WO2020149097A1 - Dry powder and method for producing dry powder - Google Patents

Dry powder and method for producing dry powder Download PDF

Info

Publication number
WO2020149097A1
WO2020149097A1 PCT/JP2019/049909 JP2019049909W WO2020149097A1 WO 2020149097 A1 WO2020149097 A1 WO 2020149097A1 JP 2019049909 W JP2019049909 W JP 2019049909W WO 2020149097 A1 WO2020149097 A1 WO 2020149097A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
dry powder
polymer
tetrafluoroethylene
tfe
Prior art date
Application number
PCT/JP2019/049909
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020566168A priority Critical patent/JP7334747B2/en
Publication of WO2020149097A1 publication Critical patent/WO2020149097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a predetermined dry powder and a manufacturing method thereof.
  • Powders of tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and perfluoro(alkyl vinyl ether) (PFA), copolymers of tetrafluoroethylene and hexafluoropropylene (FEP) It has excellent physical properties such as properties, electrical characteristics, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and is used for various industrial applications.
  • PTFE polytetrafluoroethylene
  • PFA perfluoro(alkyl vinyl ether)
  • FEP hexafluoropropylene
  • the obtained powder has low homogeneity and its molding processability and physical properties of molded articles are low. There is a problem that it is not enough. There is also a problem that when the mechanical stress in the blend is increased, the polymer is deteriorated and the handling property thereof is likely to be lowered. Further, in the method of heat treatment, there is also a problem that unless the heat treatment conditions, particularly the cooling after heating, are strictly controlled, the polymer is likely to be significantly deteriorated.
  • the method by co-coagulation the method by freeze-drying or the method by spray-drying described in the prior art document, factors such as the type of polymer, its combination, the state of dispersion liquid (polymer concentration, state of powder, etc.), etc.
  • the present inventors have found that the physical properties of the obtained powder are greatly affected. For example, it has been found that the powder obtained by the method by co-coagulation has improved moldability, but has low adhesiveness to the substrate.
  • a blend of different tetrafluoroethylene-based polymer powders using a tetrafluoroethylene-based polymer powder having an oxygen-containing polar group, and the physical properties of the blended powder are not known.
  • the present inventors have studied blending of powders of different types of tetrafluoroethylene-based polymers using powders of tetrafluoroethylene-based polymers having an oxygen-containing polar group, which have not been known so far. As a result, a powder that forms a molded article having excellent extrusion moldability, stretch moldability, and adhesiveness without impairing the physical properties of each polymer, and a highly adhesive powder suitable for electrostatic coating were obtained. ..
  • the present invention is a blend powder of different tetrafluoroethylene-based polymer powders using a tetrafluoroethylene-based polymer powder having an oxygen-containing polar group, wherein the physical properties of each polymer are highly expressed dry powders. For the purpose of provision.
  • the present invention provides the following inventions.
  • ⁇ 1> A dry powder containing a fluoropolymer having a unit based on tetrafluoroethylene and an oxygen-containing polar group, and a tetrafluoroethylene-based polymer.
  • ⁇ 2> The dry powder according to ⁇ 1> above, wherein the fluoropolymer has a melting temperature of 140 to 320° C.
  • ⁇ 3> The dry powder according to ⁇ 1> or ⁇ 2>, in which the fluoropolymer includes a unit based on the monomer having the oxygen-containing polar group.
  • the tetrafluoroethylene-based polymer is polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), a copolymer of tetrafluoroethylene and hexafluoropropylene, a copolymer of tetrafluoroethylene and ethylene, or
  • ⁇ 6> The dry powder according to any one of the above items ⁇ 1> to ⁇ 5>, wherein the tetrafluoroethylene-based polymer is polytetrafluoroethylene.
  • ⁇ 7> The dry powder according to any one of the above items ⁇ 1> to ⁇ 6>, wherein the ratio of the content mass of the fluoropolymer to the content mass of the tetrafluoroethylene-based polymer is 0.4 or less.
  • a method for producing a dry powder which comprises co-coagulating the first powder and the second powder in a dispersion to obtain a wet powder, and drying the wet powder to obtain the dry powder.
  • a method for producing a dry powder wherein the dispersion liquid is frozen, and water is sublimated and removed to obtain the dry powder.
  • a method for producing a dry powder according to any one of the above items ⁇ 1> to ⁇ 7> which comprises a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water.
  • a method for producing a dry powder which comprises spray-drying a dispersion liquid to obtain the dry powder.
  • a method for producing a dry powder which comprises subjecting the mixture to a heat treatment at an ultra high temperature and pulverizing the mixture to obtain the dry powder.
  • the volume-based cumulative 50% diameter of the first powder is 0.01 to 75 ⁇ m
  • the volume-based cumulative 50% diameter of the second powder is 0.01 to 100 ⁇ m.
  • a dry powder containing a fluoroolefin-based polymer having an oxygen-containing polar group and a tetrafluoroethylene-based polymer, which is particularly excellent in extrusion moldability and stretchability, and which can be a molded article exhibiting strong adhesiveness is provided. can get.
  • “Powder D50” is the volume-based cumulative 50% diameter
  • the particle size distribution is measured by the laser diffraction/scattering method
  • the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 50%.
  • “Powder D90” is the volume-based cumulative 90% diameter, the particle size distribution is measured by the laser diffraction/scattering method, and the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume on the cumulative curve. Is the particle size at the point where is 90%.
  • the “unit based on a monomer” is a generic term for an atomic group directly formed by polymerizing one molecule of a monomer and an atomic group obtained by chemically converting a part of this atomic group. In the present specification, the unit based on the monomer is also simply referred to as “unit”.
  • the "melting temperature (melting point) of the polymer” is a temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • the “melt viscosity of the polymer” is based on ASTM D1238, and a sample of the polymer (2 g) that had been heated for 5 minutes at the measurement temperature in advance was loaded with 0.7 MPa using a flow tester and a 2 ⁇ -8L die. It is a value measured by holding at the measurement temperature.
  • the “viscosity of the powder dispersion” is a value measured with a B-type viscometer at room temperature (25° C.) under the condition of a rotation speed of 30 rpm. The measurement is repeated three times, and the average value of the three measured values is used.
  • the "thixo ratio of the powder dispersion liquid” is a value calculated by dividing the viscosity ⁇ 1 measured under the condition of the rotation speed of 30 rpm by the viscosity ⁇ 2 measured under the condition of the rotation speed of 60 rpm. The measurement of each viscosity is repeated three times, and the average value of the three measured values is used.
  • "Peel strength of laminated body” means fixing a position of 50 mm from one end in the longitudinal direction of the laminated body cut out in a rectangular shape (length 100 mm, width 10 mm), pulling speed 50 mm/min, one end in the longitudinal direction. Is the maximum load (N/cm) applied when the metal foil and the resin layer are separated from each other at 90° to the laminate.
  • the “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be The unit based on the monomer A contained in the polymer is also simply referred to as “monomer A unit”.
  • the dry powder of the present invention includes a fluoropolymer (hereinafter, also referred to as “F polymer”) having a unit (TFE unit) based on tetrafluoroethylene (TFE) and an oxygen-containing polar group, and a tetrafluoroethylene-based polymer (hereinafter, referred to as “TFE polymer”). Also referred to as "TFE polymer”).
  • the F polymer is a polymer different from the TFE polymer.
  • a molded product (including a molding site such as a polymer layer. The same applies hereinafter) formed from the dry powder of the present invention is excellent in extrusion moldability and stretchability and exhibits strong adhesiveness.
  • the F polymer has an oxygen-containing polar group. That is, it is considered that the oxygen-containing polar group of the F polymer not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. As described above, since the homogeneity of the respective polymers in the dry powder is high, it is considered that the formation of the matrix is further promoted and the respective polymer chains are easily entangled uniformly. As a result, it is considered that a molded product having excellent extrusion moldability and stretchability and exhibiting strong adhesiveness was obtained.
  • the melting temperature of the F polymer is preferably 140 to 320°C, more preferably 200 to 320°C, and further preferably 260 to 320°C. In this case, it is easy to further improve the adhesiveness and crack resistance of the molded product.
  • the oxygen-containing polar group contained in the F polymer may be contained in a unit based on a monomer having an oxygen-containing polar group, may be contained in a polymer end group, and may be surface-treated (radiation treatment, electron beam treatment, Corona treatment, plasma treatment, etc.) may be included in the polymer, and the former is preferable.
  • the oxygen-containing polar group contained in the F polymer may be a group prepared by modifying a polymer having a group capable of forming an oxygen-containing polar group.
  • the oxygen-containing polar group contained in the polymer terminal group can be obtained by adjusting the components (polymerization initiator, chain transfer agent, etc.) used in the polymerization of the polymer.
  • the oxygen-containing polar group is a polar atomic group containing an oxygen atom.
  • the oxygen-containing polar group in the present invention does not include the ester bond itself and the ether bond itself, but includes an atomic group containing these bonds as a characteristic group.
  • the oxygen-containing polar group is preferably at least one group selected from the group consisting of a hydroxyl group-containing group, a carbonyl group-containing group, an acetal group and an oxycycloalkane group, more preferably a hydroxyl group-containing group or a carbonyl-containing group.
  • the hydroxyl group-containing group is preferably —CF 2 CH 2 OH, —C(CF 3 ) 2 OH, or a 1,2-glycol group (—CH(OH)CH 2 OH).
  • Carbonyl-containing groups include >C(O), —CF 2 C(O)OH, >CFC(O)OH, carboxamido groups (—C(O)NH 2, etc.), acid anhydride residues (—C( O)OC(O)-), imide residues (-C(O)NHC(O)- etc.), dicarboxylic acid residues (-CH(C(O)OH)CH 2 C(O)OH etc.), Alternatively, a carbonate group (—OC(O)O—) is preferable.
  • the oxycycloalkane group is preferably an epoxy group or an oxetanyl group.
  • Oxygen-containing polar group is a polar group and is a cyclic group or its ring-opening group, a cyclic acid anhydride residue, a cyclic An imide residue, a cyclic carbonate group, a cyclic acetal group, a 1,2-dicarboxylic acid residue or a 1,2-glycol group is particularly preferred, and a cyclic acid anhydride residue is most preferred.
  • the F polymer includes a TFE unit, a unit based on hexafluoropropylene (HFP), perfluoro(alkyl vinyl ether) (PAVE) or fluoroalkyl ethylene (FAE) (hereinafter, also referred to as “PAE unit”), and an oxygen-containing polar group.
  • a polymer containing a unit (hereinafter, also referred to as “polar unit”) based on a monomer having a is preferable.
  • the proportion of TFE units is preferably 50 to 99 mol %, and more preferably 90 to 99 mol% based on all units constituting the F polymer.
  • the PAE unit is preferably a unit based on PAVE (hereinafter also referred to as “PAVE unit”) or a unit based on HFP (hereinafter also referred to as “HFP unit”), and more preferably a PAVE unit.
  • PAVE unit a unit based on PAVE
  • HFP unit a unit based on HFP
  • Two or more types of PAE units may be used.
  • the proportion of PAE units is preferably 0 to 10 mol%, more preferably 0.5 to 9.97 mol%, based on all units constituting the F polymer.
  • the proportion of polar units is preferably 0.01 to 3 mol% based on all units constituting the F polymer.
  • the polarity unit may be one type or two or more types.
  • Specific examples of the monomer having an oxygen-containing polar group include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also referred to as hymic acid anhydride; hereinafter also referred to as “NAH”).
  • Maleic anhydride is mentioned, and a suitable specific example thereof is NAH.
  • the F polymer in this case may further include units other than TFE units, PAE units, and polar units (hereinafter, also referred to as “other units”).
  • the other unit may be one type or two or more types.
  • Examples of the monomer that forms another unit include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE).
  • Other units are preferably ethylene, VDF or CTFE, more preferably ethylene.
  • the proportion of the other units in the F polymer is preferably 0 to 50 mol %, more preferably 0 to 40 mol% based on all the units constituting the F polymer.
  • the dry powder of the present invention may contain various additives.
  • additives ultraviolet absorbers, light stabilizers, matting agents, leveling agents, surface modifiers, surfactants, degassing agents, plasticizers, fillers, heat stabilizers, thickeners, dispersants, rust preventives.
  • the TFE polymer is polytetrafluoroethylene (PTFE), a copolymer of TFE and PAVE (PFA), a copolymer of TFE and HFP (FEP), a copolymer of TFE and ethylene (ETFE), or a copolymer of TFE and VDF. Is preferred, and PTFE is more preferred.
  • PTFE also includes so-called modified PTFE, which is a copolymer of a very small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE.
  • PFA may include units based on monomers other than TFE and PAVE. The same applies to the other copolymers described above.
  • the molded product not only exhibits strong adhesiveness and crack resistance, but also does not easily deteriorate the physical properties of the TFE polymer.
  • the TFE-based polymer is PTFE
  • the fibrous surface physical properties and the porosity of the PTFE molded article are unlikely to be impaired in the molded article.
  • the PTFE is preferably non-heat-melting PTFE.
  • the dry powder of the present invention not only exhibits strong adhesiveness, but also does not easily deteriorate the physical properties of the TFE polymer.
  • the blended powder is unlikely to lose the heat resistance originally possessed by the non-heat-melting PTFE powder.
  • the proportion of TFE units in the non-thermofusible PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, based on all units.
  • the non-heat-melting PTFE preferably has a fibrillation property. If it has fibrillation property, the surface smoothness, mechanical properties (abrasion resistance, etc.), and weather resistance of the coating film obtained by electrostatic coating and firing of the dry powder of the present invention are likely to be improved.
  • the non-thermofusible PTFE having fibrillation property means a PTFE capable of paste-extruding unbaked polymer powder. That is, it means PTFE having strength or elongation in a molded product obtained by paste extrusion.
  • the number average molecular weight of the non-thermofusible PTFE is preferably 300,000 to 300,000,000, more preferably 500,000 to 25,000,000.
  • the standard specific gravity which is an index of the average molecular weight of the non-thermofusible PTFE, is preferably 2.14 to 2.22, more preferably 2.15 to 2.21.
  • the melt viscosity of the non-heat-melting PTFE at 380° C. is preferably 1 ⁇ 10 9 Pa ⁇ s or more. The upper limit of the melt viscosity is usually 1 ⁇ 10 10 Pa ⁇ s.
  • the non-thermofusible PTFE When at least one of the number average molecular weight, the standard specific gravity and the melt viscosity of the non-thermofusible PTFE is in the above range, the non-thermofusible PTFE has better fibrillability and is excellent in mechanical properties and the like. Goods can be formed.
  • the TFE polymer is preferably a polymer obtained by emulsion-polymerizing a fluoroolefin in water.
  • PTFE is preferably a polymer obtained by emulsion polymerization of TFE in water.
  • the first PTFE powder is a powder in which a polymer obtained by emulsion polymerization of TFE in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
  • the TFE polymer may be modified by surface treatment (radiation treatment, electron beam treatment, corona treatment, plasma treatment, etc.). Examples of such a surface treatment method include the methods described in International Publication No. 2018/026012 and International Publication No. 2018/026017.
  • the TFE polymer is widely available as a powder or a dispersion thereof as a commercial product.
  • the ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the dry powder of the present invention is preferably 0.4 or less, more preferably 0.15 or less. In this case, the interaction between the dry powders is good, and it is easy to obtain a dry powder that is particularly excellent in extrusion moldability and stretch moldability.
  • the lower limit of the mass ratio is usually 0.01.
  • the first powder and the second powder are contained in a powder dispersion liquid containing a first powder of F polymer, a second powder of TFE polymer, and water.
  • Dry powder obtained by co-coagulation and further drying hereinafter also referred to as "first dry powder”
  • first dry powder first powder of F polymer
  • second powder of TFE polymer and powder containing water
  • a dry powder (hereinafter, also referred to as “second dry powder”) obtained by freezing the dispersion liquid and sublimating and removing water; a first powder of F polymer; a second powder of TFE polymer; Dry powder obtained by spray drying a powder dispersion containing water (hereinafter, also referred to as “third dry powder”), a first powder of F polymer, and a second powder of TFE polymer are mixed.
  • a dry powder (hereinafter, also referred to as “fourth dry powder”) obtained by heat-treating at more than 320° C. to obtain a mixture and pulverizing the mixture.
  • the first dry powder is a powder in which the F polymer and the TFE polymer are uniformly mixed. This does not depend on the blending ratio of each polymer. The reason for this is not clear, but in addition to the fact that both the F polymer and the TFE polymer are fluoropolymers containing TFE units and having high compatibility, the F polymer has an oxygen-containing polar group. That is, since the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the TFE polymer, and thus it is considered that the respective powders are in a uniformly dispersed state.
  • the D50 of the first dry powder is preferably 100 to 1000 ⁇ m, more preferably 300 to 800 ⁇ m.
  • the apparent density of the first dry powder is preferably 0.40 to 0.60 g/mL, more preferably 0.45 to 0.55 g/mL. The apparent density is a value measured according to JIS K6892.
  • the first dry powder is preferably obtained by the first method described later.
  • the first dry powder is particularly excellent in extrusion moldability and stretch moldability, and the obtained molded product exhibits strong adhesiveness.
  • a stretched sheet is obtained by extruding the first powder to obtain a sheet and subjecting the sheet to a stretching treatment. As a stretching condition, a stretching ratio of 200% or more can be adopted at a speed of 5 to 1000%/sec.
  • a coating material can also be obtained by extruding the first dry powder. In the former extrusion molding of the first dry powder, if the TFE-based polymer is fibrillar high-molecular-weight PTFE, a porous stretched membrane can also be produced.
  • the extrusion molding method for molding the first dry powder into a sheet is preferably a method in which extruded beads obtained by paste extrusion of fine powder are molded into a sheet by calendering or the like.
  • the first dry powder may contain a lubricant represented by petroleum hydrocarbons such as naphtha.
  • the mixing ratio of the lubricant is usually 15 to 30 parts by mass with respect to 100 parts by mass of the fine powder.
  • the second dry powder is a highly homogeneous dry powder containing the F polymer and the TFE polymer. This does not depend on the blending ratio of each polymer.
  • the second dry powder has the physical properties of the original TFE polymer and is an adhesive powder suitable for electrostatic coating.
  • the F polymer has an oxygen-containing polar group. That is, it is considered that the oxygen-containing polar group of the F polymer not only exhibits adhesiveness but also balances the electrostatic properties of the entire dry powder and promotes interaction between polymers, for example, formation of a matrix. ..
  • the dry powder since the dry powder has high homogeneity, it is considered that the formation of this matrix is further promoted and that the respective polymer chains are easily entangled uniformly. As a result, it is considered that good electrostatic paintability and excellent adhesiveness were exhibited without impairing the physical properties of the original TFE polymer.
  • the second dry powder may be further subjected to various post-treatments depending on its use. Examples of such post-treatment include crushing treatment with a pin mill or jet mill, radiation treatment, corona treatment, electron beam treatment, and plasma treatment.
  • the D50 of the second dry powder is preferably 0.01 to 75 ⁇ m, more preferably 0.05 to 6 ⁇ m, and further preferably 0.1 to 4 ⁇ m.
  • the D90 of the second dry powder is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the second dry powder is a highly uniform powder of the F polymer and the TFE polymer, and it is easy to keep the electric potential of the powder surface neutral and further easily reduce the angle of repose.
  • the angle of repose of the second dry powder is preferably 50° or less, more preferably 35° or less.
  • the lower limit of the angle of repose is not particularly limited and is usually 5°.
  • the dry powder can be smoothly supplied to the coating device in electrostatic coating, and the surface smoothness, thickness uniformity, and workability of the coating film are excellent.
  • the angle of repose is determined by measuring dried dry powder according to "JIS R 9301-2-2 Alumina powder-Part 2: Physical property measurement method-2: Angle of repose".
  • the coated article has a base material and a fired product that is a coating film formed from the second dry powder on the base material, and is excellent in adhesiveness, surface smoothness, thickness uniformity, and workability.
  • the material of the base material is not particularly limited, and examples thereof include an inorganic material, an organic material, and an organic-inorganic composite material.
  • examples of the inorganic substance include concrete, natural stone, glass and metal (iron, stainless steel, aluminum, copper, brass, titanium, etc.).
  • examples of organic substances include plastics, rubbers, adhesives, and wood.
  • examples of the organic-inorganic composite material include fiber-reinforced plastic, resin-reinforced concrete, and fiber-reinforced concrete.
  • the base material may be subjected to a known surface treatment (chemical conversion treatment or the like).
  • the material of the base material is preferably metal, and more preferably aluminum or copper.
  • the thickness of the coating film of the coated article can be appropriately set depending on the use of the coated article, and is preferably 1 to 1000 ⁇ m, more preferably 20 to 300 ⁇ m.
  • Painted articles include building exterior members such as roofs, aluminum composite panels, curtain panel aluminum panels, curtain wall aluminum frames, aluminum window frames; road materials such as traffic lights, telephone poles, road marking poles, and guardrails; automobile bodies. And parts (bumpers, wiper blades, tire wheels, etc.); household appliances (outdoor units for air conditioners, exteriors of water heaters, etc.); blades for wind power generators, solar battery backsheets, backsides of solar heat collecting mirrors, eggplant battery exteriors , A generator.
  • the second dry powder may be electrostatically coated and heated at the same time, or the base material may be heated after the second dry powder is electrostatically coated on the surface of the base material. ..
  • the heating temperature of the electrostatically coated second dry powder is usually 260 to 380°C.
  • the time for maintaining the heating temperature is usually 1 to 60 minutes.
  • an electrostatic coating method of supplying the dry powder from the tank to the coating gun and discharging (spraying) the second dry powder from the coating gun to the surface of the base material Is preferred.
  • the discharge rate of the second dry powder (powder paint) from the coating gun can be set to 50 to 200 g/min.
  • the distance from the tip of the coating gun (that is, the discharge port of the second dry powder) to the surface of the base material is preferably 150 to 400 mm from the viewpoint of coating efficiency.
  • the width of the coating pattern is preferably 50 to 500 mm
  • the operating speed of the coating gun is preferably 1 to 30 m/min
  • the conveyor speed is preferably 1 to 50 m/min.
  • the third dry powder is a powder in which the F polymer and the TFE polymer are uniformly mixed. This does not depend on the blending ratio of each polymer. Although the reason is not always clear, as described above, since the water dispersion liquid in which each powder is uniformly dispersed is subjected to spray drying (spray dry), the first powder and It is considered that a homogeneous powder with 2 powders was formed.
  • the D50 of the third dry powder is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m. Similar to the first dry powder or the second dry powder, the third dry powder can be processed into a stretched sheet or a porous stretched film having excellent adhesiveness by subjecting it to extrusion molding and stretch molding. Further, when subjected to electrostatic coating, a coated article having excellent adhesiveness, surface smoothness, thickness uniformity and workability can be formed.
  • the fourth dry powder also contains the TFE polymer and the F polymer with high uniformity, and is excellent in adhesiveness and fibril resistance.
  • the reason is not always clear, but it can be considered as follows. If the temperature of the heat treatment for obtaining the mixture exceeds 320° C., the melting temperature of the F polymer is likely to be exceeded, and the melting temperature of the TFE polymer is likely to be around the melting temperature. Therefore, in the heat treatment, the TFE polymer is in a gelled (softened) state and the F polymer is in a highly melted state, so that both are easily bound or fused.
  • the F polymer having an oxygen-containing polar group increases the interaction with the TFE polymer and forms a matrix in the mixture to suppress the crystallization of the TFE polymer. Further, it is considered that since the fourth dry powder was obtained by pulverizing the mixture, a powder having high uniformity between the TFE polymer and the F polymer was obtained.
  • the fourth dry powder exhibited high adhesiveness and high fibril resistance due to the action of the F polymer having an oxygen-containing polar group.
  • the TFE polymer is PTFE whose melting temperature is higher than 320° C. and the F polymer has a melting temperature of 260 to 320° C.
  • the TFE-based polymer in the fourth dry powder is preferably PTFE having a melting temperature of higher than 320° C., and is preferably the non-melting PTFE described above.
  • the melting temperature of the F polymer in the fourth dry powder is preferably 260 to 320°C.
  • the fourth dry powder retains the original physical properties (heat resistance, etc.) of the TFE polymer well, and thus can be suitably used as a powder coating material for electrostatic coating, for example.
  • the fourth dry powder can form a coated article excellent in adhesiveness, surface smoothness, thickness uniformity, and processability when subjected to electrostatic coating. ..
  • the melt viscosity of the F polymer at 380° C. in the fourth dry powder is preferably 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s, more preferably 5 ⁇ 10 2 to 5 ⁇ 10 5 Pa ⁇ s. In this case, since the fluidity of the F polymer is further increased, the binding force of the F polymer to the TFE polymer can be further improved.
  • the ratio of the mass of the TFE-based polymer to the mass of the F-polymer in the fourth dry powder (content of TFE-based polymer/content of F-polymer) is preferably 5 or more, more preferably 5 to 50, and more preferably 10 to 25. More preferable.
  • the interaction between the powders becomes good, and the TFE polymer and the F polymer are likely to be present more uniformly in the fourth dry powder. Therefore, it is easy to obtain a powder having particularly excellent adhesiveness without impairing the physical properties of the TFE polymer.
  • the fourth dry powder is a powder containing PTFE and F polymer.
  • the fourth dry powder may be further subjected to various post-treatments depending on its use. Examples of such post-treatment include radiation treatment, corona treatment, electron beam treatment, and plasma treatment.
  • the D50 of the fourth dry powder is preferably 0.1 to 50 ⁇ m, more preferably 0.3 to 40 ⁇ m, still more preferably 1 to 30 ⁇ m.
  • the D90 of the fourth dry powder is preferably 80 ⁇ m or less, more preferably 65 ⁇ m or less, even more preferably 40 ⁇ m or less.
  • the first dry powder is produced by co-coagulating the first powder and the second powder in a powder dispersion liquid containing the first powder of the F polymer, the second powder of the TFE polymer, and water.
