WO2020149081A1 - Power control device, moving body, and power control method - Google Patents

Power control device, moving body, and power control method Download PDF

Info

Publication number
WO2020149081A1
WO2020149081A1 PCT/JP2019/049618 JP2019049618W WO2020149081A1 WO 2020149081 A1 WO2020149081 A1 WO 2020149081A1 JP 2019049618 W JP2019049618 W JP 2019049618W WO 2020149081 A1 WO2020149081 A1 WO 2020149081A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mode
storage battery
system line
frequency
Prior art date
Application number
PCT/JP2019/049618
Other languages
French (fr)
Japanese (ja)
Inventor
直 森田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020566161A priority Critical patent/JP7380598B2/en
Publication of WO2020149081A1 publication Critical patent/WO2020149081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power control device, a mobile body, and a power control method.
  • a power supply system equipped with a power conditioner and a storage battery has become widespread.
  • DC power generated by a solar cell, a fuel cell, a cogeneration system, or the like is converted into AC power, and then the converted power is supplied to a load (power usage equipment group).
  • the battery and the storage battery are charged, and power is output to the grid (commercial power grid).
  • the grid commercial power grid.
  • the power supply system for example, by charging the storage battery with night power having a low power unit price, it is possible to use the charging power in the morning and the evening.
  • Patent Document 1 As a document disclosing such a power supply system, there is Patent Document 1, for example.
  • a new and improved power control device capable of directly supplying the power of a storage battery as AC power to a grid by a power conditioner when the power is not supplied or becomes unstable due to a grid failure. And a power control method is proposed.
  • a first mode that operates based on the frequency of AC power from a system line that supplies AC power, or a second mode that limits the current from the system line and operates autonomously in frequency.
  • a mode switching unit that switches any one of the above, and an inverter that operates as a master mode that determines the frequency and voltage of the AC power output to the system line when the mode switching unit switches to the second mode.
  • a power controller is provided.
  • the first mode that operates based on the frequency of the AC power from the system line, or from the system line Switching between any of the second modes of operating the frequency autonomously by limiting the current from the system line in a state where the power supply of the system is unstable, and when switching to the second mode, the system Operating the inverter as a master mode that determines the frequency and voltage of the power output to the line.
  • the power conditioner that does not have a storage battery has a structure that constantly monitors the voltage of the grid (commercial power grid) and disconnects it from the grid via a relay when the voltage of the grid goes out of a certain range.
  • a power conditioner is not directly connected to an electric device that is a load, but measures the amount of power sold through a power meter for selling power. Further, such a power conditioner has a structure that is connected from the grid side through a power meter for power purchase. In such a case, if the system fails, the electrical equipment will also stop.
  • the power conditioner with storage battery does not need to be disconnected from the grid even when the grid is in an abnormal condition because the power flow is set so as not to reverse flow.
  • a power conditioner stops the output when the power of the system becomes abnormal, so that it cannot supply power to the connected electrical equipment and has a structure that supplies a limited small amount of power from another output. There is. Therefore, an electric device that is normally connected to a power conditioner having a storage battery cannot receive electric power when the system is abnormal and stops.
  • the power conditioner with a storage battery can be provided with a reverse power flow limiting function.
  • a power conditioner cannot mix the purchased power and the sold power with the power of the storage battery. Therefore, reverse power flow may occur depending on the amount of power generated by a generator such as a solar power generator installed in the power conditioner, and there may be a situation where the amount of power flow cannot be limited, resulting in a significant change in power generation.
  • the system to which the conditioner is connected may become unstable.
  • the power conditioner connected to the disconnected system line does not have a voltage source. For this reason, if the power conditioner has a storage battery, the power conditioner operates independently using the power of the storage battery. Therefore, when the electric power stored in the storage battery is consumed, not only the electric equipment connected to the power conditioner but also the power conditioner itself is stopped.
  • the present discloser is keen on a technology that can directly supply the power of the storage battery as AC power to the grid by the power conditioner when the power is not supplied or becomes unstable due to the grid failure. Study was carried out. As a result, the present disclosure discloses a power conditioner that can supply the power of the storage battery as AC power to the grid as it is when the power supply is stopped or becomes unstable due to the grid failure, as described below. I came up with the idea.
  • FIG. 1 is an explanatory diagram illustrating a functional configuration example of a power conditioner 100 with a storage battery according to an embodiment of the present disclosure.
  • a functional configuration example of the power conditioner 100 with a storage battery according to the embodiment of the present disclosure will be described using FIG. 1.
  • a power conditioner 100 with a storage battery includes an inverter control circuit 110, a power control circuit 120, a system cooperation relay 130, and a storage battery 140. To be done.
  • the inverter control circuit 110 is a device that converts the battery stored in the storage battery 140 into DC power from AC power for use by the loads 210 and 220 connected to the power conditioner 100 with storage battery.
  • the inverter control circuit 110 has a plurality of operation modes.
  • the inverter control circuit 110 has a current control mode and a voltage control mode.
  • the inverter control circuit 110 has a frequency heterogeneous mode and a frequency autonomous mode.
  • the inverter control circuit 110 has a function of switching between a current control mode and a voltage control mode, and a function of switching between a frequency heterogeneous mode and a frequency autonomous mode.
  • the inverter control circuit 110 receives an instruction from the power control circuit 120 via the input terminal io1 and switches between these modes.
  • the inverter control circuit 110 has a function of monitoring the voltage vg and the frequency fg of the AC system via the si2 terminal and notifying the power control circuit 120 of the states of the voltage vg and the frequency fg of the AC system via the terminal io1. To have.
  • the power control circuit 120 obtains the state of charge of the storage battery 140, notifies the other system via the communication line COM, and operates the inverter control circuit 110 according to an instruction from the other system. Performs actions such as switching modes. Further, the power control circuit 120 drives the system cooperation relay 130 to execute an operation of causing the power conditioner 100 with a storage battery to cooperate with the system line G1.
  • the power conditioner 100 with a storage battery has three operation modes as a whole.
  • the three operation modes are a grid-coupling frequency heterogeneous current control mode, a grid-uncoupling frequency autonomous voltage control mode, and a grid-coupling frequency autonomous voltage control mode.
  • the power control circuit 120 operates based on the state of charge of the storage battery 140, the voltage and frequency states of the AC system sent from the inverter control circuit 110, and the instruction from the communication line, and the operation mode of the power conditioner 100 with storage battery. Is changed, the voltage/current control amount is changed, and the system cooperation relay 130 is switched.
  • the power supply of the power control circuit 120 is connected to the terminal p1 terminal from the portion where the system line G1 and the system cooperation relay 130 are connected to direct current, and is supplied to the internal circuit via the diode.
  • the power supply of the power control circuit 120 is also connected to the terminal p2 from the storage battery 140, and is similarly supplied to the internal circuit via the diode. As a result, the power control circuit 120 can be activated by system power even when the storage battery 140 runs out of power. Further, also in the island mode described later, the power source of the power control circuit 120 is supplied from the storage battery 140.
  • the power control circuit 120 decreases the control voltage by a predetermined amount and gradually reduces the power consumption of the loads 210 and 220.
  • the loads 210 and 220 are supplied with power from the power conditioner 100 with a storage battery.
  • the load 220 is connected via the voltage detection outlet 230.
  • the voltage detection outlet 230 has a function of cutting off the power supplied to the load 220 when detecting the occurrence of the voltage drop of the inverter control circuit 110.
  • FIG. 2 is an explanatory diagram showing a functional configuration example of the inverter control circuit 110 according to the embodiment of the present disclosure.
  • a functional configuration example of the inverter control circuit 110 according to the embodiment of the present disclosure will be described using FIG. 2.
  • the inverter control circuit 110 includes a bidirectional AC/DC inverter 111, a voltage/frequency monitor 112, a reference signal output unit 113, and a mode switching current instruction unit. 114 and an operational amplifier 115 are included.
  • the bidirectional AC/DC inverter 111 is an inverter capable of converting AC to DC and converting DC to AC.
  • the voltage/frequency monitor 112 monitors the voltage and frequency of the AC system when the switch sw1 is tilted to the terminal si2 side. The voltage/frequency monitor 112 notifies the mode switching current instructing unit 114 if an abnormality occurs in the voltage and frequency of the AC system.
  • the mode switching current instruction unit 114 instructs the bidirectional AC/DC inverter 111 to change the operation mode and switches the switch sw1.
  • the operational amplifier 115 compares the current instruction value via the terminal io1 with the current signal from the terminal si3, and outputs the comparison result to the bidirectional AC/DC inverter 111.
  • the mode switching current instruction unit 114 tilts the switch sw1 to the reference signal output unit 113 side.
  • the reference signal Vac serves as the voltage/frequency input of the bidirectional AC/DC inverter 111, and the bidirectional AC/DC inverter 111 performs only AC in/out voltage control, not current control.
  • the mode switching current instruction unit 114 tilts the switch sw1 to the terminal si3 side, and the voltage/frequency monitor 112 monitors the voltage and frequency states of the AC system.
  • the operational amplifier 115 compares the current instruction value via the terminal io1 with the current signal from the terminal si3, and outputs the comparison result to the bidirectional AC/DC inverter 111, whereby the bidirectional AC/DC inverter 111 outputs. Performs current control.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of the voltage detection outlet 230 according to the embodiment of the present disclosure.
  • a functional configuration example of the voltage detection outlet 230 according to the embodiment of the present disclosure will be described using FIG. 3.
  • the voltage detection outlet 230 is configured to include a voltage detector 231 and a relay 232.
  • the voltage detector 231 detects the input voltage of the voltage detection outlet 230. If the input voltage of the voltage detection outlet 230 is a predetermined normal voltage, the voltage detector 231 turns on the relay 232 to connect the input and output of the voltage detection outlet 230. On the other hand, when the input voltage of the voltage detection outlet 230 becomes lower than the predetermined normal voltage, the voltage detector 231 turns off the relay 232 to cut off the input and output of the voltage detection outlet 230.
  • the voltage detection outlet 230 having such a configuration allows the load (load 220) connected to the end of the voltage detection outlet 230 when the output voltage of the inverter control circuit 110 is reduced due to the decrease in the amount of power of the storage battery 140. It is possible to cut off the power supply to. On the other hand, an important load that can operate even at a low voltage (for example, the load 210) can continue to operate even when the output voltage of the inverter control circuit 110 has decreased due to the decrease in the amount of power of the storage battery 140.
  • the system cooperation relay 130 and the relay 232 may be electromagnetic relays, and may be semiconductor relays (SSR) or thyristors.
  • FIG. 1 illustrates a configuration example in which only one power conditioner 100 with a storage battery is provided, but the present disclosure is not limited to this example.
  • the load 210 and the power conditioner 100b with a storage battery are connected to the end of the power conditioner 100a with a storage battery, and the load 220 is connected to the end of the power conditioner with a storage battery 100b. Is also possible.
  • the peak of the layer and the peak of the upper layer do not overlap and the supply capacity of the power conditioner is not exceeded.
  • the power conditioner with a storage battery exceeds the supply capacity, the fluctuation in the power consumption of the load 210 is absorbed by the power conditioner with a storage battery 100a, and the power consumption of the load 220 is reduced.
  • the leveled electric power demand by the power conditioner 100b with a storage battery is supplied by the power conditioner 100a with a storage battery. With the hierarchical structure as shown in FIG. 4, it is possible to avoid the peak power consumption.
  • FIG. 5 is an explanatory diagram showing a configuration example of the power supply system according to the embodiment of the present disclosure.
  • FIG. 5 shows a configuration example of the power supply system 1 in which four power conditioners 100a to 100d with storage batteries are connected to the branch system line G2.
  • each of the power conditioners 100a to 100d with a storage battery are connected to the branch system line G2. Further, the power conditioners 100a to 100d with storage batteries are connected to one controller 300 through the communication line COM. In addition, the power output terminals PO1 to PO4 of the power conditioners 100a to 100d with storage batteries are connected to a plurality of loads.
  • the switch GSW1 is a switch that connects the system line G1 and the branch system line G2. When an abnormality occurs in the system line G1, the switch GSW1 disconnects the system line G1 from the branch system line G2.
  • the branch system line G2 is connected to the system line G1 by the switch GSW1, the power conditioners 100a to 100d with storage batteries operate in the island mode or the slave mode. When the storage battery has sufficient power (for example, the remaining amount of 40% or more), the power conditioners 100a to 100d with the storage battery are in the island mode. On the other hand, when the electric power of the storage battery is insufficient, the power conditioners 100a to 100d with the storage battery enter the slave mode to charge the storage battery while receiving power from the grid or supply the electric power to the load together with the electric power of the storage battery.
  • the power conditioners 100a to 100d with storage batteries are disconnected from the branch system line G2 and switched to island mode (IM).
  • IM island mode
  • the switch GSW1 is turned off, and the branch system line G2 is disconnected from the system line G1.
  • the switch GSW1 can be turned on and off by, for example, an operator who supplies electric power through the system line G1.
  • the controller 300 confirms that the switch GSW1 is turned off and the branch system line G2 is disconnected from the system line G1, the controller 300 selects one of the power conditioners with storage batteries 100a to 100d and selects the selected power with storage battery. Instruct the conditioner to enter master mode (MM).
  • the power conditioner 100c with a storage battery is selected in the master mode.
  • which power conditioner with a storage battery is selected for the master mode is not limited to a specific example, for example, the one with the largest remaining amount of the storage battery may be selected for the master mode.
  • the power conditioner 100c with storage battery in the master mode controls the voltage and frequency of the branch system line G2 to predetermined values.
  • the power conditioner 100c with a storage battery sets the voltage of the branch system line G2 to 100 V and the frequency to 50 Hz.
  • the voltage and frequency values of the branch system line G2 can be set according to the performance of another power conditioner 100 with a storage battery.
  • the controller 300 communicates with each of the power conditioners 100a to 100d with a storage battery, switches the power conditioner with a storage battery capable of power exchange to the slave mode (SM), and sets the current control value respectively.
  • the power conditioner with a storage battery switched to the slave mode exchanges electric power with another power conditioner with a storage battery.
  • the power conditioner 100a with a storage battery supplies electric power of 2 amps to the branch system line G2, and the power conditioner 100d with a storage battery receives electric power of 2 amps.
  • the power conditioner 100b with a storage battery receives electric power of 3 amps, and the power conditioner 100c with a storage battery supplies electric power of 2 amps.
  • FIG. 6 is an explanatory diagram showing operation modes and transition conditions of the power conditioner 100 with a storage battery.
  • the operation mode and the transition condition of the power conditioner 100 with a storage battery will be described with reference to FIG.
  • the power conditioner 100 with a storage battery in the stop mode is activated when receiving power from the grid or power from the storage battery, and operates in the island mode.
  • the power conditioner 100 with a storage battery monitors the voltage vg and the frequency fg of the system line G1 in the island mode state, and is within a predetermined appropriate range, and the power control circuit 120 is in the slave mode transition permission state. For example, transition to slave mode.
  • the power conditioner 100 with a storage battery transitions to the master mode when the SOC value of the storage battery 140 is equal to or higher than a predetermined value and the power control circuit 120 is in the master mode transition permission state.
  • slave mode In the power conditioner 100 with a storage battery, in the slave mode, the system cooperation relay 130 that connects the system line and the inverter control circuit 110 is on, the frequency is synchronized with the system line, and the output of the terminal pio1 is the power.
  • the current control mode is set according to an instruction from the control circuit 120.
  • the power conditioner 100 with a storage battery monitors the voltage vg and the frequency fg of the system line G1 in the slave mode, and transitions to the island mode when the voltage deviates from a predetermined appropriate range for a predetermined time. Further, the power conditioner 100 with a storage battery transitions to the island mode or the master mode in response to an instruction from the power control circuit 120 in the slave mode.
  • (Master mode) In the power conditioner 100 with a storage battery, in the master mode, the system cooperation relay 130 that connects the system line and the inverter control circuit 110 is ON, the frequency of AC power is internally generated, and the output of the terminal pio1 is power.
  • the voltage control mode is set according to an instruction from the control circuit 120.
  • the power conditioner 100 with a storage battery transitions to the slave mode or the island mode according to an instruction from the power control circuit 120.
  • FIG. 7 is a flowchart showing an operation example of the controller 300 according to the embodiment of the present disclosure.
  • the operation of the controller 300 in FIG. 7 is based on the configuration shown in FIG.
  • an operation example of the controller according to the embodiment of the present disclosure will be described using FIG. 7.
  • the controller 300 When the controller 300 starts operation, the controller 300 obtains information (BSPC information) on the power conditioner 100 with storage battery connected to the communication line (step S101). Subsequently, the controller 300 determines whether or not the switch GSW1 is off (step S102).
  • step S102 determines whether the switch GSW1 is off (step S102, Yes). If the result of determination in step S102 is that the switch GSW1 is off (step S102, Yes), the controller 300 selects one of the power conditioners with storage batteries 100a to 100d, and selects the selected storage battery with power conditioner.
  • the master mode is set for the power conditioner (step S103).
  • the power conditioner with storage battery (BSPC) having the largest amount of stored electricity is set to the master mode.
  • step S102 if the switch GSW1 is turned on (step S102, No), the controller 300 skips the process of step S103.
  • the controller 300 determines whether or not there is a power request from at least one of the power conditioners 100a to 100d with a storage battery (step S104).
  • step S104 when there is a power request from at least one of the power conditioners with storage batteries 100a to 100d (Yes in step S104), the controller 300 sets the requested power conditioner with storage battery in the slave mode. Further, the power conditioner with a storage battery, which has a large remaining amount of storage battery and can be supplied with power, is set to the slave mode, and the mutual current amounts are set to the same positive and negative amounts to accommodate the specified power amount (step S105). Then, the controller 300 returns to the process of step S101.
  • step S104 the controller 300 returns to the process of step S101 when there is no power request from any of the power conditioners 100a to 100d with a storage battery (step S104, No).
  • FIG. 8 is an explanatory diagram showing an example of changes in current and voltage at the time of mode switching of the power conditioner 100 with a storage battery.
  • the inverter with storage battery 100 operates in island mode.
  • the system cooperation relay 130 of the power conditioner with storage battery 100 is turned on, and at time t2, the power conditioner with storage battery 100 operates in slave mode and charging at 5 amperes. Therefore, the current ir1 of the inverter control circuit 110 has a negative value.
  • the power conditioner 100 with a storage battery operates in a slave mode and discharges the storage battery at 3 amps. Therefore, the current ir1 of the inverter control circuit 110 has a positive value.
  • the power conditioner 100 with a storage battery operates the island mode by turning off the system cooperation relay 130. Further, when the switch GSW1 is turned off due to an abnormality in the system line G1, the system voltage becomes 0V.
  • the power conditioner 100 with a storage battery is set to the master mode by the controller 300.
  • the power conditioner 100 with a storage battery set to the master mode executes power exchange with another power conditioner 100 with a storage battery connected to the branch system line G2.
  • the inverter control circuit 110 can be mounted on a moving body such as an automobile.
  • FIG. 9 is an explanatory diagram illustrating a modified example of the embodiment of the present disclosure.
  • FIG. 9 shows an example in which the inverter control circuit 110 is mounted on the automobile 10.
  • the inverter control circuit 110 can receive power from the system line G1 or supply power to the system line G1 via the interface 20 that connects the automobile 10 and the system line G1. Further, the inverter control circuit 110 is connected to a communication unit 150 that executes communication with the outside, and information can be exchanged with another inverter control circuit 110 via the communication unit 150.
  • FIG. 10 is an explanatory diagram showing a configuration example of a power supply system between vehicles.
  • FIG. 10 shows two automobiles 10a and 10b equipped with the inverter control circuit 110.
  • the automobiles 10a and 10b are connected to the controller 300, respectively, so that electric power can be exchanged between the automobiles 10a and 10b, similarly to the power supply system shown in FIG.
  • power is received from the branch system line G2 by connecting to the branch system line G2 instead of the system line G1.
  • power may be supplied to the branch system line G2.
  • a storage battery having a configuration that disconnects the power of the storage battery from the system line so that the power of the storage battery can be supplied as AC power when power is not supplied or becomes unstable due to a failure in the power system.
  • a power conditioner 100 Provided is a power conditioner 100.
  • the power conditioner 100 with a storage battery according to the embodiment of the present disclosure has a structure that can directly supply power to an electric device that is a load from the storage battery.
  • the power conditioner 100 with a storage battery reduces the output voltage by a certain amount when the system line is disconnected and only the storage battery is supplied and the capacity of the storage battery is below a certain level.
  • the voltage detection outlet 230 that detects the voltage drop can cut off the power supply to the electric device connected to the destination, so that the electric device that consumes a large amount of power is automatically cut off and the power consumption is low. Since only the lighting device and the electronic device that can be consumed can be selectively operated, the power conditioner 100 with a storage battery according to the embodiment of the present disclosure can maintain an environment necessary for living with a small amount of power.
  • the power conditioner 100 with a storage battery according to the embodiment of the present disclosure can be linked to or disconnected from the system depending on the amount of electricity stored in the storage battery. Further, since the power conditioner 100 with a storage battery according to the embodiment of the present disclosure can exchange a specific amount of current with the system when linked to the system, another power conditioner 100 with a storage battery connected to the system. It is easy to balance supply with.
  • the power conditioner 100 with a storage battery according to the embodiment of the present disclosure has three modes, that is, an island mode, a slave mode, and a master mode.
  • a generator of a power company is used as a master power source, and this device exchanges power in a slave mode to transfer power from the backbone system.
  • one of the separated branch systems serves as the master power source, and the other mode can be set in the master mode so that the power can be exchanged in the slave mode, so that power failure can be minimized.
  • each step in the processing executed by each device in this specification does not necessarily have to be processed in time series in the order described as a sequence diagram or a flowchart.
  • each step in the process executed by each device may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • Switching part An inverter that operates as a master mode that determines the frequency and voltage of the AC power output to the system line when the mode switching unit switches to the second mode;
  • a power control device comprising: (2) The power control device according to (1), wherein the inverter operates in the master mode based on an instruction from the outside.
  • the power control device according to (2) further including a control unit that performs control for switching a connection between the system line and the inverter.
  • Power supply system 10 Automobile 20: Interface 100: Power conditioner with storage battery 110: Inverter control circuit 111: Bidirectional AC/DC inverter 112: Frequency monitor 113: Reference signal output unit 114: Mode switching current instruction unit 115: Operational amplifier 120: Power control circuit 130: System cooperation relay 140: Storage battery 150: Communication part 210: Load 220: Load 230: Voltage detection outlet 231, Voltage detector 232: Relay 300: Controller

