd.
  • the extraction unit 600 extracts the extracted pixel Pxe, and the region setting unit 512a sets the connected pixel region Dc.
  • the starting point pixel setting unit 514 can set the starting point pixel Pxi corresponding to the longest neurite in each connected region in the selected region based on the information acquired in step S601.
  • step S604 starts.
  • step S604 is the same as step S505 in the flowchart of FIG. 32, description thereof will be omitted.
  • step S605 starts.
  • the pixel extraction unit 600 determines whether the candidate area Fc still remains. If the candidate region Fc still remains, the pixel extraction unit 600 makes an affirmative decision in step S605 and returns to step S602. When no candidate region Fc remains, the pixel extraction unit 600 makes a negative determination in step S605 and starts step S606. Since step S606 is the same as step S511, description thereof will be omitted.
  • step S606 ends, the process ends.
  • the length of the neurite Nr corresponding to each of the start point pixels Pxi included in the first start point arrangement area 81 or the second start point arrangement area 82, or the connection areas 81a to d, 82a to d is set. Based on this, the order in which the selected pixel setting process is performed is set. Thereby, it is possible to efficiently extract pixels in a desired order based on the length of the neurite Nr obtained in advance.
  • a program for realizing the information processing function of the information processing apparatus 40 of the above-described embodiment is recorded in a computer-readable recording medium, and the setting of the selected pixel Pxd and the extracted pixel recorded in the recording medium are performed.
  • a computer system may be caused to read and execute a program relating to processing by the data processing units 51, 51a, 51b, 51c, 51d and 51e such as Pxe extraction and setting of the connected pixel region Dc.
  • the “computer system” mentioned here includes an OS (Operating System) and hardware of peripheral devices.
  • the "computer-readable recording medium” refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, a memory card, or a storage device such as a hard disk built in a computer system. Further, the "computer-readable recording medium” means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside the computer system that serves as a server or a client in that case may hold a program for a certain period of time. Further, the above program may be for realizing a part of the above-described functions, and may be for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
  • FIG. 34 is a diagram showing this state.
  • the PC 950 receives the program provided via the CD-ROM 953. Further, the PC 950 has a function of connecting to the communication line 951.
  • the computer 952 is a server computer that provides the above program, and stores the program in a recording medium such as a hard disk.
  • the communication line 951 is the Internet, a communication line for personal computer communication, or a dedicated communication line.
  • the computer 952 reads the program using the hard disk and transmits the program to the PC 950 via the communication line 951. That is, the program is carried as a data signal by a carrier wave and transmitted through the communication line 951.
  • the program can be supplied as a computer-readable computer program product in various forms such as a recording medium and a carrier wave.
  • a start point pixel setting process (corresponding to step S1009 in the flowchart of FIG. 11) of setting a start point pixel Pxi from a plurality of pixels forming the probability distribution image Gp, and the plurality of To cause the processing device to perform a pixel extraction process (corresponding to S1011) of designating a plurality of candidate pixels Pxc from a plurality of pixels excluding the start point pixel Pxi among the pixels and setting a selection pixel Pxd from the plurality of candidate pixels Pxc.
  • the plurality of candidate pixels Pxc are included in the program of at least two pixels from the starting point pixel Pxi.
  • the present invention is not limited to the contents of the above embodiment. Other modes that are conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
  • Candidate pixel arrangement region 100... Culture part, 511... Probability distribution Image generation unit, 512, 512a... Region setting unit, 513... End point pixel setting unit, 514... Starting point pixel setting unit, 515... Reliability calculation unit, 516... Judgment unit, 517... Candidate/determined region setting unit, 518... Tracking Reference numeral 519... Crossover determination portion, 520... Width calculation portion, 600... Pixel extraction portion, 601... Candidate pixel designation portion, 602... Selected pixel setting portion, 700... Image generation portion, Ce... Cell, D1...
  • Extraction pixels Pxi, Pxi1, Pxi2, Pxi1a, Pxi1b, Pxi1c, Pxi1d, Pxi2a, Pxi2c, Pxi2b, Pxi2b, Pxi2b, Pxi2b.
  • Start point pixel Pxs, Pxs1, Pxs2... Calculation pixel, Pxt... End point pixel, So, So1, So2, So1a, So1b, So1c, So1d, So2a, So2b, So2c, So2d... Cell body, T... Input point, W, Wd ...Width of the neurite.

Abstract

An image processing device that connects fragmented cell regions in an image to extract a cell, said image processing device equipped with: an acquisition unit for acquiring a fragmented cell region from within the image; a first pixel setting unit for setting a first pixel in the fragmented cell region; and an extraction unit for setting a plurality of pixel groups on the basis of the position of the first pixel, selecting a second pixel on the basis of the luminance values of the pixels included in the plurality of pixel groups, and then connecting the first pixel and the second pixel, thereby extracting a cell.