  • a method of obtaining wet powder and drying the wet powder (hereinafter, also referred to as “first method”) can be mentioned. It can be said that this powder dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in the form of particles in an aqueous medium containing water as a main component. It can be said that the dry powder obtained by the first method is a fine powder obtained by co-coagulation of the first powder and the second powder, in which the F polymer and the TFE polymer are highly uniformly mixed. This does not depend on the blending ratio of each polymer.
  • the F polymer and the TFE polymer are fluoropolymers containing TFE units and have high compatibility
  • the F polymer has an oxygen-containing polar group. That is, since the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the TFE polymer, and thus it is considered that the respective powders are in a uniformly dispersed state. It is considered that when the powder dispersion liquid in such a good dispersion state is subjected to co-coagulation treatment, co-coagulation of the first powder and the second powder proceeds in such a manner that the powders are rolled up with each other. It is believed that a powder was obtained.
  • the respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the first method are the same as those in the dry powder of the present invention, including the preferable range.
  • the first powder in the first method may contain a component other than the F polymer, but it is preferable that the F powder is the main component.
  • the content of the F polymer in the first powder is preferably 80% by mass or more, and more preferably 100% by mass.
  • the D50 of the first powder is preferably 0.01 to 75 ⁇ m, more preferably 0.05 to 6 ⁇ m, and further preferably 0.1 to 4 ⁇ m.
  • the D90 of the first powder is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the range of the TFE polymer in the first method is the same as the range of the TFE polymer in the dry powder of the present invention, including the preferable range.
  • the second powder is preferably a powder in which a polymer obtained by emulsion-polymerizing a fluoroolefin in water is dispersed as particles in water.
  • the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
  • the second powder in the first method may contain a component other than the TFE-based polymer, but it is preferable that the second powder contains the TFE-based polymer as a main component.
  • the content of the TFE polymer in the second powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the second powder contains a component (surfactant or the like) used in the production of the TFE polymer, the component is not included in the components other than the TFE polymer.
  • the D50 of the second powder is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the D90 of the second powder is preferably 200 ⁇ m or less, more preferably 20 ⁇ m or less. In this case, the interaction between the powders becomes good, and the co-coagulability of the first powder and the second powder and the physical properties of the molded product are likely to be further improved.
  • the D50 of the first powder is 0.1 ⁇ m or more and less than 1 ⁇ m
  • the D50 of the second powder is 0.1 ⁇ m.
  • the above-mentioned aspect is 1 ⁇ m or less
  • the D50 of the first powder is 1 ⁇ m or more and 4 ⁇ m or less
  • the D50 of the second powder is 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the first method is preferably 0.4 or less, more preferably 0.15 or less.
  • the interaction between the powders is good, and the co-coagulability of the first powder and the second powder is likely to be further improved. Therefore, without impairing the physical properties of the TFE polymer, the first dry powder having particularly excellent extrusion moldability and stretch moldability can be obtained, and a molded product having particularly excellent adhesiveness can be easily obtained.
  • the lower limit of the mass ratio is usually 0.01.
  • the total proportion of the F polymer and the TFE polymer in the powder dispersion liquid in the first method is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
  • the powder dispersion in the first method preferably contains a dispersant from the viewpoint of improving the dispersibility of each powder and improving their co-condensation properties.
  • the components used for producing the polymer (for example, the surfactant used for emulsion-polymerizing the fluoroolefin) do not correspond to the dispersant in the first method.
  • the dispersant is preferably a compound having a hydrophobic site and a hydrophilic site, and examples thereof include an acetylene-based surfactant, a silicone-based surfactant, and a fluorine-based surfactant. These dispersants are preferably nonionic.
  • the dispersant is preferably fluoroalcohol, more preferably fluoromonool or fluoropolyol.
  • the fluorine content of fluoromonool is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 15 to 40% by mass.
  • the fluoromonool is preferably nonionic.
  • the hydroxyl value of fluoromonool is preferably 40 to 100 mgKOH/g, more preferably 50 to 100 mgKOH/g, and further preferably 60 to 100 mgKOH/g.
  • the fluoromonool is preferably a compound represented by the following formula (a).
  • Formula (a): R a - ( OQ a) ma -OH The symbols in the formulas have the following meanings.
  • R a represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and is —CH 2 (CF 2 ) 4 F, —CH 2 (CF 2 ) 6 F, —CH 2 CH 2 (CF 2 ) 4 F, —CH 2 CH 2 (CF 2 ) 6 F, —CH 2 CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CH 2 CF(CF 3 )CF 2 OCF 2 CF 2 CF 3 , —CH 2 CF (CF 3) OCF 2 CF (CF 3) OCF 3, or -CH 2 CF 2 CHFO (CF 2 ) 3 OCF 3 are preferred.
  • Q a represents an alkylene group having 1 to 4 carbon atoms, and is preferably an ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH(CH 3 )—).
  • Q a may be composed of two or more kinds of groups. When it is composed of two or more kinds of groups, the groups may be arranged in a random pattern or a block pattern.
  • ma represents an integer of 0 to 20, preferably an integer of 4 to 10.
  • the hydroxyl group of fluoromonool is preferably a secondary hydroxyl group or a tertiary hydroxyl group, more preferably a secondary hydroxyl group.
  • fluoro monool F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH, F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH and the like.
  • fluoromonool can be obtained as a commercially available product (such as “Fluowet N083” and “Fluowet N050” manufactured by Arkroma Co.).
  • the fluorine content of the fluoropolyol is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and even more preferably 15 to 40% by mass.
  • the fluoropolyol is preferably nonionic.
  • the hydroxyl value of the fluoropolyol is preferably from 10 to 35 mgKOH/g, more preferably from 10 to 30 mgKOH/g, even more preferably from 10 to 25 mgKOH/g.
  • the weight average molecular weight of the fluoropolyol is preferably 2000 to 80000, more preferably 6000 to 20000.
  • the fluoropolyol is preferably a fluoropolyol containing units based on fluoro(meth)acrylate.
  • (meth)acrylate is a general term for acrylate and methacrylate.
  • the fluoro(meth)acrylate is preferably a monomer represented by the following formula (f).
  • Formula (f): CH 2 CX f C(O)O-Q f -R f
  • X f represents a hydrogen atom, a chlorine atom or a methyl group
  • Q f represents an alkylene group having 1 to 4 carbon atoms or an oxyalkylene group having 2 to 4 carbon atoms.
  • fluoro(meth)acrylate examples include CH 2 ⁇ CHC(O)OCH 2 CH 2 (CF 2 ) 4 F and CH 2 ⁇ C(CH 3 )C(O)OCH 2 CH 2 (CF 2 ) 4.
  • fluoropolyol include copolymers of the monomer represented by the above formula (f) and the monomer represented by the following formula (o).
  • Formula (o): CH 2 CX o C(O)-(OZ o ) mo —OH
  • X o represents a hydrogen atom or a methyl group.
  • Z o represents an alkylene group having 1 to 4 carbon atoms, and an ethylene group (—CH 2 CH 2 —) is preferable.
  • mo is an integer of 1 to 200, preferably an integer of 4 to 30.
  • Z o may be composed of two or more kinds of groups. In this case, the arrangement of different alkylene groups may be random or block.
  • the fluoropolyol may be composed only of a unit based on the monomer represented by the formula (f) and a unit based on the monomer represented by the formula (o), and may further include another unit. ..
  • the content of the unit based on the monomer represented by the formula (f) is preferably 60 to 90 mol% and more preferably 70 to 90 mol% with respect to all the units contained in the fluoropolyol.
  • the content of the unit based on the monomer represented by the formula (o) is preferably 10 to 40 mol% and more preferably 10 to 30 mol% with respect to all units contained in the fluoropolyol.
  • the total content of the units based on the monomer represented by the formula (f) and the monomer represented by the formula (o) is preferably 90 to 100 mol %, based on all units contained in the fluoropolyol, and 100 Mol% is more preferred.
  • the proportion of fluoroalcohol in the powder dispersion is preferably 10% by mass or less, more preferably 1% by mass or less, and further preferably 0.01% by mass or less.
  • the lower limit of the above ratio is usually more than 0%.
  • the powder dispersion liquid in the first method contains an aqueous medium containing water as a main component (dispersion medium of the powder dispersion liquid).
  • the aqueous medium may consist only of water, or may consist of water and a water-soluble compound.
  • the water-soluble compound is preferably a compound which is liquid at 25° C., does not react with the F polymer and the TFE polymer, and can be easily removed by heating or the like.
  • the proportion of water in the aqueous medium is preferably 95% by mass or more, more preferably 99% by mass or more, and further preferably 100% by mass.
  • the proportion of the aqueous medium in the powder dispersion is preferably 15 to 65% by mass, more preferably 25 to 50% by mass. In this range, the coaggregation property of the powder dispersion is particularly excellent.
  • Examples of the co-coagulation method in the first method include a method in which a powder dispersion having a polymer content adjusted is stirred to co-coagulate the dispersed first powder and second powder.
  • the content of the polymer is preferably 8 to 25% by mass.
  • the powder dispersion liquid may be diluted with water so as to obtain such a content.
  • the temperature in the co-coagulation is preferably 5 to 30°C.
  • the pH of the powder dispersion may be adjusted if necessary.
  • pH adjusters include sodium carbonate, sodium hydrogen carbonate, ammonia, ammonium salts, and urea.
  • electrolyte include inorganic salts such as potassium nitrate, sodium nitrate, sodium carbonate and sodium hydrogen carbonate.
  • organic solvent include alcohol and acetone.
  • coagulation aid include nitric acid, hydrochloric acid, sulfuric acid, magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate and barium sulfate.
  • the powder dispersion is stirred to co-coagulate the first powder and the second powder, and the coagulated powder is separated from the aqueous medium to obtain a wet powder.
  • a granulating step or a sizing step is a step of granulating D50 of the coagulated powder to 100 to 1000 ⁇ m
  • the sizing step is a step of adjusting the particle properties and particle size distribution of the coagulated powder by stirring.
  • the powder dispersion used for co-coagulation is a method of mixing a dispersion containing the first powder and water with a dispersion containing the second powder and water, a dispersion containing the first powder and water and a second powder. It can be prepared by a method of mixing and a dispersion of the second powder and water and a method of mixing the first powder. However, the powder dispersion is preferably prepared by the former method from the viewpoint that each component is easily dispersed uniformly.
  • the drying temperature is preferably 110 to 250°C, more preferably 120 to 230°C. In this case, it is easy to balance the productivity of the first dry powder with the extrusion moldability.
  • the second dry powder is produced by freezing a powder dispersion containing a first powder of F polymer, a second powder of TFE polymer, and water, and sublimating and removing water from the frozen powder dispersion.
  • a method (hereinafter, also referred to as a “second method”) is included. It can be said that this dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in water in the form of particles. It can be said that the second dry powder obtained by the second method is a highly homogeneous dry powder containing an F polymer and a TFE polymer, which is obtained by removing water from a frozen powder dispersion liquid by sublimation. .. This does not depend on the blending ratio of each polymer.
  • the respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the second method are the same as those in the dry powder of the present invention, including the preferable range.
  • the range of the first powder in the second method is the same as the range of the first powder in the first method, including the preferable range.
  • the range of the TFE-based polymer in the second method is the same as the range of the TFE-based polymer in the dry powder of the present invention, including the preferable range.
  • the range of the first powder in the second method is the same as the range of the first powder in the first method, including the preferable range.
  • a preferable aspect of the relationship between the D50 of the first powder and the D50 of the second powder in the second method is the same as that in the first method.
  • the range of the ratio of the mass of the F polymer to the mass of the TFE polymer (content of the F polymer/content of the TFE polymer) in the second method, including the preferable range, is the same as that in the first method. The same is true.
  • the range of the powder dispersion liquid in the second method is the same as that in the first method, including the preferable range.
  • Freezing of the powder dispersion in the second method is preferably performed at less than 0°C. Specifically, it is preferable to freeze the powder dispersion by exposing it to an atmosphere of ⁇ 78 to ⁇ 10° C. Freezing is preferably completed within 8 hours from the viewpoint of suppressing settling of the components of the powder dispersion liquid. Further, from the viewpoint of suppressing non-uniformity of the frozen product due to rapid freezing, it is preferable to freeze the powder dispersion for 10 minutes or more. The removal of water from the frozen powder dispersion (frozen matter) by sublimation may be carried out under conditions in which melting of the powder dispersion is suppressed. The temperature for sublimating water is preferably less than 0°C.
  • the pressure for sublimating water is usually a reduced pressure atmosphere, and a reduced pressure atmosphere of 0 to 6.12 ⁇ 10 2 Pa is preferable.
  • the time for sublimation of water is usually 4 to 72 hours. Examples of the apparatus used for sublimation include a centrifugal separator and a tray dryer.
  • a method for producing a third dry powder a method of spray-drying a powder dispersion liquid containing a first powder of F polymer, a second powder of TFE polymer and water (hereinafter, also referred to as “third method”) .) is mentioned. It can be said that this dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in water in the form of particles. It can be said that the dry powder obtained by the third method is a highly homogenous blend powder containing the F polymer and the TFE polymer, which is obtained by water evaporation of the powder dispersion by spray drying. This does not depend on the blending ratio of each polymer.
  • the third method is preferably carried out by spraying the powder dispersion liquid in an atmosphere above 100°C.
  • an inert gas nitrogen gas is preferable
  • the powder dispersion is sprayed by a vertical downward method, and the powder dispersion is dried.
  • An apparatus such as a crystallization tower can be used for this method.
  • the respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the third method are the same as those in the dry powder of the present invention, including the preferable range.
  • the range of the first powder in the third method is the same as the range of the first powder in the first method, including the preferable range.
  • the range of the TFE polymer in the third method is the same as the range of the TFE polymer in the dry powder of the present invention, including the preferable range.
  • the range of the first powder in the third method is the same as the range of the first powder in the first method, including the preferable range.
  • a preferable aspect of the relationship between the D50 of the first powder and the D50 of the second powder in the third method is the same as that in the first method.
  • the range of the ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the third method, including the preferable range, is the same as that in the first method. The same is true.
  • the range of the powder dispersion liquid in the third method is the same as that in the first method including the preferable range.
  • a fourth method for producing dry powder a method of mixing a first powder of TFE polymer and a second powder of F polymer, heat-treating at more than 320° C. to obtain a mixture, and further pulverizing the mixture (Hereinafter, also referred to as “fourth method”). It can be said that the fourth method is a method in which a powder composition containing the first powder and the second powder is heat-treated at a temperature higher than 320° C. and further pulverized.
  • the mixture (powder composition) may form a melt-solidified product or an integrated product.
  • the first powder in the fourth method preferably contains a TFE polymer as a main component.
  • the content of the TFE polymer in the first powder is preferably 80% by mass or more, more preferably 100% by mass.
  • the component (surfactant or the like) used in the production of the TFE-based polymer is contained in the first powder, the component is not included in the components other than the TFE-based polymer.
  • the D50 of the first powder is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the D90 of the first powder is preferably 200 ⁇ m or less, more preferably 20 ⁇ m or less. In this case, the interaction between the powders becomes good, and the physical properties of the fourth dry powder are likely to be further improved.
  • the second powder in the fourth method preferably contains an F polymer as a main component.
  • the content of the F polymer in the second powder is preferably 80% by mass or more, and more preferably 100% by mass.
  • the D50 of the second powder is preferably 0.01 to 75 ⁇ m, more preferably 0.05 to 6 ⁇ m.
  • the D90 of the second powder is preferably 100 ⁇ m or less, more preferably 6 ⁇ m or less.
  • the temperature in the heat treatment is more than 320°C, preferably 325 to 350°C, more preferably 330 to 345°C. Within such a temperature range, the F polymer can be sufficiently melted while preventing the TFE polymer from melting excessively. Therefore, the F polymer can be firmly bound to the TFE polymer.
  • the heat treatment time is preferably 10 to 120 minutes, more preferably 15 to 100 minutes.
  • a fourth dry powder can be produced by pulverizing the obtained mixture. Jet mills, hammer mills, pin mills, bead mills, turbo mills and the like are preferably used for pulverization. Specific examples of the pulverizing method include the method described in International Publication No. 2016/017801.
  • the present invention is not limited to the configurations of the above-described embodiments.
  • the dry powder of the present invention may have any other configuration added to the configuration of the above-described embodiment, or may be replaced with any configuration exhibiting the same function.
  • the method for producing a dry powder of the present invention may have other optional steps in addition to the configurations of the above-described embodiments, or may be replaced with an optional step that produces a similar action.
  • ⁇ D50 and D90 of powder The powder was dispersed in water using a laser diffraction/scattering type particle size distribution measuring device (“LA-920 measuring device” manufactured by Horiba Ltd.) for measurement.
  • LA-920 measuring device manufactured by Horiba Ltd.
  • ⁇ Peel strength of laminate The position of 50 mm from one end in the length direction of the laminate cut out in a rectangular shape (length: 100 mm, width: 10 mm) was fixed, the pulling speed was 50 mm/min, and 90° from one end in the length direction to the laminate. Then, the maximum load applied when the copper foil and the coating film were peeled off was measured as the peeling strength (N/cm).
  • F polymer 1 a copolymer containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order (melting temperature: 300° C., melt viscosity at 380° C.: 3 ⁇ ) 10 5 Pa ⁇ s or less)
  • Non-F polymer 1 Copolymer containing 98.0 mol% and 2.0 mol% of TFE unit and PPVE unit in this order and having no oxygen-containing polar group (melt temperature: 305° C., melt viscosity at 380° C.: 3 ⁇ 10 5 Pa ⁇ s or less)
  • PTFE1 fibrillar PTFE containing 99.9 mol% or more of units based on TFE (standard specific gravity: 2.18, melt viscosity at 380° C.: 3.0 ⁇ 10 9 Pa ⁇ s, melting temperature: more than 320° C.)
  • First powder 1 F polymer 1 powder (D50: 0.3 ⁇ m, D90: 1.8 ⁇ m)
  • First powder 2 F polymer 1 powder (D50: 1.8 ⁇ m)
  • Powder A Non-F polymer 1 powder (D50: 0.3 ⁇ m, D90: 1.5 ⁇ m)
  • Powder B Powder of non-F polymer 1 (D50: 1.8 ⁇ m)
  • Second powder 1 PTFE1 powder (D50: 0.3 ⁇ m); this second powder 1 is available as an aqueous dispersion of PTFE1.
  • Fluoro monool F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH ( fluorine content: 34 wt%, hydroxyl value: 78 mgKOH / g)
  • Example 1 Production Example of Powder Dispersion
  • Example 1-1 Production Example of Powder Dispersion 11 Dispersion containing 30 parts by mass of the first powder 1, 5 parts by mass of fluoromonool 1 and 65 parts by mass of water. And an aqueous dispersion containing 50% by mass of the second powder 1 were mixed. As a result, the respective powders are dispersed in water, and the powder dispersion 11 containing 90% by mass of PTFE1 and 10% by mass of F polymer 1 with respect to the total of PTFE1 and F polymer 1 (mass of F polymer 1/PTFE1 Mass: 0.11) was obtained.
  • Example 1-2 Production Example of Powder Dispersion Liquid A A powder dispersion liquid 1A was obtained in the same manner as in Example 1-1, except that the powder A was used in place of the first powder 1.
  • Example 2 Example of co-coagulation of powder dispersion
  • Example 2-1 Production example of dry powder 11 Water was added to adjust the content of the polymer in powder dispersion 11 to 10% by mass. When the powder dispersion was vigorously stirred at 20° C., a wet powder that was a dry powder in a wet state was formed. The wet powder was collected and dried at 200° C. to obtain dry powder 11.
  • Example 2-2 Production Example of Dry Powder 1A Dry powder 1A was obtained in the same manner as Example 2-1, except that powder dispersion liquid 1A was used in place of powder dispersion liquid 11.
  • Example 3 Molding example of dry powder
  • Example 3-1 Manufacturing example of stretched sheet 11 First, 100 parts by mass of dry powder 11 and 40 parts by mass of lubricating oil (manufactured by Exxon, "ISOPAR H (registered trademark)" ]) and were mixed to obtain a mixture. Next, this mixture was allowed to stand at 25° C. for 2 hours and then extrusion-molded using a paste extruder (cylinder diameter: 60 mm, die diameter: 8 mm) to obtain an extrusion bead.
  • a paste extruder cylinder diameter: 60 mm, die diameter: 8 mm
  • this extruded bead was supplied to a pair of calender rolls having a diameter of 250 mm, rolled at 55° C., processed into a rolled film having a thickness of 1000 ⁇ m, further heated to 85° C. and dried to form a sheet. Obtained.
  • This sheet was biaxially stretched using a biaxial stretching tester under the conditions of a temperature of 300° C., a preheat of 3 minutes and a stretching speed of 2 m/min to obtain a stretched sheet 11.
  • the dimension of the stretched sheet 11 was equal to the dimension of the sheet before stretching, and the stretching ratio was 200% in both the vertical and horizontal directions.
  • Example 3-2 Production Example of Stretched Sheet 1A A stretched sheet 1A was obtained in the same manner as in Example 3-1, except that the dry powder 1A was used instead of the dry powder 1.
  • Each of the stretched sheets was a porous film, and when the open states were compared, it was the stretched sheet 11 and the stretched sheet 1A from the smallest pore size distribution. Further, when the stretched sheet 11 and a commercially available PTFE sheet were thermocompression bonded (temperature: 300° C., pressure: 1 MPa, time: 60 minutes), both sheets were firmly bonded.
  • Example 4 Production Example of Powder Dispersion
  • Example 4-1 Production Example of Powder Dispersion 21 A dispersion containing 30 parts by mass of the first powder 1, 5 parts by mass of fluoromonool 1 and 65 parts by mass of water. And an aqueous dispersion containing 50% by mass of the second powder 1 were mixed. As a result, the respective powders are dispersed in water, and the powder dispersion 21 containing 50% by mass of PTFE1 and 50% by mass of F polymer 1 with respect to the total of PTFE1 and F polymer 1 (mass of F polymer 1/PTFE1). Mass: 1.0) was obtained.
  • Example 1-2 Production Example of Powder Dispersion Liquid 2A A powder dispersion liquid 2A was obtained in the same manner as in Example 4-1 except that the powder 2A was used instead of the first powder 1.
  • Example 5 Production example of dry powder
  • Example 5-1 Production example of dry powder 21 A petri dish filled with the powder dispersion liquid 21 was exposed to an atmosphere of -20°C to freeze the powder dispersion liquid 21. Then, the petri dish was transferred into a vacuum container whose temperature was adjusted to -5°C, and the pressure in the vacuum container was reduced by a vacuum pump to start sublimation of water. The mass of the petri dish was measured over time, and when the mass change rate (g/hr) converged within ⁇ 1%, the pressure reduction was terminated and the content of the petri dish was recovered to contain F polymer 1 and PTFE 1. Obtained dry powder 21.
  • Example 5-2 Production Example of Dry Powder 2A Dry powder 2A was obtained in the same manner as in Example 5-1 except that powder dispersion liquid 2A was used instead of powder dispersion liquid 21.
  • Example 6 Example of coating dry powder [Example 6-1] Example of manufacturing laminated body 21 Using an electrostatic coating machine, the dry powder 21 is supplied from the tank to the coating gun, and is directed from the coating gun to the surface of the copper foil. Then, the dry powder 21 was electrostatically coated. Then, after holding the copper foil on which the dry powder 21 is electrostatically coated for 10 minutes in an atmosphere of 340° C., it is cooled to 25° C., and the copper foil and a coating film formed on the surface of the copper foil (dry powder) 21) was obtained.
  • the average thickness of the coating film was 60 ⁇ m, the difference between the maximum thickness and the minimum thickness was less than 3 ⁇ m, and the peel strength between the copper foil and the coating film was 10 N/cm or more. In addition, the coating gun did not clog during electrostatic coating.
  • Example 6-2 Manufacturing Example of Layered Product 2A A copper foil and a coating formed on the surface of the copper foil were prepared in the same manner as in Example 6-1 except that the dry powder 2A was used instead of the dry powder 1. A laminated body 2A having a film (baked product of dry powder 2A) was obtained. The average thickness of the coating film was 60 ⁇ m, the difference between the maximum thickness and the minimum thickness was 10 ⁇ m, and the peel strength between the copper foil and the coating film was 1 N/cm.
  • Example 7 Production example of dry powder
  • Example 7-1 Production example of dry powder 41
  • 120 parts by mass of the second powder 1 and 10 parts by mass of the first powder 2 were mixed, and the mixture was placed in an air atmosphere at 325. It heat-processed at 120 degreeC for 120 minute(s), and obtained the mixture. This mixture was gradually cooled to 25° C. and then pulverized with a jet mill to obtain a dry powder 41 having a D50 of 20 ⁇ m.
  • Example 7-2 (Comparative Example)
  • Production Example of Dry Powder 42 Dry powder 42 was obtained in the same manner as in Example 7-1 except that the temperature in the heat treatment was changed to 275°C.
  • Example 7-3 (Comparative Example) Production Example of Dry Powder 43 Dry powder 43 was obtained in the same manner as in Example 7-1 except that the first powder 2 was changed to powder B.
  • Example 8 Example of coating dry powder [Example 8-1] Example of manufacturing laminated body 41 Using an electrostatic coating machine, the dry powder 41 was supplied from the tank to the coating gun, and was directed from the coating gun to the surface of the copper foil. Then, the dry powder 41 was electrostatically coated. Next, the copper foil on which the dry powder 41 was electrostatically coated was held in an atmosphere of 340° C. for 10 minutes and then cooled to 25° C. Thereby, a laminate (average thickness: 60 ⁇ m) including the copper foil and the firing layer of the dry powder 41 formed on the surface of the copper foil was obtained.
  • a laminate average thickness: 60 ⁇ m
  • Example 8-2 (Comparative Example)] Manufacturing Example of Laminated Body 42 A laminated body 42 was obtained in the same manner as in Example 8-1 except that the dry powder 41 was changed to the dry powder 42.
  • Example 8-3 (Comparative Example) Manufacturing Example of Laminated Body 43 A laminated body 43 was obtained in the same manner as in Example 8-1, except that the dry powder 41 was changed to the dry powder 43.
  • the dry powder of the present invention can be used for the production of molded products such as films, impregnated products (prepregs, etc.), laminated plates (metal laminated plates such as resin-coated copper foil), mold release properties, electrical properties, water and oil repellency. It can be used for the production of molded products for applications requiring chemical resistance, weather resistance, heat resistance, slipperiness, wear resistance and the like. Molded articles obtained from the dry powder of the present invention are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry products, paints, cosmetics, and the like, specifically, wire coating materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