Abstract

Provided is a power control device provided with: a mode switching unit for switching either a first mode which, in a state in which the power supply from a system line for supplying AC power is stable, operates on the basis of the frequency of the AC power from the system line or a second mode which, in a state in which the power supply from the system line is not stable, limits the current from the system line and performs autonomous frequency operation; and an inverter which, when the mode switching unit switches the mode to the second mode, operates as a master mode for determining the frequency and voltage of power output to the system line.

Description

電力制御装置、移動体、及び電力制御方法Power control device, moving body, and power control method
 本開示は、電力制御装置、移動体、及び電力制御方法に関する。 The present disclosure relates to a power control device, a mobile body, and a power control method.
 近年、パワーコンディショナと蓄電池とを備えた電力供給システムが普及してきている。このような電力供給システムでは、例えば、太陽電池や燃料電池、コジェネレーションシステム等で発電された直流電力を交流電力に変換した上で、変換後の電力の負荷(電力使用機器群)への供給や蓄電池への充電、系統(商用電力系統)への売電出力が行われる。また、このような電力供給システムでは、例えば、電力単価の安い夜間電力を蓄電池に充電することで、朝方や夕方における充電電力の利用が可能になる。また、このような蓄電池システムでは、平常時に蓄電池に充電された電力を、停電等によって系統からの電力が供給されなくなった際に利用することが可能になる。 In recent years, a power supply system equipped with a power conditioner and a storage battery has become widespread. In such a power supply system, for example, DC power generated by a solar cell, a fuel cell, a cogeneration system, or the like is converted into AC power, and then the converted power is supplied to a load (power usage equipment group). The battery and the storage battery are charged, and power is output to the grid (commercial power grid). Further, in such a power supply system, for example, by charging the storage battery with night power having a low power unit price, it is possible to use the charging power in the morning and the evening. Further, in such a storage battery system, it becomes possible to use the electric power charged in the storage battery in normal times when the electric power from the grid is not supplied due to a power failure or the like.
 このような電力供給システムについて開示している文献として、例えば特許文献1がある。 As a document disclosing such a power supply system, there is Patent Document 1, for example.
特開2018-152959号公報Japanese Patent Laid-Open No. 2018-152959
 しかし、このような電力供給システムにおいて、系統の障害で電力が供給されなくなるか不安定になると、蓄電池の電力をパワーコンディショナにより交流電力としてそのまま供給できるような仕組みは存在していなかった。 However, in such an electric power supply system, there was no mechanism that could supply the electric power of the storage battery as AC power as it is by the power conditioner when the electric power was not supplied or became unstable due to the grid failure.
 そこで、本開示では、系統の障害で電力が供給されなくなるか不安定になると、蓄電池の電力をパワーコンディショナにより交流電力としてそのまま系統へ供給することが可能な、新規かつ改良された電力制御装置及び電力制御方法を提案する。 Therefore, in the present disclosure, a new and improved power control device capable of directly supplying the power of a storage battery as AC power to a grid by a power conditioner when the power is not supplied or becomes unstable due to a grid failure. And a power control method is proposed.
 本開示によれば、交流電力を供給する系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えるモード切替部と、前記モード切替部が前記第2のモードに切り替えた場合において、前記系統線へ出力する交流電力の周波数及び電圧を決定するマスターモードとして動作するインバータと、を備える、電力制御装置が提供される。 According to the present disclosure, a first mode that operates based on the frequency of AC power from a system line that supplies AC power, or a second mode that limits the current from the system line and operates autonomously in frequency. A mode switching unit that switches any one of the above, and an inverter that operates as a master mode that determines the frequency and voltage of the AC power output to the system line when the mode switching unit switches to the second mode. A power controller is provided.
 また、本開示によれば、交流電力を供給する系統線からの電力供給が安定している状態では前記系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電力供給が安定しない状態で前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えることと、前記第2のモードに切り替えわった場合に、前記系統線へ出力する電力の周波数及び電圧を決定するマスターモードとしてインバータを動作させることと、を備える、電力制御方法が提供される。 Further, according to the present disclosure, in a state where the power supply from the system line that supplies the AC power is stable, the first mode that operates based on the frequency of the AC power from the system line, or from the system line Switching between any of the second modes of operating the frequency autonomously by limiting the current from the system line in a state where the power supply of the system is unstable, and when switching to the second mode, the system Operating the inverter as a master mode that determines the frequency and voltage of the power output to the line.
本開示の実施の形態に係る蓄電池付きパワーコンディショナ100の機能構成例を示す説明図である。It is explanatory drawing which shows the functional structural example of the power conditioner 100 with a storage battery which concerns on embodiment of this indication. 本開示の実施の形態に係るインバータ制御回路110の機能構成例を示す説明図である。FIG. 3 is an explanatory diagram showing a functional configuration example of an inverter control circuit 110 according to an embodiment of the present disclosure. 本開示の実施の形態に係る電圧検出コンセント230の機能構成例を示す説明図である。It is an explanatory view showing an example of functional composition of voltage detection outlet 230 concerning an embodiment of this indication. 蓄電池付きパワーコンディショナが多段接続されている例を示す説明図である。It is explanatory drawing which shows the example in which the power conditioner with a storage battery is connected in multiple steps. 本開示の実施の形態に係る電力供給システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the electric power supply system which concerns on embodiment of this indication. 蓄電池付きパワーコンディショナ100の動作モードと遷移条件とを示す説明図である。It is explanatory drawing which shows the operation mode and transition conditions of the power conditioner 100 with a storage battery. 本開示の実施の形態に係るコントローラ300の動作例を示す流れ図である。6 is a flowchart showing an operation example of the controller 300 according to the embodiment of the present disclosure. 蓄電池付きパワーコンディショナ100のモード切替時の電流及び電圧の変化例を示す説明図である。It is explanatory drawing which shows the example of a change of the current and voltage at the time of mode switching of the power conditioner 100 with a storage battery. 蓄電池付きパワーコンディショナ100のモード切替時の電流及び電圧の変化例を示す説明図である。It is explanatory drawing which shows the example of a change of the current and voltage at the time of mode switching of the power conditioner 100 with a storage battery. 自動車間の電力供給システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the electric power supply system between vehicles.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals, and a duplicate description will be omitted.
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.経緯
  1.2.システム構成例
  1.3.動作例
  1.4.応用例
 2.まとめ
The description will be given in the following order.
1. Embodiment of the present disclosure 1.1. Background 1.2. System configuration example 1.3. Operation example 1.4. Application example 2. Summary
 <1.本開示の実施の形態>
 [1.1.経緯]
 本開示の実施の形態について詳細に説明する前に、まず本開示の実施の形態に至った経緯について説明する。
<1. Embodiment of the present disclosure>
[1.1. Background]
Before describing the embodiments of the present disclosure in detail, first, the background of the embodiments of the present disclosure will be described.
 蓄電池を持たないパワーコンディショナは、系統(商用電力系統)の電圧を常にモニタし、その系統の電圧が一定範囲から外れると、リレーを介して系統から切り離す構造となっている。このようなパワーコンディショナは、負荷となる電気機器には直接接続されず、売電用の電力計を介して売電量を計量している。また、このようなパワーコンディショナは、系統側から買電用の電力計を介して接続される構造である。このような場合、系統が停電すると電気機器も停止してしまう。 The power conditioner that does not have a storage battery has a structure that constantly monitors the voltage of the grid (commercial power grid) and disconnects it from the grid via a relay when the voltage of the grid goes out of a certain range. Such a power conditioner is not directly connected to an electric device that is a load, but measures the amount of power sold through a power meter for selling power. Further, such a power conditioner has a structure that is connected from the grid side through a power meter for power purchase. In such a case, if the system fails, the electrical equipment will also stop.
 蓄電池を持つパワーコンディショナは、逆潮流をしない設定のため、系統が異常時になっても系統から切り離す必要が無い。しかし、このようなパワーコンディショナは、系統の電力が異常になると出力を停止させるので、接続した電気機器に電力が供給できず、別の出力から限定された小電力を供給する構造となっている。そのため、蓄電池を持つパワーコンディショナに通常接続された電気機器は、系統の異常時には電力を受けられずに停止してしまう。  The power conditioner with storage battery does not need to be disconnected from the grid even when the grid is in an abnormal condition because the power flow is set so as not to reverse flow. However, such a power conditioner stops the output when the power of the system becomes abnormal, so that it cannot supply power to the connected electrical equipment and has a structure that supplies a limited small amount of power from another output. There is. Therefore, an electric device that is normally connected to a power conditioner having a storage battery cannot receive electric power when the system is abnormal and stops.
 蓄電池を持つパワーコンディショナに、逆潮流制限機能を持たせることができる。しかし、このようなパワーコンディショナは、蓄電池の電力に買電電力と売電電力を混ぜることはできない。そのため、パワーコンディショナに備え付けられた太陽光発電機等の発電機の発電量に応じて逆潮流し、潮流電力量を制限できない状態がありうるので、発電量が大幅に変化してしまい、パワーコンディショナを接続した系統が不安定になるおそれがある。  The power conditioner with a storage battery can be provided with a reverse power flow limiting function. However, such a power conditioner cannot mix the purchased power and the sold power with the power of the storage battery. Therefore, reverse power flow may occur depending on the amount of power generated by a generator such as a solar power generator installed in the power conditioner, and there may be a situation where the amount of power flow cannot be limited, resulting in a significant change in power generation. The system to which the conditioner is connected may become unstable.
 基幹系統に問題があり、一部の系統線が基幹系統線からから切り離された場合、切り離された系統線に接続されたパワーコンディショナは電圧源が存在しない。そのため、パワーコンディショナが蓄電池を持っていれば、個別にその蓄電池の電力を利用する単独運転となる。そのため、蓄電池に蓄えられた電力が消費されてしまうと、パワーコンディショナに接続された電気機器だけでなく、パワーコンディショナ自体も停止してしまう。  If there is a problem with the backbone system and some system lines are disconnected from the backbone system line, the power conditioner connected to the disconnected system line does not have a voltage source. For this reason, if the power conditioner has a storage battery, the power conditioner operates independently using the power of the storage battery. Therefore, when the electric power stored in the storage battery is consumed, not only the electric equipment connected to the power conditioner but also the power conditioner itself is stopped.