Description

画像処理装置、画像処理方法およびプログラムImage processing apparatus, image processing method and program
 本発明は、画像処理装置、画像処理方法およびプログラムに関する。 The present invention relates to an image processing device, an image processing method, and a program.
 分枝等を適宜備える線状の部分を含む対象物を撮像して得られた画像に対して画像処理を行う方法が提案されている(特許文献1参照)。このような画像処理では、精度の悪化を抑制しつつ、迅速に処理を行うことが望ましい。 A method has been proposed in which image processing is performed on an image obtained by picking up an image of an object including a linear portion that appropriately includes branches and the like (see Patent Document 1). In such image processing, it is desirable to perform the processing promptly while suppressing deterioration in accuracy.
米国特許第9646194号明細書U.S. Patent No. 9646194
 本発明の第1の態様によると、画像処理装置は、画像において断片化された細胞領域をつないで細胞を抽出する画像処理装置であって、前記画像の中から断片化された細胞領域を取得する取得部と、前記断片化された細胞領域において第1画素を設定する第1画素設定部と、前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する抽出部と、を備える。
 本発明の第2の態様によると、画像処理方法は、画像において断片化された細胞領域をつないで細胞を抽出する画像処理方法であって、前記画像の中から断片化された細胞領域を取得する領域取得と、前記断片化された細胞領域において第1画素を設定する第1画素設定と、前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する画素抽出と、を含む。
 本発明の第3の態様によると、プログラムは、画像において断片化された細胞領域をつないで細胞を抽出するプログラムであって、前記画像の中から断片化された細胞領域を取得する取得処理と、前記断片化された細胞領域において第1画素を設定する第1画素設定処理と、前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する抽出処理と、を処理装置に行わせるものである。
According to the first aspect of the present invention, an image processing apparatus is an image processing apparatus that connects fragmented cell regions in an image to extract cells, and obtains the fragmented cell region from the image. An acquisition unit, a first pixel setting unit that sets a first pixel in the fragmented cell region, and a plurality of pixel groups that are set based on the position of the first pixel and are included in the plurality of pixel groups. A second pixel is selected based on a brightness value of the pixel to be extracted, and then an extraction unit that connects the first pixel and the second pixel to extract a cell.
According to the second aspect of the present invention, an image processing method is an image processing method for extracting cells by connecting fragmented cell regions in an image, and obtaining fragmented cell regions from the image. Area acquisition, a first pixel setting that sets a first pixel in the fragmented cell area, and a plurality of pixel groups are set based on the position of the first pixel, and the plurality of pixel groups are included in the plurality of pixel groups. Selecting a second pixel based on the brightness value of the pixel, and then connecting the first pixel and the second pixel to extract cells to extract cells.
According to a third aspect of the present invention, a program is a program for connecting cells fragmented in an image to extract cells, and an acquisition process for acquiring a fragmented cell region from the image. A first pixel setting process for setting a first pixel in the fragmented cell region, and a plurality of pixel groups set based on the position of the first pixel, and brightness of pixels included in the plurality of pixel groups The processing device is caused to select the second pixel based on the value, and then perform the extraction process of connecting the first pixel and the second pixel to extract the cell.
図1は、一実施形態の画像生成装置の構成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of an image generating apparatus according to an embodiment. 図2は、データ処理部の構成を示す概念図である。FIG. 2 is a conceptual diagram showing the configuration of the data processing unit. 図3は、確率分布画像を示す概念図である。FIG. 3 is a conceptual diagram showing a probability distribution image. 図4は、連結領域画像を示す概念図である。FIG. 4 is a conceptual diagram showing a connected area image. 図5は、探索領域を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining the search area. 図6は、始点画素の設定を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining the setting of the starting point pixel. 図7は、選択画素設定処理を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining the selected pixel setting process. 図8は、候補画素を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining candidate pixels. 図9は、輝度と候補画素パラメータとの関係を示すグラフである。FIG. 9 is a graph showing the relationship between luminance and candidate pixel parameters. 図10は、連結画素領域を示す概念図である。FIG. 10 is a conceptual diagram showing a connected pixel area. 図11は、一実施形態に係る画像生成方法の流れを示すフローチャートである。FIG. 11 is a flowchart showing the flow of the image generation method according to the embodiment. 図12は、一実施形態に係る画像生成方法の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of the image generation method according to the embodiment. 図13は、選択画素の再度の抽出を説明するための概念図である。FIG. 13 is a conceptual diagram for explaining re-extraction of selected pixels. 図14は、変形例に係る画像生成方法の流れを示すフローチャートである。FIG. 14 is a flowchart showing the flow of the image generation method according to the modification. 図15は、算出画素領域の大きさと神経突起の幅との関係を説明するための概念図である。FIG. 15 is a conceptual diagram for explaining the relationship between the size of the calculated pixel area and the width of the neurite. 図16は、一実施形態の画像生成装置の構成を示す概念図である。FIG. 16 is a conceptual diagram showing the configuration of the image generating apparatus according to the embodiment. 図17(A)、17(B)、17(C)および17(D)は、候補領域および確定領域を説明するための概念図である。17(A), 17(B), 17(C) and 17(D) are conceptual diagrams for explaining the candidate area and the finalized area. 図18は、一実施形態に係る画像生成方法の流れを示すフローチャートである。FIG. 18 is a flowchart showing the flow of the image generation method according to the embodiment. 図19は、始点画素の設定を説明するための概念図である。FIG. 19 is a conceptual diagram for explaining the setting of the starting point pixel. 図20は、変形例の画像生成装置の構成を示す概念図である。FIG. 20 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example. 図21は、変形例の画像生成装置の構成を示す概念図である。FIG. 21 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example. 図22(A)、22(B)および22(C)は、交叉の検出を説明するための概念図である。22(A), 22(B) and 22(C) are conceptual diagrams for explaining the detection of a crossover. 図23(A)、23(B)、23(C)および23(D)は、交叉の検出を説明するための概念図である。23(A), 23(B), 23(C) and 23(D) are conceptual diagrams for explaining the detection of a crossover. 図24は、変形例の画像生成装置の構成を示す概念図である。FIG. 24 is a conceptual diagram showing the configuration of the image generation apparatus of the modified example. 図25は、神経突起の幅の算出を説明するための概念図である。FIG. 25 is a conceptual diagram for explaining the calculation of the width of the neurite. 図26は、神経突起の幅の算出を説明するための概念図である。FIG. 26 is a conceptual diagram for explaining the calculation of the width of the neurite. 図27は、出力輝度値の算出を説明するための概念図である。FIG. 27 is a conceptual diagram for explaining the calculation of the output brightness value. 図28は、一実施形態の画像生成装置の構成を示す概念図である。FIG. 28 is a conceptual diagram showing the configuration of the image generating apparatus according to the embodiment. 図29は、第1選択画素設定処理を説明するための概念図である。FIG. 29 is a conceptual diagram for explaining the first selected pixel setting process. 図30は、第2選択画素設定処理を説明するための概念図である。FIG. 30 is a conceptual diagram for explaining the second selected pixel setting process. 図31は、一実施形態に係る画像生成方法の流れを示すフローチャートである。FIG. 31 is a flowchart showing the flow of the image generation method according to the embodiment. 図32は、一実施形態に係る画像生成方法の流れを示すフローチャートである。FIG. 32 is a flowchart showing the flow of the image generation method according to the embodiment. 図33は、始点配置領域を示す概念図である。FIG. 33 is a conceptual diagram showing the starting point arrangement area. 図34は、変形例に係る画像生成方法の流れを示すフローチャートである。FIG. 34 is a flowchart showing the flow of the image generation method according to the modification. 図35は、プログラムの提供を説明するための概念図である。FIG. 35 is a conceptual diagram for explaining the provision of the program.
 以下、図を参照して本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
-第1実施形態-
 第1実施形態の画像生成装置は、取得した画像データ(以下、入力画像データと呼ぶ)に基づいて、複数の画素を抽出し、抽出された複数の画素に基づいて画像データ(以下、出力画像データと呼ぶ)を生成する。
-First embodiment-
The image generation apparatus of the first embodiment extracts a plurality of pixels based on the acquired image data (hereinafter, referred to as input image data), and the image data (hereinafter referred to as an output image) based on the extracted plurality of pixels. Data).
 図1は、本実施形態の画像生成装置の構成を示す概念図である。画像生成装置1は、培養部100と、情報処理部40とを備える。培養部100は、培養器10と、観察用試料台11と、駆動部12と、撮像部20とを備える。情報処理部40は、入力部41と、通信部42と、記憶部43と、出力部44と、制御部50とを備える。制御部50は、データ処理部51と、出力制御部52と、装置制御部53とを備える。 FIG. 1 is a conceptual diagram showing the configuration of the image generating apparatus of this embodiment. The image generation device 1 includes a culture unit 100 and an information processing unit 40. The culture unit 100 includes an incubator 10, an observation sample stage 11, a drive unit 12, and an imaging unit 20. The information processing unit 40 includes an input unit 41, a communication unit 42, a storage unit 43, an output unit 44, and a control unit 50. The control unit 50 includes a data processing unit 51, an output control unit 52, and a device control unit 53.
 画像生成装置1は、培養装置として構成され、培養部100での撮像により得られた入力画像データがデータ処理部51に入力され処理される構成となっている。
 なお、画像生成装置1は、入力画像データを取得できれば、画像生成装置1が撮像や培養を行う構成でなくともよい。
The image generation device 1 is configured as a culture device, and has a configuration in which input image data obtained by imaging in the culture unit 100 is input to the data processing unit 51 and processed.
Note that the image generating device 1 does not have to have a configuration in which the image generating device 1 performs imaging and culturing as long as it can acquire input image data.
 本実施形態では、入力画像データに対応する入力画像から、直線、曲線または交叉等を含む線状の部分を抽出対象として抽出する。以下では、細胞Ceが神経細胞であり、神経突起Nrに対応する部分を抽出する例を用いて説明するが、上記のような線状の部分を含めば、抽出対象はこの例に限定されず、画像を構成する任意の要素とすることができる。 In this embodiment, a linear portion including a straight line, a curved line, an intersection, or the like is extracted as an extraction target from the input image corresponding to the input image data. In the following, an explanation will be given using an example in which the cell Ce is a nerve cell and a portion corresponding to the neurite Nr is extracted, but the extraction target is not limited to this example as long as the linear portion as described above is included. , Can be any element that constitutes an image.
 培養部100は、細胞Ceを培養し、培養された細胞Ceの撮像を行う。 The culturing unit 100 cultivates the cell Ce and images the cultivated cell Ce.
 培養器10は、細胞Ceが培養されている培養容器Cを内部に格納する。培養器10の内部は、不図示の温度調節器により予め設定された温度に維持される等、予め設定された環境で培養が行われるように制御される。駆動部12は、アクチュエーターを備え、予め定められた時間に培養容器Cを移動させ、培養器10の内部にある観察用試料台11に載置する。さらに、駆動部12は、細胞Ceの撮像のため、撮像部20の焦点面に細胞Ceが配置されるように、撮像部20または観察用試料台11等を適切な位置に移動させる。 The incubator 10 stores therein a culture container C in which cells Ce are cultured. The inside of the incubator 10 is controlled by a temperature controller (not shown) so that the culture is performed in a preset environment, such as being maintained at a preset temperature. The drive unit 12 includes an actuator, moves the culture container C at a predetermined time, and mounts it on the observation sample table 11 inside the incubator 10. Further, the driving unit 12 moves the imaging unit 20 or the observation sample stage 11 or the like to an appropriate position so that the cells Ce are arranged on the focal plane of the imaging unit 20 for imaging the cells Ce.
 撮像部20は、CMOSやCCD等の撮像素子を含む撮像装置を備え、細胞Ce、特に細胞Ceの神経突起Nrを撮像する。撮像部20による撮像の方法は、撮像画像において、神経突起Nrに対応する画素が、当該画素の輝度値により他の部分と所望の精度で区別することができれば特に限定されない。例えば、撮像部20による撮像の方法は、蛍光観察法や位相差観察法等を用いることができる。 The image pickup unit 20 includes an image pickup device including an image pickup device such as a CMOS or CCD, and picks up an image of the cell Ce, particularly the neurite Nr of the cell Ce. The method of imaging by the imaging unit 20 is not particularly limited as long as the pixel corresponding to the neurite Nr in the captured image can be distinguished from other portions with desired accuracy by the brightness value of the pixel. For example, as a method of imaging by the imaging unit 20, a fluorescence observation method, a phase difference observation method, or the like can be used.
 撮像部20が蛍光観察法により撮像を行う場合、遺伝子導入により、細胞CeにGFP等の蛍光タンパク質を発現させたり、神経突起Nrに局在するタンパク質と蛍光タンパク質とを融合させたタンパク質を発現させたりすることで蛍光染色を行うことができる。撮像後の細胞Ceの利用に問題が無ければ、免疫染色等の他の標識法を行ってもよい。 When the imaging unit 20 performs imaging by a fluorescence observation method, gene transfer causes a cell Ce to express a fluorescent protein such as GFP or a protein in which a protein localized in neurite Nr and a fluorescent protein are fused. By doing so, fluorescent staining can be performed. If there is no problem in using the cells Ce after imaging, another labeling method such as immunostaining may be performed.
 撮像部20が細胞Ceを撮像して得られた撮像画像に対応するデータは、デジタル信号に変換され、画素と輝度値とが対応付けられた入力画像データとして情報処理部40に入力され(矢印A1)、記憶部43に記憶される。 Data corresponding to the captured image obtained by the image capturing unit 20 capturing the cell Ce is converted into a digital signal and input to the information processing unit 40 as input image data in which pixels are associated with brightness values (arrows). A1) is stored in the storage unit 43.
 情報処理部40は、画像生成装置1のユーザ(以下、単に「ユーザ」と呼ぶ)とのインターフェースとなる他、様々なデータに関する通信、記憶、演算等の処理を行う。
 なお、情報処理部40は、培養部100と物理的に離れた情報処理装置として構成してもよい。また、画像生成装置1が用いるデータの一部は遠隔のサーバ等に保存してもよく、画像生成装置1が行う演算処理の一部は遠隔のサーバ等で行ってもよい。
The information processing unit 40 serves as an interface with a user of the image generating apparatus 1 (hereinafter, simply referred to as “user”), and also performs processing such as communication, storage, and calculation regarding various data.
The information processing unit 40 may be configured as an information processing device that is physically separated from the culture unit 100. Further, a part of the data used by the image generating apparatus 1 may be stored in a remote server or the like, and a part of the arithmetic processing performed by the image generating apparatus 1 may be performed by a remote server or the like.
 入力部41は、マウス、キーボード、各種ボタンまたはタッチパネル等の入力装置を備える。入力部41は、培養部100による撮像やデータ処理部51によるデータ処理に必要なデータ等を、ユーザから受け付ける。 The input unit 41 includes an input device such as a mouse, a keyboard, various buttons or a touch panel. The input unit 41 receives, from a user, data necessary for imaging by the culture unit 100 and data processing by the data processing unit 51.
 通信部42は、インターネット等の無線や有線による接続により通信可能な通信装置を備え、画像生成装置1における制御や処理に関するデータを適宜送受信する。 The communication unit 42 includes a communication device capable of communicating by wireless or wired connection such as the Internet, and appropriately transmits/receives data regarding control and processing in the image generation device 1.
 記憶部43は、不揮発性の記憶媒体を備え、制御部50に処理を行わせるプログラムおよび、データ処理部51の処理に関する画像データ等を記憶する。 The storage unit 43 includes a non-volatile storage medium, and stores a program that causes the control unit 50 to perform processing, image data regarding the processing of the data processing unit 51, and the like.
 出力部44は、液晶モニタ等の表示装置を備え、データ処理部51の処理により得られた出力画像データに基づく画像等を出力する。 The output unit 44 includes a display device such as a liquid crystal monitor, and outputs an image or the like based on the output image data obtained by the processing of the data processing unit 51.
 制御部50は、CPU等の処理装置により構成され、画像生成装置1を制御する動作の主体として機能し、記憶部43に搭載されているプログラムを実行することにより各種処理を行う。 The control unit 50 is configured by a processing device such as a CPU, functions as a main body of the operation that controls the image generation device 1, and executes various processes by executing a program installed in the storage unit 43.
 制御部50のデータ処理部51は、撮像部20から入力された入力画像データを処理し、抽出対象に対応する複数の画素を抽出し、抽出された複数の画素に基づいて出力画像データ(後述の連結領域画像データ)を生成する。 The data processing unit 51 of the control unit 50 processes the input image data input from the imaging unit 20, extracts a plurality of pixels corresponding to an extraction target, and outputs output image data (described later) based on the extracted pixels. Connected region image data) is generated.
 図2は、データ処理部51の構成を示す概念図である。データ処理部51は、確率分布画像生成部511と、領域設定部512と、終点画素設定部513と、始点画素設定部514と、画素抽出部600と、画像生成部700とを備える。画素抽出部600は、候補画素指定部601と、選択画素設定部602とを備える。 FIG. 2 is a conceptual diagram showing the configuration of the data processing unit 51. The data processing unit 51 includes a probability distribution image generation unit 511, a region setting unit 512, an end point pixel setting unit 513, a start point pixel setting unit 514, a pixel extraction unit 600, and an image generation unit 700. The pixel extraction unit 600 includes a candidate pixel designation unit 601 and a selected pixel setting unit 602.
 データ処理部51の確率分布画像生成部511は、記憶部43に記憶されている入力画像データに基づいて、確率分布画像に対応する確率分布画像データを生成し取得する。 The probability distribution image generation unit 511 of the data processing unit 51 generates and acquires probability distribution image data corresponding to the probability distribution image based on the input image data stored in the storage unit 43.
 図3は、確率分布画像Gpを示す概念図である。確率分布画像Gpは、確率分布画像Gpの各画素の輝度が、当該画素が抽出対象の神経突起Nrに対応する確率と対応付けられている画像である。図3は、神経細胞に対応する確率分布画像Gpを示しているが、わかりやすくするため神経突起Nrは1本のみ示した。図3の確率分布画像Gpでは、ハッチングが濃い部分程、当該部分に対応する画素が神経突起Nrに対応する画像部分である可能性が高いことを示している。確率分布画像Gpは、各画素に対して上記確率が1次元の輝度値として対応し、グレースケール画像として表現されることが好ましいが、上記確率と輝度値とが対応付けられれば確率分布画像Gpの態様は特に限定されない。 FIG. 3 is a conceptual diagram showing the probability distribution image Gp. The probability distribution image Gp is an image in which the brightness of each pixel of the probability distribution image Gp is associated with the probability that the pixel corresponds to the neurite Nr to be extracted. FIG. 3 shows the probability distribution image Gp corresponding to a nerve cell, but for the sake of clarity, only one neurite Nr is shown. In the probability distribution image Gp of FIG. 3, the darker the hatched portion, the higher the possibility that the pixel corresponding to that portion is the image portion corresponding to the neurite Nr. In the probability distribution image Gp, it is preferable that the above probability corresponds to each pixel as a one-dimensional brightness value and is expressed as a gray scale image, but if the above probability and brightness value are associated with each other, the probability distribution image Gp The aspect of is not particularly limited.
 確率分布画像生成部511は、入力画像データに対し、所定の画像処理アルゴリズムによる処理を行うことで、各画素について、抽出対象である神経突起Nrに対応する確率を算出する。上記所定の画像処理アルゴリズムは、学習済みの機械学習である。この機械学習は、神経細胞を撮像して得られた複数の画像と、当該画像における神経突起に対応する部分を示す画像とを演算装置に入力して学習させた深層学習である。
 なお、上記所定の画像処理アルゴリズムは、上記確率と輝度値とが対応付けられれば特に限定されず、深層学習以外の機械学習や、機械学習以外のアルゴリズムを用いてもよい。
The probability distribution image generation unit 511 calculates the probability corresponding to the neurite Nr, which is the extraction target, for each pixel by processing the input image data with a predetermined image processing algorithm. The predetermined image processing algorithm is learned machine learning. This machine learning is deep learning in which a plurality of images obtained by imaging nerve cells and an image showing a portion corresponding to a neurite in the image are input to and learned by an arithmetic device.
The predetermined image processing algorithm is not particularly limited as long as the probability and the brightness value are associated with each other, and machine learning other than deep learning or an algorithm other than machine learning may be used.
 確率分布画像Gpでは、被写体の細胞Ce(図1)とは異なり、神経突起Nrに対応する部分と、細胞体Soに対応する部分とが、必ずしも連結されていない。この理由の一つは、入力画像を撮像により得る際に、神経突起Nr等の線状の部分が細いために十分な精度で撮像できないためである。細胞等の撮像によく用いられている蛍光顕微鏡により得られた画像でもこの傾向がみられる。 In the probability distribution image Gp, unlike the cell Ce of the subject (FIG. 1), the part corresponding to the neurite Nr and the part corresponding to the cell body So are not necessarily connected. One of the reasons for this is that when the input image is obtained by imaging, the linear portion such as the neurite Nr cannot be imaged with sufficient accuracy because it is thin. This tendency is also seen in images obtained by a fluorescence microscope that is often used for imaging cells and the like.
 図3の確率分布画像Gpには、神経突起Nrに対応する複数の画素領域断片Fを示した。画素領域断片F1と画素領域断片F2とは2画素以上離れ、画素領域断片F2と画素領域断片F3とも2画素以上離れている。このような場合、確率分布画像Gpを用いて神経突起Nrを解析する際に神経突起Nrの長さを算出することが難しく、神経突起Nrから適切に情報を取得することができない。 The probability distribution image Gp in FIG. 3 shows a plurality of pixel region fragments F corresponding to the neurite Nr. The pixel region fragment F1 and the pixel region fragment F2 are separated from each other by 2 pixels or more, and the pixel region fragment F2 and the pixel region fragment F3 are separated from each other by 2 pixels or more. In such a case, it is difficult to calculate the length of the neurite Nr when the neurite Nr is analyzed using the probability distribution image Gp, and it is not possible to appropriately acquire information from the neurite Nr.
 画素領域断片F3と画素領域断片F4とは、斜め方向には隣接しているが、縦方向または横方向には連結されていない。このような場合に画素領域断片F3とF4とが連結されているものとするか連結されていないものとするかは特に限定されず、上記のような神経突起Nrを解析する際の解析アルゴリズムにおける連結性の定義等に基づいて適宜設定することができる。 The pixel area fragment F3 and the pixel area fragment F4 are adjacent to each other in the diagonal direction, but are not connected in the vertical direction or the horizontal direction. In such a case, it is not particularly limited whether the pixel region fragments F3 and F4 are connected or not connected, and in the analysis algorithm for analyzing the neurite Nr as described above. It can be appropriately set based on the definition of connectivity.
 データ処理部51は、確率分布画像Gpから、抽出対象である神経突起Nrに対応し、一体に連結された複数の画素からなる連結画素領域を算出する。連結画素領域を示す画像を連結領域画像と呼ぶ。 The data processing unit 51 calculates, from the probability distribution image Gp, a connected pixel area corresponding to the neurite Nr to be extracted and composed of a plurality of pixels that are integrally connected. An image showing a connected pixel area is called a connected area image.
 図4は、図3の確率分布画像Gpから得られた連結領域画像Gsを示す概念図である。連結画素領域Dcは、神経突起Nrに対応しており、かつ連結画素領域Dcを構成する画素が互いに連結されている。図4では、連結画素領域Dcに連結された細胞体Soに対応する部分も示されているが、この部分は連結領域画像Gsに示しても、示さなくてもよい。以下では、データ処理部51が始点画素と終点画素とを設定し、始点画素と終点画素とを連結する連結画素領域Dcを導出し、連結領域画像Gsに対応する連結領域画像データを生成する点を説明する。 FIG. 4 is a conceptual diagram showing a connected region image Gs obtained from the probability distribution image Gp of FIG. The connected pixel area Dc corresponds to the neurite Nr, and the pixels forming the connected pixel area Dc are connected to each other. Although the portion corresponding to the cell body So connected to the connected pixel area Dc is also shown in FIG. 4, this portion may or may not be shown in the connected area image Gs. In the following, the point that the data processing unit 51 sets the start point pixel and the end point pixel, derives the connected pixel area Dc that connects the start point pixel and the end point pixel, and generates the connected area image data corresponding to the connected area image Gs. Will be explained.
 データ処理部51は、始点画素と終点画素とを設定し、始点画素を始点として複数の画素を順々に設定する。設定された画素を、以下、選択画素と呼ぶ。データ処理部51は、終点画素の位置に基づいた条件(以下、終了条件と呼ぶ)が満たされた際に設定されている当該選択画素の少なくとも一つを抽出する。ここで抽出された画素を抽出画素と呼ぶ。 The data processing unit 51 sets a start point pixel and an end point pixel, and sequentially sets a plurality of pixels starting from the start point pixel. The set pixel is hereinafter referred to as a selected pixel. The data processing unit 51 extracts at least one of the selected pixels set when a condition based on the position of the end point pixel (hereinafter, referred to as an end condition) is satisfied. The pixel extracted here is called an extracted pixel.
 領域設定部512は、抽出画素を探索する範囲である探索領域を設定する。探索領域は、後述の候補画素指定部601が候補画素を指定する範囲となる。領域設定部512は、確率分布画像Gp(図3)において、ユーザが設定した範囲に対応する画素領域を探索領域とする。領域設定部512は、ユーザの設定がなかった場合、確率分布画像Gpの全体を探索領域とする。 The area setting unit 512 sets a search area that is a range for searching for extracted pixels. The search region is a range in which a candidate pixel designating unit 601 described later designates a candidate pixel. The area setting unit 512 sets the pixel area corresponding to the range set by the user in the probability distribution image Gp (FIG. 3) as the search area. The area setting unit 512 sets the entire probability distribution image Gp as the search area when there is no user setting.
 図5は、探索領域を示す概念図である。領域設定部512は、ユーザがマウスのカーソル等を用いて設定した矩形の範囲を探索領域D1として設定している。 FIG. 5 is a conceptual diagram showing a search area. The area setting unit 512 sets a rectangular range set by the user using a mouse cursor or the like as the search area D1.
 終点画素設定部513は、探索領域D1を構成する画素から終点画素Pxtを設定する。終点画素Pxtは、1つでもよいし、複数でもよい。神経突起Nr(図3)を抽出対象とする場合、終点画素Pxtは、細胞Ce(図1)の細胞体Soに対応する画素とする。入力画像や確率分布画像Gpから細胞体Soに対応する画素を決定する方法は特に限定されない。終点画素設定部513は、確率分布画像Gpを二値化し、二値化された画像においてオープニング処理により神経突起Nrを消去し、連結された最大の画素領域に対応する画素を細胞体Soに対応する画素とする等、公知の方法等を用いることができる。 The end point pixel setting unit 513 sets the end point pixel Pxt from the pixels forming the search area D1. The end point pixel Pxt may be one or plural. When the neurite Nr (FIG. 3) is the extraction target, the end point pixel Pxt is a pixel corresponding to the cell body So of the cell Ce (FIG. 1). The method of determining the pixel corresponding to the cell body So from the input image or the probability distribution image Gp is not particularly limited. The end point pixel setting unit 513 binarizes the probability distribution image Gp, deletes the neurite Nr by the opening process in the binarized image, and associates the pixel corresponding to the largest connected pixel region with the cell body So. It is possible to use a known method such as setting a pixel to be used.
 始点画素設定部514は、探索領域D1を構成する画素から始点画素を設定する。始点画素設定部514は、確率分布画像Gpにおける各画素の輝度を二値化して得られた二値化画像(以下、第1二値化画像と呼ぶ)に対応する第1二値化画像データを生成し、この第1二値化画像に基づいて始点画素を設定する。 The starting point pixel setting unit 514 sets the starting point pixel from the pixels forming the search area D1. The start point pixel setting unit 514 is a first binarized image data corresponding to a binarized image (hereinafter, referred to as a first binarized image) obtained by binarizing the brightness of each pixel in the probability distribution image Gp. Is generated, and the starting point pixel is set based on the first binarized image.
 図6は、図3の確率分布画像Gpを二値化して得られた第1二値化画像Gb1の一例を示す図である。図6の第1二値化画像Gb1では、確率分布画像Gpの各画素領域断片F(F1,F2,F3およびF4)を構成する画素が黒に、それ以外の部分が白に対応する輝度値を備えるように変換されている。確率分布画像Gpのノイズの量等に基づいて、二値化の際の閾値は適宜設定することができる。細胞体Soは、終点画素Pxtに対応する。 FIG. 6 is a diagram showing an example of the first binarized image Gb1 obtained by binarizing the probability distribution image Gp of FIG. In the first binarized image Gb1 of FIG. 6, the luminance values corresponding to the pixels constituting the pixel area fragments F (F1, F2, F3, and F4) of the probability distribution image Gp being black and the other portions being white. Has been converted to have. The threshold for binarization can be set appropriately based on the amount of noise in the probability distribution image Gp and the like. The cell body So corresponds to the end point pixel Pxt.
 始点画素設定部514は、第1二値化画像Gb1において、終点画素Pxtからの距離と、第1二値化画像Gb1において抽出対象に対応し、同一の値を有する画素領域の広さとに基づいて、始点画素Pxiを設定する。始点画素設定部513は、画素領域断片Fのうち探索領域D1で最も画素数が多い画素領域断片F1を選択し、選択された画素領域断片F1における終点画素Pxtから最も遠い画素を始点画素Pxiとして設定することが好ましい。画素領域断片F1における各画素と終点画素Pxtとの間の距離としては、当該各画素と終点画素Pxtの重心との間の距離や、当該各画素と、終点画素Pxtのうち最も当該各画素に近い画素との間の距離等を用いることができる。 The start point pixel setting unit 514 is based on the distance from the end point pixel Pxt in the first binarized image Gb1 and the width of the pixel region corresponding to the extraction target in the first binarized image Gb1 and having the same value. Then, the starting point pixel Pxi is set. The starting point pixel setting unit 513 selects the pixel area fragment F1 having the largest number of pixels in the search area D1 among the pixel area fragments F, and sets the pixel farthest from the ending point pixel Pxt in the selected pixel area fragment F1 as the starting point pixel Pxi. It is preferable to set. As the distance between each pixel and the end point pixel Pxt in the pixel region fragment F1, the distance between each pixel and the center of gravity of the end point pixel Pxt, or the most relevant pixel among each pixel and the end point pixel Pxt. For example, the distance between adjacent pixels can be used.
 画素抽出部600(図2)は、始点画素Pxiを始点に、探索領域D1において選択画素を設定していき、所定の条件に基づいて複数の選択画素が構成する画素列を複数の抽出画素として抽出する。始点画素Pxiは抽出画素に含まれてもよい。この画素の抽出は、ダイクストラ法に基づいた方法により行われる。選択画素の設定では、候補画素指定部601が探索領域D1において複数の候補画素を指定し、選択画素設定部602が複数の候補画素から選択画素を設定する。 The pixel extraction unit 600 (FIG. 2) sets the selected pixel in the search region D1 starting from the starting point pixel Pxi, and sets a pixel row formed by a plurality of selected pixels based on a predetermined condition as a plurality of extracted pixels. Extract. The starting point pixel Pxi may be included in the extracted pixels. This pixel extraction is performed by a method based on the Dijkstra method. In setting the selection pixel, the candidate pixel designating unit 601 designates a plurality of candidate pixels in the search region D1, and the selection pixel setting unit 602 sets a selection pixel from the plurality of candidate pixels.
 図7は、画素抽出部600による選択画素の設定を説明するための概念図である。始点画素Pxiの位置に基づいた複数の位置に対応する画素が、複数の候補画素Pxcとしてそれぞれ指定される。ここで、始点画素Pxiに対応する各候補画素Pxcのそれぞれについて、候補画素パラメータが算出される。候補画素パラメータは非負の値をとり、ダイクストラ法における距離に対応する。始点画素Pxiおよび各候補画素Pxcをノードとするとノードを結ぶエッジEdのそれぞれに候補画素パラメータが対応する。候補画素パラメータの値に基づいて、始点画素Pxiに対応する候補画素Pxcのうち1つの画素が選択画素Pxdとして選択され設定される。ここで設定された画素が選択画素Pxd1となる(矢印A3)。選択画素Pxdとして選択された候補画素Pxcは、候補画素としての指定が解除される。
 なお、選択画素Pxdを設定する度に全ての候補画素Pxcを一旦解除し、改めて必要な候補画素全体を再設定してもよい。
FIG. 7 is a conceptual diagram for explaining setting of selected pixels by the pixel extracting unit 600. Pixels corresponding to a plurality of positions based on the position of the starting point pixel Pxi are designated as a plurality of candidate pixels Pxc. Here, the candidate pixel parameter is calculated for each of the candidate pixels Pxc corresponding to the starting point pixel Pxi. The candidate pixel parameter takes a non-negative value and corresponds to the distance in the Dijkstra method. If the starting point pixel Pxi and each candidate pixel Pxc are nodes, the candidate pixel parameter corresponds to each of the edges Ed connecting the nodes. Based on the value of the candidate pixel parameter, one pixel of the candidate pixels Pxc corresponding to the starting point pixel Pxi is selected and set as the selected pixel Pxd. The pixel set here becomes the selected pixel Pxd1 (arrow A3). The designation of the candidate pixel Pxc selected as the selected pixel Pxd is canceled as the candidate pixel.
It should be noted that every time the selected pixel Pxd is set, all the candidate pixels Pxc may be canceled once and the necessary entire candidate pixels may be reset again.
 次に、始点画素Pxiを除いた探索領域D1(図5)において、選択画素Pxd1の位置に基づいた複数の位置に対応する画素が、複数の候補画素Pxcとしてそれぞれ指定される。始点画素Pxiおよび選択画素Pxd1に対応する各候補画素Pxcのうち、始点画素Pxiから各候補画素Pxcまでの1または複数のエッジEdに対応する候補画素パラメータの和が最も小さい候補画素Pxcが新たな選択画素Pxd2として設定される(矢印A4)。このようにして、終了条件が満たされるまで、複数の選択画素Pxdが順に設定される。 Next, in the search area D1 (FIG. 5) excluding the starting point pixel Pxi, pixels corresponding to a plurality of positions based on the position of the selected pixel Pxd1 are designated as a plurality of candidate pixels Pxc, respectively. Of the candidate pixels Pxc corresponding to the starting point pixel Pxi and the selected pixel Pxd1, the candidate pixel Pxc having the smallest sum of candidate pixel parameters corresponding to one or more edges Ed from the starting point pixel Pxi to each candidate pixel Pxc is new. It is set as the selected pixel Pxd2 (arrow A4). In this way, the plurality of selected pixels Pxd are sequentially set until the end condition is satisfied.
 候補画素指定部601による候補画素Pxcの指定についてより詳しく説明する。候補画素指定部601は、始点画素Pxiおよび既に設定した選択画素Pxdを除いた探索領域D1において、始点画素Pxiおよび既に設定した選択画素Pxdのそれぞれから、少なくともN画素以上離れた位置に複数の候補画素Pxcを指定する。以下、Nを候補画素位置パラメータと呼ぶ。ここで、画素抽出部600が確率分布画像Gpに対して最初に抽出画素の抽出を行う場合、画素抽出部600はNを2以上に設定する。 The designation of the candidate pixel Pxc by the candidate pixel designation unit 601 will be described in more detail. In the search area D1 excluding the start point pixel Pxi and the already set selection pixel Pxd, the candidate pixel designating unit 601 has a plurality of candidates at positions at least N pixels apart from each of the start point pixel Pxi and the already set selection pixel Pxd. The pixel Pxc is designated. Hereinafter, N is referred to as a candidate pixel position parameter. Here, when the pixel extracting unit 600 first extracts extracted pixels from the probability distribution image Gp, the pixel extracting unit 600 sets N to 2 or more.
 ここで、「X画素離れる」と記載した場合の画素間の距離は、以下のように定義される。縦横の格子における格子点の位置に対応して画素が配置されている場合、縦方向に離れた二画素の間および横方向に離れた二画素の間の距離については、それぞれの方向における単位格子の幅を一画素離れた距離とする。すなわち、ある画素に対して縦方向または横方向に隣り合った画素が一画素離れた画素であり、縦方向または横方向で隣り合った二つの画素間の距離を、一画素離れた距離とする。斜め方向に離れた二画素の間の距離については、縦方向または横方向の距離のうちより長い方の距離とする。 Here, the distance between pixels when "X pixels are separated" is defined as follows. When pixels are arranged corresponding to the positions of grid points in the vertical and horizontal grids, the distance between two pixels vertically separated and the distance between two pixels horizontally separated are the unit grid in each direction. The width of is the distance one pixel away. That is, a pixel adjacent in the vertical direction or the horizontal direction to a certain pixel is a pixel separated by one pixel, and the distance between two pixels adjacent in the vertical direction or the horizontal direction is set as a distance separated by one pixel. .. The distance between two pixels that are diagonally separated is the longer of the vertical and horizontal distances.
 例えば、座標(0,0)にある画素と座標(1,1)にある画素は斜め方向に隣接しており、縦方向の距離1、横方向の距離1のため、1画素離れていることになる。座標(0,0)にある画素と座標(2,2)にある画素は、縦方向の距離2、横方向の距離2のため、2画素離れていることになる。座標(0,0)にある画素と座標(1,2)にある画素は、縦方向の距離の距離2、横方向の距離1のため、2画素離れていることになる。 For example, the pixel at the coordinate (0,0) and the pixel at the coordinate (1,1) are diagonally adjacent to each other, and the distance is 1 in the vertical direction and 1 in the horizontal direction. become. The pixel at the coordinate (0, 0) and the pixel at the coordinate (2, 2) are separated by 2 pixels because the distance 2 in the vertical direction and the distance 2 in the horizontal direction. The pixel at the coordinate (0,0) and the pixel at the coordinate (1,2) are separated by 2 pixels because the distance is 2 in the vertical direction and 1 is in the horizontal direction.
 候補画素位置パラメータNが2以上であり、始点画素Pxiまたは選択画素Pxdと2画素以上離れて候補画素Pxcを設定するため、選択画素Pxdの設定回数を少なくすることができ、迅速に抽出対象に対応する画素を抽出することができる。また、第1二値化画像Gb1(図6)において、本来連結されている抽出対象に対応する画素領域が、ノイズ等により1画素の間隔をおいて途切れて(抽出対象に対応する確率が低くなって)いても、当該間隔を跳び越えて選択画素Pxdからなる画素列を設定することができるため、抽出対象を正確に反映した連結画素領域Dcを出力することができる。 Since the candidate pixel position parameter N is 2 or more, and the candidate pixel Pxc is set at a distance of 2 pixels or more from the starting point pixel Pxi or the selected pixel Pxd, the number of times the selected pixel Pxd is set can be reduced, and the extraction target can be quickly extracted. Corresponding pixels can be extracted. Further, in the first binarized image Gb1 (FIG. 6), the pixel regions that are originally connected and correspond to the extraction target are interrupted at intervals of one pixel due to noise or the like (the probability that the extraction target corresponds to the low However, since it is possible to jump over the interval and set the pixel column including the selected pixel Pxd, it is possible to output the connected pixel region Dc that accurately reflects the extraction target.