[Problem] To provide a dry powder which is a blend of different kinds of tetrafluoroethylene polymer powders and uses a powder of a tetrafluoroethylene polymer that has an oxygen-containing polar group, and wherein the physical properties of the respective polymers are highly exhibited. [Solution] A dry powder according to the present invention contains a tetrafluoroethylene polymer and a fluoropolymer which has an oxygen-containing polar group and a unit that is based on tetrafluoroethylene. It is preferable that the fluoropolymer has a melting point of from 140°C to 320°C. It is also preferable that the fluoropolymer contains a unit that is based on a monomer having the oxygen-containing polar group.

Description

ドライパウダー、及びドライパウダーの製造方法Dry powder and method for producing dry powder
 本発明は、所定のドライパウダー、その製造方法に関する。 The present invention relates to a predetermined dry powder and a manufacturing method thereof.
 ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)等のテトラフルオロエチレン系ポリマーのパウダーは、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れており、種々の産業用途に利用されている。 Powders of tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and perfluoro(alkyl vinyl ether) (PFA), copolymers of tetrafluoroethylene and hexafluoropropylene (FEP) It has excellent physical properties such as properties, electrical characteristics, water and oil repellency, chemical resistance, weather resistance, and heat resistance, and is used for various industrial applications.
 また、異種のテトラフルオロエチレン系ポリマーのパウダーをブレンドして、それぞれのテトラフルオロエチレン系ポリマーの物性を具備するパウダーを調製する試みがある。
 その手法としては、酸素含有極性基を有さない異種のテトラフルオロエチレン系ポリマーのパウダーをドライブレンドする手法、上記手法において、さらに上記テトラフルオロエチレン系ポリマーの溶融温度付近にて加熱してから粉砕する手法(特許文献1参照)、上記パウダーの水分散液を凍結乾燥させる手法(特許文献2参照)、上記パウダーを含む水分散液を共凝析させる手法(特許文献3~5参照)、上記パウダーを含む水分散液を噴霧乾燥させる手法(特許文献6参照)が提案されている。
There is also an attempt to blend powders of different kinds of tetrafluoroethylene-based polymers to prepare powders having physical properties of the respective tetrafluoroethylene-based polymers.
As the method, a method of dry blending a powder of a heterogeneous tetrafluoroethylene-based polymer having no oxygen-containing polar group, in the above-mentioned method, further heating near the melting temperature of the tetrafluoroethylene-based polymer and then pulverizing (See Patent Document 1), a method of freeze-drying an aqueous dispersion of the powder (see Patent Document 2), a method of co-coagulating an aqueous dispersion containing the powder (see Patent Documents 3 to 5), the above A method of spray-drying an aqueous dispersion containing powder has been proposed (see Patent Document 6).
特開平05-093086号公報Japanese Patent Laid-Open No. 05-093086 特表2009-523851号公報Japanese Patent Publication No. 2009-523851 国際公開第2012/086710号International Publication No. 2012/086710 国際公開第2012/086725号International Publication No. 2012/086725 国際公開第2013/157647号International Publication No. 2013/157647 特表2010-533763号公報Japanese Patent Publication No. 2010-533763
 分子間の相互作用に乏しいテトラフルオロエチレン系ポリマーのパウダー同士のブレンドにおいて、先行技術文献に記載のドライブレンド手法を用いると、得られるパウダーは均質性が低く、その成形加工性や成形品物性が充分ではないという課題がある。ブレンドにおける機械的な応力を強めると、ポリマーが変質して、その取扱性等が低下しやすいという課題もある。さらに熱処理する手法においては、熱処理の条件、特に加熱後の冷却を厳密にコントロールしないと、ポリマーが著しく変質しやすいという課題もある。 In the blending of powders of tetrafluoroethylene-based polymers with poor intermolecular interaction, when the dry blending method described in the prior art document is used, the obtained powder has low homogeneity and its molding processability and physical properties of molded articles are low. There is a problem that it is not enough. There is also a problem that when the mechanical stress in the blend is increased, the polymer is deteriorated and the handling property thereof is likely to be lowered. Further, in the method of heat treatment, there is also a problem that unless the heat treatment conditions, particularly the cooling after heating, are strictly controlled, the polymer is likely to be significantly deteriorated.
 また、先行技術文献に記載の、共凝析による手法、凍結乾燥による手法又は噴霧乾燥による手法においては、ポリマーの種類、その組み合せ、分散液の状態(ポリマー濃度、パウダーの状態等)等の因子が、得られるパウダーの物性に大きく影響を与える点を、本発明者らは知見している。例えば、共凝析による手法で得られるパウダーは、成形性が向上する反面、基材に対する接着性が低い点を知見している。 Further, in the method by co-coagulation, the method by freeze-drying or the method by spray-drying described in the prior art document, factors such as the type of polymer, its combination, the state of dispersion liquid (polymer concentration, state of powder, etc.), etc. However, the present inventors have found that the physical properties of the obtained powder are greatly affected. For example, it has been found that the powder obtained by the method by co-coagulation has improved moldability, but has low adhesiveness to the substrate.
 一方、酸素含有極性基を有するテトラフルオロエチレン系ポリマーのパウダーを使用した、異種のテトラフルオロエチレン系ポリマーのパウダーのブレンド、そのブレンドパウダーの物性は、知られていない。
 本発明者らは、従来知られていない、酸素含有極性基を有するテトラフルオロエチレン系ポリマーのパウダーを使用した、異種のテトラフルオロエチレン系ポリマーのパウダー同士のブレンドを検討した。その結果、それぞれのポリマーの物性を損なわずに、押出成形性と延伸成形性と接着性とに優れた成形品を形成するパウダー、及び、静電塗装に適した接着性の高いパウダーを得た。
On the other hand, a blend of different tetrafluoroethylene-based polymer powders using a tetrafluoroethylene-based polymer powder having an oxygen-containing polar group, and the physical properties of the blended powder are not known.
The present inventors have studied blending of powders of different types of tetrafluoroethylene-based polymers using powders of tetrafluoroethylene-based polymers having an oxygen-containing polar group, which have not been known so far. As a result, a powder that forms a molded article having excellent extrusion moldability, stretch moldability, and adhesiveness without impairing the physical properties of each polymer, and a highly adhesive powder suitable for electrostatic coating were obtained. ..
 本発明は、酸素含有極性基を有するテトラフルオロエチレン系ポリマーのパウダーを使用した、異種のテトラフルオロエチレン系ポリマーのパウダーのブレンドパウダーであって、それぞれのポリマーの物性が高度に発現するドライパウダーの提供を目的とする。 The present invention is a blend powder of different tetrafluoroethylene-based polymer powders using a tetrafluoroethylene-based polymer powder having an oxygen-containing polar group, wherein the physical properties of each polymer are highly expressed dry powders. For the purpose of provision.
 本発明は、以下の発明を提供する。
 <1> テトラフルオロエチレンに基づく単位及び酸素含有極性基を有するフルオロポリマーと、テトラフルオロエチレン系ポリマーとを含む、ドライパウダー。
 <2> 前記フルオロポリマーの溶融温度が、140~320℃である、上記<1>のドライパウダー。
 <3> 前記フルオロポリマーが、前記酸素含有極性基を有するモノマーに基づく単位を含む、上記<1>又は<2>のドライパウダー。
 <4> 前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、上記<1>~<3>のいずれかのドライパウダー。
 <5> 前記テトラフルオロエチレン系ポリマーが、ポリテトラフルオロエチレン、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー、テトラフルオロエチレンとエチレンとのコポリマー、又はテトラフルオロエチレンとフッ化ビニリデンとのコポリマーである、上記<1>~<4>のいずれかのドライパウダー。
 <6> 前記テトラフルオロエチレン系ポリマーが、ポリテトラフルオロエチレンである、上記<1>~<5>のいずれかのドライパウダー。
 <7> 前記テトラフルオロエチレン系ポリマーの含有質量に対する前記フルオロポリマーの含有質量の比が、0.4以下である、上記<1>~<6>のいずれかのドライパウダー。
 <8> 上記<1>~<7>のいずれかのドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液中において、前記第1パウダーと前記第2パウダーとを共凝析させてウェットパウダーを得て、該ウェットパウダーを乾燥して前記ドライパウダーを得る、ドライパウダーの製造方法。
 <9> 上記<1>~<7>のいずれかのドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液を凍結させ、水を昇華させて除去して前記ドライパウダーを得る、ドライパウダーの製造方法。
 <10> 上記<1>~<7>のいずれかのドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液を噴霧乾燥させて前記ドライパウダーを得る、ドライパウダーの製造方法。
 <11> 上記<1>~<7>のいずれかのドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーとを混合し、320℃超にて熱処理して混合物を得て、該混合物を粉砕して前記ドライパウダーを得る、ドライパウダーの製造方法。
 <12> 前記第1パウダーの体積基準累積50%径が、0.01~75μmであり、前記第2パウダーの体積基準累積50%径が、0.01~100μmである、上記<8>~<11>のいずれかの製造方法。
The present invention provides the following inventions.
<1> A dry powder containing a fluoropolymer having a unit based on tetrafluoroethylene and an oxygen-containing polar group, and a tetrafluoroethylene-based polymer.
<2> The dry powder according to <1> above, wherein the fluoropolymer has a melting temperature of 140 to 320° C.
<3> The dry powder according to <1> or <2>, in which the fluoropolymer includes a unit based on the monomer having the oxygen-containing polar group.
<4> The dry powder according to any one of the above <1> to <3>, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
<5> The tetrafluoroethylene-based polymer is polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), a copolymer of tetrafluoroethylene and hexafluoropropylene, a copolymer of tetrafluoroethylene and ethylene, or The dry powder according to any one of the above items <1> to <4>, which is a copolymer of tetrafluoroethylene and vinylidene fluoride.
<6> The dry powder according to any one of the above items <1> to <5>, wherein the tetrafluoroethylene-based polymer is polytetrafluoroethylene.
<7> The dry powder according to any one of the above items <1> to <6>, wherein the ratio of the content mass of the fluoropolymer to the content mass of the tetrafluoroethylene-based polymer is 0.4 or less.
<8> A method for producing a dry powder according to any one of the above <1> to <7>, which comprises a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, which comprises co-coagulating the first powder and the second powder in a dispersion to obtain a wet powder, and drying the wet powder to obtain the dry powder.
<9> A method for producing a dry powder according to any one of the above <1> to <7>, which comprises a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, wherein the dispersion liquid is frozen, and water is sublimated and removed to obtain the dry powder.
<10> A method for producing a dry powder according to any one of the above items <1> to <7>, which comprises a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, which comprises spray-drying a dispersion liquid to obtain the dry powder.
<11> The method for producing a dry powder according to any one of the above items <1> to <7>, wherein the first powder of the fluoropolymer and the second powder of the tetrafluoroethylene-based polymer are mixed, and the temperature is 320° C. A method for producing a dry powder, which comprises subjecting the mixture to a heat treatment at an ultra high temperature and pulverizing the mixture to obtain the dry powder.
<12> The volume-based cumulative 50% diameter of the first powder is 0.01 to 75 μm, and the volume-based cumulative 50% diameter of the second powder is 0.01 to 100 μm. <11> The manufacturing method according to any one of the above.
 本発明によれば、酸素含有極性基を有するフルオロオレフィン系ポリマーとテトラフルオロエチレン系ポリマーとを含む、特に押出成形性と延伸性とに優れた、強固な接着性を示す成形品できるドライパウダーが得られる。 According to the present invention, a dry powder containing a fluoroolefin-based polymer having an oxygen-containing polar group and a tetrafluoroethylene-based polymer, which is particularly excellent in extrusion moldability and stretchability, and which can be a molded article exhibiting strong adhesiveness is provided. can get.
 「パウダーのD50」は、体積基準累積50%径であり、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、体積基準累積90%径であり、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 「モノマーに基づく単位」は、モノマー1分子が重合して直接形成される原子団と、この原子団の一部を化学変換して得られる原子団との総称である。本明細書において、モノマーに基づく単位を、単に「単位」とも記す。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「ポリマーの溶融粘度」は、ASTM D1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した値である。
 「パウダー分散液の粘度」とは、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「パウダー分散液のチキソ比」とは、回転数が30rpmの条件で測定される粘度ηを回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「積層体の剥離強度」とは、矩形状(長さ100mm、幅10mm)に切り出した積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から積層体に対して90°で、金属箔と樹脂層とを剥離させた際にかかる最大荷重(N/cm)である。
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。ポリマーに含まれる、モノマーAに基づく単位を、単に「モノマーA単位」とも記す。
"Powder D50" is the volume-based cumulative 50% diameter, the particle size distribution is measured by the laser diffraction/scattering method, the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 50%.
"Powder D90" is the volume-based cumulative 90% diameter, the particle size distribution is measured by the laser diffraction/scattering method, and the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume on the cumulative curve. Is the particle size at the point where is 90%.
The “unit based on a monomer” is a generic term for an atomic group directly formed by polymerizing one molecule of a monomer and an atomic group obtained by chemically converting a part of this atomic group. In the present specification, the unit based on the monomer is also simply referred to as “unit”.
The "melting temperature (melting point) of the polymer" is a temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
The "melt viscosity of the polymer" is based on ASTM D1238, and a sample of the polymer (2 g) that had been heated for 5 minutes at the measurement temperature in advance was loaded with 0.7 MPa using a flow tester and a 2Φ-8L die. It is a value measured by holding at the measurement temperature.
The “viscosity of the powder dispersion” is a value measured with a B-type viscometer at room temperature (25° C.) under the condition of a rotation speed of 30 rpm. The measurement is repeated three times, and the average value of the three measured values is used.
The "thixo ratio of the powder dispersion liquid" is a value calculated by dividing the viscosity η 1 measured under the condition of the rotation speed of 30 rpm by the viscosity η 2 measured under the condition of the rotation speed of 60 rpm. The measurement of each viscosity is repeated three times, and the average value of the three measured values is used.
"Peel strength of laminated body" means fixing a position of 50 mm from one end in the longitudinal direction of the laminated body cut out in a rectangular shape (length 100 mm, width 10 mm), pulling speed 50 mm/min, one end in the longitudinal direction. Is the maximum load (N/cm) applied when the metal foil and the resin layer are separated from each other at 90° to the laminate.
The “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction is treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be The unit based on the monomer A contained in the polymer is also simply referred to as “monomer A unit”.
 本発明のドライパウダーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)及び酸素含有極性基を有するフルオロポリマー(以下、「Fポリマー」とも記す。)と、テトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)とを含む。なお、Fポリマーは、TFE系ポリマーとは異なるポリマーである。
 本発明のドライパウダーから形成される成形品(ポリマー層等の成形部位を含む。以下、同様である。)は、押出成形性と延伸性とに優れ、強固な接着性を発現する。
The dry powder of the present invention includes a fluoropolymer (hereinafter, also referred to as “F polymer”) having a unit (TFE unit) based on tetrafluoroethylene (TFE) and an oxygen-containing polar group, and a tetrafluoroethylene-based polymer (hereinafter, referred to as “F polymer”). Also referred to as "TFE polymer"). The F polymer is a polymer different from the TFE polymer.
A molded product (including a molding site such as a polymer layer. The same applies hereinafter) formed from the dry powder of the present invention is excellent in extrusion moldability and stretchability and exhibits strong adhesiveness.
 その理由も必ずしも明確ではないが、FポリマーとTFE系ポリマーとが共にTFE単位を含むフルオロポリマーであり相溶性が高い点に加えて、Fポリマーが酸素含有極性基を有する点が挙げられる。つまり、Fポリマーの酸素含有極性基は接着性を発現するだけでなく、ポリマー同士の間での相互作用、例えば、マトリックスの形成を促進すると考えられる。上述した通り、ドライパウダーにおける、それぞれのポリマーの均質性が高いため、マトリックスの形成が一層促進され、それぞれのポリマー鎖が均一に絡みやすい状態が形成されていると考えられる。その結果、押出成形性と延伸性とに優れ、強固な接着性を示す成形品が得られたと考えられる。 The reason for this is not clear, but in addition to the fact that both the F polymer and the TFE polymer are fluoropolymers containing TFE units and having high compatibility, the F polymer has an oxygen-containing polar group. That is, it is considered that the oxygen-containing polar group of the F polymer not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. As described above, since the homogeneity of the respective polymers in the dry powder is high, it is considered that the formation of the matrix is further promoted and the respective polymer chains are easily entangled uniformly. As a result, it is considered that a molded product having excellent extrusion moldability and stretchability and exhibiting strong adhesiveness was obtained.
 Fポリマーの溶融温度は、140~320℃が好ましく、200~320℃がより好ましく、260~320℃がさらに好ましい。この場合、成形品の接着性と耐クラック性とを更に向上させやすい。
 Fポリマーに含まれる酸素含有極性基は、酸素含有極性基を有するモノマーに基づく単位に含まれていてもよく、ポリマー末端基に含まれていてもよく、表面処理(放射線処理、電子線処理、コロナ処理、プラズマ処理等)によりポリマー中に含まれていてもよく、最前者が好ましい。また、Fポリマーが有する酸素含有極性基は、酸素含有極性基を形成し得る基を有するポリマーを変性して調製された基であってもよい。ポリマー末端基に含まれる酸素含有極性基は、そのポリマーの重合に際して使用する成分(重合開始剤、連鎖移動剤等)を調整することにより得られる。
The melting temperature of the F polymer is preferably 140 to 320°C, more preferably 200 to 320°C, and further preferably 260 to 320°C. In this case, it is easy to further improve the adhesiveness and crack resistance of the molded product.
The oxygen-containing polar group contained in the F polymer may be contained in a unit based on a monomer having an oxygen-containing polar group, may be contained in a polymer end group, and may be surface-treated (radiation treatment, electron beam treatment, Corona treatment, plasma treatment, etc.) may be included in the polymer, and the former is preferable. The oxygen-containing polar group contained in the F polymer may be a group prepared by modifying a polymer having a group capable of forming an oxygen-containing polar group. The oxygen-containing polar group contained in the polymer terminal group can be obtained by adjusting the components (polymerization initiator, chain transfer agent, etc.) used in the polymerization of the polymer.
 酸素含有極性基は、酸素原子を含有する極性の原子団である。ただし、本発明における酸素含有極性基には、エステル結合自体とエーテル結合自体とは含まれず、これらの結合を特性基として含む原子団は含まれる。
 酸素含有極性基は、水酸基含有基、カルボニル基含有基、アセタール基及びオキシシクロアルカン基からなる群から選ばれる少なくとも1種の基が好ましく、水酸基含有基又はカルボニル含有基がより好ましい。
The oxygen-containing polar group is a polar atomic group containing an oxygen atom. However, the oxygen-containing polar group in the present invention does not include the ester bond itself and the ether bond itself, but includes an atomic group containing these bonds as a characteristic group.
The oxygen-containing polar group is preferably at least one group selected from the group consisting of a hydroxyl group-containing group, a carbonyl group-containing group, an acetal group and an oxycycloalkane group, more preferably a hydroxyl group-containing group or a carbonyl-containing group.
 水酸基含有基は、-CFCHOH、-C(CFOH、又は1,2-グリコール基(-CH(OH)CHOH)が好ましい。
 カルボニル含有基は、>C(O)、-CFC(O)OH、>CFC(O)OH、カルボキシアミド基(-C(O)NH等)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)、ジカルボン酸残基(-CH(C(O)OH)CHC(O)OH等)、又はカーボネート基(-OC(O)O-)が好ましい。
 オキシシクロアルカン基は、エポキシ基又はオキセタニル基が好ましい。
The hydroxyl group-containing group is preferably —CF 2 CH 2 OH, —C(CF 3 ) 2 OH, or a 1,2-glycol group (—CH(OH)CH 2 OH).
Carbonyl-containing groups include >C(O), —CF 2 C(O)OH, >CFC(O)OH, carboxamido groups (—C(O)NH 2, etc.), acid anhydride residues (—C( O)OC(O)-), imide residues (-C(O)NHC(O)- etc.), dicarboxylic acid residues (-CH(C(O)OH)CH 2 C(O)OH etc.), Alternatively, a carbonate group (—OC(O)O—) is preferable.
The oxycycloalkane group is preferably an epoxy group or an oxetanyl group.
 酸素含有極性基は、ドライパウダーから得られる成形品の接着性及び耐クラック性を損ないにくい観点から、極性基であり環状基であるかその開環基である、環状酸無水物残基、環状イミド残基、環状カーボネート基、環状アセタール基、1,2-ジカルボン酸残基又は1,2-グリコール基が特に好ましく、環状酸無水物残基が最も好ましい。 Oxygen-containing polar group, from the viewpoint of not easily impairing the adhesiveness and crack resistance of molded articles obtained from dry powder, is a polar group and is a cyclic group or its ring-opening group, a cyclic acid anhydride residue, a cyclic An imide residue, a cyclic carbonate group, a cyclic acetal group, a 1,2-dicarboxylic acid residue or a 1,2-glycol group is particularly preferred, and a cyclic acid anhydride residue is most preferred.
 Fポリマーは、TFE単位と、ヘキサフルオロプロピレン(HFP)、ペルフルオロ(アルキルビニルエーテル)(PAVE)又はフルオロアルキルエチレン(FAE)に基づく単位(以下、「PAE単位」とも記す。)と、酸素含有極性基を有するモノマーに基づく単位(以下、「極性単位」とも記す。)とを含むポリマーが好ましい。
 TFE単位の割合は、Fポリマーを構成する全単位のうち、50~99モル%が好ましく、90~99モル%がより好ましい。
The F polymer includes a TFE unit, a unit based on hexafluoropropylene (HFP), perfluoro(alkyl vinyl ether) (PAVE) or fluoroalkyl ethylene (FAE) (hereinafter, also referred to as “PAE unit”), and an oxygen-containing polar group. A polymer containing a unit (hereinafter, also referred to as “polar unit”) based on a monomer having a is preferable.
The proportion of TFE units is preferably 50 to 99 mol %, and more preferably 90 to 99 mol% based on all units constituting the F polymer.