 そこで本件開示者は、上述した点に鑑み、系統の障害で電力が供給されなくなるか不安定になると、蓄電池の電力をパワーコンディショナにより交流電力としてそのまま系統へ供給することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、系統の障害で電力が供給されなくなるか不安定になると、蓄電池の電力を交流電力としてそのまま系統へ供給することが可能なパワーコンディショナを考案するに至った。 Therefore, in view of the above-mentioned points, the present discloser is keen on a technology that can directly supply the power of the storage battery as AC power to the grid by the power conditioner when the power is not supplied or becomes unstable due to the grid failure. Study was carried out. As a result, the present disclosure discloses a power conditioner that can supply the power of the storage battery as AC power to the grid as it is when the power supply is stopped or becomes unstable due to the grid failure, as described below. I came up with the idea.
 [1.2.システム構成例]
 続いて、本開示の実施の形態に係るパワーコンディショナの構成例を説明する。図1は、本開示の実施の形態に係る蓄電池付きパワーコンディショナ100の機能構成例を示す説明図である。以下、図1を用いて本開示の実施の形態に係る蓄電池付きパワーコンディショナ100の機能構成例について説明する。
[1.2. System configuration example]
Subsequently, a configuration example of the power conditioner according to the embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram illustrating a functional configuration example of a power conditioner 100 with a storage battery according to an embodiment of the present disclosure. Hereinafter, a functional configuration example of the power conditioner 100 with a storage battery according to the embodiment of the present disclosure will be described using FIG. 1.
 図1に示したように、本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、インバータ制御回路110と、電力制御回路120と、系統連携リレー130と、蓄電池140と、を含んで構成される。 As illustrated in FIG. 1, a power conditioner 100 with a storage battery according to an embodiment of the present disclosure includes an inverter control circuit 110, a power control circuit 120, a system cooperation relay 130, and a storage battery 140. To be done.
 インバータ制御回路110は、蓄電池140に蓄えられた電池を、蓄電池付きパワーコンディショナ100に接続された負荷210、220で使用するために、直流電力から交流電力に変換する装置である。本実施形態では、インバータ制御回路110は複数の動作モードを有する。本実施形態では、インバータ制御回路110は、電流制御モード及び電圧制御モードを有する。また本実施形態では、インバータ制御回路110は、周波数他律モード及び周波数自律モードを有する。インバータ制御回路110は、電流制御モードと電圧制御モードとの切り替え機能、及び周波数他律モードと周波数自律モードとの切り替え機能を持つ。インバータ制御回路110は、電力制御回路120から入力端子io1を介して指示を受け取り、それらのモードを切り替える。またインバータ制御回路110は、si2端子を介して交流系統の電圧vg及び周波数fgをモニタし、端子io1を介して、交流系統の電圧vgと周波数fgの状態を電力制御回路120に通知する機能を持つ。 The inverter control circuit 110 is a device that converts the battery stored in the storage battery 140 into DC power from AC power for use by the loads 210 and 220 connected to the power conditioner 100 with storage battery. In this embodiment, the inverter control circuit 110 has a plurality of operation modes. In this embodiment, the inverter control circuit 110 has a current control mode and a voltage control mode. In addition, in the present embodiment, the inverter control circuit 110 has a frequency heterogeneous mode and a frequency autonomous mode. The inverter control circuit 110 has a function of switching between a current control mode and a voltage control mode, and a function of switching between a frequency heterogeneous mode and a frequency autonomous mode. The inverter control circuit 110 receives an instruction from the power control circuit 120 via the input terminal io1 and switches between these modes. The inverter control circuit 110 has a function of monitoring the voltage vg and the frequency fg of the AC system via the si2 terminal and notifying the power control circuit 120 of the states of the voltage vg and the frequency fg of the AC system via the terminal io1. To have.
 電力制御回路120は、蓄電池140の充電状態(soc;state of charge)を入手し、通信回線COMを経由して他のシステムに通知したり、他のシステムからの指示によりインバータ制御回路110の動作モードを切り替えたりする動作を実行する。また電力制御回路120は、系統連携リレー130を駆動し、蓄電池付きパワーコンディショナ100を系統線G1と連携させる動作を実行する。 The power control circuit 120 obtains the state of charge of the storage battery 140, notifies the other system via the communication line COM, and operates the inverter control circuit 110 according to an instruction from the other system. Performs actions such as switching modes. Further, the power control circuit 120 drives the system cooperation relay 130 to execute an operation of causing the power conditioner 100 with a storage battery to cooperate with the system line G1.
 蓄電池付きパワーコンディショナ100は全体として3つの動作モードを有する。その3つの動作モードは、系統連携周波数他律電流制御モード、系統非連携周波数自律電圧制御モード、系統連携周波数自律電圧制御モードである。電力制御回路120は、蓄電池140の充電状態と、インバータ制御回路110から送られる交流系統の電圧と周波数の状態と、通信回線からの指示と、に基づいて、蓄電池付きパワーコンディショナ100の動作モードの変更、電圧・電流制御量の変更、系統連携リレー130の切り替えを行う。 The power conditioner 100 with a storage battery has three operation modes as a whole. The three operation modes are a grid-coupling frequency heterogeneous current control mode, a grid-uncoupling frequency autonomous voltage control mode, and a grid-coupling frequency autonomous voltage control mode. The power control circuit 120 operates based on the state of charge of the storage battery 140, the voltage and frequency states of the AC system sent from the inverter control circuit 110, and the instruction from the communication line, and the operation mode of the power conditioner 100 with storage battery. Is changed, the voltage/current control amount is changed, and the system cooperation relay 130 is switched.
 電力制御回路120の電源は、系統線G1と系統連携リレー130とが接続された部分から、端子p1端子に接続され直流化し、ダイオードを介して内部回路に供給される。また電力制御回路120の電源は、蓄電池140から端子p2にも接続され、同様にダイオードを介して内部回路に供給される。これによって電力制御回路120は、蓄電池140の電力が無くなった場合でも系統電力により起動できる。また、後述するアイランドモードの時も、電力制御回路120の電源は蓄電池140から供給されることになる。 The power supply of the power control circuit 120 is connected to the terminal p1 terminal from the portion where the system line G1 and the system cooperation relay 130 are connected to direct current, and is supplied to the internal circuit via the diode. The power supply of the power control circuit 120 is also connected to the terminal p2 from the storage battery 140, and is similarly supplied to the internal circuit via the diode. As a result, the power control circuit 120 can be activated by system power even when the storage battery 140 runs out of power. Further, also in the island mode described later, the power source of the power control circuit 120 is supplied from the storage battery 140.
 系統非連携周波数自律電圧制御モードであって、蓄電池140のSOCが低下してくると、電力制御回路120は、制御電圧を所定量低下させ、負荷210、220の消費電力量を逓減させる。 In the grid non-coordinated frequency autonomous voltage control mode, when the SOC of the storage battery 140 decreases, the power control circuit 120 decreases the control voltage by a predetermined amount and gradually reduces the power consumption of the loads 210 and 220.
 負荷210、220は蓄電池付きパワーコンディショナ100から電力の供給を受ける。負荷220は、電圧検出コンセント230を介して接続されている。電圧検出コンセント230は、インバータ制御回路110の電圧低下の発生を検出すると、負荷220に供給する電力を遮断する機能を持つ。 The loads 210 and 220 are supplied with power from the power conditioner 100 with a storage battery. The load 220 is connected via the voltage detection outlet 230. The voltage detection outlet 230 has a function of cutting off the power supplied to the load 220 when detecting the occurrence of the voltage drop of the inverter control circuit 110.
 以上、図1を用いて本開示の実施の形態に係る蓄電池付きパワーコンディショナ100の機能構成例について説明した。続いて、インバータ制御回路110の機能構成例について説明する。 Above, the functional configuration example of the power conditioner 100 with a storage battery according to the embodiment of the present disclosure has been described using FIG. 1. Next, a functional configuration example of the inverter control circuit 110 will be described.
 図2は、本開示の実施の形態に係るインバータ制御回路110の機能構成例を示す説明図である。以下、図2を用いて本開示の実施の形態に係るインバータ制御回路110の機能構成例について説明する。 FIG. 2 is an explanatory diagram showing a functional configuration example of the inverter control circuit 110 according to the embodiment of the present disclosure. Hereinafter, a functional configuration example of the inverter control circuit 110 according to the embodiment of the present disclosure will be described using FIG. 2.
 図2に示したように、本開示の実施の形態に係るインバータ制御回路110は、双方向AC/DCインバータ111と、電圧・周波数モニタ112と、基準信号出力部113と、モード切替電流指示部114と、オペアンプ115と、を含んで構成される。 As illustrated in FIG. 2, the inverter control circuit 110 according to the embodiment of the present disclosure includes a bidirectional AC/DC inverter 111, a voltage/frequency monitor 112, a reference signal output unit 113, and a mode switching current instruction unit. 114 and an operational amplifier 115 are included.
 双方向AC/DCインバータ111は、交流から直流の変換、及び直流から交流の変換を行うことが可能なインバータである。電圧・周波数モニタ112は、スイッチsw1が端子si2側に倒れている際に、交流系統の電圧及び周波数をモニタする。電圧・周波数モニタ112は、交流系統の電圧と周波数の状態に異常が発生していれば、モード切替電流指示部114にその旨を通知する。 The bidirectional AC/DC inverter 111 is an inverter capable of converting AC to DC and converting DC to AC. The voltage/frequency monitor 112 monitors the voltage and frequency of the AC system when the switch sw1 is tilted to the terminal si2 side. The voltage/frequency monitor 112 notifies the mode switching current instructing unit 114 if an abnormality occurs in the voltage and frequency of the AC system.
 モード切替電流指示部114は、双方向AC/DCインバータ111に対して動作モードの変更を指示したり、スイッチsw1の切り替えを行ったりする。オペアンプ115は、端子io1を経由した電流指示値と、端子si3からの電流信号とを比較し、その比較結果を双方向AC/DCインバータ111に出力する。 The mode switching current instruction unit 114 instructs the bidirectional AC/DC inverter 111 to change the operation mode and switches the switch sw1. The operational amplifier 115 compares the current instruction value via the terminal io1 with the current signal from the terminal si3, and outputs the comparison result to the bidirectional AC/DC inverter 111.
 後述するアイランドモードとマスターモードの時は、モード切替電流指示部114はスイッチsw1を基準信号出力部113側に倒す。基準信号Vacが双方向AC/DCインバータ111の電圧・周波数入力となり、双方向AC/DCインバータ111はAC in/outの電圧制御だけを行い、電流制御は行わない。後述するスレーブモードの時は、モード切替電流指示部114はスイッチsw1を端子si3側に倒し、電圧・周波数モニタ112は、交流系統の電圧と周波数の状態を監視する。そしてオペアンプ115は、端子io1を経由した電流指示値と、端子si3からの電流信号とを比較し、その比較結果を双方向AC/DCインバータ111に出力することで双方向AC/DCインバータ111の電流制御を行う。 In the island mode and the master mode, which will be described later, the mode switching current instruction unit 114 tilts the switch sw1 to the reference signal output unit 113 side. The reference signal Vac serves as the voltage/frequency input of the bidirectional AC/DC inverter 111, and the bidirectional AC/DC inverter 111 performs only AC in/out voltage control, not current control. In the slave mode, which will be described later, the mode switching current instruction unit 114 tilts the switch sw1 to the terminal si3 side, and the voltage/frequency monitor 112 monitors the voltage and frequency states of the AC system. Then, the operational amplifier 115 compares the current instruction value via the terminal io1 with the current signal from the terminal si3, and outputs the comparison result to the bidirectional AC/DC inverter 111, whereby the bidirectional AC/DC inverter 111 outputs. Performs current control.