 図8は、候補画素位置パラメータNを6とした場合の1つの選択画素Pxd0に対応する候補画素Pxcの指定を示す概念図である。図8の例では、選択画素Pxd0から縦方向または横方向に6画素離れた位置に候補画素Pxcが配置されている。さらに、選択画素Pxd0から縦方向および横方向の両方に6画素ずつ移動した位置にも候補画素Pxcが配置されている。図8上部にある選択画素Pxdpは、選択画素Pxd0よりも前に選択画素Pxdとして設定されたものである。既に選択画素Pxdとして設定された画素は、候補画素Pxcとして指定されない。始点画素Pxiに対しても選択画素Pxdと同様に候補画素Pxcが指定される。 FIG. 8 is a conceptual diagram showing designation of a candidate pixel Pxc corresponding to one selected pixel Pxd0 when the candidate pixel position parameter N is set to 6. In the example of FIG. 8, the candidate pixel Pxc is arranged at a position separated by 6 pixels in the vertical direction or the horizontal direction from the selected pixel Pxd0. Further, the candidate pixel Pxc is also arranged at a position moved by 6 pixels in both the vertical direction and the horizontal direction from the selected pixel Pxd0. The selected pixel Pxdp in the upper part of FIG. 8 is set as the selected pixel Pxd before the selected pixel Pxd0. A pixel that has already been set as the selected pixel Pxd is not designated as the candidate pixel Pxc. Similarly to the selected pixel Pxd, the candidate pixel Pxc is designated for the starting point pixel Pxi.
 選択画素設定部602は、始点画素Pxiまたは選択画素Pxdと、候補画素Pxcとの位置に基づいて、候補画素パラメータを算出する際に輝度値を用いる画素の範囲である算出画素領域Dsを設定する。算出画素領域Dsに含まれる各画素を、算出画素Pxsと呼ぶ。算出画素Pxsは、始点画素Pxiまたは選択画素Pxdと、候補画素Pxcとを結ぶ線上に位置する画素(以下、中心画素Pxoと呼ぶ)を中心とした所定の範囲に含まれる画素であることが好ましい。 The selected pixel setting unit 602 sets a calculated pixel area Ds, which is a range of pixels using luminance values when calculating the candidate pixel parameters, based on the positions of the starting pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc. .. Each pixel included in the calculated pixel area Ds is called a calculated pixel Pxs. The calculation pixel Pxs is preferably a pixel included in a predetermined range centered on a pixel (hereinafter, referred to as a central pixel Pxo) located on a line connecting the starting point pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc. ..
 図8の例では、中心画素Pxoは、選択画素Pxd0と候補画素Pxc1とを結ぶ線Lcd上に位置し、線Lcd上に位置する7つの画素の真ん中の画素、言い換えれば線Lcdの中点を含む画素に該当する。図8の例では、算出画素領域Dsは、中心画素Pxoを中心とした7×7の正方形の領域であり、49個の算出画素Pxsが含まれている。他の候補画素Pxcについても、同様に中心画素Pxoおよび算出画素領域Dsが設定される。
 なお、候補画素位置パラメータNおよび算出画素領域Dsは、神経突起Nrの幅から設定してもよい。候補画素位置パラメータNおよび算出画素領域Dsの幅の少なくとも一つが、神経突起Nrの幅よりも大きくなるように候補画素位置パラメータNおよび算出画素領域Dsを設定することができる。例えば、神経突起Nrの幅が2画素分の幅である場合、候補画素位置パラメータNを5画素分や7画素分の長さに設定することができる。他の例として、始点画素Pxiまたは選択画素Pxdと、候補画素Pxcとが、当該候補画素Pxcの算出画素領域Dsに含まれるように候補画素位置パラメータNおよび算出画素領域Dsを設定することができる。これにより、確率分布画像Gpの画素をより多く用い、情報の無駄を少なくして計算を行うことができる。
In the example of FIG. 8, the central pixel Pxo is located on the line Lcd connecting the selected pixel Pxd0 and the candidate pixel Pxc1, and is the middle pixel of the seven pixels located on the line Lcd, in other words, the middle point of the line Lcd. It corresponds to the pixel including. In the example of FIG. 8, the calculated pixel area Ds is a 7×7 square area centered on the central pixel Pxo, and includes 49 calculated pixels Pxs. The center pixel Pxo and the calculated pixel area Ds are similarly set for the other candidate pixels Pxc.
The candidate pixel position parameter N and the calculated pixel area Ds may be set based on the width of the neurite Nr. The candidate pixel position parameter N and the calculated pixel region Ds can be set such that at least one of the widths of the candidate pixel position parameter N and the calculated pixel region Ds is larger than the width of the neurite Nr. For example, when the width of the neurite Nr is 2 pixels, the candidate pixel position parameter N can be set to a length of 5 pixels or 7 pixels. As another example, the candidate pixel position parameter N and the calculated pixel area Ds can be set such that the start point pixel Pxi or the selected pixel Pxd and the candidate pixel Pxc are included in the calculated pixel area Ds of the candidate pixel Pxc. .. As a result, it is possible to use more pixels of the probability distribution image Gp and reduce the waste of information for calculation.
 選択画素設定部602は、各候補画素Pxcに対応する算出画素領域Dsに含まれる複数の算出画素Pxsの輝度値から候補画素パラメータdを算出する。候補画素パラメータdは、算出画素領域Dsに含まれる算出画素Pxsの輝度値の和や、算術平均等の平均値を用いて算出される。例えば、候補画素パラメータdは、各候補画素Pxcに対応する算出画素領域Dsに含まれる輝度の和をIpatch、aを定数として、以下の式(1)により算出することができる。
d = exp(-Ipatch/a) …(1)
The selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness values of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc. The candidate pixel parameter d is calculated using the sum of the brightness values of the calculation pixels Pxs included in the calculation pixel area Ds or the average value such as the arithmetic mean. For example, the candidate pixel parameter d can be calculated by the following equation (1) using I patch and a as a constant, which is the sum of the luminances included in the calculated pixel region Ds corresponding to each candidate pixel Pxc.
d = exp(-I patch /a) (1)
 図9は、式(1)により算出された、算出画素Pxsの輝度値の和Ipatchに対する候補画素パラメータdの値を示したものである。候補画素パラメータdは、和Ipatchが増加すると単調減少するように設定されている。確率分布画像Gp(図8)の輝度値が、画素が抽出対象に対応する確率を示していることから、算出画素Pxsの輝度値が高い程、候補画素パラメータdが小さくなることを意味する。このことは、ダイクストラ法における距離の値が小さいことに対応する。 FIG. 9 shows the value of the candidate pixel parameter d with respect to the sum I patch of the brightness values of the calculated pixel Pxs calculated by the equation (1). The candidate pixel parameter d is set to monotonically decrease as the sum I patch increases. Since the luminance value of the probability distribution image Gp (FIG. 8) indicates the probability that the pixel corresponds to the extraction target, the higher the luminance value of the calculated pixel Pxs, the smaller the candidate pixel parameter d. This corresponds to a small distance value in the Dijkstra method.
 選択画素設定部602は、始点画素Pxiおよび選択画素Pxdに対応する複数の候補画素Pxcのうち、始点画素Pxiから候補画素Pxcまでの各エッジEd(図7)に対応する候補画素パラメータdの和の値が最も小さい候補画素Pxcを、新たな選択画素Pxdとして設定する。新たな選択画素Pxdが設定されたら、候補画素指定部601は、上述したように既に指定されていた候補画素Pxcに加え、新たな選択画素Pxdの位置に基づいた複数の位置のそれぞれに候補画素Pxcを指定し、選択画素設定部602が複数の候補画素Pxcからさらに新たな選択画素Pxdを設定する。この候補画素Pxcの指定と選択画素Pxdの設定とを繰り返す処理(以下、選択画素設定処理と呼ぶ)により、画素抽出部600は、複数の選択画素Pxdを設定する。 The selected pixel setting unit 602 calculates the sum of the candidate pixel parameters d corresponding to each edge Ed (FIG. 7) from the start point pixel Pxi to the candidate pixel Pxc among the plurality of candidate pixels Pxc corresponding to the start point pixel Pxi and the selected pixel Pxd. The candidate pixel Pxc having the smallest value of is set as a new selected pixel Pxd. When the new selected pixel Pxd is set, the candidate pixel designating unit 601 adds the candidate pixel Pxc that has already been designated as described above to the candidate pixel at each of a plurality of positions based on the position of the new selected pixel Pxd. Pxc is designated, and the selected pixel setting unit 602 further sets a new selected pixel Pxd from the plurality of candidate pixels Pxc. The pixel extraction unit 600 sets a plurality of selected pixels Pxd by the process of repeating the designation of the candidate pixel Pxc and the setting of the selected pixel Pxd (hereinafter referred to as the selected pixel setting process).
 画素抽出部600は、選択画素設定処理を行う前に終点画素Pxt(図5)に基づいた終了条件を設定し、この終了条件が満たされたときに、選択画素設定処理を終了する。この終了条件の少なくとも一つ(以下、第1終了条件と呼ぶ)は、候補画素指定部601が設定する候補画素Pxc(図8)が終点画素Pxtと重なる場合である。第1終了条件が満たされた場合、画素抽出部600は、選択画素設定処理を終了し、その時点で設定されている複数の選択画素Pxdのうち、終点画素Pxtから最も少ない画素数離れた選択画素Pxdに対応する画素列に含まれる複数の選択画素Pxdを抽出画素として記憶部43に記憶する。ここで当該画素列とは、始点画素Pxiと、選択画素設定処理において選択された複数の選択画素Pxdの少なくとも一部とからなり、始点画素Pxiと、上記の終点画素Pxtから最も少ない画素数離れた選択画素Pxdとをつなぐ画素列である。複数の選択画素Pxdの少なくとも一部は、始点画素Pxiから始まる複数の選択画素Pxdからなる複数の列のうち、候補画素パラメータdの和が最も小さい列を構成する複数の選択画素Pxdであり、これらの選択画素Pxdが抽出画素となる。ここで、「つなぐ」とは画素列において隣り合う順番の画素が互いに対応付けられていることを指す。画素Aと画素Bとが「対応付け」られているとは、画素Aに対して候補画素Pxcが配置され得るいずれかの位置に画素Bが配置されていることを指す。その後、画素抽出部600は、設定された複数の選択画素Pxdを破棄し、選択画素Pxdが設定されていない状態に戻す。そして、後述のように、領域設定部512による複数の抽出画素に基づく連結画素領域Dcの設定が行われる。
 なお、設定された選択画素Pxdの破棄は、新たな選択画素設定処理が開始されるまでに行われればいつ行ってもよい。
The pixel extraction unit 600 sets a termination condition based on the end point pixel Pxt (FIG. 5) before performing the selection pixel setting process, and terminates the selection pixel setting process when the termination condition is satisfied. At least one of the end conditions (hereinafter, referred to as a first end condition) is a case where the candidate pixel Pxc (FIG. 8) set by the candidate pixel designation unit 601 overlaps with the end point pixel Pxt. When the first termination condition is satisfied, the pixel extraction unit 600 terminates the selection pixel setting process, and selects from among the plurality of selection pixels Pxd set at that point, the number of pixels that is the smallest number of pixels away from the end point pixel Pxt. The plurality of selected pixels Pxd included in the pixel column corresponding to the pixel Pxd are stored in the storage unit 43 as extraction pixels. Here, the pixel row is composed of the start point pixel Pxi and at least a part of the plurality of selected pixels Pxd selected in the selection pixel setting process, and is separated from the start point pixel Pxi and the end point pixel Pxt by the smallest number of pixels. It is a pixel column that connects the selected pixels Pxd. At least a part of the plurality of selected pixels Pxd is a plurality of selected pixels Pxd forming a column having the smallest sum of candidate pixel parameters d among a plurality of columns of the plurality of selected pixels Pxd starting from the start point pixel Pxi, These selected pixels Pxd are extraction pixels. Here, “connecting” means that adjacent pixels in a pixel row are associated with each other. The “correspondence” between the pixel A and the pixel B means that the pixel B is arranged at any position where the candidate pixel Pxc can be arranged with respect to the pixel A. After that, the pixel extraction unit 600 discards the set plurality of selected pixels Pxd and returns to the state in which the selected pixels Pxd are not set. Then, as described later, the area setting unit 512 sets the connected pixel area Dc based on the plurality of extracted pixels.
It should be noted that the selection pixel Pxd that has been set may be discarded at any time as long as it is performed before a new selection pixel setting process is started.
 終了条件の他の一つ(以下、第2終了条件と呼ぶ)は、予め定められた回数だけ選択画素Pxdの設定が行われた場合とする。上記回数は、確率分布画像Gp(図8)の倍率および解像度、ならびに抽出対象の特性等に基づいて適宜設定することができる。第2終了条件が満たされた場合、画素抽出部600は、設定された複数の選択画素Pxdを破棄し、選択画素Pxdが設定されていない状態に戻す。その後、始点画素Pxiの位置を変更したり、候補画素位置パラメータNを変更する等、条件を変更して選択画素設定処理をやり直すことが好ましい。第2終了条件を設定しておくことで、始点画素Pxiを含む画素領域断片Fや後述の候補領域Fcが、抽出すべき神経突起Nrでなかった場合等に不必要な探索を避け、計算コストの削減が可能になる。 Another one of the end conditions (hereinafter referred to as the second end condition) is that the selected pixel Pxd is set a predetermined number of times. The number of times can be appropriately set based on the magnification and resolution of the probability distribution image Gp (FIG. 8), the characteristics of the extraction target, and the like. When the second termination condition is satisfied, the pixel extraction unit 600 discards the set plurality of selected pixels Pxd and returns to the state where the selected pixel Pxd is not set. After that, it is preferable to change the condition such as changing the position of the starting point pixel Pxi or changing the candidate pixel position parameter N, and to redo the selected pixel setting process. By setting the second end condition, unnecessary search is avoided when the pixel region fragment F including the starting point pixel Pxi and the below-described candidate region Fc are not the neurite Nr to be extracted, and the calculation cost is reduced. Can be reduced.
 領域設定部512は、抽出された複数の抽出画素に基づいて、連結画素領域Dc(図4)を設定する。領域設定部512は、始点画素Pxiおよび抽出された複数の抽出画素のそれぞれに所定の範囲の画素領域(以下、連結要素画素領域と呼ぶ)を対応させる。始点画素Pxiおよび複数の抽出画素のそれぞれに対応する各連結要素画素領域は、他の連結要素画素領域と一部の画素が重なるように上記所定の範囲が事前に設定される。領域設定部512は、設定された複数の連結要素画素領域の少なくとも一つに対応する画素を含む画素領域を連結画素領域Dcとして設定する。 The area setting unit 512 sets the connected pixel area Dc (FIG. 4) based on the extracted plurality of extracted pixels. The area setting unit 512 associates each of the starting point pixel Pxi and the extracted plurality of extracted pixels with a pixel area in a predetermined range (hereinafter, referred to as a connected element pixel area). Each of the connected element pixel regions corresponding to each of the start point pixel Pxi and the plurality of extracted pixels has the predetermined range set in advance so that a part of the pixels overlaps the other connected element pixel regions. The area setting unit 512 sets a pixel area including a pixel corresponding to at least one of the set plurality of connected element pixel areas as a connected pixel area Dc.
 図10は、連結画素領域Dcの設定を説明するための概念図である。図10では、連結要素画素領域Deは、始点画素Pxiまたは抽出画素Pxeを中心とした、7×7の正方形の画素領域として設定されている。図10では、候補画素位置パラメータNは3として選択画素設定処理が行われた場合を示す。候補画素位置パラメータNよりも連結要素画素領域Deの幅が十分大きいため、各連結要素画素領域Deは他の連結要素画素領域Deと重なり部分を有し、連結された連結画素領域Dcが得られている。例として、始点画素Pxiに対応する連結要素画素領域De1と抽出画素Pxe1に対応する連結要素画素領域De2とが、一部の画素について重なっている点を示した。
 なお、連結要素画素領域Deの形状や大きさは特に限定されない。連結要素画素領域Deの形状または大きさは、算出画素領域Ds(図8)の形状または大きさに基づいて定めてもよい。例えば、連結要素画素領域Deの形状および大きさは、算出画素領域Dsの形状および大きさと等しくすることができる。これにより、候補画素パラメータdを算出する際に寄与する画素領域の大きさと連結要素画素領域Deの大きさが略等しくなるため、より正確に抽出対象に対応した連結画素領域Dcを設定することができる。また、連結要素画素領域Deの大きさを、互いに隣り合った始点画素Pxiおよび抽出画素Pxeまたは互いに隣り合った二つの抽出画素Pxeが含まれる大きさに設定してもよい。
FIG. 10 is a conceptual diagram for explaining the setting of the connected pixel area Dc. In FIG. 10, the connected element pixel region De is set as a 7×7 square pixel region centered on the start point pixel Pxi or the extracted pixel Pxe. In FIG. 10, the candidate pixel position parameter N is set to 3 and the selected pixel setting process is performed. Since the width of the connected element pixel area De is sufficiently larger than the candidate pixel position parameter N, each connected element pixel area De has an overlapping portion with another connected element pixel area De, and a connected connected pixel area Dc is obtained. ing. As an example, it is shown that the connected element pixel area De1 corresponding to the starting point pixel Pxi and the connected element pixel area De2 corresponding to the extracted pixel Pxe1 overlap for some pixels.
The shape and size of the connected element pixel area De are not particularly limited. The shape or size of the connected element pixel area De may be determined based on the shape or size of the calculated pixel area Ds (FIG. 8). For example, the shape and size of the connected element pixel area De can be made equal to the shape and size of the calculated pixel area Ds. As a result, the size of the pixel region that contributes when calculating the candidate pixel parameter d and the size of the connected element pixel region De become substantially equal, so that the connected pixel region Dc corresponding to the extraction target can be set more accurately. it can. In addition, the size of the connected element pixel region De may be set to a size that includes the starting point pixel Pxi and the extraction pixel Pxe adjacent to each other or the two extraction pixels Pxe adjacent to each other.
 画像生成部700は、連結画素領域Dcを示す連結領域画像Gs(図4参照)に対応する画像データ(以下、連結領域画像データと呼ぶ)を生成する。連結領域画像Gsでは、連結画素領域Dcに対応する部分が、他の部分と区別して示される。画像生成部700は、連結領域画像Gsにおいて連結画素領域Dcに対応する部分または当該部分に終点画素Pxt(図6)を加えた部分を、他の部分とは色相、明度および彩度の少なくとも一つが異なるようにして連結領域画像データを生成する。生成された連結領域画像データは、データ処理部51からの出力画像データとなる。連結領域画像データは、その後適宜形態解析等に供され、神経突起長の算出等が行われる。 The image generation unit 700 generates image data (hereinafter, referred to as connected area image data) corresponding to the connected area image Gs (see FIG. 4) indicating the connected pixel area Dc. In the connected region image Gs, the portion corresponding to the connected pixel region Dc is shown separately from other portions. The image generation unit 700 sets a portion corresponding to the connected pixel area Dc in the connected area image Gs or a portion obtained by adding the end point pixel Pxt (FIG. 6) to the portion to at least one of the hue, the brightness, and the saturation. Connected area image data is generated in a different manner. The generated connected area image data becomes output image data from the data processing unit 51. The connected region image data is then appropriately subjected to morphological analysis and the like, and the neurite length is calculated and the like.
 図1に戻って、制御部50の出力制御部52は、出力部44を制御し、連結領域画像Gsを出力画像として出力させる。 Returning to FIG. 1, the output control unit 52 of the control unit 50 controls the output unit 44 to output the connected region image Gs as an output image.
 制御部50の装置制御部53は、入力部41からの入力等に基づいて、培養部100の各部を制御する(矢印A2)。装置制御部53は、培養に関する制御を行ったり、撮像部20に撮像を行わせる。 The device control unit 53 of the control unit 50 controls each unit of the culture unit 100 based on the input from the input unit 41 (arrow A2). The device control unit 53 controls culture and controls the imaging unit 20 to perform imaging.
 図11は、本実施形態に係る画像生成方法の流れを示すフローチャートである。ステップS1001において、培養部100は、細胞Ceを培養する。ステップS1001が終了したら、ステップS1003が開始される。ステップS1003において、撮像部20は、培養された細胞Ceを撮像し、情報処理部40は、撮像画像に対応する入力画像データを取得する。ステップS1003が終了したら、ステップS1005が開始される。 FIG. 11 is a flowchart showing the flow of the image generation method according to this embodiment. In step S1001, the culture unit 100 cultures the cells Ce. When step S1001 ends, step S1003 starts. In step S1003, the imaging unit 20 images the cultured cells Ce, and the information processing unit 40 acquires input image data corresponding to the captured image. When step S1003 ends, step S1005 starts.
 ステップS1005において、確率分布画像生成部511は、入力画像データを、確率分布画像Gpに対応する確率分布画像データに変換する。ステップS1005が終了したら、ステップS1007が開始される。ステップS1007において、終点画素設定部513は、終点画素Pxtを設定する。ステップS1007が終了したら、ステップS1009が開始される。 In step S1005, the probability distribution image generation unit 511 converts the input image data into probability distribution image data corresponding to the probability distribution image Gp. When step S1005 ends, step S1007 starts. In step S1007, the end point pixel setting unit 513 sets the end point pixel Pxt. When step S1007 ends, step S1009 starts.
 ステップS1009において、始点画素設定部514は、始点画素Pxiを設定する。ステップS1009が終了したら、ステップS1011が開始される。ステップS1011において、画素抽出部600は、複数の選択画素Pxdを設定し、複数の抽出画素を抽出する。ステップS1011が終了したら、ステップS1013が開始される。 In step S1009, the starting point pixel setting unit 514 sets the starting point pixel Pxi. When step S1009 ends, step S1011 starts. In step S1011, the pixel extraction unit 600 sets a plurality of selected pixels Pxd and extracts a plurality of extracted pixels. When step S1011 ends, step S1013 starts.
 ステップS1013において、領域設定部512は、抽出された複数の抽出画素Pxeに基づいて、連結画素領域Dcを設定する。ステップS1013が終了したら、ステップS1015が開始される。ステップS1015において、画像生成部700は、連結画素領域Dcを示す連結領域画像Gsに対応する連結領域画像データを生成する。ステップS1015が終了したら、ステップS1017が開始される。 In step S1013, the region setting unit 512 sets the connected pixel region Dc based on the extracted plurality of extracted pixels Pxe. When step S1013 ends, step S1015 starts. In step S1015, the image generation unit 700 generates connected region image data corresponding to the connected region image Gs indicating the connected pixel region Dc. When step S1015 ends, step S1017 starts.
 ステップS1017において、出力部44は、連結領域画像Gsを出力する。ステップS1017が終了したら、処理が終了される。 In step S1017, the output unit 44 outputs the connected area image Gs. When step S1017 ends, the process ends.
 図12は、図11のフローチャートにおけるステップS1011の流れを示すフローチャートである。ステップS1009が終了したら、ステップS111が開始される。ステップS111において、候補画素指定部601は、始点画素Pxiから少なくともN画素離れた位置にある複数の画素を候補画素Pxcに指定する。ステップS111が終了したら、ステップS113が開始される。ステップS113において、選択画素設定部602は、各候補画素Pxcに対応する算出画素領域Dsに含まれる複数の算出画素Pxsの輝度から、候補画素パラメータdを算出する。ステップS113が終了したら、ステップS115が開始される。 FIG. 12 is a flowchart showing the flow of step S1011 in the flowchart of FIG. When step S1009 ends, step S111 starts. In step S111, the candidate pixel designating unit 601 designates a plurality of pixels located at least N pixels from the starting point pixel Pxi as candidate pixels Pxc. When step S111 ends, step S113 starts. In step S113, the selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc. When step S113 ends, step S115 starts.
 ステップS115において、選択画素設定部602は、各候補画素Pxcの候補画素パラメータdに基づいて、複数の候補画素Pxcから選択画素Pxdを設定する。ステップS115が終了したら、ステップS117が開始される。ステップS117において、候補画素指定部601は、既に設定された選択画素Pxdから、少なくともN画素離れた位置に存在する複数の画素を、候補画素Pxcに指定する。ステップS117が終了したら、ステップS119が開始される。 In step S115, the selected pixel setting unit 602 sets the selected pixel Pxd from the plurality of candidate pixels Pxc based on the candidate pixel parameter d of each candidate pixel Pxc. When step S115 ends, step S117 starts. In step S117, the candidate pixel designating unit 601 designates, as candidate pixels Pxc, a plurality of pixels existing at positions at least N pixels apart from the already set selected pixel Pxd. When step S117 ends, step S119 starts.
 ステップS119において、候補画素指定部601は、複数の候補画素Pxcのうち少なくとも一つは終点画素Pxtであるか否かを判定する。候補画素指定部601は、複数の候補画素Pxcが終点画素Pxtを含む場合、ステップS119を肯定判定し、ステップS127が開始される。候補画素指定部601は、複数の候補画素Pxcが終点画素Pxtを含まない場合、ステップS119を否定判定してステップS121が開始される。 In step S119, the candidate pixel designation unit 601 determines whether at least one of the plurality of candidate pixels Pxc is the end point pixel Pxt. When the plurality of candidate pixels Pxc include the end point pixel Pxt, the candidate pixel designation unit 601 makes an affirmative decision in step S119, and step S127 is started. If the plurality of candidate pixels Pxc does not include the end point pixel Pxt, the candidate pixel designation unit 601 makes a negative determination in step S119 and starts step S121.
 ステップS121において、選択画素設定部602は、各候補画素Pxcに対応する算出画素領域Dsに含まれる複数の算出画素Pxsの輝度から、候補画素パラメータdを算出する。ステップS121が終了したら、ステップS123が開始される。ステップS123において、選択画素設定部602は、各候補画素Pxcの候補画素パラメータdに基づいて、複数の候補画素Pxcから新たな選択画素Pxdを設定する。ステップS123が終了したら、ステップS125が開始される。 In step S121, the selected pixel setting unit 602 calculates the candidate pixel parameter d from the brightness of the plurality of calculated pixels Pxs included in the calculated pixel area Ds corresponding to each candidate pixel Pxc. When step S121 ends, step S123 starts. In step S123, the selected pixel setting unit 602 sets a new selected pixel Pxd from the plurality of candidate pixels Pxc based on the candidate pixel parameter d of each candidate pixel Pxc. When step S123 ends, step S125 starts.
 ステップS125において、画素抽出部600は、予め定められた回数だけ、選択画素Pxdの設定を行ったか否かを判定する。画素抽出部600は、上記回数だけ、選択画素Pxdの設定を行っていた場合、ステップS125を肯定判定し、処理が終了される。画素抽出部600は、選択画素Pxdの設定を行った回数が上記回数未満の場合、ステップS125を否定判定してステップS117に戻る。 In step S125, the pixel extraction unit 600 determines whether or not the selected pixel Pxd has been set a predetermined number of times. When the selected pixel Pxd has been set the number of times described above, the pixel extraction unit 600 makes an affirmative decision in step S125, and the process ends. If the number of times the selected pixel Pxd is set is less than the above number, the pixel extraction unit 600 makes a negative decision in step S125 and returns to step S117.
 ステップS127において、画素抽出部600は、設定されている選択画素Pxdの少なくとも一つからなる抽出画素を記憶部43に記憶させた後、選択画素Pxdが設定されていない状態とする。ステップS127が終了したら、ステップS1013(図11)が開始される。
 なお、候補画素Pxcを指定した段階でステップS119の判定を行わず、選択画素Pxdが設定された後に終点画素Pxtと一致したかどうかを判定し、一致していた場合にはステップS127が開始されるものとしてもよい。
In step S127, the pixel extraction unit 600 stores the extracted pixel including at least one of the set selected pixels Pxd in the storage unit 43, and then sets the selected pixel Pxd to the unset state. When step S127 ends, step S1013 (FIG. 11) starts.
It should be noted that at the stage where the candidate pixel Pxc is designated, the determination in step S119 is not performed, but it is determined whether or not the end pixel Pxt matches after the selected pixel Pxd is set. If they match, step S127 is started. It may be one.
 上述の実施の形態によれば、次の作用効果が得られる。
(1)本実施形態の画像生成装置1または画像生成方法では、確率分布画像Gpを構成する複数の画素から始点画素Pxiを設定する始点画素設定部514と、確率分布画像Gpを構成する複数の画素のうち始点画素Pxiを除く複数の画素から複数の候補画素Pxcを指定し、複数の候補画素Pxcから選択画素Pxdを設定する画素抽出部600と、を備え、画素抽出部600は、確率分布画像Gpを構成する複数の画素のうち設定した選択画素Pxdを除く複数の画素から複数の候補画素Pxcを指定し、複数の候補画素Pxcから新たに選択画素Pxdを設定する選択画素設定処理を繰り返し行い、複数の候補画素Pxcは、指定されるときに除かれた始点画素Pxiおよび選択画素Pxdである除外画素から少なくとも2画素離れている。これにより、精度の悪化を抑制しつつ、迅速に抽出対象に対応する画素を抽出する処理を実現することができる。
According to the above-mentioned embodiment, the following effects can be obtained.
(1) In the image generation device 1 or the image generation method of the present embodiment, the starting point pixel setting unit 514 that sets the starting point pixel Pxi from the plurality of pixels that form the probability distribution image Gp, and the plurality of pixels that form the probability distribution image Gp. A pixel extraction unit 600 that specifies a plurality of candidate pixels Pxc from a plurality of pixels other than the start point pixel Pxi and sets a selected pixel Pxd from the plurality of candidate pixels Pxc. The selection pixel setting process of designating a plurality of candidate pixels Pxc from a plurality of pixels excluding the set selection pixel Pxd among the plurality of pixels forming the image Gp and newly setting a selection pixel Pxd from the plurality of candidate pixels Pxc is repeated. Then, the plurality of candidate pixels Pxc are separated from the exclusion pixel which is the start point pixel Pxi and the selection pixel Pxd that are excluded at the time of designation by at least two pixels. With this, it is possible to realize the process of quickly extracting the pixel corresponding to the extraction target while suppressing the deterioration of accuracy.
(2)本実施形態の画像生成装置1において、確率分布画像Gpに対応する確率分布画像データを取得する確率分布画像生成部511を備え、画素抽出部600は、除外画素と候補画素Pxcとの位置に基づいて設定された複数の算出画素Pxsの輝度に基づいて、複数の候補画素Pxcから新たな選択画素Pxdを設定し、選択画素設定処理により得られた複数の選択画素Pxdの少なくとも一部を抽出画素Pxeとして抽出し、抽出された複数の抽出画素Pxeに基づいて連結領域画像Gsに対応する連結領域画像データを生成する画像生成部700とを備える。これにより、精度の悪化を抑制しつつ、迅速に抽出対象に対応する画素を抽出し、当該抽出に基づく画像を提供することができる。 (2) The image generation device 1 of the present embodiment includes the probability distribution image generation unit 511 that acquires the probability distribution image data corresponding to the probability distribution image Gp, and the pixel extraction unit 600 includes the excluded pixel and the candidate pixel Pxc. At least a part of the plurality of selection pixels Pxd obtained by the selection pixel setting process by setting a new selection pixel Pxd from the plurality of candidate pixels Pxc based on the brightness of the plurality of calculation pixels Pxs set based on the position. Is extracted as an extraction pixel Pxe, and an image generation unit 700 that generates connection region image data corresponding to the connection region image Gs based on the extracted plurality of extraction pixels Pxe. With this, it is possible to quickly extract the pixel corresponding to the extraction target and suppress the deterioration of accuracy, and provide the image based on the extraction.
(3)本実施形態の画像生成装置1において、確率分布画像Gpにおいて、少なくとも複数の抽出画素Pxeを含む連結画素領域Dcを設定する領域設定部512を備え、画像生成部700は、連結画素領域Dcを示す連結領域画像Gsに対応する連結領域画像データを生成する。これにより、連結された画素領域(連結画素領域Dc)を得ることができ、形態解析等を精度よく行うことができる。 (3) In the image generation device 1 of the present embodiment, the probability distribution image Gp includes the region setting unit 512 that sets the connected pixel region Dc including at least a plurality of extracted pixels Pxe, and the image generation unit 700 includes the connected pixel region. Connected area image data corresponding to the connected area image Gs indicating Dc is generated. Thereby, the connected pixel area (connected pixel area Dc) can be obtained, and morphological analysis and the like can be performed accurately.
(4)本実施形態の画像生成装置1において、連結画素領域Dcと連結される1以上の終点画素Pxtを設定する終点画素設定部513を備え、画素抽出部600は、終点画素Pxtの位置に基づいた、選択画素設定処理が終了される条件を設定する。これにより、入力画像において抽出対象が接続される部分がある場合に、当該接続を反映した連結画素領域Dcを設定することができる。 (4) The image generation apparatus 1 of the present embodiment includes the end point pixel setting unit 513 that sets one or more end point pixels Pxt connected to the connected pixel region Dc, and the pixel extraction unit 600 sets the end point pixel Pxt at the position. Based on this, a condition for ending the selected pixel setting process is set. Accordingly, when there is a portion to which the extraction target is connected in the input image, the connected pixel area Dc that reflects the connection can be set.
(5)本実施形態の画像生成装置1において、画素抽出部600は、候補画素設定部601が指定する候補画素Pxcが終点画素Pxtの少なくとも一つに対応する場合、または、複数の候補画素Pxcからの選択画素Pxdの設定が所定の回数行われた場合、終了条件が満たされたものとして選択画素設定処理を終了する。これにより、連結画素領域Dcを入力画像において抽出対象が接続される部分に適切に接続するとともに、抽出対象に対応しない選択画素Pxdを誤って設定してしまった場合等に不必要な探索を避け、計算コストの削減が可能になる。 (5) In the image generation device 1 of the present embodiment, the pixel extraction unit 600 determines whether the candidate pixel Pxc designated by the candidate pixel setting unit 601 corresponds to at least one of the end point pixels Pxt, or a plurality of candidate pixels Pxc. When the setting of the selected pixel Pxd from is performed a predetermined number of times, it is determined that the end condition is satisfied, and the selected pixel setting process is ended. As a result, the connected pixel region Dc is properly connected to the portion of the input image to which the extraction target is connected, and unnecessary search is avoided when the selected pixel Pxd that does not correspond to the extraction target is erroneously set. The calculation cost can be reduced.
(6)本実施形態の画像生成装置1において、選択画素設定部602は、複数の算出画素Pxsの輝度に基づいて、それぞれの候補画素Pxcごとに候補画素パラメータdを算出し、候補画素パラメータdに基づいて複数の候補画素Pxcから選択画素Pxdを設定する。これにより、精度よく抽出対象に対応する画素を抽出することができる。 (6) In the image generation device 1 of the present embodiment, the selected pixel setting unit 602 calculates the candidate pixel parameter d for each candidate pixel Pxc based on the brightness of the plurality of calculated pixels Pxs, and the candidate pixel parameter d. The selected pixel Pxd is set from the plurality of candidate pixels Pxc based on the above. Thereby, the pixel corresponding to the extraction target can be accurately extracted.
(7)本実施形態の画像生成装置1において、選択画素設定部602は、複数の算出画素Pxsの輝度の和または算術平均に基づいて、候補画素パラメータdを算出する。これにより、ノイズの低減等をすることができ、精度よく抽出対象に対応する画素を抽出することができる。 (7) In the image generation device 1 of the present embodiment, the selected pixel setting unit 602 calculates the candidate pixel parameter d based on the sum of the brightness of the plurality of calculated pixels Pxs or the arithmetic mean. As a result, noise can be reduced, and the pixel corresponding to the extraction target can be accurately extracted.
(8)本実施形態の画像生成装置1において、複数の算出画素Pxsは、選択画素Pxdと候補画素Pxcとに基づく算出画素領域Dsに含まれる複数の画素である。これにより、適切な位置の画素の輝度に基づいて、精度よく抽出対象に対応する画素を抽出することができる。 (8) In the image generation device 1 of the present embodiment, the plurality of calculation pixels Pxs are a plurality of pixels included in the calculation pixel region Ds based on the selected pixel Pxd and the candidate pixel Pxc. Thereby, the pixel corresponding to the extraction target can be accurately extracted based on the brightness of the pixel at the appropriate position.
(9)本実施形態の画像生成装置1において、算出画素領域Dsの範囲は、選択画素Pxdと候補画素Pxcとを結ぶ線Lcd上に位置する中心画素Pxoを中心とした範囲である。これにより、より適切な位置の画素の輝度に基づいて、さらに精度よく抽出対象に対応する画素を抽出することができる。 (9) In the image generation device 1 of the present embodiment, the range of the calculated pixel region Ds is a range centered on the central pixel Pxo located on the line Lcd connecting the selected pixel Pxd and the candidate pixel Pxc. As a result, the pixel corresponding to the extraction target can be more accurately extracted based on the brightness of the pixel at the more appropriate position.
(10)本実施形態の画像生成装置1において、領域設定部512は、事前に設定された範囲または算出画素領域Dsに基づいて、複数の抽出画素Pxeから連結画素領域Dcを設定する。これにより、抽出対象に対応する連結画素領域Dcを精度よく設定することができる。 (10) In the image generation device 1 of the present embodiment, the area setting unit 512 sets the connected pixel area Dc from the plurality of extracted pixels Pxe based on the preset range or the calculated pixel area Ds. Thereby, the connected pixel area Dc corresponding to the extraction target can be accurately set.
(11)本実施形態の画像生成装置1において、確率分布画像Gpは、撮像により得られた入力画像の各画素について、学習済みの機械学習を用いて抽出対象に対応する確率を算出し、この確率に基づいた輝度を対応させた画像である。これにより、抽出対象の特性に合わせて学習させた画像処理アルゴリズムを用いて精度よく上記確率の分布を得ることができる。 (11) In the image generation device 1 of the present embodiment, the probability distribution image Gp calculates the probability corresponding to the extraction target for each pixel of the input image obtained by imaging using learned machine learning, It is an image in which luminance is associated based on probability. As a result, the probability distribution can be accurately obtained by using the image processing algorithm that has been learned according to the characteristics of the extraction target.
(12)本実施形態の画像生成装置1において、上記機械学習は、撮像により得られた複数の撮像画像と、それぞれの撮像画像において抽出対象に対応する部分を示す画像とを演算装置に入力して学習させた深層学習である。これにより、深層学習に基づいて精度よく上記確率の分布を得ることができる。 (12) In the image generation device 1 of the present embodiment, the machine learning inputs a plurality of captured images obtained by imaging and an image showing a portion corresponding to an extraction target in each captured image to the arithmetic device. It is deep learning that was learned by. As a result, the distribution of the above probabilities can be obtained accurately based on deep learning.
(13)本実施形態の画像生成装置1において、画像生成装置1のユーザにより、確率分布画像Gpにおいて始点画素Pxiまたは候補画素Pxcを配置する範囲である探索領域D1を指定することができる。これにより、ユーザの指示に基づいて、適切に確定画素Pxdを抽出する範囲を指定することができる。 (13) In the image generating apparatus 1 of the present embodiment, the user of the image generating apparatus 1 can specify the search area D1 that is the range in which the starting point pixel Pxi or the candidate pixel Pxc is arranged in the probability distribution image Gp. This makes it possible to appropriately specify the range for extracting the fixed pixel Pxd based on the user's instruction.
(14)本実施形態の画像生成装置1において、始点画素設定部514は、確率分布画像データにおける輝度を二値化して得られた第1二値化画像Gb1に対応するデータを用いて始点画素Pxiを設定する。これにより、抽出対象に対応する部分に適切に始点画素Pxiを設定することができる。 (14) In the image generation device 1 of the present embodiment, the starting point pixel setting unit 514 uses the starting point pixel using the data corresponding to the first binarized image Gb1 obtained by binarizing the luminance in the probability distribution image data. Set Pxi. As a result, the starting point pixel Pxi can be appropriately set in the portion corresponding to the extraction target.
(15)本実施形態の画像生成装置1において、始点画素設定部514は、第1二値化画像Gb1において、終点画素Pxtからの距離、および、第1二値化画像Gb1において同一の値を持つ連結された画素領域断片Fの広さに基づいて、始点画素Pxiを設定する。これにより、ノイズの影響を低減しながら、入力画像において抽出対象と接続される部分(細胞体So等)からの距離に基づいて適切に始点画素Pxiを設定することができる。 (15) In the image generation device 1 of the present embodiment, the start point pixel setting unit 514 sets the distance from the end point pixel Pxt in the first binarized image Gb1 and the same value in the first binarized image Gb1. The start point pixel Pxi is set based on the size of the connected pixel area fragment F. This makes it possible to appropriately set the starting point pixel Pxi based on the distance from the portion (cell body So or the like) connected to the extraction target in the input image while reducing the influence of noise.
(16)本実施形態の画像生成装置1において、抽出対象は、確率分布画像Gpにおける神経突起Nrに対応する部分である。これにより、神経突起Nrに対応する画素を、精度の悪化を抑えつつ、迅速に抽出することができ、神経突起Nrの長さ等を正確に解析するための画像データを提供することができる。神経突起Nrの長さを含む形状を解析できると、薬剤を神経細胞に投与する実験や生体からの試料におけるその変化を調べることにより、薬剤の効果や病気の進行度の定量化が可能となる。 (16) In the image generation device 1 of the present embodiment, the extraction target is the portion corresponding to the neurite Nr in the probability distribution image Gp. As a result, the pixel corresponding to the neurite Nr can be quickly extracted while suppressing deterioration in accuracy, and image data for accurately analyzing the length of the neurite Nr and the like can be provided. If the shape including the length of the neurite Nr can be analyzed, it becomes possible to quantify the effect of a drug and the degree of disease progression by examining the change in a sample from a living body or an experiment in which a drug is administered to nerve cells. ..
(17)本実施形態の画像生成装置1において、終点画素Pxtは、神経突起Nrに接続する細胞体Soに対応する。これにより、細胞体Soへの接続が反映された連結画素領域Dcを設定することができる。 (17) In the image generation device 1 of the present embodiment, the end point pixel Pxt corresponds to the cell body So connected to the neurite Nr. As a result, it is possible to set the connected pixel area Dc that reflects the connection to the cell body So.