 PAE単位は、PAVEに基づく単位(以下、「PAVE単位」とも記す。)又はHFPに基づく単位(以下、「HFP単位」とも記す。)が好ましく、PAVE単位がより好ましい。PAE単位は、2種類以上であってもよい。
 PAE単位の割合は、Fポリマーを構成する全単位のうち、0~10モル%が好ましく、0.5~9.97モル%がより好ましい。
 極性単位の割合は、Fポリマーを構成する全単位のうち、0.01~3モル%が好ましい。
The PAE unit is preferably a unit based on PAVE (hereinafter also referred to as “PAVE unit”) or a unit based on HFP (hereinafter also referred to as “HFP unit”), and more preferably a PAVE unit. Two or more types of PAE units may be used.
The proportion of PAE units is preferably 0 to 10 mol%, more preferably 0.5 to 9.97 mol%, based on all units constituting the F polymer.
The proportion of polar units is preferably 0.01 to 3 mol% based on all units constituting the F polymer.
 PAVEとしては、CF=CFOCF(PMVE)、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられ、PMVE又はPPVEが好ましい。
 FAEとしては、CH=CH(CFF(PFEE)、CH=CH(CFF、CH=CH(CFF(PFBE)、CH=CF(CFH、CH=CF(CFHが挙げられ、PFEE又はPFBEが好ましい。
The PAVE, CF 2 = CFOCF 3 ( PMVE), CF 2 = CFOCF 2 CF 3, CF 2 = CFOCF 2 CF 2 CF 3 (PPVE), CF 2 = CFOCF 2 CF 2 CF 2 CF 3, CF 2 = CFO (CF 2) 8 F can be mentioned, PMVE or PPVE is preferred.
The FAE, CH 2 = CH (CF 2) 2 F (PFEE), CH 2 = CH (CF 2) 3 F, CH 2 = CH (CF 2) 4 F (PFBE), CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2) 4 H can be mentioned, PFEE or PFBE is preferred.
 極性単位は、1種類であってもよく、2種類以上であってもよい。
 酸素含有極性基を有するモノマーの具体例としては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)、無水マレイン酸が挙げられ、その好適な具体例としては、NAHが挙げられる。
The polarity unit may be one type or two or more types.
Specific examples of the monomer having an oxygen-containing polar group include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also referred to as hymic acid anhydride; hereinafter also referred to as “NAH”). Maleic anhydride is mentioned, and a suitable specific example thereof is NAH.
 また、この場合のFポリマーは、TFE単位、PAE単位及び極性単位以外の単位(以下、「他の単位」とも記す。)を、さらに含んでいてもよい。他の単位は、1種類であってもよく、2種類以上であってもよい。
 他の単位を形成するモノマーとしては、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン(VDF)、クロロトリフルオロエチレン(CTFE)が挙げられる。他の単位は、エチレン、VDF又はCTFEが好ましく、エチレンがより好ましい。
 Fポリマーにおける他の単位の割合は、Fポリマーを構成する全単位のうち、0~50モル%が好ましく、0~40モル%がより好ましい。
In addition, the F polymer in this case may further include units other than TFE units, PAE units, and polar units (hereinafter, also referred to as “other units”). The other unit may be one type or two or more types.
Examples of the monomer that forms another unit include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE). Other units are preferably ethylene, VDF or CTFE, more preferably ethylene.
The proportion of the other units in the F polymer is preferably 0 to 50 mol %, more preferably 0 to 40 mol% based on all the units constituting the F polymer.
 本発明のドライパウダーは、各種添加剤を含有してもよい。添加剤としては、紫外線吸収剤、光安定剤、つや消し剤、レベリング剤、表面調整剤、界面活性剤、脱ガス剤、可塑剤、充填剤、熱安定剤、増粘剤、分散剤、防錆剤、シランカップリング剤、防汚剤、低汚染化剤、難燃剤等が挙げられる。 The dry powder of the present invention may contain various additives. As additives, ultraviolet absorbers, light stabilizers, matting agents, leveling agents, surface modifiers, surfactants, degassing agents, plasticizers, fillers, heat stabilizers, thickeners, dispersants, rust preventives. Agents, silane coupling agents, antifouling agents, antifouling agents, flame retardants and the like.
 TFE系ポリマーは、ポリテトラフルオロエチレン(PTFE)、TFEとPAVEとのコポリマー(PFA)、TFEとHFPとのコポリマー(FEP)、TFEとエチレンとのコポリマー(ETFE)、又はTFEとVDFとのコポリマーが好ましく、PTFEがより好ましい。
 なお、PTFEには、TFEのホモポリマーに加えて、極微量のコモノマー(PAVE、HFP、FAE等)とTFEとのコポリマーである、所謂、変性PTFEも包含される。また、PFAは、TFEとPAVE以外のモノマーに基づく単位とを含んでいてもよい。上述した他のコポリマーにおいても同様である。
 上述した通り、成形品は、強固な接着性と耐クラック性とを示すだけでなく、TFE系ポリマーの物性が損なわれにくい。例えば、TFE系ポリマーがPTFEである場合、上記成形品は、PTFEの成形品が本来有する繊維状の表面物性やその多孔性が損なわれにくい。
The TFE polymer is polytetrafluoroethylene (PTFE), a copolymer of TFE and PAVE (PFA), a copolymer of TFE and HFP (FEP), a copolymer of TFE and ethylene (ETFE), or a copolymer of TFE and VDF. Is preferred, and PTFE is more preferred.
In addition to the homopolymer of TFE, PTFE also includes so-called modified PTFE, which is a copolymer of a very small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE. Further, PFA may include units based on monomers other than TFE and PAVE. The same applies to the other copolymers described above.
As described above, the molded product not only exhibits strong adhesiveness and crack resistance, but also does not easily deteriorate the physical properties of the TFE polymer. For example, when the TFE-based polymer is PTFE, the fibrous surface physical properties and the porosity of the PTFE molded article are unlikely to be impaired in the molded article.
 PTFEは、非熱溶融性PTFEが好ましい。
 上述した通り、本発明のドライパウダーは、強固な接着性を示すだけでなく、TFE系ポリマーの物性が損なわれにくい。例えば、TFE系ポリマーが非熱溶融性PTFEである場合、ブレンドパウダーは、非熱溶融性PTFEのパウダーが本来有する耐熱性が損なわれにくい。
 非熱溶融性PTFEにおけるTFE単位の割合は、全単位のうち、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
The PTFE is preferably non-heat-melting PTFE.
As described above, the dry powder of the present invention not only exhibits strong adhesiveness, but also does not easily deteriorate the physical properties of the TFE polymer. For example, when the TFE-based polymer is non-heat-melting PTFE, the blended powder is unlikely to lose the heat resistance originally possessed by the non-heat-melting PTFE powder.
The proportion of TFE units in the non-thermofusible PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, based on all units.
 非熱溶融性PTFEは、フィブリル性を有するのが好ましい。フィブリル性を有すれば、本発明のドライパウダーの静電塗装及び焼成により得られる塗膜の表面平滑性、機械的物性(耐摩耗性等)、耐候性が向上しやすい。なお、フィブリル性を有する非熱溶融性PTFEとは、未焼成のポリマー粉末がペースト押出できるPTFEを意味する。すなわち、ペースト押出で得られる成形物に強度又は伸びがあるPTFEを意味する。 The non-heat-melting PTFE preferably has a fibrillation property. If it has fibrillation property, the surface smoothness, mechanical properties (abrasion resistance, etc.), and weather resistance of the coating film obtained by electrostatic coating and firing of the dry powder of the present invention are likely to be improved. In addition, the non-thermofusible PTFE having fibrillation property means a PTFE capable of paste-extruding unbaked polymer powder. That is, it means PTFE having strength or elongation in a molded product obtained by paste extrusion.
 非熱溶融性PTFEの数平均分子量は、30万~30000万が好ましく、50万~2500万がより好ましい。
 非熱溶融性PTFEの平均分子量の指標である標準比重は、2.14~2.22が好ましく、2.15~2.21がより好ましい。
 非熱溶融性PTFEの380℃における溶融粘度は、1×10Pa・s以上が好ましい。上記溶融粘度の上限は、通常、1×1010Pa・sである。
 非熱溶融性PTFEの数平均分子量、標準比重及び溶融粘度のうちの少なくとも一つが、上記範囲にあれば、非熱溶融性PTFEのフィブリル性がより良好であり、機械的物性等により優れた成形品が形成できる。
The number average molecular weight of the non-thermofusible PTFE is preferably 300,000 to 300,000,000, more preferably 500,000 to 25,000,000.
The standard specific gravity, which is an index of the average molecular weight of the non-thermofusible PTFE, is preferably 2.14 to 2.22, more preferably 2.15 to 2.21.
The melt viscosity of the non-heat-melting PTFE at 380° C. is preferably 1×10 9 Pa·s or more. The upper limit of the melt viscosity is usually 1×10 10 Pa·s.
When at least one of the number average molecular weight, the standard specific gravity and the melt viscosity of the non-thermofusible PTFE is in the above range, the non-thermofusible PTFE has better fibrillability and is excellent in mechanical properties and the like. Goods can be formed.
 TFE系ポリマーは、水中でフルオロオレフィンを乳化重合して得られるポリマーであるのが好ましい。
 例えば、PTFEは、水中でTFEを乳化重合して得られるポリマーであるのが好ましい。かかるPTFEの第1パウダーは、水中でTFEを乳化重合して得られるポリマーが粒子として水に分散したパウダーである。かかるパウダーの使用に際しては、水に分散したパウダーをそのまま使用してもよく、水からパウダーを回収して使用してもよい。
The TFE polymer is preferably a polymer obtained by emulsion-polymerizing a fluoroolefin in water.
For example, PTFE is preferably a polymer obtained by emulsion polymerization of TFE in water. The first PTFE powder is a powder in which a polymer obtained by emulsion polymerization of TFE in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
 TFE系ポリマーは、表面処理(放射線処理、電子線処理、コロナ処理、プラズマ処理等)により改質されていてもよい。かかる表面処理の方法としては、国際公開第2018/026012号、国際公開第2018/026017号等に記載される方法が挙げられる。
 TFE系ポリマーは、パウダー、又は、その分散液を市販品として広く入手できる。
The TFE polymer may be modified by surface treatment (radiation treatment, electron beam treatment, corona treatment, plasma treatment, etc.). Examples of such a surface treatment method include the methods described in International Publication No. 2018/026012 and International Publication No. 2018/026017.
The TFE polymer is widely available as a powder or a dispersion thereof as a commercial product.
 本発明のドライパウダーにおける、TFE系ポリマーの質量に対するFポリマーの質量の比(Fポリマーの含有量/TFE系ポリマーの含有量)は、0.4以下が好ましく、0.15以下がより好ましい。この場合、ドライパウダー同士の間での相互作用が良好となり、押出成形性と延伸成形性とに特に優れたドライパウダーが得られやすい。上記質量の比の下限は、通常、0.01である。 The ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the dry powder of the present invention is preferably 0.4 or less, more preferably 0.15 or less. In this case, the interaction between the dry powders is good, and it is easy to obtain a dry powder that is particularly excellent in extrusion moldability and stretch moldability. The lower limit of the mass ratio is usually 0.01.
 本発明のドライパウダーの好適な態様としては、Fポリマーの第1パウダーと、TFE系ポリマーの第2パウダーと、水とを含むパウダー分散液中において、上記第1パウダーと上記第2パウダーとを共凝析させ、さらに乾燥して得られるドライパウダー(以下、「第1のドライパウダー」とも記す。)、Fポリマーの第1パウダーと、TFE系ポリマーの第2パウダーと、水とを含むパウダー分散液を凍結させ、水を昇華させて除去して得られるドライパウダー(以下、「第2のドライパウダー」とも記す。)、Fポリマーの第1パウダーと、TFE系ポリマーの第2パウダーと、水とを含むパウダー分散液を噴霧乾燥させて得られるドライパウダー(以下、「第3のドライパウダー」とも記す。)、Fポリマーの第1パウダーと、TFE系ポリマーの第2パウダーとを混合し、320℃超にて熱処理して混合物を得て、該混合物を粉砕して得られるドライパウダー(以下、「第4のドライパウダー」とも記す。)が挙げられる。 In a preferred embodiment of the dry powder of the present invention, the first powder and the second powder are contained in a powder dispersion liquid containing a first powder of F polymer, a second powder of TFE polymer, and water. Dry powder obtained by co-coagulation and further drying (hereinafter also referred to as "first dry powder"), first powder of F polymer, second powder of TFE polymer, and powder containing water A dry powder (hereinafter, also referred to as “second dry powder”) obtained by freezing the dispersion liquid and sublimating and removing water; a first powder of F polymer; a second powder of TFE polymer; Dry powder obtained by spray drying a powder dispersion containing water (hereinafter, also referred to as “third dry powder”), a first powder of F polymer, and a second powder of TFE polymer are mixed. A dry powder (hereinafter, also referred to as “fourth dry powder”) obtained by heat-treating at more than 320° C. to obtain a mixture and pulverizing the mixture.
 第1のドライパウダーは、FポリマーとTFE系ポリマーとが均一に混合したパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
 その理由は必ずしも明確ではないが、FポリマーとTFE系ポリマーとが共にTFE単位を含むフルオロポリマーであり相溶性が高い点に加えて、Fポリマーが酸素含有極性基を有する点が挙げられる。つまり、Fポリマーは、酸素含有極性基を有することから、水性媒体中での安定性が高くTFE系ポリマーとも相互作用するため、それぞれのパウダーは均一に分散した状態にあると考えられる。かかる良好な分散状態にあるパウダー分散液を共凝析処理に供すると、第1パウダーと第2パウダーとの共凝析が、パウダー同士を巻き込む形で進行すると考えられ、その結果、均質なパウダーが得られたと考えられる。
 第1のドライパウダーのD50は、100~1000μmが好ましく、300~800μmがより好ましい。第1のドライパウダーの見掛密度は、0.40~0.60g/mLが好ましく、0.45~0.55g/mLがより好ましい。見掛密度は、JIS K6892に準拠して測定される値である。
It can be said that the first dry powder is a powder in which the F polymer and the TFE polymer are uniformly mixed. This does not depend on the blending ratio of each polymer.
The reason for this is not clear, but in addition to the fact that both the F polymer and the TFE polymer are fluoropolymers containing TFE units and having high compatibility, the F polymer has an oxygen-containing polar group. That is, since the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the TFE polymer, and thus it is considered that the respective powders are in a uniformly dispersed state. It is considered that when the powder dispersion liquid in such a good dispersion state is subjected to co-coagulation treatment, co-coagulation of the first powder and the second powder proceeds in such a manner that the powders are rolled up, and as a result, a homogeneous powder is obtained. Is believed to have been obtained.
The D50 of the first dry powder is preferably 100 to 1000 μm, more preferably 300 to 800 μm. The apparent density of the first dry powder is preferably 0.40 to 0.60 g/mL, more preferably 0.45 to 0.55 g/mL. The apparent density is a value measured according to JIS K6892.
 第1のドライパウダーは、後述する第1の方法により得るのが好ましい。
 第1のドライパウダーは、押出成形性と延伸成形性とに特に優れ、得られる成形品は強固な接着性を示す。第1のパウダーを押出成形してシートを得、該シートを延伸処理すれば延伸シートが得られる。延伸条件としては、5~1000%/秒の速度にて、200%以上の延伸倍率を採用できる。
 また、第1のドライパウダーを押出成形すれば被覆材も得られる。
 前者の第1のドライパウダーの押出成形において、TFE系ポリマーがフィブリル性の高分子量PTFEであれば、多孔質の延伸膜も製造できる。
The first dry powder is preferably obtained by the first method described later.
The first dry powder is particularly excellent in extrusion moldability and stretch moldability, and the obtained molded product exhibits strong adhesiveness. A stretched sheet is obtained by extruding the first powder to obtain a sheet and subjecting the sheet to a stretching treatment. As a stretching condition, a stretching ratio of 200% or more can be adopted at a speed of 5 to 1000%/sec.
A coating material can also be obtained by extruding the first dry powder.
In the former extrusion molding of the first dry powder, if the TFE-based polymer is fibrillar high-molecular-weight PTFE, a porous stretched membrane can also be produced.
 それぞれの押出成形の方法は、公知の方法を採用できる。
 例えば、第1のドライパウダーをシートに成形する際の押出成形の方法は、ファインパウダーをペースト押出して得られる押出ビードを、カレンダリング等により、シート状に成形する方法が好ましい。
 この場合の第1のドライパウダーは、ナフサ等の石油系炭化水素に代表される潤滑剤を含んでいてもよい。潤滑剤の混合割合は、通常、ファインパウダーの100質量部に対して、潤滑剤の15~30質量部である。
A known method can be adopted for each extrusion molding method.
For example, the extrusion molding method for molding the first dry powder into a sheet is preferably a method in which extruded beads obtained by paste extrusion of fine powder are molded into a sheet by calendering or the like.
In this case, the first dry powder may contain a lubricant represented by petroleum hydrocarbons such as naphtha. The mixing ratio of the lubricant is usually 15 to 30 parts by mass with respect to 100 parts by mass of the fine powder.
 第2のドライパウダーは、FポリマーとTFE系ポリマーとを含む均質性の高い、ドライパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
 第2のドライパウダーは、元のTFE系ポリマーの物性を具備し、静電塗装に適した接着性のパウダーである。
 その理由は必ずしも明確ではないが、FポリマーとTFE系ポリマーとが共にTFE単位を含むフルオロポリマーであり相溶性が高い点に加えて、Fポリマーが酸素含有極性基を有する点が挙げられる。つまり、Fポリマーの酸素含有極性基は接着性を発現するだけでなく、ドライパウダー全体の静電性をバランスさせると共に、ポリマー同士の間での相互作用、例えば、マトリックスの形成を促進すると考えられる。上述したとおり、ドライパウダーは均質性が高いため、このマトリックスの形成が一層促進され、それぞれのポリマー鎖が均一に絡みやすい状態が形成されると考えられる。その結果、元のTFE系ポリマーの物性を損なうことなく、良好な静電塗装性と優れた接着性とが発現したと考えられる。
It can be said that the second dry powder is a highly homogeneous dry powder containing the F polymer and the TFE polymer. This does not depend on the blending ratio of each polymer.
The second dry powder has the physical properties of the original TFE polymer and is an adhesive powder suitable for electrostatic coating.
The reason for this is not clear, but in addition to the fact that both the F polymer and the TFE polymer are fluoropolymers containing TFE units and having high compatibility, the F polymer has an oxygen-containing polar group. That is, it is considered that the oxygen-containing polar group of the F polymer not only exhibits adhesiveness but also balances the electrostatic properties of the entire dry powder and promotes interaction between polymers, for example, formation of a matrix. .. As described above, since the dry powder has high homogeneity, it is considered that the formation of this matrix is further promoted and that the respective polymer chains are easily entangled uniformly. As a result, it is considered that good electrostatic paintability and excellent adhesiveness were exhibited without impairing the physical properties of the original TFE polymer.
 第2のドライパウダーは、その用途に応じて、さらに、種々の後処理に供してもよい。かかる後処理としては、ピンミルやジェットミルによる粉砕処理、放射線処理、コロナ処理、電子線処理、プラズマ処理が挙げられる。
 第2のドライパウダーのD50は、0.01~75μmが好ましく、0.05~6μmがより好ましく、0.1~4μmがさらに好ましい。
 第2のドライパウダーのD90は、8μm以下が好ましく、6μm以下がより好ましい。
The second dry powder may be further subjected to various post-treatments depending on its use. Examples of such post-treatment include crushing treatment with a pin mill or jet mill, radiation treatment, corona treatment, electron beam treatment, and plasma treatment.
The D50 of the second dry powder is preferably 0.01 to 75 μm, more preferably 0.05 to 6 μm, and further preferably 0.1 to 4 μm.
The D90 of the second dry powder is preferably 8 μm or less, more preferably 6 μm or less.
 第2のドライパウダーは、Fポリマー及びTFE系ポリマーの均一性の高いパウダーであり、パウダー表面の電位を中性に保ちやすく、安息角をより低下させやすい。
 第2のドライパウダーの安息角は、50°以下が好ましく、35°以下がより好ましい。また、安息角の下限値は、特に限定されず、通常5°である。この場合、静電塗装における塗装装置へのドライパウダーの供給がスムーズになり、塗膜の表面平滑性、厚み均一性及び加工性が優れる。
 なお、安息角は、乾燥させたドライパウダーを「JIS R 9301-2-2 アルミナ粉末-第2部:物性測定方法-2:安息角」に準じて測定して求められる。
The second dry powder is a highly uniform powder of the F polymer and the TFE polymer, and it is easy to keep the electric potential of the powder surface neutral and further easily reduce the angle of repose.
The angle of repose of the second dry powder is preferably 50° or less, more preferably 35° or less. The lower limit of the angle of repose is not particularly limited and is usually 5°. In this case, the dry powder can be smoothly supplied to the coating device in electrostatic coating, and the surface smoothness, thickness uniformity, and workability of the coating film are excellent.
The angle of repose is determined by measuring dried dry powder according to "JIS R 9301-2-2 Alumina powder-Part 2: Physical property measurement method-2: Angle of repose".
 第2のドライパウダーを基材の表面に静電塗工し、基材を加熱し、第2のドライパウダーの焼成物を形成すれば、基材とドライパウダーの焼成物とがこの順に積層された積層体(塗装物品)が得られる。
 塗装物品は、基材と、この基材上に、第2のドライパウダーから形成された塗膜である焼成物とを有し、接着性、表面平滑性、厚み均一性及び加工性に優れる。
When the second dry powder is electrostatically coated on the surface of the base material and the base material is heated to form the second dry powder fired product, the base material and the dry powder fired product are laminated in this order. A laminated body (painted article) is obtained.
The coated article has a base material and a fired product that is a coating film formed from the second dry powder on the base material, and is excellent in adhesiveness, surface smoothness, thickness uniformity, and workability.
 基材の材質としては、特に限定されず、無機物、有機物、有機無機複合材が挙げられる。無機物としては、コンクリート、自然石、ガラス、金属(鉄、ステンレス、アルミニウム、銅、真鍮、チタン等)が挙げられる。有機物としては、プラスチック、ゴム、接着剤、木材が挙げられる。有機無機複合材としては、繊維強化プラスチック、樹脂強化コンクリート、繊維強化コンクリートが挙げられる。また、基材は、公知の表面処理(化成処理等)が施されていてもよい。
 基材の材質は、金属が好ましく、アルミニウム又は銅がより好ましい。
The material of the base material is not particularly limited, and examples thereof include an inorganic material, an organic material, and an organic-inorganic composite material. Examples of the inorganic substance include concrete, natural stone, glass and metal (iron, stainless steel, aluminum, copper, brass, titanium, etc.). Examples of organic substances include plastics, rubbers, adhesives, and wood. Examples of the organic-inorganic composite material include fiber-reinforced plastic, resin-reinforced concrete, and fiber-reinforced concrete. Further, the base material may be subjected to a known surface treatment (chemical conversion treatment or the like).
The material of the base material is preferably metal, and more preferably aluminum or copper.
 塗装物品が有する塗膜の厚さは、塗装物品の用途により適宜設定でき、1~1000μmが好ましく、20~300μmがより好ましい。
 塗装物品としては、屋根、アルミニウムコンポジットパネル、カーテンウォール用アルミニウムパネル、カーテンウォール用アルミニウムフレーム、アルミニウムウィンドウフレーム等の建築外装部材;信号機、電柱、道路標示のポール、ガードレール等の道路資材;自動車の車体や部品(バンパー、ワイパーブレード、タイヤホイール等);家電製品(エアコンの室外機、温水器の外装等);風力発電用ブレード、太陽電池バックシート、太陽熱発電用集熱鏡の裏面、ナス電池外装、発電機が挙げられる。
The thickness of the coating film of the coated article can be appropriately set depending on the use of the coated article, and is preferably 1 to 1000 μm, more preferably 20 to 300 μm.
Painted articles include building exterior members such as roofs, aluminum composite panels, curtain panel aluminum panels, curtain wall aluminum frames, aluminum window frames; road materials such as traffic lights, telephone poles, road marking poles, and guardrails; automobile bodies. And parts (bumpers, wiper blades, tire wheels, etc.); household appliances (outdoor units for air conditioners, exteriors of water heaters, etc.); blades for wind power generators, solar battery backsheets, backsides of solar heat collecting mirrors, eggplant battery exteriors , A generator.
 塗装物品の製造に際しては、第2のドライパウダーの静電塗装と加熱とを同時に行ってもよく、基材の表面に第2のドライパウダーを静電塗装した後に基材を加熱してもよい。