 以上、図2を用いて本開示の実施の形態に係るインバータ制御回路110の機能構成例について説明した。続いて、本開示の実施の形態に係る電圧検出コンセント230の機能構成例を説明する。 The example of the functional configuration of the inverter control circuit 110 according to the embodiment of the present disclosure has been described above with reference to FIG. Next, a functional configuration example of the voltage detection outlet 230 according to the embodiment of the present disclosure will be described.
 図3は、本開示の実施の形態に係る電圧検出コンセント230の機能構成例を示す説明図である。以下、図3を用いて本開示の実施の形態に係る電圧検出コンセント230の機能構成例について説明する。 FIG. 3 is an explanatory diagram illustrating a functional configuration example of the voltage detection outlet 230 according to the embodiment of the present disclosure. Hereinafter, a functional configuration example of the voltage detection outlet 230 according to the embodiment of the present disclosure will be described using FIG. 3.
 図3に示したように、本開示の実施の形態に係る電圧検出コンセント230は、電圧検出器231と、リレー232と、を含んで構成される。 As shown in FIG. 3, the voltage detection outlet 230 according to the embodiment of the present disclosure is configured to include a voltage detector 231 and a relay 232.
 電圧検出器231は、電圧検出コンセント230の入力電圧を検出する。電圧検出コンセント230の入力電圧が所定の正常電圧であれば、電圧検出器231はリレー232をオン状態にして電圧検出コンセント230の入力と出力を接続状態とする。一方、電圧検出コンセント230の入力電圧が所定の正常電圧から低下した状態となると、電圧検出器231はリレー232をオフ状態にして電圧検出コンセント230の入力と出力を遮断状態とする。 The voltage detector 231 detects the input voltage of the voltage detection outlet 230. If the input voltage of the voltage detection outlet 230 is a predetermined normal voltage, the voltage detector 231 turns on the relay 232 to connect the input and output of the voltage detection outlet 230. On the other hand, when the input voltage of the voltage detection outlet 230 becomes lower than the predetermined normal voltage, the voltage detector 231 turns off the relay 232 to cut off the input and output of the voltage detection outlet 230.
 電圧検出コンセント230はこのような構成を備えることで、蓄電池140の電力量低下によりインバータ制御回路110の出力電圧が低下した状態となると、電圧検出コンセント230の先に接続された負荷(負荷220)への電力供給を途絶させることができる。一方、低電圧でも動作可能な重要な負荷(例えば負荷210)は、蓄電池140の電力量低下によりインバータ制御回路110の出力電圧が低下した状態でも動作が続けられるようになる。 The voltage detection outlet 230 having such a configuration allows the load (load 220) connected to the end of the voltage detection outlet 230 when the output voltage of the inverter control circuit 110 is reduced due to the decrease in the amount of power of the storage battery 140. It is possible to cut off the power supply to. On the other hand, an important load that can operate even at a low voltage (for example, the load 210) can continue to operate even when the output voltage of the inverter control circuit 110 has decreased due to the decrease in the amount of power of the storage battery 140.
 なお、系統連携リレー130やリレー232は、電磁的なリレーであってもよく、半導体リレー(SSR)やサイリスタで構成されたものであってもよい。 The system cooperation relay 130 and the relay 232 may be electromagnetic relays, and may be semiconductor relays (SSR) or thyristors.
 以上、図3を用いて本開示の実施の形態に係る電圧検出コンセント230の機能構成例について説明した。なお、図1では蓄電池付きパワーコンディショナ100を1つだけ設けた構成例を示したが、本開示は係る例に限定されるものではない。例えば、図4に示すように、蓄電池付きパワーコンディショナ100aの先に負荷210及び蓄電池付きパワーコンディショナ100bが接続され、蓄電池付きパワーコンディショナ100bの先に負荷220が接続されるような多段接続も可能である。 The example of the functional configuration of the voltage detection outlet 230 according to the embodiment of the present disclosure has been described above with reference to FIG. Note that FIG. 1 illustrates a configuration example in which only one power conditioner 100 with a storage battery is provided, but the present disclosure is not limited to this example. For example, as shown in FIG. 4, the load 210 and the power conditioner 100b with a storage battery are connected to the end of the power conditioner 100a with a storage battery, and the load 220 is connected to the end of the power conditioner with a storage battery 100b. Is also possible.
 例えば、電力消費の変動の激しい負荷220を下位層の蓄電池付きパワーコンディショナ100bで対応することで、階層のピークと上位層のピークが重なり、パワーコンディショナの供給能力を超えないようにすることができる。 For example, by coping with the load 220 having a large fluctuation in power consumption by the power conditioner 100b with a storage battery in the lower layer, the peak of the layer and the peak of the upper layer do not overlap and the supply capacity of the power conditioner is not exceeded. You can
 負荷210と負荷220とが同時に動作すると、一つの蓄電池付きパワーコンディショナでは供給能力を超える場合に、負荷210の電力消費の変動は蓄電池付きパワーコンディショナ100aにより吸収し、負荷220の電力消費と蓄電池付きパワーコンディショナ100bによる平準化された電力要求とは、蓄電池付きパワーコンディショナ100aが供給する。図4に示したような階層構造により、ピーク時の電力量オーバーを回避させることが可能となる。 When the load 210 and the load 220 operate at the same time, when the power conditioner with a storage battery exceeds the supply capacity, the fluctuation in the power consumption of the load 210 is absorbed by the power conditioner with a storage battery 100a, and the power consumption of the load 220 is reduced. The leveled electric power demand by the power conditioner 100b with a storage battery is supplied by the power conditioner 100a with a storage battery. With the hierarchical structure as shown in FIG. 4, it is possible to avoid the peak power consumption.
 図1に示した蓄電池付きパワーコンディショナ100を、複数台並列に接続することで、蓄電池付きパワーコンディショナ100間での電力融通を可能とすることが出来る。 By connecting a plurality of power conditioners 100 with storage batteries shown in FIG. 1 in parallel, it is possible to exchange power between the power conditioners 100 with storage batteries.
 図5は、本開示の実施の形態に係る電力供給システムの構成例を示す説明図である。図5には、支系統線G2に、4台の蓄電池付きパワーコンディショナ100a~100dが接続された電力供給システム1の構成例が示されている。 FIG. 5 is an explanatory diagram showing a configuration example of the power supply system according to the embodiment of the present disclosure. FIG. 5 shows a configuration example of the power supply system 1 in which four power conditioners 100a to 100d with storage batteries are connected to the branch system line G2.
 蓄電池付きパワーコンディショナ100a~100dそれぞれの入出力端子は支系統線G2に接続されている。また、蓄電池付きパワーコンディショナ100a~100dは、それぞれ通信回線COMを通じて1つのコントローラ300に接続されている。また、蓄電池付きパワーコンディショナ100a~100dの電力出力端子PO1~PO4は、複数の負荷に接続されている。 The input/output terminals of each of the power conditioners 100a to 100d with a storage battery are connected to the branch system line G2. Further, the power conditioners 100a to 100d with storage batteries are connected to one controller 300 through the communication line COM. In addition, the power output terminals PO1 to PO4 of the power conditioners 100a to 100d with storage batteries are connected to a plurality of loads.
 スイッチGSW1は、系統線G1と支系統線G2とを接続するスイッチである。系統線G1に異常が発生すると、スイッチGSW1により系統線G1と支系統線G2とが切り離される。スイッチGSW1により支系統線G2が系統線G1に接続されている時は、各蓄電池付きパワーコンディショナ100a~100dは、アイランドモード又はスレーブモードで稼働する。蓄電池に十分な電力(例えば40%以上の残量)がある場合は、蓄電池付きパワーコンディショナ100a~100dはアイランドモードになる。一方、蓄電池の電力が不足状態の場合は、蓄電池付きパワーコンディショナ100a~100dはスレーブモードとなり、系統から受電しながら蓄電池に充電したり、蓄電池の電力と共に負荷に電力を供給したりする。 The switch GSW1 is a switch that connects the system line G1 and the branch system line G2. When an abnormality occurs in the system line G1, the switch GSW1 disconnects the system line G1 from the branch system line G2. When the branch system line G2 is connected to the system line G1 by the switch GSW1, the power conditioners 100a to 100d with storage batteries operate in the island mode or the slave mode. When the storage battery has sufficient power (for example, the remaining amount of 40% or more), the power conditioners 100a to 100d with the storage battery are in the island mode. On the other hand, when the electric power of the storage battery is insufficient, the power conditioners 100a to 100d with the storage battery enter the slave mode to charge the storage battery while receiving power from the grid or supply the electric power to the load together with the electric power of the storage battery.
 系統線G1の電圧または周波数に異常があると、各蓄電池付きパワーコンディショナ100a~100dは支系統線G2から切り離し、アイランドモード(IM)に切り替わる。系統線G1の電圧または周波数の異常が長引くような状態になると、スイッチGSW1がオフとなり、支系統線G2は系統線G1から切り離される。このスイッチGSW1のオン、オフは、例えば系統線G1を通じて電力を供給する事業者によって行われうる。コントローラ300は、スイッチGSW1がオフとなり、支系統線G2が系統線G1から切り離された状態を確認すると、蓄電池付きパワーコンディショナ100a~100dの中から1つを選択し、その選択した蓄電池付きパワーコンディショナに対してマスターモード(MM)となるよう指示を出す。ここでは、蓄電池付きパワーコンディショナ100cがマスターモードに選択されたとする。どの蓄電池付きパワーコンディショナがマスターモードに選択されるかは特定の例に限定されるものではないが、例えば、蓄電池の残量が一番多いものがマスターモードに選択されても良い。 When there is an abnormality in the voltage or frequency of the system line G1, the power conditioners 100a to 100d with storage batteries are disconnected from the branch system line G2 and switched to island mode (IM). When the voltage or frequency abnormality of the system line G1 is prolonged, the switch GSW1 is turned off, and the branch system line G2 is disconnected from the system line G1. The switch GSW1 can be turned on and off by, for example, an operator who supplies electric power through the system line G1. When the controller 300 confirms that the switch GSW1 is turned off and the branch system line G2 is disconnected from the system line G1, the controller 300 selects one of the power conditioners with storage batteries 100a to 100d and selects the selected power with storage battery. Instruct the conditioner to enter master mode (MM). Here, it is assumed that the power conditioner 100c with a storage battery is selected in the master mode. Although which power conditioner with a storage battery is selected for the master mode is not limited to a specific example, for example, the one with the largest remaining amount of the storage battery may be selected for the master mode.
 マスターモードとなった蓄電池付きパワーコンディショナ100cは、支系統線G2の電圧と周波数を所定の値に制御する。ここでは、蓄電池付きパワーコンディショナ100cは、支系統線G2の電圧を100Vに、周波数を50Hzに設定したとする。支系統線G2の電圧と周波数の値は、他の蓄電池付きパワーコンディショナ100の性能に応じて設定されうる。 The power conditioner 100c with storage battery in the master mode controls the voltage and frequency of the branch system line G2 to predetermined values. Here, it is assumed that the power conditioner 100c with a storage battery sets the voltage of the branch system line G2 to 100 V and the frequency to 50 Hz. The voltage and frequency values of the branch system line G2 can be set according to the performance of another power conditioner 100 with a storage battery.
 コントローラ300は、各蓄電池付きパワーコンディショナ100a~100dと通信し、電力の融通が可能な蓄電池付きパワーコンディショナをスレーブモード(SM)に切り替え、電流制御値をそれぞれ設定する。スレーブモードに切り替えられた蓄電池付きパワーコンディショナは、他の蓄電池付きパワーコンディショナとの間で電力を融通する。 The controller 300 communicates with each of the power conditioners 100a to 100d with a storage battery, switches the power conditioner with a storage battery capable of power exchange to the slave mode (SM), and sets the current control value respectively. The power conditioner with a storage battery switched to the slave mode exchanges electric power with another power conditioner with a storage battery.
 図5の例では、蓄電池付きパワーコンディショナ100aは支系統線G2に2アンペアの電力を給電し、蓄電池付きパワーコンディショナ100dは2アンペアの電力を受電する。また、蓄電池付きパワーコンディショナ100bは3アンペアの電力を受電し、蓄電池付きパワーコンディショナ100cは2アンペアの電力を給電する。 In the example of FIG. 5, the power conditioner 100a with a storage battery supplies electric power of 2 amps to the branch system line G2, and the power conditioner 100d with a storage battery receives electric power of 2 amps. Moreover, the power conditioner 100b with a storage battery receives electric power of 3 amps, and the power conditioner 100c with a storage battery supplies electric power of 2 amps.