(18)本実施形態の画像生成装置1は、連結領域画像Gsを出力する出力部44を備える。これにより、視覚を通じてユーザに連結領域画像Gsを認識させることができる。 (18) The image generation device 1 of the present embodiment includes the output unit 44 that outputs the connected region image Gs. This allows the user to visually recognize the connected region image Gs.
(19)本実施形態に係る撮像装置は、画像生成装置としての情報処理部40と、撮像部20とを備える。これにより、撮像した画像から、抽出対象に対応する画素を、精度の悪化を抑えつつ、迅速に抽出することができる。 (19) The imaging device according to the present embodiment includes an information processing unit 40 as an image generation device and an imaging unit 20. This makes it possible to quickly extract the pixel corresponding to the extraction target from the captured image while suppressing deterioration in accuracy.
(20)本実施形態に係る培養装置は、画像生成装置としての情報処理部40と、細胞Ceを培養する培養部100とを備える。これにより、培養されている細胞Ceを連結領域画像Gsを用いて解析し、この解析に基づいて培養条件や培養時間を調節したりすることができる。 (20) The culture device according to the present embodiment includes an information processing unit 40 as an image generation device and a culture unit 100 that cultures the cells Ce. As a result, the cultured cells Ce can be analyzed using the connected region image Gs, and the culture conditions and the culture time can be adjusted based on this analysis.
 次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。
(変形例1)
 上述の実施形態において、得られた連結画素領域Dcを探索領域D1として、再度確定画素の抽出を行ってもよい。
The following modifications are also within the scope of the present invention, and can be combined with the above-described embodiment.
(Modification 1)
In the above-described embodiment, the determined connected pixel area Dc may be set as the search area D1 and the definite pixel may be extracted again.
 図13は、本変形例の画素の抽出方法を説明するための概念図である。領域設定部512は、上述の実施形態で設定された連結画素領域Dc(図10)を、探索領域D1に設定する。候補画素指定部601がこのように設定された探索領域D1において候補画素Pxc(図8)を指定するようにして、画素抽出部600は抽出画素Pxeの再度の抽出を行う。この再度の抽出における選択画素Pxd(図8)の設定では、候補画素位置パラメータNを、上述の実施形態の最初の抽出における候補画素位置パラメータN(Nが2以上)よりも小さい値にする。従って、候補画素指定部601は、この再度の抽出において、候補画素位置パラメータNは、1以上に設定する。始点画素設定部514は、探索領域D1に始点画素Pxiを設定するが、上述の実施形態での始点画素Pxiをそのまま用いてもよい。 FIG. 13 is a conceptual diagram for explaining the pixel extraction method of this modification. The area setting unit 512 sets the connected pixel area Dc (FIG. 10) set in the above embodiment as the search area D1. The candidate pixel designating unit 601 designates the candidate pixel Pxc (FIG. 8) in the search region D1 thus set, and the pixel extracting unit 600 re-extracts the extracted pixel Pxe. In the setting of the selected pixel Pxd (FIG. 8) in this second extraction, the candidate pixel position parameter N is set to a value smaller than the candidate pixel position parameter N (N is 2 or more) in the first extraction of the above-described embodiment. Therefore, the candidate pixel designation unit 601 sets the candidate pixel position parameter N to 1 or more in this second extraction. Although the starting point pixel setting unit 514 sets the starting point pixel Pxi in the search area D1, the starting point pixel Pxi in the above-described embodiment may be used as it is.
 図13では、再度の抽出において候補画素位置パラメータNを1とした場合の抽出された抽出画素Pxeを示した。領域設定部512は、始点画素Pxiと、再度の抽出において抽出された抽出画素Pxeのそれぞれに連結要素画素領域De(図10)を設定し、これらの連結要素画素領域Deが連結された新たな連結画素領域を設定することができる。この際の連結要素画素領域Deの幅は、上述の実施形態の最初の抽出における連結要素画素領域Deの幅よりも小さくし、例えば最初の連結画素領域Dcの設定の際に7画素としていた場合、再度の設定の際には2画素や3画素等に設定することができる。 FIG. 13 shows the extracted pixel Pxe extracted when the candidate pixel position parameter N is set to 1 in the second extraction. The area setting unit 512 sets a connected element pixel area De (FIG. 10) to each of the starting point pixel Pxi and the extracted pixel Pxe extracted in the extraction again, and a new connected element pixel area De is connected. A connected pixel area can be set. In this case, the width of the connected element pixel region De is set to be smaller than the width of the connected element pixel region De in the first extraction of the above-described embodiment, and for example, 7 pixels are set when the first connected pixel area Dc is set. At the time of setting again, it can be set to 2 pixels or 3 pixels.
 上記のように再度の抽出において候補画素位置パラメータNや連結要素画素領域Deの幅を最初の抽出画素Pxeの抽出のときよりも小さい値にすることで、最初の連結画素領域Dcの設定を抽出対象に対応する画素の粗い抽出とし、再度の抽出をより高い精度の抽出とすることができる。そして、再度の抽出では、最初の抽出よりも精度を高くしても、探索領域D1が狭くなっているため計算量の上昇を抑えることができる。 As described above, the setting of the first connected pixel region Dc is extracted by setting the width of the candidate pixel position parameter N and the width of the connected element pixel region De to be smaller than that in the extraction of the first extracted pixel Pxe in the second extraction. The pixels corresponding to the target can be roughly extracted, and the second extraction can be performed with higher accuracy. In the second extraction, even if the accuracy is higher than that in the first extraction, the search area D1 is narrowed, so that the increase in the amount of calculation can be suppressed.
 図14は、本変形例に係る画像生成方法の流れを示すフローチャートである。ステップS2001からS2013までは、図11のフローチャートのステップS1001からS1013までにそれぞれ対応するため、説明を省略する。ステップS2013が終了したら、ステップS2015が開始される。 FIG. 14 is a flowchart showing the flow of the image generation method according to this modification. Since steps S2001 to S2013 correspond to steps S1001 to S1013 of the flowchart of FIG. 11, respectively, description thereof will be omitted. When step S2013 ends, step S2015 starts.
 ステップS2015において、領域設定部512は、ステップS2013で設定された連結画素領域Dcを探索領域D1に設定し、画素抽出部600は、再度、複数の選択画素Pxdを設定し、複数の抽出画素Pxeを抽出する。ステップS2015が終了したら、ステップS2017が開始される。ステップS2017において、領域設定部512は、再度抽出された複数の抽出画素Pxeに基づいて、連結画素領域Dcを設定する。ステップS2017が終了したら、ステップS2019が開始される。ステップS2019およびS2021は、図11のフローチャートのステップS1015およびS1017にそれぞれ対応するため、説明を省略する。 In step S2015, the area setting unit 512 sets the connected pixel area Dc set in step S2013 as the search area D1, and the pixel extraction unit 600 sets the plurality of selected pixels Pxd again and the plurality of extracted pixels Pxe. To extract. When step S2015 ends, step S2017 starts. In step S2017, the area setting unit 512 sets the connected pixel area Dc based on the plurality of extracted pixels Pxe extracted again. When step S2017 ends, step S2019 starts. Steps S2019 and S2021 correspond to steps S1015 and S1017 of the flowchart of FIG. 11, respectively, and thus description thereof will be omitted.
 本変形例の画像生成装置において、始点画素設定部514は、領域設定部512が設定した連結画素領域Dc(探索領域D1)において、始点画素Pxiを設定し、画素抽出部600は、連結画素領域Dcから複数の抽出画素Pxeの再度の抽出を行い、候補画素指定部514は、この再度の抽出において、始点画素Pxiおよび選択画素Pxdから1画素以上離れた複数の位置に候補画素Pxcを設定し、領域設定部512は、この再度の抽出により抽出された画素を含む連結画素領域Dcを設定する。これにより、より精度の高い画素の抽出をしながら、計算量の上昇を抑えることができる。 In the image generation apparatus of this modification, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the connected pixel area Dc (search area D1) set by the area setting unit 512, and the pixel extraction unit 600 sets the connected pixel area. A plurality of extracted pixels Pxe are extracted again from Dc, and the candidate pixel designating section 514 sets candidate pixels Pxc at a plurality of positions apart from the starting point pixel Pxi and the selected pixel Pxd by one or more pixels in this second extraction. The area setting unit 512 sets the connected pixel area Dc including the pixels extracted by the second extraction. As a result, it is possible to suppress an increase in calculation amount while extracting pixels with higher accuracy.
(変形例2)
 上述の実施形態において、算出画素領域Ds(図8)を変化させた際の候補画素パラメータdの値に基づいて、連結要素画素領域Deの形状または大きさを定めてもよい。例えば、候補画素パラメータdが算出画素領域Dsにおける算出画素Pxsの輝度値の平均値に基づくとする。この場合、算出画素領域Dsに対して抽出対象の神経突起Nrの幅が小さいと、算出画素領域Dsにおいて神経突起Nrに対応しない算出画素Pxsの割合が増え、候補画素パラメータdが変化する。
(Modification 2)
In the above-described embodiment, the shape or size of the connected element pixel area De may be determined based on the value of the candidate pixel parameter d when the calculated pixel area Ds (FIG. 8) is changed. For example, it is assumed that the candidate pixel parameter d is based on the average value of the brightness values of the calculated pixels Pxs in the calculated pixel area Ds. In this case, when the width of the neurite Nr to be extracted is smaller than the calculated pixel area Ds, the ratio of the calculated pixel Pxs that does not correspond to the neurite Nr in the calculated pixel area Ds increases and the candidate pixel parameter d changes.
 図15は、算出画素領域Dsと神経突起Nrとの対応を示す概念図である。神経突起Nrの幅Wに対して算出画素領域Dsが大きいため、神経突起Nrと重なる算出画素Pxs1よりも、神経突起Nrと重ならない算出画素Pxs2の方が多くなっている。算出画素領域Dsを図15に示す大きさから小さくしていった場合、算出画素領域Dsの幅が神経突起Nrの幅Wと同程度になると、その後算出画素領域Dsをより小さくしても、候補画素パラメータdの変化はそれまでより小さくなる。従って、算出画素領域Dsを変化させて候補画素パラメータdを算出していったときに、候補画素パラメータdの変化が小さくなった際の算出画素領域Dsを、当該選択画素Pxd(図8)に対応する連結要素画素領域Deとすると、神経突起Nrの幅に基づいた連結画素領域Dc(図4)を生成することができる。 FIG. 15 is a conceptual diagram showing the correspondence between the calculated pixel area Ds and the neurite Nr. Since the calculated pixel area Ds is larger than the width W of the neurite Nr, the number of calculated pixels Pxs2 that do not overlap the neurite Nr is larger than that of the calculated pixels Pxs1 that overlap the neurite Nr. When the calculated pixel area Ds is reduced from the size shown in FIG. 15 and the width of the calculated pixel area Ds becomes approximately the same as the width W of the neurite Nr, even if the calculated pixel area Ds is made smaller thereafter, The change in the candidate pixel parameter d is smaller than before. Therefore, when the calculated pixel area Ds is changed to calculate the candidate pixel parameter d, the calculated pixel area Ds when the change of the candidate pixel parameter d becomes small is set as the selected pixel Pxd (FIG. 8). When the corresponding connected element pixel area De is set, the connected pixel area Dc (FIG. 4) based on the width of the neurite Nr can be generated.
 選択画素設定部602は、各候補画素Pxc(図8)に対して、算出画素領域Dsの大きさを異ならせて複数の候補画素パラメータdを算出する。領域設定部512は、算出された候補画素パラメータdに基づいて当該候補画素が抽出画素Pxeとなった場合の連結要素画素領域Deの大きさを設定することができる。 The selected pixel setting unit 602 calculates a plurality of candidate pixel parameters d by changing the size of the calculated pixel area Ds for each candidate pixel Pxc (FIG. 8). The area setting unit 512 can set the size of the connected element pixel area De when the candidate pixel becomes the extracted pixel Pxe based on the calculated candidate pixel parameter d.
 本変形例の画像生成装置において、領域設定部512は、算出画素領域Dsを変化させた際の候補画素パラメータdに基づいて、連結画素領域Dcの広さを変更可能とする。これにより、抽出対象の線状部分の幅等に基づいた連結画素領域Dcを提供することができる。 In the image generation apparatus of this modification, the area setting unit 512 can change the size of the connected pixel area Dc based on the candidate pixel parameter d when the calculated pixel area Ds is changed. Accordingly, it is possible to provide the connected pixel region Dc based on the width of the extraction target linear portion and the like.
(変形例3)
 上述の実施形態では、入力画像の被写体を細胞Ce(図1)とし、抽出対象の線状部分を神経突起Nrとして説明したが、線状の部分を含めば、抽出対象はこの例に限定されず、例えば血管とすることも好ましい。
(Modification 3)
Although the subject of the input image is the cell Ce (FIG. 1) and the linear part of the extraction target is the neurite Nr in the above-described embodiment, the extraction target is limited to this example as long as the linear part is included. Instead, it is also preferable to use a blood vessel, for example.
 さらに、入力画像の被写体を眼底とし、抽出対象の線状部分を眼底における血管とすることがより好ましい。眼底画像では、視神経乳頭から血管が様々な方向へ伸びていくことが示される。従って、抽出対象の線状部分を血管とし、確率分布画像生成部511が、入力画像から、各画素が血管に対応する確率を輝度値に対応させた確率分布画像Gp(図5)を生成する。終点画素設定部513は視神経乳頭に対応する画素領域を抽出し、終点画素Pxtに設定する。始点画素設定部514は始点画素Pxi(図6)を第1二値化画像における画素領域断片Fに設定する。画素抽出部600は、血管に対応する複数の抽出画素Pxeを抽出し、領域設定部512は、連結画素領域Dcを設定する。 Furthermore, it is more preferable that the subject of the input image is the fundus and the linear portion to be extracted is the blood vessel at the fundus. The fundus image shows that blood vessels extend in various directions from the optic disc. Therefore, the linear portion to be extracted is a blood vessel, and the probability distribution image generation unit 511 generates a probability distribution image Gp (FIG. 5) in which the probability that each pixel corresponds to a blood vessel is associated with a brightness value from the input image. .. The end point pixel setting unit 513 extracts the pixel area corresponding to the optic disc and sets it as the end point pixel Pxt. The starting point pixel setting unit 514 sets the starting point pixel Pxi (FIG. 6) to the pixel region fragment F in the first binarized image. The pixel extraction unit 600 extracts a plurality of extracted pixels Pxe corresponding to blood vessels, and the region setting unit 512 sets the connected pixel region Dc.
 本変形例の画像生成装置1において、抽出対象は確率分布画像Gpにおける血管に対応する部分である。これにより、血管を被写体とした画像から、血管に対応する部分を精度の低下を抑えつつ、迅速に抽出することができる。得られた血管に対応する部分の情報に基づいて、血管の長さや面積を算出することができ、血管の定量化が可能となる。医師の目視等による治療の効果や病気の進行度の評価ではばらつきが生じ得るが、本変形例の方法では客観性を持った評価が可能になる。 In the image generation device 1 of this modification, the extraction target is the portion corresponding to the blood vessel in the probability distribution image Gp. This makes it possible to quickly extract a portion corresponding to a blood vessel from an image of a blood vessel as a subject while suppressing deterioration in accuracy. The length and area of the blood vessel can be calculated based on the obtained information on the portion corresponding to the blood vessel, and the blood vessel can be quantified. Although there may be variations in the evaluation of the effect of treatment and the degree of disease progression by a doctor's visual inspection, the method of this modification allows objective evaluation.
 本変形例の画像生成装置1において、抽出対象は、確率分布画像Gpにおける血管に対応する部分であり、確率分布画像Gpは眼底に対応する画像であり、終点画素Pxtは、視神経乳頭に対応する。これにより、眼底における血管を精度の低下を抑えつつ、迅速に抽出することができる。 In the image generation device 1 of the present modification, the extraction target is a portion corresponding to a blood vessel in the probability distribution image Gp, the probability distribution image Gp is an image corresponding to the fundus, and the end point pixel Pxt corresponds to the optic disc. .. This makes it possible to quickly extract blood vessels in the fundus of the eye while suppressing deterioration in accuracy.
-第2実施形態-
 第2実施形態の画像生成装置2は、第1実施形態に係る画像生成装置1と同様の構成を有しているが、データ処理部の構成が第1実施形態とは異なっている。第2実施形態では、複数の神経突起Nrが確率分布画像Gpにある場合に精度よくこれらの神経突起Nrに対応する画素を抽出するための方法を説明する。第1実施形態との同一部分については第1実施形態と同一の符号で参照し、場合に応じ説明を省略する。
-Second Embodiment-
The image generation device 2 of the second embodiment has the same configuration as the image generation device 1 according to the first embodiment, but the configuration of the data processing unit is different from that of the first embodiment. In the second embodiment, a method for accurately extracting pixels corresponding to a plurality of neurites Nr in the probability distribution image Gp will be described. The same parts as those of the first embodiment are referred to by the same reference numerals as those of the first embodiment, and the description thereof will be omitted depending on the case.
 図16は、本実施形態の画像生成装置2の構成を示す概念図である。画像生成装置2は、データ処理部51a以外の構成要素も図1と同様に含むが、図示を省略した。画像生成装置2は、信頼度算出部515と、判定部516と、候補・確定領域設定部517とを備える点で上述の実施形態の画像生成装置1と異なっている。 FIG. 16 is a conceptual diagram showing the configuration of the image generating apparatus 2 of this embodiment. The image generation device 2 includes components other than the data processing unit 51a in the same manner as in FIG. 1, but the illustration is omitted. The image generation device 2 differs from the image generation device 1 of the above-described embodiment in that it includes a reliability calculation unit 515, a determination unit 516, and a candidate/determined region setting unit 517.
 以下では、探索領域D1(図5)が、分枝した複数の神経突起Nrに対応する画像部分を含む場合や、1つの細胞体Soから伸びた複数の神経突起Nrに対応する画像部分を含む場合の、これらの神経突起Nrに対応する画素の抽出を説明する。本実施形態において得られる複数の神経突起Nrまたは神経細胞の位置情報から、細胞間相互作用の定量化を行うことができる。 In the following, when the search region D1 (FIG. 5) includes an image portion corresponding to a plurality of branched neurites Nr, or includes an image portion corresponding to a plurality of neurites Nr extending from one cell body So. Extraction of pixels corresponding to these neurites Nr in the case will be described. The cell-cell interaction can be quantified from the positional information of the plurality of neurites Nr or nerve cells obtained in the present embodiment.
 信頼度算出部515は、画素抽出部600が抽出した複数の抽出画素Pxeが、抽出対象に対応する部分に対応しているか否かについての信頼度を算出する。信頼度算出部515は、この信頼度を示す信頼度パラメータRを、抽出画素Pxeに対応する選択画素Pxdが設定された際の当該選択画素Pxdに対応する候補画素パラメータdに基づいて算出する。信頼度算出部515は、抽出された複数の抽出画素Pxdの画素列について、当該抽出画素Pxdに対応する選択画素Pxdが設定された際の当該選択画素Pxdに対応する候補画素パラメータdの算術平均等の平均をとった値daveを信頼度パラメータRとして算出することが好ましい。ここでは、信頼度パラメータRの数値が小さい方が信頼度が高いものとするが、対応付けができれば特に限定されず、信頼度パラメータRの定義に基づいて適宜設定される。 The reliability calculation unit 515 calculates the reliability of whether or not the plurality of extracted pixels Pxe extracted by the pixel extraction unit 600 correspond to the portion corresponding to the extraction target. The reliability calculation unit 515 calculates the reliability parameter R indicating this reliability based on the candidate pixel parameter d corresponding to the selected pixel Pxd when the selected pixel Pxd corresponding to the extracted pixel Pxe is set. The reliability calculation unit 515 calculates the arithmetic mean of the candidate pixel parameters d corresponding to the selected pixel Pxd when the selected pixel Pxd corresponding to the extracted pixel Pxd is set for the extracted pixel row of the extracted pixels Pxd. It is preferable to calculate an average value d ave of the above as the reliability parameter R. Here, it is assumed that the smaller the numerical value of the reliability parameter R is, the higher the reliability is. However, it is not particularly limited as long as the correspondence can be established, and it is appropriately set based on the definition of the reliability parameter R.
 判定部516は、信頼度パラメータRに基づいて、画素抽出部600が抽出した複数の抽出画素Pxeが、連続した1本の神経突起Nrに対応しているか否かの判定(以下、信頼度判定と呼ぶ)を行う。判定部516は、信頼度パラメータRが、閾値Thに基づく条件を満たすか否かに基づいて、信頼度判定を行う。閾値Thは、過去に抽出画素Pxeの抽出を行った例等に基づいて予め設定され、記憶部43に記憶されている。例えば、候補画素パラメータdが最も小さい候補画素Pxcが選択画素Pxdとして設定される条件で、信頼度算出部515がdaveを信頼度パラメータRとして算出したとする。この場合、判定部516は、信頼度パラメータRが閾値Thより大きい場合には、画素抽出部600が抽出した複数の抽出画素Pxdは信頼度が十分ではないものと判定して破棄し、当該判定の対象となった抽出画素Pxeについての連結画素領域Dcの設定等は行われない。信頼度判定は、終点画素Pxtと接続される連結画素領域Dcが設定される場合、例えば、上述の第1終了条件により選択画素設定処理が終了した場合に行うことが好ましい。 The determination unit 516 determines whether or not the plurality of extracted pixels Pxe extracted by the pixel extraction unit 600 correspond to one continuous neurite Nr based on the reliability parameter R (hereinafter, reliability determination Call). The determination unit 516 performs the reliability determination based on whether the reliability parameter R satisfies the condition based on the threshold Th. The threshold value Th is set in advance based on an example in which the extraction pixel Pxe has been extracted in the past, and is stored in the storage unit 43. For example, assume that the reliability calculation unit 515 calculates d ave as the reliability parameter R under the condition that the candidate pixel Pxc with the smallest candidate pixel parameter d is set as the selected pixel Pxd. In this case, when the reliability parameter R is larger than the threshold Th, the determination unit 516 determines that the extracted pixels Pxd extracted by the pixel extraction unit 600 have insufficient reliability, and discards them. The connected pixel area Dc is not set for the extracted pixel Pxe that is the target of the above. The reliability determination is preferably performed when the connected pixel region Dc connected to the end point pixel Pxt is set, for example, when the selected pixel setting process ends due to the first end condition described above.
 上述のように、抽出した抽出画素Pxeの信頼度に基づいた判定を行うことにより、神経突起Nrに対応しない画像部分を神経突起Nrとして抽出するリスクを低減することができる。 As described above, it is possible to reduce the risk of extracting an image portion that does not correspond to the neurite Nr as the neurite Nr by performing the determination based on the reliability of the extracted pixel Pxe.
 候補・確定領域設定部517は、画素抽出部600による選択画素設定処理が行われる前に、確率分布画像Gpにおいて、神経突起Nrに対応する部分の候補となる領域(以下、候補領域と呼ぶ)を設定する。候補・確定領域設定部517は、確率分布画像Gpにおける各画素の輝度を二値化して得られた二値化画像(以下、第2二値化画像と呼ぶ)に対応する第2二値化画像データを生成する。探索領域D1は、二値化の際の閾値に基づいて、抽出対象に対応する確率が高い領域と、低い領域とに分けられることになる。
 なお、第2二値化画像としては、第1二値化画像を用いてもよい。
The candidate/determined area setting unit 517 is an area that is a candidate for a portion corresponding to the neurite Nr in the probability distribution image Gp (hereinafter, referred to as a candidate area) before the selection pixel setting processing by the pixel extraction unit 600 is performed. To set. The candidate/determined region setting unit 517 performs the second binarization corresponding to the binarized image (hereinafter, referred to as the second binarized image) obtained by binarizing the brightness of each pixel in the probability distribution image Gp. Generate image data. The search region D1 is divided into a region having a high probability of corresponding to the extraction target and a region having a low probability based on the threshold value at the time of binarization.
The first binarized image may be used as the second binarized image.
 候補・確定領域設定部517は、第2二値化画像データに基づいて候補領域を設定する。候補・確定領域設定部517は、上記抽出対象に対応する確率が高い領域を、候補領域として設定する。さらに、候補・確定領域設定部517は、確定領域を設定する。確定領域は、画素抽出部600による抽出画素Pxeの抽出が行われるまでは、該当する領域が無いものとされる。画素抽出部600による抽出画素Pxeの抽出の結果、少なくとも一部の候補領域が抽出対象に対応する領域であると確定したとき、候補・確定領域設定部517は、当該確定された候補領域を候補領域から外し、確定領域として設定する。 The candidate/determined area setting unit 517 sets a candidate area based on the second binarized image data. The candidate/determined area setting unit 517 sets an area having a high probability of corresponding to the extraction target as a candidate area. Further, the candidate/determined area setting unit 517 sets the confirmed area. The definite area is assumed to have no corresponding area until the extraction pixel Pxe is extracted by the pixel extraction unit 600. As a result of extraction of the extracted pixels Pxe by the pixel extraction unit 600, when it is determined that at least a part of the candidate regions is a region corresponding to the extraction target, the candidate/determined region setting unit 517 selects the determined candidate regions as candidates. Remove it from the area and set it as the fixed area.
 候補・確定領域設定部517は、候補領域を示す候補領域画像に対応する候補領域画像データ、および、確定領域を示す確定領域画像に対応する確定領域画像データをそれぞれ生成する候補領域画像生成部および確定領域画像生成部として機能する。候補領域画像および確定領域画像の態様は特に限定されないが、二値化された画像であることが情報量の節約等の観点から好ましい。 The candidate/determined area setting unit 517 generates a candidate area image data corresponding to the candidate area image indicating the candidate area and a confirmed area image data corresponding to the confirmed area image indicating the confirmed area, and It functions as a fixed area image generation unit. The modes of the candidate area image and the finalized area image are not particularly limited, but a binarized image is preferable from the viewpoint of saving the amount of information.
 図17(A)は、画素抽出部600が選択画素設定処理を行う前の、候補領域画像Gcおよび確定領域画像Gdの例を示す図である。候補領域画像Gcでは、分枝した同一の神経突起Nr(図4)に対応する4つの分離された候補領域Fc1,Fc2,Fc3およびFc4(以下、候補領域を一般にFcの符号で示す)が示されている。一方、確定領域画像Gdでは、この段階では確定領域が設定されていない。図17(A)では、抽出対象の神経突起Nrが接続されている細胞体Soの位置を、候補領域画像Gcおよび確定領域画像Gdの左に模式的に示した(図17(C)および(D)でも同様である)。 FIG. 17A is a diagram showing an example of the candidate area image Gc and the finalized area image Gd before the pixel extraction unit 600 performs the selected pixel setting process. In the candidate area image Gc, four separated candidate areas Fc1, Fc2, Fc3 and Fc4 (hereinafter, the candidate areas are generally indicated by the symbol Fc) corresponding to the same branched neurite Nr (FIG. 4) are shown. Has been done. On the other hand, in the fixed area image Gd, the fixed area is not set at this stage. In FIG. 17A, the position of the cell body So to which the neurite Nr to be extracted is connected is schematically shown to the left of the candidate region image Gc and the confirmed region image Gd (FIGS. 17C and 17C). The same applies to D)).
 図17(B)は、画素抽出部600による抽出画素Pxeの抽出および領域設定部512による連結画素領域Dcの設定により、候補領域Fc2から候補領域Fc1を通り細胞体Soへと接続される連結画素領域Dc12が設定された点を示す概念図である。候補領域Fc3およびFc4は、連結画素領域Dc12とは分離されている。 FIG. 17B shows a connected pixel connected from the candidate region Fc2 to the cell body So through the candidate region Fc1 by extraction of the extracted pixel Pxe by the pixel extraction unit 600 and setting of the connected pixel region Dc by the region setting unit 512. It is a conceptual diagram which shows the point where the area|region Dc12 was set. The candidate areas Fc3 and Fc4 are separated from the connected pixel area Dc12.
 図17(C)は、候補領域Fcおよび確定領域の更新を示す概念図である。判定部516により連結画素領域Dc12に対応する抽出画素Pxeの信頼度判定が行われ、信頼度が高いものとして確定されたとする。この場合、候補・確定領域設定部517は、候補領域Fc1およびFc2を候補領域Fcではないものとして設定を更新し、連結画素領域Dc12を確定領域Fd1(以下、確定領域を一般にFdの符号で示す)として設定する。 FIG. 17C is a conceptual diagram showing updating of the candidate area Fc and the finalized area. It is assumed that the determination unit 516 determines the reliability of the extracted pixel Pxe corresponding to the connected pixel region Dc12 and determines the reliability as high. In this case, the candidate/determined area setting unit 517 updates the settings of the candidate areas Fc1 and Fc2 as those that are not the candidate area Fc, and the connected pixel area Dc12 is defined area Fd1 (hereinafter, the defined area is generally indicated by the symbol Fd). ).
 一部の候補領域Fcが確定領域Fdとして設定されたら、始点画素設定部514は、残りの候補領域Fcのいずれかにおいて始点画素Pxiを設定する。終点画素設定部513は、細胞体Soおよび、設定された確定領域Fd1を終点画素Pxtとして設定する。 When some candidate regions Fc are set as the finalized regions Fd, the starting point pixel setting unit 514 sets the starting point pixels Pxi in any of the remaining candidate regions Fc. The end point pixel setting unit 513 sets the cell body So and the set confirmed region Fd1 as the end point pixel Pxt.
 図17(D)は、図17(C)の状態から、候補領域Fcおよび確定領域Fdのさらなる更新が行われた後の候補領域画像Gcおよび確定領域画像Gdを示す概念図である。図17(C)の状態から、候補領域Fc4に始点画素Pxiが設定され、細胞体Soおよび連結画素領域Dc12が終点画素Pxtと設定されて、抽出画素Pxeの抽出および連結画素領域Dc3の設定が行われた。さらに、当該連結画素領域Dc3が信頼度判定により信頼度が高いと判定されたものとする。このとき、候補・確定領域設定部517は、候補領域Fc4を候補領域Fcでないものとして設定を更新し、確定領域Fd1と連結画素領域Dc3が連結された新たな確定領域Fd2を確定領域Fdに設定する。 FIG. 17D is a conceptual diagram showing the candidate area image Gc and the finalized area image Gd after the candidate area Fc and the finalized area Fd are further updated from the state of FIG. 17C. From the state of FIG. 17C, the starting point pixel Pxi is set in the candidate region Fc4, the cell body So and the connected pixel region Dc12 are set as the end pixel Pxt, and the extraction pixel Pxe is extracted and the connected pixel region Dc3 is set. It was conducted. Further, it is assumed that the connected pixel region Dc3 is determined to have high reliability by reliability determination. At this time, the candidate/determined area setting unit 517 updates the setting so that the candidate area Fc4 is not the candidate area Fc, and sets a new confirmed area Fd2 in which the confirmed area Fd1 and the connected pixel area Dc3 are connected to the confirmed area Fd. To do.
 図18は、本変形例に係る画像生成方法の流れを示すフローチャートである。ステップS3001からS3005までは、図11のフローチャートのステップS1001からS1005までにそれぞれ対応するため、説明を省略する。ステップS3005が終了したら、ステップS3007が開始される。 FIG. 18 is a flowchart showing the flow of the image generation method according to this modification. Steps S3001 to S3005 correspond to steps S1001 to S1005 of the flowchart of FIG. 11, respectively, and thus description thereof will be omitted. When step S3005 ends, step S3007 starts.
 ステップS3007において、候補・確定領域設定部517は、候補領域Fcおよび確定領域Fdに対応するデータを生成する。ステップS3007が終了したら、ステップS3009が開始される。ステップS3009において、始点画素設定部514は始点画素Pxiを設定し、終点画素設定部513は終点画素Pxtを設定し、画素抽出部600は、複数の選択画素Pxdを設定して複数の抽出画素Pxeを抽出し、領域設定部512は当該抽出画素Pxeに基づいた連結画素領域Dcを設定する。ステップS3009が終了したら、ステップS3011が開始される。 In step S3007, the candidate/determined area setting unit 517 generates data corresponding to the candidate area Fc and the confirmed area Fd. When step S3007 ends, step S3009 starts. In step S3009, the start point pixel setting unit 514 sets the start point pixel Pxi, the end point pixel setting unit 513 sets the end point pixel Pxt, and the pixel extraction unit 600 sets the plurality of selected pixels Pxd and sets the plurality of extracted pixels Pxe. And the area setting unit 512 sets the connected pixel area Dc based on the extracted pixel Pxe. When step S3009 ends, step S3011 starts.
 ステップS3011において、判定部516は、ステップS3009で抽出された複数の抽出画素Pxeについて信頼度判定を行う。ステップS3011が終了したら、ステップS3013が開始される。ステップS3013において、候補・確定領域設定部517は、信頼度判定の結果に基づいて候補領域Fcおよび確定領域Fdに対応するデータを更新する。信頼度判定で信頼度が高いと判定された場合、信頼度判定の対象となった複数の抽出画素Pxeが配置されている候補領域Fcが候補領域から削除され、ステップS3009で設定された連結画素領域Dcが確定領域Fdとして設定される。信頼度判定で信頼度が低いと判定された場合、ステップS3009で抽出された抽出画素Pxeおよび設定された連結画素領域Dcは破棄される。さらにこの場合、信頼度判定の対象となった複数の抽出画素Pxeが抽出される際の選択画素設定処理において始点画素Pxiが配置された候補領域Fc、または当該複数の抽出画素Pxeが配置された候補領域Fcについては、候補領域Fcから削除することができる。ステップS3013が終了したら、ステップS3015が開始される。 In step S3011, the determination unit 516 determines the reliability of the plurality of extracted pixels Pxe extracted in step S3009. When step S3011 ends, step S3013 starts. In step S3013, the candidate/determined area setting unit 517 updates the data corresponding to the candidate area Fc and the confirmed area Fd based on the result of the reliability determination. When the reliability is determined to be high, the candidate area Fc in which the plurality of extracted pixels Pxe subjected to the reliability determination are arranged is deleted from the candidate area, and the connected pixel set in step S3009 is set. The area Dc is set as the finalized area Fd. When the reliability is determined to be low, the extracted pixel Pxe extracted in step S3009 and the set connected pixel area Dc are discarded. Further, in this case, the candidate region Fc in which the starting point pixel Pxi is arranged or the plurality of extracted pixels Pxe are arranged in the selected pixel setting process when a plurality of extracted pixels Pxe subjected to the reliability determination are extracted. The candidate area Fc can be deleted from the candidate area Fc. When step S3013 ends, step S3015 starts.
 ステップS3015において、候補・確定領域設定部517は、候補領域Fcがまだ残っているか否かを判定する。候補領域Fcがまだ残っている場合、候補・確定領域設定部517はステップS3015を肯定判定してステップS3009に戻る。候補領域Fcが残っていない場合、候補・確定領域設定部517は、ステップS3015を否定判定してステップS3017が開始される。 In step S3015, the candidate/determined area setting unit 517 determines whether the candidate area Fc still remains. If the candidate area Fc still remains, the candidate/determined area setting unit 517 makes an affirmative decision in step S3015 and returns to step S3009. If no candidate region Fc remains, the candidate/determined region setting unit 517 makes a negative determination in step S3015 and starts step S3017.
 ステップS3017およびS3019は、図11のフローチャートにおけるステップS1015およびS1017と同様であるため説明を省略する。 Steps S3017 and S3019 are the same as steps S1015 and S1017 in the flowchart of FIG. 11, so description thereof will be omitted.
 上述の第2実施形態によれば、第1実施形態により得られる作用効果の他に、次の作用効果が得られる。
(1)本実施形態の画像生成装置2は、複数の選択画素Pxdが複数の候補画素Pxcから設定された際の当該選択画素Pxdに対応する候補画素パラメータdに基づいて、複数の抽出画素Pxdが抽出対象に対応しているかについての信頼度を算出する信頼度算出部515を備える。これにより、抽出された抽出画素Pxeの画素列が正確に抽出できているかの情報が得られ、当該情報を利用した処理を行うことができる。
According to the above-described second embodiment, the following action and effect can be obtained in addition to the action and effect obtained by the first embodiment.
(1) The image generation device 2 of the present embodiment uses the plurality of extracted pixels Pxd based on the candidate pixel parameter d corresponding to the selected pixel Pxd when the plurality of selected pixels Pxd are set from the plurality of candidate pixels Pxc. A reliability calculation unit 515 for calculating the reliability as to whether or not corresponds to the extraction target. As a result, information on whether or not the extracted pixel row of the extracted pixel Pxe has been accurately extracted can be obtained, and processing using the information can be performed.
(2)本実施形態の画像生成装置2において、上記信頼度に基づいて、複数の抽出画素Pxeが連続した抽出対象に対応しているかの信頼度判定を行う判定部516を備える。これにより、信頼度判定に基づいて、信頼度の高い抽出画素Pxeを利用することができ、抽出の精度を高めることができる。 (2) The image generation apparatus 2 of the present embodiment includes the determination unit 516 that determines whether or not the plurality of extracted pixels Pxe correspond to the continuous extraction target based on the reliability. Thereby, the extraction pixel Pxe having high reliability can be used based on the reliability determination, and the extraction accuracy can be improved.
(3)本実施形態の画像生成装置2において、判定部516は、候補画素指定部601が指定する候補画素Pxcが終点画素Pxtの少なくとも一つに対応することにより第1終了条件が満たされ設定画素設定処理が終了された際に、信頼度判定を行う。これにより、第2終了条件により設定画素Pxdの設定が終了した場合のように、終点画素Pxtと連結画素領域Dcとが連結されない場合に信頼度判定を行わないことで、計算量を低減することができる。 (3) In the image generation device 2 of the present embodiment, the determination unit 516 sets the first end condition when the candidate pixel Pxc designated by the candidate pixel designation unit 601 corresponds to at least one of the end point pixels Pxt. When the pixel setting process is completed, reliability determination is performed. As a result, the calculation amount can be reduced by not performing the reliability determination when the end pixel Pxt and the connected pixel region Dc are not connected as in the case where the setting of the set pixel Pxd is ended by the second end condition. You can
(4)本実施形態の画像生成装置2において、画素抽出部600は、連結画素領域Dcの少なくとも一部を終点画素Pxtとして選択画素設定処理を行う。これにより、神経突起Nr等の抽出対象が分枝を有する場合等においても、複数回の抽出画素Pxeの抽出により精度よく抽出対象に対応する連結画素領域Dcを設定することができる。 (4) In the image generation device 2 of the present embodiment, the pixel extraction unit 600 performs the selected pixel setting process with at least a part of the connected pixel region Dc as the end point pixel Pxt. Accordingly, even when the extraction target such as the neurite Nr has a branch, it is possible to accurately set the connected pixel region Dc corresponding to the extraction target by extracting the extraction pixel Pxe a plurality of times.
(5)本実施形態の画像生成装置2は、抽出対象に対応する部分として確定した確定領域Fdを示す確定領域画像Gdに対応するデータを生成する候補・確定領域設定部517を備える。これにより、確定領域Fdをユーザにわかりやすく示したり、画像処理に供することができる。 (5) The image generation device 2 of the present embodiment includes the candidate/determined area setting unit 517 that generates data corresponding to the confirmed area image Gd indicating the confirmed area Fd confirmed as the portion corresponding to the extraction target. As a result, the fixed area Fd can be shown to the user in an easy-to-understand manner and can be used for image processing.
(6)本実施形態の画像生成装置2において、確定領域画像Gdは二値化された画像であり、候補・確定領域設定部517は、確定した連結画素領域Dcに基づいて上記二値化された画像を更新する。これにより、情報量や計算量を低減し、効率的に処理を行うことができる。 (6) In the image generation apparatus 2 of the present embodiment, the confirmed area image Gd is a binarized image, and the candidate/determined area setting unit 517 is binarized based on the confirmed connected pixel area Dc. Update the image. As a result, the amount of information and the amount of calculation can be reduced and the processing can be performed efficiently.
 次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。
(変形例1)
 上述の実施形態では、確率分布画像Gpにおいて細胞体Soが一つ示されている場合を用いて説明を行ってきた。確率分布画像Gpに複数の細胞体Soが示されている場合でもこれらの細胞体Soを終点画素Pxtとして同様に連結画素領域Dcの設定を行うことができる。しかし、この場合に、始点画素設定部514は、候補領域Fcの重心に基づいた位置に始点画素Pxiを設定することが好ましい。
The following modifications are also within the scope of the present invention, and can be combined with the above-described embodiment.
(Modification 1)
In the above-described embodiment, the case where one cell body So is shown in the probability distribution image Gp has been described. Even when a plurality of cell bodies So are shown in the probability distribution image Gp, it is possible to similarly set the connected pixel region Dc with these cell bodies So as the end point pixels Pxt. However, in this case, the starting point pixel setting unit 514 preferably sets the starting point pixel Pxi at a position based on the center of gravity of the candidate region Fc.