 静電塗装された第2のドライパウダーの加熱温度は、通常、260~380℃である。かかる加熱温度に維持する時間は、通常、1~60分間である。
 第2のドライパウダーを静電塗装する手段としては、タンクから塗装ガンへドライパウダーを供給し、塗装ガンから基材の表面に向けて第2のドライパウダーを吐出(スプレー)する静電塗装法が好ましい。
 塗装ガンからの第2のドライパウダー(粉体塗料)の吐出量は、50~200g/分に設定できる。
In manufacturing the coated article, the second dry powder may be electrostatically coated and heated at the same time, or the base material may be heated after the second dry powder is electrostatically coated on the surface of the base material. ..
The heating temperature of the electrostatically coated second dry powder is usually 260 to 380°C. The time for maintaining the heating temperature is usually 1 to 60 minutes.
As a means for electrostatically coating the second dry powder, an electrostatic coating method of supplying the dry powder from the tank to the coating gun and discharging (spraying) the second dry powder from the coating gun to the surface of the base material Is preferred.
The discharge rate of the second dry powder (powder paint) from the coating gun can be set to 50 to 200 g/min.
 塗装ガンの先端(すなわち、第2のドライパウダーの吐出口)から、基材の表面までの距離は、塗装効率の観点から、150~400mmが好ましい。
 静電塗装法を工業的に実施する場合には、接地された導電性の水平ベルトコンベアを塗装室に敷設し、塗装室内の水平ベルトコンベアの鉛直上方に塗装ガンを設置するのが好ましい。塗装パターン幅は50~500mmが好ましく、塗装ガンの運行スピードは1~30m/分が好ましく、コンベアスピードは1~50m/分が好ましい。
 第2のドライパウダーを基材の表面に静電塗工し、基材を加熱して塗膜を形成した後は、塗装物品を室温(20~25℃)まで冷却すればよい。冷却は、急冷及び徐冷のいずれでもよく、塗膜の基材からの剥離を抑制する観点から徐冷が好ましい。
The distance from the tip of the coating gun (that is, the discharge port of the second dry powder) to the surface of the base material is preferably 150 to 400 mm from the viewpoint of coating efficiency.
When the electrostatic coating method is carried out industrially, it is preferable to lay a grounded conductive horizontal belt conveyor in the coating chamber and install the coating gun vertically above the horizontal belt conveyor in the coating chamber. The width of the coating pattern is preferably 50 to 500 mm, the operating speed of the coating gun is preferably 1 to 30 m/min, and the conveyor speed is preferably 1 to 50 m/min.
After the second dry powder is electrostatically coated on the surface of the base material and the base material is heated to form a coating film, the coated article may be cooled to room temperature (20 to 25° C.). The cooling may be either rapid cooling or slow cooling, and slow cooling is preferable from the viewpoint of suppressing peeling of the coating film from the substrate.
 第3のドライパウダーは、FポリマーとTFE系ポリマーとが均一に混合したパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
 その理由は必ずしも明確ではないが、上述した通り、それぞれのパウダーが均一に分散した状態にある水分散液を、噴霧乾燥(スプレードライ)に供するため、水の揮発に伴い、第1パウダーと第2パウダーとの均質なパウダーが形成されたと考えられる。
It can be said that the third dry powder is a powder in which the F polymer and the TFE polymer are uniformly mixed. This does not depend on the blending ratio of each polymer.
Although the reason is not always clear, as described above, since the water dispersion liquid in which each powder is uniformly dispersed is subjected to spray drying (spray dry), the first powder and It is considered that a homogeneous powder with 2 powders was formed.
 第3のドライパウダーのD50は、1~100μmが好ましく、3~50μmがより好ましい。
 第3のドライパウダーも、第1のドライパウダー又は第2のドライパウダーと同様に、押出成形及び延伸成形に供すれば、接着性に優れた延伸シートや多孔質の延伸膜に加工できる。また、静電塗装に供すれば、接着性、表面平滑性、厚み均一性及び加工性に優れた塗装物品を形成できる。
The D50 of the third dry powder is preferably 1 to 100 μm, more preferably 3 to 50 μm.
Similar to the first dry powder or the second dry powder, the third dry powder can be processed into a stretched sheet or a porous stretched film having excellent adhesiveness by subjecting it to extrusion molding and stretch molding. Further, when subjected to electrostatic coating, a coated article having excellent adhesiveness, surface smoothness, thickness uniformity and workability can be formed.
 第4のドライパウダーも、TFE系ポリマーとFポリマーとを高い均一性で含み、接着性及び耐フィブリル性に優れる。
 その理由は必ずしも明確ではないが、次のように考えられる。
 混合物を得る際の熱処理の温度が320℃超であれば、Fポリマーの溶融温度を上回りやすくなり、TFE系ポリマーの溶融温度付近になりやすくなる。このため、熱処理において、TFE系ポリマーはゲル化(軟化)した状態に、Fポリマーは高度に溶融した状態になり、よって両者は結着又は融着しやすい状態にある。この際、酸素含有極性基を有するFポリマーは、TFE系ポリマーとの相互作用が増大するとともに、混合物中でマトリックスを形成して、TFE系ポリマーの結晶化を抑制すると考えられる。また、かかる混合物を粉砕して第4のドライパウダーを得るため、TFE系ポリマーとFポリマーとの均一性が高いパウダーが得られたとも考えられる。
The fourth dry powder also contains the TFE polymer and the F polymer with high uniformity, and is excellent in adhesiveness and fibril resistance.
The reason is not always clear, but it can be considered as follows.
If the temperature of the heat treatment for obtaining the mixture exceeds 320° C., the melting temperature of the F polymer is likely to be exceeded, and the melting temperature of the TFE polymer is likely to be around the melting temperature. Therefore, in the heat treatment, the TFE polymer is in a gelled (softened) state and the F polymer is in a highly melted state, so that both are easily bound or fused. At this time, it is considered that the F polymer having an oxygen-containing polar group increases the interaction with the TFE polymer and forms a matrix in the mixture to suppress the crystallization of the TFE polymer. Further, it is considered that since the fourth dry powder was obtained by pulverizing the mixture, a powder having high uniformity between the TFE polymer and the F polymer was obtained.
 よって、第4のドライパウダーは、酸素含有極性基を有するFポリマーの作用により、高い接着性と高い耐フィブリル性とを発現したと推察される。かかる傾向は、TFE系ポリマーが、溶融温度が320℃超であるPTFEであり、Fポリマーの溶融温度が、260~320℃である場合に顕著になりやすい。
 すなわち、第4のドライパウダーにおけるTFE系ポリマーは、溶融温度が320℃超であるPTFEが好ましく、上述した非溶融性PTFEであるのが好ましい。また、第4のドライパウダーにおけるFポリマーの溶融温度は、260~320℃であるのが好ましい。
 また、第4のドライパウダーでは、TFE系ポリマー本来の物性(耐熱性等)が良好に保持されるため、例えば、静電塗装用の粉体塗料として好適に使用できる。具体的には、第4のドライパウダーも、第2のドライパウダーと同様に、静電塗装に供すれば、接着性、表面平滑性、厚み均一性及び加工性に優れた塗装物品を形成できる。
Therefore, it is presumed that the fourth dry powder exhibited high adhesiveness and high fibril resistance due to the action of the F polymer having an oxygen-containing polar group. Such a tendency tends to be remarkable when the TFE polymer is PTFE whose melting temperature is higher than 320° C. and the F polymer has a melting temperature of 260 to 320° C.
That is, the TFE-based polymer in the fourth dry powder is preferably PTFE having a melting temperature of higher than 320° C., and is preferably the non-melting PTFE described above. The melting temperature of the F polymer in the fourth dry powder is preferably 260 to 320°C.
Further, the fourth dry powder retains the original physical properties (heat resistance, etc.) of the TFE polymer well, and thus can be suitably used as a powder coating material for electrostatic coating, for example. Specifically, like the second dry powder, the fourth dry powder can form a coated article excellent in adhesiveness, surface smoothness, thickness uniformity, and processability when subjected to electrostatic coating. ..
 第4のドライパウダーにおける、Fポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、5×10~5×10Pa・sがより好ましい。この場合、Fポリマーの流動性がより高まるので、FポリマーのTFE系ポリマーに対する結着力をより向上できる。
 第4のドライパウダーにおけるFポリマーの質量に対するTFE系ポリマーの質量の比(TFE系ポリマーの含有量/Fポリマーの含有量)は、5以上が好ましく、5~50がより好ましく、10~25がさらに好ましい。この場合、パウダー同士の間での相互作用が良好となり、第4のドライパウダー中には、TFE系ポリマーとFポリマーとがより均一に存在しやすい。このため、TFE系ポリマーの物性を損なわずに、接着性に特に優れたパウダーが得られやすい。
The melt viscosity of the F polymer at 380° C. in the fourth dry powder is preferably 1×10 2 to 1×10 6 Pa·s, more preferably 5×10 2 to 5×10 5 Pa·s. In this case, since the fluidity of the F polymer is further increased, the binding force of the F polymer to the TFE polymer can be further improved.
The ratio of the mass of the TFE-based polymer to the mass of the F-polymer in the fourth dry powder (content of TFE-based polymer/content of F-polymer) is preferably 5 or more, more preferably 5 to 50, and more preferably 10 to 25. More preferable. In this case, the interaction between the powders becomes good, and the TFE polymer and the F polymer are likely to be present more uniformly in the fourth dry powder. Therefore, it is easy to obtain a powder having particularly excellent adhesiveness without impairing the physical properties of the TFE polymer.
 第4のドライパウダーは、PTFEとFポリマーとを含むパウダーである。
 第4のドライパウダーは、その用途に応じて、さらに、種々の後処理に供してもよい。かかる後処理としては、放射線処理、コロナ処理、電子線処理、プラズマ処理が挙げられる。
 第4のドライパウダーのD50は、0.1~50μmが好ましく、0.3~40μmがより好ましく、1~30μmがさらに好ましい。
 第4のドライパウダーのD90は、80μm以下が好ましく、65μm以下がより好ましく、40μm以下がさらに好ましい。
The fourth dry powder is a powder containing PTFE and F polymer.
The fourth dry powder may be further subjected to various post-treatments depending on its use. Examples of such post-treatment include radiation treatment, corona treatment, electron beam treatment, and plasma treatment.
The D50 of the fourth dry powder is preferably 0.1 to 50 μm, more preferably 0.3 to 40 μm, still more preferably 1 to 30 μm.
The D90 of the fourth dry powder is preferably 80 μm or less, more preferably 65 μm or less, even more preferably 40 μm or less.
 第1のドライパウダーの製造方法としては、Fポリマーの第1パウダーとTFE系ポリマーの第2パウダーと水とを含むパウダー分散液中において、第1パウダーと第2パウダーとを共凝析させてウェットパウダーを得て、このウェットパウダーを乾燥する方法(以下、「第1の方法」とも記す。)が挙げられる。
 このパウダー分散液は、第1パウダー及び第2パウダーのそれぞれが、水を主成分とする水性媒体中にそれぞれ粒子状に分散している分散液であるとも言える。
 第1の方法により得られるドライパウダーは、第1パウダーと第2パウダーとの共凝析により得られ、FポリマーとTFE系ポリマーが高度に均一混合した、ファインパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
The first dry powder is produced by co-coagulating the first powder and the second powder in a powder dispersion liquid containing the first powder of the F polymer, the second powder of the TFE polymer, and water. A method of obtaining wet powder and drying the wet powder (hereinafter, also referred to as “first method”) can be mentioned.
It can be said that this powder dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in the form of particles in an aqueous medium containing water as a main component.
It can be said that the dry powder obtained by the first method is a fine powder obtained by co-coagulation of the first powder and the second powder, in which the F polymer and the TFE polymer are highly uniformly mixed. This does not depend on the blending ratio of each polymer.
 その理由は必ずしも明確ではないが、FポリマーとTFE系ポリマーとが共にTFE単位を含むフルオロポリマーであり相溶性が高い点に加えて、Fポリマーが酸素含有極性基を有する点が挙げられる。つまり、Fポリマーは、酸素含有極性基を有することから、水性媒体中での安定性が高くTFE系ポリマーとも相互作用するため、それぞれのパウダーは均一に分散した状態にあると考えられる。かかる良好な分散状態にあるパウダー分散液を共凝析処理に供すると、第1パウダーと第2パウダーとの共凝析が、パウダー同士を巻き込む形で進行すると考えられ、その結果、均質なファインパウダーが得られたと考えられる。 The reason for this is not clear, but in addition to the fact that both the F polymer and the TFE polymer are fluoropolymers containing TFE units and have high compatibility, the F polymer has an oxygen-containing polar group. That is, since the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the TFE polymer, and thus it is considered that the respective powders are in a uniformly dispersed state. It is considered that when the powder dispersion liquid in such a good dispersion state is subjected to co-coagulation treatment, co-coagulation of the first powder and the second powder proceeds in such a manner that the powders are rolled up with each other. It is believed that a powder was obtained.
 第1の方法におけるFポリマーに含まれる酸素含有極性基及びFポリマーのそれぞれの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、それらと同様である。
 第1の方法における第1パウダーは、Fポリマー以外の成分を含んでいてもよいが、Fポリマーを主成分とするのが好ましい。第1パウダーにおけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
The respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the first method are the same as those in the dry powder of the present invention, including the preferable range.
The first powder in the first method may contain a component other than the F polymer, but it is preferable that the F powder is the main component. The content of the F polymer in the first powder is preferably 80% by mass or more, and more preferably 100% by mass.
 第1パウダーのD50は、0.01~75μmが好ましく、0.05~6μmがより好ましく、0.1~4μmがさらに好ましい。
 第1パウダーのD90は、8μm以下が好ましく、6μm以下がより好ましい。
 第1の方法におけるTFE系ポリマーの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、TFE系ポリマーの範囲と同様である。
The D50 of the first powder is preferably 0.01 to 75 μm, more preferably 0.05 to 6 μm, and further preferably 0.1 to 4 μm.
The D90 of the first powder is preferably 8 μm or less, more preferably 6 μm or less.
The range of the TFE polymer in the first method is the same as the range of the TFE polymer in the dry powder of the present invention, including the preferable range.
 第2パウダーは、水中でフルオロオレフィンを乳化重合して得られるポリマーが粒子として水に分散したパウダーであるのが好ましい。かかるパウダーの使用に際しては、水に分散したパウダーをそのまま使用してもよく、水からパウダーを回収して使用してもよい。
 第1の方法における第2パウダーは、TFE系ポリマー以外の成分を含んでいてもよいが、TFE系ポリマーを主成分とするのが好ましい。第2パウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。なお、本明細書においては、TFE系ポリマーの製造において使用された成分(界面活性剤等)が第2パウダーに含まれる場合、該成分はTFE系ポリマー以外の成分には含めない。
The second powder is preferably a powder in which a polymer obtained by emulsion-polymerizing a fluoroolefin in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
The second powder in the first method may contain a component other than the TFE-based polymer, but it is preferable that the second powder contains the TFE-based polymer as a main component. The content of the TFE polymer in the second powder is preferably 80% by mass or more, more preferably 100% by mass. In the present specification, when the second powder contains a component (surfactant or the like) used in the production of the TFE polymer, the component is not included in the components other than the TFE polymer.
 第2パウダーのD50は、0.01~100μmが好ましく、0.1~10μmがより好ましい。
 第2パウダーのD90は、200μm以下が好ましく、20μm以下がより好ましい。
 この場合、パウダー同士の間での相互作用が良好となり、第1パウダーと第2パウダーとの共凝析性と成形品の物性とを更に向上しやすい。
The D50 of the second powder is preferably 0.01 to 100 μm, more preferably 0.1 to 10 μm.
The D90 of the second powder is preferably 200 μm or less, more preferably 20 μm or less.
In this case, the interaction between the powders becomes good, and the co-coagulability of the first powder and the second powder and the physical properties of the molded product are likely to be further improved.
 第1の方法における第1パウダーのD50と第2パウダーのD50との関係の好適な態様としては、第1パウダーのD50が0.1μm以上1μm未満であり、第2パウダーのD50が0.1μm以上1μm以下である態様、第1パウダーのD50が1μm以上4μm以下であり、第2パウダーのD50が0.1μm以上1μm以下である態様が挙げられる。前者の態様においては、押出成形性と延伸成形性とに特に優れた成形品が得られやすい。後者の態様においては、耐クラック性に優れた成形品が得られやすい。 As a preferred aspect of the relationship between the D50 of the first powder and the D50 of the second powder in the first method, the D50 of the first powder is 0.1 μm or more and less than 1 μm, and the D50 of the second powder is 0.1 μm. The above-mentioned aspect is 1 μm or less, the D50 of the first powder is 1 μm or more and 4 μm or less, and the D50 of the second powder is 0.1 μm or more and 1 μm or less. In the former embodiment, it is easy to obtain a molded product that is particularly excellent in extrusion moldability and stretch moldability. In the latter embodiment, a molded article having excellent crack resistance can be easily obtained.
 第1の方法におけるTFE系ポリマーの質量に対するFポリマーの質量の比(Fポリマーの含有量/TFE系ポリマーの含有量)は、0.4以下が好ましく、0.15以下がより好ましい。この場合、パウダー同士の間での相互作用が良好となり、第1パウダーと第2パウダーとの共凝析性が更に向上しやすい。このため、TFE系ポリマーの物性を損なわずに、押出成形性と延伸成形性とに特に優れた第1のドライパウダーが得られ、接着性に特に優れた成形品が得られやすい。上記質量の比の下限は、通常、0.01である。
 第1の方法におけるパウダー分散液における、FポリマーとTFE系ポリマーとの合計での割合は、20~70質量%が好ましく、30~60質量%がより好ましい。
The ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the first method is preferably 0.4 or less, more preferably 0.15 or less. In this case, the interaction between the powders is good, and the co-coagulability of the first powder and the second powder is likely to be further improved. Therefore, without impairing the physical properties of the TFE polymer, the first dry powder having particularly excellent extrusion moldability and stretch moldability can be obtained, and a molded product having particularly excellent adhesiveness can be easily obtained. The lower limit of the mass ratio is usually 0.01.
The total proportion of the F polymer and the TFE polymer in the powder dispersion liquid in the first method is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
 第1の方法におけるパウダー分散液は、それぞれのパウダーの分散性を向上させ、それらの共凝縮性を向上させる観点から、分散剤を含むのが好ましい。なお、ポリマーを製造する際に使用される成分(例えば、フルオロオレフィンを乳化重合する際に用いられる界面活性剤)は、第1の方法における分散剤には該当しない。
 分散剤は、疎水部位と親水部位とを有する化合物が好ましく、アセチレン系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤が挙げられる。これらの分散剤は、ノニオン性が好ましい。
 分散剤は、フルオロアルコールが好ましく、フルオロモノオール又はフルオロポリオールがより好ましい。
The powder dispersion in the first method preferably contains a dispersant from the viewpoint of improving the dispersibility of each powder and improving their co-condensation properties. The components used for producing the polymer (for example, the surfactant used for emulsion-polymerizing the fluoroolefin) do not correspond to the dispersant in the first method.
The dispersant is preferably a compound having a hydrophobic site and a hydrophilic site, and examples thereof include an acetylene-based surfactant, a silicone-based surfactant, and a fluorine-based surfactant. These dispersants are preferably nonionic.
The dispersant is preferably fluoroalcohol, more preferably fluoromonool or fluoropolyol.
 フルオロモノオールのフッ素含有量は、10~50質量%が好ましく、10~45質量%がより好ましく、15~40質量%がさらに好ましい。
 フルオロモノオールは、ノニオン性であるのが好ましい。
 フルオロモノオールの水酸基価は、40~100mgKOH/gが好ましく、50~100mgKOH/gがより好ましく、60~100mgKOH/gがさらに好ましい。
The fluorine content of fluoromonool is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 15 to 40% by mass.
The fluoromonool is preferably nonionic.
The hydroxyl value of fluoromonool is preferably 40 to 100 mgKOH/g, more preferably 50 to 100 mgKOH/g, and further preferably 60 to 100 mgKOH/g.
 フルオロモノオールは、下式(a)で表される化合物が好ましい。
 式(a):R-(OQma-OH
 式中の記号は、下記の意味を示す。
 Rは、ポリフルオロアルキル基又はエーテル性酸素原子を含むポリフルオロアルキル基を示し、-CH(CFF、-CH(CFF、-CHCH(CFF、-CHCH(CFF、-CHCFOCFCFOCFCF、-CHCF(CF)CFOCFCFCF、-CHCF(CF)OCFCF(CF)OCF、又は-CHCFCHFO(CFOCFが好ましい。
 Qは、炭素数1~4のアルキレン基を示し、エチレン基(-CHCH-)又はプロピレン基(-CHCH(CH)-)が好ましい。Qは、2種以上の基からなっていてもてよい。2種以上の基からなっている場合、基の並び方は、ランダム状であってもよく、ブロック状であってもよい。
 maは、0~20の整数を示し、4~10の整数が好ましい。
 フルオロモノオールの水酸基は、2級水酸基又は3級水酸基が好ましく、2級水酸基がより好ましい。
The fluoromonool is preferably a compound represented by the following formula (a).
Formula (a): R a - ( OQ a) ma -OH
The symbols in the formulas have the following meanings.
R a represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and is —CH 2 (CF 2 ) 4 F, —CH 2 (CF 2 ) 6 F, —CH 2 CH 2 (CF 2 ) 4 F, —CH 2 CH 2 (CF 2 ) 6 F, —CH 2 CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CH 2 CF(CF 3 )CF 2 OCF 2 CF 2 CF 3 , —CH 2 CF (CF 3) OCF 2 CF (CF 3) OCF 3, or -CH 2 CF 2 CHFO (CF 2 ) 3 OCF 3 are preferred.
Q a represents an alkylene group having 1 to 4 carbon atoms, and is preferably an ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH(CH 3 )—). Q a may be composed of two or more kinds of groups. When it is composed of two or more kinds of groups, the groups may be arranged in a random pattern or a block pattern.
ma represents an integer of 0 to 20, preferably an integer of 4 to 10.
The hydroxyl group of fluoromonool is preferably a secondary hydroxyl group or a tertiary hydroxyl group, more preferably a secondary hydroxyl group.
 フルオロモノオールの具体例としては、F(CFCH(OCHCHOCHCH(CH)OH、F(CFCH(OCHCH12OCHCH(CH)OH、F(CFCHCH(OCHCHOCHCH(CH)OH、F(CFCHCH(OCHCH12OCHCH(CH)OH、F(CFCHCH(OCHCHOCHCH(CH)OHが挙げられる。
 かかるフルオロモノオールは、市販品(アークロマ社製「Fluowet N083」、「Fluowet N050」等)として入手できる。
Examples of fluoro monool, F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH , F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH and the like.
Such fluoromonool can be obtained as a commercially available product (such as “Fluowet N083” and “Fluowet N050” manufactured by Arkroma Co.).
 フルオロポリオールのフッ素含有量は、10~50質量%が好ましく、10~45質量%がより好ましく、15~40質量%がさらに好ましい。
 フルオロポリオールは、ノニオン性であるのが好ましい。
 フルオロポリオールの水酸基価は、10~35mgKOH/gが好ましく、10~30mgKOH/gがより好ましく、10~25mgKOH/gがさらに好ましい。
 フルオロポリオールの重量平均分子量は、2000~80000が好ましく、6000~20000がより好ましい。
 フルオロポリオールは、フルオロ(メタ)アクリレートに基づく単位を含むフルオロポリオールが好ましい。なお、「(メタ)アクリレート」とは、アクリレートとメタクリレートの総称である。
The fluorine content of the fluoropolyol is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and even more preferably 15 to 40% by mass.
The fluoropolyol is preferably nonionic.
The hydroxyl value of the fluoropolyol is preferably from 10 to 35 mgKOH/g, more preferably from 10 to 30 mgKOH/g, even more preferably from 10 to 25 mgKOH/g.
The weight average molecular weight of the fluoropolyol is preferably 2000 to 80000, more preferably 6000 to 20000.
The fluoropolyol is preferably a fluoropolyol containing units based on fluoro(meth)acrylate. In addition, "(meth)acrylate" is a general term for acrylate and methacrylate.