 [1.3.動作例]
 図6は、蓄電池付きパワーコンディショナ100の動作モードと遷移条件とを示す説明図である。以下、図6を用いて蓄電池付きパワーコンディショナ100の動作モードと遷移条件とについて説明する。
[1.3. Operation example]
FIG. 6 is an explanatory diagram showing operation modes and transition conditions of the power conditioner 100 with a storage battery. Hereinafter, the operation mode and the transition condition of the power conditioner 100 with a storage battery will be described with reference to FIG.
 (停止モードからの遷移)
 停止モードにある蓄電池付きパワーコンディショナ100は系統からの電力または蓄電池からの電力を受けると起動し、アイランドモードとして動作する。
(Transition from stop mode)
The power conditioner 100 with a storage battery in the stop mode is activated when receiving power from the grid or power from the storage battery, and operates in the island mode.
 (アイランドモード)
 蓄電池付きパワーコンディショナ100は、アイランドモードの状態では、系統線とインバータ制御回路110とを接続する系統連携リレー130はオフであり、交流電力の周波数は内部で生成し、インバータ制御回路110の端子pio1の制御電圧は電力制御回路120からの指示によって設定される。インバータ制御回路110は、蓄電池140のSOCの値を確認し、端子pio1の出力電圧を決定する。
(Island mode)
In the power conditioner 100 with a storage battery, in the island mode, the system cooperation relay 130 that connects the system line and the inverter control circuit 110 is off, the frequency of the AC power is generated internally, and the terminal of the inverter control circuit 110 is generated. The control voltage of pio1 is set by an instruction from the power control circuit 120. The inverter control circuit 110 confirms the SOC value of the storage battery 140 and determines the output voltage of the terminal pio1.
 (アイランドモードからの遷移)
 蓄電池付きパワーコンディショナ100は、アイランドモードの状態において、系統線G1の電圧vg及び周波数fgをモニタし、所定の適正範囲に入っていて、かつ、電力制御回路120がスレーブモード遷移許可状態であれば、スレーブモードに遷移する。また、蓄電池付きパワーコンディショナ100は、アイランドモードの状態において、蓄電池140のSOCの値が所定値以上で、かつ、電力制御回路120がマスターモード遷移許可状態であれば、マスターモードに遷移する。
(Transition from island mode)
The power conditioner 100 with a storage battery monitors the voltage vg and the frequency fg of the system line G1 in the island mode state, and is within a predetermined appropriate range, and the power control circuit 120 is in the slave mode transition permission state. For example, transition to slave mode. In the island mode, the power conditioner 100 with a storage battery transitions to the master mode when the SOC value of the storage battery 140 is equal to or higher than a predetermined value and the power control circuit 120 is in the master mode transition permission state.
 (スレーブモード)
 蓄電池付きパワーコンディショナ100は、スレーブモードの状態では、系統線とインバータ制御回路110とを接続する系統連携リレー130はオンであり、周波数は系統線に同期しており、端子pio1の出力は電力制御回路120からの指示によって電流制御モードとなっている。
(Slave mode)
In the power conditioner 100 with a storage battery, in the slave mode, the system cooperation relay 130 that connects the system line and the inverter control circuit 110 is on, the frequency is synchronized with the system line, and the output of the terminal pio1 is the power. The current control mode is set according to an instruction from the control circuit 120.
 (スレーブモードからの遷移)
 蓄電池付きパワーコンディショナ100は、スレーブモードの状態において、系統線G1の電圧vg及び周波数fgをモニタし、所定の適正範囲から所定の時間外れると、アイランドモードに遷移する。また蓄電池付きパワーコンディショナ100は、スレーブモードの状態において、電力制御回路120からの指示により、アイランドモード又はマスターモードに遷移する。
(Transition from slave mode)
The power conditioner 100 with a storage battery monitors the voltage vg and the frequency fg of the system line G1 in the slave mode, and transitions to the island mode when the voltage deviates from a predetermined appropriate range for a predetermined time. Further, the power conditioner 100 with a storage battery transitions to the island mode or the master mode in response to an instruction from the power control circuit 120 in the slave mode.
 (マスターモード)
 蓄電池付きパワーコンディショナ100は、マスターモードの状態では、系統線とインバータ制御回路110とを接続する系統連携リレー130はオンであり、交流電力の周波数は内部で生成し、端子pio1の出力は電力制御回路120からの指示によって電圧制御モードとなっている。
(Master mode)
In the power conditioner 100 with a storage battery, in the master mode, the system cooperation relay 130 that connects the system line and the inverter control circuit 110 is ON, the frequency of AC power is internally generated, and the output of the terminal pio1 is power. The voltage control mode is set according to an instruction from the control circuit 120.
 (マスターモードからの遷移)
 蓄電池付きパワーコンディショナ100は、マスターモードの状態において、電力制御回路120からの指示により、スレーブモード又はアイランドモードに遷移する。
(Transition from master mode)
In the master mode, the power conditioner 100 with a storage battery transitions to the slave mode or the island mode according to an instruction from the power control circuit 120.
 図7は、本開示の実施の形態に係るコントローラ300の動作例を示す流れ図である。図7でのコントローラ300の動作は、図5に示した構成を前提とする。以下、図7を用いて本開示の実施の形態に係るコントローラの動作例について説明する。 FIG. 7 is a flowchart showing an operation example of the controller 300 according to the embodiment of the present disclosure. The operation of the controller 300 in FIG. 7 is based on the configuration shown in FIG. Hereinafter, an operation example of the controller according to the embodiment of the present disclosure will be described using FIG. 7.
 コントローラ300は、動作を開始すると、通信回線に接続されている蓄電池付きパワーコンディショナ100の情報(BSPC情報)を入手する(ステップS101)。続いてコントローラ300は、スイッチGSW1がオフになっているかどうかを判断する(ステップS102)。 When the controller 300 starts operation, the controller 300 obtains information (BSPC information) on the power conditioner 100 with storage battery connected to the communication line (step S101). Subsequently, the controller 300 determines whether or not the switch GSW1 is off (step S102).
 ステップS102の判断の結果、スイッチGSW1がオフになっていた場合は(ステップS102、Yes)、コントローラ300は、蓄電池付きパワーコンディショナ100a~100dの中から1つを選択し、その選択した蓄電池付きパワーコンディショナに対してマスターモードに設定する(ステップS103)。ここでは、蓄電量が最も多い蓄電池付きパワーコンディショナ(BSPC)をマスターモードに設定する。ステップS102の判断の結果、スイッチGSW1がオンになっていた場合は(ステップS102、No)、コントローラ300はステップS103の処理をスキップする。 If the result of determination in step S102 is that the switch GSW1 is off (step S102, Yes), the controller 300 selects one of the power conditioners with storage batteries 100a to 100d, and selects the selected storage battery with power conditioner. The master mode is set for the power conditioner (step S103). Here, the power conditioner with storage battery (BSPC) having the largest amount of stored electricity is set to the master mode. As a result of the determination in step S102, if the switch GSW1 is turned on (step S102, No), the controller 300 skips the process of step S103.
 続いてコントローラ300は、蓄電池付きパワーコンディショナ100a~100dの少なくともいずれかから電力要求があったかどうか判断する(ステップS104)。 Subsequently, the controller 300 determines whether or not there is a power request from at least one of the power conditioners 100a to 100d with a storage battery (step S104).
 ステップS104の判断の結果、蓄電池付きパワーコンディショナ100a~100dの少なくともいずれかから電力要求があった場合は(ステップS104、Yes)、コントローラ300は、要求があった蓄電池付きパワーコンディショナをスレーブモードに設定し、更に、蓄電池の残量が多く、給電可能な蓄電池付きパワーコンディショナをスレーブモードとして、相互の電流量を正負同一量にして、規定の電力量を融通する(ステップS105)。その後、コントローラ300は上記ステップS101の処理に戻る。 As a result of the determination in step S104, when there is a power request from at least one of the power conditioners with storage batteries 100a to 100d (Yes in step S104), the controller 300 sets the requested power conditioner with storage battery in the slave mode. Further, the power conditioner with a storage battery, which has a large remaining amount of storage battery and can be supplied with power, is set to the slave mode, and the mutual current amounts are set to the same positive and negative amounts to accommodate the specified power amount (step S105). Then, the controller 300 returns to the process of step S101.
 一方コントローラ300は、ステップS104の判断の結果、蓄電池付きパワーコンディショナ100a~100dのいずれよりも電力要求が無かった場合は(ステップS104、No)、上記ステップS101の処理に戻る。 On the other hand, as a result of the determination in step S104, the controller 300 returns to the process of step S101 when there is no power request from any of the power conditioners 100a to 100d with a storage battery (step S104, No).
 図8は、蓄電池付きパワーコンディショナ100のモード切替時の電流及び電圧の変化例を示す説明図である。 FIG. 8 is an explanatory diagram showing an example of changes in current and voltage at the time of mode switching of the power conditioner 100 with a storage battery.
 時刻t1までは、蓄電池付きパワーコンディショナ100はアイランドモードとして動作している。時刻t1になると、蓄電池付きパワーコンディショナ100の系統連携リレー130がオンになり、時刻t2になると、蓄電池付きパワーコンディショナ100はスレーブモードで、かつ5アンペアで充電を行うように動作する。従って、インバータ制御回路110の電流ir1は負の値を示している。 Until time t1, the inverter with storage battery 100 operates in island mode. At time t1, the system cooperation relay 130 of the power conditioner with storage battery 100 is turned on, and at time t2, the power conditioner with storage battery 100 operates in slave mode and charging at 5 amperes. Therefore, the current ir1 of the inverter control circuit 110 has a negative value.
 その後時刻t3になると、蓄電池付きパワーコンディショナ100はスレーブモードで、かつ3アンペアで蓄電池から放電を行うように動作する。従って、インバータ制御回路110の電流ir1は正の値を示している。 After that, at time t3, the power conditioner 100 with a storage battery operates in a slave mode and discharges the storage battery at 3 amps. Therefore, the current ir1 of the inverter control circuit 110 has a positive value.
 その後時刻t4になると、系統線G1に異常が発生し、系統の電圧が低下する。蓄電池付きパワーコンディショナ100は系統連携リレー130をオフさせて、アイランドモードとして動作する。また系統線G1の異常によりスイッチGSW1がオフとなると、系統の電圧が0Vとなる。 After that, at time t4, an abnormality occurs in the system line G1 and the system voltage drops. The power conditioner 100 with a storage battery operates the island mode by turning off the system cooperation relay 130. Further, when the switch GSW1 is turned off due to an abnormality in the system line G1, the system voltage becomes 0V.
 その後時刻t5になると、蓄電池付きパワーコンディショナ100はコントローラ300によってマスターモードに設定される。マスターモードに設定された蓄電池付きパワーコンディショナ100は、支系統線G2に接続された他の蓄電池付きパワーコンディショナ100との間で電力の融通を実行する。 After that, at time t5, the power conditioner 100 with a storage battery is set to the master mode by the controller 300. The power conditioner 100 with a storage battery set to the master mode executes power exchange with another power conditioner 100 with a storage battery connected to the branch system line G2.
 [1.4.応用例]
 本開示の実施の形態に係るインバータ制御回路110を、例えば自動車のような移動体に搭載することも可能である、図9は、本開示の実施の形態の変形例を示す説明図である。図9には、自動車10にインバータ制御回路110が搭載された例が示されている。インバータ制御回路110は、自動車10と系統線G1とを接続するインタフェース20を介して系統線G1から電力を受けたり、また系統線G1に電力を供給したりすることができる。またインバータ制御回路110は、外部との通信を実行する通信部150と接続されており、他のインバータ制御回路110との間で通信部150を介して情報をやり取りすることができる。
[1.4. Application example]