 図19は、本変形例の始点画素Pxiの設定を説明するための概念図である。探索領域D1に、細胞体So1およびSo2に対応する画素領域と、互いに連結されていない候補領域Fc5、Fc6、Fc7およびFc8が示されている。互いに連結されている複数の終点画素Pxtを終点画素領域と呼ぶとすると、細胞体So1およびSo2のそれぞれは、互いに連結されていない2つの終点画素領域に相当する。 FIG. 19 is a conceptual diagram for explaining the setting of the starting point pixel Pxi of this modification. In the search region D1, the pixel regions corresponding to the cell bodies So1 and So2 and the candidate regions Fc5, Fc6, Fc7 and Fc8 which are not connected to each other are shown. When the plurality of end point pixels Pxt connected to each other are called end point pixel areas, each of the cell bodies So1 and So2 corresponds to two end point pixel areas that are not connected to each other.
 ここで、同一の候補領域Fcに始点を有する抽出画素Pxeの画素列(以下、抽出画素列と呼ぶ)において、始点画素Pxiの位置により、信頼度パラメータRの値が変化する場合がある。例えば、候補領域Fc7の両端にある始点画素Pxi1と始点画素Pxi2とのそれぞれから複数の選択画素Pxdの設定を行い、細胞体So2に接続された抽出画素列を得た場合を考える。この場合、始点画素Pxi2から細胞体So2へと向かう抽出画素列の方が、候補領域Fc7の分だけ輝度値が高い領域を通過するため、信頼度パラメータRが候補画素パラメータdの平均値daveで表されるときにはこのdaveの値が小さく、始点画素Pxi1を始点とする選択画素設定処理の場合と比べてより信頼度が高くなる。従って、候補領域Fcにおいてどの位置に始点画素Pxiを設定するかによって、抽出される抽出画素Pxeの信頼度がばらつき、当該候補領域Fcが異なる細胞体Soに接続され得る。 Here, in the pixel row of the extracted pixels Pxe (hereinafter referred to as the extracted pixel row) having the start points in the same candidate region Fc, the value of the reliability parameter R may change depending on the position of the start point pixel Pxi. For example, consider a case where a plurality of selected pixels Pxd are set from each of the start point pixel Pxi1 and the start point pixel Pxi2 at both ends of the candidate area Fc7, and an extracted pixel row connected to the cell body So2 is obtained. In this case, the extracted pixel row extending from the starting point pixel Pxi2 to the cell body So2 passes through the region having a higher brightness value by the candidate region Fc7, and thus the reliability parameter R is the average value d ave of the candidate pixel parameters d. When represented by, the value of d ave is small, and the reliability is higher than in the case of the selection pixel setting process in which the starting point pixel Pxi1 is the starting point. Therefore, the reliability of the extracted pixel Pxe to be extracted varies depending on the position of the starting point pixel Pxi set in the candidate region Fc, and the candidate region Fc can be connected to a different cell body So.
 このような信頼度のばらつきを抑制するため、互いに連結されていない終点画素Pxtまたは終点画素領域が探索領域D1に複数存在する場合、始点画素設定部514は、始点画素Pxiを候補領域Fcの重心に基づいた位置に設定する。例えば、始点画素設定部514は、候補領域Fcの重心を算出し、当該重心を含む画素を始点画素Pxiに設定する。当該重心を含む画素が無い場合には、始点画素設定部514は当該重心に最も近い画素を始点画素Pxiに設定することができる。 In order to suppress such variation in reliability, when there are a plurality of end point pixels Pxt or end point pixel areas that are not connected to each other in the search area D1, the start point pixel setting unit 514 sets the start point pixel Pxi to the center of gravity of the candidate area Fc. Set the position based on. For example, the starting point pixel setting unit 514 calculates the center of gravity of the candidate area Fc and sets the pixel including the center of gravity as the starting point pixel Pxi. When there is no pixel including the center of gravity, the starting point pixel setting unit 514 can set the pixel closest to the center of gravity as the starting point pixel Pxi.
 本変形例の画像生成装置において、終点画素Pxtは、互いに連結されていない複数の画素または画素領域を備え、始点画素設定部514は、候補領域Fcを示す二値化画像において同一の値を持ち連結された複数の画素を含む候補領域Fcの重心に基づいて始点画素Pxiを設定する。これにより、適切な終点画素Pxtに連結画素領域Dcが連結される可能性を高めることができる。 In the image generation device of this modification, the end point pixel Pxt includes a plurality of pixels or pixel regions that are not connected to each other, and the start point pixel setting unit 514 has the same value in the binarized image indicating the candidate region Fc. The starting point pixel Pxi is set based on the center of gravity of the candidate region Fc including a plurality of connected pixels. As a result, it is possible to increase the possibility that the connected pixel region Dc is connected to the appropriate end pixel Pxt.
(変形例2)
 上述の実施形態では、終点画素設定部513が画像処理により、確率分布画像Gpから細胞体Soに対応する画素を抽出し終点画素Pxtに設定する構成としたが、培養の際に細胞体Soに対応する画素を所定の時間間隔で抽出して得られたデータを用いて終点画素Pxtを設定してもよい。細胞Ceの培養においては、細胞Ceが移動する場合がある。従って、ある時刻(第1時刻)と、第1時刻と異なる第2時刻において、同一の細胞Ceを同定しておくことが、同一の細胞Ceの形態等の特性の変化を時系列的に解析するために必要である。上記所定の時間間隔は、細胞Ceの特性に合わせて数分~数日等に適宜設定される。上記所定の時間間隔は、適宜変化してもよい。
(Modification 2)
In the above-described embodiment, the end point pixel setting unit 513 is configured to extract the pixel corresponding to the cell body So from the probability distribution image Gp by image processing and set it as the end point pixel Pxt. The end point pixel Pxt may be set using the data obtained by extracting the corresponding pixels at predetermined time intervals. In culturing the cell Ce, the cell Ce may move. Therefore, to identify the same cell Ce at a certain time (first time) and a second time different from the first time, it is possible to analyze changes in characteristics such as the morphology of the same cell Ce in a time series. It is necessary to do. The above-mentioned predetermined time interval is appropriately set to several minutes to several days or the like according to the characteristics of the cell Ce. The predetermined time interval may be changed as appropriate.
 図20は、本変形例に係るデータ処理部51bを示す概念図である。本変形例では、データ処理部51bは、細胞Ceの位置を追尾する追尾部518を備える。確率分布画像生成部511は、撮像部20から所定の時間間隔で撮像された細胞Ceの撮像画像を取得し、当該撮像画像から、確率分布画像データを生成する。追尾部518は、上述の終点画素設定部513による場合と同様に、確率分布画像Gpにおける細胞体Soに対応する画素の抽出を行う。上記所定の時間間隔に比べて細胞Ceの移動が遅い場合は、追尾部518は、直前に行った抽出結果を利用して当該画素の抽出を行ってもよい。終点画素設定部513は、追尾部518による細胞体Soに対応する画素の抽出により得られたデータに基づいて終点画素Pxtを設定することができる。 FIG. 20 is a conceptual diagram showing the data processing unit 51b according to this modification. In the present modification, the data processing unit 51b includes a tracking unit 518 that tracks the position of the cell Ce. The probability distribution image generation unit 511 acquires the captured images of the cells Ce captured at predetermined time intervals from the imaging unit 20, and generates probability distribution image data from the captured images. The tracking unit 518 extracts a pixel corresponding to the cell body So in the probability distribution image Gp, as in the case of the end point pixel setting unit 513 described above. When the movement of the cell Ce is slower than the predetermined time interval, the tracking unit 518 may extract the pixel using the extraction result performed immediately before. The end point pixel setting unit 513 can set the end point pixel Pxt based on the data obtained by the extraction of the pixels corresponding to the cell body So by the tracking unit 518.
 本変形例の画像生成装置において、確率分布画像生成部511は、異なる時間に複数回の確率分布画像データの取得を行い、追尾部518は、確率分布画像Gpにおける終点画素Pxtに対応する部分を追尾する。これにより、過去の細胞Ceの位置等に基づいて、より正確に終点画素Pxtの設定を行うことができる。
 なお、本変形例は、細胞体Soが複数存在する場合により好適に用いられるが、細胞体Soが一つの場合でも同様の作用効果を上げることができる。
In the image generation device of this modification, the probability distribution image generation unit 511 acquires the probability distribution image data a plurality of times at different times, and the tracking unit 518 detects the portion corresponding to the end point pixel Pxt in the probability distribution image Gp. To track. As a result, the end point pixel Pxt can be set more accurately based on the past position of the cell Ce and the like.
It should be noted that the present modification is preferably used when there are a plurality of cell bodies So, but the same operational effect can be obtained even when there is one cell body So.
(変形例3)
 上述の実施形態において、データ処理部は,神経突起Nr等の抽出対象の線状の部分の交叉の存在を判定する交叉判定部を備えてもよい。
(Modification 3)
In the above-described embodiment, the data processing unit may include a crossover determination unit that determines the presence of a crossover of the linear portion to be extracted such as the neurite Nr.
 図21は、本変形例に係るデータ処理部51cを示す概念図である。本変形例では、データ処理部51cは、交叉が存在するか否かを判定する交叉判定部519を備える。交叉判定部519は交叉を検出する交叉検出部として機能する。 FIG. 21 is a conceptual diagram showing a data processing unit 51c according to this modification. In this modification, the data processing unit 51c includes a crossover determination unit 519 that determines whether or not a crossover exists. The crossover determination unit 519 functions as a crossover detection unit that detects a crossover.
 図22(A)は、神経突起が交叉している場合の候補領域Fcの例を示す概念図である。細胞体So1から伸びる神経突起Nr1は、候補領域Fc21およびFc23と、候補領域Fc22の一部と対応している。細胞体So2から伸びる神経突起Nr2は、候補領域Fc22の一部と、候補領域Fc24とに対応している。候補領域Fc22には、交叉J1が存在している。 FIG. 22A is a conceptual diagram showing an example of the candidate region Fc when the neurites intersect. The neurite Nr1 extending from the cell body So1 corresponds to the candidate regions Fc21 and Fc23 and part of the candidate region Fc22. The neurite Nr2 extending from the cell body So2 corresponds to a part of the candidate region Fc22 and the candidate region Fc24. The intersection J1 exists in the candidate area Fc22.
 画素抽出部600は、探索領域D1が複数の連結されていない終点画素または終点画素領域を含む場合、まず上述の実施形態と同様、始点画素Pxiを始点として複数の選択画素Pxdの設定および複数の抽出画素の抽出を行う。 When the search area D1 includes a plurality of unconnected end point pixels or end point pixel areas, the pixel extraction unit 600 first sets a plurality of selected pixels Pxd starting from the start point pixel Pxi and sets a plurality of selected pixels Pxd as in the above embodiment. Extraction pixels are extracted.
 図22(B)は、抽出された抽出画素Pxeに基づいて領域設定部512が設定した連結画素領域Dc21を示す概念図である。図22(B)の例では、始点画素Pxiと細胞体So1とを接続する連結画素領域Dc21が設定された場合を示す。 FIG. 22B is a conceptual diagram showing the connected pixel area Dc21 set by the area setting unit 512 based on the extracted extraction pixel Pxe. In the example of FIG. 22B, a case is shown in which the connected pixel region Dc21 that connects the starting point pixel Pxi and the cell body So1 is set.
 連結画素領域Dc21が設定されたら、画素抽出部600は抽出された抽出画素Pxeを記憶部43に記憶させた後に選択画素Pxdおよび抽出画素Pxeが設定されていない状態にする。その後、終点画素設定部513は、連結画素領域Dc21が接続されている細胞体So1を終点画素Pxtから除き、細胞体So2を終点画素Pxtとして抽出画素Pxeの抽出を行う。 When the connected pixel region Dc21 is set, the pixel extraction unit 600 stores the extracted extracted pixel Pxe in the storage unit 43 and then sets the selected pixel Pxd and the extracted pixel Pxe to the unset state. After that, the end point pixel setting unit 513 removes the cell body So1 to which the connected pixel region Dc21 is connected from the end point pixel Pxt, and extracts the extracted pixel Pxe with the cell body So2 as the end point pixel Pxt.
 図22(C)は、細胞体So1を終点画素Pxtから除いた場合に抽出された抽出画素Pxeに基づいて領域設定部512が設定した連結画素領域Dc22を示す概念図である。図22(C)の例では、始点画素Pxiと細胞体So2とを接続する連結画素領域Dc22が設定されている。 FIG. 22C is a conceptual diagram showing the connected pixel area Dc22 set by the area setting unit 512 based on the extracted pixel Pxe extracted when the cell body So1 is excluded from the end point pixel Pxt. In the example of FIG. 22C, the connected pixel area Dc22 that connects the starting point pixel Pxi and the cell body So2 is set.
 交叉判定部519は、設定された連結画素領域Dc21および連結画素領域Dc22に基づいて、交叉J1に対応する画素または画素領域を検出する。交叉判定部519は、連結画素領域Dc21と連結画素領域Dc22の重なっている領域において、始点画素Pxiと反対側の端にある画素または当該端から所定の範囲にある画素領域を交叉に対応する画素とする。交叉判定部519は、候補領域Fc22に交叉がある点を示すデータを生成してもよい。上記所定の範囲は、連結画素領域Dc21または22の幅等に基づいて適宜定めればよい。 The crossover determination unit 519 detects a pixel or a pixel region corresponding to the crossover J1 based on the set connected pixel area Dc21 and connected pixel area Dc22. The intersection determination unit 519 is a pixel corresponding to an intersection of a pixel at the end opposite to the start point pixel Pxi or a pixel region in a predetermined range from the end in the overlapping region of the connected pixel region Dc21 and the connected pixel region Dc22. And The crossover determination unit 519 may generate data indicating a point where the candidate region Fc22 has a crossover. The predetermined range may be appropriately determined based on the width of the connected pixel area Dc21 or 22 or the like.
 次に、終点画素Pxtが1つの画素または連結された画素領域からなる場合において抽出対象の線状部分の交叉に対応する画素を検出する点を説明する。以下の方法は終点画素Pxtが一つの画素または連結された画素領域である場合に好適であるが、終点画素Pxtが複数の連結されていない画素または画素領域からなる場合にも適用可能である。 Next, the point of detecting a pixel corresponding to the intersection of the linear portions to be extracted when the end point pixel Pxt consists of one pixel or a connected pixel area will be described. The following method is suitable when the end point pixel Pxt is one pixel or a connected pixel area, but is also applicable when the end point pixel Pxt is composed of a plurality of unconnected pixels or pixel areas.
 図23(A)は、1つの細胞体Soから伸びる2つの神経突起Nr3およびNr4が交叉している場合の候補領域Fcを示す概念図である。細胞体Soから伸びる神経突起Nr3は、候補領域Fc31、Fc33およびFc34と、候補領域Fc32の一部と対応している。細胞体Soから伸びる神経突起Nr4は、候補領域Fc32の一部と、候補領域Fc35およびFc36とに対応している。候補領域Fc32には、交叉J2が存在している。 FIG. 23(A) is a conceptual diagram showing a candidate region Fc when two neurites Nr3 and Nr4 extending from one cell body So intersect. The neurite Nr3 extending from the cell body So corresponds to the candidate regions Fc31, Fc33, and Fc34 and part of the candidate region Fc32. The neurite Nr4 extending from the cell body So corresponds to a part of the candidate region Fc32 and the candidate regions Fc35 and Fc36. The intersection J2 exists in the candidate area Fc32.
 画素抽出部600は、探索領域D1が1つの終点画素Pxtまたは連結された終点画素領域を含む場合、まず上述の実施形態と同様、始点画素Pxiを始点として複数の選択画素Pxdの設定および抽出画素Pxeの抽出を行う。 When the search area D1 includes one end point pixel Pxt or a connected end point pixel area, the pixel extracting unit 600 first sets and extracts a plurality of selected pixels Pxd starting from the start point pixel Pxi as in the above-described embodiment. Extract Pxe.
 図23(B)は、抽出された抽出画素Pxeに基づいて領域設定部512が設定した連結画素領域Dc31を示す概念図である。図23(B)の例では、候補領域Fc31、Fc32、Fc33およびFc34を通る、始点画素Pxiと細胞体Soとを接続する連結画素領域Dc31が設定された場合を示す。 FIG. 23B is a conceptual diagram showing the connected pixel area Dc31 set by the area setting unit 512 based on the extracted extraction pixel Pxe. In the example of FIG. 23B, a case is shown in which a connected pixel region Dc31 that connects the starting point pixel Pxi and the cell body So that passes through the candidate regions Fc31, Fc32, Fc33, and Fc34 is set.
 連結画素領域Dc31が設定されたら、選択画素設定部602は抽出された抽出画素Pxeを記憶部43に記憶させた後、選択画素Pxdおよび抽出画素Pxeが設定されていない状態にする。その後、領域設定部512は、連結画素領域Dc31に対応する候補領域Fcの一部を探索領域D1から除く。候補領域Fcのうち探索領域D1から除かれた一部を、以下、除外領域と呼ぶ。例えば、領域設定部512は、既に設定した連結画素領域Dc31において、終点画素Pxt側の所定の個数の抽出画素Pxeに対応する連結要素画素領域De(図10)に含まれる領域に含まれる候補領域Fcを除外領域として探索領域D1から除く。 When the connected pixel area Dc31 is set, the selected pixel setting unit 602 stores the extracted extracted pixel Pxe in the storage unit 43, and then sets the selected pixel Pxd and the extracted pixel Pxe to the unset state. After that, the region setting unit 512 removes a part of the candidate region Fc corresponding to the connected pixel region Dc31 from the search region D1. A part of the candidate area Fc excluded from the search area D1 will be referred to as an exclusion area hereinafter. For example, the region setting unit 512, in the already set connected pixel region Dc31, the candidate region included in the region included in the connected element pixel region De (FIG. 10) corresponding to the predetermined number of extracted pixels Pxe on the end point pixel Pxt side. Fc is excluded from the search area D1 as an exclusion area.
 図23(C)は、除外領域Dexを模式的に示す概念図である。画素抽出部600は、点線で囲まれた部分における候補領域Fcを除外領域Dexとして探索領域D1から除外し、始点画素Pxiを始点に選択画素Pxdの設定を行う。 FIG. 23C is a conceptual diagram schematically showing the exclusion area Dex. The pixel extraction unit 600 excludes the candidate area Fc in the portion surrounded by the dotted line from the search area D1 as the exclusion area Dex, and sets the selected pixel Pxd with the start point pixel Pxi as the start point.
 図23(D)は、除外領域Dexを探索領域D1から除いた場合に抽出された抽出画素Pxeに基づいて領域設定部512が設定した連結画素領域Dc32を示す概念図である。図23(D)の例では、候補領域Fc31、Fc32およびFc35を通り、始点画素Pxiと細胞体Soとを接続する連結画素領域Dc32が設定されている。 FIG. 23D is a conceptual diagram showing the connected pixel area Dc32 set by the area setting unit 512 based on the extracted pixel Pxe extracted when the excluded area Dex is excluded from the search area D1. In the example of FIG. 23(D), a connected pixel region Dc32 that connects the starting point pixel Pxi and the cell body So through the candidate regions Fc31, Fc32, and Fc35 is set.
 交叉判定部519は、設定された連結画素領域Dc31および連結画素領域Dc32に基づいて、交叉J2に対応する画素または画素領域を検出する。交叉判定部519は、連結画素領域Dc31と連結画素領域Dc32の重なっている領域において、始点画素Pxiと反対側の端にある画素または当該端から所定の範囲にある画素領域を交叉に対応する画素とする。交叉検出部519は、候補領域Fc32に交叉がある点を示すデータを生成してもよい。上記所定の範囲は、連結画素領域Dc31または32の幅等に基づいて適宜定めればよい。 The intersection determination unit 519 detects a pixel or a pixel area corresponding to the intersection J2 based on the set connected pixel area Dc31 and connected pixel area Dc32. The crossing determination unit 519 is a pixel corresponding to a pixel at the end opposite to the start point pixel Pxi or a pixel region within a predetermined range from the end in the overlapping region of the connected pixel region Dc31 and the connected pixel region Dc32. And The crossing detection unit 519 may generate data indicating a crossing point in the candidate region Fc32. The above-mentioned predetermined range may be appropriately determined based on the width of the connected pixel region Dc31 or 32 or the like.
 交叉が存在しない場合には、第2終了条件により選択画素設定処理が終了する等して、図22(C)や図23(D)のような抽出画素列は得られない。上述のように交叉判定部519により、交叉の有無が判定され、交叉が検出された場合には交叉に対応する画素が導出されたら、これらの情報を用いて、形態解析等を行うことができる。また、画像生成部700は、交叉の位置等を連結領域画像Gsにおいて示すようにしてもよい。 If there is no crossover, the selected pixel setting process ends due to the second end condition, and the extracted pixel string as shown in FIG. 22C or 23D cannot be obtained. As described above, the crossing determination unit 519 determines the presence/absence of a crossover, and when a crossover is detected, a pixel corresponding to the crossover is derived, and thus, morphological analysis and the like can be performed using these pieces of information. .. Further, the image generation unit 700 may indicate the position of intersection and the like in the connected region image Gs.
 本変形例の画像生成装置において、終点画素Pxtは、互いに連結されていない複数の画素または画素領域を備え、交叉判定部519は抽出対象の線状部分の交叉の有無を判定し交叉を検出する。これにより、複数の連結されていない終点画素領域等に対応する部分(細胞体So1、So2等)が示された入力画像における、交叉の位置についての情報を提供することができる。その結果、交叉がある状況でも精度よく神経突起Nrに対応する画素の抽出を行うことができる。交叉についての情報を含む位置情報により、より正確に細胞間相互作用の定量化が可能となる。 In the image generation apparatus of this modification, the end point pixel Pxt includes a plurality of pixels or pixel regions that are not connected to each other, and the crossover determination unit 519 determines whether or not the linear portion to be extracted crosses and detects the crossover. .. Accordingly, it is possible to provide information about the position of the intersection in the input image in which the portions (cell bodies So1, So2, etc.) corresponding to the plurality of unconnected end pixel regions and the like are shown. As a result, the pixel corresponding to the neurite Nr can be accurately extracted even in the situation where there is a crossover. The positional information including the information about the crossover enables more accurate quantification of the cell-cell interaction.
 本変形例の画像生成装置において、画素抽出部600は、選択画素設定処理において設定された一部の複数の抽出画素Pxeを含む領域を除外し、再度選択画素設定処理を行い、交叉検出部519は、抽出対象の線状部分の交叉を検出する。これにより、1つの終点画素Pxtまたは連結された終点画素領域しか入力画像にない場合でも、入力画像における交叉の位置についての情報を提供することができる。 In the image generation device of the present modification, the pixel extraction unit 600 excludes a region including some of the extracted pixels Pxe set in the selection pixel setting process, performs the selection pixel setting process again, and the crossing detection unit 519. Detects the intersection of the linear parts to be extracted. Thereby, even when only one end point pixel Pxt or a connected end point pixel area is present in the input image, it is possible to provide information about the position of the intersection in the input image.
(変形例4)
 上述の実施形態において、データ処理部は,神経突起Nr等の抽出対象の線状の部分の幅を検出する幅検出部を備えてもよい。
(Modification 4)
In the above-described embodiment, the data processing unit may include a width detection unit that detects the width of the linear portion to be extracted such as the neurite Nr.
 図24は、本変形例に係るデータ処理部51dを示す概念図である。本変形例では、データ処理部51dは、抽出対象の線状の部分の幅を検出する幅検出部520を備える。 FIG. 24 is a conceptual diagram showing the data processing unit 51d according to this modification. In the present modification, the data processing unit 51d includes a width detection unit 520 that detects the width of the linear portion to be extracted.
 図25は、連結画素領域Dcに基づいて抽出対象の線状の部分(神経突起Nr)の幅を検出する点を説明するための概念図である。ユーザが入力部41を介して連結画素領域Dcにおける点T(以下、入力点Tと呼ぶ)の位置における神経突起Nrの幅を算出するように入力したとする。この場合、幅検出部520は、入力点Tを含み連結画素領域Dcに内接する円のうち、半径rが最も大きい円Ciを算出し、当該半径rの2倍を神経突起Nrの幅Wdとして算出する。算出された幅Wdについての情報は、出力部44から出力される。 FIG. 25 is a conceptual diagram for explaining the point of detecting the width of the extraction target linear portion (neurite Nr) based on the connected pixel region Dc. It is assumed that the user inputs via the input unit 41 to calculate the width of the neurite Nr at the position of the point T (hereinafter referred to as the input point T) in the connected pixel region Dc. In this case, the width detection unit 520 calculates the circle Ci having the largest radius r among the circles inscribed in the connected pixel region Dc including the input point T, and sets twice the radius r as the width Wd of the neurite Nr. calculate. Information about the calculated width Wd is output from the output unit 44.
 本変形例の画像生成装置において、幅算出部520は、抽出対象の線状部分の幅Wdを算出する。これにより、抽出対象の線状部分の太さ等の形態に関する情報を提供することができる。 In the image generation apparatus of this modification, the width calculation unit 520 calculates the width Wd of the extraction target linear portion. As a result, it is possible to provide information regarding the shape such as the thickness of the linear portion to be extracted.
 本変形例の画像生成装置において、幅算出部520は、連結画素領域Dcにおける入力点Tに対応する連結画素領域Dcの幅Wdを、入力点Tを含み連結画素領域Dcの内部に含まれる最大の円Ciの直径により算出する。これにより、抽出対象の線状部分の幅Wdを算出することができる。 In the image generation device of the present modification, the width calculation unit 520 sets the width Wd of the connected pixel region Dc corresponding to the input point T in the connected pixel region Dc to the maximum included in the connected pixel region Dc including the input point T. It is calculated by the diameter of the circle Ci. Accordingly, the width Wd of the extraction target linear portion can be calculated.
(変形例5)
 上述の変形例では、連結画素領域Dcの内接円を用いて神経突起Nrの幅を算出したが、連結画素領域Dcを通る線分の長さに基づいて神経突起Nrの幅Wdを算出してもよい。
(Modification 5)
In the modification described above, the width of the neurite Nr is calculated using the inscribed circle of the connected pixel region Dc, but the width Wd of the neurite Nr is calculated based on the length of the line segment passing through the connected pixel region Dc. May be.
 図26は、連結画素領域Dcに基づいて抽出対象の線状の部分(神経突起Nr)の幅を検出する点を説明するための概念図である。ユーザが入力部41を介して入力点Tの位置における神経突起Nrの幅を算出するように入力したとする。この場合、幅検出部520は、入力点Tを通り複数の異なる方向に伸びる線分L1,L2およびL3を仮定し、線分L1,L2およびL3において連結画素領域Dcの内部に含まれる長さを算出する。幅検出部520は、算出された上記長さのうち、最も短い値を神経突起Nrの幅Wdとする。 なお、線分L1,L2およびL3の方向は特に限定されず、一定の角度ずつずれる等、適宜設定することができる。また、幅Wdの算出のために用いる線分の本数も特に限定されない。 FIG. 26 is a conceptual diagram for explaining that the width of the linear portion (neurite Nr) to be extracted is detected based on the connected pixel area Dc. It is assumed that the user inputs via the input unit 41 so as to calculate the width of the neurite Nr at the position of the input point T. In this case, the width detection unit 520 assumes line segments L1, L2, and L3 that extend through the input point T in a plurality of different directions, and the line segments L1, L2, and L3 have a length included in the connected pixel region Dc. To calculate. The width detection unit 520 sets the shortest value among the calculated lengths as the width Wd of the neurite Nr. Note that the directions of the line segments L1, L2, and L3 are not particularly limited, and can be set as appropriate, such as shifting by a certain angle. Further, the number of line segments used for calculating the width Wd is not particularly limited.
 本変形例の画像生成装置において、幅算出部520は、連結画素領域Dcにおける入力点Tに対応する連結画素領域の幅Wdを、入力点Tを通る複数の線分L1,L2およびL3において、連結画素領域Dcに含まれる長さが最も短い場合の当該長さにより算出する。これにより、計算量を抑えつつ、抽出対象の線状部分の幅Wdを算出することができる。 In the image generation device of the present modification, the width calculation unit 520 determines the width Wd of the connected pixel area corresponding to the input point T in the connected pixel area Dc at the plurality of line segments L1, L2, and L3 passing through the input point T. It is calculated based on the shortest length included in the connected pixel region Dc. Thereby, the width Wd of the extraction target linear portion can be calculated while suppressing the calculation amount.
(変形例6)
 上述の実施形態において、入力画像または確率分布画像Gp等においてユーザが入力した点における輝度値を出力する際、当該輝度値を複数の画素の輝度に基づいて算出し、出力してもよい。これにより、ばらつきを抑えより精度の高い輝度を提供することができる。
(Modification 6)
In the above-described embodiment, when outputting the brightness value at the point input by the user in the input image or the probability distribution image Gp, the brightness value may be calculated based on the brightness of a plurality of pixels and output. This makes it possible to suppress variations and provide more accurate brightness.
 図27は、出力される輝度値(以下、出力輝度値と呼ぶ)を算出する方法を説明するための概念図である。ユーザが入力部41を介して指定した入力点Tについて、出力輝度値を算出する場合、データ処理部51aは、入力点Tの位置に基づく所定の範囲(以下、対応画素領域Ctと呼ぶ)における画素の輝度値の算術平均等の平均を出力輝度値として算出する。算出された出力輝度値は、出力部44から出力される。対応画素領域Ctの形状や大きさは特に限定されず、入力点Tを中心とした半径数画素の円の範囲に対応する画素領域等とすることができる。 FIG. 27 is a conceptual diagram for explaining a method of calculating an output brightness value (hereinafter, referred to as an output brightness value). When the output brightness value is calculated for the input point T designated by the user via the input unit 41, the data processing unit 51a sets a predetermined range based on the position of the input point T (hereinafter, referred to as a corresponding pixel area Ct). An average such as an arithmetic average of the brightness values of the pixels is calculated as the output brightness value. The calculated output brightness value is output from the output unit 44. The shape and size of the corresponding pixel area Ct are not particularly limited, and may be a pixel area or the like corresponding to the range of a circle having a radius of several pixels centered on the input point T.
-第3実施形態-
 第3実施形態の画像生成装置3は、第2実施形態に係る画像生成装置2と同様の構成を有しているが、データ処理部の構成が第2実施形態とは異なっている。第3実施形態では、複数の始点画素Pxiについての選択画素設定処理を並列に行う際に、精度を落とさずに迅速に行う方法を説明する。第2実施形態との同一部分については第2実施形態と同一の符号で参照し、場合に応じ説明を省略する。
-Third Embodiment-
The image generation device 3 of the third embodiment has the same configuration as the image generation device 2 according to the second embodiment, but the configuration of the data processing unit is different from that of the second embodiment. In the third embodiment, a method will be described in which the selected pixel setting processing for a plurality of start point pixels Pxi is performed in parallel without sacrificing accuracy. The same parts as those of the second embodiment are referred to by the same reference numerals as those of the second embodiment, and the description thereof will be omitted depending on the case.
 図28は、本実施形態の画像生成装置3の構成を示す概念図である。画像生成装置3は、制御部50aおよびデータ処理部51e以外の構成要素も図1と同様に含むが、図示を省略した。画像生成装置3は、領域設定部512aが始点配置領域設定部531および候補画素配置領域設定部532を備える点で上述の実施形態の画像生成装置2と異なっている。さらに、画像生成装置3の制御部50aは、マルチコア化されたCPUのように並列処理に適したCPUを備え、データ処理部51eの行う選択画素設定処理は、この並列処理に適したCPUにより行われることが好ましい。 FIG. 28 is a conceptual diagram showing the configuration of the image generating apparatus 3 of this embodiment. The image generation device 3 includes the components other than the control unit 50a and the data processing unit 51e in the same manner as in FIG. 1, but the illustration is omitted. The image generating apparatus 3 is different from the image generating apparatus 2 of the above-described embodiment in that the area setting unit 512a includes a starting point arrangement area setting unit 531 and a candidate pixel arrangement area setting unit 532. Further, the control unit 50a of the image generating apparatus 3 includes a CPU suitable for parallel processing such as a multi-core CPU, and the selected pixel setting process performed by the data processing unit 51e is performed by the CPU suitable for this parallel processing. It is preferred that
 以下では、確率分布画像Gpが、複数の細胞体Soに対応する部分を含む際の、連結画素領域Dcの設定の方法を説明する。本実施形態に係る画像生成方法は細胞体Soが複数存在したり等、神経突起Nrが複雑に伸びている場合等に好適であるが、特にこのような場合に限定されず適用することが可能である。 In the following, a method of setting the connected pixel area Dc when the probability distribution image Gp includes a portion corresponding to a plurality of cell bodies So will be described. The image generation method according to the present embodiment is suitable for a case where a plurality of cell bodies So exist or the neurite Nr extends in a complicated manner, but it is not particularly limited to such a case and can be applied. Is.
 上述の実施形態では、領域設定部512が設定した探索領域D1に始点画素Pxiおよび候補画素Pxcが設定される構成とした。本実施形態では、始点配置領域設定部531が設定した始点配置領域に始点画素Pxiが設定され、候補画素配置領域設定部532が設定した候補画素配置領域に候補画素Pxcが設定される。 In the above embodiment, the starting point pixel Pxi and the candidate pixel Pxc are set in the search area D1 set by the area setting unit 512. In the present embodiment, the starting point pixel Pxi is set in the starting point arrangement area set by the starting point arrangement area setting unit 531 and the candidate pixel Pxc is set in the candidate pixel arrangement area set by the candidate pixel arrangement area setting unit 532.
 図29は、始点配置領域を示す概念図である。始点配置領域80は、第1始点配置領域81と、第2始点配置領域82とを備える。第1始点配置領域81は、互いには連結されていないがそれぞれが一つの連続した領域である、第1連結領域81a、第2連結領域81b、第3連結領域81cおよび第4連結領域81dを備える。第2始点配置領域82は、互いには連結されていないがそれぞれが一つの連続した領域である、第1連結領域82a、第2連結領域82b、第3連結領域82cおよび第4連結領域82dを備える。 FIG. 29 is a conceptual diagram showing the starting point arrangement area. The start point arrangement area 80 includes a first start point arrangement area 81 and a second start point arrangement area 82. The first start point arrangement area 81 includes a first connection area 81a, a second connection area 81b, a third connection area 81c, and a fourth connection area 81d that are not connected to each other but are one continuous area. .. The second starting point arrangement area 82 includes a first connecting area 82a, a second connecting area 82b, a third connecting area 82c, and a fourth connecting area 82d that are not connected to each other but are one continuous area. ..
 以下では、第1連結領域81a、第2連結領域81b、第3連結領域81cおよび第4連結領域81d、ならびに、第2連結領域82a、第2連結領域82b、第3連結領域82cおよび第4連結領域82dのそれぞれを区別せずに個々の領域を指す場合、単に連結領域と記載する。符号81a、81b、81cおよび81dを81a~dと記載し、符号82a、82b、82cおよび82dを82a~dと記載する。 Below, the 1st connection field 81a, the 2nd connection field 81b, the 3rd connection field 81c, and the 4th connection field 81d, and the 2nd connection field 82a, the 2nd connection field 82b, the 3rd connection field 82c, and the 4th connection field. When referring to the individual regions without distinguishing each of the regions 82d, they are simply referred to as a connecting region. Reference numerals 81a, 81b, 81c and 81d are described as 81a to d, and reference numerals 82a, 82b, 82c and 82d are described as 82a to d.
 後述するように、第1始点配置領域81に配置された始点画素Pxi1a、Pxi1b、Pxi1cおよびPxi1d(以下、Pxi1a~dと記載する)を始点とする選択画素設定処理と、第2始点配置領域82に配置された始点画素Pxi2a、Pxi2b、Pxi2cおよびPxi2d(図30)を始点とする選択画素設定処理とは、同時並行して行われない。このように、始点配置領域80は、始点配置領域80に配置された始点画素Pxiに対応する選択画素設定処理をいつ行うかに基づいて、複数の領域(第1始点配置領域81および第2始点配置領域82)に分割されている。 As will be described later, a selection pixel setting process starting from the start point pixels Pxi1a, Pxi1b, Pxi1c and Pxi1d (hereinafter referred to as Pxi1a to d) arranged in the first start point arrangement region 81 and the second start point arrangement region 82. The selection pixel setting process starting from the start point pixels Pxi2a, Pxi2b, Pxi2c, and Pxi2d (FIG. 30) arranged in 1 is not performed in parallel at the same time. In this way, the start point arrangement area 80 has a plurality of areas (the first start point arrangement area 81 and the second start point 81) based on when the selection pixel setting processing corresponding to the start point pixels Pxi arranged in the start point arrangement area 80 is performed. It is divided into placement areas 82).
 第1始点配置領域81に含まれる連結領域81a~d同士の間、および、第2始点配置領域82に含まれる連結領域82a~d同士の間は、予め定められた最小連結領域間隔をMとすると、少なくともM画素以上離れている。図29の始点配置領域80の例では、各連結領域81a~d、82a~dの縦方向の画素数は確率分布画像Gpの縦方向の画素数と等しく、横方向の画素数はMiとなっている。Miは、Mと等しいかより大きい値とする。 A predetermined minimum connection area interval between the connection areas 81a to 81d included in the first start point arrangement area 81 and between the connection areas 82a to 82d included in the second start point arrangement area 82 is set to M. Then, they are separated by at least M pixels or more. In the example of the starting point arrangement area 80 in FIG. 29, the number of pixels in the vertical direction of each of the connection areas 81a to 81d is equal to the number of pixels in the vertical direction of the probability distribution image Gp, and the number of pixels in the horizontal direction is Mi. ing. Mi has a value equal to or larger than M.
 連結領域81a~dにそれぞれ配置された始点画素Pxi1a~dを始点とする選択画素設定処理の少なくとも一部は、同時並行して行われる。従って、連結領域81a~d同士の間を少なくともM画素離すことで、異なる始点画素Pxiを始点にした選択画素Pxdの画素列が、確率分布画像Gpの同一の候補領域Fc(図17)を通ったりする可能性を低減することができる。連結領域82a~dについても同様である。これにより、候補領域Fcと確定領域Fd(図17)が適切に更新され、抽出対象に対応する部分が複雑な構造をしている場合でも精度を落とさずに迅速に連結画素領域Dcの設定を行うことができる。 At least a part of the selected pixel setting process starting from the starting point pixels Pxi1a to Pxi1 respectively arranged in the connection regions 81a to 81d is performed in parallel at the same time. Therefore, by separating at least M pixels between the connection regions 81a to 81d, the pixel row of the selected pixel Pxd starting from different start point pixels Pxi passes through the same candidate region Fc (FIG. 17) of the probability distribution image Gp. It is possible to reduce the possibility that The same applies to the connection regions 82a to 82d. As a result, the candidate area Fc and the finalized area Fd (FIG. 17) are appropriately updated, and even if the portion corresponding to the extraction target has a complicated structure, the connected pixel area Dc can be set quickly without lowering the accuracy. It can be carried out.
 最小連結領域間隔Mは、撮像部20の撮像の際の実効倍率、確率分布画像Gpの画素の幅、および、入力画像の被写体について過去に得られた線状の部分の長さの統計値等に基づいて算出される。例えば、被写体を特定の種類の神経細胞とし、当該種類の神経細胞において神経突起Nrの長さの上限をLmax、上記実効倍率をx、上記画素の幅をyとすると、M=2×Lmax×x/yの式により連結領域間隔Mを算出することができる。一例として、Lmax=500μm、x=10(倍)、y=8μmとすると、最小連結領域間隔Mは1250ピクセルとなる。これにより、2つの連結領域(例えば連結領域81aおよび81b)にあるそれぞれの始点画素Pxiへと、これらの間にある連結領域(例えば連結領域82b)にある細胞体Soからまっすぐ神経突起Nrが伸びている場合にも、同時並行して設定されている選択画素Pxdの画素列が同一の候補画素Pxcを通過する可能性を低減することができる。
 なお、確率分布画像Gpの画素の幅等のパラメータに基づいて最小連結領域間隔Mを設定する場合、最小連結領域間隔Mは、各細胞Ceの幅や神経突起Nrの長さに基づいて定めてもよい。また、最小連結領域間隔Mは、効率化の観点から各連結領域81a~d,82a~dに基づいて定めることができる。
The minimum connected region interval M is, for example, the effective magnification at the time of imaging by the imaging unit 20, the pixel width of the probability distribution image Gp, and the statistical value of the length of the linear portion obtained in the past for the subject of the input image. It is calculated based on For example, if the subject is a nerve cell of a specific type, the upper limit of the length of the neurite Nr in the nerve cell of the type is Lmax, the effective magnification is x, and the width of the pixel is y, M=2×Lmax× The connected region interval M can be calculated by the formula of x/y. As an example, when Lmax=500 μm, x=10 (times), and y=8 μm, the minimum connected region interval M is 1250 pixels. As a result, the neurite Nr extends straight from the cell body So in the connecting region (for example, the connecting region 82b) between the starting point pixels Pxi in the two connecting regions (for example, the connecting regions 81a and 81b). Even in such a case, it is possible to reduce the possibility that the pixel rows of the selected pixels Pxd set in parallel at the same time pass through the same candidate pixel Pxc.