 フルオロ(メタ)アクリレートは、下式(f)で表されるモノマーが好ましい。
 式(f):CH=CXC(O)O-Q-R
 式中の記号は、下記の意味を示す。
 Xは、水素原子、塩素原子又はメチル基を示す。
 Qは、炭素数1~4のアルキレン基又は炭素数2~4のオキシアルキレン基を示す。
 Rは、炭素数1~6のポリフルオロアルキル基、エーテル性酸素原子を含む炭素数3~6のポリフルオロアルキル基又は炭素数4~12のポリフルオロアルケニル基を示し、-CF(CF)(C(CF(CF)(=C(CF))、-C(CF)=C(CF(CF、-(CFF又は-(CFFが好ましい。
The fluoro(meth)acrylate is preferably a monomer represented by the following formula (f).
Formula (f): CH 2 =CX f C(O)O-Q f -R f
The symbols in the formulas have the following meanings.
X f represents a hydrogen atom, a chlorine atom or a methyl group.
Q f represents an alkylene group having 1 to 4 carbon atoms or an oxyalkylene group having 2 to 4 carbon atoms.
R f represents a polyfluoroalkyl group having 1 to 6 carbon atoms, a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom, or a polyfluoroalkenyl group having 4 to 12 carbon atoms, and —CF(CF 3 )(C(CF(CF 3 ) 2 )(=C(CF 3 ) 2 )), -C(CF 3 )=C(CF(CF 3 ) 2 ) 2 , -(CF 2 ) 4 F or -( CF 2 ) 6 F is preferred.
 フルオロ(メタ)アクリレートの具体例としては、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCHOCF(CF)(C(CF(CF)(=C(CF))、CH=C(CH)C(O)OCHCHOC(CF)=C(CF(CF、CH=CHC(O)OCHCHCHCHOCF(CF)(C(CF(CF)(=C(CF))、CH=C(CH)C(O)OCHCHCHCHOC(CF)=C(CF(CFが挙げられる。 Specific examples of the fluoro(meth)acrylate include CH 2 ═CHC(O)OCH 2 CH 2 (CF 2 ) 4 F and CH 2 ═C(CH 3 )C(O)OCH 2 CH 2 (CF 2 ) 4. F, CH 2 = CHC (O ) OCH 2 CH 2 (CF 2) 6 F, CH 2 = C (CH 3) C (O) OCH 2 CH 2 (CF 2) 6 F, CH 2 = CHC (O) OCH 2 CH 2 OCF (CF 3 ) (C (CF (CF 3) 2) (= C (CF 3) 2)), CH 2 = C (CH 3) C (O) OCH 2 CH 2 OC (CF 3 ) = C (CF (CF 3 ) 2) 2, CH 2 = CHC (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3) (C (CF (CF 3) 2) (= C (CF 3) 2)), CH 2 = C (CH 3) C (O) OCH 2 CH 2 CH 2 CH 2 OC (CF 3) = C (CF (CF 3) 2) 2 and the like.
 フルオロポリオールの好適な具体例としては、上式(f)で表されるモノマー及び下式(o)で表されるモノマーのコポリマーが挙げられる。
 式(o):CH=CXC(O)-(OZmo-OH
 式中の記号は、下記の意味を示す。
 Xは、水素原子又はメチル基を示す。
 Zは、炭素数1~4のアルキレン基を示し、エチレン基(-CHCH-)が好ましい。
 moは、1~200の整数であり、4~30の整数が好ましい。
 なお、Zは、2種以上の基からなっていてもよい。この場合、異種のアルキレン基の並び方は、ランダム状であってもよく、ブロック状であってもよい。
Preferable specific examples of the fluoropolyol include copolymers of the monomer represented by the above formula (f) and the monomer represented by the following formula (o).
Formula (o): CH 2 =CX o C(O)-(OZ o ) mo —OH
The symbols in the formulas have the following meanings.
X o represents a hydrogen atom or a methyl group.
Z o represents an alkylene group having 1 to 4 carbon atoms, and an ethylene group (—CH 2 CH 2 —) is preferable.
mo is an integer of 1 to 200, preferably an integer of 4 to 30.
In addition, Z o may be composed of two or more kinds of groups. In this case, the arrangement of different alkylene groups may be random or block.
 式(o)で表されるモノマーの具体例としては、CH=CHCOO(CHCHO)OH、CH=CHCOO(CHCHO)10OH、CH=CHCOO(CHCHO)12OH、CH=CHCOOCHCHCHCHO(CHCHO)OH、CH=CHCOOCHCHCHCHO(CHCHO)10OH、CH=CHCOOCHCHCHCHO(CHCHO)12OH、CH=C(CH)COO(CHCH(CH)O)OH、CH=C(CH)COO(CHCH(CH)O)12OH、CH=C(CH)COO(CHCH(CH)O)16OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)12OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)16OHが挙げられる。 Specific examples of the monomer represented by the formula (o) include CH 2 ═CHCOO(CH 2 CH 2 O) 8 OH, CH 2 ═CHCOO(CH 2 CH 2 O) 10 OH, CH 2 ═CHCOO(CH 2 CH 2 O) 12 OH, CH 2 = CHCOOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH 2 O) 8 OH, CH 2 = CHCOOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH 2 O) 10 OH , CH 2 ═CHCOOCH 2 CH 2 CH 2 CH 2 O(CH 2 CH 2 O) 12 OH, CH 2 ═C(CH 3 )COO(CH 2 CH(CH 3 )O) 8 OH, CH 2 ═C( CH 3) COO (CH 2 CH (CH 3) O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 16 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 8 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 12 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 16 OH and the like.
 上記フルオロポリオールは、式(f)で表されるモノマーに基づく単位と式(o)で表されるモノマーに基づく単位とのみからなっていてもよく、さらに他の単位をさらに含んでいてもよい。
 上記フルオロポリオールに含まれる全単位に対する式(f)で表されるモノマーに基づく単位の含有量は、60~90モル%が好ましく、70~90モル%がより好ましい。
 上記フルオロポリオールに含まれる全単位に対する式(o)で表されるモノマーに基づく単位の含有量は、10~40モル%が好ましく、10~30モル%がより好ましい。
 上記フルオロポリオールに含まれる全単位に対する、式(f)で表されるモノマーに基づく単位と式(o)で表されるモノマーとの合計での含有量は、90~100モル%が好ましく、100モル%がより好ましい。
 パウダー分散液におけるフルオロアルコールの割合は、10質量%以下が好ましく、1質量%以下がより好ましく、0.01質量%以下がさらに好ましい。上記割合の下限は、通常、0%超である。
The fluoropolyol may be composed only of a unit based on the monomer represented by the formula (f) and a unit based on the monomer represented by the formula (o), and may further include another unit. ..
The content of the unit based on the monomer represented by the formula (f) is preferably 60 to 90 mol% and more preferably 70 to 90 mol% with respect to all the units contained in the fluoropolyol.
The content of the unit based on the monomer represented by the formula (o) is preferably 10 to 40 mol% and more preferably 10 to 30 mol% with respect to all units contained in the fluoropolyol.
The total content of the units based on the monomer represented by the formula (f) and the monomer represented by the formula (o) is preferably 90 to 100 mol %, based on all units contained in the fluoropolyol, and 100 Mol% is more preferred.
The proportion of fluoroalcohol in the powder dispersion is preferably 10% by mass or less, more preferably 1% by mass or less, and further preferably 0.01% by mass or less. The lower limit of the above ratio is usually more than 0%.
 第1の方法におけるパウダー分散液は、水を主成分とする水性媒体(パウダー分散液の分散媒)を含む。
 水性媒体は、水のみからなってもよく、水と水溶性化合物とからなっていてもよい。
 ただし、水溶性化合物としては、25℃で液状であり、Fポリマー及びTFE系ポリマーと反応しない、加熱等によって容易に除去できる化合物が好ましい。また、水性媒体における水の割合は、95質量%以上が好ましく、99質量%以上がより好ましく、100質量%がさらに好ましい。
 パウダー分散液における水性媒体の割合は、15~65質量%が好ましく、25~50質量%がより好ましい。この範囲において、パウダー分散液の共凝集性が特に優れる。
The powder dispersion liquid in the first method contains an aqueous medium containing water as a main component (dispersion medium of the powder dispersion liquid).
The aqueous medium may consist only of water, or may consist of water and a water-soluble compound.
However, the water-soluble compound is preferably a compound which is liquid at 25° C., does not react with the F polymer and the TFE polymer, and can be easily removed by heating or the like. The proportion of water in the aqueous medium is preferably 95% by mass or more, more preferably 99% by mass or more, and further preferably 100% by mass.
The proportion of the aqueous medium in the powder dispersion is preferably 15 to 65% by mass, more preferably 25 to 50% by mass. In this range, the coaggregation property of the powder dispersion is particularly excellent.
 第1の方法における共凝析の方法としては、ポリマーの含有量を調整したパウダー分散液を撹拌し、分散している第1パウダーと第2パウダーとを共凝析させる方法が挙げられる。
 この際のポリマーの含有量は、8~25質量%が好ましい。かかる含有量になるように、必要に応じて、パウダー分散液を水で希釈すればよい。
 共凝析における温度は、5~30℃が好ましい。
 共凝析においては、必要に応じて、パウダー分散液のpHを調節してもよい。また、パウダー分散液に、pH調整剤、電解質、有機溶媒、凝集助剤を添加してもよい。
Examples of the co-coagulation method in the first method include a method in which a powder dispersion having a polymer content adjusted is stirred to co-coagulate the dispersed first powder and second powder.
At this time, the content of the polymer is preferably 8 to 25% by mass. If necessary, the powder dispersion liquid may be diluted with water so as to obtain such a content.
The temperature in the co-coagulation is preferably 5 to 30°C.
In the co-coagulation, the pH of the powder dispersion may be adjusted if necessary. Moreover, you may add a pH adjuster, an electrolyte, an organic solvent, and an aggregation aid to a powder dispersion liquid.
 pH調節剤としては、炭酸ナトリウム、炭酸水素ナトリウム、アンモニア、アンモニウム塩、尿素が挙げられる。
 電解質としては、硝酸カリウム、硝酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムなどの無機塩が挙げられる。
 有機溶剤としては、アルコール、アセトンが挙げられる。
 凝集助剤としては、硝酸、塩酸、硫酸、塩化マグネシウム、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、硫酸マグネシウム、硫酸バリウムが挙げられる。
Examples of pH adjusters include sodium carbonate, sodium hydrogen carbonate, ammonia, ammonium salts, and urea.
Examples of the electrolyte include inorganic salts such as potassium nitrate, sodium nitrate, sodium carbonate and sodium hydrogen carbonate.
Examples of the organic solvent include alcohol and acetone.
Examples of the coagulation aid include nitric acid, hydrochloric acid, sulfuric acid, magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate and barium sulfate.
 第1の方法においては、パウダー分散液の撹拌により、第1パウダーと第2パウダーとを共凝析させ、凝析パウダーを水性媒体から分離するとウェットパウダーが得られる。この際、造粒工程又は整粒工程によって、粒子径を調整するのが好ましい。造粒工程とは凝析パウダーのD50を100~1000μmに造粒する工程であり、整粒工程とは撹拌により凝析パウダーの粒子性状と粒度分布とを調整する工程である。
 これにより、湿潤状態のファインパウダー(凝析パウダー)であるウェットパウダーが得られる。
In the first method, the powder dispersion is stirred to co-coagulate the first powder and the second powder, and the coagulated powder is separated from the aqueous medium to obtain a wet powder. At this time, it is preferable to adjust the particle size by a granulating step or a sizing step. The granulation step is a step of granulating D50 of the coagulated powder to 100 to 1000 μm, and the sizing step is a step of adjusting the particle properties and particle size distribution of the coagulated powder by stirring.
As a result, wet powder, which is fine powder (coagulated powder) in a wet state, is obtained.
 なお、共凝析に供するパウダー分散液は、第1パウダー及び水を含む分散液と第2パウダー及び水を含む分散液とを混合する方法、第1パウダー及び水を含む分散液と第2パウダーとを混合する方法、第2パウダー及び水を含む分散液と第1パウダーとを混合する方法によって調製できる。ただし、各成分を均一に分散しやすい観点から、パウダー分散液は、最前者の方法によって調製するのが好ましい。 The powder dispersion used for co-coagulation is a method of mixing a dispersion containing the first powder and water with a dispersion containing the second powder and water, a dispersion containing the first powder and water and a second powder. It can be prepared by a method of mixing and a dispersion of the second powder and water and a method of mixing the first powder. However, the powder dispersion is preferably prepared by the former method from the viewpoint that each component is easily dispersed uniformly.
 次に、得られたウェットパウダーを乾燥すると、第1のドライパウダーが得られる。
 乾燥における温度は、110~250℃が好ましく、120~230℃がより好ましい。この場合、第1のドライパウダーの生産性と押出成形性とがバランスしやすい。
Next, the obtained wet powder is dried to obtain a first dry powder.
The drying temperature is preferably 110 to 250°C, more preferably 120 to 230°C. In this case, it is easy to balance the productivity of the first dry powder with the extrusion moldability.
 第2のドライパウダーの製造方法としては、Fポリマーの第1パウダーとTFE系ポリマーの第2パウダーと水とを含むパウダー分散液を凍結させ、凍結させたパウダー分散液から水を昇華させて除去させる方法(以下、「第2の方法」とも記す。)が挙げられる。
 この分散液は、第1パウダー及び第2パウダーのそれぞれが、水中に粒子状に分散している分散液であるとも言える。
 第2の方法により得られる第2のドライパウダーは、凍結したパウダー分散液から水が昇華により除去されて得られる、FポリマーとTFE系ポリマーとを含む均質性の高い、ドライパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
The second dry powder is produced by freezing a powder dispersion containing a first powder of F polymer, a second powder of TFE polymer, and water, and sublimating and removing water from the frozen powder dispersion. A method (hereinafter, also referred to as a “second method”) is included.
It can be said that this dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in water in the form of particles.
It can be said that the second dry powder obtained by the second method is a highly homogeneous dry powder containing an F polymer and a TFE polymer, which is obtained by removing water from a frozen powder dispersion liquid by sublimation. .. This does not depend on the blending ratio of each polymer.
 その理由は必ずしも明確ではないが、上述した通り、それぞれのパウダーが均一に分散した状態にあるパウダー分散液を凍結すると、第1パウダーと第2パウダーとがそのままの状態で取り込まれた凍結物が得られると考えられる。かかる凍結物から水を昇華させて除去するため、FポリマーとTFE系ポリマーとを含む、均質なドライパウダーが得られたと考えられる。 Although the reason is not always clear, as described above, when the powder dispersion liquid in which the respective powders are uniformly dispersed is frozen, the frozen product in which the first powder and the second powder are taken in as it is is It is thought to be obtained. It is considered that since the sublimated water was removed from the frozen product, a homogeneous dry powder containing the F polymer and the TFE polymer was obtained.
 第2の方法におけるFポリマーに含まれる酸素含有極性基及びFポリマーのそれぞれの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、それらと同様である。
 第2の方法における第1パウダーの範囲は、好適な範囲を含めて、第1の方法における第1パウダーの範囲と同様である。
 第2の方法におけるTFE系ポリマーの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、TFE系ポリマーの範囲と同様である。
 第2の方法における第1パウダーの範囲は、好適な範囲を含めて、第1の方法における第1パウダーの範囲と同様である。
The respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the second method are the same as those in the dry powder of the present invention, including the preferable range.
The range of the first powder in the second method is the same as the range of the first powder in the first method, including the preferable range.
The range of the TFE-based polymer in the second method is the same as the range of the TFE-based polymer in the dry powder of the present invention, including the preferable range.
The range of the first powder in the second method is the same as the range of the first powder in the first method, including the preferable range.
 また、第2の方法における、第1パウダーのD50と第2パウダーのD50との関係の好適な態様も、第1の方法における、それと同様である。
 第2の方法における、TFE系ポリマーの質量に対するFポリマーの質量の比(Fポリマーの含有量/TFE系ポリマーの含有量)の範囲は、好適な範囲を含めて、第1の方法における、それと同様である。
 第2の方法におけるパウダー分散液の範囲は、好適な範囲を含めて、第1の方法における、それと同様である。
In addition, a preferable aspect of the relationship between the D50 of the first powder and the D50 of the second powder in the second method is the same as that in the first method.
The range of the ratio of the mass of the F polymer to the mass of the TFE polymer (content of the F polymer/content of the TFE polymer) in the second method, including the preferable range, is the same as that in the first method. The same is true.
The range of the powder dispersion liquid in the second method is the same as that in the first method, including the preferable range.
 第2の方法におけるパウダー分散液の凍結は、0℃未満にて行うのが好ましい。具体的には、パウダー分散液を-78~-10℃の雰囲気に暴露して凍結させるのが好ましい。凍結は、パウダー分散液の成分の沈降を抑制する観点から、8時間以内で完了するのが好ましい。また、急激な凍結による凍結物の不均一化を抑制する観点から、パウダー分散液は10分以上かけて凍結させるのが好ましい。
 凍結させたパウダー分散液(凍結物)からの水の昇華による除去は、パウダー分散液の融解を抑制した条件下で行われればよい。
 水を昇華させる際の温度は、0℃未満が好ましい。具体的には、凍結物を-78~+0℃の雰囲気に暴露するのが好ましい。また、水を昇華させる際の圧力は、通常、減圧雰囲気であり、0~6.12×10Paの減圧雰囲気が好ましい。水を昇華させる際の時間は、通常、4~72時間である。
 昇華に使用する装置としては、遠心分離器、棚段乾燥器等が挙げられる。
Freezing of the powder dispersion in the second method is preferably performed at less than 0°C. Specifically, it is preferable to freeze the powder dispersion by exposing it to an atmosphere of −78 to −10° C. Freezing is preferably completed within 8 hours from the viewpoint of suppressing settling of the components of the powder dispersion liquid. Further, from the viewpoint of suppressing non-uniformity of the frozen product due to rapid freezing, it is preferable to freeze the powder dispersion for 10 minutes or more.
The removal of water from the frozen powder dispersion (frozen matter) by sublimation may be carried out under conditions in which melting of the powder dispersion is suppressed.
The temperature for sublimating water is preferably less than 0°C. Specifically, it is preferable to expose the frozen product to an atmosphere of −78 to +0° C. The pressure for sublimating water is usually a reduced pressure atmosphere, and a reduced pressure atmosphere of 0 to 6.12×10 2 Pa is preferable. The time for sublimation of water is usually 4 to 72 hours.
Examples of the apparatus used for sublimation include a centrifugal separator and a tray dryer.
 第3のドライパウダーの製造方法としては、Fポリマーの第1パウダーと、TFE系ポリマーの第2パウダーと水とを含むパウダー分散液を噴霧乾燥させる方法(以下、「第3の方法」とも記す。)が挙げられる。
 この分散液は、第1パウダー及び第2パウダーのそれぞれが、水中に粒子状に分散している分散液であるとも言える。
 第3の方法により得られるドライパウダーは、噴霧乾燥によってパウダー分散液から水揮発除去されて得られる、FポリマーとTFE系ポリマーとを含む均質性の高い、ブレンドパウダーであると言える。これは、それぞれのポリマーの配合比率によらない。
As a method for producing a third dry powder, a method of spray-drying a powder dispersion liquid containing a first powder of F polymer, a second powder of TFE polymer and water (hereinafter, also referred to as “third method”) .) is mentioned.
It can be said that this dispersion liquid is a dispersion liquid in which each of the first powder and the second powder is dispersed in water in the form of particles.
It can be said that the dry powder obtained by the third method is a highly homogenous blend powder containing the F polymer and the TFE polymer, which is obtained by water evaporation of the powder dispersion by spray drying. This does not depend on the blending ratio of each polymer.
 その理由は必ずしも明確ではないが、上述した通り、それぞれのパウダーが均一に分散した状態にあるパウダー分散液を噴霧乾燥すると、水が揮発除去されて、そのまま均質なブレンドパウダーが形成されやすいためと考えられる。
 第3の方法は、100℃超の雰囲気下に、パウダー分散液を噴霧して行うのが好ましい。具体的な方法としては、鉛直上方に100℃超の不活性ガス(窒素ガスが好ましい。)を流通させた系において、パウダー分散液を鉛直下法に噴霧して、パウダー分散液の乾燥させる方法が好ましい。かかる方法には、晶析塔等の装置を使用できる。
The reason is not always clear, but as mentioned above, when the powder dispersion liquid in which each powder is uniformly dispersed is spray-dried, water is volatilized and removed, and a homogeneous blended powder is likely to be formed as it is. Conceivable.
The third method is preferably carried out by spraying the powder dispersion liquid in an atmosphere above 100°C. As a specific method, in a system in which an inert gas (nitrogen gas is preferable) having a temperature of more than 100° C. is passed vertically upward, the powder dispersion is sprayed by a vertical downward method, and the powder dispersion is dried. Is preferred. An apparatus such as a crystallization tower can be used for this method.
 第3の方法におけるFポリマーに含まれる酸素含有極性基及びFポリマーのそれぞれの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、それらと同様である。
 第3の方法における第1パウダーの範囲は、好適な範囲を含めて、第1の方法における第1パウダーの範囲と同様である。
 第3の方法におけるTFE系ポリマーの範囲は、好適な範囲を含めて、本発明のドライパウダーにおける、TFE系ポリマーの範囲と同様である。
 第3の方法における第1パウダーの範囲は、好適な範囲を含めて、第1の方法における第1パウダーの範囲と同様である。
The respective ranges of the oxygen-containing polar group and the F polymer contained in the F polymer in the third method are the same as those in the dry powder of the present invention, including the preferable range.
The range of the first powder in the third method is the same as the range of the first powder in the first method, including the preferable range.
The range of the TFE polymer in the third method is the same as the range of the TFE polymer in the dry powder of the present invention, including the preferable range.
The range of the first powder in the third method is the same as the range of the first powder in the first method, including the preferable range.
 また、第3の方法における、第1パウダーのD50と第2パウダーのD50との関係の好適な態様も、第1の方法における、それと同様である。
 第3の方法における、TFE系ポリマーの質量に対するFポリマーの質量の比(Fポリマーの含有量/TFE系ポリマーの含有量)の範囲は、好適な範囲を含めて、第1の方法における、それと同様である。
 第3の方法におけるパウダー分散液の範囲は、好適な範囲を含めて、第1の方法における、それと同様である。
Further, a preferable aspect of the relationship between the D50 of the first powder and the D50 of the second powder in the third method is the same as that in the first method.
The range of the ratio of the mass of the F polymer to the mass of the TFE polymer (content of F polymer/content of TFE polymer) in the third method, including the preferable range, is the same as that in the first method. The same is true.
The range of the powder dispersion liquid in the third method is the same as that in the first method including the preferable range.
 第4のドライパウダーの製造方法としては、TFE系ポリマーの第1パウダーと、Fポリマーの第2パウダーとを混合し、320℃超にて熱処理して混合物を得、さらにこの混合物を粉砕する方法(以下、「第4の方法」とも記す。)が挙げられる。第4の方法は、第1パウダーと第2パウダーとを含むパウダー組成物を、320℃超にて熱処理し、さらに粉砕する方法であるとも言える。上記混合物(パウダー組成物)は、溶融固化物又は一体化物を形成していてもよい。 As a fourth method for producing dry powder, a method of mixing a first powder of TFE polymer and a second powder of F polymer, heat-treating at more than 320° C. to obtain a mixture, and further pulverizing the mixture (Hereinafter, also referred to as “fourth method”). It can be said that the fourth method is a method in which a powder composition containing the first powder and the second powder is heat-treated at a temperature higher than 320° C. and further pulverized. The mixture (powder composition) may form a melt-solidified product or an integrated product.
 第4の方法における第1パウダーは、TFE系ポリマーを主成分とするのが好ましい。第1パウダーにおけるTFE系ポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。なお、本明細書においては、TFE系ポリマーの製造において使用された成分(界面活性剤等)が第1パウダーに含まれる場合、該成分はTFE系ポリマー以外の成分には含めない。
 第1パウダーのD50は、0.01~100μmが好ましく、0.1~10μmがより好ましい。
 第1パウダーのD90は、200μm以下が好ましく、20μm以下がより好ましい。
 この場合、パウダー同士の間での相互作用が良好となり、第4のドライパウダーの物性を更に向上しやすい。