The inverter control circuit 110 according to the embodiment of the present disclosure can be mounted on a moving body such as an automobile. FIG. 9 is an explanatory diagram illustrating a modified example of the embodiment of the present disclosure. FIG. 9 shows an example in which the inverter control circuit 110 is mounted on the automobile 10. The inverter control circuit 110 can receive power from the system line G1 or supply power to the system line G1 via the interface 20 that connects the automobile 10 and the system line G1. Further, the inverter control circuit 110 is connected to a communication unit 150 that executes communication with the outside, and information can be exchanged with another inverter control circuit 110 via the communication unit 150.
 図10は、自動車間の電力供給システムの構成例を示す説明図である。図10には、インバータ制御回路110が搭載された2台の自動車10a、10bが示されている。自動車10a、10bは、それぞれコントローラ300と接続されており、図5に示した電力供給システムと同様に、自動車10a、10b間で電力を融通しあうことが可能となる。なお、図9や図10で示された応用例においても、図5に示されるように、系統線G1の代わりに、支系統線G2に接続することで、支系統線G2から電力を受けたり、また支系統線G2に電力を供給したりするようにしてもよい。 FIG. 10 is an explanatory diagram showing a configuration example of a power supply system between vehicles. FIG. 10 shows two automobiles 10a and 10b equipped with the inverter control circuit 110. The automobiles 10a and 10b are connected to the controller 300, respectively, so that electric power can be exchanged between the automobiles 10a and 10b, similarly to the power supply system shown in FIG. In the application examples shown in FIG. 9 and FIG. 10 as well, as shown in FIG. 5, power is received from the branch system line G2 by connecting to the branch system line G2 instead of the system line G1. Alternatively, power may be supplied to the branch system line G2.
 <2.まとめ>
 以上説明したように本開示の実施の形態によれば、電力系統の障害で電力が供給されなくなるか不安定になると、蓄電池の電力を交流電力として供給できるように系統線から切り離す構成を有する蓄電池付きパワーコンディショナ100が提供される。本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、負荷となる電気機器にそのまま蓄電池から給電できる構造を有する。
<2. Summary>
As described above, according to the embodiment of the present disclosure, a storage battery having a configuration that disconnects the power of the storage battery from the system line so that the power of the storage battery can be supplied as AC power when power is not supplied or becomes unstable due to a failure in the power system. Provided is a power conditioner 100. The power conditioner 100 with a storage battery according to the embodiment of the present disclosure has a structure that can directly supply power to an electric device that is a load from the storage battery.
 本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、系統線が切り離され蓄電池のみの供給で、かつ蓄電池の容量がある一定以下になると、出力電圧を一定量低下させる。その電圧低下を検出する電圧検出コンセント230によって、その先につながる電気機器への電力供給を遮断することができるため、大電力を消費する電気機器は自動的に電力供給が遮断され、低電力の消費で済む照明機器や電子機器のみを選択的に稼働させることができるので、本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、少ない電力でも生活に必要な環境が維持できる。 The power conditioner 100 with a storage battery according to the embodiment of the present disclosure reduces the output voltage by a certain amount when the system line is disconnected and only the storage battery is supplied and the capacity of the storage battery is below a certain level. The voltage detection outlet 230 that detects the voltage drop can cut off the power supply to the electric device connected to the destination, so that the electric device that consumes a large amount of power is automatically cut off and the power consumption is low. Since only the lighting device and the electronic device that can be consumed can be selectively operated, the power conditioner 100 with a storage battery according to the embodiment of the present disclosure can maintain an environment necessary for living with a small amount of power.
 本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、蓄電池の蓄電量に応じて、系統に連携したり系統から切り離したりできる。また本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、系統に連携した場合は系統との間で特定の電流量を融通できるため、系統に接続された他の蓄電池付きパワーコンディショナ100との供給バランスを取ることが容易である。 The power conditioner 100 with a storage battery according to the embodiment of the present disclosure can be linked to or disconnected from the system depending on the amount of electricity stored in the storage battery. Further, since the power conditioner 100 with a storage battery according to the embodiment of the present disclosure can exchange a specific amount of current with the system when linked to the system, another power conditioner 100 with a storage battery connected to the system. It is easy to balance supply with.
 本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、3つのモード、すなわち、アイランドモード、スレーブモード、マスターモードを持つ。本開示の実施の形態に係る蓄電池付きパワーコンディショナ100は、基幹系統に繋がっている場合は、電力会社の発電機をマスター電源とし、本装置をスレーブモードで電力の融通を行い、基幹系統から切り離されている場合は切り離された支系統の中で1つをマスター電源とするためマスターモードとし他をスレーブモードで電力融通することができるので、停電を最小化できる。 The power conditioner 100 with a storage battery according to the embodiment of the present disclosure has three modes, that is, an island mode, a slave mode, and a master mode. When the power conditioner 100 with a storage battery according to the embodiment of the present disclosure is connected to a backbone system, a generator of a power company is used as a master power source, and this device exchanges power in a slave mode to transfer power from the backbone system. In the case of disconnection, one of the separated branch systems serves as the master power source, and the other mode can be set in the master mode so that the power can be exchanged in the slave mode, so that power failure can be minimized.
 本明細書の各装置が実行する処理における各ステップは、必ずしもシーケンス図またはフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、各装置が実行する処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。 Each step in the processing executed by each device in this specification does not necessarily have to be processed in time series in the order described as a sequence diagram or a flowchart. For example, each step in the process executed by each device may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
 また、各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。 Also, it is possible to create a computer program for causing the hardware such as the CPU, ROM, and RAM built in each device to exhibit the same function as the configuration of each device described above. A storage medium storing the computer program can also be provided. Further, a series of processes can be realized by hardware by configuring each function block shown in the functional block diagram by hardware.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that the invention also belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 交流電力を供給する系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えるモード切替部と、
 前記モード切替部が前記第2のモードに切り替えた場合において、前記系統線へ出力する交流電力の周波数及び電圧を決定するマスターモードとして動作するインバータと、
を備える、電力制御装置。
(2)
 前記インバータは、外部からの指示に基づいて、前記マスターモードとして動作する、前記(1)に記載の電力制御装置。
(3)
 前記系統線と前記インバータとの間の接続を切り替える制御を行う制御部をさらに備える、前記(2)に記載の電力制御装置。
(4)
 前記制御部は、前記インバータがマスターモードで動作する際には前記系統線と前記インバータとを接続するよう制御する、前記(3)に記載の電力制御装置。
(5)
 前記インバータは、前記第1のモードまたは前記第2のモードのいずれかの状態において、設定された周波数及び電圧に従って前記系統線との間の電力の授受を実行するスレーブモードとしても動作する、前記(1)~(4)のいずれかに記載の電力制御装置。
(6)
 前記インバータは、前記第1のモードまたは前記第2のモードのいずれかの状態において、前記系統線から交流電力の供給を受けずに交流電力の周波数を自律するアイランドモードとしても動作する、前記(1)~(5)のいずれかに記載の電力制御装置。
(7)
 前記モード切替部は、前記系統線からの電力供給が安定している状態で前記第1のモードに切り替える、前記(1)~(6)のいずれかに記載の電力制御装置。
(8)
 前記モード切替部は、前記系統線からの電力供給が安定しない状態で前記第2のモードに切り替える、前記(1)~(7)のいずれかに記載の電力制御装置。
(9)
 前記(1)~(8)のいずれかに記載の電力制御装置を備える、移動体。
(10)
 交流電力を供給する系統線からの電力供給が安定している状態では前記系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電力供給が安定しない状態で前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えることと、
 前記第2のモードに切り替えわった場合に、前記系統線へ出力する電力の周波数及び電圧を決定するマスターモードとしてインバータを動作させることと、
を備える、電力制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A mode for switching between a first mode that operates based on the frequency of AC power from a system line that supplies AC power, or a second mode that limits the current from the system line and operates autonomously in frequency. Switching part,
An inverter that operates as a master mode that determines the frequency and voltage of the AC power output to the system line when the mode switching unit switches to the second mode;
A power control device comprising:
(2)
The power control device according to (1), wherein the inverter operates in the master mode based on an instruction from the outside.
(3)
The power control device according to (2), further including a control unit that performs control for switching a connection between the system line and the inverter.
(4)
The power control device according to (3), wherein the control unit controls to connect the system line and the inverter when the inverter operates in the master mode.
(5)
In the state of either the first mode or the second mode, the inverter also operates as a slave mode in which electric power is exchanged with the system line according to a set frequency and voltage. The power control device according to any one of (1) to (4).
(6)
In any one of the first mode and the second mode, the inverter also operates as an island mode in which the frequency of AC power is autonomous without being supplied with AC power from the grid. The power control device according to any one of 1) to (5).
(7)
The power control device according to any one of (1) to (6), wherein the mode switching unit switches to the first mode in a state where power supply from the grid is stable.
(8)
The power control device according to any one of (1) to (7), wherein the mode switching unit switches to the second mode in a state where power supply from the grid is unstable.
(9)
A mobile body comprising the power control device according to any one of (1) to (8).
(10)
In the state where the power supply from the system line that supplies the AC power is stable, in the first mode that operates based on the frequency of the AC power from the system line, or in the state where the power supply from the system line is not stable. Switching between any of the second modes in which the current from the grid is limited and the frequency operates autonomously;
Operating the inverter as a master mode that determines the frequency and voltage of the power output to the grid when switching to the second mode;
A power control method comprising:
1    :電力供給システム
10   :自動車
20   :インタフェース
100  :蓄電池付きパワーコンディショナ
110  :インバータ制御回路
111  :双方向AC/DCインバータ
112  :周波数モニタ
113  :基準信号出力部
114  :モード切替電流指示部
115  :オペアンプ
120  :電力制御回路
130  :系統連携リレー
140  :蓄電池
150  :通信部
210  :負荷
220  :負荷
230  :電圧検出コンセント
231  :電圧検出器
232  :リレー
300  :コントローラ
1: Power supply system 10: Automobile 20: Interface 100: Power conditioner with storage battery 110: Inverter control circuit 111: Bidirectional AC/DC inverter 112: Frequency monitor 113: Reference signal output unit 114: Mode switching current instruction unit 115: Operational amplifier 120: Power control circuit 130: System cooperation relay 140: Storage battery 150: Communication part 210: Load 220: Load 230: Voltage detection outlet 231, Voltage detector 232: Relay 300: Controller