When the minimum connected region interval M is set based on parameters such as the pixel width of the probability distribution image Gp, the minimum connected region interval M is set based on the width of each cell Ce and the length of the neurite Nr. Good. Further, the minimum connection area interval M can be determined based on the connection areas 81a to 81d and 82a to 82d from the viewpoint of efficiency.
 始点配置領域設定部531は、入力部41からの入力等に基づいて、始点配置領域80、第1始点配置領域81、第2始点配置領域82および連結領域81a~d、82a~dを設定する。入力部41から確率分布画像Gpにおけるこれらの領域に対応する画像部分を示す画像データまたは、当該画像部分の形状若しくは大きさに関する情報が入力される。始点配置領域設定部531は、この画像データや情報に基づいて確率分布画像Gpにおける各画素が、始点配置領域80、第1始点配置領域81、第2始点配置領域82および連結領域81a~d、82a~dに含まれることまたは含まれないことを設定する。 The starting point arrangement area setting unit 531 sets the starting point arrangement area 80, the first starting point arrangement area 81, the second starting point arrangement area 82, and the connection areas 81a to d, 82a to d based on the input from the input unit 41 and the like. .. Image data indicating image portions corresponding to these regions in the probability distribution image Gp, or information regarding the shape or size of the image portion is input from the input unit 41. Based on this image data and information, the starting point arrangement area setting unit 531 determines that each pixel in the probability distribution image Gp has a starting point arrangement area 80, a first starting point arrangement area 81, a second starting point arrangement area 82, and connecting areas 81a to 81d. 82a to 82d are set to be included or not included.
 候補画素配置領域設定部532は、選択画素設定処理において候補画素Pxcが配置される領域である候補画素配置領域90を設定する。候補画素配置領域90は、入力部41からの入力等に基づいて設定される。図29では、候補画素配置領域90は確率分布画像Gpの全体に設定されている。候補画素Pxcが設定される領域は、選択画素Pxdが設定され抽出画素Pxeが抽出される領域になる。 The candidate pixel arrangement area setting unit 532 sets the candidate pixel arrangement area 90, which is an area in which the candidate pixel Pxc is arranged in the selection pixel setting process. The candidate pixel arrangement area 90 is set based on an input from the input unit 41 or the like. In FIG. 29, the candidate pixel arrangement area 90 is set for the entire probability distribution image Gp. The area where the candidate pixel Pxc is set is an area where the selection pixel Pxd is set and the extraction pixel Pxe is extracted.
 始点画素設定部514は、始点配置領域80に始点画素Pxiを設定する。始点画素設定部514は、第1始点配置領域81を始点とする選択画素設定処理を行う際には、第1始点配置領域81に始点画素Pxi1a~dを配置する。始点画素設定部514は、第2始点配置領域82を始点とする選択画素設定処理を行う際には、第2始点配置領域82に始点画素Pxi2a~dを配置する。 The starting point pixel setting unit 514 sets the starting point pixel Pxi in the starting point arrangement area 80. The starting-point pixel setting unit 514 arranges the starting-point pixels Pxi1a-d in the first starting-point arrangement region 81 when performing the selection pixel setting process with the first starting-point arrangement region 81 as the starting point. The starting-point pixel setting unit 514 arranges the starting-point pixels Pxi2a to Pxi2d in the second starting-point arrangement region 82 when performing the selection pixel setting process with the second starting-point arrangement region 82 as the starting point.
 画素抽出部600は、始点画素Pxiの位置に基づいて、複数の選択画素設定処理を、同時並行して行う。領域設定部512aは、これら複数の選択画素設定処理で設定された選択画素Pxdから抽出された抽出画素Pxeに基づいて連結画素領域Dcを設定する。 The pixel extraction unit 600 performs a plurality of selected pixel setting processes simultaneously in parallel based on the position of the starting point pixel Pxi. The area setting unit 512a sets the connected pixel area Dc based on the extracted pixel Pxe extracted from the selected pixels Pxd set by the plurality of selected pixel setting processes.
 図29では、画素抽出部600が、第1始点配置領域81に配置された始点画素Pxi1a~dを始点とする複数の選択画素設定処理(以下、第1選択画素設定処理と呼ぶ)を同時並行して行う点が模式的に示されている。図29には、始点画素Pxi1aと細胞体So1aとを接続する連結画素領域Dc1a、始点画素Pxi1bと細胞体So1bとを接続する連結画素領域Dc1b、始点画素Pxi1cと細胞体So1cとを接続する連結画素領域Dc1c、および、始点画素Pxi1dと細胞体So1dとを接続する連結画素領域Dc1dとが示されている。 In FIG. 29, the pixel extraction unit 600 simultaneously performs a plurality of selected pixel setting processes (hereinafter, referred to as first selected pixel setting process) starting from the starting point pixels Pxi1a to Pd1 arranged in the first starting point arrangement area 81. The points to be performed are schematically shown. In FIG. 29, a connected pixel area Dc1a connecting the starting point pixel Pxi1a and the cell body So1a, a connected pixel area Dc1b connecting the starting point pixel Pxi1b and the cell body So1b, and a connected pixel connecting the start point pixel Pxi1c and the cell body So1c. A region Dc1c and a connected pixel region Dc1d that connects the starting point pixel Pxi1d and the cell body So1d are shown.
 画素抽出部600は、第1選択画素設定処理とは異なる時間に、第2始点配置領域82に配置された始点画素Pxi2a~dを始点とする複数の選択画素設定処理(以下、第2選択画素設定処理と呼ぶ)を同時並行して行う。 The pixel extraction unit 600 performs a plurality of selection pixel setting processes (hereinafter, second selection pixel setting processes) starting from the start point pixels Pxi2a to Pxi2a to d arranged in the second start point arrangement region 82 at different times from the first selection pixel setting process. (Referred to as setting processing) is performed in parallel at the same time.
 図30は、画素抽出部600が、複数の第2選択画素設定処理を同時並行して行う点を模式的に示す概念図である。図30には、始点画素Pxi2aと細胞体So2aとを接続する連結画素領域Dc2a、始点画素Pxi2bと細胞体So2bとを接続する連結画素領域Dc2b、始点画素Pxi2cと細胞体So2cとを接続する連結画素領域Dc2c、および、始点画素Pxi2dと細胞体So2dとを接続する連結画素領域Dc2dとが示されている。 FIG. 30 is a conceptual diagram schematically showing that the pixel extraction unit 600 simultaneously performs a plurality of second selected pixel setting processes in parallel. In FIG. 30, a connected pixel area Dc2a connecting the starting point pixel Pxi2a and the cell body So2a, a connected pixel area Dc2b connecting the starting point pixel Pxi2b and the cell body So2b, and a connected pixel connecting the start point pixel Pxi2c and the cell body So2c. A region Dc2c and a connected pixel region Dc2d that connects the starting point pixel Pxi2d and the cell body So2d are shown.
 領域設定部512aは、同時並行して行われた複数の選択画素設定処理に基づいて得られた複数の連結画素領域Dc(図4)の統合を行う。この統合では、少なくとも一つの連結画素領域Dcに含まれる画素からなる1つの連結された連結画素領域Dcを新たに設定する。候補・確定領域設定部は、統合された連結画素領域Dcに基づいて、候補領域Fcおよび確定領域Fd(図17)を更新する。 The area setting unit 512a integrates a plurality of connected pixel areas Dc (FIG. 4) obtained based on a plurality of selected pixel setting processings performed in parallel at the same time. In this integration, one connected connected pixel area Dc including pixels included in at least one connected pixel area Dc is newly set. The candidate/fixed area setting unit updates the candidate area Fc and the fixed area Fd (FIG. 17) based on the integrated connected pixel area Dc.
 図31は、本実施形態に係る画像生成方法の流れを示すフローチャートである。ステップS4001からS4007までは、図11のフローチャートのステップS1001からS1007までと同一であるため、説明を省略する。ステップS4007が終了したら、ステップS4009が開始される。 FIG. 31 is a flowchart showing the flow of the image generation method according to this embodiment. Since steps S4001 to S4007 are the same as steps S1001 to S1007 in the flowchart of FIG. 11, description thereof will be omitted. When step S4007 ends, step S4009 starts.
 ステップS4009において、始点配置領域設定部531は、第1始点配置領域81、第2始点配置領域82および連結領域81a~d、82a~dを設定する。ステップS4009が終了したら、ステップS4011が開始される。ステップS4011において、始点画素設定部514が始点配置領域80に始点画素Pxiを設定し、画素抽出部600が複数の選択画素Pxdを設定して複数の抽出画素Pxeを抽出し、領域設定部512aが連結画素領域Dcを設定する並列処理を行い、領域設定部512aは、統合された連結画素領域を設定する。ステップS4011が終了したら、ステップS4013が開始される。 In step S4009, the starting point placement area setting unit 531 sets the first starting point placement area 81, the second starting point placement area 82, and the connection areas 81a-d, 82a-d. When step S4009 ends, step S4011 starts. In step S4011, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the starting point arrangement region 80, the pixel extraction unit 600 sets a plurality of selected pixels Pxd to extract a plurality of extracted pixels Pxe, and the region setting unit 512a The parallel processing for setting the connected pixel area Dc is performed, and the area setting unit 512a sets the integrated connected pixel area. When step S4011 ends, step S4013 starts.
 ステップS4013において、画像生成部700は、統合された連結画素領域を示す連結領域画像Gsに対応する連結領域画像データを生成する。ステップS4013が終了したら、ステップS4015が開始される。ステップS4015において、出力部44は、連結領域画像Gsを出力する。ステップS4015が終了したら、処理が終了される。 In step S4013, the image generation unit 700 generates connected area image data corresponding to the connected area image Gs indicating the integrated connected pixel area. When step S4013 ends, step S4015 starts. In step S4015, the output unit 44 outputs the connected region image Gs. When step S4015 ends, the process ends.
 図32は、図31のフローチャートにおけるステップS4011の流れを示すフローチャートである。図32のフローチャートでは、第1始点配置領域81の第1連結領域81aおよび第2連結領域81bについての選択画素設定処理と、第2始点配置領域82の第1連結領域82aおよび第2連結領域82bについての選択画素設定処理とがそれぞれ同時並行に行われる点を記載し、他の連結領域についての選択画素設定処理についての記載は省略した。ステップS4009が終了したら、ステップS501aおよびステップS501bが開始される。 FIG. 32 is a flow chart showing the flow of step S4011 in the flow chart of FIG. In the flowchart of FIG. 32, the selected pixel setting process for the first connection area 81a and the second connection area 81b of the first start point arrangement area 81 and the first connection area 82a and the second connection area 82b of the second start point arrangement area 82 are performed. The point that the selected pixel setting process regarding the above is performed concurrently in parallel with each other, and the description about the selected pixel setting process regarding other connected regions is omitted. Upon completion of step S4009, steps S501a and S501b are started.
 ステップS501aにおいて、始点画素設定部514は、第1始点配置領域81の第1連結領域81aに始点画素Pxiを設定する。ステップS501aが終了したらステップS503aが開始される。ステップS503aにおいて、画素抽出部600は、ステップS501aで設定された始点画素Pxiを始点に、複数の選択画素Pxdを設定し、抽出画素Pxeを抽出し、領域設定部512aは、当該抽出画素Pxeに基づいて連結画素領域Dcを設定する。
 なお、本実施形態の候補画素Pxcの設定では、候補画素位置パラメータNの値は特に限定されず、1以上の任意の値に設定することができる。以下の選択画素設定処理でも同様である。
In step S501a, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the first connection area 81a of the first starting point arrangement area 81. When step S501a ends, step S503a starts. In step S503a, the pixel extraction unit 600 sets a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S501a and extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to Based on this, the connected pixel area Dc is set.
In the setting of the candidate pixel Pxc of the present embodiment, the value of the candidate pixel position parameter N is not particularly limited and can be set to any value of 1 or more. The same applies to the following selected pixel setting processing.
 ステップS501bにおいて、始点画素設定部514は、第2始点配置領域82の第2連結領域82aに始点画素Pxiを設定する。ステップS503bにおいて、画素抽出部600は、ステップS503aで設定された始点画素Pxiを始点に、複数の設定画素Pxdを設定し、抽出画素Pxeを抽出し、領域設定部512aは、当該抽出画素Pxeに基づいて連結画素領域Dcを設定する。ステップS503aおよびステップS503bが終了したら、ステップS505が開始される。 In step S501b, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the second connection area 82a of the second starting point arrangement area 82. In step S503b, the pixel extraction unit 600 sets a plurality of set pixels Pxd starting from the start point pixel Pxi set in step S503a, extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to the extracted pixel Pxe. Based on this, the connected pixel area Dc is set. When step S503a and step S503b are completed, step S505 is started.
 ステップS505において、領域設定部512aは連結画素領域Dcを統合し、候補・確定領域設定部517は候補領域Fcおよび確定領域Fdを更新する。ステップS505が終了したら、ステップS507aおよびS507bが開始される。 In step S505, the area setting unit 512a integrates the connected pixel areas Dc, and the candidate/fixed area setting unit 517 updates the candidate area Fc and the fixed area Fd. When step S505 ends, steps S507a and S507b start.
 ステップS507aにおいて、始点画素設定部514は、第2始点配置領域82の第1連結領域82aに始点画素Pxiを設定する。ステップS507aが終了したら、ステップS509aが開始される。ステップS509aにおいて、画素抽出部600は、ステップS507aで設定された始点画素Pxiを始点に、複数の選択画素Pxdを選択し、抽出画素Pxeを抽出し、領域設定部512aは、当該抽出画素Pxeに基づいて連結画素領域Dcを設定する。 In step S507a, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the first connection area 82a of the second starting point arrangement area 82. When step S507a ends, step S509a starts. In step S509a, the pixel extraction unit 600 selects a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S507a, extracts the extracted pixel Pxe, and the area setting unit 512a selects the extracted pixel Pxe. Based on this, the connected pixel area Dc is set.
 ステップS507bにおいて、始点画素設定部514は、第2始点配置領域82の第2連結領域82bに始点画素Pxiを設定する。ステップS507bが終了したら、ステップS509bが開始される。ステップS509bにおいて、画素抽出部600は、ステップS507bで設定された始点画素Pxiを始点に、複数の選択画素Pxdを設定し、抽出画素Pxeを抽出し、領域設定部512aは、当該抽出画素Pxeに基づいて連結画素領域Dcを設定する。ステップS509aおよびステップS509bが終了したら、ステップS511が開始される。 In step S507b, the starting point pixel setting unit 514 sets the starting point pixel Pxi in the second connection area 82b of the second starting point arrangement area 82. When step S507b ends, step S509b starts. In step S509b, the pixel extraction unit 600 sets a plurality of selected pixels Pxd starting from the start point pixel Pxi set in step S507b and extracts the extracted pixel Pxe, and the area setting unit 512a sets the extracted pixel Pxe to the extracted pixel Pxe. Based on this, the connected pixel area Dc is set. When step S509a and step S509b are completed, step S511 is started.
 ステップS511において、領域設定部512aは、連結画素領域Dcを統合し、統合された連結画素領域を設定する。ステップS511が終了したら、ステップS4013が開始される。 In step S511, the area setting unit 512a integrates the connected pixel areas Dc and sets the integrated connected pixel area. When step S511 ends, step S4013 starts.
 上述の第3実施形態によれば、第1実施形態および第2実施形態により得られる作用効果の他に、次の作用効果が得られる。
(1)本実施形態の画像生成装置3において、画素抽出部600は、互いに連結されていない連結領域81a~dに配置された複数の始点画素Pxi1a~dについての選択画素設定処理を、上記連結領域81a~dを除く始点配置領域80である連結領域82a~dに配置された始点画素Pxi2a~dについての選択画素設定処理とは異なる時間に行う。これにより、抽出対象が複雑な構造をしている場合でも精度を落とさずに迅速に抽出対象に対応する画素を抽出することができる。
According to the above-described third embodiment, the following action and effect can be obtained in addition to the action and effect obtained by the first and second embodiments.
(1) In the image generation device 3 of the present embodiment, the pixel extraction unit 600 performs the selected pixel setting process on the plurality of start point pixels Pxi1a to Pxi1d arranged in the connection regions 81a to 81d which are not connected to each other, by performing the above connection This is performed at a different time from the selected pixel setting process for the start point pixels Pxi2a to Pxi2a to d arranged in the connection regions 82a to 82d that are the start point arrangement region 80 excluding the regions 81a to 81d. Accordingly, even if the extraction target has a complicated structure, it is possible to quickly extract the pixel corresponding to the extraction target without lowering the accuracy.
(2)本実施形態の画像生成装置3において、連結領域81a~dの間隔は、抽出対象の線状部分の長さに基づいて設定される。これにより、抽出対象の線状部分の特性に合わせ、適切な連結領域81a~dの間隔Miを設定することができ、より迅速に抽出対象に対応する画素を抽出することができる。 (2) In the image generation device 3 of the present embodiment, the interval between the connected regions 81a to 81d is set based on the length of the linear portion to be extracted. This makes it possible to set an appropriate interval Mi between the connected regions 81a to 81d in accordance with the characteristics of the linear portion to be extracted, and it is possible to more quickly extract the pixel corresponding to the extraction target.
 次のような変形も本発明の範囲内であり、上述の実施形態と組み合わせることが可能である。
(変形例1)
 上述の実施形態では、図30の第1始点配置領域81および第2始点配置領域82のように連結領域81a~dおよび82a~dを設定したが、連結領域の形状や大きさは、連結領域同士の間が少なくとも最小連結領域間隔M離れていれば特に限定されない。
The following modifications are also within the scope of the present invention, and can be combined with the above-described embodiment.
(Modification 1)
In the above-described embodiment, the connection regions 81a to 81d and 82a to d are set like the first start point arrangement region 81 and the second start point arrangement region 82 in FIG. 30, but the shape and size of the connection region is different. There is no particular limitation as long as they are separated from each other by at least the minimum connection region interval M.
 図33は、連結領域の一例を示す概念図である。確率分布画像Gpには、それぞれ異なる時間の選択画素設定処理に対応する第3始点配置領域83および第4始点配置領域84が始点配置領域80として設定されている。第3始点配置領域83は、確率分布画像Gpの四隅に配置された矩形の連結領域83a、83b、83cおよび83dと、確率分布画像Gpの中心から点対称に広がる十字の形状をした連結領域83eとを備える。第4始点配置領域84は、連結領域83a、83b、83cおよび83dのそれぞれと、連結領域83eとの間に位置するL字状または回転されたL字の形状の連結領域84a、84b、84cおよび84dを備える。 FIG. 33 is a conceptual diagram showing an example of a connected area. In the probability distribution image Gp, the third start point arrangement area 83 and the fourth start point arrangement area 84 corresponding to the selected pixel setting processing at different times are set as the start point arrangement area 80. The third starting point arrangement area 83 includes rectangular connection areas 83a, 83b, 83c, and 83d arranged at the four corners of the probability distribution image Gp, and a cross-shaped connection area 83e that extends point-symmetrically from the center of the probability distribution image Gp. With. The fourth starting point arrangement area 84 is an L-shaped or rotated L-shaped connection area 84a, 84b, 84c located between each of the connection areas 83a, 83b, 83c and 83d and the connection area 83e. 84d.
 連結領域83a、83b、83cおよび83dのそれぞれと、連結領域83eとの間隔Mi2、および、上下および左右に隣り合う連結領域84a、84b、84cおよび84dの間の間隔Mi1は、抽出対象の線状部分の長さに基づき、最小連結領域間隔Mよりも大きく設定される。
 なお、細胞Ceの密集度合を例えば細胞体Soの密度等により公知の方法等を用いて検出し、密集している領域が一つの連結領域に入るように、同時並行して選択画素設定処理が行われる複数の連結領域同士の間隔を設定してもよい。これにより、並列処理を効率よく行うことができる。
The spacing Mi2 between each of the coupling regions 83a, 83b, 83c, and 83d and the coupling region 83e, and the spacing Mi1 between the coupling regions 84a, 84b, 84c, and 84d that are vertically and horizontally adjacent to each other are the extraction target linear shape. Based on the length of the portion, it is set to be larger than the minimum connected region interval M.
It should be noted that the density of the cells Ce is detected by a known method such as the density of the cell bodies So, and the selected pixel setting processing is performed in parallel at the same time so that the dense areas fit into one connected area. You may set the space|interval of the some connection area performed. Thereby, parallel processing can be efficiently performed.
(変形例2)
 上述の実施形態では、画素抽出部600は、ダイクストラ法に基づいて抽出画素Pxeの抽出を行ったが、Astarアルゴリズムにより抽出画素Pxeの抽出を行ってもよい。Astarアルゴリズムでは選択画素Pxdを設定する際、候補画素Pxcと終点画素Pxtとの間の距離を利用して選択画素Pxdを設定する点が上述の方法とは異なる。
(Modification 2)
In the above-described embodiment, the pixel extraction unit 600 extracts the extracted pixel Pxe based on the Dijkstra method, but the extracted pixel Pxe may be extracted by the Astar algorithm. The Astar algorithm differs from the above-described method in that when the selection pixel Pxd is set, the selection pixel Pxd is set using the distance between the candidate pixel Pxc and the end point pixel Pxt.
(変形例3)
 上述の実施形態では、画素抽出部600は、ダイクストラ法に基づいて抽出画素Pxeの抽出を行ったが、クラスカル法等の最小全域木(MST;Minimum Spanning Tree)を求める手法を利用して抽出画素Pxeの抽出を行ってもよい。
(Modification 3)
In the above-described embodiment, the pixel extraction unit 600 extracts the extracted pixels Pxe based on the Dijkstra method. Pxe may be extracted.
(変形例4)
 上述の実施形態では、画素抽出部600は、ダイクストラ法に基づいて抽出画素Pxdの抽出を行った。しかし、画素の組合せごとに所定のパラメータ(以下、エネルギーと呼ぶ)を定義し、所定の条件の下で、エネルギーが最大または最小になるような複数の画素の組合せを抽出画素Pxeとして算出してもよい。
(Modification 4)
In the above-described embodiment, the pixel extraction unit 600 extracts the extracted pixel Pxd based on the Dijkstra method. However, a predetermined parameter (hereinafter referred to as energy) is defined for each pixel combination, and a combination of a plurality of pixels that maximizes or minimizes energy is calculated as the extracted pixel Pxe under a predetermined condition. Good.
 確率分布画像Gpの各画素について、抽出画素Pxeとして抽出される場合を1、抽出画素Pxeとして抽出されない場合を0の数値に対応させるものとする。この場合、確率分布画像Gpが100個の画素からなるとすると、複数の抽出画素Pxeの画素列の抽出は、2の100乗の組合せから適切な組み合わせを探索することに相当する。 For each pixel of the probability distribution image Gp, a value of 1 is extracted when the pixel is extracted as the extracted pixel Pxe, and a value of 0 is associated when it is not extracted as the extracted pixel Pxe. In this case, assuming that the probability distribution image Gp is composed of 100 pixels, the extraction of the pixel row of the plurality of extraction pixels Pxe corresponds to searching for an appropriate combination from 2 100 combinations.
 抽出画素Pxeとして抽出されるか否かについて、複数の画素間の相関を考慮しないものとする。この場合は、確率分布画像Gpにおけるi番目の画素のエネルギーをeiとして、抽出画素Pxeのエネルギーeiの和が最大値または最小値等の最適化された値になるような組合せを算出すればよい。例えば、エネルギーが画素の輝度値である場合には、エネルギーの和が最大値となる画素の組合せを算出すればよい。輝度値の逆数をエネルギーとする場合や、画像が白黒反転している場合には、エネルギーの和が最小値となる組合せを算出すればよい。このような最適化にあたっては、適宜、始点と終点との連結性等に基づいた制約を示す条件を加えてもよい。以下の複数の画素間の相関を考慮する場合も同様である。 Regarding whether to be extracted as the extracted pixel Pxe, the correlation between a plurality of pixels is not considered. In this case, the energy of the i-th pixel in the probability distribution image Gp is set to ei, and a combination such that the sum of the energy ei of the extracted pixel Pxe becomes an optimized value such as a maximum value or a minimum value may be calculated. .. For example, when the energy is the brightness value of the pixel, the combination of pixels in which the sum of the energy has the maximum value may be calculated. When the reciprocal of the brightness value is used as energy, or when the image is inverted in black and white, the combination with the minimum energy sum may be calculated. In such optimization, a condition indicating a constraint based on the connectivity between the start point and the end point may be added as appropriate. The same applies when considering the correlation between a plurality of pixels below.
 抽出画素Pxeとして抽出されるか否かについて、複数の画素間の相関を考慮するものとする。この場合は、確率分布画像Gpにおけるi番目の画素とj番目の画素が共に抽出画素Pxeであることについてのエネルギーをeijとして、抽出画素Pxeの組合せに含まれる画素の任意のペアにおけるエネルギーeijの和が最大値または最小値等の最適化された値になるような組合せを算出すればよい。 The correlation between multiple pixels shall be taken into consideration regarding whether or not to be extracted as the extracted pixel Pxe. In this case, the energy for both the i-th pixel and the j-th pixel in the probability distribution image Gp being the extracted pixel Pxe is eij, and the energy eij of any pair of pixels included in the combination of the extracted pixels Pxe is It suffices to calculate a combination in which the sum is an optimized value such as a maximum value or a minimum value.
(変形例5)
 上述の実施形態では、第1選択画素設定処理と、第2選択画素設定処理とを交互に行うものとした。しかし、第1選択画素設定処理または第2選択画素設定処理を連続して行ったり、所定の条件に基づいていずれかを行う構成にしてもよい。本変形例では、各候補領域Fcに対応する神経突起の長さに基づいて、第1始点配置領域81および第2始点配置領域82のいずれかを選択し、選択された領域における選択画素設定処理を行い、抽出画素Pxeを抽出する。本変形例に係る画像生成方法の流れは、第3実施形態の図31のフローチャートで示された流れと同様であるが、ステップS4011に対応する部分が異なる。
(Modification 5)
In the above-described embodiment, the first selection pixel setting process and the second selection pixel setting process are alternately performed. However, the first selection pixel setting process or the second selection pixel setting process may be continuously performed, or any one of them may be configured to be performed based on a predetermined condition. In the present modification, either the first start point arrangement area 81 or the second start point arrangement area 82 is selected based on the length of the neurite corresponding to each candidate area Fc, and the selected pixel setting process in the selected area is performed. Then, the extraction pixel Pxe is extracted. The flow of the image generation method according to this modification is the same as the flow shown in the flowchart of FIG. 31 of the third embodiment, but the part corresponding to step S4011 is different.
 図34は、本変形例において、図31のフローチャートにおけるステップS4011に対応する部分の流れを示すフローチャートである。ステップS4009(図31)が終了したら、ステップS601が開始される。ステップS601において、データ処理部51eは、各候補領域Fcについて、対応する神経突起Nrの長さについての情報を取得する。データ処理部51eは、確率分布画像Gpを解析して得られた各画素領域断片F(図3)に対応する神経突起Nrの長さを、候補領域Fcに対応する神経突起Nrの長さとして取得する。候補領域Fcに対応する神経突起Nrの長さの算出方法は特に限定されない。ステップS601が終了したら、ステップS602が開始される。 FIG. 34 is a flowchart showing the flow of the part corresponding to step S4011 in the flowchart of FIG. 31, in the present modification. When step S4009 (FIG. 31) is completed, step S601 is started. In step S601, the data processing unit 51e acquires, for each candidate region Fc, information about the length of the corresponding neurite Nr. The data processing unit 51e uses the length of the neurite Nr corresponding to each pixel region fragment F (FIG. 3) obtained by analyzing the probability distribution image Gp as the length of the neurite Nr corresponding to the candidate region Fc. get. The method of calculating the length of the neurite Nr corresponding to the candidate region Fc is not particularly limited. When step S601 ends, step S602 starts.
 ステップS602において、画素抽出部600は、仮に始点画素Pxiを設定した場合に、第1始点配置領域81および第2始点配置領域82のうち、最も長い神経突起に対応する始点画素Pxiが含まれる領域を選択する。ステップS602が終了したら、ステップS603が開始される。ステップS603において、始点画素設定部514が、ステップS602で選択された領域において設定され得る始点画素Pxiのうち少なくとも一部を設定し、選択画素設定部602が複数の選択画素Pxdを設定し、画素抽出部600が抽出画素Pxeを抽出し、領域設定部512aが連結画素領域Dcを設定する。例えば、始点画素設定部514は、上記選択された領域における各連結領域において、ステップS601で取得された情報に基づき最も長い神経突起に対応する始点画素Pxiを設定することができる。ステップS603が終了したら、ステップS604が開始される。 In step S602, the pixel extraction unit 600, if the starting point pixel Pxi is set, the area including the starting point pixel Pxi corresponding to the longest neurite in the first starting point arrangement area 81 and the second starting point arrangement area 82. Select. When step S602 ends, step S603 starts. In step S603, the starting point pixel setting unit 514 sets at least a part of the starting point pixels Pxi that can be set in the region selected in step S602, and the selected pixel setting unit 602 sets a plurality of selected pixels Pxd, The extraction unit 600 extracts the extracted pixel Pxe, and the region setting unit 512a sets the connected pixel region Dc. For example, the starting point pixel setting unit 514 can set the starting point pixel Pxi corresponding to the longest neurite in each connected region in the selected region based on the information acquired in step S601. When step S603 ends, step S604 starts.
 ステップS604は図32のフローチャートのステップS505と同一であるため、説明を省略する。ステップS604が終了したら、ステップS605が開始される。ステップS605において、画素抽出部600は、候補領域Fcがまだ残っているか否かを判定する。候補領域Fcがまだ残っている場合、画素抽出部600は、ステップS605を肯定判定してステップS602に戻る。候補領域Fcが残っていない場合、画素抽出部600は、ステップS605を否定判定してステップS606が開始される。ステップS606は、ステップS511と同一であるため説明を省略する。ステップS606が終了したら、処理が終了される。 Since step S604 is the same as step S505 in the flowchart of FIG. 32, description thereof will be omitted. When step S604 ends, step S605 starts. In step S605, the pixel extraction unit 600 determines whether the candidate area Fc still remains. If the candidate region Fc still remains, the pixel extraction unit 600 makes an affirmative decision in step S605 and returns to step S602. When no candidate region Fc remains, the pixel extraction unit 600 makes a negative determination in step S605 and starts step S606. Since step S606 is the same as step S511, description thereof will be omitted. When step S606 ends, the process ends.
 本変形例の画像生成方法では、第1始点配置領域81または第2始点配置領域82、または連結領域81a~d,82a~dに含まれる各始点画素Pxiに対応する神経突起Nrの長さに基づいて、選択画素設定処理を行う順番が設定される。これにより、予め得られた神経突起Nrの長さに基づいて、所望の順番で効率的に画素の抽出を行うことができる。 In the image generation method of the present modification, the length of the neurite Nr corresponding to each of the start point pixels Pxi included in the first start point arrangement area 81 or the second start point arrangement area 82, or the connection areas 81a to d, 82a to d is set. Based on this, the order in which the selected pixel setting process is performed is set. Thereby, it is possible to efficiently extract pixels in a desired order based on the length of the neurite Nr obtained in advance.
(変形例6)
 上述の実施形態の情報処理装置40の情報処理機能を実現するためのプログラムをコンピュータにより読み取り可能な記録媒体に記録して、この記録媒体に記録された、上述した選択画素Pxdの設定および抽出画素Pxeの抽出や連結画素領域Dcの設定等のデータ処理部51、51a、51b、51c、51dおよび51eによる処理等に関するプログラムをコンピュータシステムに読み込ませ、実行させてもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含んでもよい。また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。
(Modification 6)
A program for realizing the information processing function of the information processing apparatus 40 of the above-described embodiment is recorded in a computer-readable recording medium, and the setting of the selected pixel Pxd and the extracted pixel recorded in the recording medium are performed. A computer system may be caused to read and execute a program relating to processing by the data processing units 51, 51a, 51b, 51c, 51d and 51e such as Pxe extraction and setting of the connected pixel region Dc. The “computer system” mentioned here includes an OS (Operating System) and hardware of peripheral devices. The "computer-readable recording medium" refers to a portable recording medium such as a flexible disk, a magneto-optical disk, an optical disk, a memory card, or a storage device such as a hard disk built in a computer system. Further, the "computer-readable recording medium" means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside the computer system that serves as a server or a client in that case may hold a program for a certain period of time. Further, the above program may be for realizing a part of the above-described functions, and may be for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
 また、パーソナルコンピュータ(以下、PCと呼ぶ)等に適用する場合、上述した制御に関するプログラムは、CD-ROMなどの記録媒体やインターネット等のデータ信号を通じて提供することができる。図34はその様子を示す図である。PC950は、CD-ROM953を介してプログラムの提供を受ける。また、PC950は通信回線951との接続機能を有する。コンピュータ952は上記プログラムを提供するサーバーコンピュータであり、ハードディスク等の記録媒体にプログラムを格納する。通信回線951は、インターネット、パソコン通信などの通信回線、あるいは専用通信回線などである。コンピュータ952はハードディスクを使用してプログラムを読み出し、通信回線951を介してプログラムをPC950に送信する。すなわち、プログラムをデータ信号として搬送波により搬送して、通信回線951を介して送信する。このように、プログラムは、記録媒体や搬送波などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給できる。 When applied to a personal computer (hereinafter referred to as a PC) or the like, the above-mentioned control-related program can be provided through a recording medium such as a CD-ROM or a data signal such as the Internet. FIG. 34 is a diagram showing this state. The PC 950 receives the program provided via the CD-ROM 953. Further, the PC 950 has a function of connecting to the communication line 951. The computer 952 is a server computer that provides the above program, and stores the program in a recording medium such as a hard disk. The communication line 951 is the Internet, a communication line for personal computer communication, or a dedicated communication line. The computer 952 reads the program using the hard disk and transmits the program to the PC 950 via the communication line 951. That is, the program is carried as a data signal by a carrier wave and transmitted through the communication line 951. As described above, the program can be supplied as a computer-readable computer program product in various forms such as a recording medium and a carrier wave.
 上述した情報処理機能を実現するためのプログラムとして、確率分布画像Gpを構成する複数の画素から始点画素Pxiを設定する始点画素設定処理(図11のフローチャートのステップS1009に対応)と、前記複数の画素のうち始点画素Pxiを除く複数の画素から複数の候補画素Pxcを指定し、複数の候補画素Pxcから選択画素Pxdを設定する画素抽出処理(S1011に対応)と、を処理装置に行わせるためのプログラムであって、複数の候補画素Pxcは、始点画素Pxiから少なくとも2画素離れているプログラムが含まれる。これにより、精度の悪化を抑制しつつ、迅速に抽出対象に対応する画素を抽出する処理を実現することができる。 As a program for realizing the above-described information processing function, a start point pixel setting process (corresponding to step S1009 in the flowchart of FIG. 11) of setting a start point pixel Pxi from a plurality of pixels forming the probability distribution image Gp, and the plurality of To cause the processing device to perform a pixel extraction process (corresponding to S1011) of designating a plurality of candidate pixels Pxc from a plurality of pixels excluding the start point pixel Pxi among the pixels and setting a selection pixel Pxd from the plurality of candidate pixels Pxc. Of the plurality of candidate pixels Pxc are included in the program of at least two pixels from the starting point pixel Pxi. With this, it is possible to realize the process of quickly extracting the pixel corresponding to the extraction target while suppressing the deterioration of accuracy.
 本発明は上記実施形態の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The present invention is not limited to the contents of the above embodiment. Other modes that are conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特願2019-005373号(2019年1月16日出願)
The disclosure content of the following priority basic application is incorporated herein by reference.
Japanese Patent Application No. 2019-005373 (filed on January 16, 2019)
 1,2,3…画像生成装置、10…培養器、20…撮像部、40…情報処理部、43…記憶部、44…出力部、50,50a…制御部、51,51a,51b,51c,51d,51e…データ処理部、80…始点配置領域、81…第1始点配置領域、82…第2始点配置領域、83…第3始点配置領域、84…第4始点配置領域、81a,81b,81c,81d,82a,82b,82c,82d,83a,83b,83c,83d,83e,84a,84b,84c,84d…連結領域、90…候補画素配置領域、100…培養部、511…確率分布画像生成部、512,512a…領域設定部、513…終点画素設定部、514…始点画素設定部、515…信頼度算出部、516…判定部、517…候補・確定領域設定部、518…追尾部、519…交叉判定部、520…幅算出部、600…画素抽出部、601…候補画素指定部、602…選択画素設定部、700…画像生成部、Ce…細胞、D1…探索領域、Dc,Dc12,Dc21,Dc22,Dc3,Dc31,Dc32,Dc1a,Dc1b,Dc1c,Dc1d,Dc2a,Dc2b,Dc2c,Dc2d…連結画素領域、Ds…算出画素領域、F,F1,F2,F3,F4…画素領域断片、Fc,Fc1,Fc2,Fc3,Fc4,Fc5,Fc6,Fc7,Fc8,Fc21,Fc22,Fc23,Fc24,Fc31,Fc32,Fc33,Fc34,Fc35,Fc36…候補領域、Fd,Fd1,Fd2…確定領域、Gc…候補領域画像、Gd…確定領域画像、Gp…確率分布画像、Gs…連結領域画像、J1,J2…交叉、M…最小連結領域間隔、Nr,Nr1,Nr2,Nr3,Nr4…神経突起、Pxc,Pxc1…候補画素、Pxd,Pxd0,Pxd1,Pxd2…選択画素、Pxe,Pxe1…抽出画素、Pxi,Pxi1,Pxi2,Pxi1a,Pxi1b,Pxi1c,Pxi1d,Pxi2a,Pxi2b,Pxi2c,Pxi2d…始点画素、Pxs,Pxs1,Pxs2…算出画素、Pxt…終点画素、So,So1,So2,So1a,So1b,So1c,So1d,So2a,So2b,So2c,So2d…細胞体、T…入力点、W,Wd…神経突起の幅。 1, 2, 3,... Image generating device, 10... Incubator, 20... Imaging unit, 40... Information processing unit, 43... Storage unit, 44... Output unit, 50, 50a... Control unit, 51, 51a, 51b, 51c , 51d, 51e... Data processing unit, 80... Start point arrangement area, 81... First start point arrangement area, 82... Second start point arrangement area, 83... Third start point arrangement area, 84... Fourth start point arrangement area, 81a, 81b , 81c, 81d, 82a, 82b, 82c, 82d, 83a, 83b, 83c, 83d, 83e, 84a, 84b, 84c, 84d... Connection region, 90... Candidate pixel arrangement region, 100... Culture part, 511... Probability distribution Image generation unit, 512, 512a... Region setting unit, 513... End point pixel setting unit, 514... Starting point pixel setting unit, 515... Reliability calculation unit, 516... Judgment unit, 517... Candidate/determined region setting unit, 518... Tracking Reference numeral 519... Crossover determination portion, 520... Width calculation portion, 600... Pixel extraction portion, 601... Candidate pixel designation portion, 602... Selected pixel setting portion, 700... Image generation portion, Ce... Cell, D1... Search area, Dc , Dc12, Dc21, Dc22, Dc3, Dc31, Dc32, Dc1a, Dc1b, Dc1c, Dc1d, Dc2a, Dc2b, Dc2c, Dc2d... Connected pixel region, Ds... Calculation pixel region, F, F1, F2, F3, F4... Pixel Region fragments, Fc, Fc1, Fc2, Fc3, Fc4, Fc5, Fc6, Fc7, Fc8, Fc21, Fc22, Fc23, Fc24, Fc31, Fc32, Fc33, Fc34, Fc35, Fc36... Candidate regions, Fd, Fd1, Fd2... Definite area, Gc... Candidate area image, Gd... Definite area image, Gp... Probability distribution image, Gs... Connected area image, J1, J2... Crossover, M... Minimum connected area interval, Nr, Nr1, Nr2, Nr3, Nr4... Neurites, Pxc, Pxc1... Candidate pixels, Pxd, Pxd0, Pxd1, Pxd2... Selected pixels, Pxe, Pxe1... Extraction pixels, Pxi, Pxi1, Pxi2, Pxi1a, Pxi1b, Pxi1c, Pxi1d, Pxi2a, Pxi2c, Pxi2b, Pxi2b, Pxi2b, Pxi2b. Start point pixel, Pxs, Pxs1, Pxs2... Calculation pixel, Pxt... End point pixel, So, So1, So2, So1a, So1b, So1c, So1d, So2a, So2b, So2c, So2d... Cell body, T... Input point, W, Wd ...Width of the neurite.