The first powder in the fourth method preferably contains a TFE polymer as a main component. The content of the TFE polymer in the first powder is preferably 80% by mass or more, more preferably 100% by mass. In addition, in the present specification, when the component (surfactant or the like) used in the production of the TFE-based polymer is contained in the first powder, the component is not included in the components other than the TFE-based polymer.
The D50 of the first powder is preferably 0.01 to 100 μm, more preferably 0.1 to 10 μm.
The D90 of the first powder is preferably 200 μm or less, more preferably 20 μm or less.
In this case, the interaction between the powders becomes good, and the physical properties of the fourth dry powder are likely to be further improved.
 第4の方法における第2パウダーは、Fポリマーを主成分とするのが好ましい。第2パウダーにおけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
 第2パウダーのD50は、0.01~75μmが好ましく、0.05~6μmがより好ましい。
 第2パウダーのD90は、100μm以下が好ましく、6μm以下がより好ましい。
The second powder in the fourth method preferably contains an F polymer as a main component. The content of the F polymer in the second powder is preferably 80% by mass or more, and more preferably 100% by mass.
The D50 of the second powder is preferably 0.01 to 75 μm, more preferably 0.05 to 6 μm.
The D90 of the second powder is preferably 100 μm or less, more preferably 6 μm or less.
 上記熱処理における温度は、320℃超であり、325~350℃が好ましく、330~345℃がより好ましい。かかる温度範囲であれば、TFE系ポリマーが過度に溶融するのを防止しつつ、Fポリマーが充分に溶融できる。このため、FポリマーがTFE系ポリマーにより強固に結着できる。
 また、熱処理における時間は、10~120分間が好ましく、15~100分間がより好ましい。
 得られた混合物を粉砕すれば、第4のドライパウダーを製造できる。
 粉砕には、ジェットミル、ハンマーミル、ピンミル、ビーズミル、ターボミル等が好適に使用される。粉砕方法の具体例としては、国際公開第2016/017801号に記載される方法が挙げられる。
The temperature in the heat treatment is more than 320°C, preferably 325 to 350°C, more preferably 330 to 345°C. Within such a temperature range, the F polymer can be sufficiently melted while preventing the TFE polymer from melting excessively. Therefore, the F polymer can be firmly bound to the TFE polymer.
The heat treatment time is preferably 10 to 120 minutes, more preferably 15 to 100 minutes.
A fourth dry powder can be produced by pulverizing the obtained mixture.
Jet mills, hammer mills, pin mills, bead mills, turbo mills and the like are preferably used for pulverization. Specific examples of the pulverizing method include the method described in International Publication No. 2016/017801.
 以上、本発明のドライパウダー、その製造方法について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明のドライパウダーは、上述した実施形態に構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
 また、本発明のドライパウダーの製造方法は、それぞれ上記実施形態に構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
Although the dry powder of the present invention and the manufacturing method thereof have been described above, the present invention is not limited to the configurations of the above-described embodiments.
For example, the dry powder of the present invention may have any other configuration added to the configuration of the above-described embodiment, or may be replaced with any configuration exhibiting the same function.
In addition, the method for producing a dry powder of the present invention may have other optional steps in addition to the configurations of the above-described embodiments, or may be replaced with an optional step that produces a similar action.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
 <パウダーのD50及びD90>
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、「LA-920測定器」)を用い、パウダーを水中に分散させて測定した。
 <積層体の剥離強度>
 矩形状(長さ:100mm、幅:10mm)に切り出した積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から積層体に対して90°で、銅箔と塗膜とを剥離させた際にかかる最大荷重を剥離強度(N/cm)として測定した。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
Various measuring methods are shown below.
<D50 and D90 of powder>
The powder was dispersed in water using a laser diffraction/scattering type particle size distribution measuring device (“LA-920 measuring device” manufactured by Horiba Ltd.) for measurement.
<Peel strength of laminate>
The position of 50 mm from one end in the length direction of the laminate cut out in a rectangular shape (length: 100 mm, width: 10 mm) was fixed, the pulling speed was 50 mm/min, and 90° from one end in the length direction to the laminate. Then, the maximum load applied when the copper foil and the coating film were peeled off was measured as the peeling strength (N/cm).
 使用した材料を以下に示す。
 [ポリマー]
 Fポリマー1:TFE単位、NAH単位及びPPVE単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマー(溶融温度:300℃、380℃の溶融粘度:3×10Pa・s以下)
 非Fポリマー1:TFE単位及びPPVE単位を、この順に98.0モル%、2.0モル%含む、酸素含有極性基を有さないコポリマー(溶融温度:305℃、380℃の溶融粘度:3×10Pa・s以下)
 PTFE1:TFEに基づく単位を99.9モル%以上含む、フィブリル性PTFE(標準比重:2.18、380℃における溶融粘度:3.0×10Pa・s、溶融温度:320℃超)
The materials used are shown below.
[polymer]
F polymer 1: a copolymer containing 97.9 mol%, 0.1 mol% and 2.0 mol% of TFE units, NAH units and PPVE units in this order (melting temperature: 300° C., melt viscosity at 380° C.: 3×) 10 5 Pa·s or less)
Non-F polymer 1: Copolymer containing 98.0 mol% and 2.0 mol% of TFE unit and PPVE unit in this order and having no oxygen-containing polar group (melt temperature: 305° C., melt viscosity at 380° C.: 3 ×10 5 Pa·s or less)
PTFE1: fibrillar PTFE containing 99.9 mol% or more of units based on TFE (standard specific gravity: 2.18, melt viscosity at 380° C.: 3.0×10 9 Pa·s, melting temperature: more than 320° C.)
 [パウダー]
 第1パウダー1:Fポリマー1のパウダー(D50:0.3μm、D90:1.8μm)
 第1パウダー2:Fポリマー1のパウダー(D50:1.8μm)
 パウダーA:非Fポリマー1のパウダー(D50:0.3μm、D90:1.5μm)
 パウダーB:非Fポリマー1のパウダー(D50:1.8μm)
 第2パウダー1:PTFE1のパウダー(D50:0.3μm);なお、この第2パウダー1は、PTFE1の水分散液として入手できる。
 [分散剤]
 フルオロモノオール:F(CFCH(OCHCHOCHCH(CH)OH(フッ素含有量:34質量%、水酸基価:78mgKOH/g)
[powder]
First powder 1: F polymer 1 powder (D50: 0.3 μm, D90: 1.8 μm)
First powder 2: F polymer 1 powder (D50: 1.8 μm)
Powder A: Non-F polymer 1 powder (D50: 0.3 μm, D90: 1.5 μm)
Powder B: Powder of non-F polymer 1 (D50: 1.8 μm)
Second powder 1: PTFE1 powder (D50: 0.3 μm); this second powder 1 is available as an aqueous dispersion of PTFE1.
[Dispersant]
Fluoro monool: F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH ( fluorine content: 34 wt%, hydroxyl value: 78 mgKOH / g)
 [例1]パウダー分散液の製造例
 [例1-1]パウダー分散液11の製造例
 30質量部の第1パウダー1、5質量部のフルオロモノオール1及び65質量部の水を含む分散液と、第2パウダー1を50質量%含む水分散液とを混合した。これにより、それぞれのパウダーが水中に分散し、PTFE1とFポリマー1との合計に対して、PTFE1を90質量%、Fポリマー1を10質量%含むパウダー分散液11(Fポリマー1の質量/PTFE1の質量:0.11)を得た。
 [例1-2]パウダー分散液Aの製造例
 第1パウダー1に代えて、パウダーAを使用した以外は、例1-1と同様にして、パウダー分散液1Aを得た。
[Example 1] Production Example of Powder Dispersion [Example 1-1] Production Example of Powder Dispersion 11 Dispersion containing 30 parts by mass of the first powder 1, 5 parts by mass of fluoromonool 1 and 65 parts by mass of water. And an aqueous dispersion containing 50% by mass of the second powder 1 were mixed. As a result, the respective powders are dispersed in water, and the powder dispersion 11 containing 90% by mass of PTFE1 and 10% by mass of F polymer 1 with respect to the total of PTFE1 and F polymer 1 (mass of F polymer 1/PTFE1 Mass: 0.11) was obtained.
[Example 1-2] Production Example of Powder Dispersion Liquid A A powder dispersion liquid 1A was obtained in the same manner as in Example 1-1, except that the powder A was used in place of the first powder 1.
 [例2]パウダー分散液の共凝析例
 [例2-1]ドライパウダー11の製造例
 水を添加して、パウダー分散液11におけるポリマーの含有量が10質量%となるように調整し、20℃にてパウダー分散液を激しく撹拌すると、湿潤状態のドライパウダーであるウェットパウダーが形成した。このウェットパウダーを回収して、200℃にて乾燥してドライパウダー11を得た。
 [例2-2]ドライパウダー1Aの製造例
 パウダー分散液11に代えて、パウダー分散液1Aを使用した以外は、例2-1と同様にして、ドライパウダー1Aを得た。
[Example 2] Example of co-coagulation of powder dispersion [Example 2-1] Production example of dry powder 11 Water was added to adjust the content of the polymer in powder dispersion 11 to 10% by mass. When the powder dispersion was vigorously stirred at 20° C., a wet powder that was a dry powder in a wet state was formed. The wet powder was collected and dried at 200° C. to obtain dry powder 11.
[Example 2-2] Production Example of Dry Powder 1A Dry powder 1A was obtained in the same manner as Example 2-1, except that powder dispersion liquid 1A was used in place of powder dispersion liquid 11.
 [例3]ドライパウダーの成形例
 [例3-1]延伸シート11の製造例
 まず、100質量部のドライパウダー11と、40質量部の潤滑油(エクソン社製、「アイソパーH(登録商標)」)とを混合して混合物を得た。次に、この混合物を25℃にて2時間放置してから、ペースト押出装置(シリンダー径:60mm、ダイ口径:8mm)を用いて押出成形して、押出ビードを得た。次に、この押出ビードを、一対の250mm径のカレンダーロールに供給して、55℃にて圧延し、厚さ1000μmの圧延フィルムに加工し、さらに85℃に加熱して乾燥させて、シートを得た。
 このシートを、二軸延伸試験装置を用い、温度300℃、予熱3分、延伸速度2m/分の条件で、二軸延伸して延伸シート11を得た。なお、延伸シート11の寸法は、延伸前のシートの寸法に対して、タテ及びヨコの双方とも等倍で延伸倍率を200%とした。
[Example 3] Molding example of dry powder [Example 3-1] Manufacturing example of stretched sheet 11 First, 100 parts by mass of dry powder 11 and 40 parts by mass of lubricating oil (manufactured by Exxon, "ISOPAR H (registered trademark)" ]) and were mixed to obtain a mixture. Next, this mixture was allowed to stand at 25° C. for 2 hours and then extrusion-molded using a paste extruder (cylinder diameter: 60 mm, die diameter: 8 mm) to obtain an extrusion bead. Next, this extruded bead was supplied to a pair of calender rolls having a diameter of 250 mm, rolled at 55° C., processed into a rolled film having a thickness of 1000 μm, further heated to 85° C. and dried to form a sheet. Obtained.
This sheet was biaxially stretched using a biaxial stretching tester under the conditions of a temperature of 300° C., a preheat of 3 minutes and a stretching speed of 2 m/min to obtain a stretched sheet 11. The dimension of the stretched sheet 11 was equal to the dimension of the sheet before stretching, and the stretching ratio was 200% in both the vertical and horizontal directions.
 [例3-2]延伸シート1Aの製造例
 ドライパウダー1に代えて、ドライパウダー1Aを使用した以外は、例3-1と同様にして、延伸シート1Aを得た。
 それぞれの延伸シートは、多孔質膜であり、開孔状態を比較すると、孔径分布は小さい順から、延伸シート11、延伸シート1Aであった。
 また、延伸シート11と市販のPTFEシートとを熱圧着(温度:300℃、圧力:1MPa、時間:60分)させると、両者のシートは強固に接着した。
[Example 3-2] Production Example of Stretched Sheet 1A A stretched sheet 1A was obtained in the same manner as in Example 3-1, except that the dry powder 1A was used instead of the dry powder 1.
Each of the stretched sheets was a porous film, and when the open states were compared, it was the stretched sheet 11 and the stretched sheet 1A from the smallest pore size distribution.
Further, when the stretched sheet 11 and a commercially available PTFE sheet were thermocompression bonded (temperature: 300° C., pressure: 1 MPa, time: 60 minutes), both sheets were firmly bonded.
 [例4]パウダー分散液の製造例
 [例4-1]パウダー分散液21の製造例
 30質量部の第1パウダー1、5質量部のフルオロモノオール1及び65質量部の水を含む分散液と、第2パウダー1を50質量%で含む水分散液とを混合した。これにより、それぞれのパウダーが水中に分散し、PTFE1とFポリマー1との合計に対して、PTFE1を50質量%、Fポリマー1を50質量%含むパウダー分散液21(Fポリマー1の質量/PTFE1の質量:1.0)を得た。
 [例1-2]パウダー分散液2Aの製造例
 第1パウダー1に代えて、パウダー2Aを使用した以外は、例4-1と同様にして、パウダー分散液2Aを得た。
[Example 4] Production Example of Powder Dispersion [Example 4-1] Production Example of Powder Dispersion 21 A dispersion containing 30 parts by mass of the first powder 1, 5 parts by mass of fluoromonool 1 and 65 parts by mass of water. And an aqueous dispersion containing 50% by mass of the second powder 1 were mixed. As a result, the respective powders are dispersed in water, and the powder dispersion 21 containing 50% by mass of PTFE1 and 50% by mass of F polymer 1 with respect to the total of PTFE1 and F polymer 1 (mass of F polymer 1/PTFE1). Mass: 1.0) was obtained.
[Example 1-2] Production Example of Powder Dispersion Liquid 2A A powder dispersion liquid 2A was obtained in the same manner as in Example 4-1 except that the powder 2A was used instead of the first powder 1.
 [例5]ドライパウダーの製造例
 [例5-1]ドライパウダー21の製造例
 パウダー分散液21で満たしたシャーレを-20℃の雰囲気に暴露して、パウダー分散液21を凍結させた。ついで、-5℃に温調した減圧容器中にシャーレを移し、減圧容器内を真空ポンプにて減圧して、水の昇華を開始した。シャーレの質量を経時的に測定し、その質量変化率(g/hr)が±1%以内に収束した時点で、減圧を終了してシャーレ内容物を回収し、Fポリマー1とPTFE1とを含むドライパウダー21を得た。
 [例5-2]ドライパウダー2Aの製造例
 パウダー分散液21に代えて、パウダー分散液2Aを使用した以外は、例5-1と同様にして、ドライパウダー2Aを得た。
[Example 5] Production example of dry powder [Example 5-1] Production example of dry powder 21 A petri dish filled with the powder dispersion liquid 21 was exposed to an atmosphere of -20°C to freeze the powder dispersion liquid 21. Then, the petri dish was transferred into a vacuum container whose temperature was adjusted to -5°C, and the pressure in the vacuum container was reduced by a vacuum pump to start sublimation of water. The mass of the petri dish was measured over time, and when the mass change rate (g/hr) converged within ±1%, the pressure reduction was terminated and the content of the petri dish was recovered to contain F polymer 1 and PTFE 1. Obtained dry powder 21.
[Example 5-2] Production Example of Dry Powder 2A Dry powder 2A was obtained in the same manner as in Example 5-1 except that powder dispersion liquid 2A was used instead of powder dispersion liquid 21.
 [例6]ドライパウダーの塗装例
 [例6-1]積層体21の製造例
 静電塗装機を用いて、タンクから塗装ガンにドライパウダー21を供給し、塗装ガンから銅箔の表面に向けて吐出し、ドライパウダー21を静電塗装した。ついで、ドライパウダー21が静電塗装された銅箔を、340℃雰囲気中で10分間保持した後、25℃まで冷却して、銅箔と、銅箔の表面に形成された塗膜(ドライパウダー21の焼成物)とを有する積層体21を得た。
 なお、塗膜の平均厚さは60μmであり、最大厚さと最小厚さとの差は3μm未満であり、銅箔と塗膜との剥離強度は10N/cm以上であった。また、静電塗装中に塗装ガンの詰まりは発生しなかった。
 [例6-2]積層体2Aの製造例
 ドライパウダー1に代えて、ドライパウダー2Aを使用した以外は、例6-1と同様にして、銅箔と、銅箔の表面に形成された塗膜(ドライパウダー2Aの焼成物)とを有する積層体2Aを得た。
 なお、塗膜の平均厚さは60μmであり、最大厚さと最小厚さとの差は10μmであり、銅箔と塗膜との剥離強度は1N/cmであった。
[Example 6] Example of coating dry powder [Example 6-1] Example of manufacturing laminated body 21 Using an electrostatic coating machine, the dry powder 21 is supplied from the tank to the coating gun, and is directed from the coating gun to the surface of the copper foil. Then, the dry powder 21 was electrostatically coated. Then, after holding the copper foil on which the dry powder 21 is electrostatically coated for 10 minutes in an atmosphere of 340° C., it is cooled to 25° C., and the copper foil and a coating film formed on the surface of the copper foil (dry powder) 21) was obtained.
The average thickness of the coating film was 60 μm, the difference between the maximum thickness and the minimum thickness was less than 3 μm, and the peel strength between the copper foil and the coating film was 10 N/cm or more. In addition, the coating gun did not clog during electrostatic coating.
[Example 6-2] Manufacturing Example of Layered Product 2A A copper foil and a coating formed on the surface of the copper foil were prepared in the same manner as in Example 6-1 except that the dry powder 2A was used instead of the dry powder 1. A laminated body 2A having a film (baked product of dry powder 2A) was obtained.
The average thickness of the coating film was 60 μm, the difference between the maximum thickness and the minimum thickness was 10 μm, and the peel strength between the copper foil and the coating film was 1 N/cm.
 [例7]ドライパウダーの製造例
 [例7-1]ドライパウダー41の製造例
 まず、120質量部の第2パウダー1と10質量部の第1パウダー2とを混合し、大気雰囲気中、325℃にて120分間で熱処理して混合物を得た。この混合物を25℃まで徐冷した後に、ジェットミルで粉砕して、D50が20μmのドライパウダー41を得た。
 [例7-2(比較例)]ドライパウダー42の製造例
 熱処理における温度を275℃に変更した以外は、例7-1と同様にしてドライパウダー42を得た。
 [例7-3(比較例)]ドライパウダー43の製造例
 第1パウダー2をパウダーBに変更した以外は、例7-1と同様にして、ドライパウダー43を得た。
[Example 7] Production example of dry powder [Example 7-1] Production example of dry powder 41 First, 120 parts by mass of the second powder 1 and 10 parts by mass of the first powder 2 were mixed, and the mixture was placed in an air atmosphere at 325. It heat-processed at 120 degreeC for 120 minute(s), and obtained the mixture. This mixture was gradually cooled to 25° C. and then pulverized with a jet mill to obtain a dry powder 41 having a D50 of 20 μm.
[Example 7-2 (Comparative Example)] Production Example of Dry Powder 42 Dry powder 42 was obtained in the same manner as in Example 7-1 except that the temperature in the heat treatment was changed to 275°C.
Example 7-3 (Comparative Example) Production Example of Dry Powder 43 Dry powder 43 was obtained in the same manner as in Example 7-1 except that the first powder 2 was changed to powder B.
 [例8]ドライパウダーの塗装例
 [例8-1]積層体41の製造例
 静電塗装機を用いて、タンクから塗装ガンにドライパウダー41を供給し、塗装ガンから銅箔の表面に向けて吐出し、ドライパウダー41を静電塗装した。
 ついで、ドライパウダー41が静電塗装された銅箔を、340℃雰囲気中で10分間保持した後、25℃まで冷却した。これにより、銅箔と、銅箔の表面に形成されたドライパウダー41の焼成層とを有する積層体(平均厚さ:60μm)を得た。
 [例8-2(比較例)]積層体42の製造例
 ドライパウダー41をドライパウダー42に変更した以外は、例8-1と同様にして、積層体42を得た。
 [例8-3(比較例)]積層体43の製造例
 ドライパウダー41をドライパウダー43に変更した以外は、例8-1と同様にして、積層体43を得た。
[Example 8] Example of coating dry powder [Example 8-1] Example of manufacturing laminated body 41 Using an electrostatic coating machine, the dry powder 41 was supplied from the tank to the coating gun, and was directed from the coating gun to the surface of the copper foil. Then, the dry powder 41 was electrostatically coated.
Next, the copper foil on which the dry powder 41 was electrostatically coated was held in an atmosphere of 340° C. for 10 minutes and then cooled to 25° C. Thereby, a laminate (average thickness: 60 μm) including the copper foil and the firing layer of the dry powder 41 formed on the surface of the copper foil was obtained.
[Example 8-2 (Comparative Example)] Manufacturing Example of Laminated Body 42 A laminated body 42 was obtained in the same manner as in Example 8-1 except that the dry powder 41 was changed to the dry powder 42.
Example 8-3 (Comparative Example) Manufacturing Example of Laminated Body 43 A laminated body 43 was obtained in the same manner as in Example 8-1, except that the dry powder 41 was changed to the dry powder 43.
 <密着性の評価>
 得られた積層体の剥離強度(N/cm)を測定し、以下の基準に従って評価した。
 [評価基準]
 ○: 10N/cm以上
 ×: 10N/cm未満
<Adhesion evaluation>
The peel strength (N/cm) of the obtained laminate was measured and evaluated according to the following criteria.
[Evaluation criteria]
○: 10 N/cm or more ×: less than 10 N/cm
 <塗装作業性の評価>
 静電塗装機を用いた塗装作業における作業性を、以下の基準に従って評価した。
 [評価基準]
 ○: タンクから塗装ガンへ複合パウダーがスムーズに供給され、また塗装中に複合パウダーのフィブリル化が抑制されるので、塗装ガンが詰まることがなかった。
 ×: 塗装中に複合パウダーのフィブリル化により塗装ガンが詰まりやすく吐出が安定しなかった。
 結果をまとめて、表1に示す。
<Evaluation of coating workability>
The workability in coating work using an electrostatic coating machine was evaluated according to the following criteria.
[Evaluation criteria]
◯: The composite powder was smoothly supplied from the tank to the coating gun, and fibrillation of the composite powder was suppressed during coating, so the coating gun did not clog.
X: The coating gun was easily clogged due to fibrillation of the composite powder during coating, and the discharge was not stable.
The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のドライパウダーは、フィルム、含浸物(プリプレグ等)、積層板(樹脂付銅箔等の金属積層板)等の成形品の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途の成形品の製造に使用できる。本発明のドライパウダーから得られる成形品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、電線被覆材(航空機用電線、データ伝送用ケーブル、プレナムケーブル、同軸ケーブル、高周波用ケーブル、フラットケーブル、耐熱ケーブル等の被覆材)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。 INDUSTRIAL APPLICABILITY The dry powder of the present invention can be used for the production of molded products such as films, impregnated products (prepregs, etc.), laminated plates (metal laminated plates such as resin-coated copper foil), mold release properties, electrical properties, water and oil repellency. It can be used for the production of molded products for applications requiring chemical resistance, weather resistance, heat resistance, slipperiness, wear resistance and the like. Molded articles obtained from the dry powder of the present invention are useful as antenna parts, printed circuit boards, aircraft parts, automobile parts, sports equipment, food industry products, paints, cosmetics, and the like, specifically, wire coating materials. (Covering materials for aircraft wires, data transmission cables, plenum cables, coaxial cables, high frequency cables, flat cables, heat resistant cables, etc.), electrical insulating tapes, oil drilling insulating tapes, printed circuit board materials, separation membranes ( Microfiltration membrane, ultrafiltration membrane, reverse osmosis membrane, ion exchange membrane, dialysis membrane, gas separation membrane, etc.), electrode binder (for lithium secondary battery, fuel cell, etc.), copy roll, furniture, automobile dashboard, Covers for home appliances, sliding members (load bearings, slide shafts, valves, bearings, gears, cams, belt conveyors, food conveyor belts, etc.), tools (shovels, files, saws, saws, etc.), boilers, hoppers, It is useful as a pipe, oven, baking mold, chute, die, toilet bowl, and container covering material.