Claims (10)

  1.  交流電力を供給する系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えるモード切替部と、
     前記モード切替部が前記第2のモードに切り替えた場合において、前記系統線へ出力する交流電力の周波数及び電圧を決定するマスターモードとして動作するインバータと、
    を備える、電力制御装置。
    A mode for switching between a first mode that operates based on the frequency of AC power from a system line that supplies AC power, or a second mode that limits the current from the system line and operates autonomously in frequency. Switching part,
    An inverter that operates as a master mode that determines the frequency and voltage of the AC power output to the system line when the mode switching unit switches to the second mode;
    A power control device comprising:
  2.  前記インバータは、外部からの指示に基づいて、前記マスターモードとして動作する、請求項1に記載の電力制御装置。 The power control device according to claim 1, wherein the inverter operates in the master mode based on an instruction from the outside.
  3.  前記系統線と前記インバータとの間の接続を切り替える制御を行う制御部をさらに備える、請求項2に記載の電力制御装置。 The power control device according to claim 2, further comprising a control unit that performs control for switching a connection between the system line and the inverter.
  4.  前記制御部は、前記インバータがマスターモードで動作する際には前記系統線と前記インバータとを接続するよう制御する、請求項3に記載の電力制御装置。 The power control device according to claim 3, wherein the control unit controls to connect the system line and the inverter when the inverter operates in the master mode.
  5.  前記インバータは、前記第1のモードまたは前記第2のモードのいずれかの状態において、設定された周波数及び電圧に従って前記系統線との間の電力の授受を実行するスレーブモードとしても動作する、請求項1に記載の電力制御装置。 The inverter also operates as a slave mode in which, in either the first mode or the second mode, power is exchanged with the system line according to a set frequency and voltage. Item 2. The power control device according to item 1.
  6.  前記インバータは、前記第1のモードまたは前記第2のモードのいずれかの状態において、前記系統線から交流電力の供給を受けずに交流電力の周波数を自律するアイランドモードとしても動作する、請求項1に記載の電力制御装置。 The inverter also operates as an island mode in which the frequency of the AC power is autonomous without being supplied with the AC power from the grid in any one of the first mode and the second mode. 1. The power control device according to 1.
  7.  前記モード切替部は、前記系統線からの電力供給が安定している状態で前記第1のモードに切り替える、請求項1に記載の電力制御装置。 The power control device according to claim 1, wherein the mode switching unit switches to the first mode in a state where power supply from the grid is stable.
  8.  前記モード切替部は、前記系統線からの電力供給が安定しない状態で前記第2のモードに切り替える、請求項1に記載の電力制御装置。 The power control device according to claim 1, wherein the mode switching unit switches to the second mode in a state where power supply from the grid is unstable.
  9.  請求項1に記載の電力制御装置を備える、移動体。 A mobile body provided with the power control device according to claim 1.
  10.  交流電力を供給する系統線からの電力供給が安定している状態では前記系統線からの交流電力の周波数に基づいて動作する第1のモード、または前記系統線からの電力供給が安定しない状態で前記系統線からの電流を制限し周波数を自律して動作する第2のモードのいずれかを切り替えることと、
     前記第2のモードに切り替えわった場合に、前記系統線へ出力する電力の周波数及び電圧を決定するマスターモードとしてインバータを動作させることと、
    を備える、電力制御方法。
    In the state where the power supply from the system line that supplies the AC power is stable, in the first mode that operates based on the frequency of the AC power from the system line, or in the state where the power supply from the system line is not stable. Switching between any of the second modes in which the current from the grid is limited and the frequency operates autonomously;
    Operating the inverter as a master mode for determining the frequency and voltage of the power output to the grid when switching to the second mode;
    A power control method comprising:
PCT/JP2019/049618 2019-01-15 2019-12-18 Power control device, moving body, and power control method WO2020149081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020566161A JP7380598B2 (en) 2019-01-15 2019-12-18 Power control device, mobile object, and power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004667 2019-01-15
JP2019004667 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149081A1 true WO2020149081A1 (en) 2020-07-23