Claims (20)

  1.  画像において断片化された細胞領域をつないで細胞を抽出する画像処理装置であって、
     前記画像の中から断片化された細胞領域を取得する取得部と、
     前記断片化された細胞領域において第1画素を設定する第1画素設定部と、
     前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する抽出部と、
     を備える画像処理装置。
    An image processing device for extracting cells by connecting fragmented cell regions in an image,
    An acquisition unit that acquires a fragmented cell region from the image,
    A first pixel setting unit that sets a first pixel in the fragmented cell region;
    A plurality of pixel groups are set based on the position of the first pixel, a second pixel is selected based on a luminance value of pixels included in the plurality of pixel groups, and then the first pixel and the second pixel are selected. An extraction unit that connects cells to extract cells,
    An image processing apparatus including.
  2.  請求項1に記載の画像処理装置において、
     前記抽出部は、
     (a)前記複数の画素群として、前記第1画素を中心に所定の画素数離間した候補画素群を設定し、前記候補画素群に含まれる画素の輝度値に基づいて、前記候補画素群から前記第2画素を選択し、(b)前記第2画素を中心に所定の画素数離間し、前記第1画素および前記第2画素を除く複数の画素を新たな候補画素群として設定し、前記新たな候補画素群に含まれる画素の輝度値に基づいて、前記新たな候補画素群から新たな第2画素を選択し、(c)前記(b)における前記新たな第2画素選択を繰り返し実行して複数の新たな第2画素を順次選択し、次いで、(d)前記複数の新たな第2画素をつないで細胞を抽出する、画像処理装置。
    The image processing apparatus according to claim 1,
    The extraction unit is
    (A) As the plurality of pixel groups, a candidate pixel group that is separated from the first pixel by a predetermined number of pixels is set, and based on the brightness value of the pixels included in the candidate pixel group, Selecting the second pixel, (b) spacing a predetermined number of pixels around the second pixel, and setting a plurality of pixels excluding the first pixel and the second pixel as a new candidate pixel group, A new second pixel is selected from the new candidate pixel group based on the brightness values of the pixels included in the new candidate pixel group, and (c) the new second pixel selection in (b) is repeatedly executed. Then, the plurality of new second pixels are sequentially selected, and then (d) the plurality of new second pixels are connected to extract a cell.
  3.  請求項2に記載の画像処理装置において、
     前記抽出部は、少なくとも一つの終点画素を設定する終点画素設定部を備え、前記終点画素の位置に基づいて、前記(c)処理が終了される終了条件を設定し、
     前記抽出部が設定する前記候補画素群または設定された前記第2画素が前記終点画素の少なくとも一つに対応する場合、または、複数の前記候補画素群からの前記第2画素の設定が所定の回数行われた場合、前記終了条件が満たされたものとして前記(c)処理を終了する画像処理装置。
    The image processing apparatus according to claim 2,
    The extraction unit includes an end point pixel setting unit that sets at least one end point pixel, and sets an end condition for ending the process (c) based on the position of the end point pixel,
    When the candidate pixel group set by the extraction unit or the set second pixel corresponds to at least one of the end point pixels, or the setting of the second pixel from a plurality of the candidate pixel groups is predetermined. The image processing apparatus ends the process (c), assuming that the end condition is satisfied when the process is performed a number of times.
  4.  請求項2または3に記載の画像処理装置において、
     前記抽出部は、
     前記複数の候補画素群が設定されるときに除かれた前記第1画素および前記第2画素である除外画素と、前記複数の候補画素群との位置に基づいて複数の第3画素を設定し、前記第3画素の輝度値に基づいて、複数の前記候補画素群から新たな第2画素を選択し、当該処理により得られた複数の前記第2画素の少なくとも一部を抽出画素として抽出する画像処理装置。
    The image processing apparatus according to claim 2 or 3,
    The extraction unit is
    A plurality of third pixels are set based on positions of the first pixel and the second pixel, which are excluded when the plurality of candidate pixel groups are set, and the plurality of candidate pixel groups. , A new second pixel is selected from the plurality of candidate pixel groups based on the luminance value of the third pixel, and at least a part of the plurality of second pixels obtained by the processing is extracted as an extraction pixel. Image processing device.
  5.  請求項4に記載の画像処理装置において、
     前記画像の中から少なくとも、前記抽出画素を含む第1画素領域を設定する領域設定部を備える画像処理装置。
    The image processing apparatus according to claim 4,
    An image processing apparatus comprising: an area setting unit that sets at least a first pixel area including the extracted pixel in the image.
  6.  請求項5に記載の画像処理装置において、
     前記抽出部は、前記複数の第3画素の輝度に基づいて、それぞれの前記候補画素ごとに第1の値を算出し、前記第1の値に基づいて複数の前記候補画素群から前記第2画素を選択する画像処理装置。
    The image processing apparatus according to claim 5,
    The extraction unit calculates a first value for each of the candidate pixels based on the brightness of the plurality of third pixels, and calculates a second value from the plurality of candidate pixel groups based on the first value. An image processing device for selecting pixels.
  7.  請求項6に記載の画像処理装置において、
     前記複数の第3画素は、前記除外画素と前記候補画素群とを結ぶ線上に位置する画素を中心とした範囲の画素である画像処理装置。
    The image processing apparatus according to claim 6,
    The image processing device, wherein the plurality of third pixels are pixels in a range centered on a pixel located on a line connecting the exclusion pixel and the candidate pixel group.
  8.  請求項6または7に記載の画像処理装置において、
     前記複数の第2画素が複数の前記候補画素群から選択された際の当該候補画素群に対応する前記第1の値に基づいて、前記(c)処理により選択された複数の前記第2画素の少なくとも一部を抽出する画像処理装置。
    The image processing apparatus according to claim 6,
    Based on the first value corresponding to the candidate pixel group when the plurality of second pixels are selected from the plurality of candidate pixel groups, the plurality of second pixels selected by the (c) processing Image processing apparatus for extracting at least a part of the image.
  9.  請求項6から8までのいずれか一項に記載の画像処理装置において、
     前記複数の第2画素が複数の前記候補画素群から設定された際の当該第2画素に対応する前記第1の値に基づいて、前記(c)処理により選択された複数の前記第2画素の少なくとも一部が抽出対象に対応しているかについての信頼度を算出する信頼度算出部を備える画像処理装置。
    The image processing device according to any one of claims 6 to 8,
    Based on the first value corresponding to the second pixel when the plurality of second pixels are set from the plurality of candidate pixel groups, the plurality of second pixels selected by the (c) processing An image processing apparatus including a reliability calculation unit that calculates a reliability as to whether at least a part of the above corresponds to an extraction target.
  10.  請求項5から9までのいずれか一項に記載の画像処理装置において、
     前記画像は、撮像により得られた画像の各画素について、学習済みの機械学習を用いて前記細胞に対応する画素である確率を算出し、前記確率に基づいた輝度を対応させた画像である画像処理装置。
    The image processing apparatus according to any one of claims 5 to 9,
    The image is an image in which, for each pixel of the image obtained by imaging, the probability of being a pixel corresponding to the cell is calculated by using learned machine learning, and luminance is made to correspond to the probability based on the probability. Processing equipment.
  11.  請求項5から10までのいずれか一項に記載の画像処理装置において、
     選択された前記複数の第2画素を含む領域を記憶する記憶部を備え、
     前記領域設定部は、前記記憶部が前記複数の第2画素を含む領域を記憶したのち、前記画像から新たな複数の第2画素を抽出するための探索領域を設定する画像処理装置。
    The image processing apparatus according to any one of claims 5 to 10,
    A storage unit that stores an area including the selected second pixels,
    The image setting device, wherein the area setting unit sets a search area for extracting a plurality of new second pixels from the image after the storage unit stores the area including the plurality of second pixels.
  12.  請求項5から11までのいずれか一項に記載の画像処理装置において、
     前記抽出部は、前記第1画素領域の少なくとも一部を前記終点画素として前記(c)処理を行う画像処理装置。
    The image processing device according to any one of claims 5 to 11,
    The image processing apparatus, wherein the extraction unit performs the process (c) by using at least a part of the first pixel area as the end point pixel.
  13.  請求項5から12までのいずれか一項に記載の画像処理装置において、
     前記第1画素領域を構成するである要素画素群は、少なくとも2画素以上の正方形の領域であり、
     前記要素画素群の外周部の画素に前記第2画素の少なくとも一部が配置される画像処理装置。
    The image processing device according to any one of claims 5 to 12,
    The element pixel group constituting the first pixel area is a square area having at least two pixels,
    An image processing device in which at least a part of the second pixel is arranged in pixels on the outer periphery of the element pixel group.
  14.  請求項5から13までのいずれか一項に記載の画像処理装置において、
     前記終点画素は、互いに連結されていない複数の画素または画素領域を備え、
     前記抽出部は、抽出対象の線状部分の交叉を検出する第1交叉検出部を備える画像処理装置。
    The image processing device according to any one of claims 5 to 13,
    The end point pixel includes a plurality of pixels or pixel regions that are not connected to each other,
    The image processing apparatus, wherein the extraction unit includes a first intersection detection unit that detects an intersection of the linear portions to be extracted.
  15.   請求項5から14までのいずれか一項に記載の画像処理装置において、
      前記抽出部は、前記領域設定部によって設定された前記複数の抽出画素を含む領域を前記記憶部に記憶させたのちに除外し、再度前記(c)処理を行い、抽出対象の線状部分の交叉を検出する第2交叉検出部を備える画像処理装置。
    The image processing apparatus according to any one of claims 5 to 14,
    The extraction unit stores an area including the plurality of extracted pixels set by the area setting unit in the storage unit, and then excludes the area, and again performs the process (c) to extract the linear portion to be extracted. An image processing apparatus comprising a second crossover detection unit that detects a crossover.
  16.  請求項5から15までのいずれか一項に記載の画像処理装置において、
     抽出対象の線状部分の幅を算出する幅算出部を備え、
     前記幅算出部は、前記第1画素領域における点に対応する前記第1画素領域の幅を、前記点を含み前記第1画素領域の内部に含まれる最大の円の直径により算出する画像処理装置。
    The image processing device according to any one of claims 5 to 15,
    A width calculation unit that calculates the width of the linear portion to be extracted is provided.
    The width calculation unit calculates the width of the first pixel area corresponding to a point in the first pixel area by the diameter of the largest circle included in the first pixel area including the point. ..
  17.  請求項16に記載の画像処理装置において、
     前記幅算出部は、前記第1画素領域における点に対応する前記第1画素領域の幅を、前記点を通る複数の線分において、前記第1画素領域に含まれる長さが最も短い場合の前記長さにより算出する画像処理装置。
    The image processing apparatus according to claim 16,
    The width calculation unit determines the width of the first pixel region corresponding to a point in the first pixel region when the length included in the first pixel region is the shortest in a plurality of line segments passing through the point. An image processing device that calculates the length.
  18.  請求項5から17までのいずれか一項に記載の画像処理装置において、
     前記抽出部は、互いに連結されていない複数の始点配置領域に配置された複数の前記第1画素についての前記(c)処理を、前記複数の始点配置領域を除く領域に配置された前記第1画素についての前記(c)処理とは異なる時間に行う画像処理装置。
    The image processing device according to any one of claims 5 to 17,
    The extraction unit may perform the (c) processing on the plurality of first pixels arranged in a plurality of start point arrangement areas that are not connected to each other, in the first area arranged in an area excluding the plurality of start point arrangement areas. An image processing apparatus that performs processing at a different time from the processing (c) for pixels.
  19.  画像において断片化された細胞領域をつないで細胞を抽出する画像処理方法であって、
     前記画像の中から断片化された細胞領域を取得する領域取得と、
     前記断片化された細胞領域において第1画素を設定する第1画素設定と、
     前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する画素抽出と、
     を含む画像処理方法。
    An image processing method for extracting cells by connecting fragmented cell regions in an image,
    Region acquisition to obtain a fragmented cell region from the image,
    A first pixel setting for setting a first pixel in the fragmented cell region;
    A plurality of pixel groups are set based on the position of the first pixel, a second pixel is selected based on a luminance value of pixels included in the plurality of pixel groups, and then the first pixel and the second pixel are selected. Pixel extraction to connect cells and extract cells,
    An image processing method including.
  20.  画像において断片化された細胞領域をつないで細胞を抽出するプログラムであって、
     前記画像の中から断片化された細胞領域を取得する取得処理と、
     前記断片化された細胞領域において第1画素を設定する第1画素設定処理と、
     前記第1画素の位置に基づいて複数の画素群を設定し、前記複数の画素群に含まれる画素の輝度値に基づいて第2画素を選択し、次いで、前記第1画素と前記第2画素とをつないで細胞を抽出する抽出処理と、
     を処理装置に行わせるプログラム。
    A program for extracting cells by connecting fragmented cell regions in an image,
    An acquisition process for acquiring a fragmented cell region from the image,
    A first pixel setting process for setting a first pixel in the fragmented cell region;
    A plurality of pixel groups are set based on the position of the first pixel, a second pixel is selected based on a luminance value of pixels included in the plurality of pixel groups, and then the first pixel and the second pixel are selected. An extraction process that connects cells to extract cells,
    A program that causes the processing device to perform.
PCT/JP2020/001354 2019-01-16 2020-01-16 Image processing device, image processing method, and program WO2020149376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-005373 2019-01-16
JP2019005373A JP7383880B2 (en) 2019-01-16 2019-01-16 Image generation device, imaging device, culture device, image generation method and program