Claims (12)

  1.  テトラフルオロエチレンに基づく単位及び酸素含有極性基を有するフルオロポリマーと、テトラフルオロエチレン系ポリマーとを含む、ドライパウダー。 Dry powder containing a fluoropolymer having a unit based on tetrafluoroethylene and an oxygen-containing polar group, and a tetrafluoroethylene-based polymer.
  2.  前記フルオロポリマーの溶融温度が、140~320℃である、請求項1に記載のドライパウダー。 The dry powder according to claim 1, wherein the melting temperature of the fluoropolymer is 140 to 320°C.
  3.  前記フルオロポリマーが、前記酸素含有極性基を有するモノマーに基づく単位を含む、請求項1又は2に記載のドライパウダー。 The dry powder according to claim 1 or 2, wherein the fluoropolymer includes a unit based on a monomer having the oxygen-containing polar group.
  4.  前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、請求項1~3のいずれか1項に記載のドライパウダー。 The dry powder according to any one of claims 1 to 3, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
  5.  前記テトラフルオロエチレン系ポリマーが、ポリテトラフルオロエチレン、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー、テトラフルオロエチレンとエチレンとのコポリマー、又はテトラフルオロエチレンとフッ化ビニリデンとのコポリマーである、請求項1~4のいずれか1項に記載のドライパウダー。 The tetrafluoroethylene-based polymer is polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), a copolymer of tetrafluoroethylene and hexafluoropropylene, a copolymer of tetrafluoroethylene and ethylene, or tetrafluoroethylene. The dry powder according to any one of claims 1 to 4, which is a copolymer of and vinylidene fluoride.
  6.  前記テトラフルオロエチレン系ポリマーが、ポリテトラフルオロエチレンである、請求項1~5のいずれか1項に記載のドライパウダー。 The dry powder according to any one of claims 1 to 5, wherein the tetrafluoroethylene-based polymer is polytetrafluoroethylene.
  7.  前記テトラフルオロエチレン系ポリマーの含有質量に対する前記フルオロポリマーの含有質量の比が、0.4以下である、請求項1~6のいずれか1項に記載のドライパウダー。 The dry powder according to any one of claims 1 to 6, wherein a ratio of the content mass of the fluoropolymer to the content mass of the tetrafluoroethylene-based polymer is 0.4 or less.
  8.  請求項1~7のいずれか1項に記載のドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液中において、前記第1パウダーと前記第2パウダーとを共凝析させてウェットパウダーを得て、該ウェットパウダーを乾燥して前記ドライパウダーを得る、ドライパウダーの製造方法。 The method for producing a dry powder according to any one of claims 1 to 7, wherein the powder dispersion includes a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, in which the first powder and the second powder are co-coagulated to obtain a wet powder, and the wet powder is dried to obtain the dry powder.
  9.  請求項1~7のいずれか1項に記載のドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液を凍結させ、水を昇華させて除去して前記ドライパウダーを得る、ドライパウダーの製造方法。 The method for producing a dry powder according to any one of claims 1 to 7, wherein the powder dispersion includes a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, which comprises freezing and sublimating and removing water to obtain the dry powder.
  10.  請求項1~7のいずれか1項に記載のドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーと、水とを含むパウダー分散液を噴霧乾燥させて前記ドライパウダーを得る、ドライパウダーの製造方法。 The method for producing a dry powder according to any one of claims 1 to 7, wherein the powder dispersion includes a first powder of the fluoropolymer, a second powder of the tetrafluoroethylene-based polymer, and water. A method for producing a dry powder, wherein the dry powder is obtained by spray drying.
  11.  請求項1~7のいずれか1項に記載のドライパウダーの製造方法であって、前記フルオロポリマーの第1パウダーと、前記テトラフルオロエチレン系ポリマーの第2パウダーとを混合し、320℃超にて熱処理して混合物を得て、該混合物を粉砕して前記ドライパウダーを得る、ドライパウダーの製造方法。 The method for producing a dry powder according to any one of claims 1 to 7, wherein the first powder of the fluoropolymer and the second powder of the tetrafluoroethylene-based polymer are mixed and the temperature is higher than 320°C. And a heat treatment to obtain a mixture, and the mixture is pulverized to obtain the dry powder.
  12.  前記第1パウダーの体積基準累積50%径が、0.01~75μmであり、前記第2パウダーの体積基準累積50%径が、0.01~100μmである、請求項8~11のいずれか1項に記載の製造方法。 12. The volume-based cumulative 50% diameter of the first powder is 0.01 to 75 μm, and the volume-based cumulative 50% diameter of the second powder is 0.01 to 100 μm. The manufacturing method according to item 1.
PCT/JP2019/049909 2019-01-15 2019-12-19 Dry powder and method for producing dry powder WO2020149097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020566168A JP7334747B2 (en) 2019-01-15 2019-12-19 Dry powder and method for producing dry powder

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019004550 2019-01-15
JP2019-004550 2019-01-15
JP2019012039 2019-01-28
JP2019-012039 2019-01-28
JP2019062452 2019-03-28
JP2019-062452 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020149097A1 true WO2020149097A1 (en) 2020-07-23

Family

ID=71614332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049909 WO2020149097A1 (en) 2019-01-15 2019-12-19 Dry powder and method for producing dry powder

Country Status (2)

Country Link
JP (1) JP7334747B2 (en)
WO (1) WO2020149097A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092036A1 (en) * 2020-10-29 2022-05-05 Agc株式会社 Composition including powder particles of tetrafluoroethylene polymer, method for producing same, method for producing dispersion from said composition
WO2022259992A1 (en) * 2021-06-09 2022-12-15 Agc株式会社 Sheet
WO2023195318A1 (en) * 2022-04-08 2023-10-12 Agc株式会社 Composite particles, method for producing same, composition, and molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260864A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Method for producing aqueous dispersion and aqueous dispersion
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260864A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Method for producing aqueous dispersion and aqueous dispersion
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092036A1 (en) * 2020-10-29 2022-05-05 Agc株式会社 Composition including powder particles of tetrafluoroethylene polymer, method for producing same, method for producing dispersion from said composition
WO2022259992A1 (en) * 2021-06-09 2022-12-15 Agc株式会社 Sheet
WO2023195318A1 (en) * 2022-04-08 2023-10-12 Agc株式会社 Composite particles, method for producing same, composition, and molded body

Also Published As

Publication number Publication date
JPWO2020149097A1 (en) 2021-11-25
TW202035479A (en) 2020-10-01
JP7334747B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
CN107406529B (en) Modified fluoropolymers
JP7334747B2 (en) Dry powder and method for producing dry powder
JP5287721B2 (en) Coating composition
EP2818516B1 (en) Fluorine-containing copolymer composition, molded article, and electric wire
TWI820159B (en) Powder dispersions, laminates, films and impregnated fabrics
US20210155790A1 (en) Fluoropolymers, Fluoropolymer Compositions and Fluoropolymer Dispersions
US7361708B2 (en) Fluorinated resin water dispersion composition and fluorinated water base coating composition
JP2001519830A (en) Dispersion composition of tetrafluoroethylene polymer
WO2013146947A1 (en) Aqueous fluoropolymer dispersion
EP3039073B1 (en) Fluoropolymer blend
JP2011184694A (en) Water-based polymer composition and articles made therefrom
JP7396301B2 (en) Powder dispersion liquid, laminate manufacturing method, polymer film manufacturing method, and covering woven fabric manufacturing method
JP7265215B2 (en) Coating compositions and coated articles
JP2006206637A (en) Ethylene/tetrafluoroethylene-based copolymer powder and article coated with the same
JP2016510838A (en) Fluoropolymer
JP4769708B2 (en) Conductive polymer film
TWI840479B (en) Dry powder and method for producing dry powder
JP2023062152A (en) Method for producing tetrafluoroethylene polymer and composition
TW202111027A (en) Method for producing container with content and liquid composition
JP2020111696A (en) Liquid composition and method for producing laminate
CN110062793B (en) Fluoropolymer-based powder coatings
WO2023171777A1 (en) Coating composition, coating film, layered coating film, and coated article
JP2022125043A (en) Aqueous coating composition and coated article
TW202140649A (en) Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article
JP2021070722A (en) Method for producing aqueous dispersion and aqueous dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910216

Country of ref document: EP

Kind code of ref document: A1