Family

ID=71613304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049618 WO2020149081A1 (en) 2019-01-15 2019-12-18 Power control device, moving body, and power control method

Country Status (2)

Country Link
JP (1) JP7380598B2 (en)
WO (1) WO2020149081A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182006A (en) * 2015-03-24 2016-10-13 株式会社デンソー Control device
JP2016185018A (en) * 2015-03-26 2016-10-20 田淵電機株式会社 System voltage suppression controller and system voltage suppression control method
JP2018026890A (en) * 2016-08-08 2018-02-15 サンケン電気株式会社 Electrical power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182006A (en) * 2015-03-24 2016-10-13 株式会社デンソー Control device
JP2016185018A (en) * 2015-03-26 2016-10-20 田淵電機株式会社 System voltage suppression controller and system voltage suppression control method
JP2018026890A (en) * 2016-08-08 2018-02-15 サンケン電気株式会社 Electrical power system

Also Published As

Publication number Publication date
JPWO2020149081A1 (en) 2021-11-25
JP7380598B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US10637283B2 (en) Power supply system and method
WO2021129878A1 (en) Charging system for swapping station or energy storage station
EP2479863B1 (en) System for controlling electric power supply to devices
US20020071292A1 (en) Power Supply With Uninterrupted Function
CN111756065A (en) Hybrid power supply energy storage system
JP7126243B2 (en) power supply system
KR101444266B1 (en) Energy management system using usual uninterruptible power supply
KR20180136177A (en) An energy storage system
JP2001112261A (en) Ac power source
CN111934414B (en) Control method of standby power control system of power change station and power change station
CN110467092B (en) Elevator power failure emergency leveling device and power supply method thereof
KR100509263B1 (en) A high efficiency uninterruptible power supply of a on and off line compositeness to come
WO2020149081A1 (en) Power control device, moving body, and power control method
KR101996834B1 (en) An energy storage system
JPH04351424A (en) Power supply
CN114731048A (en) Non-current-sharing UPS device, current dividing method and UPS parallel operation system
JPH04299025A (en) Dc power unit
CN110932333A (en) Power distribution system
CN220797869U (en) Power distribution system and user system
CN220964339U (en) Micro-grid energy storage system
CN218678461U (en) Energy storage power supply system and electric equipment
TWI807405B (en) Power conversion system
CN210898560U (en) Intelligent battery system with parallel mains supply
CN116706961A (en) Energy storage device and energy storage system
CN115580012A (en) Intelligent power supply system output management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909737

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909737

Country of ref document: EP

Kind code of ref document: A1