Publications (1)

Publication Number Publication Date
WO2020149376A1 true WO2020149376A1 (en) 2020-07-23

Family

ID=71613342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001354 WO2020149376A1 (en) 2019-01-16 2020-01-16 Image processing device, image processing method, and program

Country Status (2)

Country Link
JP (1) JP7383880B2 (en)
WO (1) WO2020149376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598881B2 (en) * 2020-09-01 2023-03-07 Google Llc GNSS signal modeling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600161A (en) * 2019-09-10 2022-06-07 株式会社尼康 Image processing apparatus, image processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074486A1 (en) * 2006-11-22 2010-03-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V., A Corporation Of Germany Reconstruction and visualization of neuronal cell structures with bright-field mosaic microscopy
US20100119113A1 (en) * 2008-11-10 2010-05-13 Andreas Kuleschow Method and apparatus for detecting objects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438574B2 (en) 2009-08-26 2014-03-12 Juki株式会社 Image search method
JP5395722B2 (en) 2010-03-30 2014-01-22 大日本スクリーン製造株式会社 Line drawing processing apparatus, line drawing processing method and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074486A1 (en) * 2006-11-22 2010-03-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V., A Corporation Of Germany Reconstruction and visualization of neuronal cell structures with bright-field mosaic microscopy
US20100119113A1 (en) * 2008-11-10 2010-05-13 Andreas Kuleschow Method and apparatus for detecting objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598881B2 (en) * 2020-09-01 2023-03-07 Google Llc GNSS signal modeling

Also Published As

Publication number Publication date
JP2020113200A (en) 2020-07-27
JP7383880B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
Duggento et al. Deep computational pathology in breast cancer
JP2022527145A (en) Multiple instance Lana for predictive organizational pattern identification
Moles Lopez et al. An automated blur detection method for histological whole slide imaging
WO2020149376A1 (en) Image processing device, image processing method, and program
Heinemann et al. Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system
EP3624053B1 (en) Image analysis device
Smirnov et al. An open-source tool for analysis and automatic identification of dendritic spines using machine learning
Song et al. Artificial intelligence for digital and computational pathology
JP2012522312A (en) System and method for identifying biological material
D’Acunto et al. From human mesenchymal stromal cells to osteosarcoma cells classification by deep learning
Yuan et al. Phasetime: Deep learning approach to detect nuclei in time lapse phase images
Lin et al. Automatic cell counting for phase‐contrast microscopic images based on a combination of Otsu and watershed segmentation method
Hauke et al. A Focal Adhesion Filament Cross-correlation Kit for fast, automated segmentation and correlation of focal adhesions and actin stress fibers in cells
Haloi et al. Towards radiologist-level accurate deep learning system for pulmonary screening
Kim et al. High throughput screening of mesenchymal stem cell lines using deep learning
Niederlein et al. Image analysis in high content screening
Vorndran et al. A deep learning-based histopathology classifier for Focal Cortical Dysplasia
Burri et al. TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis
Cui et al. High throughput automatic muscle image segmentation using parallel framework
Cluet et al. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos
Rifkin Identifying fluorescently labeled single molecules in image stacks using machine learning
US20210350538A1 (en) Characterization platform for scalable, spatially-resolved multispectral analysis of tissue
Atwell et al. Label-free imaging of 3D pluripotent stem cell differentiation dynamics on chip
Yang et al. Investigating optimal time step intervals of imaging for data quality through a novel fully-automated cell tracking approach
Barch et al. A deep learning approach to neurite prediction in high throughput fluorescence imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741139

Country of ref document: EP

Kind code of ref document: A1